
PhD Thesis

C O N T I N U I T Y A N D I N T E R P O L AT I O N T E C H N I Q U E S F O R C O M P U T E R
G R A P H I C S

Francisco González García
2013

http://www.eg.org
http://diglib.eg.org

PhD Thesis

C O N T I N U I T Y A N D I N T E R P O L AT I O N T E C H N I Q U E S F O R C O M P U T E R
G R A P H I C S

Francisco González García
2013

Doctoral Programme in Technology
Computer Science

PhD Advisor
Dr. Gustavo Patow

Memòria presentada per optar al títol de doctor per la Universitat de Girona

El Dr. Gustavo Patow, professor associat del departament d’Informàtica i Matemàtica
Aplicada (IMA) de la Universitat de Girona,

CERTIFICO:

Que aquest treball, titulat Continuity and interpolation techniques for Computer
Graphics, que presenta Francisco González García per a l’obtenció del títol de doc-
tor, ha estat realitzat sota la meva direcció.

Signatura

Girona, 13 de Nomvembre del 2012

Continuity and interpolation techniques for Computer Graphics, Francisco González García,
PhD in Technology, Universitat de Girona, IMA - Informatica i Matemàtica Aplicada,
November 2012

Dedicado a mi padre y a mi pareja,sin vosotros no hubiera sido posible. Os quiero!!!

A C K N O W L E D G M E N T S

Me gustaría dar las gracias a un cojunto de personas, sin las cuáles, esta tesis jamás hu-
biera sido lo mismo.

Querría agradecerte Gus el haber podido realizar este doctorado. Sin ti, tu ayuda, guía,
tiempo, esfuerzo y dedicación no hubiera sido posible. Es muy hermoso compartir obje-
tivos, inquietudes e ilusiones con una persona y llevarlas a cabo, verdad? Ha sido una
aventura emocionante, llena de aprendizajes constantes, tanto en el terreno profesional
como en el personal. Como siempre te he dicho, no siento que sea mi tesis, si no un
proyecto común que hemos realizado los dos y que ha durado unos intensos cuatro años.
He podido realizar el doctorado junto a un brillante científico. Sin duda alguna, no hubiera
podido elegir mejor director!!! ¿Pero sabes qué? Poca gente puede decir que ha realizado
el doctorado con un buen y gran amigo.

Me gustaría agradecer, de forma especial, a mi compañero de vida, Fran. Has tenido
muchísima paciencia, comprensión y empatía por todo cuanto me ha sucedido durante
estos últimos años. Tu amor ha sido esa energía que me ha ayudado en muchos momen-
tos y que sin él todo hubiera sido mucho más complicado. Gracias por comprender mi
dedicación por mi trabajo, mi pasión por las cosas que hago, por llegar tarde tantas veces
a casa y dedicarte menos tiempo del que sin duda mereces. Tú más que nadie sabes que
estos últimos años no han sido fáciles para mi, pero gracias a tu apoyo incondicional he
podido tirar hacia delante. Gracias por levantarme cuando no podía. Gracias por ilumin-
arme cuando no veía salida. Gracias por ser quién eres y hacerlo a mi lado. Te quiero.

A mi padre y a mi madre. Gracias mama y papa, porque no hubiera podido desear
mejores padres. Sois un ejemplo de superación, fuerza, coraje y valentía. Os quiero y
siempre os llevaré en mi corazón. Papa, sé que te sientes orgulloso de mi y ello me llena
el corazón. Gracias por siempre estar ahí, vigilando y protegiéndome. Te llevo dentro de
mi. Esta tesis te la dedico a ti. Sin duda un ejemplo de superación, bondad, justicia y amor.
Mama y papa, os quiero más de lo que las palabras pueden expresar.

A mis hermanas, más que amigas, Sílvia Francia y Sílvia Abril. Cuántos momentos
hemos pasado juntos, verdad? Qué bonito es tener personas que sin ser de tu familia las
sientas como tal. Para mi sois muy importantes, os necesito en mi vida, ya que me llenáis
de todo lo hermoso que sin duda tenéis. Mendita, te quiero muchísimo, lo sabes verdad?
Jamás olvidaré cada una de tus palabras, ya que como siempre te dije son especiales. Na-
cen del corazón. Gracias por cantar a mi lado, fue muy especial!!! Jamás lo olvidaré!!!
Siempre juntos, siempre el trío de luz. Vacuneta, tu mejor que nadie sabes el esfuerzo que
hay detrás de una tesis. Gracias por ser mi amiga, como dije antes, una hermana. Nos
queremos, nos respetamos, nos comprendemos y nos valoramos de forma sincera. Gra-
cias por ser y estar en mi vida. Y a ti Dolors, no me olvidaría jamás. Gracias por todos
los masajes!!! No sabes lo bien que me iban después de tantas horas sentado delante del
ordenador. Pero más importante aún, gracias por todo tu amor, tu calidez, tu bondad,

xi

siempre dispuesta a ayudarme. Te quiero mucho!!!

Me gustaría agradecer también a TODOS los amigos de Ataraxia, especialmente a Inma
y Esther. Un grupo de ayuda al ser humano lleno de valores y mucho amor. Gracias por
ayudarme a crecer y a convertirme en el ser que soy hoy. Gracias por ser y por estar siem-
pre a mi lado, por protegerme y valorarme por quién soy. Os quiero con todo mi corazón.

A mis compañeros de despacho y de grupo. Gracias a todos por tantos momentos
y cafés que hemos compartido. Especialmente a mis queridos amigos Tere e Isma. Os
agradezco de corazón vuestra ayuda, vuestros consejos. Por todos los momentos que
hemos vivido soy y me siento afortunado. He aprendido y crecido gracias a vosotros,
profesional y personalmente. Os deseo de corazón lo mejor en el futuro que os depara.
Sin duda os lo merecéis!!! Y quién sabe si en algún momento nos volveremos a encontrar.
Hasta siempre!!!

Xavier, no quería olvidarme de ti. Gracias por tu ayuda y predisposición en todo mo-
mento. Gracias, porque si no hubiera sido por ello, probablemente no hubiera disfrutado
de la beca que se me concedió. Te estoy muy agradecido. También me gustaría acordarme
de Pere Brunet, tus consejos cuando tan solo estábamos empezando fueron de gran ayuda.
Gracias de corazón.

No me gustaría acabar estos agradecimientos sin dar las gracias a la vida!!! Sin duda
alguna es un regalo y hay que aprovecharla. Gracias por hilar la trama perfecta para que
esta obra se pudiera llevar a cabo. La experiencia que ha supuesto hacer el doctorado es
prácticamente indescriptible para mi. Sin duda hoy no soy el mismo que hace cuatro años,
he evolucionado como profesional y más importante aún, como ser humano. Me siento
afortunado porque en estos últimos años de mi vida he podido hacer una de las cosas que
más me gustaba y al lado de las personas que quise. Gracias, gracias y gracias.

Francisco González García.

Esta tesis ha sido financiada mediante una beca FPU (Ministerio de Educación, Cultura
y Deporte), así como de los siguientes proyectos: "Avances en la realidad virtual para
aplicaciones punteras" (TIN2010-20590-C02-02) y "Modelado, visualización, animación y
anánalisis de entornos 3D altamente complejos en sistemas de realidad virtual interac-
tivos" (TIN2007-67982-C02).

xii

P U B L I C AT I O N S

This thesis has given as a result several publications in some of the most well known jour-
nals and conferences in Computer Graphics:

• Continuity mapping for multi-chart textures. González Francisco and Patow Gus-
tavo. SIGGRAPH Asia ’09, Yokohama, Japan. ACM Transactions on Graphics, Vol-
ume 28, issue 5, pages 109:1–109:8. December 2009. ISSN 0730-0301. Article 109. doi:
http://doi.acm.org/10.1145/1618452.1618455.
Publisher ACM. New York, USA.

• *Cages: A multi-level, multi-cage based system for mesh deformation. González
Francisco, Paradinas Teresa, Coll Narcís and Patow Gustavo. ACM Transactions on
Graphics, Volume 32, pages 24:1 –24:13, July 2013. ISSN 0730-0301. Article 24. doi:
10.1145/2487228.2487232.
Publisher ACM. New York, USA. Presented in SIGGRAPH 2013, Anaheim, USA.

• I-Render: Approximate interpolated rendering by mesh clustering. González Fran-
cisco, García Ismael and Patow Gustavo. Submitted.

xiii

L I S T O F F I G U R E S

Figure 1 Modeling, deformation and rendering pipeline in a Computer Graph-
ics application. 8

Figure 2 A possible parameterization (multi-chart) of a surface into texture
space. 16

Figure 3 Multi-chart parameterization discontinuities. 17

Figure 4 Parameterization of a surface mesh into object space by the use of
another additional surface C. 18

Figure 5 Projection of a surface mesh into screen space. 18

Figure 6 Discontinuities of a surface mesh projected into screen space. 19

Figure 7 Lienar interpolation. 20

Figure 8 Bilinear interpolation. 21

Figure 9 Trilinear interpolation. 21

Figure 10 Mesh parameterization techniques using 2D data structures with
one single or several charts. Images from [50], [34], [72], [12], [67]
and [99]. 22

Figure 11 Mesh parameterization techniques using 3D data structures. Im-
ages from [6], [90], [47] and [96]. 23

Figure 12 Techniques to hide seams by its placement on the 3D mdoel. Images
from [80], [43] and [68]. 24

Figure 13 Techniques to hide seams by blending techniques. Images from [66],
[55] and [21]. 25

Figure 14 Cage-based deformation methods use a cage to drive the deforma-
tion of a model. 26

Figure 15 Different cage-based methods for mesh deformation. From left to
right: Mean Value Coordinates (MVC), Positive Mean Value Coordi-
nates (PMVC), Harmonic Coordinates (HC) and Green Coordinates
(GC). Images from [39], [38], [53] and [54]. 26

Figure 16 Table showing a summary about coordinates continuity. 27

Figure 17 Cage-based deformation techniques applied to planar domains. Im-
ages from [56], [92] and [57]. 28

Figure 18 Several inter-frame acceleration techniques for rendering. Images
from [59] and [82]. 29

Figure 19 Several intra-frame acceleration techniques for rendering. Images
from [101], [46] and [30]. 29

Figure 20 Screen-space techniques for accelerating Ray-tracing. Images from
[88], [95] and [60]. 30

Figure 21 Techniques that use Information Theory and apply it to several
Computer Graphics fields. Images from [69], [31], [58], [23] and [71]. 33

Figure 22 Graphics pipeline with all the stages and programable parts. 34

xv

xvi List of Figures

Figure 23 Motivation. Fragments from different sides of a seam are param-
eterized onto disjoint areas in texture space (different orientation
and stretching), leading to discontinuities that are more visible in
close-up views. 39

Figure 24 Texture transfer artifacts between different parameterizations. 40

Figure 25 Continuity Mapping overview. 41

Figure 26 Transformation between edges s and s ′, 42

Figure 27 Traveler’s Map definitions. Seams s and s ′ are paired using trans-
formation Ts→s ′ (left). We create a security border (middle) around
each chart storing references to the respective Ts→s ′ (right). 43

Figure 28 Texels-Seam edges association. Left: Association for trustworthy
texels with a single seam edge. Right: Association for trustworthy
texels with multiple seam edges. 44

Figure 29 Construction of Sewing the Seams. (a) Charts and seams in 3D. (b)
Identify and join the trustworthy texel centers in every chart. (c)
With Traveler’s Map, transform the centers to the outside of the cor-
responding twin seam on the other chart. (d-e) Triangulate both the
interior and the exterior centers, taking special care with corners
where two seam edges meet. (f) The triangulation mapped back in
3D. 45

Figure 30 Sewing the Seams usage and data structures. Fragment f queries the
list of triangles associated with the texel (T1, T2 and T3), and point
f is found in triangle T3. 46

Figure 31 Sewing the Seams performance improvement by dividing each texel
in four quadrants and storing 1 bit for 47

Figure 32 Seamless Texture Filtering on the bunny model (Atlas 10242). First
and third column: padding. Second and fourth column: Sewing the
Seams. 49

Figure 33 Seamless Texture Filtering on the Neptune model (Atlas 20482).
First and third column: padding. Second and fourth column: Sewing
the Seams. 50

Figure 34 Seamless Texture Filtering on the snake model (Atlas 1458x3200).
First and third column: padding. Second and fourth column: Sewing
the Seams. 50

Figure 35 Sewing the seams at different resolutions on the bunny model. Top
row: Sewing the Seams. Bottom row: Padding. 51

Figure 36 A parameterized elephant model (13402 triangles) and two different
results for continuous reaction-diffusion simulations. Left: padding.
Right: Continuity Mapping. 51

Figure 37 The bunny model from Figure 32 with different results for contin-
uous reaction-diffusion simulations. 52

Figure 38 Droplet simulations performed on the bunny model from Figure 32. 52

Figure 39 Multi-chart Relief Mapping. Comparison between simple padding,
Indirection Maps and Continuity Mapping. 52

Figure 40 Tracing a ray with Multi-Chart Relief Mapping. 53

Figure 41 Multi-chart Relief Mapping on the Loiosh model. Comparison be-
tween simple padding, and Continuity Mapping. 53

List of Figures xvii

Figure 42 Multi-chart Relief Mapping on the bunny model. Comparison be-
tween simple padding, Indirection Maps and Continuity Mapping. 54

Figure 43 Left: Memory consumption of Continuity Mapping depending on
the atlas resolution. 55

Figure 44 Dependence of the frame-rate on the distance to the observer (bunny
model, viewport: 1024× 768). 56

Figure 45 Definition of a point inside a cage by a set of weights respect to the
cage vertices. 63

Figure 46 Left: c0 = v0v1v4v3, c1 = v3v4v6v5, c2 = v1v2v7v6v4, Bc0
= Bc0c1

∪
Bc0c2

, Bc1
= Bc0c1

∪ Bc1c2
, Bc2

= Bc0c2
∪ Bc1c2

. Middle: Join cage
generated by v3. Right: Join cage generated by v4. 63

Figure 47 Cube model at binding time and its correspondence influence map. 64

Figure 48 A comparison between piecewise deformations. (a) MVC/PMVC/HC
deformation. (b) *Cages with MVC deformation, both for Jci

(p) and
Tci

(p). (c) GC deformation. (d) *Cages with GC deformation, both
for Jci

(p) and Tci
(p). The second row shows close views of the de-

formed model. Notice that only (b) and (d) are C1. 64

Figure 49 Variation of weight W(v,p) on different borders between two cages. 68

Figure 50 Influence map variation on the scheme shown in Figure 46. 70

Figure 51 Influence map variation on the chinchilla model. Left: Original model
and initial cages. Right: Results obtained by using different hci

val-
ues for the left ear cage. Red and blue regions mean transformations
Tci

(p) and Jci
(p) respectively are fully applied. 70

Figure 52 Multi-level deformation for coordinates not defined outside the
cage. (a) Initial cages. (b) Direct cage vertex movement. (c) Parent
transformation. 72

Figure 53 Camel model at binding time (left) and its corresponding influence
map (right). 72

Figure 54 Twisting a prism using MVC (left) and GC (right). See the similarity
between a single cage (a,d) and *Cages (b,e). (c,f) show the corre-
sponding difference maps. Red means higher error and blue means
lower error. 73

Figure 55 Two diferent deformations on the camel model with MVC (first
column) and *Cages (second column). Third column shows the dif-
ference maps. Red means higher error and blue means lower error. . 74

Figure 56 Influence map of the train model at binding time. 74

Figure 57 Locality: Comparison of single cage approaches and *Cages(̇a) sin-
gle cage MVC, (b) *Cages whith MVC, (c) single cage GC, (d) *Cages
with GC. 75

Figure 58 From left to right: the cages at binding time on the butterfly model,
two different deformations using MVC and GC with *Cagesand a
*Cagescombined GC/MVC deformation. 75

Figure 59 Combined deformations on the elk model. Left: Elk model at bind-
ing time with its influence map. Middle: *Cages combined MVC/HC
deformation. Right: *Cages combined GC/HC deformation. 76

xviii List of Figures

Figure 60 Deformations on the hand model. Columns from left to right: De-
formation using MVC (observe the effect of negative coordinates of
non-convex cages), and *Cages using MVC (third column) and HC
(fourth column) as join transformations, respectively. 77

Figure 61 Fairness of the resulting MVC (left), GC (middle) and MVC/GC
with *Cages (right) deformations. The top row shows the influence
map and the cages at binding time. 78

Figure 62 Multiple cages meeting at a cage vertex. Left: Original model with
13 cages using different coordinates. Middle: close view. Right: De-
formation with *Cages. 79

Figure 63 Multi-level deformation of the squirrel model. (a) Multi-level cages.
(b) Leaf deformation: teeth cage. (c) Internal deformation: ears’
cage. (d) Internal deformation: head cage. (e) Leaf deformation: face
cage. 79

Figure 64 Deformation of the squirrel model using *CagesL̇eft: The model and
its multi-level cages at binding time. Right: Composition of a pose. . 80

Figure 65 Deformation involving interior points of the "Easter egg" model
using *CagesL̇eft: The model and the grid of cages at binding time.
Highlighted vertices are interior points. Right: Composition of two
different deformations. 80

Figure 66 Scene showing the multi-level deformations on the Squirrel and
Chinchilla models. Left: Cages at binding time with different coor-
dinates (Blue - MVC, Green - GC, Red - HC, and pink cage bound-
aries). Right: Composition of different poses. 81

Figure 67 Deformations of the Sintel model (66845 triangles) using *CagesL̇eft:
Cages at binding time with different coordinates (Blue - MVC, Green
- GC, Red - HC, and pink cage boundaries). Right: Composition of
different poses. 83

Figure 68 Deformation of the frog model. Left: Cages at binding time and
original model. Right: Deformed cages and model using *Cages. . . 84

Figure 69 Iterative application of channel clustering: visibility, orientation and
texture stretch. 92

Figure 70 Variation of clustering threshold Th. 96

Figure 71 Cluster smoothing. 97

Figure 72 A band between two clusters, Ci and Cj, defined around a bound-
ary from vertex Vi to vertex Ve. 97

Figure 73 Iterative clustering refining for different model keyframes (left and
right). 98

Figure 74 Rendering pattern for three passes starting at a 2× 2-pixel image. . . 99

Figure 75 Re-used (R), interpolated (I) and evaluated (E) samples in the suc-
cessive passes. 100

Figure 76 Hard shadow boundary preservation. Center: I-Render with no bound-
ary preservation. Right: I-Render with boundary preservation. 101

Figure 77 Quality depending on the number of clusters. Left: the clusters,
Right: renderings showing details and error values in false color
(inset). 102

Figure 78 Quality depending on the number of passes. Top row: Ray Tracing
reference and 2, 3 and 4 passes respectively. Bottom row: the clus-
ters and the respective error images. The insets show details of the
texturing and soft shadows. 103

Figure 79 Quality depending on the number of passes. Top row: Ray Tracing
reference and 2, 3 and 4 passes respectively. Bottom row: the clus-
ters and the respective error images. The insets show details of the
texturing and soft shadows. 104

Figure 80 Quality depending on the observer distance. Timings in Figure 84. . 105

Figure 81 Correct texture rendering. Left: clusters, Middle: Ray Tracing, Right:
I-render. The lower insets show the smooth interpolation of the tex-
ture coordinates. 106

Figure 82 Our system first performs a feature-based clustering of the object
(left) and then reconstructs the final image by an approximate inter-
polated approach (right). Quality is comparable with Ray Tracing
(middle), observe the texture details, shadow boundaries and cor-
rect visibility. Our technique can render the scene up to 12 times
faster than Ray Tracing. 107

Figure 83 Animation sequence of the panda model using our technique. 108

Figure 84 Graph showing the relation between rendering time (in ms) and
distance to the observer (in arbitrary units), for the model in Figure
80. 108

Figure 85 Graph showing the relation between rendering time (in ms) and the
number of passes for different resolutions, see Figure 78. 109

Figure 86 Graph comparing the mean rendering time (in ms) between Ray
Tracing and I-Render for several views and models. 110

L I S T O F TA B L E S

Table 1 Memory and time requirements for several hci
values for the chin-

chilla model. 85

Table 2 Memory and time requirements for the Sintel and Squirrel models
using *Cages and standard single cage approaches. 85

Table 3 Table showing the differences between the cost of evaluated and
interpolated pixels for Ray-Tracing and I-Render for several models
shown in the paper. 106

xix

C O N T E N T S

1 introduction 7

1.1 Contributions . 10

1.2 Thesis overview . 11

2 previous work 13

2.1 Parameterization and continuity . 15

2.1.1 Texture space . 15

2.1.2 Object space . 17

2.1.3 Screen space . 17

2.2 Interpolation . 19

2.3 Continuity and interpolation techniques . 21

2.3.1 Texture space . 21

2.3.2 Object space . 25

2.3.3 Screen space . 28

2.4 Mesh clustering . 31

2.5 Information Theory . 32

2.5.1 Basic concepts . 32

2.5.2 Information Theory in Computer Graphics 33

2.6 Graphics hardware pipeline . 34

3 continuity and interpolation in texture space 37

3.1 Introduction . 39

3.2 Overview . 41

3.3 Traveler’s Map . 42

3.3.1 Construction . 42

3.3.2 Usage . 43

3.4 Sewing the Seams . 43

3.4.1 Construction . 43

3.4.2 Storage details . 47

3.4.3 Filtering with Sewing the Seams . 47

3.5 Mip Mapping and Shader LoD . 48

3.6 Applications . 49

3.7 Results and Discussion . 54

3.8 Conclusions . 57

4 continuity and interpolation in object space 59

4.1 Introduction . 61

4.2 *Cages . 62

4.2.1 Join transformation Jci
(p) . 64

4.2.2 Boundary weight function bci
(p) . 69

4.2.3 Smooth Transformation Sci
(p) . 70

4.2.4 Multi-level deformations . 71

xxi

xxii contents

4.3 Results and discussion . 72

4.4 Conlusions . 86

5 continuity and interpolation in screen space 87

5.1 Introduction . 89

5.2 Clustering . 90

5.2.1 Information Theoretic Channels . 90

5.2.2 Clustering a Single Channel . 94

5.2.3 Smoothing . 96

5.2.4 Animated Scenes . 98

5.2.5 Threshold Selection . 98

5.3 Rendering by Upsampling . 99

5.3.1 Hard Shadows and Higher-Frequency Signals 100

5.3.2 Automatic Pass-Controlling Mechanism 101

5.4 Results and Discussion . 101

5.5 Conclusions . 111

6 conclusions and future work 113

6.1 Conclusions . 115

6.2 Future work . 115

i bibliography 119

bibliography 121

ii appendix 129

a continuity mapping pixel shader code 131

b i-render cuda kernels 141

R E S U M

En el camp dels gràfics per ordinador és una pràctica molt comuna utilitzar textures sobre
els models 3D per a poder-los aplicar materials. Una vegada els models han estat textu-
rats, aquests solen patir un procés de deformació, amb l’objectiu de poder crear noves
postures que puguin ser més apropiades per a una escena determinada. A continuació,
l’escena que conté tals models es visualitza mitjançant la utilització d’un algorisme de
visualització. Així doncs, és evident que el texturat, deformació i la visualització són parts
molt importants dintre dels gràfics per ordinador. En aquests camps s’ha portat a terme
molta investigació, la qual ha donat com a resultat mètodes que permeten crear imatges
per ordinador de forma més flexible, robusta i eficient. Però tot i així, existeixen moltes
millores per a portar a terme, degut a que moltes d’aquestes tècniques pateixen problemes
de continuïtat que dificulta la posterior aplicació de mètodes d’interpolació. Per lo tant, en
aquesta tesis doctoral presentem una sèrie d’algorismes que aporten continuïtat en àrees
estratègiques i importants en els gràfics per ordinador.

En el camp del texturat de models 3D proposem un nou algoritme que permet real-
itzar un mapeig continu de models texturats amb textures multi-pedaç. Aquest tipus de
parametritzacions divideixen un model continu en un conjunt de pedaços discontinus en
espai de textura, provocant discontinuïtats i com a conseqüència, problemes en aplicacions
tan comunes com poden ser el filtrat de textures i les simulacions en espai de textura. El
nostre mètode converteix qualsevol parametrització multi-pedaç en una parametrització
sense discontinuïtats, gràcies tant a la utilització d’una correspondència entre àrees que es
troben fora dels pedaços i àrees que estan dintre, així com a l’ús d’un conjunt de triangles
virtuals que literalment "cusen" els pedaçoss per a solucionar les diferències existents en el
mostreig dels mateixos. Continuity Mapping no requereix modificar la textura prèviament
generada per l’artista, és completament automàtic i fa un ús eficient dels recursos, ja que
requereix poca memòria i té un cost computacional baix.

Per a deformar un model tridimensional i crear així noves postures, proposem un nou
mètode de deformació basat en caixes o gàbies. Fins ara, les tècniques de deformació de
caixes estaven limitades a la utilització d’una única caixa degut a l’existència de prob-
lemes de continuïtat a les fronteres de les mateixes. Com a conseqüència, aquests mètodes
no poden deformar localment una regió d’un model i a la vegada, el consum de temps
i memòria es veuen incrementats. Per això introduïm *Cages, una tècnica que permet la
utilització de múltiples caixes englobant el model a múltiples nivells de detall, per així
poder portar a terme deformacions de forma més senzilla i ràpida. El mètode proposat
soluciona les discontinuïtats dels mètodes anteriors mitjançant la combinació suau de la
deformació de cadascuna de les caixes a la vegada que permet utilitzar conjunts heteroge-
nis de coordenades, donant així més flexibilitat a l’usuari final.

Per a finalitzar, proposem una tècnica d’acceleració de la visualització d’escenes 3D,
anomenada I-Render, amb l’objectiu d’obtenir un Ray Tracing aproximat, però a la vegada
més ràpid i eficient. Primer portem a terme un procés de d’agrupació dels triangles que

1

2 contents

formen la malla d’entrada, el qual es basa en la utilització de la Teoria de la Informació
per a agrupar triangles amb característiques similars. Aquests conjunts de triangles són
els encarregats de definir tant regions amb poques variacions (suaus), així com zones de
transicions més brusques (discontinuïtats). A continuació, introduïm un nou algorisme de
visualització multi-passada, que utilitza la informació dels grups, prèviament generada,
per a poder decidir quines àrees de la imatge final poden ser interpolades i quines neces-
siten càlculs més costosos. Tot aquest procés es porta a terme, completament, en espai de
pantalla i, como a conseqüència, el nostre mètode es pot utilitzar conjuntament a d’altres
tècniques d’acceleració més habituals basades en estructures de dades espacials. A més,
I-Render també suporta models animats.

R E S U M E N

En el campo de los gráficos por ordenador es una práctica muy común texturar los mod-
elos 3D para poderles aplicar materiales. Una vez los modelos están texturados, éstos
suelen sufrir un proceso de deformación con el objetivo de poder crear nuevas poses que
puedan ser más apropiadas para una escena determinada. A continuación, la escena que
contiene tales modelos, se visualiza mediante el uso de un algoritmo de renderizado. Así
pues, es evidente que el texturado, deformación y la visualización son, aún hoy, partes
muy importantes de los gráficos por ordenador. En estos campos se ha llevado a cabo
mucha investigación, la cuál ha dado como resultado métodos que permiten crear imá-
genes por ordenador de forma más flexible, robusta y eficiente. Pero aún existen mejoras
por hacer, debido a que muchas de estas técnicas poseen problemas de continuidad que
dificulta la posterior aplicación de métodos de interpolación. Por lo tanto, en esta tesis
presentamos una serie de algoritmos que aportan continuidad en áreas estratégicas e im-
portantes de los gráficos por ordenador.

En el campo del texturado de modelos 3D proponemos un nuevo algoritmo, llamado
Continuity Mapping, que permite llevar a cabo un mapping continuo de modelos textu-
rados con texturas multi-chart. Éste tipo de parametrizaciones particionan un modelo
continuo en un conjunto de charts discontinuos, en espacio de textura, provocando discon-
tinuidades y, como consecuencia, problemas en aplicaciones tan comunes como el filtrado
de texturas y las simulaciones continuas en espacio de textura. Nuestro método convierte
cualquier parametrización multi-chart en una parametrización sin discontinuidades gra-
cias tant al uso de una correspondencia entre áreas que están fuera de los charts y áreas
que están dentro, así como a la utilización de un conjunto de triángulos virtuales que
literalmente "cosen" los charts para solucionar las diferencias existentes en el sampleado.
Continuity Mapping no requiere la modificación de la textura previamente generada por
el artista, es completamente automático y hace un uso eficiente de los recursos, ya que
consume poca memoria y tiene un coste computacional bajo.

Para deformar un modelo tridimensional y crear así nuevas poses, proponemos un nove-
doso método de deformación basado en cajas. Hasta ahora, las técnicas de deformación
de cajas estaban limitadas al uso de una única caja, debido a la presencia de problemas de
continuidad presentes en las fronteras de las mismas. Como consecuencia, estos métodos
no pueden deformar, de forma local, una región de un modelo y a su vez, el consumo
de tiempo y memoria se ven incrementados. Por ello introducimos *Cages, una técnica
que permite el uso de múltiples cajas englobando el modelo a múltiples niveles de detalle,
para así poder llevar a cabo deformaciones de forma más sencilla y rápida. El método
propuesto soluciona las discontinuidades de los métodos anteriores mediante la combi-
nación suave de la deformación de cada caja y a su vez permitiendo el uso de conjuntos
heterogéneos de coordenadas, dando así más flexibilidad al usuario final.

Para finalizar, proponemos una técnica de aceleración de rendering, llamada I-Render,
con el objetivo de obtener un Ray Tracing aproximado pero a su vez más rápido y eficiente.

3

4 contents

Primero realizamos un proceso de clusterizado de la malla de entrada, el cuál se basa en
el uso de la Teoría de la Información para agrupar triángulos con características similares.
Estos clusters son los encargados de definir, tanto regiones con pocas variaciones (suaves),
así como zonas de transiciones bruscas (discontinuidades). A continuación, introducimos
un nuevo algoritmo de rendering multi-pasada, que utiliza la información de los clusters
para poder decidir qué áreas de la imagen final deben ser interpoladas y cuáles necesitan
de cálculos más costosos. Todo este proceso se lleva a cabo, completamente, en espacio
de pantalla y, como consecuencia, nuestro método puede ser utilizado en conjunto con
técnicas de aceleración clásocas basadas en estructuras de datos espaciales. Además, I-
Render también soporta modelos animados.

A B S T R A C T

In Computer Graphics applications, it is a common practice to texture 3D models to ap-
ply material properties to them. Then, once the models are textured, they are deformed
to create new poses that can be more appropriate for the needs of a certain scene and
finally, those models are visualized with a rendering algorithm. So, it is evident that mesh
texturing, mesh deformation and rendering are still key parts of Computer Graphics. In
these fields much research has been done, resulting in methods that allow to create a
computer-aided images in a more flexible, robust and efficient way. Despite this, there
exist improvements to be done, as many of those approaches suffer from continuity prob-
lems that dumper interpolation procedures. Thus, in this thesis we present algorithms that
address continuity in key areas of Computer Graphics.

In he field of mesh texturing, we introduce a new algorithm, called Continuity Mapping,
that allows a continuous mapping of multi-chart textures on 3D models. This type of
parameterizations break a continuous model into a set of disconnected charts in texture
space, making discontinuities appear and causing serious problems for common appli-
cations like texture filtering and continuous simulations in texture space. Our approach
makes any multi-chart parameterization seamless by the use of a bidirectional mapping
between areas outside the charts and areas inside, as well as the usage of a set of virtual
triangles that sew the charts for addressing the sampling mismatch produced at chart
boundaries. Continuity Mapping does not require any modification of the artist-provided
textures, it is fully automatic and has small memory and computational costs.

To deform a model and create new poses, we propose a novel cage-based deformation
approach. Up to now, cage-based deformation techniques were limited to the usage of sin-
gle cages because of the presence of continuity problems existing at cage boundaries. As
a consequence, they cannot locally deform a region of a model and the time and memory
consumption is increased. We introduce *Cages a technique which allows the usage of
multiple cages enclosing the model, at multiple levels of details for easier and faster mesh
deformation. The proposed approach solves the discontinuities of previous approaches by
smoothly blending each cage deformation and allowing the usage of heterogeneous sets
of coordinates, giving more flexibility to the final user.

Finally, we propose a new rendering acceleration technique, called I-Render, for fast and
approximate Ray Tracing. First, we perform a pre-processing clustering on the input mesh,
that builds upon information theoretic tools to group triangles by their similar features.
These clusters define regions of smooth variation, as well as regions of sharp transitions
(discontinuities). Then, we introduce a new multi-pass rendering algorithm that uses that
information to decide which areas of the final image could be interpolated and which
require more involved calculations. All this process is carried out completely in screen
space and, as a consequence, our approach can be used in addition to common accelera-
tion spatial data structures. I-Render also supports animated models.

5

1
I N T R O D U C T I O N

Todos aquellos logros que nazcan del
corazón y tengan la voluntad de
alimentarlos con amor, se cumplirán.

T he ultimate goal of a Computer Graphics-oriented application is to generate a syn-
thetic image from a given scene by means of a computer. A scene file contains
3D models in a strictly defined language or data structure and it is usually de-

scribed by geometry, camera, texture, lighting, and shading information. All this data is
then passed to a rendering program to be processed and output to a digital image or
raster graphics image file. 3D models are usually obtained by a scanning processes or
modeled from scratch by modelers, that are aided by many existing powerful sculpting
tools that mimic real life actions. So, we can consider 3D models as our primary elements
to create a computer-generated image. Once we have obtained our 3D models, it is a com-
mon practice to assign them material properties to enhance their visual quality and final
shading. Usually, materials are applied to the surface represented by the models through
the usage of texture maps (texturing), which are plain images storing per-pixel colors
(see the top-left image in Figure 1). This texturing process is carried out by the usage of
parameterization techniques [25], which assign to every point on the mesh surface a tex-
ture coordinate (position) from the texture map. This method of texturing has got really
popular trough the years mainly because parameterization techniques allow the usage of
regular textures, which can be stored in a way that suits current graphics processor units
(GPU) architecture. Given the usual complexity of these models, they usually cannot be
flattened bijectively in texture space and, as a consequence, parameterization techniques
tend to break objects into several developable and disconnected patches, called charts (see
the top-left image in Figure 1). This type of parameterizations are commonly known as
multi-chart parameterizations [50, 34, 72, 12, 67, 99] although they allow the usage of com-
mon texture maps, they introduce a set of cuts over the mesh, known as seams, which pro-
duce discontinuities in texture domain. These discontinuities bring several problems such
as visible rendering artifacts, difficulties for computing continuous simulations in texture
space, or even the presence of cracks and holes when displacement mapping techniques
are used. As a consequence, other seamless parameterization approaches [6, 90, 47, 96]
emerged during the last years, but, even they produce a continuous mapping over the
meshes, they faile on displacing multi-chart approaches as the most popular texturing
techniques, mainly because of two reasons: First, artists are used to directly paint over the
textures and some of those new seamless methods force artists to paint directly over the
3D mesh. Second, most of the models created were textured by the usage of multi-chart
parameterization techniques and, as a consequence, if we want to use them a process of
texture transfer between the multi-chart and the seamless parameterization would be nec-
essary. This process is not free of artifacts as the source and target parameterizations do
not share the same sampling on the texture domain, which produces a lost in the texture

7

8 introduction

details. Also, seams in the source parameterization are present in the target parameteriza-
tion as texture artifacts. So, it is evident that a continuous mapping of mutli-chart textures
is still an important need for texturing of 3D models and an interesting field of research.

Figure 1: Modeling, deformation and rendering pipeline in a Computer Graphics application.

Once we have a model ready, i.e., modeled and textured, it is a common procedure to
modify its initial pose by deforming it and, as a consequence, being able to generate poses
that can be more appropriate for the needs of a certain scene (see the bottom-right image
in Figure 1). For that purpose, many techniques have been presented in the literature that
allow not only a fine degree of control over the deformations, but also a high level of flex-
ibility and usability for the final user [16]. Recently, cage-based deformation techniques
have gained a lo of interest [39, 54, 38, 53]. These techniques are characterized using a
polyhedron called cage to deform an enclosed mesh, which is in fact the model to be mod-
ified. This cage is usually of similar shape but simpler than the mesh to be deformed.
Those cage-based methods define coordinates for every mesh vertex of the enclosed object
with respect to the vertices of the cage. This binding allows to transfer any deformation
applied on the cage to the mesh in a fast and flexible way. Several coordinate types exist,
each of them providing different deformation results with different properties over the fi-
nal deformed mesh. However, these cage-based methods are not perfect as they still have
some weak points: The usage of a single cage produces deformations that are not local to
the region of interest. Instead, a deformation over a region of a cage has impact over the
whole mesh. That increases the number of evaluations as well as the required computa-
tional costs. Even more, when deforming a model the user has to decide which coordinates
to use without being able to combine the benefits of each of them, when needed. So, it
could seem a natural procedure for a modeler to have a multi-cage system, instead of a

introduction 9

single cage one, and use them in a hierarchical framework to have a finer degree of control
over the final deformation. Moreover, the choice and combination of different coordinates
would improve the final results and benefit the modeler as a way to obtain more flexible
results with no extra effort. It is clear that all of this properties would improve the features
of any deformation package, but problems appear when many cages are used in combina-
tion with current cage-based techniques: They produce important discontinuities at cage
boundaries and, as a consequence, non-smooth deformations and even cracks and holes
will appear in the resulting poses. As a result, modern deformation pipelines still lack
the possibility to perform smooth and continuous deformations using a multi-cage and
multi-level system. This would increase the productivity of modelers because of the new
features: locality of the deformation and performance improvement, as well as a reduc-
tion in the computational resources. However, a continuous solution for multi-cage based
mesh deformation has still to be proposed.

Finally, the last step is to render the textured and deformed model or scene with a ren-
dering algorithm to generate the final image (see the bottom-left image in Figure 1). Many
rendering techniques have been researched and proposed, and software used for render-
ing may employ a number of these techniques. Two of the most used and well known
rendering techniques over the years have been rasterization and Ray Tracing. Rasterization
geometrically projects objects in the scene to an image plane (screen space) converting
them into a raster format. This rendering approach can be considered the most popoular
technique for real-time 3D computer graphics, because it is cheaper enough to compute
for time-demanding applications and most of its stages are currently implemented in
GPU’s. Instead, Ray Tracing processes the geometry pixel by pixel casting rays from the
point of view. When an object is intersected, the color value at the point is evaluated
using an illumination model which can take into account, for instance, the color value
from a texture-map. Even that its theoretical cost can be considered similar, Ray Tracing
is much more expensive to compute than rasterization simply because the lack of stan-
dardized specific graphics hardware support [76, 75, 94]. Most methods to improve the
performance of Ray Tracing relay in the usage of spatial data structures in object space,
as well as in the parallelism capability of modern GPU’s [101, 46, 30]. But, for being able
to use Ray Tracing in a more interactive environment more efforts need to be done. Thus,
Ray Tracing can be still considered an open area of research. It would be interesting to
propose alternative solutions that would work with any of the previous object-space ac-
celeration data structures. We can observe that, in every single scene used in production,
usually there are many regions that can be considered homogenous or similar, and also
other that represent an abrupt change in a certain feature producing, this way, areas of
noticeable discontinuities. In contrast to previous discontinuities in the texture and mesh
deformation domains, we could take advantage of them as a way to highlight pixels rep-
resenting places where we could avoid costly computations and, for instance, interpolate
values coming from homogenous regions to cheaply generate new pixel values in between.
All of these possibilities, represent not only an exciting, but also a difficult challenge, as
image quality must remain the same as if we were fully evaluating the visualization.

In conclusion, one can observe that continuity and interpolation problems are still
present in many areas of Computer Graphics and in different spaces (e.g., texture space,
object space and screen space), and they need to be addressed to simplify and improve

10 introduction

the quality and creation of computer-generated content.

1.1 contributions

In this thesis we present several new techniques that represent an improvement over the
existing state of the art related to continuity and interpolation techniques in texture space,
object space and screen sapce. Each of these techniques solve existing continuity and
interpolation problems in each of the stages of the previously presented pipeline (see
Figure 1): texturing, mesh deformation and finally rendering. Following the same pipeline,
we can summarize our contributions in three main areas:

• Mesh texturing. In this field, we propose an approach that solves the continuity
problems that commonly appear in all the models that have been textured by using
a multi-chart based parameterization. Up to now, no method was focused on pro-
viding a continuous mapping over these types of textured models. Thus, we present
and approach called Continuity Mapping that produces a continuous mapping in
boundaries between charts, which are the places where discontinuities are located.
This continuous mapping is achieved by a set of virtual triangles that sew discontin-
uous charts into continuous regions in texture space. The proposed method allows
for several applications that where not possible before with muclti-chart textured
meshes, like seamless texture mapping, continuous simulations in texture space, and
multi-chart relief mapping, among others. As it works completely in texture space,
it is fully compatible with any mesh deformation technique. Moreover, Continuity
Mapping achieves continuity with small memory and computational resources. The
results presented in this work have been published in

Continuity mapping for multi-chart textures.
González, Francisco and Patow, Gustavo.
SIGGRAPH Asia ’09, Yokohama, Japan.
ACM Transactions on Graphics, Volume 28, issue 5, pages 109:1–109:8.
December 2009. ISSN 0730-0301. Article 109.
doi: http://doi.acm.org/10.1145/1618452.1618455.
URL http://doi.acm.org/10.1145/1618452.1618455.
Publisher ACM. New York, USA.

• Mesh deformation. A new cage-based approach for mesh deformation called *Cages

is presented. In contrast to previous approaches, it allows the usage of many cages
into multiple levels of details (hierarchical) to deform an enclosed mesh. This is
an important feature as it allows to produce not only more localized deformations,
but also consumes less memory resources and performs fewer evaluations. To use
many cages instead of a single one and, as a consequence, be able to obtain all the
commented benefits, we solve the discontinuities that appear in boundaries between
cages, which produces non-smooth deformations. We blend the associated deforma-
tion at cage boundaries with each cage own deformation, thus producing continuous
and smooth results. *Cages also allows the usage of any of the current cage coordi-
nates in any of the cages, giving the user the freedom to change the deformation

1.2 thesis overview 11

results with the same cage configuration. This research has been accepted for publi-
cation in

*Cages: A multi-level, multi-cage based system for mesh deformation.
González, Francisco; Paradinas, Teresa; Coll, Narcís; and Patow, Gustavo.
ACM Transactions on Graphics.
Accepted for publication.

• Rendering. We present a rendering technique called I-Render, that introduces discon-
tinuities and takes profit of them at rendering time to improve the visualization
performance. First, we propose an information-theoretic framework for mesh clus-
tering that groups triangles of a scene by their degree of similarity with respect to a
user pre-defined set of features. Then, we present a new multi-resolution/multi-pass
rendering algorithm. This algorithm computes an initial image at a low resolution
(which is less expensive) and then, successively increase the image size using pre-
viously computed clusters to avoid costly computations in places where discontinu-
ities do not exist (similar or homogeneous regions). As a consequence, interpolation
from previous low-resolution images can be performed while guaranteing image
quality. We show that our technique can be used for animated characters as well as
for static scenes achieving an improvement up to 8 times in the rendering perfor-
mance while keeping memory consumption low. This work has been submitted and
is currently under review:

I-Render: Approximate interpolated rendering by mesh clustering.
González, Francisco; García, Ismael and Patow, Gustavo.
Submitted.

1.2 thesis overview

The content of the thesis is organized as follows:

• Chapter 2: Previous Work. In the second chapter we are going to introduce the
concept of parameterization and continuity related to Computer Graphics in several
spaces: in texture space (2D), in object space (3D) as well as in screen space. We will
also establish the basics to understand the continuity problems that appear when
we parameterize a 3D model in each of those spaces, and how we can solve or even
take profit of them. Then, we will review the notion behind interpolation and the
most important types. We will also comment the current state of the art in conti-
nuity and interpolation in Computer Graphics in 2D, 3D and screen space. We will
introduce basic concepts about information theory and its application to Computer
Graphics and finally, we will explain the graphics hardware pipeline including all
its programmable stages.

• Chapter 3: Continuity and interpolation in texture space. In this chapter we are
going to introduce a technique called Continuity Mapping that will allow to solve

12 introduction

discontinuities in the texture space domain and, as a consequence, we will be able
to texture a 3D model without any kind of discontinuity.

• Chapter 4: Continuity and interpolation in object space. In the fourth chapter we
will face the problem of continuity and interpolation in object space, more precisely,
in the field of cage-based mesh deformation. We will introduce a technique called
*Cages that will allow to use a more general and flexible approach for cage-based
mesh deformation: it will use many cages in a multi-level setup, performing much
more localized deformations with less computational and memory resources while
preserving the continuity (smoothness) of the mesh trough the set of cages.

• Chapter 5: Continuity and interpolation in screen space. In this fifth chapter we
are going to propose a technique called I-Render, which explicitly introduces discon-
tinuities as a mechanism to detect places in a model where large changes in a set
of user-predefined features are located. Then, in screen space, we will use disconti-
nuity projections to improve the speed of the visualization by taking advantage of
the low-variability parts in which interpolation of low-resolution information can be
performed, without significant impact in the final image quality.

• Chapter 6: Conclusions and future work. In this final chapter we are going to
present the main conclusions that we have obtained along the whole document,
we will highlight all the contributions of this thesis into the field of continuity and
interpolation in Computer Graphics and finally, we will talk about future work that
could be proposed from the methods presented in this thesis.

2
P R E V I O U S W O R K

Los obstáculos os ayudan a ser más
fuertes, a definir vuestras propias
ilusiones.

I n this chapter we are going to present some important concepts that will be used
throughout the whole document, as well as some techniques involving continuity
and interpolation methods for Computer Graphics. We first introduce a generic frame-

work for parameterization and continuity on surfaces in texture sapce (2D), object space
(3D) and screen space, as a way to understand the problems and challenges that we need to
solve. Then, we introduce the concept of interpolation and we explain several approaches
for it. After that, we explain the state of the art for continuity and interpolation in the
previously commented spaces. Also, some basic concepts about mesh clustering and In-
formation Theory and how they have been applied to Computer Graphics are explained.
Finally, we introduce the graphics hardware pipeline and all its programmable stages.

13

2.1 parameterization and continuity 15

2.1 parameterization and continuity

A mapping or parameterization of a surface can be viewed as a one-to-one correspon-
dence from the surface to a suitable domain [25]. In general, as the mapping domain
itself is a surface, to construct a parameterization means to map one surface into another
one. Usually surfaces are represented (or approximated) by triangular meshes and in this
case the mappings are piecewise linear. Surface parameterization was first introduced in
Computer Graphics as a way to map textures into surfaces, but it has been also success-
fully and widely used in other areas: repair of CAD models, mesh editing and compres-
sion, remeshing, surface fitting, detail mapping, etc. In the following subsections we are
going to describe parameterizations in several different spaces and we will explain the
discontinuities they introduce in the mapping function, which will be later solved by the
techniques presented in this thesis.

2.1.1 Texture space

Given a surface S ⊂ R3 and a point p ∈ S, let’s define a domain T ⊂ R2 and a parame-
terization function mT : S → T such that mT (p) = t, t ∈ T (see Figure 2). As our surfaces
are represented by triangular meshes, the objective of mT is to map each polygon of the
mesh in S into a polygon of the two-dimensional space T . Usually, a good parameteri-
zation mT should be one that transforms each triangle of the mesh without any kind of
distortion from S to T . So, depending on the measure that mT minimizes, we can classify
parameterizations by:

• Conformal parameterizations. A parameterization mT is conformal or angle pre-
serving if the angle of intersection between every pair of edges of each triangle of
a mesh is the same in S than in T . Thus, a conformal parameterization mT will try
to minimize the distortion produced between the angles of each pair of edges when
they are mapped to T .

• Equiareal parameterizations. A parameterization mT can be considered equiareal if
every triangle of the mesh is mapped onto T with the same area. So, an equiareal pa-
rameterization mT will have as its main objective the minimization of the distortion
produced between the areas of the triangles in S when they are mapped to T .

• Isometric parameterizations. We can define a parameterization or mapping mT of a
triangular surface as isometric when it preserves both the angle of the triangles and
their areas. We can consider isometric mappings as ideal as they preserve everything
we could ask for: areas, angles, and, as a consequence, lengths. However, isometric
mappings only exist for very special cases. So, what many approaches try to do is
to find a parameterization which either is conformal, or is equiareal or minimizes
some combination of angle and area distortion.

Let us define a function a : S→ Rn that allows to retrieve all the attributes associated to
a surface point. So, a(p) =< attribute1,attribute2, ...,attributen > is a n-tuple storing
all the attributes of point p (e.g., the normal, the texture coordinates, the color, etc.). In
practice, in Computer Graphics the domain T is usually discretized in a grid of cells
G ⊂ R2 by a function mG : T → G, such that, for each parameterized point t ∈ T that

16 previous work

falls in a given cell g ∈ G, we store a single representative value a(m−1
T (t)) in g. This new

space G is usually known as texture space (see Figure 2).

Figure 2: A possible parameterization (multi-chart) of a surface into texture space.

When performing a parameterization operation onto a generic object, it is a common
practice to partition the object surface S into multiple charts Ci, verifying that S =

⋃
Ci and

Ci

⋂
Cj = ∅ for i 6= j. When dividing the mesh surface S into charts, seams are introduced,

which are cuts applied over S. Then, these charts are mapped by the parameterization
function mT into disjoint parts and, as a consequence, they are mapped into disjoint parts
in G by mG, too. Unwrapping an entire mesh as a single chart can create parametrizations
with large distortion and less uniform sampling than what can be achieved with multiple
local charts, particularly for surfaces of high genus. Parameterizations that create multiple
charts are called multi-chart parameterizations.

For mutli-chart parameterizations, it may happen that discontinuities are introduced at
the boundaries between charts, where the seams are located. For these parameterizations
we can distinguish two type of discontinuities:

• Spatial discontinuities. This type of discontinuities appears because neighboring
triangles in S (in 3D) are not neighbors in T (in 2D) and, as a consequence, in G.
This way, a continuous and smooth mesh S, is transformed by mT (and mG) into
a discontinuous picewise mesh in T (and G). As an example, in Figure 3 we can
observe two neighboring charts Ci and Cj in S. Those charts are parameterized by
mT into disconnected regions in T .

• Sampling discontinuities. Sampling discontinuities appear because different charts
that are neighbors in S (in 3D) are mapped with different distortion into T by mT ,
and as a consequence their sampling in G produced by mG is different, too. This
produces that cells from G do not match up at chart boundaries when back projected
to S. As an example, in Figure 3 we show two charts Ci and Cj, the initial and
ending points of the boundary between them p0 and p1, and a point p lying on the
boundary between them. A color attribute is associated for points p0 (green) and
p1 (red). In a continuous and smooth surface, the color gradation through a chart
boundary should look like the one shown in left image of Figure 3. Given the fact
that the mapping produced by mT may differ for triangles of charts Ci and Cj, it
can happen that the sampling of the color gradation in T differs, too (see right image
in Figure 3). Thus, when the texture is mapped on S, both the cells and the colors
stored in them will not match at both sides of the boundary between the charts.

2.1 parameterization and continuity 17

Figure 3: Multi-chart parameterization discontinuities.

2.1.2 Object space

The previously defined 2D parameterizations transform a surface S ⊂ R3 to a small do-
main T ⊂ R2, where we can easily operate. Now, let us define a parameterization or
mapping function m that does not reduce the degree of the output domain but instead
represents every point p from S with respect to another mesh C that encloses S. The
mesh C is picewise defined by a set of connected submeshes Ci, such that C =

⋃
Ci and

Ci

⋂
Cj = ∅ for i 6= j. C is characterized by the fact that it usually has a similar, but simpler

shape than S. This is an important point, as by using m we will be able to perform any op-
eration in C and then transfer it to S. As a consequence, we can reduce the complexity of
the involved calculations. For that purpose, we first define a function w : S×V(Ci)→ Rn

that binds each surface point p with the set of vertices of its enclosing submesh V(Ci)

by a set of weights. As we will show in the following sections, there are several ways to
define such a binding through the usage of coordinates (see Section 2.3.2). Each type of
coordinate has its own properties, but all of them have in common two key features: They
are completely defined and smooth (C∞) inside a cage Ci, but on the contrary they have
continuity problems at cage boundaries (C0 or even discontinuities).

Now, let’s specify the parameterization function m : Rn × V(Ci) → R3 where a point
can be represented by p = m(w(p,V(Ci)),V(Ci)). That way, when C is not deformed, the
surface S is smooth and continuous using the mapping function m. However, if we ap-
ply a deformation to the mesh C, which is transformed into C ′, transforming each point
of the surface by p ′ = m(w(p,V(Ci)),V(Ci

′)), discontinuities appear in regions near the
cages boundaries, producing non-smooth deformations of S. That is, as we get closer to
a boundary between two deformed controlling submeshes C ′i and C ′j from C ′, disconti-
nuities may appear when transferring the deformation to the enclosed surface when the
function m is used. As a consequence, all the attributes associated to the enclosed surface
could also be discontinuous (see right image in Figure 4).

2.1.3 Screen space

Usually, after we have a triangular mesh positioned in 3D space, it is common to visualize
it. For that propose, the users define, among other, scene properties, the lighting settings,
the cameras to render the model from a given viewpoint, etc. To display the resulting
image rendered from the camera point of view, the scene experiences a set of transforma-

18 previous work

Figure 4: Parameterization of a surface mesh into object space by the use of another additional
surface C.

tions that map each point p of a surface in S to the screen by a mapping function mC (see
Figure 5). The transformed model, once it is mapped to the screen, lies in a space com-
monly known as screen space. That space is merely a discretization of the image projected
by the camera to be displayed into a physical device.

Figure 5: Projection of a surface mesh into screen space.

As we have previously commented, given a point p, we can retrieve all its attributes
with a(p). Even if a is a continuous smooth function, it may happen that, when projecting
a(p) to screen space SC by the mapping function mC(a(p)), discontinuities appear as a
consequence of the sampling performed to represent the model in the image. This can
happen because our sampling rate is not enough to represent the signal defined by the
projection of the 3D model. This is simply a consequence of the Nyquist sampling theorem,
which states that a given bandlimited analog signal can be perfectly reconstructed from
an infinite sequence of samples if the sampling rate exceeds 2B samples, where B is the
highest frequency of the original signal. An example of the problems that appear due to
the incorrect sampling is the loss of detail when projecting in screen space sharp features
of a model. On the contrary, a side effect of sampling is that smooth areas of a(p) can be
over-sampled and, as a consequence, we are unnecessarily increasing the computational
time of the image generation.

Thus, let us consider a partition of a mesh mS in 3D space by grouping nearby points
that have similar features or attributes. Each group will be called cluster. So, given two
points p1 ∈ S and p2 ∈ S, they will belong to the same cluster if they are similar enough,
that is, if the difference between their features is smaller than a given threshold |a(p1) −

a(p2)| 6 Th.

2.2 interpolation 19

Figure 6: Discontinuities of a surface mesh projected into screen space.

Finally, consider two neighboring clusters Ci and Cj. For every point p lying in the
boundary of Ci and Cj the features or attributes of p given by a(p) could represent an
abrupt change. As we already said, this is because two main reasons: the high frequen-
cies that can exist in the signal of any of features of the mesh and the discretization
performed to project it on the screen. When this happens, a discontinuity or an area of
non-homogeneity can be considered there. So, if we project the value a(p) in screen space
by mC(a(p)), the discontinuity detected in S will still be reflected in screen space SC. This
way, we are able to easily introduce information about places where discontinuities exist
with the objective to perform a better and faster reconstruction of the final image in our
physical device.

2.2 interpolation

In the mathematical field of numerical analysis, interpolation is a method of constructing
new data points within the range of a discrete set of known data points. In engineering
and science, users often have a number of data points, obtained by sampling or experi-
mentation, which represent the values of a function for a limited number of values of the
independent variable. It is often required to interpolate (i.e. estimate) the value of that
function for an intermediate value of the independent variable. This may be achieved by
curve fitting or regression analysis. Similarly, in Computer Graphics the concept of inter-
polation is defined as the creation of new values that lay between a set of other known val-
ues. These known values usually represent a smooth signal, and as a consequence the new
created values represent an smooth signal too (although some detail can be lost). Nobody
can expect a smooth interpolation if the initial values contain some sort of discontinuities
within the functions. As an example of interpolation, when a triangle is rasterized into
a two-dimensional image from its vertices, all the pixels between those vertices are filled
in by an interpolation algorithm, which determines their attributes (color, normal, texture
coordinates, etc). Another example of interpolation happens when an image generated in
a videogame is created in sub-HD resolution and then it is upscaled to be displayed in a
monitor that supports full HD mode. There, the missing information is, again, obtained
by interpolation.

When performing an interpolation over a set of values, there are a number of interpo-
lation functions that one can use. The following interpolation approaches are the most

20 previous work

used in Computer Graphics, as they are easy to compute, stable and most of them are
implemented in current graphics hardware. Let us review the types of interpolation:

• Linear interpolation. Linear interpolation (see Figure 7) is the simplest and fastest
method of interpolation. Given two known points x0 and x1 in a one dimensional
space, the linear interpolant is the straight line that joins both points. For a point p
that lies in the interval [x0, x1], we can define mathematically the term linear interpo-
lation as (1− λ) ∗ x0 + λ ∗ x1, with λ ∈ [0, 1]. When λ is equal to 0, p = x0 and when
λ is equal to 1, then p = x1. So, this can be understood as the weighted average
of p from x0 and x1. Values of λ outside this range result in extrapolation. Let us
note that linear interpolation produces discontinuities at points x0 and x1, i.e., when
points x1 and x2 are not in the same line of x0 and x1.

Figure 7: Lienar interpolation.

• Bilinear interpolation. In mathematics, bilinear interpolation (see Figure 8) is con-
sidered an extension of the linear interpolation for functions of two variables (X and
Y) on a regular 2D grid. So, we could consider bilinear interpolation as a linear in-
terpolation of the first variable X followed by a linear interpolation of the second
variable Y. Although each step is linear in the sampled values and in the position,
the interpolation as a whole is not linear but rather quadratic in the sample location.
In computer vision and image processing, bilinear interpolation is one of the basic
resampling techniques, while in texture mapping it is also known as bilinear texture
mapping. Bilinear interpolation considers the closest 2x2 neighborhood of known
point values surrounding the unknown point’s location. It then takes a weighted av-
erage of these 4 samples to arrive at its final, interpolated value. The weight on each
of the 4 point values is based on the computed point’s distance (in 2D space) from
each of the known points. So, suppose that we want to find a value of a function f
at a point p = (x,y). It is assumed that we know the value of f at the four points
(x0,y0), (x0,y1), (x1,y0) and (x1,y1). We first perform a linear interpolation in the
x-direction and then we proceed by interpolation in the y-direction:

f(x,y) =1/((x1 − x0)(y1 − y0))

(f(x0,y0)(x1 − x)(y1 − y) + f(x1,y0)(x− x0)(y1 − y)+

f(x0,y1)(x1 − x)(y− y0) + f(x1,y1)(x− x0)(y− y0))

(1)

2.3 continuity and interpolation techniques 21

Figure 8: Bilinear interpolation.

• Trilinear interpolation. As bilinear interpolation is the extension of linear interpo-
lation to 2D spaces (e.g, texture space), we can refer to trilineal interpolation (see
Figure 9) as the extension of linear interpolation to 3D space. Trilinear requires 8

adjacent pre-defined values surrounding the interpolation point, so it is the most
expensive interpolation mode. Suppose we have a periodic cubic lattice with spac-
ing 1, all we have to do is follow the same procedure as before but with one more
dimension added. So, first of all we interpolate along the x axis, then we interpolate
the values obtained along y axis, and finally we perform the same along the z axis.
Each interpolation can be seen as we were pushing the corresponding face of the
cube each time and perform a linear interpolation.

Figure 9: Trilinear interpolation.

2.3 continuity and interpolation techniques

In this section we are going to present some of the most well-known techniques related to
continuity and interpolation in texture space, object sapce and screen space.

2.3.1 Texture space

Continuity and interpolation in texture space domain is strongly related to texturing pa-
rameterization [35], as it intends to solve the problem of continuity in texture space [25]. In

22 previous work

order to achieve this, several approaches have been proposed. Some of these approaches
rely on 2D data structures for texturing purposes, while others use 3D data structures:

• Parameterization techniques with 2D data structures. Levy et al. [50] presented a
multi-chart parameterization technique with a new quasi-conformal mapping, based
on a least-squares approximation of the Cauchy-Riemann equations, as well as a new
packing method for the generated charts. Geometry Images [34] unwrap an entire
mesh into a single chart, creating parameterizations with greater distortion and less
uniform sampling than can be achieved with multiple local charts, particularly for
surfaces of high genus. Carr et al. [12] and Sander et al. [72] present extensions to
parameterize them into multiple charts, and Purnomo et al. [67] describe a new type
of seamless quadrilateral chart-based atlas. There, neighboring chart’s texels were
copied into a one-pixel gutter on the boundary of the original chart. This work was
the extension of the one by Carr et al. [11], where mip-mappable atlases were created
with one chart per triangle, also using a gutter to sample across seams. Finnaly, Zhou
et al. [99] presented a fully automatic method to create texture atlases on arbitrary
meshes was presented. Seams are still present for creating a chartification of the
mesh, but it allows the user to balance the number of charts against the resulting
stretch (see Figure 10).

Figure 10: Mesh parameterization techniques using 2D data structures with one single or several
charts. Images from [50], [34], [72], [12], [67] and [99].

• Parameterization techniques with 3D data structures. Benson et.al [6] presented in
2002 a technique called Octree Textures showing how a 3D hierarchical data struc-
ture could be used to efficiently store color information along a mesh surface with-
out texture coordinates. Several applications as surface painting and simulations
were shown. However, it had several drawbacks: First, any filtering method needs
to be implemented by fragment shaders, which increases the cost of the final render,
mainly because the access to the data structure is more costly than classic 2D param-
eterizations, as GPU (Graphics Processor Unit) are extremely efficient at displaying

2.3 continuity and interpolation techniques 23

filtered standard 2D textures. Second, it produces a memory overhead in contrast
to common 2D texture maps and, as a consequence, the resolution of the octrees
is lower, producing lower quality renderings. Tarini et al. [90] proposed a seamless
parameterization of a mesh by using the surface of a polycube, whose shape is rawly
similar to that of the given model, as texture domain. Even if the parameterization is
seamless by construction, the user has to build the polycube manually. Once it is gen-
erated, if the geometry or topology of the model is too complex, the technique can
have problems handling it, as it increases the complexity of the polycube too, and
as a consequence the memory consumption. Moreover, if the polycube is too simple
so that it does not capture all the features of the model, visible rendering artifacts
may appear. Lefebvre et al. [47] presented another 3D-like parameterization called
Tiletrees with the objective of seamless texturing of a surface without wasted space
(empty regions between charts) and adaptive resolution. This is done by storing
square texture tiles into the leaves of an octree surrounding the 3D model. Then, at
rendering time the surface is projected into the tiles, and the color is retrieve by com-
mon 2D texture fetches. Mesh Colors [96] is a technique that stores colors on vertices
defined over the mesh, with the parameterization defined directly by the mesh itself.
Even all these techniques are seamless, they are not free of problems: Usually artist
paint 3D models with mutli-chart parameterizations. So, if we want to use some of
these 3D parameterization approaches, a texture transfer process must be applied
between the 3D method and the atlas and, as a consequence, some blurring and loss
of detail may appear. This will happen no matter how many samples are used for
the evaluation during the process. Even more, seams in the original textures will be
transferred as artifacts to the newer ones, producing an incorrect visualization of the
models.

Figure 11: Mesh parameterization techniques using 3D data structures. Images from [6], [90], [47]
and [96].

24 previous work

There exist some methods (see Figure 12) that focus on where to place seams to make
them less visible: Sheffer and Hart [80] present a method that finds places to put seams,
without eliminating them. Sander et al. [72] use an atlas to map the piecewise surface onto
charts of arbitrary shape and average values to reduce seam visibility. Also, Kraevoy et
al. [43] and Zhou et al. [100] present methods that employ parameterization constraints to
hide seams. Castano [13] suggested using patch ownership to assign consistent displace-
ment along seams for subdivision surfaces. Due to the different scaling and orientation
of the charts, this still produces seams, although they are less noticeable. More recently,
Ray et al. [68], proposed a solution to make multi-chart parameterization seams invisibles,
while still outputting a standard texture atlas. They use global parameterization to pro-
duce a set of texture coordinates that align the texel grid across boundaries introducing,
at the same time, some constrains in the color information of the boundaries.

Figure 12: Techniques to hide seams by its placement on the 3D mdoel. Images from [80], [43] and
[68].

Other techniques (see Figure 13) use some type of blending approach to dissimulate the
seams: In lapped textures [66], the perceptibility of seams is reduced by applying alpha-
blending at the edges of the pasted texture patches. Losasso and Hoppe [55] used textures
as a height field and blended heights between mip-map levels. In a similar approach, pre-
sented by De Toledo et al. [21], neighboring charts must share boundaries with each other,
resulting in some overlapping between them. The overlapping area is necessary to avoid
cracks in rendering time, and depth information is correctly generated to achieve a seam-
less reconstruction. However, some undesirable artifacts appear on regions with strong
curvature, and self-shadows are very difficult to compute. Even seams can be alleviated
in some form, none of these techniques completely eliminates them from the parameteri-
zations.

Lefebvre and Hoppe [49] presented a method to solve the spatial discontinuities caused
by multi-chart parameterization to synthesize a texture over a discontinuous atlas. Their
technique can only be used for simple simulations in texture space and do not provide
any solution for the seam visibility problem in 3D space (sampling discontinuities). Their
method work in a similar way to the atlas transition functions defined by Grimm and
Hughes [33], but they differ in that they are defined in the surrounding area outside the
charts.

2.3 continuity and interpolation techniques 25

Figure 13: Techniques to hide seams by blending techniques. Images from [66], [55] and [21].

2.3.2 Object space

Since 2004, many research effort has been made in Computer Graphics for the deformation
and manipulation of triangular meshes. In mesh deformation we can distinguish between
two main groups depending on how they apply the deformation on the surface:

• Surface deformation techniques. Surface deformation methods modify the surface
of the mesh directly and, as a consequence, they can preserve de details and shape
of the mesh quite easily. In contrast, these approaches usually need more computa-
tional resources.

• Space deformation techniques. In comparison, space deformation techniques have
received much less attention than surface deformation methods. Here the deforma-
tion is applied over a volume or some defined space. The basic space deformation
technique defines a lattice with a rather small number of control points that en-
closes the subject model to be deformed. Then, by manipulating the control points,
a smooth deformation is induced. The main advantages of these techniques over
the surface methods are their simplicity and speed. However, these methods are
oblivious to the surface representation and free of discretization errors.

In recent years, cage-based deformation methods have gained interest and are consid-
ered one of the most important mesh deformation approaches. They are characterized by
the use of a cage to drive the deformation of an enclosed model (see Figure 14). A cage is
a rather low polygon-count polyhedron, which typically has a similar topology and geom-
etry as the enclosed object. The first method based on three dimensional regular lattices
was introduced by Sederberg and Parry [77]. Later, this method was extended to handle
general lattices [18] and LOD management [78]. In recent years, new deformation meth-
ods have been proposed based on the use of coordinates computed with respect to the
vertices of a single enclosing cage. Floater and co-workers [24] [25] [39] introduced Mean
Value Coordinates (MVC) (see first image in Figure 15) as a method for constructing an
interpolant for closed triangular meshes with a closed-form formulation, which is able
to reproduce linear functions. MVC are well defined both inside and outside the control
mesh (C∞ continuous) but they are only C0 continuous across the cage faces.

Later, Joshi et al. [38] proposed Harmonic Coordinates (HC) (see second image in Figure
15) for character articulation, which are positive and C∞ continuous inside the cage, C0

continuous on the boundary and have no definition outside the cage. In contrast to MVC,
HC guarantee to be positive everywhere in the cage interior, while its influence decreases

26 previous work

Figure 14: Cage-based deformation methods use a cage to drive the deformation of a model.

with distance as measured within the control mesh. However, as they do not have an
explicit expression, they force the usage of a multi-grid finite difference to compute the
coordinates. Lipman et al. [53] presented an alternative non-negative coordinate definition
to MVC (PMVC) (see third image in Figure 15). The coordinates are computed numerically
by using a GPU-friendly approach.

Figure 15: Different cage-based methods for mesh deformation. From left to right: Mean Value
Coordinates (MVC), Positive Mean Value Coordinates (PMVC), Harmonic Coordinates
(HC) and Green Coordinates (GC). Images from [39], [38], [53] and [54].

Later, Lipman et al. [54] proposed a new shape-preserving space deformation approach
called Green Coordinates (GC) (see fourth image in Figure 15). The work, motivated by
Green’s third integral identity, produces conformal mappings, and extends naturally to
quasi-conformal mappings in 3D by using both the vertex positions and face orientations.
GC are C∞ continuous inside and outside the cage but discontinuous at the boundary,
although some restrictive extension mechanism can be applied.

A table summarizing the continuity properties of each coordinate is shown in Figure
16: All the cage-based approaches for mesh deformation present some kind of discontinu-
ity at cage boundaries, and even some of them are not defined everywhere. This is why
current state of the art cage-based techniques are based only in single monolitic cages to
drive the deformation of an enclosed model.

Jacobson et al. [37] proposed bounded biharmonic weights, a linear blending scheme
that is able to produce smooth, intuitive and flexible deformations for 2D and 3D shapes
using handles of different topology (points, bones and cages). Contrary to single cage-
based approaches, they can naturally use partial cages to locally deform a mesh without

2.3 continuity and interpolation techniques 27

Figure 16: Table showing a summary about coordinates continuity.

any special restriction or consideration.

A hierarchical approach based on a set of predefined cages was introduced by Zheng
et al. [98], where user could group a set of controllers to obtain a hierarchy to deform a
mesh. This approach is only applicable to man-made models and uses a small set of repre-
sentative controllers. As the authors mention, they discarded cages as handlers given the
difficulties at cage boundaries.

Langer et al. [45] developed a criteria for the construction of smooth maps, called Bézier
maps, that are a piecewise homogeneous polynomial in generalized barycentric coordi-
nates. To avoid discontinuities, they had to increase the number of control points and the
order of the polynomials, thus increasing computational costs. In the work by Ben-Chen
et al. [5], the challenge was to find a harmonic map from a domain in such a way that
it satisfies constraints specified by the user, is detail-preserving, and intuitive to control.
Huang et al. [36] presented a mesh deformation technique using modified barycentric
coordinates with a tetrahedron control mesh that avoids first order discontinuities across
the cage boundaries. Finally, even though it does not use cages, Botsch et al. [9] proposed
a real-time freeform shape editing technique that allow to pose user-defined modeling
constraints directly on the surface.

Another GC-based technique to locally deform a mesh contained by an automatically
generated umbrella-shaped cell was presented by Li et al. [51]. Although their cage is
local, they need to bind coordinates for all mesh vertices, thus increasing memory con-
sumption. Ju et al. [40] introduced skinning templates as a solution to share and reuse
skinning behaviors for similar joints and similar characters. The skinning templates were
implemented using cage-based deformations, and thus they can benefit from all the fea-
tures of our approach. A hybrid approach that combines surface-based and cage-based
deformations were presented by Borosan et al. [8], but, as they note, it is not smooth at the
boundary of the cage and meshes that are too coarse limit its effectiveness making their
approach suitable only for local deformations.

Recently, Landreneau and Schaefer [44] introduced a Poisson-based method to reduce
the storage needs of the coordinates for animated meshes, aiming at making a coordinate
system local while still using a global cage. This technique is based on a set of initial poses
and it guarantees smooth deformations if a new pose is similar enough to one of the prin-
cipal ones. This limits the usage of this method only for previously known deformations
and not for industrial modeling packages.

28 previous work

Figure 17: Cage-based deformation techniques applied to planar domains. Images from [56], [92]
and [57].

Cage-based deformations have been also applied to planar domains. One related work
was introduced by Meng et al. [56] (see the first image in Figure 17) who designed a
method to keep the shape of images during the deformation of a region of interest, but
continuity depends on the cage coordinates used (MVC, HC or GC). Later, Weber et al. [92]
generalized the concept of barycentric coordinates from real numbers to complex numbers,
but this is only applicable to two dimensional shape deformations (see the second image
in Figure 17). In [57] the authors show how to use cage coordinates (MVC/HC/GC) to
deform a 2D image while keeping its original shape. First, they unify the existing defor-
mation coordinates into the concept of Cage Coordinates (CC) providing a generalized
formulation and, finally they propose a GPU friendly implementation for interactive de-
formation (see the third image in Figure 17).

2.3.3 Screen space

State of the art Ray Tracing methods rely on acceleration structures to optimize and reduce
the number of ray-traversal operations. These structures allow greater flexibility at the
expense of inducing storage overhead. Rendering performance depends on the trade-off
between the time for querying and updating the data structure, and the reduction in the
number and accuracy of the operations. We can classify these techniques as inter- and
intra-frame techniques:

• Inter-frame techniques. Inter-frame acceleration techniques (see Figure 19) try to
use information from previous frames for the current one. Data reprojection is one
of the most common strategies [59, 82], which exploits the temporal coherence in an-
imation sequences by caching the expensive intermediate shading calculations per-
formed at each frame. However, data reprojection is an inter-frame method unable
to avoid unexpected performance drops in fast movements or drastic view changes,
because of the cache misses and shading recomputations in the new view. How-
ever, these results are not updated in the cache, forbidding further reuse in nearby
samples within the generation of the same frame.

2.3 continuity and interpolation techniques 29

Figure 18: Several inter-frame acceleration techniques for rendering. Images from [59] and [82].

• Intra-frame techniques. On the other hand, Intra-frame acceleration techniques for
Ray Tracing usually rely on acceleration structures to speed up the traversal of pri-
mary and secondary rays. While this problem has been well studied for CPUs [91],
only a few recent approaches provided GPU-efficient dynamic ray-traversal acceler-
ation data structures [101, 46, 30].

Figure 19: Several intra-frame acceleration techniques for rendering. Images from [101], [46] and
[30].

In general, most ray-traversal data structures do not reduce the number of traced rays
as they improve the speed of Ray Tracing and the scene hits. However, image-space tech-
niques often show advantages over object-space techniques, because they can divorce algo-
rithmic and scene complexities, which avoids wasting computations on off-screen portions
of the scene. Szirmay-Kalos et al. [88] (see Figure 20, left) introduced an image-based struc-
ture to avoid complex ray-traversal evaluations, by looking up an approximated result
from an environment map. Yang et al. [95] (see Figure 20, middle) proposed accelerating
rendering by using a subsampled image and an edge-preserving (differences in depth
and normal) upsampling approach to obtain the final resolution. The main drawback of
this method is that it requires to process the scene twice, making it suitable only for
pixel-bounded scenes. For Ray Tracing visualization this requirement would decrease the
possible gain when upsampling the shading evaluations, making it suitable only for raster-
ized visualizations or very simple ray-traced scenes. It may also show some artifacts when
reconstructing the rendering of highly tesselated models, because the large difference in
normals and depths from one pixel to its neighbour. More recently, Novák et al. [60] (see
Figure 20, right) suggested to accelerate Ray Tracing by converting complex meshes into
a set of rasterized height fields intersected by simple ray marching. Their performance
improvement is more noticeable when highly tesselated meshes are involved (from thou-

30 previous work

sands to millions of triangles), making this method less suitable when simpler models are
used, which normally are the ones used for interactive or real-time applications. More-
over, their boost in performance is more important for primary rays, as they have a higher
degree of coherence than for secondary rays-a given ray and its neighbors are going to hit
the same region of the scene. Secondary rays loose most of the coherence between them,
giving as a result less impressive gain over classic Ray-Tracing.

Figure 20: Screen-space techniques for accelerating Ray-tracing. Images from [88], [95] and [60].

Automatically simplifying complex shading evaluations improves the rendering perfor-
mance, where less complex shaders are used in place of the original ones. The first system
proposed by Olano et al. [61], only considered code transformations that replace a tex-
ture with its average color. This overlooked many possible opportunities for source-level
modifications. In a similar basis, Pellacini [63] considered arbitrary source-level simplifi-
cations by a brute-force optimization strategy that can easily miss profitable areas of the
shader code. Recently Sitthi-Amorn et al. [83] proposed a more effective shader optimiza-
tion based on genetic programming optimization. However, while shader simplification
provides a clear trade-off between performance and accuracy without additional memory
requirements, it cannot reduce the number of ray-traversals. Furthermore, shader simpli-
fication requires a manual user selection of representative rendering sequences, in order
to estimate performance and their error approximation, while data reuse strategies can be
more easily fine-tuned automatically.

There are a set of approaches that reduce the time needed to render a scene mainly
based on the reuse and interpolation of samples at homogeneous regions. Akimoto et
al. [3] proposed a method that exploits the similarity between adjacent pixels to reduce
the number of evaluations. Although they use a simpler sampling pattern, their proce-
dure requires several verifications at run-time, which introduces a considerable overhead.
Moreover, they use pixel intensities to determine similarity between samples, resulting in
texture interpolation problems. Bala et al. [4] proposed a CPU-based system that uses per-
surface interpolants to approximate and accelerate radiance computations. They decouple
the acceleration of visibility and shading operations by exploiting temporal coherence and
interpolating radiance samples. A hierarchical data structure called linetrees is used at run-
time, being its maintenance one of the main drawbacks of this technique, as it is complex
and costly. Adamson et al. [1] presented an acceleration method for intersectable models
exploiting spatial coherence by adjusting the sampling resolution. Their main drawback
lies in the lack of support for popular techniques such as shadows and ambient occlusion,
which involve the computation of secondary rays. Moreover, as they shift the ray-scene

2.4 mesh clustering 31

intersections computations to the CPU, GPU-based ray-tracers performance may drop due
to data transfer operations.

2.4 mesh clustering

Mesh clustering techniques, also known as mesh segmentation, have become an impor-
tant tool in many areas of Computer Graphics. They are characterized by the fact that
they group triangles by their similarity (expressed in a given way). Mesh clustering tech-
niques can be defined by both, their objective (surface-type or part-type segmentation)
and approach (region growing, hierarchical clustering, iterative clustering, etc) used to
segment the mesh. One important aspect is that the quality of a segmentation can be con-
sidered application dependent, as there is no unique clusterization.

Mesh segmentation techniques can be distinguished between two types:

• Par-type segmentation. The main goal of this type of segmentation is to cluster or
segment the input mesh into meaningful parts. Thus, part-type segmentations de-
compose a 3D object into smaller parts with meaning. This segmentation has been
used for modeling using each "semantic patch" to create new designs, that way the
user can easily create new models from existing ones [29]. Also, part-type segmenta-
tion has been successfully used in shape matching and retrieval as well as in shape
reconstructions approaches [102].

• Surface-type segmentation. Contrary to part-type segmentations, surface-type seg-
mentations the objective is to divide the input mesh into charts or patches given
a certain partitioning criteria. This type of segmentation is commonly used for tex-
ture mapping purposes [73, 85, 97]. Other important applications where this type
of segmentation has been of great benefit are mesh remeshing, mesh simplification,
morphing and mesh compression [7, 17, 86, 42].

As we have previously said, there exist several approaches to segment or cluster a mesh
into charts:

• Region growing. This is the simplest approach for mesh segmentation. This algo-
rithm starts with a seed element from the input mesh and grows until no more
elements can be added. The main difference between region growing algorithms
relies in the similarity criterion for adding a new element into the current cluster.

• Multiple source region grow. This approach is a variation of the region growing
algorithm. The main difference relies on the fact that instead of using one single
seed each time, it starts with multiple seeds advancing in parallel.

• Hierarchical clustering. Unlike the two previous algorithms, hierarchical clustering
can be seen as a global approach. This method begins with each face being an indi-
vidual cluster. Then, for each pair a cost function is computed and the lowest cost
pair is merged. This procedure is repeated until no more merge can be performed.

• Iterative clustering. In this type of clusterization the number of clusters is given a
priori. Then, the segmentation of the input mesh is formulated as a problem of itera-
tively finding the best segmentation for the given number of clusters. The key factor

32 previous work

for this algorithm is the convergence towards the final solution, which depends on
the choice of the initial representative elements and the successive computation of
the new ones.

• Spectral analysis. This algorithm uses Spectral mesh processing, which involves the
usage of eigenvalues, eigenvectors, or eigenspace projections derived from appropri-
ately defined mesh operators to carry out the segmentation of a given mesh.

Let us note, that one important aspect in all mesh segmentations techniques is the
similarity criteria used to group triangles, which is usually based on a set of attributes
obtained from the mesh (curvature, geodesic distances, parameterization distortion, etc)
[73, 72]. For more information on mesh segmentation techniques we refer the interested
reader to the excellent survey of Shamir [79].

2.5 information theory

In this section we are going to review some basic concepts related to Information Theory
(see [19]) and then we will discuss how they have been applied to Computer Graphics.

2.5.1 Basic concepts

Let X be a finite set, let X be a random variable taking values x in X with distribution
p(x) = Pr[X = x]. Likewise, let Y be a random variable taking values y in Y. An informa-
tion channel between two random variables (input X and output Y) is characterized by a
probability transition matrix (composed of conditional probabilities) which determines the
output distribution given the input.

The Shannon entropy H(X) of a random variable X is defined by

H(X) = −
∑
x∈X

p(x) logp(x). (2)

It is also denoted by H(p) and measures the average uncertainty of a random variable X.
All logarithms are base 2 and entropy is expressed in bits. The convention that 0 log 0 = 0
is used. The conditional entropy is defined by

H(Y|X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) logp(y|x), (3)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability. The conditional entropy
H(Y|X) measures the average uncertainty associated with Y if we know the outcome of X.
In general, H(Y|X) 6= H(X|Y), and H(X) > H(X|Y) > 0.

The mutual information (MI) between X and Y is defined by

I(X, Y) = H(X) −H(X|Y) =
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
p(y|x)

p(y)
. (4)

It is a measure of the shared information between X and Y. It can be seen that I(X, Y) =
I(Y,X) > 0. A fundamental property of MI is given by the data processing inequality which

2.5 information theory 33

Figure 21: Techniques that use Information Theory and apply it to several Computer Graphics
fields. Images from [69], [31], [58], [23] and [71].

can be expressed in the following way: if X → Y → Z is a Markov chain, i.e., p(x,y, z) =
p(x)p(y|x)p(z|y), then

I(X, Y) > I(X,Z). (5)

This result demonstrates that no processing of Y, deterministic or random, can increase
the information that Y contains about X.

A convex function f on the interval [a,b] fulfils the Jensen inequality:∑n
i=1 λif(xi) − f (

∑n
i=1 λixi) > 0 , where 0 6 λ 6 1,

∑n
i=1 λi = 1, and xi ∈ [a,b]. For

a concave function, the inequality is reversed. If f is substituted by the Shannon entropy,
which is a concave function, we obtain the Jensen-Shannon inequality [10]:

JS(π1,π2, . . . ,πN;p1,p2, . . . ,pN) ≡ H

(
N∑
i=1

πipi

)
−

N∑
i=1

πiH(pi) > 0, (6)

where JS(π1,π2, . . . ,πN;p1,p2, . . . ,pN) is the Jensen-Shannon divergence of probability
distributions p1,p2, . . . ,pN with prior probabilities or weights π1,π2, . . . ,πN, fulfilling∑N

i=1 πi = 1. The JS-divergence measures how ‘far’ are the probabilities pi from their
likely joint source

∑N
i=1 πipi and equals zero if and only if all the pi are equal. It is

important to note that the JS-divergence is identical to I(X, Y) when πi = p(xi) and
pi = p(Y|xi) for each xi ∈ X, where p(X) = {p(xi)} is the input distribution, p(Y|xi) =

{p(y1|xi),p(y2|xi), . . . ,p(yM|xi)}, N = |X|, and M = |Y| [10, 84].

2.5.2 Information Theory in Computer Graphics

Many concepts of Information Theory have been previously applied in many areas of
Computer Graphics, introducing measures and relationships with important properties
for different scenarios [74] (see Figure 21): Rigau et al. [69] (see the first image in Figure
21) introduced several refinement criteria for hierarchical radiosity based on the informa-
tion content of a ray between two patches and the loss of information transfer between
them due to the discretization. Also, Rigau et al. [70] showed how to perform and adaptive
sampling method based on entropy for Ray Tracing. González et.al [31] (see the second
image in Figure 21) presented a technique using several information-theoretic measures
as a shape descriptions of 3D objects as a way to perform mesh similarity computations.
Muller et al. [58] (see the third image in Figure 21) proposed a technique that automatically
derived 3D models from single facade images and used Mutual Information as a measure
to detect similarity between image regions. In the field of geometry simplification [14]

34 previous work

several measures has been used to perform simplifications of meshes while preserving
their main properties. Finally, both in viewpoint selection [23] and in scientific visualiza-
tion [71] (see the fourth image in Figure 21) Information Theory has been shown to be an
important a valuable tool to obtain methods that allows the selection of the best point of
views of an object, as well as a way to obtain transfer functions for a better visualization
of volumetric data.

2.6 graphics hardware pipeline

During the main chapters of the thesis we will show a number of techniques that aim
to solve the continuity and interpolation problems that most of the current state of the
art techniques suffeer in 2D, 3D and screen space. We have targeted these methods for
working in interactive/real-time applications and, for that purpose, we have taken ad-
vantage of the features that graphics processors (GPU’s) make available to speed up our
algorithms, taking advantage of the parallelism in the programable units. Let’s review the
current graphics hardware pipeline and its programmable stages.

The graphics hardware pipeline, can be defined as a sequence of stages operating in par-
allel in a fixed order. Each stage of the pipeline receives an input from the prior stage and
then it sends an output to the subsequent stage. In Figure 22 we show the graphics hard-
ware pipeline with all the stages and programmable units. The stages that are rounded
and colored in light blue are the programmable stages, making that way a flexible and
adaptable pipeline to many scenarios. Following we explain each stage in more detail:

Figure 22: Graphics pipeline with all the stages and programable parts.

1. Input-Assembler Stage. The input-assembler stage is the responsible for supply-
ing data (triangles, lines and points) to the whole graphics pipeline from the user-
defined buffers. This stage can assemble vertices into several different primitive
types, such as line lists, triangle strisp, etc. New primitive types like a triangle list
with adjacency have been added to support the geometry shader stage. Another pur-
pose of the input-assembler stage is to attach values generated by the system to help
make shaders more efficient. These, system-generated values are text strings that
are also called semantics, that allow to each shader stage to process only the data
not yet processed. As can bee seen in the pipeline diagram (see Figure 22), once the
input-assembler stage reads data from memory, assembles the data into primitives

2.6 graphics hardware pipeline 35

and attaches the system-generated values, the data is output to the vertex shader
stage.

2. Vertex-Shader Stage. The vertex-shader stage is the responsible to process the ver-
tices coming from the input assembler, performing per-vertex operations such as
transformations, skinning, morphing, and per-vertex lighting. One important fea-
ture from vertex shaders is that they always operate on a single input vertex, so for
each input vertex they produce a single output vertex. The vertex shader stage must
always be active for the pipeline to execute. That means that if our vertex shader has
no special operation to perform, we have to supply at least a pass-through vertex
shader. The vertex-shader stage can consume two system generated values from the
input assembler: VertexID and InstanceID. Vertex shaders are ran on all vertices, in-
cluding the ones supplied for adjacency purposes and can access texture information
where screen-space derivates are not required.

3. Hull-shader, tessellator, and domain-shader stages. The hull-shader stage, the tes-
sellator stage and the domain-shader stage comprise what is known as the tessella-
tion stages (see Figure 22). Tessellation stages convert low-detail subdivision surfaces
into higher-detail primitives on the GPU, allowing to save a lot of memory and
bandwidth (data flow from CPU to GPU) when rendering a high detailed surface. It
can also be used to support level-of-details (LOD) techniques in real-time. First, the
hull-shader stage (programmable shader) produce a geometry patch corresponding
to each input patch (quad, triangle or line). Then, the tesselator stage (fixed function
pipeline) generates a sampling pattern of the domain that represents the geometry
patch and generate a set of smaller objects (points, lines or triangles) that connect
these samples. Finally, the domain shader (programmable shader) calculates the ver-
tex position that corresponds to each domain sample.

4. Geometry-Shader Stage. The geometry-shader stage processes entire primitives. Its
input is a full primitive (which is three vertices for a triangle, two vertices for a line,
or a single vertex for a point). This is one of the main differences from the vertex-
shader stage, which operates on a single vertex. In addition, each primitive can
also include the vertex data for any edge-adjacent primitives. This could include at
most additional three vertices for a triangle or additional two vertices for a line. The
geometry shader also supports limited geometry amplification and de-amplification,
which means that given an input primitive, the geometry shader can discard the
primitive, or emit one or more new primitives. The output from the geometry shader
may feed the rasterizer and/or to a vertex buffer in memory through the stream
output stage. This output data is done in one vertex at a time by appending vertices
to an output stream object. The topology of the streams is determined by a fixed
declaration, choosing one of PointStream, LineStream, or TriangleStream as the output
for the geomtry stage. As in the previous vertex-shader stage, the geometry shader
can perform load and texture sampling operations where screen-space derivatives
are not required.

5. Stream-Output Stage. The stream-output stage streams primitive data from the
pipeline to memory on its way to the rasterizer. Data can be streamed out and/or
passed into the rasterizer. Data streamed out to memory can be recirculated back
into the pipeline as input data or read-back from the CPU. There are two ways to

36 previous work

feed stream-output data into the pipeline: First, stream-output data can be fed back
into the input-assembler stage and second, stream-output data can be read by pro-
grammable shaders using loading functions.

6. Rasterizer Stage. The rasterization stage is the one that converts vector information,
which is composed of shapes or primitives, into a raster image composed of a set
of pixels. During this process each of the primitives (points, lines and triangles) are
converted into pixels and all the attributes associated to each vertex are interpolated
across each primitive. In this step several other actions are taken into account: the
clipping of vertices to the view frustum, the perspective correction, the mapping of
the primitives to the 2D viewport and the determination of when a pixel shader is
invoked. Culling of degenerate geometry, as the one giving adjacency information
for the geometry shader stage, will happen in this stage.

7. Pixel-Shader Stage. The pixel-shader stage is the responsible to enable the gener-
ation of shading techniques in a per-pixel basis (i.e., per-pixel lighting and image
post processing). Usually, a pixel shader program uses constant variables, texture
data and the interpolated per-vertex values coming from previous stages to provide
a per-pixel output data such as the color.

8. Output-Merger Stage. The output-merger stage combines various types of output
data (pixel shader values, depth and stencil information) with the contents of the
render target and depth/stencil buffers to generate the final pipeline result.

3
C O N T I N U I T Y A N D I N T E R P O L AT I O N I N T E X T U R E S PA C E

Inspira y suelta, eso mismo harás
cuando sientas miedo para volver a
recordar que estoy a tu lado.

U sually, 3D models are created as a soup of triangles that corresponds to a discrete
representation of a hypothetical continuous and smooth surface. Artists param-
eterize these models as a way to apply material properties to them. One of the

most used types of parameterizations is the multi-chart parameterization technique. It
is well known that this type of parameterization introduce seams over meshes, breaking
down a continuous mesh in 3D space into a disconnected set of triangles in texture space
(2D), called charts. Charts have no connectivity between them, making discontinuities ap-
pear: First, spatial discontinuities appear as charts have no neighboring information. Sec-
ond, sampling mismatches at chart boundaries arise because neighboring triangles in 3D
that belong to different charts in texture space are parameterized differently, and as a con-
sequence they have different sampling. So, it is clear that seams cause serious problems
and these problems are even more noticeable for certain applications like texture filtering,
relief mapping and simulations in the texture domain (e.g. fluid or chemical simulations).
In this chapter we present two techniques, collectively known as Continuity Mapping, that
together make any multi-chart parameterization seamless: Traveler’s Map is used for solv-
ing the spatial discontinuities of multi-chart parameterizations in texture space thanks to
a bidirectional mapping between areas outside the charts and the corresponding areas
inside; and Sewing the Seams which addresses the sampling mismatch at chart bound-
aries using a set of stitching triangles that are not true geometry, but merely evaluated
on a per-fragment basis to perform consistent linear interpolation between non-adjacent
texel values. These triangles enable consistent interpolation from both sides of the chart
boundary, without resampling (the vertex colors are texel center colors from the texture
map). Thus, ’Sewing the Seams’ allows decoupling the interpolation along the seams from
the regular texture sampling. Continuity Mapping does not require any modification of
the artist-provided textures or models, it is fully automatic, and achieves continuity with
small memory and computational costs.

37

3.1 introduction 39

3.1 introduction

Multi-chart parameterization methods are widely used both to achieve low distortion tex-
turing and to parameterize topologically complex models. When texturing, the standard
approach is to perform a bilinear interpolation over a regular grid of texels defined on
each chart, which can be at completely different regions in texture space. The problem is
that these regular texel grids do not match up at chart boundaries (Figure 23) and bilin-
ear signals defined over two adjacent charts will not be continuous across the boundary,
which causes discontinuities in the texturing function and visible artifacts that artists usu-
ally hide by a tuning process.

Figure 23: Motivation. Fragments from different sides of a seam are parameterized onto disjoint
areas in texture space (different orientation and stretching), leading to discontinuities
that are more visible in close-up views.

This problem is heightened when automatic parameterizations are used, as they usually
result in an increased number of seams that are not manually fine tuned by artists. This
situation causes problems for several application domains such as texture filtering or dis-
placement/height maps, where it is often referred to as watertight texture sampling. All the
continuity problems that multi-chart parameterizations suffer can be slightly abated by:

• Increase texture resolution. Increasing the resolution of the atlas does not eliminate
seams, and as a consequence it will not remove the discontinuities. In fact, artifacts
can be seen at any resolution, although the larger the resolution is, the less notice-
able the seams are. In contrast, our method works correctly even with low-resolution
texture atlases.

• Padding. Another possible solution is extending the chart and filling the neighbor-
ing area with texture values from corresponding neighboring charts. This technique
is one of the most used approaches to alleviate multi-chart parameterizations prob-
lems in current texturing pipelines (games, virtual reality, ...). However, again, this
only serves to reduce the visibility of the seams, which are still visible at shorter
distances. In fact, any pre-filtering technique is most likely to fail at chart bound-
aries, mainly because of the mismatch in texel frequencies at both sides of a seam
in texture space. Actually, discontinuities are intrinsic to the sampling and bilinear
reconstruction process, so any automatic amendment technique can at most reduce
the effects of the different sampling frequencies at the chart boundaries, but never

40 continuity and interpolation in texture space

Figure 24: Texture transfer artifacts between different parameterizations.

make them disappear completely.

• Texture transfer. One may think to transfer the multi-chart texture into another pa-
rameterization with less seams and so less discontinuity problems, or even to trans-
fer it into a seamless parameterization. But this approach fails, as seams exist in the
original parameterization and so they are transferred as texture artifacts (disconti-
nuities in the content of the texture itself) to the new parameterization. This effect
can be seen in Figure 24 where the seam from the top parameterization (source) is
transferred into a continuous region in texture space of the bottom parameterization
(target). Observe how the sampling mismatch in the source parameterization cannot
be erased in the target parameterization.

Our solution, Continuity Mapping, is a combination of two independent, but related
techniques: Traveler’s Map, which solves the spatial discontinuity problem, and Sewing
the Seams, which solves the sampling mismatch at chart boundaries with a set of virtual
texture-space triangles that connect texels in different charts. Thus, Continuity Mapping fixes
the continuity problem of multi-chart parameterizations by defining a continuous recon-
struction across the adjacent charts, with small computational and memory costs.

Chapter contributions: They can be summarized as follows

1. With Continuity Mapping, the texturing function becomes continuous, which is a
fundamental condition for correct filtering. As a consequence, we avoid artifacts and
make the parameterization seamless.

2. The method works completely in texture space and it uses the original artist’s de-
signed model with a multi-chart texture, and without modifying the artists’ contents
at all.

3. Continuity Mapping does not require any re-parameterization of the artist-designed
model, nor the use of non-accurate texturing operations like texture transfers. This
avoids the usual blurring and other similar problems that result from the mismatch
of the original and the target texture resolutions.

3.2 overview 41

4. It is a GPU-friendly technique that can be evaluated completely in runtime using
only single-pass fragment shaders, with very low computational and memory costs.

3.2 overview

Given a 3D textured model that has already been parameterized with any multi-chart
technique, in a pre-processing stage we build both Traveler’s Map and Sewing the Seams
data structures to eliminate texture discontinuities later at runtime (see Figure 25).

• Traveler’s Map defines a correspondence in texture space, which allows any point
(and direction) outside a chart to be related to the corresponding point inside a neigh-
boring chart. This information is encoded in texels surrounding the artist-provided
charts, without modifying the artist’s content at all.

• Sewing the Seams uses the information created by Traveler’s Map to generate a thin
border of interpolating triangles between charts to consistently filter texture values
across the seams. Note that these triangles are only created in texture space, without
altering the original 3D mesh. This is a great enhancement over the texture zippering
techniques described, for instance, by Castaño [13] or Sander et al. [72].

Figure 25: Continuity Mapping overview.

42 continuity and interpolation in texture space

3.3 traveler’s map

As mentioned before, the main objective of Traveler’s Map is to solve spatial discontinuities
in texture space introduced by multi-chart parameterizations. In the following subsections
we explain how to build and use them.

3.3.1 Construction

Figure 26: Transformation between edges s and
s ′,

Given a multi-chart parameterized 3D
model, Traveler’s Map first checks for the
3D seam edges, which are the set of edges
belonging to the chart boundaries of the
mesh. This procedure is done simply by
looking for the edges in 3D that are pa-
rameterized to different positions in tex-
ture space. In fact, each seam edge has two
unique instances, s and s ′, in texture space
(see Figure 26) and we pair them through a transformation matrix Ts→s ′ (see Figure 27,
left) defined as:

Transformation matrix Ts→s ′ :

Ts→s ′ = T × TA × Rs→s ′ × Ss→s ′ × (−TA) (7)

where A is the projection, in texture space, of one of the two vertices of a 3D seam
edge s, TA is the translation of vertex A ∈ s from the origin of coordinates, Ss→s ′

and Rs→s ′ are the respective scaling and rotation relationship between s and s ′ and
T is the translation from vertex A ∈ s to A ′ ∈ s ′.

So, matrix Ts→s ′ transforms the points from s to s ′ by translating, rotating and scaling
them longitudinally. Once we have computed for each seam edge s in texture space its
respective transformation matrix Ts→s ′ , we store it in a pair of 1D textures (float RGB32),
called Transformation Textures for being used at run time.

Then, as shown in Figure 27, middle, we create a security border a couple of pixels
wide around each chart by drawing quads that extend 2D seam edges to the exterior of
the chart. For every seam edge in a chart, we consider its exterior perpendicular 2D vector
as the 2D normal. The averaged 2D normal at a vertex is computed as the average of the
2D normals at the neighboring edges. The quads are built using the original seam edge,
the two averaged 2D normals at each seam vertex, and the segment that closes the quad.

We render to texture these quads, and for each rendered texel, we store a reference
to the respective entry in the Transformation Textures. It is important to note that this
extra information is stored in the empty spaces between charts without modifying the
artist-provided texture. As illustrated in Figure 27, right, this implies that the separation
between the charts should be a few texels wide as happens with padding techniques or
Indirection Maps [49].

3.4 sewing the seams 43

Continuity Mapping needs a texture that stores the Traveler’s Map. As the security borders
are kept in the empty space between the artist-provided charts, we merge both textures
(artist and Traveler’s) into a single one (8 bits RGBA), thus considerably reducing memory
requirements. We also add a 1-bit mask in the alpha channel to determine if a point lies
inside/outside a chart. Transformation Textures are kept separate.

Figure 27: Traveler’s Map definitions. Seams s and s ′ are paired using transformation Ts→s ′ (left).
We create a security border (middle) around each chart storing references to the respec-
tive Ts→s ′ (right).

3.3.2 Usage

Using a Traveler’s Map is quite easy. Whenever a point with texture coordinates (u, v) has
to be evaluated, we query the combined artist-Traveler’s texture to know if it lies outside a
chart, but on the security border. If it does, then the corresponding transformation Ts→s ′

is retrieved from the Transformation Textures and the point is transformed with (u ′, v ′) =

Ts→s ′ · (u, v) to a point inside the chart. The values at the coordinates (u ′, v ′) are then used
to fetch the correct values for the given point. Hence, if evaluation is required outside a
chart, only two extra texture fetches are needed.

3.4 sewing the seams

As the name suggests, the function of this technique is to sew (zipper) the seams together
by generating for each chart a thin border of filtering triangles in texture space. These
triangles are then used to correctly interpolate and filter texture values at chart boundaries
where there is a mismatch of resolutions and orientations.

3.4.1 Construction

The construction process for Sewing the Seams consists of three steps: identification of
trustworthy texels, construction of the Shared Triangulation, and the construction of the
Non-Shared Triangulation. Figure 29 illustrates this process.

Trustworthy Texel Identification: Traditional bilinear filtering is performed in the GPU
by interpolating the four nearest neighboring texel centers, but here special care must be

44 continuity and interpolation in texture space

taken if one of these centers is "outside" the chart, as its value is considered to be un-
trustworthy. Thus, a trustworthy texel center is defined as one being "inside" the projected
chart line in texture space, with one of its eight neighbors being "outside". We can think
of these texel centers as the representation of the true boundary of the artist-defined con-
tent inside the charts, that, in the authors’ point of view, should be strictly preserved (see
Figure 29(b)).

Once trustworthy texels have been identified, we create segments that join them. This
can be done easily since almost all trustworthy texels can be 4-connected with neighboring
trustworthy texels (see Figure 29(b)). If a texel center cannot be connected (e.g. because
of a very acute angle between two seam edges), it is provided anyway as an independent
point for the triangulation.

Next, we create an association between trustworthy texels and seam edges (see Figure
28). A trustworthy texel will be associated with the seam edges lying on the square formed
by its eight neighboring texel centers, as they would affect the bilinear interpolation (see
Chapter 2). Trustworthy texels (and segments) associated with only one seam edge (see
Figure 28, left) will be used as input for the Shared Triangulation, while trustworthy texels
associated with two or more seam edges (see Figure 28, right) will be taken into account
during the Non-Shared Triangulation step. The reason to distinguish between two triangu-
lations according to the texels involved is simple: trustworthy texels shared by more than
one seam edge have more than one matrix Ts→s ′ to choose from (one for each seam edge),
so we cannot use them independently, or even an average matrix, as the triangulations
would not match when back-projected in 3D. That is, the triangulation cannot be shared.

Figure 28: Texels-Seam edges association. Left: Association for trustworthy texels with a single
seam edge. Right: Association for trustworthy texels with multiple seam edges.

Shared Triangulation Construction: As said before, in this step we build the triangula-
tion using only the trustworthy texel centers shared by one seam edge. So, for every seam
edge s in texture space, we use Traveler’s Map to transform the associated texel centers
(and segments) from the twin seam edge s ′ to the outside of s (see Figure 29(c)). Then,
to guarantee valid and nice (not skinny) triangulations and, at the same time, avoid the
generation of undesirable interior-chart triangles, we use a constrained Delaunay triangu-
lation of a planar straight line graph (PSLG) [81]. To build the PSLG, we use the previously
mentioned vertices and segments and close it with the first texel center, starting from the
extremes, that generates a closing segment that does not intersect with an already existing
segment (see Figure 29(d), bottom row). The texel centers and segments discarded by this

3.
4

s
e

w
i
n

g
t

h
e

s
e

a
m

s
4
5

Figure 29: Construction of Sewing the Seams. (a) Charts and seams in 3D. (b) Identify and join the trustworthy texel centers in every chart. (c) With
Traveler’s Map, transform the centers to the outside of the corresponding twin seam on the other chart. (d-e) Triangulate both the interior and
the exterior centers, taking special care with corners where two seam edges meet. (f) The triangulation mapped back in 3D.

46 continuity and interpolation in texture space

iterative process (like the dotted segment from Figure 29(d)) are treated later in the sec-
tion on Non-Shared Triangulation.

Due to the shared nature of this triangulation, the twin seam edge s ′ will use the
same set of triangles created for s but will employ the corresponding transformation
Ts ′→s = T−1

s→s ′ from Traveler’s Map (see Figure 29(d), top row).

Non-Shared Triangulation Construction: We create a Non-Shared Triangulation to ac-
count for texel centers shared by more than one seam edge, along with all the texel centers
and edges previously left aside. Before creating the Non-Shared Triangulation, we compute
the two intersections between the Shared Triangulations near a seam vertex (red dot in Fig-
ure 29(e)) and the seam edges. We are interested in the intersections closest to the seam
vertices, which create two new vertices called Intersection Vertices (orange dots in Figure
29(e)). Then, we build another constrained Delaunay triangulation of a PSLG with the
vertices and segments discarded from the Shared Triangulation, the intersection vertices,
the edges from the intersection vertices to the respective seam vertices, and the vertices
and segments involving texels shared by more than one seam edge. Although Non-Shared
Triangulations share the seam edges to guarantee continuity, they are built independently
for each chart (see Figure 29(e)).

It may be noted that the Sewing triangulation works for any number of charts meeting
in a single seam vertex, without requiring any special consideration, as shown in Figure
30. Also, cases where there is no possibility of building a Shared Triangulation (e.g. when all
trustworthy texels in a chart are shared by more than one seam edge), using the algorithm
described above, a Non-Shared Triangulation can be built without any problem. The algo-
rithm works even with one-texel sized charts, as long as they have at least one trustworthy
texel center - A chart that does not cover a texel center is a problematic case, even for the
graphics hardware itself.

Figure 30: Sewing the Seams usage and data structures. Fragment f queries the list of triangles
associated with the texel (T1, T2 and T3), and point f is found in triangle T3.

3.4 sewing the seams 47

3.4.2 Storage details

Figure 31: Sewing the Seams performance im-
provement by dividing each texel in
four quadrants and storing 1 bit for

For the Sewing the Seams technique, in the
artist’s texture covered by the triangula-
tions we need to store in every texel a list
of all sewing triangles that overlap with
it (see Figure 30). In these texels we store
a reference to a texture called Sewing In-
dexes Texture (RGB8), which stores lists of
triangle identifiers. These identifiers point
to the triangles stored in a third texture,
called the Sewing Triangles Texture (float
RGB32). As trustworthy texel centers have
an artist-defined color, we move the color
information to the first entry in the lists in the Sewing Indexes Texture, followed by the
actual list of triangle identifiers.

As all our one or two texel-wide triangulations mainly use texel centers as triangle
vertices, texels are usually only half covered by the triangles. As we show in Figure 31, to
avoid unnecessary evaluations, we subdivide our texels into four sub-texel quadrants, and
store four bits in the empty channels of the combined artist’s Texture telling the shader if
there are triangles in that quadrant. In this manner, we avoid about 50% of the evaluations,
achieving a significant increase in performance.

Attribute information (e.g. color) for the triangle vertices is not stored directly in our
textures. Rather, we store the texture coordinates instead and use them as vertex coordi-
nates and to retrieve attribute information. This facilitates the use of dynamic content in
textures, like simulations or animations in texture space. For trustworthy texel centers, we
simply store their texture coordinates and, in the case of centers belonging to the shared
triangulation, the seam ID to retrieve the respective matrix Ts→s ′ for transformations be-
tween charts. For vertices that are not texel centers (intersection and seam vertices), as
they do not have artist-defined attributes, we take their values from two nearby trustwor-
thy texels. So, we just only store the coordinates and weights of these texel centers. For
intersection vertices these weights come from the linear interpolation to the edge on the
Shared Triangulation, while for seam vertices the two closest texel centers are chosen.

It is noteworthy to observe that the Sewing the Seams technique uses only the transforma-
tion matrices created for Traveler’s Map, and not the security border required for the same.
Hence, the spacing between the charts can be smaller than the spacing when Traveler’s
Map is used alone.

3.4.3 Filtering with Sewing the Seams

If a fragment f to evaluate falls in a texel which contains only color information (an al-
pha value different than 0), or if its corresponding quadrant has no sewing information,
we evaluate it with a typical bilinear interpolation. Otherwise, we access both the Sewing
Indexes Texture and the Sewing Triangles Texture, and search for the triangle that contains

48 continuity and interpolation in texture space

the fragment coordinates. The final color is obtained by a simple barycentric coordinate
interpolation of the attributes associated with the respective texel centers (e.g. the artist-
provided texture) (see Algorithm 1 and the corresponding Cg code in Appendix A). Note
that if needed, other sampling-based interpolation schemes, like anisotropic filtering or
wider kernels, can be implemented quite easily from these data structures.

Algorithm 1 filteringWithSewingTheSeams
1: value = artistTex[texCoord]
2: if isAColor(value) then
3: return getInterpolatedValue(value, artistTex, texCoord)
4: else
5: intersectionFound = False
6: qFlags = value.z //read the 4 quadrant flags
7: if currentQuadrantHasSewingInfo(qFlags,texCoord) then
8: triangleListId = value.xy
9: texelCenterColor = sewingIdsTex[triangleListId]

10: numTriangles = sewingIdsTex[++triangleListId]
11: while numTriangles> 0 & !intersectionFound do
12: triangleListId++
13: intersectionFound = pointInTriangle(sewingTrisTex,

triangleListId, texCoord)
14: numTriangles– –
15: end while
16: end if
17: if intersectionFound then
18: return computeTriangleColor(sewingTrisTex,

triangleListId, texCoord)
19: else
20: return getInterpolatedValue(value, artistTex, texCoord)
21: end if
22: end if

3.5 mip mapping and shader lod

Continuity Mapping allows seamless mip-mapping over multi-chart textures. First, we con-
struct the Continuity Mapping pyramid repeating the procedure described in Section 3.2
for different resolutions. As the results in Section 3.7 demonstrate, the construction time
required is short, making this procedure quite practical. Then, in run-time, given the
sewing triangles at each mip-map level, interpolation is computed at two texture reso-
lutions and then interpolated between them. Each sample for each level may come from
either a barycentric (linear) interpolation on a filtering triangle (evaluated with attributes
from the textures themselves), or a standard bilinear interpolation on the texel grid. Obvi-
ously, the cost is the sum of these evaluations plus the interpolation of the final values.

3.6 applications 49

Although Continuity Mapping works for every distance, we shift to regular textures at
medium distances, when the use of Continuity Mapping is no longer noticeable. It is im-
portant to note that, even for large distances where we use a regular texture, if there is
an animation or we are computing a continuous simulation in texture space, a Traveler’s
Map should at least be built to guarantee the continuity of the simulation in all mip-map
levels.

3.6 applications

In this section we are going to introduce some applications that demonstrate the capabili-
ties of Continuity Mapping.

Seamless Texture Filtering. This is one of the most straightforward applications of Con-
tinuity Mapping. As can be seen in Figures 32, 33 and 34 we show three models: the bunny
(5058 triangles), the Neptune (80000 triangles) and the snake (25448 triangles), respec-
tively. The first two models have been parameterized with Iso-charts [99], while the later
has been carefully parameterized by an artist to explicitly hide the seams. Also, observe
how the bunny and Neptune models are parameterized into 100 charts (7218 seam edges)
and 16 charts (379 seam edges), and the snake model is made by only four charts (1422

seam edges). The first and third columns in the figures show the corresponding textures
applied to the models using the padding technique, while the second and fourth columns
show the same texture but using the Sewing the Seams solution. The bottom row show an
inset of the mentioned images. As can be seen, seams are still visible at close ranges, even
in the snake model, despite of the fine-tuning the artist did over the parameterization.

Figure 32: Seamless Texture Filtering on the bunny model (Atlas 10242). First and third column:
padding. Second and fourth column: Sewing the Seams.

50 continuity and interpolation in texture space

Figure 33: Seamless Texture Filtering on the Neptune model (Atlas 20482). First and third column:
padding. Second and fourth column: Sewing the Seams.

Figure 34: Seamless Texture Filtering on the snake model (Atlas 1458x3200). First and third column:
padding. Second and fourth column: Sewing the Seams.

Also, Sewing the Seams shows its stability working with atlases like the one used for the
Neptune mesh, which has a large number of charts, including several small ones, even

3.6 applications 51

Figure 35: Sewing the seams at different resolutions on the bunny model. Top row: Sewing the Seams.
Bottom row: Padding.

containing seams at the subtexel level.

In Figure 35 we show the quality of the interpolation achieved by Sewing the Seams de-
pending on the texture resolution of the atlas. As can bee seen, even when differences
in the content from both sides of the charts are high, as can bee seen in the sharp fea-
ture shown, our approach (top row) provides a better solution than traditional padding
(bottom row). At low resolutions with really sharp features in the textures the sewing tri-
angulation may result apparent (Figure 35, left) and as a consequence the interpolation
can be less smooth. Note how the bigger the resolution is, the smoother the interpolation
performed through the seams.

Continuous simulations. Another interesting application of Continuity Mapping is in
the area of continuous simulations like 2D fluid simulations [87], droplets [41] and Reac-
tion Diffusion [93]. In general these simulations are usually done onto regular mappings,
as did Carr et al. Carr et al. [12], to simplify texel neighborhood computations. Not only
is this restrictive in nature, it also introduces a strong texture distortion that is not good
for numerical simulations involving derivative computations [93]. In Figures 36 and 37 we
show a Reaction Diffusion simulation while in Figure 38 we show a droplet simulation. All
these simulations are carried out completely in texture space, so we can use the Traveler’s

Figure 36: A parameterized elephant model (13402 triangles) and two different results for continu-
ous reaction-diffusion simulations. Left: padding. Right: Continuity Mapping.

52 continuity and interpolation in texture space

Figure 37: The bunny model from Figure 32 with different results for continuous reaction-diffusion
simulations.

Figure 38: Droplet simulations performed on the bunny model from Figure 32.

Map to evaluate simulation properties when the methods require sampling outside a chart.
In that case, we use the associated matrix to compute a texel inside the chart sharing the
common seam edge. For rendering, we use the full Continuity Mapping technique, includ-
ing Sewing the Seams for correct texture filtering in addition to bump mapping. Note that a
correct bump mapping requires the computation of the normal field and its interpolation
through the seams, which can also be done with our technique.

Multi-Chart Relief Mapping. Another application of Continuity Mapping is Relief Map-
ping [65] over multi-chart textures. Up to now, general objects have been taken into ac-
count only over simple continuous parameterizations [15] or by solving only for the sil-
houettes [62], but the problem of using Relief Mapping in combination with a multi-chart
parameterization remains unsolved. The work done in [20] is the closest to this applica-

Figure 39: Multi-chart Relief Mapping. Comparison between simple padding, Indirection Maps
and Continuity Mapping.

3.6 applications 53

Figure 40: Tracing a ray with Multi-Chart Relief Mapping.

tion of Continuity Mapping, where continuity between patches is solved by extending and
overlapping them, solving visibility by depth-fight with the same color and depth. But, as
mentioned there, this can cause serious problems for grazing viewing angles, shadows
and filtering operations on the object surface. With Continuity Mapping, seamless multi-
chart relief mapping is possible (see Figure 39). Figure 40 shows that it is possible to
sample outside a chart while searching for the intersection point. Since there are security
borders surrounding the charts, if we sample on a security border, we use the Traveler’s
Map to retrieve the 2D matrix that will transform the point on the outside of one chart to
the inside of the corresponding chart where the search should continue. It is important to
note that we not only transform the point, but also the traveling direction, so the search
for the intersection point can continue without any issues on the other chart. In fact, the
Traveler’s Map gets its name from this functionality − if you are lost while travelling the
multi-chart parameterization, simply use the Traveler’s Map to find the direction. When
the intersection search process requires sampling in areas very close to the seams, we use
Sewing the Seams to correctly interpolate height and color values in this area. The only ex-
tra precaution that needs to be taken is adjusting the maximum step length to be smaller
than the security border width. However, if the step is made larger, the algorithm can
backtrack until it finds the security border when empty space is found instead.

Figure 41: Multi-chart Relief Mapping on the Loiosh model. Comparison between simple padding,
and Continuity Mapping.

54 continuity and interpolation in texture space

Figure 42: Multi-chart Relief Mapping on the bunny model. Comparison between simple padding,
Indirection Maps and Continuity Mapping.

Also, as demonstrated by Figures 41 and 42, Continuity Mapping proves to be more accu-
rate than padding (blue artifacts are fragments evaluated outside the charts) and Indirec-
tion Maps [49], which is not surprising considering that our approach provides sub-texel
accuracy transformations and also preserves directions.

Other applications. Displacement Mapping and Caustics computations in the GPU are
applications that can also benefit from the use of Continuity Mapping. On one hand, dis-
placement mapping using multi-chart textures introduces undesirable holes in the mesh
along the seams, producing much more visible artifacts that are harder to hide than tex-
turing artifacts [13]. Here, Continuity Mapping can provide a continuous sampling over
the seam regions avoiding the aforementioned geometry cracks. On the other, real-time
caustics (for example, Photon Mapping in texture space) require photon hit filtering. This
is usually achieved by blurring hits using splatting, but photon splats may fall on a chart
border, resulting in energy being lost due to part of the photon being splatted outside a
chart [89]. Yet again, Continuity Mapping can prove to be a valuable tool as it accumulates
energy at the correct texture charts.

3.7 results and discussion

Preprocessing times for Continuity Mapping are small, ranging from 22 seconds for the
bunny model (5058 triangles) up to about two minutes for the Neptune model (80000 trian-
gles). Also, in the latter example we can see that Continuity Mapping behaves correctly with
large meshes with subtexel seam edges, as they are naturally included in the Non-Shared
Triangulation. The only requirement is that the charts must have at least one trustworthy
texel center. Also, just like the padding technique, there must be a few pixels of separation
between charts, between non-topologically-adjacent edges of the same chart or between
consecutive edges with very acute angles, for the Traveler’s Map to work. However, in all
our experiments we have not come across any noticeable problems in these cases. Some
applications might require extremely high precision for the case of subtexel edges in the
Traveler’s Map, which cannot guarantee which edge will provide the matrix for that texel.
This can be solved by keeping, for every texel in the border, a list of all quads that project
onto it, as done in the Sewing the Seams technique, but we considered this to be unneces-
sary and inefficient, not having observed any noticeable artifact in any of our experiments.

3.7 results and discussion 55

The increase in memory consumption of an artist’ texture goes from 4MB for a 10242

resolution to 36MB for a 30722 resolution, while the memory consumption for Continuity
Mapping goes from 1.3MB for a 10242 texture resolution to a mere 3.46MB for a 30722

texture resolution. A quick look at Figure 43, reveals that Continuity Mapping data struc-
tures grow in the order of O(n) as the texture resolution grows in the order of O(n2).
The reason for this is simple: these data structures follow the chart boundaries, which are
basically 1D, embedded in a 2D space. The model used in the graph is the bunny from
Figure 42 parameterized with LSCM [50]. This storage efficiency can be compared to Per-
fect Spatial Hashing (which requires unconstrained access) [48] because the Traveler’s Map
is not sparse. Furthermore, the textures for Sewing the Seams are equivalent to a Binary
Image (embedded in the artist’s texture) and a Hash Table texture, but without the need
for an extra Offset texture.

Figure 43: Left: Memory consumption of Continuity Mapping depending on the atlas resolution.

The evaluation cost for Continuity Mapping varies from case to case, but the results can
be generalized into two main categories: the cases where only the Traveler’s Map is used,
and the cases where both Traveler’s Map and Sewing the Seams are used. While in the for-
mer scenario the cost is independent of atlas complexity (as explained in Section 3.3.2), in
the latter, using Sewing the Seams varies the cost in different situations. But in general, we
obtained high frame rates in all our experiments, with more than 1150 fps in an Nvidia
GeForce GTX 280, while the models with regular texture filtering were displayed at 2400

fps. The graph in the Figure 44 shows that for a given resolution, Continuity Mapping re-
quires less computational power as the model on screen gets smaller. This is due to the
fact there are fewer fragments to evaluate. The aberration on the left part of the graph is

56 continuity and interpolation in texture space

caused by the continuously varying fragment count (the ones requiring Sewing the Seams),
since the model is only partially visible. Also, the sewing lists were observed to have, in
general and on average, 3.5 entries.

Figure 44: Dependence of the frame-rate on the distance to the observer (bunny model, viewport:
1024× 768).

It is important to note that matrix Ts→s ′ (see Section 3.3) stores a simplistic edge-
longitudinal stretching measure. In cases of extreme stretching in the direction orthogonal
to the edge, information from one texel can be taken farther away from where it should
be. This case may require storing a per texel Jacobian, which is more accurate, but would
largely increase memory requirements, and in our experience this has not been necessary.

Another important consideration regarding Continuity Mapping is that it works entirely
in texture space, so it strongly depends on the texture resolution and stretching. For in-
stance, if the texture resolution is doubled, the resulting triangulation for Sewing the Seams
would be much thinner in 3D space around the seams, and would in turn cause a smaller
and smoother interpolation. On the other hand, if the texture is stretched more in one
direction than the other, the resulting triangulation could result in skinnier triangles, and
thus a lower quality triangulation. Also, if the scaling between two seam edges is too
large, Continuity Maps will produce a smooth interpolation, but at a lower quality than
when the edges have similar transformations. In our experiments, we did not observe any
problems for scalings up to slightly more than 50%.

Continuity Mapping is limited when trying to smooth the seams of a texture with sharply
varying features because it only works on a thin layer, up to two texels wide, across the

3.8 conclusions 57

seams. If the features on both sides of the seam do not match, Continuity Mapping will pro-
vide smooth continuity at short distances, but the seams will still be visible at medium and
large distances because the features mismatch at larger scales, even when mip-maping is
applied. This would probably require a smoothing pass with a large matrix, which could
easily be computed with a Traveler’s Map. In any case, solving a global texturing mismatch
is not the objective of this article, but it does to add continuity at the seams between charts
without changing the original parameterization.

Sometimes artists use mirroring operations to build their meshes, resulting in the two
halves of the object being mapped in the same area in texture space. The techniques pre-
sented so far cannot deal with this non-bijective parameterization, but this can be easily
solved by mirroring the charts in texture space and restoring the bijectivity, which can be
done automatically in a pre-process stage.

The explanations above refer to achieving correct interpolation of values/attributes
across chart boundaries. Achieving continuity of higher order functions like successive
derivatives (e.g. normal mapping) is simply a matter of using the functionality described
above with that information. For instance, continuous normal mapping for a height field
could be built in two simple passes: the first one computes a normal for each texel by
using the height of its four immediate neighbors (using the full Traveler’s Map at the chart
boundaries), and the second pass would use Sewing the Seams to generate the continuous
from the normal map.

Continuity Mapping is compatible with mesh deformations/animations, as it works com-
pletely in texture space without altering the original model geometry. Moreover, as seen
in the Continuous Simulation, the information stored in the textures need not be static,
and can be used with dynamic simulations or animations in texture space.

3.8 conclusions

We have presented Continuity Mapping a technique that solves the continuity problems
that arise in multi-chart parameterizations, which currently are one of the most used
texturing techniques in the industry (videogames, virtual reality, films...). The technique
is composed of two independent but related sub-techniques: Traveler’s Map and Sewing
the Seams allowing to solve both, spatial discontinuities and sampling mistmach at chart
boundaries where discontinuities appear. We also have demonstrated the power of this
technique by suggesting some applications that can be made seamless and, as a conse-
quence, continuous, in contrasts with previous approaches. Now we are able to provide
seamless texturing on a mesh even if its source parameterization is discontinuous. We
would like to note that, one year after our work got published, Ray et. al in [68] presented
an approach to make seams invisible, which is close to our technique. They align texel
grids across chart boundaries by assigning them a new set of texture coordinates com-
puted through a global parameterization. In addition, they modify the colors stored in
the texels related to chart boundaries, as well. Comparing their approach with our work,
let us note that we do not need to recompute texture coordinates for any mesh vertex
and we do not even need to modify the color of the corresponding chart boundary texels,
as we wantd to preserve the original artist-provided texture and parameterization. On

58 continuity and interpolation in texture space

the contrary, they do not need to use any run-time shader to hide discontinuities, thus
accelerating computations.

4
C O N T I N U I T Y A N D I N T E R P O L AT I O N I N O B J E C T S PA C E

Lo importante no es el resultado, sino el
camino y esfuerzo realizado. Recupera
tu fuerza, vuelve a confiar, márcate tu
objetivo y nosotros estaremos allí.
Confía.

L et’s move into the second stage of our pipeline: the deformation stage. Once we have
the model parameterized and textured without discontinuities, we may want to de-
form it and create new alternative poses other than the initial one. As mentioned in

previous chapters, for that purpose there exist several approaches, but cage-based meth-
ods have been one of the main trends for mesh deformation in recent years, with a lot of
interesting and active research. They are characterized by the fact that they apply defor-
mations by using a cage which encloses the model. This cage should be similar in shape to
the model to be deformed, but much simpler. The main advantages of these techniques are
their simplicity, relative flexibility and speed. However, to date there has been no widely
accepted solution that provides both user control at different levels of detail and high
quality deformations. Thus, in this chapter we present *Cages (star-cages), a significant
step forward with respect to traditional single-cage coordinate systems, which allows the
usage of multiple cages enclosing the model for easier and faster mesh deformation. As
we will show, the fact that we use several cages instead of one has many benefits, but at
the same time forces us to face new challenges regarding discontinuities in 3D that arise
between cages. So, we will need to solve these challenges if we want to obtain a smooth
deformation as a result. The proposed deformation scheme is extremely flexible and ver-
satile, and it will allow the usage of heterogeneous sets of coordinates as well as perform
deformations at different levels of details, ranging from a whole-model deformation to a
very localized one. Locality will give as a result faster evaluation and a reduced memory
footprint, and as a consequence we will outperform single-cage approaches in flexibility,
speed and memory requirements for complex editing operations.

59

4.1 introduction 61

4.1 introduction

Shape deformation in both in two and three dimensions plays a central role in com-
puter graphics. Space deformation techniques especially cage-based methods as a practical
means to manipulate 3D models [26] [39] [38] [54] [92], have received a lot of attention.
A cage is a low polygon-count polyhedron, which typically has a similar shape to the en-
closed object. The object points inside the cage are represented by affine sums of the cage
elements (vertices or faces) multiplied by special precalculated weight functions called
coordinates. The main advantages of these space deformation techniques are their sim-
plicity, relative flexibility and speed on applying the deformation. Also, as each point is
transformed independently, these techniques are indifferent to the surface representation
and in general free of discretization errors.

However to date there has been no widely accepted solution that provides both user
control and high-quality deformations. It is commonly accepted that an ideal deforma-
tion system should allow user intervention when required, but automatically infer all the
missing data. For instance, given a user-chosen set of constraints, the system should find
the best deformed shape that satisfies those constraints. Several possible alternatives do
exist, such as Mean Value Coordinates (MVC) [26], Harmonic Coordinates (HC) [38] or
Green Coordinates (GC) [54]. All of them are characterized by the use of a single cage to
compute the final deformation. This particularity presents some problems:

• Locality. Current cage-based deformation approaches can be classified as global
deformation methods because they are defined in terms of a single cage which affects
all mesh vertices and, meaning they cannot produce local deformations.

• Time and memory consumption. The global behavior of single cage-based tech-
niques results in each point storing weights for all cage vertices, increasing both the
memory consumption and the number of evaluations.

• Smoothness. As we will later explain, all single cage-based methods have continuity
problems on the cage boundaries, ranging from the lack of smoothness to the pres-
ence of discontinuities. This is one of the main reasons why their use is currently
limited to monolithic single cages.

• Coordinate combination. Each single cage-based method uses different types of co-
ordinates and, as a result, the deformations also differ (e.g. MVC and GC). The user
has to decide to use one coordinate type or another for the whole model, depending
on the desired results, and without the option of combining their strengths.

• Usability. The design and manipulation of a unique cage to deform a whole model
may result in a daunting task and may convert single cage approaches into a much
less user-friendly tool for current animation pipelines.

In order to avoid such problems we should be able to use many cages instead of just
one, and as a consequence, they would be easier to create and manipulate. Each of these
cages should use different coordinate types, which would increase the potential of differ-
ent results over the final deformations. All these cages should be used at different levels of
granularity to allow a more localized control over the final deformation, and so consume

62 continuity and interpolation in object space

only the resources needed for each cage in isolation.

In this paper we present *Cages (pronounced star-cages), a cage-based deformation
method that involves a hierarchical set of cages where the leaf cages bound the object
in a piecewise manner. Cage-coordinates can be individually defined for each leaf cage,
and blended among neighboring cages to produce a smooth (class C1) deformation, thus
offering localized deformation control with less computation. The hierarchy further allows
deformation control to take place at multiple levels. In this sense, we can say that *Cages
complements the existing techniques rather than competing with them. Hence, the rationale
behind of its name: *Cages can accommodate any coordinate system inside a cage, and
smoothly combine any number of cages to obtain a flexible and general deformation sys-
tem at any level of detail.

The main contributions of the proposed technique are:

1. An unlimited number of cages to smoothly deform a base mesh.

2. This set of cages produces more localized deformations and as a consequence con-
sumes less time and memory.

3. This is the first system that allows the usage of heterogeneous sets of coordinates,
and is able to define different coordinates for different cages and use them together
in combination.

4. The ability to produce multi-level deformations, where different cages are used to
control different levels of detail in the deformation of a model.

All this together gives rise to an extremely versatile deformation approach, which is
much more intuitive and user-friendly.

4.2 *cages

As has been previously explained, current cage-based deformation approaches use a sin-
gle cage to deform a mesh. Some of these methods, such as MVC, PMVC and HC, express
a point p inside a cage c as an affine combination of the cage vertices v by:

p =
∑
v∈c

wc(v,p)v (8)

where wc(v,p) are the coordinate basis functions.
Let us note that, while the use of the cage subindex c may seem redundant, its use-

fulness will become apparent in the following explanations. The natural way to define a
deformation inside cage c of a point p is given by:

Tc(p) =
∑
v∈c

wc(v,p)v ′ (9)

where v ′ are the deformed control cage vertices.

Instead, *Cages encloses a mesh in a connected set of controlling cages {c0, c1, . . . , cn}.
These cages do not intersect and they use their own independent set of coordinates (See

4.2 *cages 63

Figure 45: Definition of a point inside a cage by a set of weights respect to the cage vertices.

the left image in Figure 46 for an example). Let C be their union. For each of these cages,
we can define a transformation Tci

(p). In general, the piecewise transformation defined
on C by transformations Tci

(p) is at most C0, e.g., it can generate first-order discontinu-
ities across boundaries between adjacent cages. See Figures 48(b) and 48(d) where classic
MVC/PMVC/HC and GC were used, respectively, to deform the cube shown in Figure 47.
In the case of GC, Tci

(p) would use both vertices and face normals of the cages in its defini-
tion, but the corresponding piecewise transformation would be discontinuous at the cage
boundaries. The insets in the images of Figure 48 show a detail of these discontinuities.

Figure 46: Left: c0 = v0v1v4v3, c1 = v3v4v6v5, c2 = v1v2v7v6v4, Bc0 = Bc0c1 ∪ Bc0c2 , Bc1 =

Bc0c1 ∪ Bc1c2 , Bc2 = Bc0c2 ∪ Bc1c2 . Middle: Join cage generated by v3. Right: Join cage
generated by v4.

Therefore, if we want to use a set of cages as the base of our deformation tool instead
of a single cage, it seems clear that we need to address this continuity problem. For that
purpose we are going to define a smooth transformation S that will replace the classic Tc(p)
to deform the points. S will be piecewise defined on each cage ci by transformations
Sci

(p), so it is of class C1 in the interior of C. Our proposal consists of defining the trans-
formation Sci

(p) by blending the traditional transformation Tci
(p) defined in each cage

ci with a new transformation Jci
(p), called join transformation. Jci

(p) will be responsible
for guaranteeing smooth transitions between neighboring cages and will behave similar
to standard cage-based transformations.

64 continuity and interpolation in object space

Figure 47: Cube model at
binding time and
its correspondence
influence map.

More formally, we define the transformation Sci
(p) by:

Sci
(p) = bci

(p)Tci
(p) + (1− bci

(p))Jci
(p) (10)

where bci
(p) is the boundary weight function (See Section

4.2.2), which is a class C1 function in ci that is equal to zero at
any point p lying on the border between ci and any adjacent
cage and different to zero at the interior of ci. In this man-
ner, Jci

(p) or Tci
(p) will be fully applied on a mesh point p

depending on its position in respect to any border of ci. The
fact that transformation Tci

(p) is the one used by previous
single-cage approaches will allow the user to choose a differ-
ent coordinate system for each individual cage in a way that
suits his/her needs. Thus, in the following subsections we
will explain the two elements needed to define the smooth
transformation Sci

(p): the join transformation Jci
(p) and the

boundary weight function bci
(p).

4.2.1 Join transformation Jci
(p)

First, let us introduce some definitions illustrated by the scheme shown in Figure 46. As
mentioned before, *Cages uses a set of controlling cages. Given two cages ci and cj, we
consider them adjacent if they share a set of faces. Then, given cage ci let us denote its
adjacent cages by Adj(ci) (e.g. Adj(c0) = {c1, c2} in Figure 46). For a cage cj ∈ Adj(ci) let
Bcicj

= ci ∩ cj be the border between ci and cj (e.g. Bc0c1
= c0 ∩ c1) and let the boundary

of ci, noted Bci
, be the union of all borders Bcicj

(e.g. Bc0
= Bc0c1

∪Bc0c2
).

Figure 48: A comparison between piecewise deformations. (a) MVC/PMVC/HC deformation. (b)
*Cages with MVC deformation, both for Jci(p) and Tci(p). (c) GC deformation. (d)
*Cages with GC deformation, both for Jci(p) and Tci(p). The second row shows close
views of the deformed model. Notice that only (b) and (d) are C1.

4.2 *cages 65

Our goal is to define a transformation Jci
(p) that can smoothly cross boundaries be-

tween adjacent cages while verifying two important constraints: First, as Jci
(p) will be

responsible for glue cage-based deformations it must behave similar to standard cage-
based methods to produce fair deformations. Second, to provide a high degree of locality,
Jci

(p) has to take into account only the local information concerning the boundaries be-
tween cages. As we will explain during this section, transformation Jci

(p) verifies both
restrictions: First, Jci

(p) is built by using standard coordinates (MVC/GC), which allows
not only a way to control the behavior of the blending region, but also a way to ensure the
fairness of the deformations. Second, Jci

(p) keeps transformations as local as possible to
the boundaries between cages, by relying only on their local information, which is their
vertices.

So, given a boundary Bcicj
between cages ci and cj, we define as boundary vertices the set

of vertices that belong to that boundary Bcicj
. As can bee seen in Figure 46, any number

of cages can meet at a boundary vertex. Thus, let us define the join cage of a boundary vertex
v, denoted by jc(v), as the union of all the cages incident at v. Figure 46 shows a set of
control cages (left), the join cage of the vertex v3 (middle), and the join cage of the vertex
v4 (right). As can bee seen, a boundary vertex may or may not belong to its associated join
cage. For the former we will call them non-interior vertices, while for the later we will call
them interior vertices. Relying on the concept of join cage, we will define, vertex-wise for
each boundary vertex v, a smooth and local transformation Lv(p). Then, for a cage ci, the
final join transformation will be defined as a blending of all the smooth transformations
Lv(p) related to the vertices of its boundary Bci

.

Thus, in our scheme, the transformation Jci
(p) in ci is defined by:

Jci
(p) =

∑
v∈Bci

W(v,p)Lv(p) (11)

where weights W(v,p) are normalized to 1. As an example, in Figure 46, note that

Jc2
(p) =W(v1,p)Lv1

(p) +W(v4,p)Lv4
(p) +W(v6,p)Lv6

(p) (12)

and

Jc0
(p) =W(v1,p)Lv1

(p) +W(v3,p)Lv3
(p) +W(v4,p)Lv4

(p) (13)

The weight function W(v,p) will be responsible for measuring how much of the trans-
formation Lv(p) from each boundary vertex v is blended. If we are at v itself, then trans-
formation Lv(p) will be fully applied and its contribution will smoothly decrease as we
move away. W(v,p) will completely vanish at the other boundary vertices of Bci

. Let us
define the weight function W(v,p) by:

W(v,p) = Ω(v,p)I(v,p) (14)

where Ω(v,p) and I(v,p) are two smooth functions. The first, called vertex influence func-
tion, will provide us with a way to express the influence of vertex v in its join cage, while
the second, called interior vertices influence function, will take into account the influence of
interior vertices, if any, on the rest of boundary vertices (interior or non-interior). Both are
explained below.

66 continuity and interpolation in object space

vertex influence function Ω(v,p) . This function is a bell-shaped function defined
over the join cage jc(v) of vertex v, which allows us to specify a smooth region of incidence
of vertex v on its join cage jc(v). This function has to satisfy the following properties: be
non-negative, be smooth, be equal to one at v and equal to zero on any face of jc(v) not
incident to v. As an example, in Figure 46, Ω(v3,p) should be equal to one at v3 and equal
to zero on all the faces of jc(v3) except the two containing v3. One way to define Ω(v,p)
could be based on Gaussian functions. However, the need to keep the transformations
local has led us to define it by the use of a weight measure with respect to the faces of the
join cage (a sort of distance). So, let t be a face of F(jc(v), v), which is the set of faces of
jc(v) not incident to v. Thus, we define Ω(v,p) as a product of normalized and smoothed
distances to that set of faces as follows:

Ω(v,p) =
∏

t∈F(jc(v),v)

f

(
djc(v)(t,p)
djc(v)(t, v)

)
(15)

where f is a smoothing function that satisfies f(0) = f ′(0) = f ′(1) = 0, f(x) = 1 for x > 1

and f ′(x) > 0. In our implementation we have used f(x) = 1
2 sin(π(x− 1

2))+
1
2 for x ∈ [0, 1].

The distance function dc(t,p) specified in cage c is defined by:

dc(t,p) = 1−
∑

u∈V(t)

wc(u,p) (16)

where V(t) are the vertices of face t and wc(u,p) are the coordinate basis functions
(MVC/HC) used in cage c. In the case that c is not convex, weights wc(u,p) have to
be computed by HC to prevent negative coordinate values. Otherwise MVC can be used.
Observe that function dc(t,p) is of class C1 inside c, it is equal to one on the faces of c
non adjacent to t, and it is equal to zero on t.

Properties for Ω(v,p):

Notice that function Ω(v,p) possesses the required conditions and also satisfies:

• ∂pΩ(v, v) = 0, where ∂p is the directional derivative respect to p

• ∂pΩ(v,p) = 0, for any point p lying on any face of jc(v) not incident to v

• Ω(v,p) < 1, for any point p 6= v

interior vertices influence function i(v,p) . Given a boundary vertex v (interior
or non-interior), function I(v,p) is responsible for introducing the influence of the rest of
boundary vertices classified as interior vertices over v (e.g. v4 over v3 in Figure 46). As we
have explained, given the fact that function Ω(v,p) gives a way to determine the influence
of a vertex v, we rely on it to define I(v,p) as:

I(v,p) =
∏

u∈Int(jc(v))−{v}

f

(
1−Ω(u,p)
1−Ω(u, v)

)
(17)

4.2 *cages 67

being Int(jc(v)) the set of interior vertices of jc(v). Note that if the set of vertices Int(jc(v))−
{v} is empty, this means that there are no interior vertices, so I(v,p) is equal to one and thus
W(v,p) will be influenced only by the smooth function Ω(v,p). This means two things:
first, the influence of vertex v is not affected by other interior vertices and second, the
vertex v is only influenced by the rest of boundary vertices (non-interior) of jc(v) which are
taken into account in the first smoothing function Ω(v,p).

As an example, in Figure 49 we illustrate the weight function W(v,p) on several dif-
ferent borders between two neighboring cages. In Figures 49(a) and 49(b), the border has
only non-interior vertices, while on the rest of images a couple of interior vertices appear.
In Figure 49(a) we show the weight W(v1,p) for vertex v1 and in Figure 49(b) the weight
W(v4,p) for the vertex v4. Observe the smoothness of the weights and, in the later case, the
lack of negative coordinates as we use HC. In Figure 49(c) we show the weight W(v6,p)
of the interior vertex v6 and in Figure 49(d) we show the weight of vertex v1 but now
with the influence of the interior vertex v6. Observe the difference with the same weight
of Figure 49(a). Finally, in Figures 49(e) and 49(f) we show the mutual influence of two
interior-vertices.

Properties for W(v,p):

The weight W(v,p) is a non-negative function of class C1 in jc(v) satisfying the
following properties:

• W(v, v) = 1 and ∂pW(v, v) = 0

• W(v,p) = 0 and ∂pW(v,p) = 0, for any point p lying on any face of jc(v) not
incident to v

• W(v,u) = 0 and ∂pW(v,u) = 0, for any vertex u ∈ Int(jc(v)) − {v}

Now that we have set the weight W(v,p), we still lack the definition of the transforma-
tion Lv(p) to have the join transformation Jci

(p) completely specified. Thus, let us define
transformation Lv(p) differently depending on whether v is boundary vertex classified as
an interior or a non-interior vertex of jc(v):

• v is a non-interior vertex of jc(v). Transformation Lv(p) is defined by a smooth
arbitrary transformation Tjc(v)(p) (defined with MVC/HC/GC) in jc(v) determined
by the deformed vertices of jc(v) by:

Lv(p) = Tjc(v)(p) (18)

• v is an interior vertex of jc(v). Transformation Lv(p) is defined by a smooth arbitrary
transformation Tjc(v)(p) (MVC/HC/GC) in jc(v), plus a smooth gradation of the
transformation that moves Tjc(v)(v) to v ′, which is the deformed cage vertex v. That
is:

Lv(p) = Tjc(v)(p) +W(v,p)(v ′ − Tjc(v)(v)) (19)

Note that, as we get closer to the interior vertex v, the second term of the sum will
increase, and thus the transformation Lv(p) will be altered by adding the influence

68 continuity and interpolation in object space

Figure 49: Variation of weight W(v,p) on different borders between two cages.

of vertex v. Otherwise, as we get far away from the interior vertex v, the transforma-
tion of point p in jc(v), that is Tjc(v)(p), will be fully applied with no influence of v.

Properties for Lv(p):

Observe that transformation Lv(p) verifies the following properties:

• Lv(v) = v ′ being v ′ the deformed cage vertex.

• Lv(u) = u ′ for u ∈ V(jc(v)), where u ′ is the deformed cage vertex u and V(jc(v))
are the vertices of cage jc(v).

• If Tjc(v)(p) and v ′ are given by a linear function then v ′ = Tjc(v)(v) and Lv(p)
also is given by a linear function.

Now that we have explained in detail the join transformation Jci
(p) through its two com-

ponents, the weight W(v,p) and the local transformations related to the boundary vertices
Lv(p), we can guarantee the following property with respect to its smoothness:

4.2 *cages 69

Properties for Jci
(p):

Observe that for a point p on a boundary Bcicj
between cages ci and cj we have:

Jci
(p) =

∑
v∈Bcicj

W(v,p)Lv(p)

which guarantees:

• Jci
(p) = Jcj

(p), ∂pJci
(p) = ∂pJcj

(p), and consequently smooth transitions be-
tween cages are obtained.

Note that Jci
(p) is not defined on the faces that do not have any boundary vertex (e.g

face consisting of vertex v2 and vertex v7 of cage c2 in Figure 46). As we will show in
the following subsection, this is not problematic because transformation Jci

(p) will never
be applied there, as the boundary weight function bci

(p) will be equal to one and thus,
Jci

(p) will not be applied.

4.2.2 Boundary weight function bci
(p)

In this subsection we specify the weight function bci
(p) involved in the smooth transfor-

mation Sci
(p). Thus, let us define in a cage ci the weight function bci

(p) as a product of
weights with respect to any border Bcicj

as follows:

bci
(p) = fhci

 ∏
cj∈Adj(ci)

(1−
∑

v∈Bcicj

wci
(v,p))

 (20)

where fhci
is the smoothing function defined in Eq. 15, parameterized with the parameter

h ∈ (0, 1] for cage ci. If Bci
= ∅, i.e., when ci does not have any neighboring cage, bci

(p)

is set to be 1.
Observe that bci

(p) is equal to 0 when p ∈ Bci
and is equal to 1 on the faces of cage ci

that are not incident to any vertex of Bci
. As an example, in Figure 46 the distance bc2

(p)

of cage c2 will be 0 when p belongs to the boundary of the cage (Bc2
= Bc0c2

∩Bc1c2
) and

to 1 on the face generated by vertices v2 and v7.

Properties for bci
(p):

The weight function bci
(p) verifies these properties:

• ∂pbci
(p) = 0, for any point p satisfying bci

(p) = 1,

• ∂pbci
(p) = 0, for any point p satisfying bci

(p) = 0, that is, lying on any face of
Bci

.

As can be seen in Formula (10), the weight bci
(p) is a measure of the influence of

the transformation Tci
(p) in Sci

(p), and can be adjusted by changing the parameter hci
.

70 continuity and interpolation in object space

Figure 50: Influence map variation on the scheme shown in Figure 46.

To visualize the effect when altering hci
we use an influence map, where the model is

painted in blue-red gradation according to the distance bci
(p). As an example, in Figure

50 we visualize three different influence maps for the scheme shown in Figure 46. Also, in
Figure 51 we show the chinchilla model enclosed in 9 cages. We have used GC for the ears
and MVC for the rest of the cages, as well as the join transformations. At the right, results
obtained from three different values of hci

corresponding to the left ear cage, are shown.

4.2.3 Smooth Transformation Sci
(p)

Up to now, we have specified all the components that are part of the piecewise smooth
transformation Sci

(p) defined in Formula (10). In Figures 48(c) and 48(e) we illustrate
the effects of the proposed smooth transformation. In Figure 48(c) a deformation has been
performed using MVC to compute both, the cage transformations Tci

(p) and the join trans-
formation Jci

(p), while in Figure 48(e) GC are used.

Figure 51: Influence map variation on the chinchilla model. Left: Original model and initial cages.
Right: Results obtained by using different hci values for the left ear cage. Red and blue
regions mean transformations Tci(p) and Jci(p) respectively are fully applied.

4.2 *cages 71

Properties for Sci
(p):

The transformation Sci
(p) defined in a cage ci satisfies the required continuity con-

ditions for any point p on Bcicj
:

• Sci
(p) = Jci

(p) = Jcj
(p) = Scj

(p)

• ∂pSci
(p) = ∂pJci

(p) = ∂pJcj
(p) = ∂pScj

(p)

Now we want to show that the transformation S of the whole system of cages C pre-
serves all the good properties of the standard cage-based techniques while satisfying the
required continuity conditions. One important aspect is that transformation S inherits
properties of transformations Tci

(p) and Lv(p) (used to create Jci
(p)) such as linear re-

production. The only requirement for the coordinate system used to compute these trans-
formations is that it must be defined inside the respective cage as MVC/HC and GC.
So, if A is an arbitrary linear function, we need to show that Sci

(p) = A(p) in case that
Tci

(p) = A(p) and Lv(p) = A(p) for all join cages. This can be easily demonstrated from
the partition of unity property of the weight functions:

Sci
(p) = bci

(p)Tci
(p) + (1− bci

(p))
∑

v∈Bci

W(v,p)Lv(p) =

= bci
(p)A(p) + (1− bci

(p))
∑

v∈Bci

W(v,p)A(p) =

= bci
(p)A(p) + (1− bci

(p))A(p) = A(p) .

Moreover, if transformations Tci
(p) perform boundary interpolation, transformation S per-

forms boundary interpolation on faces not adjacent to any boundary between cages. For
a point on this kind of faces all weights with respect to vertices of Bci

are equal to 0.
Consequently, the distance bci

(p) with respect to Bci
is equal to 1 and, then, Sci

(p) =

Tci
(p), which means that the smooth transformation in ci is equal to the transformation

(MVC/GC/HC) defined for cage ci.

4.2.4 Multi-level deformations

We can use *Cages to build a multi-level system which gives flexibility, versatility, in-
teractivity and control over the deformations to be applied to a part of the model. In
our scheme, upper-level cages can own an arbitrary set of vertices of lower-level cages,
the only restriction being that cages must have a hierarchical relationship (e.g. a Directed
Acyclic Graph or a tree) and that a given cage vertex cannot be controlled by more than one
parent cage. In general, two kinds of cages can be distinguished: leaf-cages that directly con-
trol the mesh and satisfy the conditions enumerated in Section 4.2, and the internal-cages
that control cage vertices of lower-level cages and do not directly affect the mesh, so they
can intersect and smoothness does not need to be enforced for them.

Our multi-level system relies on a simple yet effective observation: When a cage in the
multi-level system changes, the effects of this change should only be propagated down-
wards but not upwards in the hierarchy. This means that, when a vertex v of a cage is

72 continuity and interpolation in object space

Figure 52: Multi-level deformation for coordinates not defined outside the cage. (a) Initial cages.
(b) Direct cage vertex movement. (c) Parent transformation.

changed, the positions of all the vertices in the containing and neighboring cages should
be updated as usual, but the parent cage c containing v would not be affected. However,
if the parent cage c changes later on, v should be updated accordingly. Here, we cannot
directly transform v, as it has a different position than the one used when computing its
coordinates (binding time) with respect to c, so the coordinates for v must be recalculated,
and then the process continues as usual.

If coordinates that are defined everywhere are used, such as MVC, then the above im-
plementation works as described. However, in the case of coordinates not being defined
outside (e.g. HC), special measures should be taken. We propose an easy but effective
solution without the need of any cage recomputation. We can express any new position
for v as v ′ = Tc(v) +U(v) with U(v) being the user-generated displacement, and Tc(v) the
transformation of v with respect to the parent cage c. We can express U(v) = λ · ∆U(v),
where λ is an adequate multiplicative factor and ∆U(v) is a displacement small enough to
satisfy that point ∆v = Tc(v) +∆U(v) is within cage c at its current position. Now, if cage
c undergoes another transformation T ′c that converts Tc(v) into T ′c(v) and ∆v into T ′c(∆v),
we will update the current position of v by v" = T ′c(v) + λ(T ′c(∆v) − T ′c(v)) (see Figure 52).

4.3 results and discussion

Figure 53: Camel model at binding time (left)
and its corresponding influence map
(right).

Throughout the paper, we have used the
following coloring code: Blue cages use
MVC, red ones use HC and the green ones
use GC. We have also drawn the bound-
aries between cages in pink. The implemen-
tation of *Cages has been carried out us-
ing the Ogre3D engine on a Quad Core
Duo (2.83GHz) with 4GB of RAM. In the
interests of fairness, we have implemented
MVC/HC and GC in our unoptimized

4.3 results and discussion 73

Figure 54: Twisting a prism using MVC (left) and GC (right). See the similarity between a single
cage (a,d) and *Cages (b,e). (c,f) show the corresponding difference maps. Red means
higher error and blue means lower error.

CPU-based system, carefully following the
pseudocodes provided in the respective papers.

To show that the deformations produced by *Cages result in deformations with a level
of quality on par with common single cage-based approaches, in Figure 54 and Figure
55 we present some comparisons. First, the prism model (206312 triangles) is enclosed
using four cages (20 vertices) by *Cages and the union of cages by the single cage-based
methods. The deformation is obtained by twisting the prism (each cage is rotated by π/2
with respect to the previous one). Note the large similarity between the results obtained
by MVC and GC (Figures 54(a) and 54(d)) and *Cages (Figures 54(b) and 54(e)), even at
the boundaries between cages where the new Join Transformation is fully applied. In the
figure, both cage (Tci

(p)) and join transformations (Jci
(p)) have been computed with the

same coordinate systems (MVC/GC). The corresponding difference maps are shown in
Figures 54(c) and Figure 54(f). The maximum and RMS difference values shown are com-
puted with respect to the bounding box of the model. Second, the camel model (see Figure
53) has been enclosed in four cages (36 vertices) by *Cages and again the union of cages
by the single cage-based methods. See how similar are the results obtained by single cage
approaches and our multi-cage technique. In the last column of Figure 55 we show the
difference maps corresponding to each deformation. Observe the great similarity and how
the differences are located in regions near the boundaries between cages, where our new
join transformation is fully applied.

One important feature that *Cages has, in contrast to previous single cage-based meth-
ods, is the degree of locality obtained in the deformations. As a way of illustrating that
important contribution, in Figure 57 we compare the locality of the deformations achieved
by *Cages and single cage-based methods. For the former we have enclosed the train model
(60052 triangles) in 4 cages (28 vertices) (see Figure 56), while for the latter we have used
their union as a global cage for MVC and GC. As can be seen in the figure, single cage ap-
proaches (see Figure 57(a) and Figure 57(c)) cannot perform very localized deformations
as all mesh vertices are deformed with respect to all cage vertices.

74 continuity and interpolation in object space

Figure 55: Two diferent deformations on the camel model with MVC (first column) and *Cages

(second column). Third column shows the difference maps. Red means higher error and
blue means lower error.

Figure 56: Influence map of the train model at
binding time.

For instance, if the cage vertices of the
top of the central wagon are moved, the sin-
gle cage version of MVC (see Figure 57(a))
or GC (see 57(c)) deforms the head and tail
wagons too, while *Cages (see Figure 57(b)
and Figure 57(d)) only affects the center
wagon, as one would expect. Also, notice
the unsatisfactory deformations produced
by MVC in Figure 57(a) at the sides of the
wagon roofs due to the presence of negative coordinates produced by non-convex cages
(the joining part between wagons). Let us note that, even though some coordinates like HC
and GC present some kind of local control over the deformation, they have some issues
we should discuss:

• HC uses Interior Cages to reduce the coordinate influence at the expense of building
an extra interior cage, which leads to more memory and time consumption during
the deformation. Moreover, the users need to be careful when creating such cages,
because if the mesh goes through them, discontinuities will appear.

• In the case of GC, we could use the so called Partial Cages as a tool to provide
local control. As discontinuities would arise at cage boundaries, the authors propose
smoothing the deformation by extending the local deformation performed inside a
partial cage to the rest of the mesh through some selected faces. This operation is
not always possible and also results in more computation time.

4.3 results and discussion 75

Figure 57: Locality: Comparison of single cage approaches and *Cages(̇a) single cage MVC, (b)
*Cages whith MVC, (c) single cage GC, (d) *Cages with GC.

It is well known [26] [38] [54] that not only each of the existing coordinates produces dif-
ferent deformation results, but also that they have different properties and computational
resource needs (e.g. GC produces more time consuming deformations as they take into
account the faces of the cages, and HC needs much more time to compute coordinates for
each vertex than MVC). Thus, the combination of different coordinate types in a unique
framework is a useful feature that allows users to freely choose between coordinates and,
as a result, they are be able to produce different deformations with the same cage configu-
ration. Furthermore, coordinate selection allows to benefit from their good properties and
concrete computational resource needs depending on the situation:

• As can be seen in Figure 58 and Figure 59, *Cages is able to smoothly combine
different coordinate types between different cages. First, the butterfly model (61366

triangles) has been enclosed in 6 cages (114 vertices): two for each wing, one for the
lower body, and another one for the head. At the right-most column, we can observe
the combination of GC for the top wings and MVC for the bottom ones. Full MVC
and GC deformation using *Cages can be seen at the second and third columns,
respectively. Observe the difference between the deformations even when they use
the same cage configuration, and how *Cages smoothly glues them. Second, another
example of coordinates combination is shown over the elk model in Figure 59. There

Figure 58: From left to right: the cages at binding time on the butterfly model, two different defor-
mations using MVC and GC with *Cagesand a *Cagescombined GC/MVC deformation.

76 continuity and interpolation in object space

Figure 59: Combined deformations on the elk model. Left: Elk model at binding time with its in-
fluence map. Middle: *Cages combined MVC/HC deformation. Right: *Cages combined
GC/HC deformation.

we can see again the differences of results when applying one coordinates or another
with the same deformation allowing the user to obtain even more results simply by
choosing one coordinates or another.

• *Cages also allows to benefit from the good properties of each coordinate type de-
pending on the situation. In Figure 60 we show an example in which we can see
the deformations produced by a single-cage with MVC on the hand model. As it is
well-known, MVC has problems with concave cages because they result in negative
coordinates (first column in the figure). By default, *Cages reduces this problem (sec-
ond column) to regions near the boundaries when MVC is used to compute the join
transformations. Here, the negativity still does not completely disappear because even
when each single cage is convex, the resulting join cages are still concave. That is,
cage transformations Tci

(p) do not have negative coordinates but join transformations
Jci

(p) continue to be affected by the MVC negative behavior. However, the fact that
*Cages is able to combine different coordinates, allows us to completely solve the
problem (third column) by using HC to compute only the join transformations when
concave join cages are detected. Although this situation is not solved in a direct way
by our approach, the combination of coordinates localize the usage of HC to only the
places where it is needed, and so consuming less preprocessing time and memory
to produce a deformation free of negative coordinates.

4.3 results and discussion 77

Figure 60: Deformations on the hand model. Columns from left to right: Deformation using MVC
(observe the effect of negative coordinates of non-convex cages), and *Cages using MVC
(third column) and HC (fourth column) as join transformations, respectively.

In situations where a combination of coordinates is used, an important aspect is how
fair the resulting deformation is, especially in regions near the boundaries, which show a
transition between different coordinate types. Given the nature of the propose blending
scheme, we can guarantee that the resulting deformations will produce correct results, as
we smoothly shift from one deformation type to another. As an example, in Figure 61 we
show results of the fairness of the deformations produced by our approach when different
coordinates are combined. In the top row, we can see the bumpy surface and its influence
map at binding time. Three cages have been used: left and middle cages use MVC, while
the right cage has GC. The join transformations applied between cages are of type MVC.
In the bottom row we show a deformation using single cage approaches with MVC (left)
and GC(middle), as well as the result of applying *Cages. See how the bumps in the model
follow the faces of the cage when GC are used (see Figure 61, middle). On the other hand,
if we perform the same deformation using MVC, the bumpy details get stretched (see Fig-
ure 61, left). This behavior can also be observed in the deformation produced by *Cages

as well as the fairness in the deformation over the transition between cages of different
coordinate types (see the insets in the bottom row in Figure 61). Observe how the GC
deformation shifts to the MVC one.

78 continuity and interpolation in object space

Figure 61: Fairness of the resulting MVC (left), GC (middle) and MVC/GC with *Cages (right)
deformations. The top row shows the influence map and the cages at binding time.

*Cages is able to handle any number of cages meeting at a boundary cage vertex. Figure
62 shows a deformation obtained from a flower model (21903 triangles) enclosed in 13

cages (88 vertices) using different coordinate types. Here it is important to observe the cor-
rect behavior of the method even when cage vertices with more than two incident cages
exist.

Two different multi-level deformations (see Section 4.2.4) can be seen in Figures 63 and
64. On one hand, in Figure 63, the squirrel head model (19552 triangles) has been enclosed
by four leaf-cages (66 vertices): teeth, face, left and right ear. There are also two internal-
cages (16 vertices), which are colored in grey: The global ears cage, which encloses some
vertices of the left and right ear cages, and the head cage, which encloses all unbinded
vertices of the previous cages (see Figure 63(a)). The sequence of deformations in the figure
is as follows: First the teeth have been deformed in Figure 63(b), second the ears in 63(c),
then the entire head in 63(d) and finally the face in 63(e). On the other hand, we have
also applied our multi-level approach over the whole squirrel model (37588 triangles),
as can be seen on the right of Figure 64. The model has been enclosed in 12 leaf-cages
(132 vertices) and 3 internal-cages (24 vertices), shown at the top-left side of the image.
Also, observe the usage of different coordinates for different cages in addition to the
deformations produced at different levels of detail. As can be seen, we are able to perform

4.3 results and discussion 79

Figure 62: Multiple cages meeting at a cage vertex. Left: Original model with 13 cages using differ-
ent coordinates. Middle: close view. Right: Deformation with *Cages.

deformations at different levels of detail without recomputing any coordinate for the mesh
vertices, which is something that none of the existing single-cage-based approaches allows.
As an example, imagine we have a partial cage with HC for the ear of the squirrel model in
Figure 63 and a single cage containing the whole model. One could compute coordinates
for each cage, then deform them using the partial cage and then the single cage. What
happens here is that, when deforming using the later, the coordinates won’t be valid as
the vertices affected by the partial cage have seen modified their binding positions. So, we
must recompute coordinates each time we go from the usage of partial (local) to single
(global) cages and vice versa.

In contrast, *Cages can change the level of detail over the deformation without the
need for any coordinate recomputation for mesh vertices, as they are controlled by the
leaf-cages. Finally, in Figure 66 we show an scene resulting from applying a multi-level
deformation over squirrel and chinchilla models with the use of different coordinates.

As has been explained in Section 4.2, *Cages naturally supports the presence of interior
cage vertices. In Figure 65 (left) we show a "Easter egg" model enclosed in a grid of twelve
cages. This set of cages generates two interior vertices, one at the top and the other at the

Figure 63: Multi-level deformation of the squirrel model. (a) Multi-level cages. (b) Leaf deforma-
tion: teeth cage. (c) Internal deformation: ears’ cage. (d) Internal deformation: head cage.
(e) Leaf deformation: face cage.

80 continuity and interpolation in object space

Figure 64: Deformation of the squirrel model using *CagesL̇eft: The model and its multi-level cages
at binding time. Right: Composition of a pose.

bottom of the "surprise" mesh. As a way to demonstrate the good behavior of deformations
when these kinds of vertices are involved, we have generated two different deformations:
the first deformation has been obtained by moving up the top interior vertex and leaving
the rest of cage vertices stationary (Figure 65(a)), while the second deformation has been
achieved by moving the top row of cage vertices up and leaving the rest in their original
positions (Figure 65(b)).

Figure 65: Deformation involving interior points of the "Easter egg" model using *CagesL̇eft: The
model and the grid of cages at binding time. Highlighted vertices are interior points.
Right: Composition of two different deformations.

4.
3

r
e

s
u

l
t

s
a

n
d

d
i
s

c
u

s
s

i
o

n
8
1

Figure 66: Scene showing the multi-level deformations on the Squirrel and Chinchilla models. Left: Cages at binding time with different coordinates
(Blue - MVC, Green - GC, Red - HC, and pink cage boundaries). Right: Composition of different poses.

82 continuity and interpolation in object space

Given the multi-cage nature of *Cages it allows to naturally reduce the number of
weights stored for each mesh vertex and, as a consequence, to obtain faster evaluations.
The computational and memory costs become optimal when the number of cages used
is high and they have a small adjacency degree, that is, when one cage is connected to a
reduced number of neighboring cages, as in Figure 67. The small adjacency degree gives
as a result a small number of join transformations involved in the final smooth transformation
of every single cage, and consequently faster and lower memory-consuming deformations.

Despite this, it is important to mention that the user can control the influence of join
transformations inside a cage by adjusting the influence map parameter hci

. In Table 1 we
show the memory and time requirements depending on the influence of the parameter
hci

in the boundary weight function bci
(p) (see Section 4.2.2). We compare the results

obtained for three different hci
values for the set of 9 cages used (134 vertices) in the

chinchilla model (140126 triangles), both for MVC and GC. In these cases, cage and join
transformations have been computed with the same coordinate types. Observe that the
memory usage and the computational cost are nearly proportional to hci

. This is because,
as the hci

values decrease, transformations Tci
(p) are fully applied on more mesh vertices,

and for these the join transformations Jci
(p) do not need to be stored and computed. As

can bee seen, the parameter hci
has a drastic impact on *Cages requirements, but using

an insufficient value for hci
could introduce visible non-smooth transitions in extreme de-

formation conditions. Also, it should be noted that the value for hci
can be set in an easy

and independent manner for each border, for each cage or for the whole model. In Figure
51 we have used the second approach, while for all the tables we have used a single hci

value for the entire model to make comparisons fairer. In our system, the user is provided
with a simple slider to control this parameter independently for each selected cage.

In Figure 67 we show three different deformations applied over the Sintel model (66845

triangles), which has been used in real film production [28]. Note that the model has 15

leaf-cages (193 vertices), as can be seen on the left part of the image. Different coordinates
have been used for the different cages to obtain the deformations shown. Note the good
results obtained by our approach even when several types of coordinates are used in such
complex deformations.

In Table 2 we compare *Cages with MVC and GC on the Sintel model of Figure 67

and on the squirrel model (12 leaf-cages with 132 vertices and 3 internal-cages with 24

vertices) of Figure 64. Observe that *Cages consumes less than half the memory for the
squirrel model and 4 times less than the memory for the Sintel model (column 2). The to-
tal time required for the preprocess is shown in column 3, specifying the amount of time
dedicated to compute the coordinates with respect to the parent cages. Also, *Cages takes
much less time to compute cage coordinates because each of the cages used are simpler
and smaller than a whole single cage. The rest of the time is needed to compute join cages
and the coordinates with respect to them. In the case of using GC, *Cages requires even
less preprocessing time because of the nature of their computations [54]. The deformation
times (column 4) are the averages of the times needed for the deformation of a cage ver-
tex. Observe that our approach is significantly faster for both models, where we achieve
between 3 and 5 times the speed of MVC, and between 7 and 18 times that of GC.

4.
3

r
e

s
u

l
t

s
a

n
d

d
i
s

c
u

s
s

i
o

n
8
3

Figure 67: Deformations of the Sintel model (66845 triangles) using *CagesL̇eft: Cages at binding time with different coordinates (Blue - MVC, Green -
GC, Red - HC, and pink cage boundaries). Right: Composition of different poses.

84 continuity and interpolation in object space

Figure 68: Deformation of the frog model. Left: Cages at binding time and original model. Right:
Deformed cages and model using *Cages.

We would like to emphasize that, even our code is unoptimized and CPU-based, *Cages
allows for a more GPU-friendly implementation than single cage-based approaches do, as
it has a much lower number of weights to store for each mesh vertex. Moreover, unlike the
technique presented by Landreneau and Schaefer [44], we don’t need to be constrained
by having to create new deformations that must be similar to an initial range of prede-
termined poses to be able to reduce memory and time consumption. Instead, we give the
user the freedom to perform any type of deformation while also keeping the memory
and time requirements small, as well. Let us note that *Cages is fully compatible with
the work by Landreneau and Schaefer [44], and our computational requirements could
be reduced even more if used together: Their compression could be used for both cage
and join transformations. The latter case would benefit *Cages the most, as join transforma-
tions are more computationally demanding to evaluate than regular cage transformations.

*Cages is not related with the modeling of the cages themselves. As the examples
throughout the paper have shown we use a set of individual cages, the union of which
result in a single cage for the entire model. This has been done as a way to make com-
parisons to previous single cage-based approaches fairer. With *Cages we don’t need to
create the whole set of cages that are equivalent to a single cage. For instance, if we want
to deform only the head of the Sintel model shown in Figure 67, we are not required to
build all the cages shown there, we only need to model the ones needed to make this task
simpler. Moreover, the modeling of cages used to deform a small region is usually easier
and faster and, as a consequence, the use of many cages to deform a mesh can result in a
more user-friendly element for the cage-modeling phase.

As a space deformation approach, *Cages can be used in the same domains as previous
methods. For instance, the lowest-level cages of our hierarchy could be deformed by a sim-
ple skeleton, as Ju at al. [40] did. Thanks to the local behavior of our approach, we could
provide a finer degree of control over the skeleton and, as a result, a smoother final ani-
mation. *Cages also can be used to perform deformations in 2D (see Figure 68), as long as
the cages satisfy the requirements described in Section 4.2. *Cages is a cage-based method
that can be also integrated with other deformation techniques that uses other types of
handles, as the one proposed by Jacobson et al. [37]. For instance, our approach can be
used in a certain region of the model to perform local and hierarchical deformations with
MVC/HC or GC. Then, on the rest of the model, the bounded biharmonic weights could
be used with point and bone handlers. *Cages would be responsible for smoothly gluing

4.3 results and discussion 85

the deformations provided by cage-based methods (MVC/HC/GC) with those produced
with the technique of Jacobson et al. [37], thus avoiding the discontinuities that would
appear through cage boundaries.

Chinchilla Memory Preprocess Deform

(MB) Cage Coord. Total (sec)

MVC *Cages

hci
= 1.0 45.45 3.8045 29.4625 0.3308

hci
= 0.6 29.75 3.7958 17.3009 0.1409

hci
= 0.2 14.05 3.8034 9.5280 0.0662

GC *Cages

hci
= 1.0 131.27 10.1461 134.8266 1.0725

hci
= 0.6 84.35 10.3721 73.5973 0.4460

hci
= 0.2 37.43 10.2712 49.1273 0.1888

Table 1: Memory and time requirements for several hci values for the chinchilla model.

Model Memory Preprocess (sec) Deform

(MB) Cage Coord. Total (sec)

Squirrel

MVC 25.55 7.4815 7.4815 0.0904

MVC *Cages 11.26 3.4861 6.6197 0.0372

GC 63.30 39.7976 39.7976 0.7095

GC *Cages 30.39 8.3214 28.9178 0.0969

Sintel

MVC 52.52 20.1988 20.1988 0.2105

MVC *Cages 13.54 8.3469 13.7599 0.0427

GC 155.41 107.4353 107.4353 1.8824

GC *Cages 34.94 16.3395 47.9066 0.1074

Table 2: Memory and time requirements for the Sintel and Squirrel models using *Cages and stan-
dard single cage approaches.

86 continuity and interpolation in object space

4.4 conlusions

In this fourth chapter we have presented *Cages a multi-level (i.e., hierarchical) cage-based
system for spatial mesh deformations. It allows the combination of heterogeneous sets of
coordinates, allowing the user to define different coordinates for different neighboring
cages and smoothly use them together in combination while preserving their properties
(e.g. linear precision and boundary interpolation). With *Cages any change the user makes
in one cage is kept local to the cage being modified. This is one of the main advantages
with respect to other mechanisms that try to obtain more localized deformations. More-
over, *Cages allows the local use of any coordinate, even those that do not allow such
usage when used in isolation, as long as they are defined inside the cage. Thus, in this
sense, we can consider single cage approaches as a particular case of *Cages.

5
C O N T I N U I T Y A N D I N T E R P O L AT I O N I N S C R E E N S PA C E

Vive! Disfruta! Avanza! Decide! Y
sonríe!

I n previous chapters we have introduced two techniques that allowed to avoid discon-
tinuities in both texture (2D) and object spaces (3D), giving as a result new and better
ways to generate smooth deformations of continuous textured meshes. Once we have

a well textured model in the right pose for a certain scene, what remains is to render it,
preferably faster than current state of the art approaches while holding the image quality.
In Computer Graphics, acceleration techniques for Rendering in general, and Ray Tracing
in particular, have been subject of much research. Most efforts have been focused on new
data structures for efficient ray/scene traversal and intersection with the scene. In this
chapter we will present a two-stage rendering acceleration technique called I-Render: First,
a pre-processing clustering stage that builds upon information theoretic channels to group
triangles by their similar features. The clusters of triangles will create regions of smooth
variations and, as a consequence, regions that will be candidate to be interpolated when
rendered. Boundaries between clusters will define sharp transitions between features and
so regions that need to be accurately preserved. Second, an approximate rendering stage
that uses the clustering information to decide which areas of the final image could be in-
terpolated and which require more involved calculations. This process will be carried out
in a iterative way, starting on a low-resolution render, and then successively refining it up
to the desired resolution (final image). That way we will reuse previous results and avoid
costly computations. As we will show in the results obtained, we are be able to speed up
the rendering up to 8 times. The actual improvement will depend on the complexity of the
per-pixel calculations, the screen-size of the objects and the number of clusters. We will
also provide some parameters to fine-tune the rendering quality of the final image. More-
over, we will show that our technique supports a range of popular and costly techniques,
going from texture mapping up to complex ambient occlusion and soft shadow calcula-
tions, and even it can be used in conjunction with more traditional acceleration methods,
making it a flexible and easy approach for being integrated in current rendering pipelines.

87

5.1 introduction 89

5.1 introduction

The problem of efficient image generation has been a cornerstone in research since the ear-
liest days in Computer Graphics [27]. Ray Tracing is one of the most popular techniques
when generality, quality and ease of implementation comes into account, being able to
handle most optical effects [64]. Most of the acceleration methods in Ray tracing involve
primary rays, because they present a high level of coherence that can be exploited to speed
up ray/scene traversal/intersection and thus, the final image generation. That is, given
a scene, a pixel and its associated ray, its neighboring pixels will probably hit a similar
region in that scene. However, other complex shading operations, e.g. ambient occlusion
or soft shadows, can be really expensive to compute because they involve secondary rays,
which usually lose most of the coherence that primary rays have, considerably hindering
rendering performance. As a result, sometimes rough approximations, simplified calcula-
tions or other tradeoffs need to be used to accelerate computations.

If we observe most of the scenes used in production, we can arrive to the realization
that in general there are low-variability regions that share common characteristics or in-
formation, an thus they could be computed more efficiently than calculating each pixel
from scratch. Taking into account this observation, in this chapter we are going to build a
new rendering strategy that uses the similarity between the elements of a scene to provide
an approximate and fast rendering approach. We call this technique I-Render and it will
consist of two main stages:

• Clustering stage. First, a pre-processing stage will use information theoretic tools to
define channels that will allow clustering the scene geometry by their most relevant
features like visibility, orientation, or texturing.

• Rendering stage. Once the geometry has been clustered, the runtime part will use
the clustering information to approximately compute the final image in a series of
passes. It will begin with a low-resolution buffer and iteratively it will increase the
resolution up to the final image size. At each pass, low-resolution samples from
previous passes will be reused in order to obtain, wherever possible, an interpolated
value for the samples in the new resolution image. If it is not possible, for instance
at cluster boundaries where a discontinuity between features exist, the samples will
be evaluated and reused farther on in future passes. This process will result in a
considerable reduction in the number of computed evaluations. All the intermediate
images that we will use until we reach the final one, are given the name of I-Buffer, a
pyramid-like data structure that will store the information used for interpolation at
each resolution, and hence the name of the general technique: I-Render (Interpolation
of elements sharing similar information provided by the clusters).

As we will show, one important feature that we will introduce is an automatic control
mechanism of the number of passes (intermediate images), such that performance of our
technique has a lower bound in the performance of traditional Ray Tracing, resulting in a
win-win situation. As an example, that way, we will be able to avoid situations in which
we could have a low level of interpolation ratio due to having very complex geometries
with no smoothness in any of their features or having a model projected by a small set of
pixels in the screen. From the point of view of quality, the user will be able to have a fine-
grained control of the final rendering by selecting the features involved in the clustering

90 continuity and interpolation in screen space

and their degree of fidelity during rendering, by easily controlling the clustering thresh-
olds provided in the preprocessing stage. Finally, but not less important, we will show
that memory usage requirements for our approach are on the same level as traditional
Ray Tracing techniques.

In summary, in this chapter we present a novel technique that provides a number of
important contributions:

• A mesh-clustering framework based on Information theoretic tools. In particular,
we define clustering criteria based on geometry visibility, orientation and texture
stretching, but other user-definable parameters could be used, too.

• A multi-pass progressive rendering strategy based on the reuse and interpolation of
previously-computed results.

• A controlling mechanism to guarantee traditional Ray Tracing as a lower bound to
the rendering speed.

• Our technique can accommodate both static and animated scenes as well.

5.2 clustering

The objective of this pre-processing stage is to group the input geometry according to a
user-defined set of features. Our input mainly consists of a triangle soup with connectiv-
ity information (i.e., we do not require any special structuring). For each triangle we may
have any number of associated attributes (e.g., color, normal, etc.).

We first define a number of information theoretic channels, each one representing a
user-defined feature (See Section 5.2.1). The algorithm for each feature uses its respective
channel plus a clustering strategy to group triangles into an homogeneous cluster of simi-
lar elements. Observe that this "homogeneity" is only with respect to its given feature, and
that the resulting triangle groups might not be homogeneous with respect to a different
feature (See Section 5.2.2).

The algorithm performs an iterative hierarchical processing over the mesh, progressively
obtaining finer clusterings after each step: the clusters generated at the previous step using
a given channel are fed as independent meshes to the clustering algorithm in the next
step (See Algorithm 3). It is easy to realize that, after each iteration, the input geometry
is partitioned into a set of clusters, and each cluster is at most as large as the input. Thus,
each iteration operates over smaller sets of triangles, which results in a reduced cost and
faster computations. Finally, as the resulting clusters present jaggy edges, we apply a
boundary-smoothing algorithm respecting the feature, improving rendering quality and
speed (See Section 5.2.3).

5.2.1 Information Theoretic Channels

As mentioned above, our clustering strategy consists of detecting homogeneous and smooth
areas with respect to some user-defined criteria or feature. In order to evaluate the simi-
larity among triangles using that criteria, we use information theoretic tools. Let us briefly

5.2 clustering 91

Algorithm 3 Clustering algorithm.

1: clusters = [mesh]
2: for each channel ch in channels do
3: newClusters = []
4: for each cluster cl in clusters do
5: ch.init(cl)
6: ch.cluster()
7: ch.smoothBoundaries()
8: newClusters += ch.getClusters()
9: end for

10: clusters = newClusters
11: end for
12: return clusters

emphasize in some key concepts about information theory have been previously discussed
in Chapter 2.

Let us define X and Y both as a discrete random variables with their respective probabil-
ity distributions. Let p(y|x) = Pr[Y = y|X = x] be the conditional probability of an element
y ∈ Y given and element x ∈ X. Then, we can define an information channel X → Y [74]
by:

• The input distribution p(X), which represents the probability of selecting each ele-
ment in X, which also can be considered as the importance given to each x.

• The transition probability matrix p(Y|X). Conditional probabilities represent the prob-
ability of seeing an element from Y once we have seen a given element from X and
fulfill

∑
y∈Y p(y|x) = 1.

• The output distribution p(Y), given by

p(y) =
∑
x∈X

p(x)p(y|x) (21)

representing the average probability of seeing each element in Y.

The elements defining the information channel can be represented in matrix form as:

P(X) P(Y|X)
p(x1)

p(x2)
...

p(xN)

→

p(y1|x1) p(y2|x1) · · · p(yM|x1)

p(y1|x2) p(y2|x2) · · · p(yM|x2)
...

...
. . .

...

p(y1|xN) p(y2|xN) · · · p(yM|xN)


↓[

p(y1) p(y2) . . . p(yM)

]
P(Y)

92 continuity and interpolation in screen space

Figure 69: Iterative application of channel clustering: visibility, orientation and texture stretch.

In some cases (e.g., the visibility channel, see below), it could be more practical to
compute Y → X and then invert the channel to get X → Y. This can be easily done with
the help of Bayes’ theorem:

p(x,y) = p(x)p(x|y) = p(y)p(y|x)

We classify channels that require an inversion as indirect channels, while the ones that do
not as direct channels.

The mutual information I(X; Y) between two random variables X and Y is defined by
I(X; Y) = H(X) −H(X|Y) = H(Y) −H(Y|X) and represents the degree of correlation or de-
pendence between X and Y.

Finally, the Jensen-Shannon (JS) divergence is defined as:

JS(π1, ...,πn;p1, ...,pn) = H

(
n∑

i=1

πipi

)
−

n∑
i=1

πiH(pi)

with pi are the probability distributions defined with normalized weights πi, i ∈ [1,n].
We use this divergence as a measure of the similarity between the triangles to cluster. For
practical reasons, we introduce the following shorthand notation for this last expression
for the case of two probability distributions a and b and an output variable Y involved in
the channel:

JS(Y|a,b) = JS(π1 = p(a),π2 = p(b);p(Y|a),p(Y|b))

As we will show, throughout this chapter for each feature to cluster, X is the set of model
triangles, except in the visibility channel which is an indirect channel and in this case X
will be the set of viewpoints.

5.2.1.1 Visibility Channel

Visibility is the first feature that we want to preserve from the scene to be rendered. If
two triangles share the same visibility information, that means that these triangles can be
considered to be roughly seen with the same occlusions from every possible viewpoint.
As we are in the pre-processing stage of our technique, the idea here is to decouple the
visibility information from the viewpoint itself by making estimations of how visible tri-
angles are for all viewpoints. Thus, for the visibility feature, we define an information
channel between the set of input viewpoints V and the set of output polygons of a mesh
T , as V → T . Later, we invert it (T → V) to obtain a measure of how each triangle "sees"

5.2 clustering 93

the viewpoints. In the case of the visibility we choose to use an indirect channel because
it is simpler to compute the visibility of the scene polygons from every viewpoint using
rasterization than computing it from the polygon point of view.

The V → T channel was previously introduced in [23] as the viewpoint channel and
conceptually expresses, for any given triangle, how all viewpoints "see" it. There, the
viewpoints where given the same importance p(vi) = 1/N, with N the number of view-
points and the transition probability matrix p(T |V) was defined from the projected areas
of polygons tj ∈ T at each viewpoint vi ∈ V . With that definition, the authors took into
account not only occlusions but also orientation differences in the same channel. As we
will show, we modify this definition by making it only sensible to the occlusions produced
in our scene, not considering orientation in this channel. The reason behind that choice is
that focusing on only one feature for each individual channel will allow us to have a finer
degree of control over the clustering process. Also, note that the traditionally definition of
the viewpoint channel is completely resolution dependent, which will not happen in our
case, which greatly benefits the clustering process, and as a consequence, the final quality
of the rendering.

Thus, let’s redefine the V → T channel to take into account only the visibility criteria:
We set the probability for each viewpoint as p(vi) = 1/N, with N the number of view-
points, all having the same "preference". We define the occlusion ration as OR(tj, vi) =

avi
(tj)/uvi

(tj), where avi
(tj) is the projected area (in pixels) of triangle tj ∈ T at view-

point vi ∈ V , and uvi
(tj) is the same projected area without taking into account occlusions.

Observe that OR(tj, vi) <= 1, with the equality meaning that tj is fully visible from all
vi, and 0 that it is fully occluded. We define the normalized transition probability matrix
p(T |V) as p(tj|vi) = OR(tj, vi)/

∑
tOR(t, vi). The output distribution p(tj), is computed

as the averaged occluded area of tj from all viewpoints p(tj) =
∑

vi∈V p(vi)p(tj|vi). To
accelerate computations, we have implemented this channel calculations entirely on the
GPU, being an order of magnitude faster than previous approaches [23].

5.2.1.2 Orientation Channel

This direct channel accounts for strong differences in the polygon orientations, even if
they have a similar visibility, like sharp edges or strong curvatures. It goes from the 3D
triangles t ∈ T3D to themselves, which means that the channel is T3D → T3D. Here the
input probabilities p(t) are set to the constant value 1/M, with M the total number of
triangles to be processed, p(ti|tj) = (1− n(ti) · n(tj))/

∑
t(1− n(ti) · n(t)), with ti ∈ T ,

tj ∈ T , n(t) the normal of triangle t, and we calculate p(tj) with Eq. 21.

5.2.1.3 Texture Stretching Channel

This direct channel is designed to account for stretching in the textures, which should
be preserved if we are going to do an interpolated up-sampling process of the texture
coordinates (see below). Conceptually, given a triangle ti in 3D space, it explains how
is its stretching with respect to all other triangles tj in T3D. It is a channel T3D → T3D.
Again, we set p(tj) = 1/M, p(tj|ti) = (1− |S(ti)−S(tj)|)/

∑
t(1− |S(ti)−S(t)|) with ti ∈ T

and tj ∈ T , and we calculate the p(tj) for the 3D triangles with Eq. 21. Here, S(t) is the
stretching of triangle t computed as described by Degener et al. [22] and normalized to 1.

94 continuity and interpolation in screen space

5.2.1.4 Other Possible Channels

Although we have not implemented them, it is easy to think of other clustering criteria.
Our previous channels already took into account visibility, orientation and texture stretch-
ing effects. Complementary channels could be reflections, refractions and other optical
effects. For instance, effects like specular reflections might require a carefully tuned chan-
nel. However, we do not expect these channels to introduce large changes with respect to
our current implementation. For instance, soft shadows or ambient occlusion are some-
what already included in the visibility channel, as the quality of our results shows. For
instance, Figure 82 contains both, relying only on the above defined channels.

5.2.2 Clustering a Single Channel

In general, each cluster represents an homogeneous continuous area in the model, and a
cluster boundary reflects an abrupt change (e.g., discontinuity) in any relevant parameter
(e.g., visibility). For any channel, the clustering process proceeds in four basic steps: First,
the seeds are selected. Then, two clustering stages are performed in sequence: first, a
parallel clustering grows clusters starting from the seeds, making them as big as possible,
and second a sequential stage groups the triangles that might remain from the parallel
step. Depending on the model, the thresholds used and the selected seeds, we may have
too small clusters from the sequential step, which we try to merge them in a final step.

5.2.2.1 Clustering Initialization

The first step of the clustering algorithm is the initialization step. This initialization in-
volves two parts:

• Information channel computation. First of all, we need to initialize the data needed
for the clustering algorithm to work, that means computing all the elements of the
current information channel. This implies computing the probabilities p(x), p(y) and
p(Y|X) as described in previous sections.

• Channel denoise. The evaluations that feed an information channel can be the result
of a possible noisy measure, like the one done for the visibility channel in Section
5.2.1.1. There, measuring means rendering the triangles with OpenGL, which pro-
vides a good but not exact estimation. To prevent future problems, we denoise it by
replacing the value for each probability p(Y|ti) by the average of the probability over
the immediate similar triangle neighbors by:

p(Y|ti) =

∑
j∈SN(ti)

p(Y|tj)

||SN(ti)||

being SN(ti) those neighbors that are similar enough in the Jensen-Shannon sense
JS(Y|ti, tj) 6 Th, ||SN(ti)|| the number of neighbors of ti and Th is a threshold
specifically set for this channel. Observe that triangles that are not similar will not
be taken into account during the denoise process, avoiding situations in which two
neighbor triangles have strong differences in the evaluated feature.

5.2 clustering 95

5.2.2.2 Selecting Seeds

Once we have the current information channel ready to work with, we begin the clustering
process by looking for a set of representative triangles from our scenes that we will call
seeds. We start with an empty set of seeds and then progressively fill it until adding a new
seed would not produce any improvement on the quality of the representativeness of the
set. That is, first, we add the most representative triangle, which is the one that has the
minimum I(x,y) value. This means that this triangle is the one that has the most balanced
information concerning the feature that the current channel encodes. Then, while we are
not set and there are candidate triangles to select, we choose the next triangle M with the
maximum difference with all the other seeds by:

Seed candidate selection:

M = maxt∈T
∑

s∈seeds
JS(Y|t, s)

such that, for every already selected seed s, M verifies that is different enough from
s, i.e., JS(Y|M, s) > Th. In that case, we add M to the set.

Finally the process stops when there is no such M to be selected. The final set of seeds
can be understood as the set of triangles that would represent the scene given the feature
of the current channel.

As can be seen, every time a seed needs to be determined, we need to compute a large
number of similarities with the Jensen-Shannon inequality. This means that, for each pair
of triangles (i.e. the seed and a candidate triangle), we need to perform a loop of as many
elements as triangles in the scene (this coincides with the size of the conditional probability
distributions p(Y|X)) to obtain their similarity value. Actually, for large meshes, this can
be a serious bottleneck, so we decided to do a parallel GPU-based implementation that
distributes among kernels the calculation of the needed JS divergence of a given seed with
respect to the rest of triangles of the scene. We would like to emphasize that this is done
lazily and only for the requested seeds.

5.2.2.3 Clustering strategy

After the representing triangles of the scene have been selected for a given feature, we
perform a clustering approach composed of three steps:

• Parallel clustering. First, we grow the clusters from the seeds in parallel. A triangle
can be in a given cluster if its Jensen-Shannon divergence with respect to the seed
is smaller than the user-provided threshold Th. All the seeds grow in a greedy way,
trying to grab one ring of triangles at each iteration.

• Sequential clustering. Once the parallel clustering is finished, there might be small
groups of triangles that were not added to any cluster, mainly because another clus-
ter "barred" the "right" one to grow in their direction. Then, the sequential clustering
selects a new seed, growing the cluster until no more triangles can be added. This
process is iterated until no unclustered triangles remain.

96 continuity and interpolation in screen space

Figure 70: Variation of clustering threshold Th.

• Merging. After the clustering process, it can happen that some clusters coming from
the sequential step consist in a really small number of triangles. As the number of
clusters may slow down the runtime rendering stage, we correct this in this step
by merging them with the most similar neighboring cluster. The cluster chosen to
merge the small cluster with is the one whose seed has the smallest JS divergence.

In Figure 70 we show the effect of selecting different thresholds, shown on the top of
the figure, and applying the described clustering strategy to the horse (top) and santa
(bottom) models. In this figure we have taken into account only the visibility channel for
illustration purposes. As can be seen, the clustering results in somewhat different clusters
being built with different seeds also. This is completely correct: first of all, a tight threshold
produces a set of seeds that is a subset of the set produced by a more relaxed one. Second,
the clustering process itself will stop growing sooner if the threshold is tighter.

5.2.3 Smoothing

The resulting clusters from the previous steps can have rough boundaries, which would
result into a poor interpolation at certain views. This is mainly because rough boundaries
could be lost in the initial low-res passes of our rendering algorithm, just because they
could be consider as sharp features in that resolution (too much detail for such a low
resolution). See Figure 71, top row. In the boundary regions there are triangles that could

5.2 clustering 97

Figure 71: Cluster smoothing.

have been clustered with the seeds of both clusters sharing the boundary, and that were
assigned to one given cluster just because the growing process made this cluster to "arrive
first". We call the set of all these triangles the boundary band. Actually, defining the band
this way can produce too broad bands, so we restricted the definition to those triangles
that were clustered with a seed but that are more similar (in the Jensen-Shannon sense)
to the other seed (See Figure 72). The actual boundary between two given neighboring
clusters can be any line inside (and along) the boundary band. To compute this smooth new
boundary, we follow a procedure inspired in the work by Sander et al. [73].

Figure 72: A band between two clusters, Ci and Cj, defined around a boundary from vertex Vi to
vertex Ve.

98 continuity and interpolation in screen space

First, for each boundary between clusters we generate the actual boundary band. We ini-
tialize it with all the edges of the current boundary. Then, for each triangle that could
have been more likely clustered with the seed at the other side of the boundary, we add
all its edges whose incident triangles are completely inside one of the clusters we are con-
sidering. This last condition was introduced to avoid problems by accidentally modifying
other clusters.

Once all edges have been selected, we simply compute the shortest path through the
band from the starting boundary vertex to the end vertex. In our implementation, we use
the well known A∗ algorithm. Once the new boundary has been computed, we simply
reallocate the triangles to their new clusters. As a positive side-effect of this reordering,
the resulting clusters are not only smoother than before, but also more equilibrated in
their shapes (See Figure 71, bottom row).

5.2.4 Animated Scenes

Figure 73: Iterative clustering refining for different model
keyframes (left and right).

We want to take into account
animated scenes or char-
acters with our technique.
For that purpose, we repeat
the clustering strategy, previ-
ously seen, for each keyframe
in the animation of the model.
Usually, an animation con-
sists of a series of keyframes
which are interpolated to get
the final postures of the char-
acters for in between frames.
We rely on the same idea and use these keyframes to iteratively perform the clustering
for each one. Starting from the initial keyframe, we repeat the clustering pipeline for each
successive keyframe, every iteration working after the result of the previous one. This way,
we ensure having a consistent model custerization, which can be reused for every frame
of the animation. In Figure 73-left, we show an initial keyframe with its corresponding
clustering (visibility, orientation and texture stretching). Then the second keyframe (see
Figure 73-right) is clusterized by using the previous computed clusters as input meshes
for the clustering algorithm.

5.2.5 Threshold Selection

Although the only parameters that the user is expected to select are the channel thresholds,
selecting a good threshold can be challenging for an inexperienced user. To provide an
intuitive interface, we use the upper and a lower bounds to the JS divergence, which can
be demonstrated to be JS ∈ [0, 1] [52]. This way, the user can use a simple slider to control
the clustering by setting any value between Th = 0, resulting in a cluster for each triangle,
and Th = 1, resulting in a single cluster for the whole model. This way, threshold selection
becomes a simple and easily configurable task.

5.3 rendering by upsampling 99

Figure 74: Rendering pattern for three passes starting at a 2× 2-pixel image.

5.3 rendering by upsampling

Here we focus on the rendering stage, which consists of a multi-pass approximate strat-
egy that progressively computes the final image from the information gathered at previous
passes. Based on this information, the runtime shaders decide whether to reuse the pre-
viously computed values, to interpolate a new value from them, or simply to perform a
full computation to guarantee the final image quality. For each pass of the algorithm a
different resolution is used, going from the lower one to the hi-res final image and for
each pixel there, we store the set of values that we want to evaluate/interpolate:

• Position. It is one of the most important values to be interpolated, as it will allow us
to obtain the visualization results of the primary rays with our scene, that is, the hit
point for every pixel.

• Texture coordinates. As we want to apply common texture mapping to our models
we will compute/interpolate the texture coordinates for each pass.

• Normal. To apply several illumination effects (common shading, ambient occlusion,
soft shadows, ...), we store the normal of the position of the surface hit.

• Ratio of occluded samples. For each pixel we want to compute/interpolate its oc-
clusion factor.

• Ratio of shadowed samples. Also, to render our scene with shadows computations,
for each pixel we will evaluate/interpolate the amount of shadow produced there.

• Cluster ID. One of the most important values is the cluster ID as it will drive the
decision on whether to interpolate or to perform a full evaluation of the pixel.

At each pass of our algorithm, samples are evaluated by examining the samples com-
puted at the previous pass. In Figure 74, left we can see a simple 2× 2-pixel image gen-
erated in the first pass (lilac dots). Then, at the second pass, new samples are added in
between the previous ones (the blue dots between the lilac ones) and so on. The key to
our up-sampling algorithm is that, even when different passes generate different resolu-
tion images, the samples evaluated at each pass are the same, and thus reused at the next
passes. Observe that even this pattern is really well suited for interpolation purposes, it

100 continuity and interpolation in screen space

Figure 75: Re-used (R), interpolated (I) and evaluated (E) samples in the successive passes.

implies that each pass should have a size of (2N− 1)× (2M− 1) if the previous one was
N×M, but we can render any resolution by just starting from correctly chosen N and M
and discarding a thin border of unused pixels at the end.

The first option to implement this pattern is to use a single image of the final resolu-
tion, but to work only with the samples corresponding to the respective pass, ignoring
the others. Although this approach has the advantage of requiring no extra space, if this
is going to be implemented in a GPU-based ray tracer, as in our case, it produces highly
incoherent memory accesses. As a result, it will strongly reduce the performance and will
make useless the improvements achieved by avoiding evaluations. The second option is
to make each pass to work on a different target image, effectively resulting in an image
pyramid. The memory requirements are the same as for Mip Mapping, about one third
of the final image size. Also, considerable speedup is obtained thanks to the increased
coherent access patterns to GPU memory. In our case we have used the later option to
store all the evaluations/interpolations at each pass. We have called it the I-Buffer (from
interpolated information).

As mentioned, each pass computes the new samples by reusing the results of previous
passes. As one can realize, the first pass has no previous reference image, so all samples
must be fully evaluated, as shown in Figure 75-left. Then, from our sampling pattern, the
coincident samples at the new resolution can be directly copied, as shwon in Figure 75-
middle with the samples marked as "R" (Re-used). On the other hand, if the cluster IDs
of the previous samples are equal, new samples in-between can be interpolated (marked
with "I" in the figure). If they are different, they need a full evaluation (marked with "E").
The arrows in the image show which previous samples are used for each new sample.
Figure 75-right shows the third pass in the process.

5.3.1 Hard Shadows and Higher-Frequency Signals

The described interpolation scheme provides good results for low-frequency signals in a
natural way. However, higher-frequency signals, like hard shadows, require some extra
work. To avoid missing details, we add an extra shadow check at the pixel program to-
gether with the cluster ID verification. For a single light, a simple boolean suffices to know

5.4 results and discussion 101

Figure 76: Hard shadow boundary preservation. Center: I-Render with no boundary preservation.
Right: I-Render with boundary preservation.

whether a sample is illuminated or not, and from there the check for the shadow boundary
is immediate. More lights would require multiple booleans, but they can be "compacted"
in a single integer value, thus requiring a single equality verification in the shader. The
results can be seen in Figure 76. Other high frequency signals can be guaranteed in a
similar way, as long as their frequency is not as high as to require a per-pixel evaluation,
which would render our technique useless (e.g., hair, grass, fibers).

5.3.2 Automatic Pass-Controlling Mechanism

One of the main factors that affect the performance of our technique is the number of
passes used (See Section 5.4). If we visualize a scene from a viewpoint that results in a
small ratio of interpolated pixels, the extra cost of our multi-pass algorithm will over-
shadow the gain produced by avoiding computations and hence it will produce worst
performance than common Ray Tracing. Optimizing it is a complex task, as it strongly
depends on the scene itself, the distance from the observer, and the complexity of the
shading, among other factors. To avoid cumbersome manual trial and error tests, we in-
troduce an easy yet powerful automatic controlling mechanism that selects the number of
passes trying to guarantee a user-defined upper and lower framerate bounds. We perform
as follows: If the current average framerate is smaller than the lower bound, the number
of passes is increased. If it is above the upper bound, the number of passes is reduced.
In practice, we have observed that, for medium and far distances, more than 5 passes
provide too blurry results and some perceivable "swimmering" for moving objects. This
is because the initial resolution is too low compared to the hi-res one, and this produces
that the content of the pixels from one frame to the other differs greatly (some important
features may be missing because of the low-initial resolution). Observe that this approach
does not strictly guarantee the framerate: if the user selects an extremely complex shading
plus real-time bounds, the system will increase the number of passes up to the maximum
allowed, never achieving the required bound.

5.4 results and discussion

We integrated Aila and Laine’s [2] GPU ray tracer into our application, which can cur-
rently be considered as the state of the art in Ray Tracing algorithms (see Appendix B).
All renderings are generated using a viewport of 1025× 1025 pixels, and we have used 150

102 continuity and interpolation in screen space

Figure 77: Quality depending on the number of clusters. Left: the clusters, Right: renderings show-
ing details and error values in false color (inset).

samples for both, ambient occlusion and soft shadow computations. The times to generate
the clusterization of the models used in the chapter range from several seconds up to 5

minutes. It depends on the number of polygons of the mesh, the channels involved, and
their associated thresholds. Once the clusters have been computed, we store the cluster ID
of each triangle as a third texture coordinate for each vertex of the scene. That way, we
merge the texturing parameterization of the mesh with the information-theoretic clusters,
resulting in a new set of charts. Thus, we easily integrate this information to be used in
runtime in any rendering pipeline.

As can be seen in Figures 77, 78 and 79 the two main factors that affect quality and
performance of our approach are the number of passes and, less significantly, the number
of clusters. In Figure 77 we can see that the more clusters, the better the quality of the final
image. Observe how textures are well preserved (insets), but a correct shape interpolation
of the fertility model requires more clusters, as can be seen in the error values (bottom). In
this case, this is because the visibility threshold has been set too low for the fertility model
and hence, from some viewpoints we merge parts with different visibility. Our experience
shows that the more channels are added to the preprocessing, the more relaxed the thresh-
olds can be, still obtaining good quality results. In both cases framerates are similar: the
model with 110 clusters requires 427.4 msec (thresholds: Visibility=0.54, Orientation=0.3,
Stretching=0.1), while the one with 181 clusters requires 500.81 msec (Visibility=0.48, Ori-
entation=0.02, Stretching=0.1).

5.
4

r
e

s
u

l
t

s
a

n
d

d
i
s

c
u

s
s

i
o

n
1
0
3Figure 78: Quality depending on the number of passes. Top row: Ray Tracing reference and 2, 3 and 4 passes respectively. Bottom row: the clusters and

the respective error images. The insets show details of the texturing and soft shadows.

104 continuity and interpolation in screen space

Figure 79: Quality depending on the number of passes. Top row: Ray Tracing reference and 2, 3

and 4 passes respectively. Bottom row: the clusters and the respective error images. The
insets show details of the texturing and soft shadows.

In Figures 78 and 79 we can see the dependence of the rendering quality on the number
of passes. In the first figure the fertility model is used. The first row shows the render-
ing quality using one pass (first column), two passes (second column), three passes (third
column) and four passes (fourth column). At the bottom an inset showing two different
details of the model. The second row shows the clustering used as well as the error maps
respect to common Ray Tracing (top row, first column). As expected, the more passes, the
more approximated the rendering is. This is more noticeable in the zoomed views (insets),
which show a good quality for the textures but some artifacts in the soft shadow details,
which is reflected in a low error (bottom). This happens when shadow boundaries are
interpolated as they fall in the same cluster. Please, note in the error maps how cluster
boundaries produces low-error values as they are fully evaluated. Also, see how the max-
imum error is located in regions where the ambient occlusion signal is. This is because
ambient occlusion can be considered a smooth signal even if it is computed with a discreet
number of samples (200 for each pixel) which introduces a small degree of noise. Observe
how some texture details cause high error values as well, as our interpolation does not
map them as in the original ray-traced rendering. In Figure Figure 79, several models have

5.4 results and discussion 105

Figure 80: Quality depending on the observer distance. Timings in Figure 84.

been used: the horse (first row), the bunny (second row) and the santa (third row). Each
column shows the results generated by I-Render from one pass until five passes. Each
image has its corresponding inset showing a certain part of the mesh to better appreciate
the image quality produced by our technique. See again the high level of fidelity obtained
with respect to the original image (first column).

In Figure 80, given a fixed number of passes (3), we can observe the quality of the
render depending on the distance to the observer: At short distances more samples are
evaluated over the model projection in screen space, resulting in a better quality image af-
fecting mainly the high-frequency shadows. However, as the model size on the screen gets
smaller, the overall perceived quality is not reduced, but sharp features see their quality
decreased. Also, it is important to notice that the texture signal is correctly preserved at
any distance, as we interpolate texture coordinates instead of directly the texture color.

In Figure 81 we can appreciate that I-Render is fully compatible with the use of textures,
as we use it to interpolate texture coordinates and not the textures themselves. As texture
coordinates (lower insets) have a lower frequency than the textures themselves, their in-
terpolation results in high quality interpolated renderings (upper insets), even with high
frequency details. All the models used in the paper has been textured using multi-chart
parameterizations. When texture coordinates are interpolated with our technique, it may
happen that, for some convex charts, we could obtain interpolated points that fall out-
side. To avoid such situations we have used padding, but in extreme cases the technique
described by González and Patow [32] could be used to sample the correct texture coor-
dinates avoiding possible artifacts, i.e., color from outside the charts or from other charts
leaking into the atlas.

In Table 3 we can see a comparison of the times needed to evaluate and to interpolate
a single pixel (in ms), averaged over a number of viewing angles and distance ranges. As
we can see, the evaluation cost is several orders of magnitude slower than interpolation.

106 continuity and interpolation in screen space

Figure 81: Correct texture rendering. Left: clusters, Middle: Ray Tracing, Right: I-render. The lower
insets show the smooth interpolation of the texture coordinates.

All the models used in the paper has been textured using multi-chart parameteriza-
tions. When texture coordinates are interpolated with our technique, it may happen that,
for some convex charts, we could obtain interpolated points that fall outside. To avoid
such situations we have used Traveler’s Map (see Chapter 3) to sample the correct texture
coordinates avoiding possible texturing artifacts-color from outside the charts or from
other charts leaking into the atlas).

Figure 82 presents another example with 387 clusters (left) and a quality comparison
of Ray Tracing (middle) with our technique (right). Again observe the great similarity be-
tween both even in the details from the insets. I-Render can visualize the scene up to 8

times faster and, thanks to the pass-controlling mechanism we never fall under the Ray
Tracing performance, even when a low interpolation ratio is produced.

Models Method Evaluation Interpolation

Dancing Kids Ray Tracing 21.7969 0

I-Render 22.3699 0.0142

Fertility Ray Tracing 20.85121 0

I-Render 24.6957 0.0140

Chinese Vase Ray Tracing 6.3608 0

I-Render 6.4115 0.0184

Table 3: Table showing the differences between the cost of evaluated and interpolated pixels for
Ray-Tracing and I-Render for several models shown in the paper.

5.
4

r
e

s
u

l
t

s
a

n
d

d
i
s

c
u

s
s

i
o

n
1
0
7

Figure 82: Our system first performs a feature-based clustering of the object (left) and then reconstructs the final image by an approximate interpolated
approach (right). Quality is comparable with Ray Tracing (middle), observe the texture details, shadow boundaries and correct visibility. Our
technique can render the scene up to 12 times faster than Ray Tracing.

108 continuity and interpolation in screen space

Figure 83: Animation sequence of the panda model using our technique.

In Figure 83 we show the results of applying I-render to an animation produced over the
panda model (3191 triangles). From left to right we present four different frames between
two animation keyframes (first and fourth columns). The final refined cluster used for the
whole set of poses can be seen in Figure 71-right. Note the good quality of the images
obtained, even for the second and third poses, which are not directly taken into account
during the clusterization step.

In Figure 84 we can se a graph showing the relation between the rendering time and
the distance to the observer for the Fertility model (25K triangles). Observe how I-Render
outperforms Ray Tracing in close views as the number of interpolated pixels increase, and
how, at large distances, our pass-controlling mechanism guarantees, at least, the perfor-
mance of Ray Tracing.

Figure 84: Graph showing the relation between rendering time (in ms) and distance to the observer
(in arbitrary units), for the model in Figure 80.

5.4 results and discussion 109

Rendering with Ray Tracing an image is, in general, O = n2E, with n the side of an
n× n image and E the cost of evaluating an average sample. Our technique changes this
to be O = nE+n2I, where we assume that the cost of reused samples (R) is roughly equal
to the cost of the interpolated ones (I). The reason of this behavior is that chart boundaries
represent a 1D space embedded in the screen 2D space (actually, they are embedded in
the 2D projection of the 3D object space), so they grow linearly while screen resolution
grows quadratically. This can be appreciated in Figure 85. Let us remark that this trend
is exactly the same that the one followed by chart boundaries in texture space in Continu-
ity Mapping (see Chapter 3). Of course, as every pixel must have a value in the end, the
interpolated (or reused) samples also need to be considered, resulting in an asymptotic
quadratic behavior. However, the multiplicative constant of interpolated samples can be
orders of magnitude smaller than the one for evaluated samples. As a result, the more
complex the computation to perform, the better for our algorithm. Of course, this differ-
ence is completely dependent on the specific elements involved in computing a particular
sample. If the exact evaluation of a sample is very cheap, then probably plain Ray Tracing
is a better option. This is the reason of our pass-controlling mechanism, explained before.
On the other hand, if too many passes are selected, the constant C can grow large enough
to erase any advantage obtained with our reusing mechanism. All this behavior can be
observed in Figure 85 where we show the dependence between the rendering time (in
ms) and the resolution of the final image (target resolution). Observe that the higher the
resolution is, the the lower the time needed. Also note that more passes in our technique
results in less rendering time.

Figure 85: Graph showing the relation between rendering time (in ms) and the number of passes
for different resolutions, see Figure 78.

However, in the case of a GPU-based implementation, as in our case, there are additional
overheads introduced by the device. On one side, there is a constant overhead produced
by the multiple kernel calls, although we found this to be negligible for our scenes. On
the other, as threads in a GPU are executed in scheduling units called warps that execute

110 continuity and interpolation in screen space

Figure 86: Graph comparing the mean rendering time (in ms) between Ray Tracing and I-Render
for several views and models.

in SIMD, there is an overhead that we can easily identify with the control divergence be-
tween evaluated and interpolated paths. As we have seen, evaluation is the dominant part
of the computations, and the control divergence overhead can be associated to the samples
that need to be evaluated (even if one sample in a warp needs evaluation, this cost will
drive the warp’s total cost), thus resulting in an effective behavior of O = nE ′ +n2I, with
E ′ = E+W andW the overhead introduced by the divergence between the threads. Figure
86 illustrates the costs of each term for a number of scenes and averaged over a number
of different viewpoints, ranging from close to far distances. To make comparisons fairer,
our figures do not include background computations. It is important to remark that this
extra W cost does not change the overall behavior of the system, as Figure 85 shows.

In all of the examples shown in the paper, the visibility channel has been involved in
the clustering process. As we have explained, we have followed the approach described
in [23] to define the set of viewpoints. It is most suitable for only one model or a small
set of elements. So, if a large scene is used, even with closed regions (a room for instance),
another approach may be needed. For instance, we could define the set of viewpoints as a
grid over the scene. Then, we could compute the corresponding conditional probabilities
of the channel by taking into account the projected area of the triangles from the set of
rays centered at the viewpoint itself and pointing outwards a surrounding sphere.

Finally, we think that the proposed model can be used for general rendering, so it could
be applied to rasterization-based rendering, too. However, this would imply rasterizing
the whole geometry each time to find the intersection points, which could reduce its
benefit. Further research is needed to assert the effectiveness of I-Render with rasterized
solutions.

5.5 conclusions 111

5.5 conclusions

In this fifth chapter, we have presented I-Render, a multi-pass acceleration technique that
approximates rendering samples at one pass by reusing values obtained at previous passes.
Instead of a full evaluation for every pixel of the final image, I-Render takes benefit by the
regions of the scene with low variability, that is, they share the same features, and inter-
polates as much as it can. We found that feature coherence of the low-variability regions
in the scene, when projected in screen space, can be exploited to drastically accelerate ray-
tracing-based rendering. Our findings show a dramatic acceleration in rendering speed of
up to an order of magnitude, and with a quality similar to that of ray tracing. We iden-
tify regions that share a common set of user-defined features (defined in a broad sense),
and that allows us to compute in a more efficient way (i.e., linear cost) than traditional
approaches that compute each pixel from scratch (i.e, quadratic cost). Our multi-pass
acceleration technique approximates rendering samples at one pass by reusing values ob-
tained at previous passes. One important feature of this technique is that it is completely
independent, and can be used in combination with any existing acceleration technique.
Also, I-Render is pixel-bound, which makes it independent of the tessellation of a given
model. A conceptually similar screen-space strategy can be found in other works [3, 4, 1].
However, here we explore a new path by letting the user to define clustering features
with a completely general framework, incorporating even complex properties like visibil-
ity, which has never been unified with other features before, as we do here. A drawback of
this technique is that clustering has to be done in a pre-processing stage, which requires
knowing in advance if not all, most of the properties of our scene. Future studies should
explore whether this stage can be further parallelized in order to be able to perform this
in real-time. As our implementation uses a reduced-cost, lazy-evaluation approach, we
foresee this as a feasible objective.

Here we have presented a clustering approach based on information theoretical tools,
using visibility, texturing and illumination as case-studies. We believe that these tools can
be successfully employed for all frequency features, and we hope that there must exist
a general and hopefully elegant structure that encompasses all kind of frequencies in a
single framework. We also think that the proposed technique can be used for general ren-
dering, so it could be applied to rasterization-based rendering, too. However, this would
imply rasterizing the whole geometry each time to find the intersection points, which can
reduce its benefit. Further research is needed to assert the effectiveness of I-Render with
rasterized solutions.

Feature-based coherence exploitation is a powerful and promising avenue for rendering
acceleration, and information theoretic tools appear as an excellent path to unleash this
power. It is clear that techniques like the one presented in this chapter actually benefit from
evaluation complexity: the more complex the computations performed for each pixel, the
larger the acceleration ratio. We think that these techniques will increase in relevance as
shaders continue to grow in complexity and size.

6
C O N C L U S I O N S A N D F U T U R E W O R K

Paso a paso te acercas a tu felicidad.
Abre los ojos y los brazos y tu eligirás.
Nuevas oportunidades se abren a ti.
Todo cuanto te propongas vas a logarlo.

I n this final chapter we are going to review all the work presented, as well as detail the
general conclusions that we have obtained during the thesis. Finally, we will provide
hints of future research that could be done after the experience obtained in this thesis.

113

6.1 conclusions 115

6.1 conclusions

In this thesis we have presented techniques that embrace many important areas in Com-
puter Graphics: mesh texturing, mesh deformation and rendering. In each of them we
have presented its continuity problems, that imposed limitations to the end of creating
computer-generated synthetic images. First, we have presented a robust and practical so-
lution, called Continuity Mapping, to avoid discontinuities that appear when multi-chart
parameterizations are used. Modelers do not need to take care of how they parameterize
the models, i.e., they do not need to create a parameterization that hides explicitly the
seams. In contrast, they can concentrate all their efforts in the texturing process itself, as
we provide the continuous mapping between the parameterization in texture space and
the 3D mesh in object space. Continuity Mapping is efficient, as it has a small memory foot-
print, fast, and compatible with mesh deformation techniques, due to the fact that it works
completely in texture space. Second, we have proposed a new multi-cage and multi-level
deformation technique that allows to perform more localized deformations with a level of
detail that can be determined by the user. This new method is much faster, consume less
memory and is more flexible than current cage-based approaches. To provide all these
new features we have had to solve continuity problems in object space that current co-
ordinates present at cage boundaries. As a result, we obtained a smooth and continuous
deformed mesh. Finally, we have demonstrated how to detect high frequency regions, that
is, regions where an abrupt change is produced, on meshes that can be characterized by a
given set of user-predefined features. Then we have shown how to use that information to
improve the rendering performance. For that purpose, we have first introduced a new clus-
tering algorithm that joins triangles by its level of similarity using information-theoretic
tools. Then, we have proposed a new multi-pass technique that generates the final high-
resolution image by a set of intermediate passes, evaluating the final pixel values from
images of lower size. This technique uses the set of previously created clusters to decide
where to perform a full evaluation (a region with discontinuities in a certain feature) and
where to perform cheaper interpolation procedures (similar regions). All this process is
carried out completely in screen space and, as a consequence, our approach can be used
in addition to common acceleration data structures.

As a final conclusion, we can say that in this thesis we have shown how to solve disconti-
nuities in some contexts like texturing or mesh deformation, in a robust and practical way,
while in others like rendering, we have taken advantage from the ability to detect them
and improve the visualization performance through and intens use of cheaper interpola-
tion. Thus, in the end and with the results provided in this thesis, we have contributed
with several techniques that allow to produce better content in a more robust, fast and
flexible way than current state of the art. Moreover, all the work done can be directly
applied to important and growing industries like videogames, cinema and virtual reality.

6.2 future work

We expect that, in a near future, mesh parameterization, mesh deformation and Ray Trac-
ing techniques are going to continue to evolve, giving as a result new and exiting ap-
proaches. Some of the opportunities could lay on some of the following ideas:

116 conclusions and future work

• Information-theoretic mesh parameterization. In the field of mesh parameterization
we believe that we could merge our knowledge in parameterizations and information-
theoretic tools to improve the construction of new parameterizations. These tools
would allow to produce better mappings of the meshes in texture space than cur-
rent techniques. Then, once the mesh is parameterized, we need to place or pack
each individual chart in a common parameter domain (i.e., texture space) to have
and efficient storage. We think we could also investigate how to apply all those
information-theoretic tools to this packing problem.

• Automatic cage creation. This is still an open area for research. Some work has
been done in automatic generation of polyhedron (cages) that are similar to its mesh
counterparts. But creating a cage for later cage-based deformation it’s a much more
complex task: When modelers want to deform a mesh using cage-based techniques,
they need to know in advance exactly how the final deformation should look like,
as it will affect the complexity and modeling of the cage. The final deformation
limits the cage construction and hence later modifications with the same cage can
be impossible to reach. Also, no universal cage can be used for all the deformation
needs on a given model. We can imagine that an adaptive approach may begin with
an initial low-resolution cage computed automatically, to later refine cage regions
where the modeler needs more accuracy. To make this approach efficient and usable
in deformation pipelines, research must be done on how to efficiently recompute
weights while adding detail on a region of the cage, and thus, maintain smoothness
over the resulting deformation. Probably, the GPU capabilities to generate geometry
could be useful for this purpose.

• Compression of large models. Given a cage and a set of values associated to its ver-
tices, we can use them to fill with interpolated values the whole volume within the
cage. We think that we could use this property as a way to encode information about
the mesh. This information would allow us to reconstruct it later on without having
the mesh itself and only with the usage of the related cage and the stored infor-
mation. All this information (cage+data) could be encoded with much less memory
consumption than the original mesh and could be used, for instance, for being sent
by internet-driven applications in a fast and light way.

• Automatic semantic crowd generation. We would like to apply cage-based approaches
as a way to generate a similar but different family of models from a given mesh. We
think that we could introduce semantic parameters as well as restrictions on cages
that would describe the main characteristics of a certain enclosed mesh. As cages are
much simpler than the model within, it would allow us to propose some easy-to-use
tools to the final user. Then we would automatically generate many new instances
of that mesh which would be similar but, different, to the initial mesh, by modifying
the semantic parameters of the cage. Later, given two similar exemplar models with
similar cages but different semantic attributes and restrictions, we could even think
in how to transfer those attributes from one cage to the other to be able to cross
characteristics from several different models.

• I-Render on general scenes. As has been told in previous chapters, I-Render can be
used for single isolated models as well as for open and closed scenes. One of the
features that we have used to clusterize is visibility, and the way we have faced its

6.2 future work 117

computation may be much more well suited for single objects or open scenes with
a low number of elements. So, a solution for a more general environment should be
presented (i.e., closed scenes or open scenes with many elements). A way, that we
hinted in previous chapters, is to define a grid of viewpoints over the scene, instead
of a sphere surrounding the model, and then compute visibility in a similar way as
we proposed in the thesis. Many challenges appear and still need to be addressed, for
instance, we have to ensure that all the polygons that are visible from any possible
viewpoint are taken into account and not are skipped by the incorrect or insufficient
placement of the viewpoints.

• Real-time mesh clustering. Our rendering acceleration technique is based on a set
of pre-computed clusters. Even this technique is also applicable to animated charac-
ters by blending the clusterization at each key frame of the animation, fully dynamic
scenes with a high degree of interactivity may not work with the proposed solu-
tion. Complex dynamic environments may require the clustering recomputation. We
think that a GPU oriented implementation would benefit its use in such a scenario,
but we also believe that a GPU-driven implementation would not be enough to meet
the demands of interactivity. A possible solution would be to compute an initial
clustering of the scene in a pre-processing stage. Then, at run-time we could refine
clustering on the models only in places where it is needed. However, the decisions
that would guide the refinement have to be fast and simple to be able to meet the
time demands. Also, we could study ways to make the clustering simpler for that
purpose, while still obtaining good results.

Part I

B I B L I O G R A P H Y

B I B L I O G R A P H Y

[1] Anders Adamson, Marc Alexa, and Andrew Nealen. Adaptive sampling of inter-
sectable models exploiting image and object-space coherence. In Proceedings of the
2005 symposium on Interactive 3D graphics and games, I3D ’05, pages 171–178, New
York, NY, USA, 2005. ACM. ISBN 1-59593-013-2.

[2] Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on gpus.
In Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages
145–149, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-603-8.

[3] Takaaki Akimoto, Kenji Mase, and Yaushito Suenaga. Pixel-selected ray tracing.
IEEE Computer Graphics and Applications, 11:14–22, 1991. ISSN 0272-1716. doi: http:
//doi.ieeecomputersociety.org/10.1109/38.126876.

[4] Kavita Bala, Julie Dorsey, and Seth Teller. Radiance interpolants for accelerated
bounded-error ray tracing. ACM Trans. Graph., 18(3):213–256, July 1999. ISSN
0730-0301. doi: 10.1145/336414.336417. URL http://doi.acm.org/10.1145/336414.

336417.

[5] Mirela Ben-Chen, Ofir Weber, and Craig Gotsman. Variational harmonic maps for
space deformation. In SIGGRAPH ’09: ACM SIGGRAPH 2009 papers, pages 1–11,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-726-4. doi: http://doi.acm.org/
10.1145/1576246.1531340.

[6] David Benson and Joel Davis. Octree textures. ACM Trans. Graph., 21(3):785–790,
2002.

[7] Ioana M. Boier-Martin. Domain decomposition for multiresolution analysis. In Pro-
ceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing,
SGP ’03, pages 31–40, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics As-
sociation. ISBN 1-58113-687-0. URL http://dl.acm.org/citation.cfm?id=882370.

882374.

[8] Peter Borosan, Reid Howard, Shaoting Zhang, and Andrew Nealen. Hybrid mesh
editing. In Proc. of Eurographics 2010 (short papers), 2010.

[9] Mario Botsch and Leif Kobbelt. Real-time shape editing using radial basis functions.
In Computer Graphics Forum, pages 611–621, 2005.

[10] Jacob Burbea and C. Radhakrishna Rao. On the convexity of some divergence mea-
sures based on entropy functions. IEEE Transactions on Information Theory, 28(3):
489–495, May 1982.

[11] Nathan A. Carr and John C. Hart. Meshed atlases for real-time procedural solid
texturing. ACM Trans. Graph., 21(2):106–131, 2002.

[12] Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Rectangular
multi-chart geometry images. In SGP ’06: Proceedings of the fourth Eurographics sym-
posium on Geometry processing, pages 181–190, 2006. ISBN 30905673-36-3.

121

http://doi.acm.org/10.1145/336414.336417
http://doi.acm.org/10.1145/336414.336417
http://dl.acm.org/citation.cfm?id=882370.882374
http://dl.acm.org/citation.cfm?id=882370.882374

122 bibliography

[13] Ignacio Castano. Next-generation rendering of subdivision surfaces. ACM SIG-
GRAPH 2008 presentations, 2008.

[14] P. Castelló, M. Sbert, M. Chover, and M. Feixas. Viewpoint-based simplification
using f-divergences. Inf. Sci., 178(11):2375–2388, June 2008. ISSN 0020-0255.

[15] Ying-Chieh Chen and Chun-Fa Chang. A prism-free method for silhouette render-
ing in inverse displacement mapping. Comput. Graph. Forum, 27(7):1929–1936, 2008.

[16] Daniel Cohen-Or. Space deformations, surface deformations and the opportunities
in-between. J. Comput. Sci. Technol., 24:2–5, January 2009. ISSN 1000-9000. doi: 10.
1007/s11390-009-9200-0. URL http://portal.acm.org/citation.cfm?id=1599254.

1599256.

[17] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape ap-
proximation. ACM Trans. Graph., 23(3):905–914, August 2004. ISSN 0730-0301. doi:
10.1145/1015706.1015817. URL http://doi.acm.org/10.1145/1015706.1015817.

[18] Sabine Coquillart. Extended free-form deformation: a sculpturing tool for 3d geo-
metric modeling. SIGGRAPH Comput. Graph., 24:187–196, September 1990. ISSN
0097-8930. doi: http://doi.acm.org/10.1145/97880.97900. URL http://doi.acm.

org/10.1145/97880.97900.

[19] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series
in Telecommunications, 1991.

[20] Rodrigo de Toledo, Bin Wang, and Bruno Levy. Geometry textures and applica-
tions. Comput. Graph. Forum, 27(8):2053–2065, 2008. ISSN 0167-7055. doi: http:
//dx.doi.org/10.1111/j.1467-8659.2008.01185.x. URL http://dx.doi.org/10.1111/

j.1467-8659.2008.01185.x.

[21] Rodrigo de Toledo, Bin Wang, and Bruno Levy. Geometry textures and applica-
tions. Comput. Graph. Forum, 27(8):2053–2065, 2008. ISSN 0167-7055. doi: http:
//dx.doi.org/10.1111/j.1467-8659.2008.01185.x. URL http://dx.doi.org/10.1111/

j.1467-8659.2008.01185.x.

[22] P. Degener, J. Meseth, and R. Klein. An adaptable surface parameterization method.
In In Proceedings of the 12th International Meshing Roundtable, pages 201–213, 2003.

[23] Miquel Feixas, Mateu Sbert, and Francisco González. A unified information-
theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl.
Percept., 6(1):1:1–1:23, February 2009. ISSN 1544-3558.

[24] Michael S. Floater. Mean value coordinates. Comput. Aided Geom. Des., 20(1):19–27,
2003. ISSN 0167-8396. doi: http://dx.doi.org/10.1016/S0167-8396(02)00002-5.

[25] Michael S. Floater and Kai Hormann. Surface parameterization: a tutorial and
survey. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in
multiresolution for geometric modelling, pages 157–186. Springer Verlag, 2005. URL
http://vcg.isti.cnr.it/Publications/2005/FH05.

[26] Michael S. Floater, Géza Kós, and Martin Reimers. Mean value coordinates in 3d.
Computer Aided Geometric Design, 22(7):623–631, 2005.

http://portal.acm.org/citation.cfm?id=1599254.1599256
http://portal.acm.org/citation.cfm?id=1599254.1599256
http://doi.acm.org/10.1145/1015706.1015817
http://doi.acm.org/10.1145/97880.97900
http://doi.acm.org/10.1145/97880.97900
http://dx.doi.org/10.1111/j.1467-8659.2008.01185.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01185.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01185.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01185.x
http://vcg.isti.cnr.it/Publications/2005/FH05

bibliography 123

[27] James D. Foley, Andries van Dam, Stephen K. Feiner, John F. Hughes, and R. Phillips.
Introduction to Computer Graphics. Addison-Wesley, 1993.

[28] Blender Foundation. Sintel. http://www.sintel.org/, 2011.

[29] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer,
Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. Modeling by example. ACM
Trans. Graph., 23(3):652–663, August 2004. ISSN 0730-0301. doi: 10.1145/1015706.
1015775. URL http://doi.acm.org/10.1145/1015706.1015775.

[30] Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. Simpler and faster hlbvh
with work queues. In Proceedings of the ACM SIGGRAPH Symposium on High Per-
formance Graphics, HPG ’11, pages 59–64, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0896-0.

[31] Francisco González García, Miquel Feixas, and Mateu Sbert. View-based shape simi-
larity using mutual information spheres. eurographics’07 short paper, prague, czech
republic, 2007, 2007.

[32] Francisco González and Gustavo Patow. Continuity mapping for multi-chart tex-
tures. ACM Trans. Graph., 28:109:1–109:8, December 2009. ISSN 0730-0301. doi:
http://doi.acm.org/10.1145/1618452.1618455. URL http://doi.acm.org/10.1145/

1618452.1618455.

[33] Cindy M. Grimm and John F. Hughes. Modeling surfaces of arbitrary topology
using manifolds. In SIGGRAPH ’95 Proceedings, pages 359–368, 1995.

[34] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. ACM Trans.
Graph., 21(3):355–361, 2002. ISSN 0730-0301.

[35] Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applica-
tions, 6:56–67, 1986.

[36] Jin Huang, Lu Chen, Xinguo Liu, and Hujun Bao. Efficient mesh deformation using
tetrahedron control mesh. Comput. Aided Geom. Des., 26(6):617–626, 2009. ISSN 0167-
8396. doi: http://dx.doi.org/10.1016/j.cagd.2008.12.002.

[37] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. Bounded biharmonic
weights for real-time deformation. ACM Transactions on Graphics (proceedings of ACM
SIGGRAPH), 30(4):78:1–78:8, 2011.

[38] Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. Harmonic
coordinates for character articulation. ACM Trans. Graph., 26(3):71, 2007. ISSN 0730-
0301. doi: http://doi.acm.org/10.1145/1276377.1276466.

[39] Tao Ju, Scott Schaefer, and Joe D. Warren. Mean value coordinates for closed trian-
gular meshes. ACM Trans. Graph., 24(3):561–566, 2005.

[40] Tao Ju, Qian-Yi Zhou, Michiel van de Panne, Daniel Cohen-Or, and Ulrich Neumann.
Reusable skinning templates using cage-based deformations. ACM Trans. Graph., 27

(5):122:1–122:10, December 2008. ISSN 0730-0301. doi: 10.1145/1409060.1409075.
URL http://doi.acm.org/10.1145/1409060.1409075.

http://www.sintel.org/
http://doi.acm.org/10.1145/1015706.1015775
http://doi.acm.org/10.1145/1618452.1618455
http://doi.acm.org/10.1145/1618452.1618455
http://doi.acm.org/10.1145/1409060.1409075

124 bibliography

[41] Kazufumi Kaneda, Takushi Kagawa, and Hideo Yamashita. Animation of water
droplets on a glass plate. In Proceedings Computer Animation, pages 177–189, 1993.

[42] Zachi Karni and Craig Gotsman. Spectral compression of mesh geometry. In Pro-
ceedings of the 27th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’00, pages 279–286, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co. ISBN 1-58113-208-5. doi: 10.1145/344779.344924. URL
http://dx.doi.org/10.1145/344779.344924.

[43] Vladislav Kraevoy, Alla Sheffer, and Craig Gotsman. Matchmaker: constructing con-
strained texture maps. ACM Trans. Graph., 22(3):326–333, 2003. ISSN 0730-0301.

[44] Eric Landreneau and Scott Schaefer. Poisson-based weight reduction of animated
meshes. Comput. Graph. Forum, 29(6):1945–1954, 2010.

[45] Torsten Langer, Alexander Belyaev, and Hans-Peter Seidel. Mean value bézier maps.
In GMP’08: Proceedings of the 5th international conference on Advances in geometric mod-
eling and processing, pages 231–243, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
3-540-79245-7, 978-3-540-79245-1.

[46] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast bvh
construction on gpus. Computer Graphics Forum, 28(2):375–384, 2009. ISSN 1467-
8659.

[47] Sylvain Lefebvre and Carsten Dachsbacher. Tiletrees. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. ACM Press, 2007.

[48] Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. ACM Trans. Graph.,
25(3):579–588, 2006.

[49] Sylvain Lefebvre and Hugues Hoppe. Appearance-space texture synthesis. ACM
Trans. Graph., 25(3):541–548, 2006.

[50] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares confor-
mal maps for automatic texture atlas generation. ACM Trans. Graph., 21(3):362–371,
2002. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/566654.566590.

[51] Zheng Li, David Levin, Zhengjie Deng, Dingyuan Liu, and Xiaonan Luo. Cage-free
local deformations using green coordinates. Vis. Comput., 26(6-8):1027–1036, 2010.
ISSN 0178-2789. doi: http://dx.doi.org/10.1007/s00371-010-0438-x.

[52] J. Lin. Divergence measures based on the shannon entropy. Information Theory, IEEE
Transactions on, 37(1):145 –151, jan 1991. ISSN 0018-9448.

[53] Yaron Lipman, Johannes Kopf, Daniel Cohen-Or, and David Levin. Gpu-assisted
positive mean value coordinates for mesh deformations. In SGP ’07: Proceedings of
the fifth Eurographics symposium on Geometry processing, pages 117–123, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association. ISBN 978-3-905673-46-3.

[54] Yaron Lipman, David Levin, and Daniel Cohen-Or. Green coordinates. ACM Trans.
Graph., 27(3):78:1–78:10, August 2008. ISSN 0730-0301. doi: 10.1145/1360612.1360677.
URL http://doi.acm.org/10.1145/1360612.1360677.

http://dx.doi.org/10.1145/344779.344924
http://doi.acm.org/10.1145/1360612.1360677

bibliography 125

[55] Frank Losasso and Hugues Hoppe. Geometry clipmaps: terrain rendering using
nested regular grids. ACM Trans. Graph., 23(3):769–776, 2004.

[56] Weiliang Meng, Bin Sheng, Shandong Wang, Hanqiu Sun, and Enhua Wu. Interac-
tive image deformation using cage coordinates on gpu. In VRCAI ’09: Proceedings
of the 8th International Conference on Virtual Reality Continuum and its Applications in
Industry, pages 119–126, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-912-1.
doi: http://doi.acm.org/10.1145/1670252.1670279.

[57] Weiliang Meng, Xiaopeng Zhang, Weiming Dong, and Jean-Claude Paul. Mul-
ticage image deformation on gpu. In Proceedings of the 10th International Con-
ference on Virtual Reality Continuum and Its Applications in Industry, VRCAI ’11,
pages 155–162, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-1060-4. doi:
10.1145/2087756.2087777. URL http://doi.acm.org/10.1145/2087756.2087777.

[58] Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based procedural
modeling of facades. ACM Trans. Graph., 26(3), July 2007. ISSN 0730-0301. doi:
10.1145/1276377.1276484. URL http://doi.acm.org/10.1145/1276377.1276484.

[59] Diego Nehab, Pedro V. Sander, Jason Lawrence, Natalya Tatarchuk, and John R.
Isidoro. Accelerating real-time shading with reverse reprojection caching. In Proceed-
ings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,
GH ’07, pages 25–35, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics As-
sociation. ISBN 978-1-59593-625-7.

[60] Jan Novák and Carsten Dachsbacher. Rasterized bounding volume hierarchies.
Comp. Graph. Forum, 31(2pt2):403–412, May 2012. ISSN 0167-7055.

[61] Marc Olano, Bob Kuehne, and Maryann Simmons. Automatic shader level of de-
tail. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, HWWS ’03, pages 7–14, Aire-la-Ville, Switzerland, Switzerland, 2003. Eu-
rographics Association. ISBN 1-58113-739-7.

[62] M. M. Oliveira and F. Policarpo. An efficient representation for surface de-
tails. Technical Report RP-351, Federal University of Rio Grande do Sul -
UFRGS, 2005. URL http://www.inf.ufrgs.br/~oliveira/pubs_files/Oliveira_

Policarpo_RP-351_Jan_2005.pdf.

[63] Fabio Pellacini. User-configurable automatic shader simplification. ACM Trans.
Graph., 24(3):445–452, July 2005. ISSN 0730-0301.

[64] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to Imple-
mentation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004. ISBN
012553180X.

[65] Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba. Real-time relief map-
ping on arbitrary polygonal surfaces. In Proceedings of the 2005 symposium on Interac-
tive 3D graphics and games, I3D ’05, pages 155–162, New York, NY, USA, 2005. ACM.
ISBN 1-59593-013-2. doi: 10.1145/1053427.1053453. URL http://doi.acm.org/10.

1145/1053427.1053453.

http://doi.acm.org/10.1145/2087756.2087777
http://doi.acm.org/10.1145/1276377.1276484
http://www.inf.ufrgs.br/~oliveira/pubs_files/Oliveira_Policarpo_RP-351_Jan_ 2005.pdf
http://www.inf.ufrgs.br/~oliveira/pubs_files/Oliveira_Policarpo_RP-351_Jan_ 2005.pdf
http://doi.acm.org/10.1145/1053427.1053453
http://doi.acm.org/10.1145/1053427.1053453

126 bibliography

[66] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Proceedings
of ACM SIGGRAPH 2000, pages 465–470, jul 2000.

[67] Budirijanto Purnomo, Jonathan D. Cohen, and Subodh Kumar. Seamless texture
atlases. In SGP ’04: Proceedings of the 2004 Eurographics/SIGGRAPH symposium on
Geometry Processing, pages 65–74, 2004. ISBN 3-905673-13-4.

[68] Nicolas Ray, Vincent Nivoliers, Sylvain Lefebvre, and Bruno Lévy. Invisible seams.
In Jason Lawrence and Marc Stamminger, editors, EUROGRAPHICS Symposium on
Rendering Conference Proceedings. Eurographics, Eurographics Association, 2010.

[69] Jaume Rigau, Miquel Feixas, and Mateu Sbert. Information-theory-based oracles for
hierarchical radiosity. In Vipin Kumar, MarinaL. Gavrilova, ChihJengKenneth Tan,
and Pierre LÕEcuyer, editors, Computational Science and Its Applications - ICCSA 2003,
volume 2669 of Lecture Notes in Computer Science, pages 275–284. Springer Berlin
Heidelberg, 2003. ISBN 978-3-540-40156-8.

[70] Jaume Rigau, Miquel Feixas, and Mateu Sbert. Entropy-based adaptive sampling.
the 13th eurographics workshop on rendering, poster papers proceedings (pisa,
italy), pp. 63-70, 2002., 2003.

[71] Marc Ruiz, Anton Bardera, Imma Boada, and Ivan Viola. Automatic transfer func-
tions based on informational divergence. IEEE Transactions on Visualization and Com-
puter Graphics, 17(12):1932–1941, December 2011. ISSN 1077-2626.

[72] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-chart geometry
images. In SGP ’03: Proceedings of the 2003 Eurographics/SIGGRAPH symposium on
Geometry processing, pages 146–155, 2003. ISBN 1-58113-687-0.

[73] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture map-
ping progressive meshes. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’01, pages 409–416, New York, NY,
USA, 2001. ACM. ISBN 1-58113-374-X.

[74] Mateu Sbert, Miquel Feixas, Jaume Rigau, Miguel Chover, and Ivan Viola. Informa-
tion Theory Tools for Computer Graphics. Synthesis Lectures on Computer Graphics
and Animation. Morgan and Claypool Publishers Colorado, 2009. ISBN 1598299298.

[75] Jörg Schmittler, Sven Woop, Daniel Wagner, and Wolfgang J. Paul. Graphics hard-
ware (2004) t. akenine-möller, m. mccool (editors) realtime ray tracing of dynamic
scenes on an fpga chip.

[76] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. Saarcor – a hardware architecture
for ray tracing. In Proceedings of the conference on Graphics Hardware 2002, pages 27–36.
Saarland University, Eurographics Association, 2002. ISBN 1-58113-580-7. available
at http://www.openrt.de.

[77] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geomet-
ric models. SIGGRAPH Comput. Graph., 20:151–160, August 1986. ISSN 0097-8930.
doi: http://doi.acm.org/10.1145/15886.15903. URL http://doi.acm.org/10.1145/

15886.15903.

http://doi.acm.org/10.1145/15886.15903
http://doi.acm.org/10.1145/15886.15903

bibliography 127

[78] Hyewon Seo and Nadia Magnenat Thalmann. Lod management on animating face
models. In Proceedings of the IEEE Virtual Reality 2000 Conference, VR ’00, pages 161–
, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0478-7. URL
http://dl.acm.org/citation.cfm?id=832288.835768.

[79] Ariel Shamir. A survey on mesh segmentation techniques. Comput. Graph. Forum, 27

(6):1539–1556, 2008.

[80] Alla Sheffer and John C. Hart. Seamster: Inconspicuous low-distortion texture seam
layout. Visualization Conference, IEEE, pages 291–298, 2002. ISSN 1070-2385.

[81] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied
Computational Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes
in Computer Science, pages 203–222. 1996.

[82] Pitchaya Sitthi-amorn, Jason Lawrence, Lei Yang, Pedro V. Sander, Diego Nehab,
and Jiahe Xi. Automated reprojection-based pixel shader optimization. ACM Trans.
Graph., 27(5):127:1–127:11, December 2008. ISSN 0730-0301.

[83] Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence. Ge-
netic programming for shader simplification. ACM Trans. Graph., 30(6):152:1–152:12,
December 2011. ISSN 0730-0301.

[84] Noam Slonim and Naftali Tishby. Document clustering using word clusters via the
information bottleneck method. In Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 208–215.
ACM Press, 2000. Held in Athens, Greece.

[85] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. Bounded-
distortion piecewise mesh parameterization. In Proceedings of the conference on Visu-
alization ’02, VIS ’02, pages 355–362, Washington, DC, USA, 2002. IEEE Computer
Society. ISBN 0-7803-7498-3. URL http://dl.acm.org/citation.cfm?id=602099.

602154.

[86] Detlev Stalling and Hans christian Hege. Fast and intuitive generation of geometric
shape transitions. The Visual Computer, 16:241–253, 2000.

[87] Jos Stam. Flows on surfaces of arbitrary topology. ACM Trans. Graph., 22(3):724–731,
2003.

[88] László Szirmay-Kalos, Barnabás Aszódi, István Lazányi, and Mátyás Premecz. Ap-
proximate ray-tracing on the gpu with distance impostors. Computer Graphics Forum,
24(3):695–704, 2005. ISSN 1467-8659.

[89] Laszlo Szirmay-Kalos, Laszlo Szecsi, and Mateu Sbert. Gpu-based techniques for
global illumination effects. In Brian Barsky, editor, Synthesis Lectures on Computer
Graphics and Animation. Morgan-Claypool, 2008.

[90] Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. Polycube-
maps. ACM Trans. Graph., 23(3):853–860, August 2004. ISSN 0730-0301. doi:
10.1145/1015706.1015810. URL http://doi.acm.org/10.1145/1015706.1015810.

http://dl.acm.org/citation.cfm?id=832288.835768
http://dl.acm.org/citation.cfm?id=602099.602154
http://dl.acm.org/citation.cfm?id=602099.602154
http://doi.acm.org/10.1145/1015706.1015810

128 bibliography

[91] Ingo Wald, William R. Mark, Johannes Günther, Solomon Boulos, Thiago Ize, War-
ren Hunt, Steven G. Parker, and Peter Shirley. State of the art in ray tracing animated
scenes. In Dieter Schmalstieg and Jiří Bittner, editors, STAR Proceedings of Eurograph-
ics 2007, pages 89–116. The Eurographics Association, September 2007.

[92] Ofir Weber, Mirela Ben-Chen, and Craig Gotsman. Complex barycentric coordinates
with applications to planar shape deformation. Computer Graphics Forum, 28(2):587–
597, 2009. ISSN 1467-8659. doi: 10.1111/j.1467-8659.2009.01399.x. URL http://dx.

doi.org/10.1111/j.1467-8659.2009.01399.x.

[93] Andrew Witkin and Michael Kass. Reaction-diffusion textures. In SIGGRAPH ’91
Proceedings, pages 299–308, 1991.

[94] Sven Woop, Jörg Schmittler, and Philipp Slusallek. Rpu: a programmable ray pro-
cessing unit for realtime ray tracing. ACM Trans. Graph., 24(3):434–444, July 2005.
ISSN 0730-0301. doi: 10.1145/1073204.1073211. URL http://doi.acm.org/10.1145/

1073204.1073211.

[95] Lei Yang, Pedro V. Sander, and Jason Lawrence. Geometry-aware framebuffer level
of detail. Computer Graphics Forum, 27(4):1183–1188, 2008. ISSN 1467-8659.

[96] Cem Yuksel, John Keyser, and Donald H. House. Mesh colors. Technical Report
tamu-cs-tr-2008-4-1, Department of Computer Science, Texas A&M University, 2008.

[97] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Feature-based surface pa-
rameterization and texture mapping. ACM Trans. Graph., 24(1):1–27, January 2005.
ISSN 0730-0301. doi: 10.1145/1037957.1037958. URL http://doi.acm.org/10.1145/

1037957.1037958.

[98] Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar Kin-Chung Au, and Chiew-Lan
Tai. Component-wise controllers for structure-preserving shape manipulation. In
Computer Graphics Forum (In Proc. of Eurographics 2011), volume 30, page to appear,
2011.

[99] Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. Iso-charts: stretch-
driven mesh parameterization using spectral analysis. In SGP ’04: Proceedings of the
2004 Eurographics/SIGGRAPH symposium on Geometry processing, pages 45–54, 2004.
ISBN 3-905673-13-4.

[100] Kun Zhou, Xi Wang, Yiying Tong, Mathieu Desbrun, Baining Guo, and Heung-
Yeung Shum. TextureMontage: Seamless texturing of arbitrary surfaces from multi-
ple images. ACM Trans. Graph., 24(3):1148–1155, 2005.

[101] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree construc-
tion on graphics hardware. ACM Trans. Graph., 27(5):126:1–126:11, December 2008.
ISSN 0730-0301.

[102] Emanoil Zuckerberger, Ayellet Tal, and Shymon Shlafman. Polyhedral surface de-
composition with applications. Computers and Graphics, page 2002.

http://dx.doi.org/10.1111/j.1467-8659.2009.01399.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01399.x
http://doi.acm.org/10.1145/1073204.1073211
http://doi.acm.org/10.1145/1073204.1073211
http://doi.acm.org/10.1145/1037957.1037958
http://doi.acm.org/10.1145/1037957.1037958

Part II

A P P E N D I X

A
C O N T I N U I T Y M A P P I N G P I X E L S H A D E R C O D E

/**/

/* */

/* PIXEL SHADER */

/* */

/**/

// Define outputs from vertex shader.

s t r u c t VertexOut
{

f l o a t 4 o u t P o s i t i o n : POSITION ;
f l o a t 2 outTexCoords : TEXCOORD0 ;

} ;

// Define outputs from pixel shader.

s t r u c t Fragment
{

f l o a t 4 c o l o r : COLOR0 ;
} ;

Fragment main_fp (VertexOut v ,
uniform f l o a t 4 p_sewingTheSeams ,
uniform f l o a t 4 p_sewingTriangles ,
uniform f l o a t 4 p _ t r a v e l l e r s T e x t u r e S i z e ,
uniform f l o a t 4 p_transformat ionTexturesSize ,
uniform f l o a t 4 p _ t r i a n g l e s T e x t u r e S i z e , ç
uniform f l o a t 4 p _v e r t i ce s Te x tu r eS i ze ,
uniform sampler2D colorMap : r e g i s t e r (s0) ,
uniform sampler2D travel lersMap : r e g i s t e r (s1) ,
uniform sampler1D transformationMap1 : r e g i s t e r (s2) ,
uniform sampler1D transformationMap2 : r e g i s t e r (s3) ,
uniform sampler2D trianglesMap : r e g i s t e r (s4) ,
uniform sampler2D verticesMap : r e g i s t e r (s5))

{

Fragment fOut ;
f l o a t 3 fragmentColor ;
f l o a t 2 uv = f l o a t 2 (v . outTexCoords . x , 1.0−v . outTexCoords . y) . rg ;

i f (p_sewingTheSeams . x || p_sewingTriangles . x)
{

f l o a t 4 texelType = tex2D (travel lersMap , uv) . rgba ;
f l o a t displacementTexelX = 1 . 0 / p _ t r a v e l l e r s T e x t u r e S i z e . x ;
f l o a t displacementTexelY = 1 . 0 / p _ t r a v e l l e r s T e x t u r e S i z e . y ;

//Interior fragment = GPU Filtering

i f (texelType . g==−1.0) fragmentColor = tex2D (colorMap , uv) . rgb ;
e l s e
{

//Sewing The Seams fragment

f l o a t 4 subTexel Info=unpackSubtexelInformation (texelType . a) ;

131

132 bibliography

i f (fragmentOnSewingTriangles (uv , displacementTexelX , displacementTexelY ,
subTexel Info))

{
f l o a t 2 v1 , v2 , v3 ;
f l o a t idxTriangle , currentTr iangle , nTr iangles ;
f l o a t t robat , d isplacementVert ices , displacementTriangles , i n T r i a n g l e ;
f l o a t 2 texCoordsCurrentTriangle , texCoordsCurrentVert ice ;
f l o a t 3 coordinates ;
f l o a t 2 transformedV1 , transformedV2 , transformedV3 ;
f l o a t 2 color1TexCoords , color2TexCoords , color3TexCoords ;

color1TexCoords= f l o a t 2 (−1 .0 , −1 .0) ; color2TexCoords= f l o a t 2 (−1 .0 , −1 .0)
; color3TexCoords= f l o a t 2 (−1 .0 , −1 .0) ;

d i sp lacementVer t i ces = 1 . 0 / p _ v e r t i c e s T e x t u r e S i z e . x ;
d isplacementTr iangles = 1 . 0 / p _ t r i a n g l e s T e x t u r e S i z e . x ;

//Obtain texture coordinates

texCoordsCurrentTriangle = get2DCoord (texelType . g ,
p _ t r i a n g l e s T e x t u r e S i z e . x) ;

//Get the number of triangles

nTriangles = tex2D (trianglesMap , texCoordsCurrentTriangle) . r ;

updateIndexTexCoords (texCoordsCurrentTriangle , displacementTriangles ,
p _ t r i a n g l e s T e x t u r e S i z e . x) ;

c u r r e n t T r i a n g l e = tex2D (trianglesMap , texCoordsCurrentTriangle) . r ;

idxTr iangle = 0 . 0 ;
t r o b a t = 0 . 0 ;

fragmentColor = f l o a t 3 (0 . 0 , 0 . 0 , 0 . 0) ;

while ((idxTriangle <nTriangles) && (! t r o b a t))
{

//Obtain texcoords from the current triangle in the vertices

list

texCoordsCurrentVert ice = get2DCoord (currentTr iangle ,
p _ v e r t i c e s T e x t u r e S i z e . x) ;

//Get vertices from the current triangle

g e t T r a i n g l e V e r t i c e s (texelType . b ,
verticesMap , transformationMap1 , transformationMap2 ,
texCoordsCurrentVert ice , displacementVert ices ,
p _ v e r t i c e s T e x t u r e S i z e . x , p_transformat ionTexturesS ize . x ,
transformedV1 , transformedV2 , transformedV3 ,
v1 , v2 , v3 , color1TexCoords , color2TexCoords , color3TexCoords) ;

i n T r i a n g l e = p o i n t I n T r i a n g l e (uv , transformedV1 , transformedV2 ,
transformedV3) ;

i f (i n T r i a n g l e)
{

t r o b a t = 1 . 0 ;

fragmentColor = evaluateColor (
uv , v1 , v2 , v3 ,

bibliography 133

transformedV1 , transformedV2 ,
transformedV3 ,

color1TexCoords , color2TexCoords , color3TexCoords ,
verticesMap , colorMap , p _ v e r t i c e s T e x t u r e S i z e . x , coordinates

) ;

i f (p_sewingTriangles . x) fragmentColor = coordinates ;
}
e l s e
{

idxTr iangle = idxTr iangle + 1 ;
updateIndexTexCoords (

texCoordsCurrentTriangle ,
displacementTriangles ,
p _ t r i a n g l e s T e x t u r e S i z e . x) ;

c u r r e n t T r i a n g l e = tex2D (trianglesMap ,
texCoordsCurrentTriangle) . r ;

}
}

i f (! t r o b a t) fragmentColor = tex2D (colorMap , uv) . rgb ;
}
e l s e fragmentColor = tex2D (colorMap , uv) . rgb ;

}
e l s e fragmentColor = tex2D (colorMap , uv) . rgb ;

fOut . c o l o r = f l o a t 4 (fragmentColor , 1 . 0) ;

re turn fOut ;
}

/**/

/* */

/* FUNCTIONS */

/* */

/**/

f l o a t 2 get2DCoord (f l o a t pos , f l o a t texwidth)
{
f l o a t 2 uv ;

// Rectangular coordinate => (0..texwidth , 0..texwidth)

uv . y = f l o o r (pos / texwidth) ;
uv . x = pos − texwidth ∗ uv . y ; // pos % texwidth

// Convert to uniform space / normalize => (0..1, 0..1)

uv = (uv + 0 . 5) / texwidth ;

re turn uv ;
}

f l o a t 3 getBarycentr i cCoordinatesColor (
in f l o a t 2 point ,
in f l o a t 2 point1 ,
in f l o a t 2 point2 ,
in f l o a t 2 point3 ,
in f l o a t 3 color1 ,

134 bibliography

in f l o a t 3 color2 ,
in f l o a t 3 color3 ,
out f l o a t 3 coordinates)

{

f l o a t A, B , C, D, E , F ;
f l o a t lambda1 , lambda2 , lambda3 ;

A=point1 . x−point3 . x ;
B=point2 . x−point3 . x ;
C=point3 . x−point . x ;
D=point1 . y−point3 . y ;
E=point2 . y−point3 . y ;
F=point3 . y−point . y ;

i f (A==0 .0 && B==0 .0)
{

f l o a t aux ;

aux=A;
A=D;
D=aux ;

aux=B ;
B=E ;
E=aux ;

aux=C;
C=F ;
F=aux ;

}

lambda1 = ((B∗F) −(C∗E)) / ((A∗E) − (B∗D)) ;
lambda2 = ((A∗F) −(C∗D)) / ((B∗D) −(A∗E)) ;
lambda3=1.0− lambda1−lambda2 ;

coordinates = f l o a t 3 (lambda1 , lambda2 , lambda3) ;

re turn (lambda1 ∗ co lo r 1 + lambda2 ∗ co lo r 2 + lambda3 ∗ co lo r 3) ;
}

f l o a t 2 t ransformPoint (
in f l o a t texelSeamID ,
in f l o a t 3 p ,
in sampler1D transformationMap1 ,
in sampler1D transformationMap2 ,
in f l o a t transformationMapsSize)

{

f l o a t 3 part1 , part2 ;
f l o a t 2 r e s u l t ;
f l o a t 3 x 3 M;

i f (p . z != texelSeamID)
{

part1 = tex1D (transformationMap1 , (p . z + 0 . 5) / transformationMapsSize) . rgb ;

part2 = tex1D (transformationMap2 , (p . z + 0 . 5) / transformationMapsSize) . rgb ;

bibliography 135

M= f l o a t 3 x 3 (part1 , part2 , f l o a t 3 (0 . 0 , 0 . 0 , 1 . 0)) ;

r e s u l t = mul (M, f l o a t 3 (p . x ,1 .0 −p . y , 1 . 0)) . xy ;
r e s u l t . y=1.0− r e s u l t . y ;

}
e l s e r e s u l t = p . xy ;

re turn r e s u l t ;
}

f l o a t p o i n t I n T r i a n g l e (
in f l o a t 2 P ,
in f l o a t 2 A,
in f l o a t 2 B ,
in f l o a t 2 C)

{

//float2 A,B,C;

f l o a t 2 v0 , v1 , v2 ;
f l o a t dot00 , dot01 , dot02 , dot11 , dot12 ;
f l o a t invDenom ;
f l o a t u , v ;

// Compute vectors

v0 = C − A;
v1 = B − A;
v2 = P − A;

// Compute dot products

dot00 = dot (v0 , v0) ;
dot01 = dot (v0 , v1) ;
dot02 = dot (v0 , v2) ;
dot11 = dot (v1 , v1) ;
dot12 = dot (v1 , v2) ;

// Compute barycentric coordinates

invDenom = 1 . 0 / (dot00 ∗ dot11 − dot01 ∗ dot01) ;
u = (dot11 ∗ dot02 − dot01 ∗ dot12) ∗ invDenom ;
v = (dot00 ∗ dot12 − dot01 ∗ dot02) ∗ invDenom ;

// Check if point is in triangle

i f ((u > 0 . 0) && (v > 0 . 0) && (u + v < 1 . 0)) re turn 1 . 0 ;
e l s e re turn 0 . 0 ;

}

void updateIndexTexCoords (
inout f l o a t 2 currentTexCoords ,
in f l o a t displacement ,
in f l o a t s i z e)

{

currentTexCoords = currentTexCoords + f l o a t 2 (displacement , 0 . 0) ;

i f (currentTexCoords . x > 1 . 0) currentTexCoords = f l o a t 2 (0 . 5 / size , currentTexCoords . y
+displacement) ;

136 bibliography

}

void g e t T r a i n g l e V e r t i c e s (
in f l o a t texelType ,
in sampler2D verticesMap ,
in sampler1D transformationMap1 ,
in sampler1D transformationMap2 ,
inout f l o a t 2 texCoordsCurrentVert ice ,
in f l o a t displacementVert ices ,
in f l o a t v e r t i c e s T e x t u r e S i z e ,
in f l o a t t ransformat ionTextureSize ,
out f l o a t 2 transformedV1 ,
out f l o a t 2 transformedV2 ,
out f l o a t 2 transformedV3 ,
inout f l o a t 2 v1Color ,
inout f l o a t 2 v2Color ,
inout f l o a t 2 v3Color ,
inout f l o a t 2 color1TexCoords ,
inout f l o a t 2 color2TexCoords ,
inout f l o a t 2 color3TexCoords)

{

f l o a t 3 v1 , v2 , v3 ;

//Vertex 1

v1 = tex2D (verticesMap , texCoordsCurrentVert ice) . rgb ;
v1Color=v1 . xy ;
i f (v1 . z >=0 .0)
{

//Shared vertice

transformedV1 = transformPoint (texelType , v1 , transformationMap1 ,
transformationMap2 , t rans format ionTextureS ize) ;

updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,
v e r t i c e s T e x t u r e S i z e) ;

color1TexCoords= f l o a t 2 (−1 .0 , −1 .0) ;
}
e l s e i f (v1 . z==−1.0)
{

//Join vertice

transformedV1 = v1 . xy ;
updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,

v e r t i c e s T e x t u r e S i z e) ;
color1TexCoords= f l o a t 2 (−1 .0 , −1 .0) ;

}
e l s e
{

//Intersection vertex or Seam vertex

transformedV1 = v1 . xy ;
updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,

v e r t i c e s T e x t u r e S i z e) ;
color1TexCoords=texCoordsCurrentVert ice ;
updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,

v e r t i c e s T e x t u r e S i z e) ; updateIndexTexCoords (texCoordsCurrentVert ice ,
displacementVert ices , v e r t i c e s T e x t u r e S i z e) ;

}

//Vertex 2

v2 = tex2D (verticesMap , texCoordsCurrentVert ice) . rgb ;

bibliography 137

v2Color=v2 . xy ;
i f (v2 . z >=0 .0)
{

//Shared vertice

transformedV2 = transformPoint (texelType , v2 , transformationMap1 ,
transformationMap2 , t rans format ionTextureS ize) ;

updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,
v e r t i c e s T e x t u r e S i z e) ;

color2TexCoords= f l o a t 2 (−1 .0 , −1 .0) ;
}
e l s e i f (v2 . z==−1.0)
{

//Join vertice

transformedV2 = v2 . xy ;
updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,

v e r t i c e s T e x t u r e S i z e) ;
color2TexCoords= f l o a t 2 (−1 .0 , −1 .0) ;

}
e l s e
{

//Intersection vertex or Seam vertex

transformedV2 = v2 . xy ;
updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,

v e r t i c e s T e x t u r e S i z e) ;
color2TexCoords=texCoordsCurrentVert ice ;
updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,

v e r t i c e s T e x t u r e S i z e) ; updateIndexTexCoords (texCoordsCurrentVert ice ,
displacementVert ices , v e r t i c e s T e x t u r e S i z e) ;

}

//Vertex 3

v3 = tex2D (verticesMap , texCoordsCurrentVert ice) . rgb ;
v3Color=v3 . xy ;
i f (v3 . z >=0 .0)
{

//Shared vertice

transformedV3 = transformPoint (texelType , v3 , transformationMap1 ,
transformationMap2 , t rans format ionTextureS ize) ;

updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,
v e r t i c e s T e x t u r e S i z e) ;

color3TexCoords= f l o a t 2 (−1 .0 , −1 .0) ;
}
e l s e i f (v3 . z==−1.0)
{

//Join vertice

transformedV3 = v3 . xy ;
updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,

v e r t i c e s T e x t u r e S i z e) ;
color3TexCoords= f l o a t 2 (−1 .0 , −1 .0) ;

}
e l s e
{

//Intersection vertex or Seam vertex

transformedV3 = v3 . xy ;
updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,

v e r t i c e s T e x t u r e S i z e) ;
color3TexCoords=texCoordsCurrentVert ice ;

138 bibliography

updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,
v e r t i c e s T e x t u r e S i z e) ;

updateIndexTexCoords (texCoordsCurrentVert ice , displacementVert ices ,
v e r t i c e s T e x t u r e S i z e) ;

}

}

f l o a t 3 getWeightedVert iceColor (
in f l o a t 2 colorTexCoords ,
in sampler2D verticesMap , in sampler2D colorMap ,
in f l o a t v e r t i c e s T e x t u r e S i z e)

{
f l o a t 3 infoV1 , infoV2 ;
f l o a t 3 color1 , c o l or 2 ;
f l o a t 2 texCoords ;

texCoords=colorTexCoords ;

infoV1 = tex2D (verticesMap , colorTexCoords) . rgb ;
updateIndexTexCoords (texCoords , 1 . 0 / v e r t i c e s T e x t u r e S i z e , v e r t i c e s T e x t u r e S i z e) ;
co lo r 1 = tex2D (colorMap , infoV1 . xy) . rgb ;

infoV2 = tex2D (verticesMap , texCoords) . rgb ;
co lo r 2 = tex2D (colorMap , infoV2 . xy) . rgb ;

re turn ((infoV1 . z ∗ co lo r 1) + (infoV2 . z ∗ co lo r 2)) ;
}

f l o a t 3 evaluateColor (
in f l o a t 2 uv ,
in f l o a t 2 v1 , in f l o a t 2 v2 , in f l o a t 2 v3 ,
in f l o a t 2 transformedV1 , in f l o a t 2 transformedV2 , in f l o a t 2 transformedV3 ,
in f l o a t 2 color1TexCoords , in f l o a t 2 color2TexCoords , in f l o a t 2

color3TexCoords ,
in sampler2D verticesMap , in sampler2D colorMap , in f l o a t

v e r t i c e s T e x t u r e S i z e ,
inout f l o a t 3 coordinates)

{

f l o a t 3 color1 , color2 , c o l or 3 ;

i f (color1TexCoords . x >0)
{

co lo r 1 = getWeightedVerticeColor (color1TexCoords , verticesMap , colorMap ,
v e r t i c e s T e x t u r e S i z e) ;

}
e l s e co lo r 1 = tex2D (colorMap , v1) . rgb ;

i f (color2TexCoords . x >0)
{

co lo r 2 = getWeightedVerticeColor (color2TexCoords , verticesMap , colorMap ,
v e r t i c e s T e x t u r e S i z e) ;

}
e l s e co lo r 2 = tex2D (colorMap , v2) . rgb ;

i f (color3TexCoords . x >0)
{

bibliography 139

co lo r 3 = getWeightedVerticeColor (color3TexCoords , verticesMap , colorMap ,
v e r t i c e s T e x t u r e S i z e) ;

}
e l s e c o lo r 3 = tex2D (colorMap , v3) . rgb ;

re turn getBarycentr i cCoordinatesColor (uv , transformedV1 , transformedV2 ,
transformedV3 , color1 , color2 , color3 , coordinates) ;

}

f l o a t 4 unpackSubtexelInformation (f l o a t i n f o)
{
i n t num;
f l o a t 4 r e s u l t ;

num = (i n t) i n f o ;

r e s u l t .w=fmod ((f l o a t)num, 2 . 0) ;
num=num/2 ;

r e s u l t . z=fmod ((f l o a t)num, 2 . 0) ;
num=num/2 ;

r e s u l t . y=fmod ((f l o a t)num, 2 . 0) ;
r e s u l t . x=num/2 ;

re turn r e s u l t ;
}

f l o a t fragmentOnSewingTriangles (in f l o a t 2 texCoords , in f l o a t displacementTexelX ,
in f l o a t displacementTexelY , f l o a t 4 subTexel Info)

{
f l o a t 2 currentTexe l ;

i n t currentTexelX = texCoords . x / displacementTexelX ;
i n t currentTexelY = texCoords . y / displacementTexelY ;

currentTexe l . x = (currentTexelX ∗ displacementTexelX) + (displacementTexelX /
2 . 0) ;

currentTexe l . y = (currentTexelY ∗ displacementTexelY) + (displacementTexelY /
2 . 0) ;

//Determine the cuadrant of the current fragment within the texel it belongs

i f (texCoords . x > currentTexe l . x)
{

i f (texCoords . y > currentTexe l . y) re turn subTexel Info . z ; //3rd

cuadrant

e l s e re turn subTexel Info .w; //4th

cuadrant

}
e l s e
{

i f (texCoords . y > currentTexe l . y) re turn subTexel Info . y ; //2nd

cuadrant

e l s e re turn subTexel Info . x ; //1rst cuadrant

}
}

B
I - R E N D E R C U D A K E R N E L S

/**/

/* */

/* TRAVERSAL KERNELS */

/* */

/**/

__device__ i n l i n e void traceIRender1Pass (
/* primary / secondary ray */

i n t isPrimaryRay ,
/* compute or not shadow rays */

i n t computeShadow ,
/* Total number of rays in the batch. */

i n t numRays ,
/* Position of the first primary ray.*/

i n t f i rs tPr imaryRay ,
/* Number of samples per ray for secondary rays to know how many of them

belong to the same pixel. */

i n t numSamplesPerRay ,
/* False if rays need to find the closest hit. */

bool anyHit ,
/* For secondary Rays. */

i n t randomSeedAO ,
/* For secondary Rays. */

f l o a t radiusAO ,
/* Light position X component */

f l o a t l i g h t P o s i t i o n X ,
/* Light position Y component */

f l o a t l i g h t P o s i t i o n Y ,
/* Light position Z component */

f l o a t l i g h t P o s i t i o n Z ,
/* Light radius */

f l o a t l ightRadius ,
/* Shadow samples per ray */

i n t shadowSamples ,
/* Near plane distance */

f l o a t nearPlaneDistance ,
/* Far plane distance*/

f l o a t farPlaneDis tance ,
/* Ray input: float3 origin , float tmin , float3 direction , float tmax. */

f l o a t 4 ∗ rays ,
/* Ray output: int triangleID , float hitT , int2 padding. */

i n t ∗ r e s u l t s ,
/* SOA: bytes 0-15 of each node , AOS/Compact: 64 bytes per node. */

f l o a t 4 ∗ nodesA ,
/* SOA: bytes 16-31 of each node , AOS/Compact: unused. */

f l o a t 4 ∗ nodesB ,
/* SOA: bytes 32-47 of each node , AOS/Compact: unused. */

f l o a t 4 ∗ nodesC ,
/* SOA: bytes 48-63 of each node , AOS/Compact: unused. */

f l o a t 4 ∗ nodesD ,

141

142 bibliography

/* SOA: bytes 0-15 of each triangle , AOS: 64 bytes per triangle , Compact: 48

bytes per triangle. */

f l o a t 4 ∗ t r isA ,
/* SOA: bytes 16-31 of each triangle , AOS/Compact: unused. */

f l o a t 4 ∗ t r i s B ,
/* SOA: bytes 32-47 of each triangle , AOS/Compact: unused. */

f l o a t 4 ∗ t r i sC ,
/* Triangles indices */

i n t ∗ t r i I n d i c e s ,
/* To know the correspondence pixel / taskID */

i n t ∗ slotToID ,
/* Scene triangles */

void∗ sceneTr iang les)
{
i n t nAOIntersect ions = 0 ;
i n t nShadowIntersect ions = 0 ;
F32 eps i lon = 1 . 0 e−4 f ;
Vec3f o r i g i n = Vec3f (0 . 0 , 0 . 0 , 0 . 0) ;

// Pick ray index.

i n t rayidx = threadIdx . x + blockDim . x ∗ (threadIdx . y + blockDim . y ∗ (blockIdx . x
+ gridDim . x ∗ blockIdx . y)) ;

i f (rayidx >= numRays) re turn ;

// Get the current pixel in 1D (correspondence taskID / pixel)

i n t pixel1DCurrentRes = ((const signed i n t ∗) s lotToID) [rayidx] ;

// Get current primary ray

f l o a t 4 o = rays [rayidx ∗ 2 + 0] ;
f l o a t 4 d = rays [rayidx ∗ 2 + 1] ;

// Travers current primary ray

Vec4f t r a v e r s a l R e s u l t = rayTraversa l (anyHit , o , d , nodesA , tr isA , t r i I n d i c e s) ;

// A triangle has been intersected and we have to compute AO rationIntersections

i f (t r a v e r s a l R e s u l t . x >= 0)
{

o r i g i n = Vec3f (o . x , o . y , o . z) + Vec3f (d . x , d . y , d . z) ∗ fmaxf (t r a v e r s a l R e s u l t
. y − epsi lon , 0 . 0 f) ;

i f (! isPrimaryRay)
{

nAOIntersect ions = getAOIntersec t ions (pixel1DCurrentRes , o , d ,
t r a v e r s a l R e s u l t , randomSeedAO , numSamplesPerRay , radiusAO , nodesA ,
tr isA , t r i I n d i c e s , sceneTr iang les) ;

}
i f (computeShadow)
{

nShadowIntersect ions = getShadowRatio (pixel1DCurrentRes , o , d ,
t r a v e r s a l R e s u l t , randomSeedAO , shadowSamples , Vec3f (l i g h t P o s i t i o n X ,
l i g h t P o s i t i o n Y , l i g h t P o s i t i o n Z) , l ightRadius , nodesA , tr isA ,
t r i I n d i c e s , s ceneTr iang les) ;

}
}

// Store the result of the traversal

r e s u l t s [rayidx ∗ 9 + 0] = (i n t) t r a v e r s a l R e s u l t . x ;
r e s u l t s [rayidx ∗ 9 + 1] = _ _ f l o a t _ a s _ i n t (t r a v e r s a l R e s u l t . y) ;

bibliography 143

r e s u l t s [rayidx ∗ 9 + 2] = _ _ f l o a t _ a s _ i n t (t r a v e r s a l R e s u l t . z) ;
r e s u l t s [rayidx ∗ 9 + 3] = _ _ f l o a t _ a s _ i n t (t r a v e r s a l R e s u l t .w) ;
r e s u l t s [rayidx ∗ 9 + 4] = nAOIntersect ions ;
r e s u l t s [rayidx ∗ 9 + 5] = nShadowIntersect ions ;
r e s u l t s [rayidx ∗ 9 + 6] = _ _ f l o a t _ a s _ i n t (o r i g i n . x) ;
r e s u l t s [rayidx ∗ 9 + 7] = _ _ f l o a t _ a s _ i n t (o r i g i n . y) ;
r e s u l t s [rayidx ∗ 9 + 8] = _ _ f l o a t _ a s _ i n t (o r i g i n . z) ;
}

//--

void tracetraceIRenderNPass (
/* primary / secondary ray */

i n t isPrimaryRay ,
/* compute or not shadow rays */

i n t computeShadow ,
/* Shading with texture color */

i n t texColor ,
/* Shaindg the cluster color */

i n t renderCluster ,
/* Total number of rays in the batch. */

i n t numRays ,
/* Number of samples per ray for secondary rays to know how many of them

belong to the same pixel. */

i n t numSamplesPerRay ,
/* Position of the first primary ray for batching them. */

i n t f i rs tPr imaryRay ,
/* Size of the previous buffer */

i n t previousSize ,
/* Size of the current buffer */

i n t currentS ize ,
/* False if rays need to find the closest hit. */

bool anyHit ,
/* For secondary Rays. */

i n t randomSeedAO ,
/* For secondary Rays. */

f l o a t radiusAO ,
/* Light position X component */

f l o a t l i g h t P o s i t i o n X ,
/* Light position Y component */

f l o a t l i g h t P o s i t i o n Y ,
/* Light position Z component */

f l o a t l i g h t P o s i t i o n Z ,
/* Light radius */

f l o a t l ightRadius ,
/* Red component of the diffuse color of the current mesh */

f l o a t dif fuseColorR ,
/* Red component of the diffuse color of the current mesh */

f l o a t diffuseColorG ,
/* Red component of the diffuse color of the current mesh */

f l o a t dif fuseColorB ,
/* Shadow samples per ray */

i n t shadowSamples ,
/* Near plane distance */

f l o a t nearPlaneDistance ,
/* Far plane distance*/

f l o a t farPlaneDis tance ,
/* Ray input: float3 origin , float tmin , float3 direction , float tmax. */

144 bibliography

f l o a t 4 ∗ rays ,
/* Ray output: int triangleID , float hitT , int2 padding. */

i n t ∗ r e s u l t s ,
/* SOA: bytes 0-15 of each node , AOS/Compact: 64 bytes per node. */

f l o a t 4 ∗ nodesA ,
/* SOA: bytes 16-31 of each node , AOS/Compact: unused. */

f l o a t 4 ∗ nodesB ,
/* SOA: bytes 32-47 of each node , AOS/Compact: unused. */

f l o a t 4 ∗ nodesC ,
/* SOA: bytes 48-63 of each node , AOS/Compact: unused. */

f l o a t 4 ∗ nodesD ,
/* SOA: bytes 0-15 of each triangle , AOS: 64 bytes per triangle , Compact: 48

bytes per triangle. */

f l o a t 4 ∗ t r isA ,
/* SOA: bytes 16-31 of each triangle , AOS/Compact: unused. */

f l o a t 4 ∗ t r i s B ,
/* SOA: bytes 32-47 of each triangle , AOS/Compact: unused. */

f l o a t 4 ∗ t r i sC ,
/* Triangles indices */

i n t ∗ t r i I n d i c e s ,
/* Previous color image */

unsigned i n t ∗ previousImage ,
/* Current color image */

unsigned i n t ∗ currentImage ,
/* Previous clusterID buffer */

f l o a t 4 ∗ previousClusterID ,
/* Previous clusterID buffer */

f l o a t 4 ∗ previousClusterID2 ,
/* Previous clusterID buffer */

f l o a t 4 ∗ previousClusterID3 ,
/* Current clusterID buffer */

f l o a t 4 ∗ currentClusterID ,
/* Current clusterID buffer */

f l o a t 4 ∗ currentClusterID2 ,
/* Current clusterID buffer */

f l o a t 4 ∗ currentClusterID3 ,
/* To know the correspondence pixel / taskID */

i n t ∗ slotToID ,
/* Scene triangles */

void∗ sceneTr iang les)
{
u int2 pixel2DCurrentRes ;
i n t pixel1DCurrentRes ;
bool i n t e r p o l a t e P i x e l = f a l s e ;
F32 eps i lon = 1 . 0 e−4 f ;
Vec3f o r i g i n = Vec3f (0 . 0 , 0 . 0 , 0 . 0) ;

// Pick ray index.

i n t rayidx = threadIdx . x + blockDim . x ∗ (threadIdx . y + blockDim . y ∗ (blockIdx . x
+ gridDim . x ∗ blockIdx . y)) ;

i f (rayidx >= numRays) re turn ;

// Get the current pixel in 1D (correspondence taskID / pixel)

pixel1DCurrentRes = ((const signed i n t ∗) s lotToID) [rayidx] ;

// Get the current pixel in 2D coordinates

pixel2DCurrentRes . x = pixel1DCurrentRes % c u r r e n t S i z e ;
pixel2DCurrentRes . y = pixel1DCurrentRes / c u r r e n t S i z e ;

bibliography 145

bool parX = pixel2DCurrentRes . x % 2 == 0 ;
bool parY = pixel2DCurrentRes . y % 2 == 0 ;

i f (parX && parY)
{

// COPY directly from previous resolution

i n t pixelPreviousRes1D ;
uint2 pixelPreviousRes2D ;

pixelPreviousRes2D . x = pixel2DCurrentRes . x / 2 ;
pixelPreviousRes2D . y = pixel2DCurrentRes . y / 2 ;
pixelPreviousRes1D = pixelPreviousRes2D . y ∗ previousSize +

pixelPreviousRes2D . x ;

i n t e r p o l a t e P i x e l = true ;

currentImage [pixel1DCurrentRes] = previousImage [pixelPreviousRes1D] ;

currentClus ter ID [pixel1DCurrentRes] = previousClusterID [pixelPreviousRes1D] ;
currentCluster ID2 [pixel1DCurrentRes] = previousClusterID2 [pixelPreviousRes1D

] ;
currentCluster ID3 [pixel1DCurrentRes] = previousClusterID3 [pixelPreviousRes1D

] ;
}

i f (parX && ! parY)
{

i n t neighbour1High1D , neighbour2High1D ;
uint2 neighbour1High2D , neighbour2High2D ;
i n t c lus ter ID1 , c l u s t e r I D 2 ;

//Direct neighbours pattern

neighbour1High2D . x = pixel2DCurrentRes . x / 2 ;
neighbour1High2D . y = (pixel2DCurrentRes . y − 1) / 2 ;
neighbour2High2D . x = pixel2DCurrentRes . x / 2 ;
neighbour2High2D . y = (pixel2DCurrentRes . y + 1) / 2 ;

neighbour1High1D = neighbour1High2D . y ∗ previousSize + neighbour1High2D .
x ;

neighbour2High1D = neighbour2High2D . y ∗ previousSize + neighbour2High2D .
x ;

c l u s t e r I D 1 = (i n t) previousClusterID [neighbour1High1D] . x ;
c l u s t e r I D 2 = (i n t) previousClusterID [neighbour2High1D] . x ;

i f (c l u s t e r I D 1 == c l u s t e r I D 2)
{

i n t e r p o l a t e P i x e l = true ;

// Interpolate information and store the new one in the iBuffer

currentClus ter ID [pixel1DCurrentRes] = i n t e r p o l a t e B u f f e r 2 (
neighbour1High1D , neighbour2High1D , previousClusterID) ;

currentCluster ID2 [pixel1DCurrentRes] = i n t e r p o l a t e B u f f e r 2 (
neighbour1High1D , neighbour2High1D , previousClusterID2) ;

currentCluster ID3 [pixel1DCurrentRes] = i n t e r p o l a t e B u f f e r 2 (
neighbour1High1D , neighbour2High1D , previousClusterID3) ;

146 bibliography

// Store the color for the current pixel --> Get the pixel

interpolated values and compute its shading

currentImage [pixel1DCurrentRes] = i n t e r p o l a t e C o l o r B u f f e r (
c lus ter ID1 , isPrimaryRay , computeShadow , numSamplesPerRay ,
shadowSamples , texColor , renderCluster , Vec3f (1 . 0 , 1 . 0 , 1 . 0) ,

Vec3f (dif fuseColorR , diffuseColorG , di f fuseColorB) ,
l i g h t P o s i t i o n X , l i g h t P o s i t i o n Y , l i g h t P o s i t i o n Z ,
currentClus ter ID [pixel1DCurrentRes] , currentCluster ID2 [
pixel1DCurrentRes] , currentCluster ID3 [pixel1DCurrentRes]) ;

}
}

i f (! parX && parY)
{

i n t neighbour1High1D , neighbour2High1D ;
uint2 neighbour1High2D , neighbour2High2D ;
i n t c lus ter ID1 , c l u s t e r I D 2 ;

//Direct neighbours pattern

neighbour1High2D . x = (pixel2DCurrentRes . x − 1) / 2 ;
neighbour1High2D . y = pixel2DCurrentRes . y / 2 ;
neighbour2High2D . x = (pixel2DCurrentRes . x + 1) / 2 ;
neighbour2High2D . y = pixel2DCurrentRes . y / 2 ;

neighbour1High1D = neighbour1High2D . y ∗ previousSize + neighbour1High2D .
x ;

neighbour2High1D = neighbour2High2D . y ∗ previousSize + neighbour2High2D .
x ;

c l u s t e r I D 1 = (i n t) previousClusterID [neighbour1High1D] . x ;
c l u s t e r I D 2 = (i n t) previousClusterID [neighbour2High1D] . x ;

i f ((c l u s t e r I D 1 == c l u s t e r I D 2))
{

i n t e r p o l a t e P i x e l = true ;

// Interpolate information and store the new one in the iBuffer

currentClus ter ID [pixel1DCurrentRes] = i n t e r p o l a t e B u f f e r 2 (
neighbour1High1D , neighbour2High1D , previousClusterID) ;

currentCluster ID2 [pixel1DCurrentRes] = i n t e r p o l a t e B u f f e r 2 (
neighbour1High1D , neighbour2High1D , previousClusterID2) ;

currentCluster ID3 [pixel1DCurrentRes] = i n t e r p o l a t e B u f f e r 2 (
neighbour1High1D , neighbour2High1D , previousClusterID3) ;

// Store the color for the current pixel --> Get the pixel

interpolated values and compute its shading

currentImage [pixel1DCurrentRes] = i n t e r p o l a t e C o l o r B u f f e r (
c lus ter ID1 , isPrimaryRay , computeShadow , numSamplesPerRay ,
shadowSamples , texColor , renderCluster , Vec3f (1 . 0 , 1 . 0 , 1 . 0) ,

Vec3f (dif fuseColorR , diffuseColorG , di f fuseColorB) ,
l i g h t P o s i t i o n X , l i g h t P o s i t i o n Y , l i g h t P o s i t i o n Z ,
currentClus ter ID [pixel1DCurrentRes] , currentCluster ID2 [
pixel1DCurrentRes] , currentCluster ID3 [pixel1DCurrentRes]) ;

}
}

i f (! parX && ! parY)

bibliography 147

{
i n t c lus ter ID1 , c lus ter ID2 , c lus ter ID3 , c l u s t e r I D 4 ;
i n t neighbour1High1D , neighbour2High1D , neighbour3High1D ,

neighbour4High1D ;
uint2 neighbour1High2D , neighbour2High2D , neighbour3High2D ,

neighbour4High2D ;

//Direct neighbours pattern

neighbour1High2D . x = (pixel2DCurrentRes . x − 1) / 2 ;
neighbour1High2D . y = (pixel2DCurrentRes . y − 1) / 2 ;
neighbour2High2D . x = (pixel2DCurrentRes . x + 1) / 2 ;
neighbour2High2D . y = (pixel2DCurrentRes . y − 1) / 2 ;
neighbour3High2D . x = (pixel2DCurrentRes . x − 1) / 2 ;
neighbour3High2D . y = (pixel2DCurrentRes . y + 1) / 2 ;
neighbour4High2D . x = (pixel2DCurrentRes . x + 1) / 2 ;
neighbour4High2D . y = (pixel2DCurrentRes . y + 1) / 2 ;

neighbour1High1D = neighbour1High2D . y ∗ previousSize + neighbour1High2D .
x ;

neighbour2High1D = neighbour2High2D . y ∗ previousSize + neighbour2High2D .
x ;

neighbour3High1D = neighbour3High2D . y ∗ previousSize + neighbour3High2D .
x ;

neighbour4High1D = neighbour4High2D . y ∗ previousSize + neighbour4High2D .
x ;

c l u s t e r I D 1 = (i n t) previousClusterID [neighbour1High1D] . x ;
c l u s t e r I D 2 = (i n t) previousClusterID [neighbour2High1D] . x ;
c l u s t e r I D 3 = (i n t) previousClusterID [neighbour3High1D] . x ;
c l u s t e r I D 4 = (i n t) previousClusterID [neighbour4High1D] . x ;

i f ((c l u s t e r I D 1 == c l u s t e r I D 2) && (c l u s t e r I D 1 == c l u s t e r I D 3) && (
c l u s t e r I D 1 == c l u s t e r I D 4))

{
i n t e r p o l a t e P i x e l = true ;

// Interpolate information and store the new one in the iBuffer

currentClus ter ID [pixel1DCurrentRes] = i n t e r p o l a t e B u f f e r 4 (
neighbour1High1D , neighbour2High1D , neighbour3High1D ,
neighbour4High1D , previousClusterID) ;

currentCluster ID2 [pixel1DCurrentRes] = i n t e r p o l a t e B u f f e r 4 (
neighbour1High1D , neighbour2High1D , neighbour3High1D ,
neighbour4High1D , previousClusterID2) ;

currentCluster ID3 [pixel1DCurrentRes] = i n t e r p o l a t e B u f f e r 4 (
neighbour1High1D , neighbour2High1D , neighbour3High1D ,
neighbour4High1D , previousClusterID3) ;

// Store the color for the current pixel --> Get the pixel

interpolated values and compute its shading

currentImage [pixel1DCurrentRes] = i n t e r p o l a t e C o l o r B u f f e r (
c lus ter ID1 , isPrimaryRay , computeShadow , numSamplesPerRay ,
shadowSamples , texColor , renderCluster , Vec3f (1 . 0 , 1 . 0 , 1 . 0) ,

Vec3f (dif fuseColorR , diffuseColorG , di f fuseColorB) ,
l i g h t P o s i t i o n X , l i g h t P o s i t i o n Y , l i g h t P o s i t i o n Z ,
currentClus ter ID [pixel1DCurrentRes] , currentCluster ID2 [
pixel1DCurrentRes] , currentCluster ID3 [pixel1DCurrentRes]) ;

}
}

148 bibliography

i f (! i n t e r p o l a t e P i x e l)
{

i n t nAOIntersect ions = 0 ;
i n t nShadowIntersect ions = 0 ;

// Get current primary ray

f l o a t 4 o = rays [rayidx ∗ 2 + 0] ;
f l o a t 4 d = rays [rayidx ∗ 2 + 1] ;

// Travers current primary ray

Vec4f t r a v e r s a l R e s u l t = rayTraversa l (anyHit , o , d , nodesA , tr isA ,
t r i I n d i c e s) ;

i f (t r a v e r s a l R e s u l t . x >= 0)
{

o r i g i n = Vec3f (o . x , o . y , o . z) + Vec3f (d . x , d . y , d . z) ∗ fmaxf (
t r a v e r s a l R e s u l t . y − epsi lon , 0 . 0 f) ;

i f (! isPrimaryRay)
{

nAOIntersect ions = getAOIntersec t ions (pixel1DCurrentRes ,
o , d , t r a v e r s a l R e s u l t , randomSeedAO ,

numSamplesPerRay , radiusAO , nodesA , tr isA , t r i I n d i c e s
, sceneTr iang les) ;

}

i f (computeShadow)
{

nShadowIntersect ions = getShadowRatio (pixel1DCurrentRes , o , d ,
t r a v e r s a l R e s u l t , randomSeedAO , shadowSamples , Vec3f (
l i g h t P o s i t i o n X , l i g h t P o s i t i o n Y , l i g h t P o s i t i o n Z) , l ightRadius ,
nodesA , tr isA , t r i I n d i c e s , sceneTr iang les) ;

}
}

// Store the result of the traversal

r e s u l t s [rayidx ∗ 9 + 0] = (i n t) t r a v e r s a l R e s u l t . x ;
r e s u l t s [rayidx ∗ 9 + 1] = _ _ f l o a t _ a s _ i n t (t r a v e r s a l R e s u l t . y) ;
r e s u l t s [rayidx ∗ 9 + 2] = _ _ f l o a t _ a s _ i n t (t r a v e r s a l R e s u l t . z) ;
r e s u l t s [rayidx ∗ 9 + 3] = _ _ f l o a t _ a s _ i n t (t r a v e r s a l R e s u l t .w) ;
r e s u l t s [rayidx ∗ 9 + 4] = nAOIntersect ions ;
r e s u l t s [rayidx ∗ 9 + 5] = nShadowIntersect ions ;
r e s u l t s [rayidx ∗ 9 + 6] = _ _ f l o a t _ a s _ i n t (o r i g i n . x) ;
r e s u l t s [rayidx ∗ 9 + 7] = _ _ f l o a t _ a s _ i n t (o r i g i n . y) ;
r e s u l t s [rayidx ∗ 9 + 8] = _ _ f l o a t _ a s _ i n t (o r i g i n . z) ;

}
e l s e
{

//STORE_RESULT(rayidx , -2, 0.0f, 0.0f, 0.0f);

r e s u l t s [rayidx ∗ 9 + 0] = −2;
r e s u l t s [rayidx ∗ 9 + 1] = 0 ;
r e s u l t s [rayidx ∗ 9 + 2] = 0 ;
r e s u l t s [rayidx ∗ 9 + 3] = 0 ;
r e s u l t s [rayidx ∗ 9 + 4] = 0 ;
r e s u l t s [rayidx ∗ 9 + 5] = 0 ;
r e s u l t s [rayidx ∗ 9 + 6] = _ _ f l o a t _ a s _ i n t (o r i g i n . x) ;
r e s u l t s [rayidx ∗ 9 + 7] = _ _ f l o a t _ a s _ i n t (o r i g i n . y) ;

bibliography 149

r e s u l t s [rayidx ∗ 9 + 8] = _ _ f l o a t _ a s _ i n t (o r i g i n . z) ;
}
}

/**/

/* */

/* FUNCTIONS */

/* */

/**/

__device__ i n l i n e Vec4f rayTraversa l (bool anyHit , f l o a t 4 o , f l o a t 4 d , f l o a t 4 ∗
nodesA , f l o a t 4 ∗ t r isA , i n t ∗ t r i I n d i c e s)

{

// Traversal stack in CUDA thread -local memory.

i n t t r a v e r s a l S t a c k [STACK_SIZE] ;

// Return the result of the traversal

Vec4f t r a v e r s a l R e s u l t ;

// Live state during traversal , stored in registers.

f l o a t origx , origy , or igz ; // Ray origin.

f l o a t dirx , diry , d i rz ; // Ray direction.

f l o a t tmin ; // t-value from which the ray starts. Usually 0.

f l o a t i d i r x , id i ry , i d i r z ; // 1 / dir

f l o a t oodx , oody , oodz ; // orig / dir

char∗ s t a c k P t r ; // Current position in traversal stack.

i n t leafAddr ; // First postponed leaf , non-negative if none.

i n t nodeAddr ; // Non-negative: current internal node , negative

: second postponed leaf.

i n t h i t Index ; // Triangle index of the closest intersection ,

-1 if none.

f l o a t h i tT ; // t-value of the closest intersection.

// Fetch ray.

or igx = o . x , or igy = o . y , or igz = o . z ;
d i rx = d . x , diry = d . y , d i rz = d . z ;
tmin = o .w;

f l o a t ooeps = exp2f (−80 .0 f) ; // Avoid div by zero.

i d i r x = 1 . 0 f / (f a b s f (d . x) > ooeps ? d . x : copysignf (ooeps , d . x)) ;
i d i r y = 1 . 0 f / (f a b s f (d . y) > ooeps ? d . y : copysignf (ooeps , d . y)) ;
i d i r z = 1 . 0 f / (f a b s f (d . z) > ooeps ? d . z : copysignf (ooeps , d . z)) ;
oodx = or igx ∗ i d i r x , oody = origy ∗ id i ry , oodz = or igz ∗ i d i r z ;

// Setup traversal.

t r a v e r s a l S t a c k [0] = E n t r y p o i n t S e n t i n e l ; // Bottom -most entry.

s t a c k P t r = (char ∗)&t r a v e r s a l S t a c k [0] ;
leafAddr = 0 ; // No postponed leaf.

nodeAddr = 0 ; // Start from the root.

hi t Index = −1; // No triangle intersected so far.

hi tT = d .w; // tmax

// Traversal loop.

f l o a t outU , outV ;
while (nodeAddr != E n t r y p o i n t S e n t i n e l)
{

// Traverse internal nodes until all SIMD lanes have found a leaf.

150 bibliography

bool searchingLeaf = true ;
while (nodeAddr >= 0 && nodeAddr != E n t r y p o i n t S e n t i n e l)
{

// Fetch AABBs of the two child nodes.

f l o a t 4 ∗ ptr = (f l o a t 4 ∗) ((char ∗) nodesA + nodeAddr) ;
f l o a t 4 n0xy = ptr [0] ; // (c0.lo.x, c0.hi.x, c0.lo.y, c0.hi.y)

f l o a t 4 n1xy = ptr [1] ; // (c1.lo.x, c1.hi.x, c1.lo.y, c1.hi.y)

f l o a t 4 nz = ptr [2] ; // (c0.lo.z, c0.hi.z, c1.lo.z, c1.hi.z)

// Intersect the ray against the child nodes.

f l o a t c0 lox = n0xy . x ∗ i d i r x − oodx ;
f l o a t c0hix = n0xy . y ∗ i d i r x − oodx ;
f l o a t c0 loy = n0xy . z ∗ i d i r y − oody ;
f l o a t c0hiy = n0xy .w ∗ i d i r y − oody ;
f l o a t c0 loz = nz . x ∗ i d i r z − oodz ;
f l o a t c0hiz = nz . y ∗ i d i r z − oodz ;
f l o a t c1 loz = nz . z ∗ i d i r z − oodz ;
f l o a t c1hiz = nz .w ∗ i d i r z − oodz ;
f l o a t c0min = max4 (fminf (c0 lox , c0hix) , fminf (c0 loy , c0hiy) ,

fminf (c0 loz , c0hiz) , tmin) ;
f l o a t c0max = min4 (fmaxf (c0 lox , c0hix) , fmaxf (c0 loy , c0hiy) ,

fmaxf (c0 loz , c0hiz) , h i tT) ;
f l o a t c1 lox = n1xy . x ∗ i d i r x − oodx ;
f l o a t c1hix = n1xy . y ∗ i d i r x − oodx ;
f l o a t c1 loy = n1xy . z ∗ i d i r y − oody ;
f l o a t c1hiy = n1xy .w ∗ i d i r y − oody ;
f l o a t c1min = max4 (fminf (c1 lox , c1hix) , fminf (c1 loy , c1hiy) ,

fminf (c1 loz , c1hiz) , tmin) ;
f l o a t c1max = min4 (fmaxf (c1 lox , c1hix) , fmaxf (c1 loy , c1hiy) ,

fmaxf (c1 loz , c1hiz) , h i tT) ;

bool t raverseChi ld0 = (c0max >= c0min) ;
bool t raverseChi ld1 = (c1max >= c1min) ;

// Neither child was intersected => pop stack.

i f (! t raverseChi ld0 && ! t raverseChi ld1)
{

nodeAddr = ∗ (i n t ∗) s t a c k P t r ;
s t a c k P t r −= 4 ;

}
e l s e // Otherwise => fetch child pointers.

{
i n t 2 cnodes = ∗ (i n t 2 ∗)&ptr [3] ;
nodeAddr = (t raverseChi ld0) ? cnodes . x : cnodes . y ;

// Both children were intersected => push the farther

one.

i f (t raverseChi ld0 && traverseChi ld1)
{
i f (c1min < c0min)

: : swap (nodeAddr , cnodes . y) ;
s t a c k P t r += 4 ;
∗ (i n t ∗) s t a c k P t r = cnodes . y ;

}
}

// First leaf => postpone and continue traversal.

i f (nodeAddr < 0 && leafAddr >= 0)

bibliography 151

{
searchingLeaf = f a l s e ;
leafAddr = nodeAddr ;
nodeAddr = ∗ (i n t ∗) s t a c k P t r ;
s t a c k P t r −= 4 ;

}
// All SIMD lanes have found a leaf => process them.

i f (! __any (searchingLeaf)) break ;
}

// Process postponed leaf nodes.

while (leafAddr < 0)
{

// Intersect the ray against each triangle using Sven Woop’s

algorithm.

f o r (i n t triAddr = ~leafAddr ; ; tr iAddr += 3)
{

// Read first 16 bytes of the triangle.

// End marker (negative zero) => all triangles processed

.

f l o a t 4 v00 = tex1Dfetch (t _ t r i s A , triAddr + 0) ;
i f (_ _ f l o a t _ a s _ i n t (v00 . x) == 0 x80000000) break ;

// Compute and check intersection t-value.

f l o a t Oz = v00 .w − or igx ∗v00 . x − origy∗v00 . y − or igz ∗v00

. z ;
f l o a t invDz = 1 . 0 f / (dirx ∗v00 . x + diry∗v00 . y + dirz ∗v00

. z) ;
f l o a t t = Oz ∗ invDz ;

i f (t > tmin && t < hi tT)
{

// Compute and check barycentric u.

f l o a t 4 v11 = tex1Dfetch (t _ t r i s A , triAddr + 1) ;
f l o a t Ox = v11 .w + or igx ∗v11 . x + origy∗v11 . y +

or igz ∗v11 . z ;
f l o a t Dx = dirx ∗v11 . x + diry∗v11 . y + dirz ∗v11 . z ;
f l o a t u = Ox + t ∗Dx ;

i f (u >= 0 . 0 f && u <= 1 . 0 f)
{

// Compute and check barycentric v.

f l o a t 4 v22 = tex1Dfetch (t _ t r i s A , triAddr
+ 2) ;

f l o a t Oy = v22 .w + or igx ∗v22 . x + origy∗
v22 . y + or igz ∗v22 . z ;

f l o a t Dy = dirx ∗v22 . x + diry∗v22 . y +
dirz ∗v22 . z ;

f l o a t v = Oy + t ∗Dy ;

i f (v >= 0 . 0 f && u + v <= 1 . 0 f)
{

// Record intersection.

// Closest intersection not

required => terminate.

hi tT = t ;
h i t Index = triAddr ;

152 bibliography

outU = u ;
outV = v ;
i f (anyHit)
{

nodeAddr =
E n t r y p o i n t S e n t i n e l ;

break ;
}

}
}

}
} // triangle

// Another leaf was postponed => process it as well.

leafAddr = nodeAddr ;

i f (nodeAddr <0)
{

nodeAddr = ∗ (i n t ∗) s t a c k P t r ;
s t a c k P t r −= 4 ;

}
} // leaf

} // traversal

// Remap intersected triangle index , and store the result.

i f (h i t Index != −1) h i t Index = tex1Dfetch (t _ t r i I n d i c e s , h i t Index) ;

t r a v e r s a l R e s u l t . x = hi t Index ;
t r a v e r s a l R e s u l t . y = hi tT ;
t r a v e r s a l R e s u l t . z = outU ;
t r a v e r s a l R e s u l t .w = outV ;

re turn t r a v e r s a l R e s u l t ;
}

__device__ i n l i n e i n t getShadowRatio (i n t pixel1DPos , f l o a t 4 o , f l o a t 4 d , Vec4f
t r a v e r s a l R e s u l t , i n t randomSeed , i n t numSamplesPerRay , Vec3f l i g h t P o s i t i o n ,
f l o a t l ightRadius , f l o a t 4 ∗ nodesA , f l o a t 4 ∗ t r isA , i n t ∗ t r i I n d i c e s , void ∗
sceneTr iang les)

{
F32 eps i lon = 1 . 0 e−4 f ;
Vec3f t a r g e t , d i r e c t i o n ;
f l o a t di rec t ionLenght ;
f l o a t 4 originShadow , directionShadow ;
Vec4f traversalResultShadow ;
i n t shadowHits = 0 ;
i n t t r i = t r a v e r s a l R e s u l t . x ;
Vec3f normal (1 . 0 f , 0 . 0 f , 0 . 0 f) ;
F32 u = t r a v e r s a l R e s u l t . z ;
F32 v = t r a v e r s a l R e s u l t .w;
F32 w = 1 . 0 − u − v ;
const Scene : : Tr iangle ∗ t r i a n g l e s = (const Scene : : Tr iangle ∗) s ceneTr iang les ;

//The interpolated normal in the hit point of the surface

normal . x = (u ∗ t r i a n g l e s [t r i] . t r i0_normal . x) + (v ∗ t r i a n g l e s [t r i] . t r i1_normal .
x) + (w ∗ t r i a n g l e s [t r i] . t r i2_normal . x) ;

normal . y = (u ∗ t r i a n g l e s [t r i] . t r i0_normal . y) + (v ∗ t r i a n g l e s [t r i] . t r i1_normal .
y) + (w ∗ t r i a n g l e s [t r i] . t r i2_normal . y) ;

bibliography 153

normal . z = (u ∗ t r i a n g l e s [t r i] . t r i0_normal . z) + (v ∗ t r i a n g l e s [t r i] . t r i1_normal .
z) + (w ∗ t r i a n g l e s [t r i] . t r i2_normal . z) ;

Vec3f o r i g i n = Vec3f (o . x , o . y , o . z) + Vec3f (d . x , d . y , d . z) ∗ fmaxf (
t r a v e r s a l R e s u l t . y − epsi lon , 0 . 0 f) ;

// Pick random offset.

U32 hashA = randomSeed + pixel1DPos ;
U32 hashB = 0 x9e3779b9u ;
U32 hashC = 0 x9e3779b9u ;
jenkinsMix (hashA , hashB , hashC) ;
jenkinsMix (hashA , hashB , hashC) ;
Vec3f o f f s e t ((F32) hashA∗exp2 (−32) , (F32) hashB∗exp2 (−32) , (F32) hashC∗exp2 (−32)) ;

// Only trace rays for hit positions that are facing the light ...

f o r (i n t i = 0 ; i < numSamplesPerRay ; i ++)
{

// QMC.

Vec3f pos (sobol2D (i) , hammersley (i , numSamplesPerRay)) ; // [0,1]

pos += o f f s e t ;
// Cranley -Patterson

i f (pos [0] >=1 . f) pos [0] −= 1 . f ;
i f (pos [1] >=1 . f) pos [1] −= 1 . f ;
i f (pos [2] >=1 . f) pos [2] −= 1 . f ;
pos = pos∗2−1;

// [-1,1]

// Target position.

t a r g e t = l i g h t P o s i t i o n + l ightRadius ∗ pos ;
d i r e c t i o n = t a r g e t − o r i g i n ;
d i rec t ionLenght = d i r e c t i o n . length () ;
d i r e c t i o n = d i r e c t i o n . normalized () ;

i f (dot (normal , d i r e c t i o n) >= 0 . 0 f)
{

originShadow . x = o r i g i n . x ;
originShadow . y = o r i g i n . y ;
originShadow . z = o r i g i n . z ;
originShadow .w = 0 . 0 f ;

// DIRECT NORMALS: BUNNY

directionShadow . x = d i r e c t i o n . x ;
directionShadow . y = d i r e c t i o n . y ;
directionShadow . z = d i r e c t i o n . z ;
directionShadow .w = direc t ionLenght ;

traversalResultShadow = rayTraversa l (true , originShadow , directionShadow
, nodesA , tr isA , t r i I n d i c e s) ;

i f (traversalResultShadow . x >= 0 . f) shadowHits = shadowHits + 1 ;
}

}

re turn shadowHits ;
}

154 bibliography

__device__ i n l i n e i n t getAOIntersec t ions (i n t pixel1DPos , f l o a t 4 o , f l o a t 4 d ,
Vec4f t r a v e r s a l R e s u l t , i n t randomSeedAO , i n t numSamplesPerRay , f l o a t radiusAO
, f l o a t 4 ∗ nodesA , f l o a t 4 ∗ t r isA , i n t ∗ t r i I n d i c e s , void ∗ sceneTr iang les)

{
// Create info to generate all the random secondary rays

F32 eps i lon = 1 . 0 e−4 f ;
Vec4f t raversalResultAO ;
i n t nAOIntersect ions = 0 ;

Vec3f o r i g i n = Vec3f (o . x , o . y , o . z) + Vec3f (d . x , d . y , d . z) ∗ fmaxf (
t r a v e r s a l R e s u l t . y − epsi lon , 0 . 0 f) ;

// Lookup normal , flipping back -facing directions.

i n t t r i = t r a v e r s a l R e s u l t . x ;
Vec3f normal (1 . 0 f , 0 . 0 f , 0 . 0 f) ;
F32 u = t r a v e r s a l R e s u l t . z ;
F32 v = t r a v e r s a l R e s u l t .w;
F32 w = 1 . 0 − u − v ;

const Scene : : Tr iangle ∗ t r i a n g l e s = (const Scene : : Tr iangle ∗) s ceneTr iang les ;

//The interpolated normal in the hit point of the surface

normal . x = (u ∗ t r i a n g l e s [t r i] . t r i0_normal . x) + (v ∗ t r i a n g l e s [t r i] . t r i1_normal .
x) + (w ∗ t r i a n g l e s [t r i] . t r i2_normal . x) ;

normal . y = (u ∗ t r i a n g l e s [t r i] . t r i0_normal . y) + (v ∗ t r i a n g l e s [t r i] . t r i1_normal .
y) + (w ∗ t r i a n g l e s [t r i] . t r i2_normal . y) ;

normal . z = (u ∗ t r i a n g l e s [t r i] . t r i0_normal . z) + (v ∗ t r i a n g l e s [t r i] . t r i1_normal .
z) + (w ∗ t r i a n g l e s [t r i] . t r i2_normal . z) ;

i f (dot (normal , Vec3f (d . x , d . y , d . z)) >= 0 . 0 5 f) normal = −normal ;

// Construct perpendicular vectors.

Vec3f na = abs (normal) ;
F32 nm = fmaxf (fmaxf (na . x , na . y) , na . z) ;
Vec3f perp (normal . y , −normal . x , 0 . 0 f) ; // assume y is largest

i f (nm == na . z) perp = Vec3f (0 . 0 f , normal . z , −normal . y) ;
e l s e i f (nm == na . x) perp = Vec3f (−normal . z , 0 . 0 f , normal . x) ;

perp = normalize (perp) ;
Vec3f biperp = c r o s s (normal , perp) ;

// Pick random rotation angle.

U32 hashA = randomSeedAO + pixel1DPos ;
U32 hashB = 0 x9e3779b9u ;
U32 hashC = 0 x9e3779b9u ;
jenkinsMix (hashA , hashB , hashC) ;
jenkinsMix (hashA , hashB , hashC) ;
F32 angle = 2 . 0 f ∗ FW_PI ∗ (F32) hashC ∗ exp2 (−32) ;

// Construct rotated tangent vectors.

Vec3f t0 = perp ∗ c o s f (angle) + biperp ∗ s i n f (angle) ;
Vec3f t1 = perp ∗ −s i n f (angle) + biperp ∗ c o s f (angle) ;

nAOIntersect ions = 0 ;

// Generate each sample.

f o r (i n t i = 0 ; i < numSamplesPerRay ; i ++)
{

bibliography 155

// Base -2 Halton sequence for X.

F32 x = 0 . 0 f ;
F32 xadd = 1 . 0 f ;
unsigned i n t hc2 = i + 1 ;
while (hc2 != 0)
{

xadd ∗= 0 . 5 f ;
i f ((hc2 & 1) != 0) x += xadd ;
hc2 >>= 1 ;

}

// Base -3 Halton sequence for Y.

F32 y = 0 . 0 f ;
F32 yadd = 1 . 0 f ;
i n t hc3 = i + 1 ;
while (hc3 != 0)
{

yadd ∗= 1 . 0 f / 3 . 0 f ;
y += (F32) (hc3 % 3) ∗ yadd ;
hc3 /= 3 ;

}

// Warp to a point on the unit hemisphere.

F32 angle = 2 . 0 f ∗ FW_PI ∗ y ;
F32 r = s q r t f (x) ;
x = r ∗ c o s f (angle) ;
y = r ∗ s i n f (angle) ;
f l o a t z = s q r t f (1 . 0 f − x ∗ x − y ∗ y) ;

// Trace secondary ray

Vec3f d i r e c t i o n = normalize (x ∗ t0 + y ∗ t1 + z ∗ normal) ;

f l o a t 4 originAO , directionAO ;

originAO . x = o r i g i n . x ;
originAO . y = o r i g i n . y ;
originAO . z = o r i g i n . z ;
originAO .w = 0 . 0 f ;

directionAO . x = d i r e c t i o n . x ;
directionAO . y = d i r e c t i o n . y ;
directionAO . z = d i r e c t i o n . z ;
directionAO .w = radiusAO ;

traversalResultAO = rayTraversa l (true , originAO , directionAO , nodesA ,
tr isA , t r i I n d i c e s) ;

i f (t raversalResultAO . x == −1.0 f) nAOIntersect ions = nAOIntersect ions +
1 ;

}

re turn nAOIntersect ions ;
}

__device__ i n l i n e f l o a t 4 i n t e r p o l a t e B u f f e r 2 (i n t neighbour1 , i n t neighbour2 ,
f l o a t 4 ∗previousClusterID)

{

156 bibliography

f l o a t 4 in terpola tedValue ;

in terpola tedValue . x = (previousClusterID [neighbour1] . x + previousClusterID [
neighbour2] . x) / 2 . 0 f ;

in terpola tedValue . y = (previousClusterID [neighbour1] . y + previousClusterID [
neighbour2] . y) / 2 . 0 f ;

in terpola tedValue . z = (previousClusterID [neighbour1] . z + previousClusterID [
neighbour2] . z) / 2 . 0 f ;

in terpola tedValue .w = (previousClusterID [neighbour1] .w + previousClusterID [
neighbour2] .w) / 2 . 0 f ;

re turn interpola tedValue ;
}

__device__ i n l i n e f l o a t 4 i n t e r p o l a t e B u f f e r 4 (i n t neighbour1 , i n t neighbour2 , i n t
neighbour3 , i n t neighbour4 , f l o a t 4 ∗previousClusterID)

{
f l o a t 4 in terpola tedValue ;

in terpola tedValue . x = (previousClusterID [neighbour1] . x + previousClusterID [
neighbour2] . x + previousClusterID [neighbour3] . x + previousClusterID [
neighbour4] . x) / 4 . 0 f ;

in terpola tedValue . y = (previousClusterID [neighbour1] . y + previousClusterID [
neighbour2] . y + previousClusterID [neighbour3] . y + previousClusterID [
neighbour4] . y) / 4 . 0 f ;

in terpola tedValue . z = (previousClusterID [neighbour1] . z + previousClusterID [
neighbour2] . z + previousClusterID [neighbour3] . z + previousClusterID [
neighbour4] . z) / 4 . 0 f ;

in terpola tedValue .w = (previousClusterID [neighbour1] .w + previousClusterID [
neighbour2] .w + previousClusterID [neighbour3] .w + previousClusterID [
neighbour4] .w) / 4 . 0 f ;

re turn interpola tedValue ;
}

extern "C" texture < f l o a t 4 , 2> t _ t e x t u r e ;

__device__ i n l i n e U32 i n t e r p o l a t e C o l o r B u f f e r (i n t c lus ter ID , bool isPrimary , bool
showShadow , i n t numAORays, i n t numShadowRays , i n t texColor , i n t

renderCluster , Vec3f c lus te rColor , Vec3f d i f fuseColor , f l o a t l i g h t P o s i t i o n X ,
f l o a t l i g h t P o s i t i o n Y , f l o a t l i g h t P o s i t i o n Z , f l o a t 4 i B u f f e r P i x e l 1 , f l o a t 4

i B u f f e r P i x e l 2 , f l o a t 4 i B u f f e r P i x e l 3)
{
Vec4f c o l o r ;

i f (c l u s t e r I D == 0) c o l o r = Vec4f (1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f) ;
e l s e
{

i f (renderCluster == 1)
{

c o l o r = Vec4f (c l u s t e r C o l o r . x , c l u s t e r C o l o r . y , c l u s t e r C o l o r . z ,
1 . 0) ;

}
e l s e
{

Vec3f f i n a l D i f f u s e C o l o r ;

bibliography 157

Vec3f l i g h t = Vec3f (l i g h t P o s i t i o n X , l i g h t P o s i t i o n Y ,
l i g h t P o s i t i o n Z) − Vec3f (i B u f f e r P i x e l 1 . y , i B u f f e r P i x e l 1 . z ,
i B u f f e r P i x e l 1 .w) ;

i f (texColor == 1)
{

f l o a t 4 tColor = tex2D (t _ t e x t u r e , i B u f f e r P i x e l 2 .w, 1 . 0 f −

i B u f f e r P i x e l 3 . x) ;
f i n a l D i f f u s e C o l o r = Vec3f (tColor . x , tColor . y , tColor . z) ;

}
e l s e
{

// Compute the shading per vertex

l i g h t = l i g h t . normalized () ;
f i n a l D i f f u s e C o l o r = d i f f u s e C o l o r ∗ (dot (Vec3f (

i B u f f e r P i x e l 2 . x , i B u f f e r P i x e l 2 . y , i B u f f e r P i x e l 2 . z) ,
l i g h t) ∗ 0 . 5 f + 0 . 5 f) ;

}

i f (isPrimary) c o l o r = Vec4f (f i n a l D i f f u s e C o l o r . x ,
f i n a l D i f f u s e C o l o r . y , f i n a l D i f f u s e C o l o r . z , 1 . 0 f) ;

e l s e
{

c o l o r = Vec4f ((F32) i B u f f e r P i x e l 3 . y) ;
c o l o r ∗= 1 . 0 f / (F32)numAORays ;
c o l o r .w = 1 . 0 ;
c o l o r ∗= Vec4f (f i n a l D i f f u s e C o l o r . x ,

f i n a l D i f f u s e C o l o r . y , f i n a l D i f f u s e C o l o r . z , 1 . 0

f) ;
i f (c o l o r . x > 1 . 0) c o l o r . x = 1 . 0 f ;
i f (c o l o r . y > 1 . 0) c o l o r . y = 1 . 0 f ;
i f (c o l o r . z > 1 . 0) c o l o r . z = 1 . 0 f ;
c o l o r .w = 1 . 0 ;∗/

}
i f (showShadow)
{

Vec4f shadowColor = Vec4f ((F32) i B u f f e r P i x e l 3 . z) ;
shadowColor ∗= 1 . 0 f / (F32) numShadowRays ;
shadowColor = Vec4f (1 . 0 f) − shadowColor ;
shadowColor += 0 . 7 5 f ;
i f (shadowColor . x > 1 . 0) shadowColor . x = 1 . 0 f ;
i f (shadowColor . y > 1 . 0) shadowColor . y = 1 . 0 f ;
i f (shadowColor . z > 1 . 0) shadowColor . z = 1 . 0 f ;
shadowColor .w = 1 . 0 ;

i f (dot (Vec3f (i B u f f e r P i x e l 2 . x , i B u f f e r P i x e l 2 . y , i B u f f e r P i x e l 2 . z) ,
l i g h t) >= 0 . 0 f)

{
i f (i B u f f e r P i x e l 3 . z >= 1) c o l o r ∗= shadowColor ;

}
}

}
}

re turn toABGR(c o l o r) ;
}

	Dedication
	Acknowledgments
	Publications
	List of Figures
	List of Tables
	Contents
	Resum
	Resumen
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Thesis overview

	2 Previous work
	2.1 Parameterization and continuity
	2.1.1 Texture space
	2.1.2 Object space
	2.1.3 Screen space

	2.2 Interpolation
	2.3 Continuity and interpolation techniques
	2.3.1 Texture space
	2.3.2 Object space
	2.3.3 Screen space

	2.4 Mesh clustering
	2.5 Information Theory
	2.5.1 Basic concepts
	2.5.2 Information Theory in Computer Graphics

	2.6 Graphics hardware pipeline

	3 Continuity and interpolation in texture space
	3.1 Introduction
	3.2 Overview
	3.3 Traveler's Map
	3.3.1 Construction
	3.3.2 Usage

	3.4 Sewing the Seams
	3.4.1 Construction
	3.4.2 Storage details
	3.4.3 Filtering with Sewing the Seams

	3.5 Mip Mapping and Shader LoD
	3.6 Applications
	3.7 Results and Discussion
	3.8 Conclusions

	4 Continuity and interpolation in object space
	4.1 Introduction
	4.2 *Cages
	4.2.1 Join transformation Jci(p)
	4.2.2 Boundary weight function bci(p)
	4.2.3 Smooth Transformation Sci(p)
	4.2.4 Multi-level deformations

	4.3 Results and discussion
	4.4 Conlusions

	5 Continuity and interpolation in screen space
	5.1 Introduction
	5.2 Clustering
	5.2.1 Information Theoretic Channels
	5.2.2 Clustering a Single Channel
	5.2.3 Smoothing
	5.2.4 Animated Scenes
	5.2.5 Threshold Selection

	5.3 Rendering by Upsampling
	5.3.1 Hard Shadows and Higher-Frequency Signals
	5.3.2 Automatic Pass-Controlling Mechanism

	5.4 Results and Discussion
	5.5 Conclusions

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	Bibliography
	Bibliography

	Appendix
	A Continuity Mapping pixel shader code
	B I-render CUDA kernels

