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1. Zusammenfassung

Sensorik, Robotik und verbesserte Messverfahren führen zu einer Schwemme an Beobachtungsdaten, deren
manuelle Auswertung den Benutzer überfordert. Die computergestützte Auswertung ermöglicht einen effek-
tiveren Umgang mit diesen Datenmengen. Dabei können zwei Analyseziele unterschieden werden. In einigen
Szenarien existieren klar definierte Muster die gefunden, oder Hypothesen, die überprüft werden sollen. Hier
erzielen komplett automatisierte Ansätze sehr gute Resultate, da sie wesentlich effizienter als der Mensch ein-
deutig beschriebene Muster in großen Datenmengen finden können. Im Gegensatz dazu steht die explorative
Datananalyse [Tuk77] mit der ich mich in dieser Arbeit beschäftige. Dabei hat der Analyst kein oder nur
wenig Wissen über etwaig vorhandene Muster oder Zusammenhänge. Üblicherweise existieren zwar Annah-
men über die Daten, deren Überprüfung ist aber nicht alleiniges Ziel der Analyse. Thomas und Cook prägten
den Leitsatz: „Detect the expected and discover the unexpected“ - „Finde das Erwartete und entdecke das Uner-
wartete“ [TC05]. Um neue, unerwartete Muster zu finden und deren Relevanz zu beurteilen, muss der Benutzer
in den Analyseprozess integriert werden.

Visual Analytics ermöglicht dem Nutzer eine explorative Analyse großer Datenmengen durch die Kombina-
tion von Visualisierung und Data Mining. Durch Informationsvisualisierung können komplexe Datenmengen
anschaulich dargestellt werden. Dadurch können Zusammenhänge und Muster vom Analysten erkannt wer-
den. Sehr große Datensätze überfordern aber schnell die kognitiven Fähigkeiten eines Menschen. Daher werden
bei den Visualisierungen oft Ansätze verfolgt, die die Daten in verschiedene semantische Gruppen unterteilen
und je nach Ansatz immer nur einen ausgewählten Teil darstellen. Beispiele für solch grundlegenden Ansätze
der Informationsvisualisierung sind unter anderem „overview first, zoom and filter, then details-on-demand“ -
„Biete zunächst eine Übersicht, Zooming und Filterung, danach Details auf Anfrage“ [Shn96] oder „Focus and
Context“ [CMS99]. Eine automatische Datenanalyse kann helfen, die Daten besser aufzubereiten oder poten-
tiell interessante Strukturen in den Daten zu identifizieren. Dadurch wird dem Benutzer ein Teil der Aufgaben
abgenommen und er kann seine menschlichen Qualitäten, das Erkennen von unbekannten Mustern und die Be-
wertung gefundener Strukturen, besser in den Analyseprozess einbringen.

Dieser Analyseprozess ist keine Einbahnstraße, sondern eher ein mit Schleifen kombiniertes Vor und Zurück.
Beispielsweise könnte ein Analyst, nach initialer Aufbereitung und Visualisierung der Daten, ein ungewöhnliches
Muster finden. Daraufhin können die Parameter der automatischen Analysealgorithmen angepasst und optimiert
werden um das Muster besser erkennen und einordnen zu können. Das daraus gewonnene Wissen kann dann zur
Formulierung neuer Hypothesen im nächsten Analysedurchgang dienen.

Die Idee dieser engen Kombination von automatischen Analysealgorithmen, interaktiver Visualisierung und
Integration von Expertenwissen dient als Basis für die beiden folgenden Teile meiner Arbeit, den visuell-inter-
aktiven Vergleich von Deskriptoren (siehe Kapitel I) und die visuelle Analyse von zeitabhängigen Daten (siehe
Kapitel II). Obwohl sich beide Bereiche diese Kombination zu eigen machen, unterscheiden sich die jeweils
verwendeten Methoden, da sie stark von den jeweiligen Anwendungsfällen und Charakteristka der Daten abhän-
gen. So kann es besispielsweise in beiden Bereichen hifreich sein, Gruppen von Objekten zu identifiezieren.
Die Ansätze zum Clustering und der Visualisierung der Ergebnisse ähneln sich, weisen aber auch signifikante
Unterschiede auf da die Integration des Zeitbezuges häufig eine Anpassung der Vorgehensweise erfordert.
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1. Zusammenfassung

Visueller Vergleich von Deskriptoren

Um große Datenmengen aus komplexen Objekten wie Netzwerken oder Molekülen computergestützt verarbeiten
zu können, wird für diese eine kompakte Repräsentationsform benötigt. Diese sollte für die Analyse relevante
Information enthalten. Solche Beschreibungen können sowohl einfache numerische Werte sein, wie etwa die
Ladung eines Moleküls, aber auch lange Ketten von Zeichen, die zum Beispiel die DNA Struktur eines Bakteri-
ums repräsentieren. Jede dieser Beschreibungen stellt einen Deskriptor dar, die ihrerseits beliebig zu sogenannten
Deskriptorräumen kombiniert werden können. Durch die explorative Analyse und den Vergleich verschiedener
Repräsentationen der Daten können Muster und Zusammenhänge sichtbar werden bzw. deren Bewertung erle-
ichtert werden. Ziel der Analyse ist es Ähnlichkeiten und Unterschiede zwischen verschiedenen Deskriptoren
sowohl auf globaler als auch lokaler Ebene zu finden. Das gilt sowohl im paarweisen Vergleich als auch im Ver-
gleich aller verfügbarer Deskriptoren. Tritt ein Muster etwa in verschiedenen Deskriptoren der gleichen Daten
auf, ist es potentiell interessanter und verlässlicher als bei nur seltenem Auftreten. Ich stelle in dieser Arbeit An-
sätze für den Vergleich von Daten vor, deren Struktur hierarchisch oder nicht bekannt ist. In beiden Fällen folge
ich dem in der Visual Analytics typischen Ansatz und verbinde eine automatische Analyse, zum Beispiel die
algorithmische Bewertung von Ähnlichkeit, mit einer interaktiven Visualisierung um das Wissen des Benutzers
in die explorative Anaylse zu integrieren.

Visueller Vergleich von hierarchisch strukturierten Daten

Figure 1.1.: CloudTree Visualisierung eines Vergleichbaums mit über 7000 Elementen (siehe Kapitel 5).

Hierarchisch strukturierte Daten treten in vielen Analyseszenarien auf. Entweder sind die Daten an sich (im-
plizit) hierarchisch strukturiert, wie etwa phylogenetische Bäume, in denen der evolutionäre Prozess abgebildet
wird oder die Daten werden in einem Datenvorverarbeitungsschritt in diese Form gebracht. Dies geschieht etwa
durch hierarchisches Clustering, das im Gegensatz zu anderen Gruppierungsverfahren den Vorteil hat, a priori
keine Annahmen über die Anzahl der Cluster oder die Struktur der Daten zu treffen. Verfahren, die auf den Ver-
gleich solcher Hierarchien (im Folgenden auch Bäume genannt) spezialisiert sind, können spezifische Vorteile
dieser Strukturen sowohl für eine Verbesserung der Laufzeit, etwa bei Suchen, oder die Visualisierung etwa durch
Node-Link Diagramme nutzen.

Im Rahmen dieser Arbeit habe ich eng mit Biologen zusammengearbeitet, um die spezifischen Fragestellungen
zu analysieren und eine bedarfsgerechte Lösung zu erarbeiten. Phylogenetische Bäume beschreiben die evolu-
tionäre Verwandschaft der enthaltenen Spezies. Jedes Blatt repräsentiert einen Organismus, die inneren Knoten
stellen die berechneten hypothetischen Vorfahren dar. Die formale Repräsentation der einzelnen Organismen
spielt bei der Analyse eine zentrale Rolle. Üblicherweise werden dafür DNA-, RNA- oder Aminosäuresequen-

iv



zen von Proteinen herangezogen. Dabei bietet sich zum Beispiel RNA- und Proteinuntereinheiten des Ribosoms
an, da dieses in allen Organismen vorhanden ist. Die Untereineheit stellen Deskriptoren dar, deren jeweiligen
Auswirkung auf den resultierenden phylogenetischen Baum unklar sind.

Um die Bäume vergleichen zu können, habe ich eine neues Bewertungsverfahren der Ähnlichkeit von
(Sub-)Bäumen vorgeschlagen. Im Gegensatz zu existierenden Ansätzen werden nicht nur die Blätter sondern
alle Knoten bei der Berechnung berücksichtigt. Dadurch gelingt eine Integration der Baumstruktur in das Ähn-
lichkeitsmaß. Sowohl der blattbasierte als auch mein strukturbasierter Vergleichsscore ergeben aufgrund gleicher
Blätter in allen Bäumen trotz maximaler Strukturunterschiede einen Wert >0. Um an dieser Stelle das intuitive
Verständnis der Ähnlichkeit zu verbessern, stelle ich ein neues Normalisierungsschema vor.

Für die Darstellung und Analyse der Bäume und ihrer Ähnlichkeit habe ich das interaktives Visualisierungs-
tool „ViPhy“ entworfen. Im Vorfeld wurde in Zusammenarbeit mit Biologen eine Liste potentieller Analyseziele
erarbeitet, die das Programm unterstützt. Es kombiniert unterschiedliche Ansichten, um die verschiedenen As-
pekte der explorativen Analyse abzudecken. Unterschiedliche Detailgrade erlauben sowohl eine Übersicht über
die globale Ähnlichkeit aller Bäume sowie genaue 1:n oder detaillierte paarweise Vergleiche. Dadurch können
zum Beispiel auch interessante lokale Muster oder Subbäume, die in allen Bäumen identisch vorkommen schnell
identifiziert werden.

Die Visualisierungslösung wurde anschließend anhand eines echten Datensatzes mit 35 Bäumen aus jeweils 32
Bakterienarten getestet. Auf globalem Level konnte schnell eine Unähnlichkeit der Bäume festgestellt werden,
obwohl alle berechneten Phylogenien auf verschiedenen Untereinheiten des gleichen Proteins beruhen. In der
weiteren Analyse konnten einige sehr stabile Subbäume identifiziert werden, die in fast allen Bäumen existieren.
Dieses ungewöhliche Muster konnte nicht intuitiv erklärt werden und dient als Startpunkt für weitere biologische
Forschung.

Um die Skalierbarkeit des Systems zu erhöhen, habe ich eine neue Art der Baumvisualisierung entworfen.
Bei der klassischen Knoten/Kanten Darstellung von Bäumen kommt es zu Überlappungen innerhalb der Visuali-
sierung. Für die Darstellung tausender Blätter bräuchte man mindestens eben soviele horizontal nebeneinander
liegende Pixel, um diesesn Effekt zu vermeiden. Da die Überlappung bei der parallelen Darstellung mehrerer
großer Bäume nicht zu vermeiden ist, habe ich eine Visualisierungstechnik vorgeschlagen, die trotz großer Über-
lappungen auch kleine Details innerhalb der Bäume darstellen kann.

In den sogenannten CloudTrees werden bei Darstellung eines Pixels alle damit abgebildeten Knoten miteinan-
der verrechnet. Dabei kann die Gewichtung der einzelnen Elemente dem Analyseszenario dynamisch angepasst
werden. So können etwa Knoten mit einem hohen Ähnlichkeitsscore stärker bei der Darstellung berücksichtigt
werden. Dadurch können auch potentiell interessante, sehr kleine Subbäume sichtbar gemacht werden. Des Weit-
eren wurden die Interaktionsformen angepasst, um deren Skalierbarkeit gleichermaßen zu gewährleisten. Wenn
ein einzlener Pixel mehr als ein Element des Baumes repäsentiert, ist eine eindeutige Auswahl eines spezifischen
Elementes durch Selektion des Pixels nicht mehr ohne Weiteres möglich. Dem Analysten werden daher ver-
schiedene Selektionsschemata zur Verfügung gestellt, etwa um den besten, schlechtesten oder größten Subbaum
des selektierten Pixels zu wählen. Durch die Kombination der von mir vorgestellten Ansätze können mehrere
große hierarchische Datensätze effizient sowohl auf globaler als auch auf lokaler Ebene miteinander verglichen
werden.
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1. Zusammenfassung

Visueller Vergleich von Daten mit unbekannter Struktur

Figure 1.2.: Vergleich einer Referenz Self Organizing Map (links) mit zwei anderen SOMs unterschiedlicher
Ähnlichkeit (mitte & rechts) (siehe Kapitel 6).

Der Vergleich von Daten mit unbekannter Struktur verfolgt im Allgemeinen die gleichen Ziele wie der Ver-
gleich hierarchischer Daten. Es sollen globale und lokale (Un-)Ähnlichkeiten identifiziert und mit den restlichen
Daten in Zusammenhang gebracht werden können. Häufig liegen nicht hierarchisch organisierte Daten vor und
teilweise ist die künstliche Herbeiführung einer Hierarchisierung, etwa durch hierarchisches Clustering nicht er-
wünscht, da dadurch immer ein durch den Algorithmus verursachter Bias mit in die Analyse einfließen kann. Da
also die Hierarchie nicht als Basisstruktur für die Ähnlichkeitsberechnung der Deskriptoren dienen kann, müssen
andere Metriken herangezogen werden. Diese sollten unabhängig von der Dimensionalität und dem Datentyp
des jeweiligen Deskriptors berechenbar sein.

Ich schlage vor, die Nachbarschaftsbeziehungen der einzelnen Objekte als Grundlage zur Bewertung
der Ähnlichkeit von Deskriptoren zu verwenden. Darauf basierdende Maße werden häufig zur Evaluierung
der Projektionsgüte von Dimensionsreduktions-Algorithmen verwendet. Ich habe verschiedene topologie- und
distanz basierte eigene und aus der aktuellen Literatur entnommenen Maße implementiert und miteinander ver-
glichen. Um diese zu testen, habe ich synthetische Daten mit dem von mir dafür entworfenen interaktiven Vi-
sualisierungswerkzeug PCDC (Parallel Coordinates Data Creation - Datengenerierung basierend auf Parallelen
Koordinaten) erzeugt. PCDC erlaubt eine schnelle Definition von hochdimensionalen Verteilungen verschiedener
Klassen. Dadurch konnten gezielt unterschiedliche Szenarien, etwa mit varierendem Rauschen oder Gruppenan-
zahl, simuliert werden.

Für den visuellen Vergleich von Daten mit unbekannter Struktur stelle ich ein auf zweidimensionalen
Farbkarten beruhendes Verfahren vor. Es erlaubt die schnelle Erkennen von globaler und lokaler Ähnlichkeit.
Für die Darstellung müssen die Daten zunächst, wie bei vielen Visualisierungen üblich, in den zweidimension-
alen Raum projetziert werden. Dies kann mittels geeigneter Projektionsverfahren wie zum Beispiel der Haup-
tkomponentenanalyse (Principal Component Analysis, PCA), der Multidimensionalen Skalierung (Multidimen-
sional Scaling, MDS) oder durch Selbsorganisierende Karten (Self-Organizing Maps, SOMs) geschehen. Das
Resultat sind zweidimensionale Punktwolken (PCA, MDS) oder ein zweidimensionales Raster (SOM). Werden
zwei Deskriptoren miteinander verglichen, so wird die Kodierung der Position einer der beiden Projektionen
durch eine zweidimensionale Farbkarte übernommen. Diese Farbcodierung kann nun auf die jeweiligen Objekte
in der 2D Darstellung der verglichenen Projektion übertragen werden.

Wenn die beiden verglichenen Projektionen ähnlich sind, ergibt sich ein homoger Farbverlauf. Sind sie unähn-
lich, ist kein Farbverlauf zu erkennen. Lokale Ähnlichkeit wird durch lokale Farbhomogenität sichtbar. Das
Verfahren wird auf die Rasterdarstellung der SOM erweitert, bei der die Daten gleichzeitig durch den Algo-
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rithmus gruppiert wurden. Jedes Feld kann mehrere Eingabeobjekte enthalten, wodurch eine Skalierbarkeit des
Verfahrens gewährleistet wird. Darauf aufbauend wird die Visualisierung um weitere Aspekte wie zum Beispiel
eine Darstellung des Visualisierungsfehlers erweitert.

Pipeline für den visuellen Vergleich von Deskriptoren

Figure 1.3.: Pipeline für den visuellen Vergleich von Deskriptoren (siehe Kapitel 7)

Obwohl sich die konkrete Umsetzung beim Vergleich von Daten mit hierarchischer oder unbekannter Struktur
zum Beispiel in den Verwendeten Distanzmaßen unterschiedet, gibt es signifikante Ähnlichkeiten im generellen
Vorgehen. Ich schlage daher eine generische Pipeline für die vergleichende Analyse von Deskriptoren vor.

Um die Einstiegshürde für den Benutzer so gering wie möglich zu halten, wird zunächst in einem automatis-
chen Durchlauf ein initialer Ergebnisvorschlag berechnet. Ähnliche Deskriptoren werden zu Gruppen zusam-
mengefasst und jeweils durch einen Repräsentanten dargestellt. Dies dient dem Nutzer als Einstieg in die Anal-
yse. Ihm steht es nun frei, nur mit den wenigen Repräsentanten weiter zu arbeiten oder tiefer in den Vergleich-
sprozess einzusteigen. Dabei werden die einzelnen Schritte, paarweise Ähnlichkeitsberechnung, Gruppierung
und Repräsentantenbestimmung durch interaktive Visualisierungen unterstützt. Der Benutzer kann sowohl die
Daten explorativ analysieren als auch neue Parameter für die einzelnen Berechnungen setzen und so sein Wissen
in den Prozess einbringen.
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1. Zusammenfassung

Analyse zeitabhängiger Daten

Zeitabhängige Daten treten in vielen Anwendungsgebieten wie der Finanazanalyse, der Klimabeobachtung oder
der Medizin auf. Die zeitliche Komponente spielt dabei eine entscheidende Rolle, die sowohl bei der automati-
schen Analyse als auch bei der Visualisierung berücksichtigt werden muss. Viele Methoden ähneln stark denen
aus anderen Spezialisierungsfeldern innerhalb der Visual Analytics, sind aber auf die spezifischen Anforderungen
zeitabhängiger Daten angepasst. Diese Arbeit enthält Beiträge zu zwei Teilbereichen, der Analyse gruppierter
zeitabhängiger Daten und der Analyse sequenzieller zeitabhängiger Daten.

Explorative Analyse gruppierter Daten mit Zeitbezug

Figure 1.4.: Visualisierung der Gruppenstruktur und deren Änderung Ãijber die Zeit (siehe Kapitel 9).

Bei gruppierten Daten ist jedem beobachteten Datenpunkt zu jedem Zeitpunkt eine eindeutiges Gruppenlabel
zugeordnet. Diese Gruppenzugehörigkeit kann sich über die Zeit ändern. Ziel der Analyse ist es, solche Än-
derungen zu identifizieren und verfolgen zu können. Dabei ist sowohl die Beobachtung einzelner Objekte als
auch die Betrachtung globaler Dynamiken von Bedeutung. Mein Lösungsansatz kombiniert eine automatische
Analyse der Daten mit einer interaktiven Visualisierung.

Die Visualisierung lehnt sich an der Darstellung paralleler Sets [KBH06] an. Jeder Zeitpunkt wird durch einen
Balken repräsentiert, der farblich in die vorhandenen Gruppen unterteilt ist. Die größe einer Gruppe, definiert
durch die Anzahl an enthaltenen Objekten, wird durch die größe der jeweiligen Farbpartition repräsentiert. Kan-
ten zwischen den Balken zweier Zeitpunkte veranschaulichen die Gruppenwechsel oder Stabilität der Objekte.
Auch hier spiegelt die Größe der jeweiligen Kante die Menge der repräsentierten Objekte wieder. Der Benutzer
kann einzelne Kanten oder Gruppen zu einem bestimmten Zeitpunkt auswählen. Dadurch werden die enthalte-
nen Objekte über alle Zeitpunkte hinweg hervorgehoben und können so im globalen zeitlichen Kontext analysiert
werden.

Wenn lange Zeitspannen analysiert werden sollen, muss eine Auswahl der darzustellenden Zeitpunkte getrof-
fen werden. Ich habe verschiedene neue Verfahren vorgestellt, um potentiell interessante Zeitpunkte zu
identifizieren. Diese lassen sich in zwei Kategorien unterteilen. Zum einen werden repräsentative Zeitpunkte so
ausgewählt, dass die Anzahl der dazwischen liegenden Gruppenwechsel konstant ist. Dadurch erhält der Nutzer
einen Überblick über die globalen Charaktersitika der Daten. Zum anderen können automatisch Zeitpunkte se-
lektiert werden, die Besonderheiten wie seltene Gruppenwechsel beinhalten.

Das System wurde auf zwei Szenarien angewand. Im ersten Fall wurden Bewegungsmuster bei einer Eva-
kuierung nach einem fiktiven Bombenanschlag analysiert. Die Daten hierzu stammen aus der IEEE VAST
Challenge 2008 und enthalten die Bewegungsprofile von 82 Personen zu 837 Zeitpunkten [AA10]. Es wur-
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den 20 automatisch selektierte, repräsentative Zeipunkte visualisiert. Ab dem gut zu identifizierenden Zeit-
punkt der Bombenexplosion sind klare Bewegeunsmuster zu den Notausgängen zu erkennen. Es konnten aber
auch deutlich einige Personen identifiziert werden, die nicht den vorgesehen kürzesten Wegen folgen und nicht
rechtzeitig das Gebäude verlassen konnten. Im zweiten Anwendunsfall wurden die Telefondaten von 5.108.298
Mobilfunkverbindungen von 367.730 Personen über neun Monate rund um Mailand analysiert. Dies geschah in
Zusammenarbeit mit Kollegen aus dem Fraunhofer ISAS Bonn, deren Geoanalyse Software zu diesem Zwecke
mit meinem Ansatz kombiniert wurde. Dadurch konnten verschiedene Verhaltensmuster der beobachteten Per-
sonen, wie etwa der Besuch des Flohmarktes an Sonntagen, identifiziert werden.

Explorative Analyse zeitlicher Sequenzreihen

Figure 1.5.: Vergleichsvisualisierung verschiedener Finanzreihen. Während der Exploration ausgewählte Muster
sind hervorgehoben (siehe Kapitel 10).

Um hochdimensionale oder sehr lange Zeitreihen zu analysieren, können diese durch Sequenzen von abstrak-
ten Symbolen kodiert werden. Jedes Symbol beschreibt dabei ein oder mehrere zeitabhängige Muster. Dadurch
kann die Komplexität und Länge des ursprünglichen Datensatzes reduziert werden. Ziel der Analyse ist es
üblicherweise signifikante Muster, etwa ähnliches Verhalten mehrer Objekte zum gleichen Zeitpunkt zu identi-
fizieren. Hierfür muss allerdings sowohl Signifikanz als auch Ähnlichkeit definiert oder bewertet werden. Der
vorgestellte Lösungsansatz bezieht dazu den Benutzer in die Analyse mit ein. So kann die Quantifizierung
der Ähnlichkeit zweier Symbole durch den Benutzer interaktiv paarweise oder durch Definition exemplarischer
Muster definiert werden.

Die darauf aufbauende Analyselösung basiert auf einer Kombination unterschiedlicher Visualisierungen,
die verschiedene Aspekte der Daten betrachten. Die Sequenzansicht bietet einen Überblick über alle Serien.
Diese können nach verschiedenen Kriterien wie etwa selektierten Subsequenzen oder zusätzlichen Metadaten
sortiert werden. Verschiedene Heatmaps zeigen die Häufigkeit von Subsequenzen über alle Zeitpunkte bzw.
über alle Sequenzen und mit Hilfe interaktiver Streudiagramme können Zusammenhänge ausgesuchter Vari-
ablen untersucht werden. Dies können sowohl Metadaten als auch speziell für die Sequenzanalyse berechnete
Deskriptoren wie zum Beispiel die mittlere Häufigkeit des Musters pro Sequenz sein. Ein prototypischer Anal-
ysevorgang wird anhand eines finanzwirtschaftlichen Datensatzes dargelegt. Durch deren Verknüpfung, etwa
der Hervorhebung selektierter Subsequenzen in allen Ansichten, können die einzelnen Stärken kombiniert wer-
den und so auch komplexe Datensätze und Fragestellungen gelöst werden. Exemplarisch wurde ein Datensatz
aus der Finanzwirtschaft mit den Risiko und Ertragseinschätzungen von 60 Firmen über 500 Tage analysiert.
Dabei konnten interessante Muster wie etwa ein ähnliches Verhalten mehrer Firmen innerhalb von zwei Wochen
identifiziert werden.
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1. Zusammenfassung

Zusammenfassend kann gesagt werden, dass durch die Integration des Benutzers in die Analyse wertvolles
Wissen gewonnen wird. Durch die aufeinander abgestimmte Kombination von automatischer Analyse und inter-
aktiver Visualisierung können auch große und komplexe Datensätze verarbeitet werden. Ich konnte dies an Hand
verschieder Ansätze in unterschiedlichen Einsatzbereichen zeigen.
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2. Abstract

Modern technologies allow us to collect and store increasing amounts of data. However, their analysis is often
difficult. For that reason, Visual Analytics combines data mining and visualization techniques to explore and an-
alyze large amounts of complex data. Visual Analytics approaches exist for various problems and applications,
but all share the idea of a tight combination of visualization and automatic analysis. Their respective implemen-
tations are highly specialized on the given data and the analytical task. In this thesis I present new approaches
for two specific topics, visual descriptor space comparison and the analysis of time series.

Visual descriptor space comparison enables the user to analyze different representations of complex datasets
e.g., phylogenetic trees or chemical compounds. I propose approaches for data sets with hierarchic or unknown
structure, each combining an automatic analysis with interactive visualization. For hierarchically organized data,
I suggest a novel similarity score embedded in an interactive analysis framework linking different views, each
specialized on a particular analytical tasks. This analysis framework is evaluated in cooperation with biologists
in the area of phylogenetic research. To extend the scalability of my approach, I introduce CloudTrees, a new vi-
sualization technique for the comparison of large trees with thousands of leaves. It reduces overplotting problems
by ensuring the visibility of small but important details like high scoring subtrees.

For the comparison of data with unknown structure, I assess several state of the art projection quality measures
to analyze their capability for descriptor comparison. For the creation of appropriate ground truth test data.
I suggest an interactive tool called PCDC for the controlled creation of high dimensional data with different
properties like data distribution or number and size of contained clusters. For the visual comparison of unknown
structured data, I introduce a technique which bases on the comparison of two dimensional projections of the
descriptors using a two dimensional colormap. I present the approach for scatterplots and extended it to Self-
Organizing Maps (SOMs) including reliability encoding. I embed the automatic and visual comparison in an
interactive analysis pipeline, which automatically calculates a set of representative descriptors out of a larger
collection of descriptors. For a deeper analysis of the proposed result and the underlying characteristics of the
input data, the analyst can follow each step of the pipeline. The approach is applied to a large set of chemical
data in a high throughput screening analysis scenario.

For the analysis of time dependent, categorical data I propose a new approach called Time Parallel Sets (TIPS).
It focuses on the analysis of group changes of objects in large datasets. Different automatic algorithms identify
and select potentially interesting points in time for a detailed analysis. The user can interactively track groups or
single objects, add or remove selected points in time or change parameters of the detection algorithms according
to the analytical goal. The approach is applied to two scenarios: Emergency evacuation of buildings and tracking
of mobile phone calls over long time periods.

Large time series can be compressed by transforming them into sequences of symbols whereas each symbol
represents a set of similar subsequences in time. For these time sequences, I propose new visual-analytical tools,
starting with an interactive, semi-automatic definition of symbol similarity. Based on this, the sequences are
visualized using different linked views, each specialized on other analytical problems. As an example usecase, a
financial dataset containing the risk estimations and return values of 60 companies over 500 days is analyzed.
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3. Introduction

Modern technologies allow us to collect and store increasing amounts of data. As a manual inspection of these
data overburdens the analyst, computer based approaches are increasingly used. Thereby, the applied methods
depend on the analytical requirements and tasks which can be split in two groups. First, in some scenarios,
clearly defined patterns should be found or hypotheses should be validated. In these cases, completely automatic
algorithms can achieve excellent results as they can process large amounts of data very effectively. This contrasts
to the exploratory data analysis, on which I focus in my work [Tuk77]. In this case, the analyst has no or only
little knowledge about patterns or dependencies in the dataset. There may exist some a priori assumptions about
the inner structure of the data, but their evaluation is not the only analytical target. Under these conditions,
Thomas and Cook shaped a guiding principle: “Detect the expected and discover the unexpected” [TC05]. To
discover these new and unexpected findings, the users have to be involved in the analytical process.

Visual Analytics enables the exploratory analysis of large datasets by combining data mining techniques and
interactive visualization. Information visualization allows the presentation of complex data sets, so that con-
nections and patterns can be discovered. But very large datasets quickly overburden the cognitive capabilities
of humans. Therefore, visualization approaches often try to divide the data into different groups or level of
details and, depending on the respective approach, show only one or some of these groups. Some examples
of these strategies are “overview first, zoom and filter, then details-on-demand” [Shn96] or “Focus and Con-
text” [CMS99]. Automatic data analysis helps to, e.g., preprocess the data or to identify potentially interesting
structures in the dataset. Thereby, the analytical task is facilitated and the user can focus on integrating his special
strength, the detection of previously unknown patterns and their evaluation, into the analytical process.

This process is not one-way, but rather a back and forth or looping [KKEM10] (see Figure 3.1). An examplary
analysis process may run as follows: An initial preprocessing and visualization may allow the analyst to find
some unexpected local patterns. Thereupon, the parameters of the data mining algorithms can be adapted and
optimized leading to a clarification of the pattern detected. The knowledge obtained might be used to formulate
hypothesis for the next round of analysis.

This idea of tight integration and combination of data mining, interactive visualization and expert knowledge
is the basis of all Visual Analytics approaches. However, depending of the usecase and the structure of the data
which should be analyzed, the particular methods and approaches may vary. Thus, different subfields within
Visual Analytics emerged whereof I focus on two in this thesis: Visual Descriptor Space Comparison (Part I) and
the Analysis of Time Series (Part II).
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3. Introduction

Figure 3.1.: This diagram shows the process of data analysis in Visual Analytics [KKEM10]. It tightly combines
automatic data analysis, interactive visualization and the integration of user knowledge.

3.1. Contributions

My contributions to the two mentioned fields of Visual Analytics are the following:

• Comparison of hierarchically organized datasets:
– I propose a novel comparison score reflecting structural differences and a visual-interactive compar-

ison tool called ViPhy (see Section 4).
– The tree comparison solution is extended by CloudTrees, a tree visualization specialized on the com-

parison of large trees with thousands of elements (see Section 5).
– I introduce a color-based comparison technique for the visual comparison of data with unknown

structure (see Section 6).
– I present a interactive analysis pipeline to guide the user trough the analytical process (see Section

7).
• Analysis of time dependent data:

– For the analysis of time dependent categorical data, I suggest TimeParallelSets (TIPS) combining a
parallel coordinate-like visualization with novel algorithms for the automatic selection of key points
in time (see Section 9).

– I support the analysis of time sequences with an interactive combination of linked views, each spe-
cialized on specific analytical tasks (see Section 10).
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Part I.

Visual Descriptor Space Comparison
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The first part of this thesis focuses on the comparative analysis of descriptors. Often, the analysis of large
amounts of data requires the support of computational methods e.g., to find patterns and outliers. These processes
usually rely on a symbolic representation of each data-object. Complex objects like 3D models, graphs or
chemical compounds exhibit multiple different aspects like size, curvature, charge, solubility, connectivity etc.
which can be numerically described. Some aspects like the quantity of edges in a graph can be described with a
single number, others need more values e.g., the three dimensional position in space and complex structure based
definitions of molecules can include hundreds of values. In some areas, numerical descriptions are extended
by categorical properties (e.g., countries of origin) or even more abstract symbolic representations like base- or
aminoacid sequences in biology. Each of these representations is a so called descriptor, which can be used on its
own or can be arbitrarily combined resulting in a new descriptor. The set of all descriptors is called descriptor
space (see Figure 3.2).

The analytical tasks using descriptor representations can mainly be divided into two areas. First the general
exploratory analysis, on which I will focus in this thesis and second the more specialized cases like search
or classification. In the exploratory analysis, the user tries to gain knowledge about the underlying statistics
and characteristics of a dataset. Usually, no prior knowledge or assumptions are integrated in the analytical
process. The descriptors used should cover a broad variety of different properties of the data. Based on this, the
interactive visualization should support the analyst e.g. in discovering connections between objects in the context
of a particular descriptor or descriptor combination. In more specialized use cases, the descriptors are designed
for a given task like clustering or retrieval. There exists no representation which is perfect for all requirements,
but in general, the ideal descriptors should be as compact as possible while still including as much information as
needed. Often, there exist no descriptor combination which is optimal for all objects in a scenario. An example
in a retrieval setting is shown in Fig 3.3. A database of 3D objects was searched for the most similar objects for
the input objects a human or a chair highlighted by the red border. The searches were performed on two different
representations of the dataset (descriptor A & B). Descriptor A was able to capture aspects which offer a high
discrimination for human models but the performance for a chair was quite poor. In contrast, descriptor B works
better for the chair than for the human. In consequence, a proper description is heavily use case dependent, here,
the user knowledge is very important for the evaluation of the results.

In the given exemplary search scenario, it is easy to asses the results and appropriate descriptor combinations
can be trained based on a relatively small labeled training set. However, in most exploratory search scenarios,
this is not the case. For example, in the exploratory analysis of high throughput screening (HTS), an overview
over thousands of molecules is needed. If different representations of the whole dataset are presented to the
user, their effective comparison is difficult (see Fig 3.4). An interesting aspect in one use case, e.g. the cost
of the synthesis of a chemical compound, might be more important in a business environment than in research
or more important developing a drug against cancer than again headache. As already mentioned, the descriptor
representation is for example used to discover patterns in the data. But this does not mean that the descriptor
which exhibits the strongest patterns is always the best. Often, strong patters are already known to the analyst
and therefore in this context not interesting. This factor impedes a fully automatic descriptor comparison. In
consequence, it is beneficial to include the user for evaluation in the descriptor analysis process. As the analysts
are experts in their field (e.g., biology or finance), but often no experts in the data mining domain, it is important
to allow for an easy access. In my approaches, I enable them to compare different descriptors and calculation
results interactively, supporting e.g., the identification of similarities of differences between given descriptors.
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In conclusion, the following tasks may arise, depending on the respective dataset and the analytical focus:

• Explorative comparison of different descriptor representations of a dataset, e.g. for the identification of
differences and similarities.
• A similarity rating of the descriptors on a global and local level.
• A compact selection of descriptors, showing the main patterns of the dataset.

The particular approach to solve these tasks depends on the structure of the input data. The following chapters
focus on the on the interactive comparison of hierarchically structured data where each descriptor forms a hierar-
chy (see Section 4 and 5) and on data, where no particular structure is assumed a priori (see Section 6). Although
the particular techniques like the distance measurements or the visualizations are specialized on the respective
input data, the overall procedures have many commonalities. Therefore, I propose a Visual descriptor Pipeline,
integrating both approaches (see Section 7).
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Figure 3.2.: The pipeline for computational data analysis. Descriptors, representing different aspects of complex
data objects are extracted. Following, various computations based each of these descriptors can
be calculated. The different results of these calculation are then compared to find differences and
commonalities.
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Figure 3.3.: This figure demonstrates the impact of different descriptors in a similarity search scenario in a 3D
object data set. The first column, highlighted in red, represents the query objects, a human and a
chair. The dataset is given in two representations by the descriptors A and B. Using descriptor A,
human models, in contrast to the chair, can be retrieved very accurately. The object representation of
descriptor B shows the opposite result. Hence, the choice of a representation is use case dependent.

(a) (b)

Figure 3.4.: This figure shows two different representations of the same chemical compound dataset. The self-
organizing map projections have been calculated on basis of the number of nitrogens (a) and on
molecule size (b). Both show comprehensible assembly, but to find differences and commonalities
between them is difficult.

8



4. Visual Comparison of Datasets with
Hierarchical Structure

Figure 4.1.: Novel CloudTree visualization of a tree containing > 7000 elements.

The comparison of multiple trees is an important issue in biology and other application areas, where each
tree reflects the structure of the data based on one of the given descriptors. Either the underlying data is already
hierarchically ordered, e.g. in the phylogenetic research or the hierarchic structure serves as tool for the analysis
and is created e.g. using hierarchic clustering. In this thesis, I will give examples for both cases, starting with
a hierarchically structured biological data (see Section 4.3) and later extending the approach to hierarchical
clustered data in other application areas like pharmaceutical research in Section 5.

Biologists often analyze evolutionary relationships between organisms. Such relationships are typically rep-
resented by so-called phylogenetic trees. The derivation of such phylogenetic trees is usually based on a
representation of each organism and an evolutionary model. There exist several representations of the same
species e.g. different DNA- or protein sequences and varying assumptions on the evolutionary model which
are reflected in algorithm and parameter choice. Thus, the derived trees are highly susceptible to parameter
choices [LBX∗01, Ham10]. Therefore, it is very important to compare sets of trees flexibly. The simultaneous
analysis of multiple trees is expected to lead to more insight into the evolutionary processes and/or to compensate
for uncertainties in the descriptor choice or model parameterizations.

In comparison setting, the analyst usually tries to find commonalities and differences among the compared
entities. This is not restricted to global similarity evaluation, but more importantly, also encompasses the assess-
ment of local patterns. For example, it is important to examine the stability of subhierarchies across the trees.
The typical tasks include identification of globally interesting trees for reference purpose, finding locally dissim-
ilar structures in trees with high global similarity to a reference tree, or the stability of a selected subhierarchy in
other trees (see Section 4.3 for more information).

Currently, there are no readily available advanced methods for the visual comparison of multiple trees. The
tools commonly applied by biologists support visualization of single trees as node link diagrams, e.g., using the
FigTree [Ins] software. For multiple trees, a typical approach is a simple visualization of pairwise tree similarities
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by a heatmap (see also Section 4.1.2). However, this approach does not satisfy the analytical needs, in particular,
it does not provide structural tree comparison and assessment of local patterns.

In the analysis, we have to distinguish two different levels of complexity a) the number of trees to compare
and b) the number of leaves in each tree. In the following, I will first focus on small trees to introduce my novel
comparison score (see Section 4.2.2) and the interactive comparison system (see Section 4.2.4). An extension of
the approach to large trees with thousands of elements is presented in following Section 5.
My main contributions are:

• I present a new visual analytics approach to compare multiple trees, both on global and local levels. To
support efficient tree comparison, I combine automatic data analysis with interactive visualization (see
Section 4.2.4). This combination allows for data analysis on several levels of detail. In particular, the
results of automatic analysis are used for highlighting interesting patterns in the data and selecting data for
detailed inspection.
• I introduce a new distance measure to compare rooted trees. This measure indicates differences in tree

structure better than other available measures (see Section 4.2.2).
• I propose a normalization schema for the new element based score, which is applicable for other scores

like the leaf based score, too. I allow the user a better assessment of the comparison results to prevent
misinterpretation (see Section 4.2.3).
• I developed the CloudTree technique, extending the approach to enable the comparison of large trees with

thousands of leaves (see Section 5).

My approach has various application benefits in phylogenetic (see Section 4.3) or pharmaceutical (see Section
5.3) research. I worked in close cooperation with domain experts from biology to compile a list of relevant tasks
which is used to demonstrate the effectiveness my the approach to real world problems.

The work presented in this chapter is partially based on [BvLH∗11].

4.1. Related Work

An overview of the visual analysis of graphs including their structural comparison is provided in a recent state-
of-the-art report [vLKS∗11]. It presents an exhaustive survey of work on tree visualization and analysis. Building
on relevant approaches for interactive tree visualization discussed in Section 4.1.1, relevant work on visual com-
parison of multiple trees is recalled in Section 4.1.2. The visualization specialized on scalability issues for large
trees will be discussed later in Section 5.1.

4.1.1. Visualization of Trees

The main approaches for visual tree analysis include node-link diagrams and treemaps. Node-link diagrams are
well suited for the visualization of phylogenetic trees [HRR∗07, LB06, DGB∗08]. They allow for the represen-
tation of weighted edges and offer a very intuitive representation of binary trees as many users are familiar with
them. The usage of links between nodes for larger graphs may be space inefficient. Therefore, specialized layout
algorithms have been proposed to increase visualization scalability (see [vLKS∗11] for an overview).

Alternative space efficient techniques, such as treemaps [Shn92a], use the whole available space. They recur-
sively lay out child nodes within their respective parent nodes. As this technique employs overlapping of the
parent nodes, users may find it difficult to assess the tree structure. This is a drawback especially for comparison
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as the visually underrepresented inner nodes are sometimes more important than the leaves, which are similar in
all trees.

To overcome space limitations and to support exploration of the tree structure, data analysis, visualization
techniques and user interaction are combined. Several tree traversal and expansion techniques [EF10] can be
employed to filter a given tree to the most interesting part. Alternatively, distortion techniques (e.g., fisheye
views) allocate more display area to the parts of the tree of higher interest to the user. They can be based on a
degree-of-interest function such as in DOITrees [CN02, HC04] or interactively selected by the user [MGT∗03,
TS08]. Multiple coordinated views [CMP09] offer an overview of the main tree structure and a detailed view on
the selected parts of the tree. The construction of the overview relies on a score determining the interestingness
of the substructure for a more detailed view.

These techniques focus on single trees and therefore form a basis for visual comparison of trees discussed in
the following section.

4.1.2. Visual Tree Comparison

Existing techniques for visual comparison of trees focus on pairwise structural comparison and on comparison
of multiple trees. An overview of existing visualization techniques and approaches can be found in [GK09]. A
selection of approaches is laid out in the following section.

(a) (b) (c)

Figure 4.2.: Current pairwise visual tree comparison approaches.
a) Approach focusing on leaf node matching [HVW08]. b) Approach focusing on matching most
similar structures [MGT∗03]. The red nodes are the best matches based on a comparison score, yet
different subtree structures exist. c) Tree comparison using union trees and contrast treemaps [TS07].

Pairwise comparison: An overview of general approaches is shown in Figure 4.2. Holten et al. [HVW08]
proposed an approach matching leaf nodes between two trees. They draw the two trees in opposite parts of the
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display and link their leaf nodes, while minimizing edge crossing. The crossing of links emphasizes the differ-
ences between the tree structures. These visual clues are enhanced by edge bundling. As shown in Figure 4.2(a),
this approach does not reflect all structural differences between trees in some cases. In this case, the leaf nodes are
fully aligned, however the tree structure differs. Telea and Auber extended this approach to analyze a sequence
of pairwise tree comparisons [TA08].

Visual tree comparison focusing on the identification of corresponding nodes between the trees was presented
by Munzner et al. in the TreeJuxtaposer system [MGT∗03]. The approach was developed specifically for the
analysis of phylogenetic trees. It analyzes and highlights leaf set similarities. This match is performed on
demand, when the user clicks on a subtree, what can make it cumbersome to analyze large trees. The matching
uses a similarity score based on set overlap of the leaf nodes (see Section 4.2.2.1). This score regards common
groups of nodes without their structural relationship. As seen in Figure 4.2(b) two nodes (red color) are matched
with the highest score, although their subtree structures differ.

Tu and Shen [TS07] propose a comparison of two trees in a treemap visualization called “contrast treemap”.
It was developed to support a static comparison of dynamic trees in two time points. It unifies the two trees
to be compared for structural match. The visualization of the union tree employs specific node coloring and
texturing which highlights value differences between leaf nodes. This approach is well suited for comparing value
changes, however spotting structural differences above leaf node level is more difficult and is layout dependent.
Moreover, the union tree algorithm leads to node duplication and thus to larger trees, which may complicate
visual comparison (see Figure 4.2(c)). Koop et al. [KFS13] extended the approach to the merging of compared
graphs in one hyper-graph but the resulting graph tend to become very large and complex if many compared
dissimilar input graphs are compared.

Figure 4.3.: Typical visualization of a multiple tree comparison in biology. Shown are pairwise distances be-
tween phylogenetic trees and their hierarchical clustering as computed by the TOPD/FMTS pack-
age [PGM07]. Such global analysis neglects any local structure or emergence of patterns in different
trees. Note: Sx and Lx entries represent the name convention in microbiology for biomolecular
sequences used to derive a particular tree.

Comparison of multiple trees: The above mentioned approaches are designed for the comparison of pairs of
trees. There are only few techniques dealing with the comparison of multiple graphs (incl. trees). The avail-
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able techniques for comparing multiple graphs [FPSG10, vLGS09] are not specialized on trees and do not allow
for explicit visual comparison of tree structures. For trees, the so-called “Trees of Trees” approach constructs
a meta-tree by successive joining of the underlying trees so that the total distance between tree nodes is mini-
mized [Nye08]. This is a computationally intensive approach. The visualization of the result does not offer direct
insights into the inner structural comparisons between the connected trees and does not provide for shared pattern
identification. Normally, biologists use simple visualization of pairwise tree similarities in a heatmap [PHH10]
combined with hierarchic clustering (see Figure 4.3). It also does not offer structural tree comparison and assess-
ment of local pattern differences.

Hillies et al. presented an approach for the comparison of many trees [HHJ05]. Each tree is represented in a
scatterplot using Multidimensional Scaling to determine its position. For a more detailed comparison, consensus
trees are build revealing common substructures. Details about the uncommon structures are not provided.
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4.2. Approach: ViPhy

My approach supports the comparison of multiple, rooted trees with identical leaf elements. It is designed to
support identification of similarities and differences between these trees. This is not restricted to global similarity
evaluation and supports the assessment of local patterns specifically.

Scalability of the analysis with respect to both the number of compared trees and their sizes (measured by the
number of leaf nodes) is supported by visual analysis on several levels of detail. In this respect, we combine
comparative data visualization and automatic data analysis. The computation of local and global similarities is
used for filtering and highlighting interesting data patterns.

The analysis system, called ViPhy combines several interlinked views representing multiple levels of detail
in the comparison analysis (see Figure 4.4). An initial overview shows the similarity matrix between all trees
(see Section 4.2.4.1). From there, one reference tree can be selected for a detailed comparison with other trees
(see Section 4.2.4.3 and 4.2.4.2). All views are supported by integrated calculation of local and global similarity
measures (see Section 4.2.2).

Figure 4.4.: Overview of our approach showing a visualization of multiple levels of detail for tree comparison. 1)
Global pairwise tree distance matrix. 2) Score distribution for 1:n tree comparison. 3) Consensus tree
for 1:n comparison with average matching scores. 4) Selected trees with scores showing similarity
to the reference tree. Selected nodes (pink) are highlighted in all views.

In the following, the approach is described in more detail. The employed similarity measures are depicted
followed by details on the interactive visualization.
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4.2.1. Definitions

We are concerned with rooted trees exclusively in this study. A tree T consists of set of undirected edges E that
connect pairs of nodes V , formally defined as T = (V,E);E ⊆ [V 2]. A tree T is called rooted, if one node r is
distinguished as a so-called root node: T = (V,E,r). A path in a tree is defined as a unique sequence of connected
nodes p(n1,nk) = n1,n2, . . . ,nk where ni ∈V and (ni,ni+1) ∈ E. A weighted tree has edges with associated real
numbers as weights w(e);e ∈ E.

Note that in this work, we use the term hierarchy synonymously to rooted tree. Leaf nodes (LN) are nodes,
that are connected only to one node. They do not have any child nodes. The set of all leaf nodes of a tree T is
denoted as L(T ). Non-leaf nodes are referred to as inner-nodes (IN). A binary rooted tree is a tree where each
node apart from leaves has two child nodes (descendants). A subtree T n ⊂ T of a tree T is a tree consisting of a
node n ∈ T and all of its descendants in T . The subtree corresponding to the root node is the entire tree.

We denote the distance of two trees T1 and T2 as d(T1,T2) with 0 ≤ d(T1,T2) ≤ 1, so that small distances
(close to 0.0) reflect high similarity of the two trees. The similarity is defined as s(T1,T2) = 1.0−d(T1,T2). The
similarity of two nodes n1 ∈ T1 and n2 ∈ T2 is defined as the similarity of the subtrees T n1

1 and T n2
2 rooted at

nodes n1 and n2, respectively. The score of the node n is defined as the maximum similarity to all nodes in the
compared tree T2.

The distance of two nodes n1, n2 in the same tree is defined as the length of the path connecting them.
d(n1,n2) = |p(n1,n2)| = |ei|,ei ∈ p(n1,n2). The weighted distance is defined as: wd(n1,n2) = ∑w(ei),ei ∈
p(n1,n2).

We define elements of a tree as a set of all leaf sets L(T n) of all subtrees T n ⊂ T :
Elements(T ) = {{L(T n)},∀n ∈ T}.

4.2.2. Similarity Measures

There are several approaches to calculate the distance between two trees [SP93, ZMP97, MGT∗03]. I developed
a novel element-based scoring scheme, reflecting differences in the inner structure of the compared trees. To
support different analytical tasks, e.g., ignoring the structure and focusing only on leaves, two commonly used
measures [SP93, MGT∗03] are employed, additionally.

4.2.2.1. Leaf-Based Measure

Leaf-based scores calculates the similarity of trees T1, T2 based on their contained leaves L(T1) and L(T2). A
normalized variant of the Robinson-Foulds distance is employed, following the strategy of Munzner and Guim-
bretiere introduced in [MGT∗03]:

s(T1,T2) =
|L(T1)∩L(T2)|
|L(T1)∪L(T2)|

. (4.1)

As only the leaves are included in the score calculation, the tree structure is ignored. Consequently, two
(sub)trees containing the same leafs are classified as similar even if their structure may differ substantially. An
example can be seen in Figure 4.5(a), where all roots have the maximal score. In this case, however, the internal
structure of the trees differs significantly. Therefore, I developed a new measure presented in the following
section.
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4. Visual Comparison of Datasets with Hierarchical Structure

4.2.2.2. Element-Based Measure

I present a new element-based score, which extends the leaf-based measure, so that it reflects the inner structure
of the tree. In contrast to a leaf-based scoring, the inner-nodes of a tree are incorporated in the score.

s(T1,T2) =
|Elements(T1)∩Elements(T2)|
|Elements(T1)∪Elements(T2)|

, where Elements(Ti) = {{L(T n)},∀ni ∈ Ti}, f or i ∈ {1,2} (4.2)

As an example, the comparison score of the roots of the left (Tl) and center (Tc) tree in Figure 4.5(b) is shown.
Tl : {A,B,C,D, [A,B], [C,D]}; Tc : {A,B,C,D, [A,B], [A,B,C]};
s(Tl ,Tc) =

5
7 ≈ 0,71

This score discriminates structural and node-based differences between trees more profoundly than the leaf-
based score (see Figure 4.11). In many cases, as exemplarily shown in our use case, the score distribution
is less skewed and the scores more homogeneously distributed across the value range. This allows for better
discrimination of structural differences based on score values.
Moreover, as we include also inner-nodes in the calculation, no special score for the root nodes in trees containing
the same organisms is needed (see Figures 4.10 and 4.5(b)).

4.2.2.3. Edge-Based Measure

Scores, which rely on nodes only (leaf-based and element-based scores), typically do not take the differences in
the edge lengths (i.e. weights) into account. However, the edge length encodes important biological information
such as evolutionary similarity of species. Therefore, we include a weighted edge-based score, which measures
the difference between the sum of path lengths between all pairs of leaves in the compared trees (see Figure 4.6).
This measure is inspired by the approach of Steel & Penny [SP93], who proposed a metric based on the difference
of the number of edges connecting leaves.

s(T1,T2) = 1.0− ed(T1,T2)

maxwd(T1,T2)
, where (4.3)

ed(T1,T2) =
√

∑(wd(n1
i ,n

1
j)−wd(n2

i ,n
2
j))

2, and (4.4)

maxwd(T1,T2) = max{max{wd(n1
i ,n

1
j)},max{wd(n2

i ,n
2
j)}}, (4.5)

∀n1
i ,n

1
j ∈ L(T1),n1

i 6= n1
j and ∀n2

i ,n
2
j ∈ L(T2),n2

i 6= n2
j (4.6)

In this way, differences between trees containing the same elements in the same structure, but with other edge
weight (i.e., length), can be revealed (see Figure 4.6). One disadvantage of the score is its normalization by the
longest weighted path in both trees. As discussed in [SP93], this leads in large trees often to similarity scores
close to 1.0 (see Figure 4.10(b)). Moreover, this score does not allow for determination of best matching nodes
between two trees as only whole trees can be compared. Therefore, the score of a subtree is calculated according
to the corresponding path lengths in the whole compared tree.

4.2.3. Score Normalization

The major problem of the element- and leaf-based scores [BvLH∗11, MGT∗03] is that they are not normalized.
Depending on the sizes of the query and target tree, the similarity score does not fall below a certain thresh-
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(a) Leaf-based score

(b) Element-based score

Figure 4.5.: This figure shows the comparison of two similarity measures. The scores calculates the similarity
of a reference tree (left, with red border) to two other trees (center and right). The color map used
ranges from blue(high similarity) to white (low similarity) (see Figure 4.9).
a) The scores are calculated using the leaf-based measure (Sec. 4.2.2.1).
b) The scores according to element-based measure. The score does not only include the leaves, it
also considers the inner-nodes of the subtrees.
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4. Visual Comparison of Datasets with Hierarchical Structure

(a) Reference tree (b) Element-based score (c) Edge-based score

Figure 4.6.: A comparison of element-based and edge-based score for measuring similarity between a reference
tree (left, red border) and another tree (center, right).
b) Element-based score. Due to equal elements, both trees are regarded as similar.
c) An edge-based scoring reveals the differences in edge length.

old, so it might be quite high although the match is very bad. For example, if two binary trees with the same
leaves are compared using the element-based score, the result cannot be asymptotically worse than 1/3 (see
Section 4.2.3.1). So a seemingly high score of 0.4 does not reflect a good match. This might lead to misinterpre-
tations, if the analyst is not familiar with the score calculation. As an illustration, we consider the tree similarity
scores for hierarchically clustered real-world chemical components data obtained for different compound de-
scriptors (see Figure 4.7 (a)). We see that the score (y-axis) increases with higher query tree size (x-axis). This
is counter-intuitive as it is usually more difficult to find matching subtrees for larger query trees.

4.2.3.1. Normalized Similarity Score

I propose to normalize the score with respect to the theoretic maximum and minimum. The resulting normalized
score gives information about the relative similarity of the compared trees.

A linear normalization of the element-based score is employed (Eq. 4.7):

ŝe(T1,T2) =
se(T1,T2)−min(se)

max(se)−min(se)
(4.7)

For the calculation, we need to identify the theoretical minimum and maximum score (min(se),max(se)).
The maximum matching score comparing two identical trees T1 = T2 is max(se) = 1.0.
The computation of the minimum score is not that trivial though. It is the score of the best matching unit

(BMU) of query tree T1 in the theoretically most dissimilar target tree T2. We claim that the best matching unit
for the worst case is either a single leaf node or the whole target tree. This depends on the size of the query and
target tree T1 and T2. This relationship is non-linear as illustrated in Figure 4.7a.
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4.2. Approach: ViPhy

(a) Score distribution without normalization

(b) Score distribution with normalization

Figure 4.7.: The need for score normalization exemplified by chemical structure comparison based on different
descriptors. a) Scores without normalization. b) Scores with normalization based on theoretic score
minimum values. The size of the subtree is mapped to the x-axis, its score to the y-axis. The color
reflects the number of subtrees in one cell.
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For the derivation of the minimum score, we first rewrite the element-based score calculation (see Sec-
tion 4.2.2.2) using BMU notation (see Section 4.2.1): M(T1,T m

2 ) with size M.

se(T1,T2) =
M

IN(T1)+ IN(T m
2 )−M

,T m
2 ∈ T2 (4.8)

Without loss of generality, we assume that L(T1)⊆ L(T2). This follows from the assumption of the same leaf
nodes in all input trees and from the nature of subtree matching.

The minimum score for BMU being single leaf node:

min(se)
Lea f =

1
IN(T1)−1

(4.9)

The minimum score for BMU being the whole tree T2:

min(se)
Tree =

LN(T1)

IN(T1)+ IN(T2)−LN(T1)
(4.10)

The worst best score is then defined as the maximum of these two scores:

min(se) = max(min(se)
lea f ,min(se)

Tree) (4.11)

The proof of this claim follows from minimizing the score (Eq. 4.8) with regard to all variables. As IN(T1) =
E1 = const in this case, it reduces to minimization with respect to two variables: M(T1,T m

2 ) = M and IN(T m
2 ) =

E2. This leads to a concave solution space with extrema at its boundaries, i.e., M = 0 and E1 +E2−M =∞.
However, there are two constraints for the equation: 1) M > 0 (there is always at least one leaf that can be
matched) and 2) M ≤ E1 as it is its subset. It then follows that the two extrema are achieved at boundary: M = 1
or E2 = IN(T2). This means matching either one leaf or the whole target tree T2 (see Figure 4.8).

Figure 4.8.: Illustration of worst case matching of two trees. Both trees are stair-shaped with an inverted order of
the leaves.
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As an intuition of the result, assume that the best match is the whole target tree. Then the resulting score is:

se =
LN(T1)

IN(T1)+ IN(T2)−LN(T1)
=

a
b

(4.12)

If not all leaf nodes are matched, then the score changes as follows: s−1
e = a−1

b−1 , where 1≤ a≤ b.
If this results in a lower score, it is disadvantageous to reduce the size of the matched tree (i.e., the BMU is no
longer the whole tree). If, in contrast, the score increases, the target tree can incrementally be reduced to its
minimum, i.e., one leaf.

The border between the two types of match is the point where the scores for full tree match or leaf match are
equal (i.e. min(se)

lea f = min(se)
Tree).

Then, for this border holds:
IN(T2) = IN(T1) · (LN(T1)−1) (4.13)

As an example, in the binary case, the border can be calculated using only the leaf count of the query and target
tree:

LN(T2) =

⌈
1+

√
LN(T2)−1

2

⌉
. (4.14)

4.2.3.2. Multiple Tree Comparison Score

For the comparison of multiple trees, we need to define a score, which enables us to compare a tree T with a set
of trees T S = {Ti}, i = 1,2, · · · ,n. We calculate such a score as an average of pairwise comparison scores.

âse(T,T S) =
∑Ti∈T S ŝe(T,Ti)

|T S|
(4.15)

This is called the consensus score. It provides information on the overall similarity of a tree to a set of
compared trees. It can be calculated for all trees in the dataset or only for a subset. Alternatively, for better
discrimination of scores, an average of the squared scores can be employed.

4.2.3.3. Summary

The similarity scores described above capture different tree properties. The proposed element-based score reflects
the tree structure and provides a good score distribution. Leaf-based score is useful only in particular cases when
global grouping of the leaves is of interest, solely. The edge-based measure captures a signatures of the general
structure, and can accommodate edge weights. Nevertheless, its normalization and thereby the scalability to
larger trees is an open problem.

When using efficient implementation, in optimal case, all scores exhibit the same computational complexity
of O(|V |2) [SP93, MGT∗03, LH03] which is optimal for a pairwise comparison of all subtrees [LH03].
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4. Visual Comparison of Datasets with Hierarchical Structure

4.2.4. Interactive Visualization

To ensure scalability, several visualizations representing different levels of abstraction are integrated in the tree
comparison system (see Figure 4.4). It thereby enables the user to compare whole trees, subtrees or individual
nodes. The visualizations are linked for interactive highlighting of interesting tree parts in all views. The applied
calculation methods and visual attributes (e.g., colormaps) are consistent in all visual representations and can
be chosen interactively. The tree visualization technique was chosen so that it best fits the demands of the
comparison of phylogenetic or hierarchically clustered data. I employ the commonly used node-link technique
with traditional, orthogonal top-down layout, because it is very beneficial for the user’s perception [BKH∗11], its
easy interpretability (see Section 4.1.1) and the possibility to reflect the edge weights created in the tree building
process [DGB∗08].

In the following, the data views are presented in detail. We use the color map shown in Figure 4.9, where red
represents low and blue high similarity. After testing various color maps from www.colorbrewer.org, this color
map is used because it highlights high and low scores well and offers a good score discrimination.

Figure 4.9.: Color map used for the tree comparison. Colors based on www.ColorBrewer.org, by Cynthia A.
Brewer, Penn State. [Bre12]

4.2.4.1. Comparison Overview

An overview of pairwise similarities of all trees in the test data set is presented by the similarity matrix. This
representation is included as it is an established approach for visualizing pairwise relations, presenting a familiar
and easy to grasp overview (see Figure 4.3). Every row/column represents one tree and the cells encode the
global similarity evaluation of tree pairs. This view allows for an overview of global similarities among trees and
thereby, offers the possibility to select a reference tree for more detailed 1:n tree comparison in other views.

Additionally, the matrix can be sorted according to the sum of the scores (Figure 4.10). In the sorted map, the
most (dis)similar trees to other trees stand out on the sides of the matrix (e.g., two right columns represent most
dissimilar trees to all others). To improve the matrix visualization, the variance of the scores is also included to
indicate possible local differences. The variance matrix is shown alternatively to the score matrix.

4.2.4.2. Score Distribution View

The overview matrix offers only one global score per tree comparison. Therefore, a more detailed histogram
view on the score distribution in the tree comparison is included. The histograms offer a compact overview of
the score distribution of all nodes in each tree when compared with the selected reference tree (see Figure 4.11).
These views allow the detection of distinct score distribution patterns such as predominantly high scores, bi-
modal score distributions (many low and many high scores), or trees with high variance of scores.
The histograms also serve for comparison of various score measures for the analyzed data set (see Section 4.2.2).
Figure 4.11 shows a comparison of the score distributions for the three scores used. The element-based score
shows better discriminative power for tree comparison than the other two measures. For example, the score
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(a) Leave-based score (b) Element-based score

(c) Edge-based score (d) Element-based score, sorted

Figure 4.10.: The similarity matrix color codes the pairwise global similarity of the compared trees based on a
selected score. a) Leaf-based score b) Edge-based score c) Element-based score d) Element-based
score with descending matrix sorting. The element-based score shows the best discrimination of
trees in contrast to the edge based score which barely reflects differences among trees.
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distribution of the leaf-based measure is strongly skewed towards high scores. In contrast, the new element-
based measure has more widely distributed scores.

The histogram view is also used for selecting a subset of trees for a detailed pairwise comparison with the
reference tree (see Section 4.2.4.4).

(a) Leaf-based score (b) Element-based score (c) Edge-based score

Figure 4.11.: This figure shows the histograms of the scores of the elements of all trees compared with one
reference tree, in descending order. The scores are calculated using (a) the leaf-based, (b) the
element-based, and (c) and the edge-based score. As also can be seen in the overview matrices (see
Fig 4.10), the element-based score shows a better discrimination than the other two measures.

4.2.4.3. Consensus Tree View

The consensus tree provides a compact form of a 1:n comparison between one reference tree and all other trees
(see Figure 4.12a). This view shows the conservation of the nodes of the reference tree throughout the data set.
Each score is the average of the scores comparing a reference tree node against its best matching unit in all other
trees. High scores stand for good matches across the data set. In this way, the biologist can immediately see,
which sub-hierarchies are conserved (see Figure 4.12a).

To gain more details on the composition of the calculated score of a selected node, its distribution in the data
set needs to be analyzed. Therefore, an interactive functionality is included, which allows the user to highlight
their values in the data set on demand. In particular, the backgrounds of all histograms of the compared trees are
color coded according to their similarity to a selected node in the reference tree (see Figure 4.12b)). This is a
powerful tool to quickly detect trees with either similar or dissimilar sub-hierarchies.

4.2.4.4. Tree Comparison View

The tree comparison view is the most detailed view in the framework. It contains the comparison tree scored
against the reference tree shown in the consensus tree. I extended the well known pairwise comparison view
with interactive functions for a better analysis of the data (see Figure 4.4 (3) and (4)). The scoring scheme can
be chosen from the proposed set of measures (see Section 4.2.2).

The linked views of tree comparisons allow for highlighting of selected structures and their best matches in
all visible trees. This feature has been proven useful for comparing trees [MGT∗03]. In an exemplary analysis
setting (comparison of phylogenetic trees), it reveals the particular distribution of the organisms. Thereby, it
provides additional information on tree similarity (see Figure 4.12). The figure shows a reference tree with a
highlighted subtree rooted in a user-selected node (pink color). The best matching nodes of the subtree are
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(a) Reference tree (b) Colored histograms

(c) Compared similar tree (d) Compared dissimilar tree

Figure 4.12.: Tree comparison view with highlighting. a) The reference tree. One of its subtrees is highlighted
by the user (in pink). b) Histogram backgrounds are colored according to selected node in reference
tree. Trees selected for a detailed analysis (c&d) are highlighted with a red border. c) The compared
overall most similar tree. d) The compared most dissimilar tree. c) & d) The leaves of the subtree
highlighted in the reference tree are highlighted in the compared trees. Highlighted elements are
more diversified in the dissimilar tree and close in the similar tree.
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highlighted in the two compared trees. As expected, the highlighted elements are much more distributed in the
dissimilar tree and compact in the similar tree.

To reduce the complexity of the visualization and improve scalability, the tree representation can be simplified
[CMP09]. In this case, those subtrees are collapsed that have element scores below a user-defined threshold (see
Figure 4.13, green rectangles). By this, structures similar to the reference tree are hidden and dissimilarities
are pointed out. In analogy, all subtrees above a certain threshold can be collapsed. This allows for focused
analysis of similarities among trees. Additionally, branches that do not lead to collapsed nodes can be hidden.
The threshold slider allows for interactive setting of the threshold and exploration of the effects of threshold
change on the tree collapsing.

(a) Original tree view (b) Collapsed tree view

Figure 4.13.: Tree comparison view with collapsing of similar elements. a) The original view with all nodes
visible. b) The collapsed view, where all elements below a user-defined threshold are collapsed
for focused view on tree dissimilarities and better scalability of the view. The green rectangles
represent the collapsed nodes.

4.3. Application to Ribosomal Phylogenies

The application section provides an insight into the usage of the proposed approach for visual comparison of mul-
tiple phylogenetic trees in current biologic research activities. The use case has been provided by biologists with
whom I cooperated (Dr. P. Weil and Prof. Dr. K. Hamacher, Institute for Computational Biology & Simulation,
TU Darmstadt).

Phylogenetic trees represent the evolutionary relationships between organisms. These relationships are usually
calculated based on alignments prepared from biological data such as DNA- or protein sequences. The leaves
correspond to the respective organisms, while the branches denote the evolutionary ancestry between them and
each inner node represents an (unknown) ancestor.

The derivation of such phylogenetic trees is usually based on a representation of each organism and an evo-
lutionary model. There exist several representations of the same species e.g. different protein sequences and
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Figure 4.14.: User interface in the application using 34 phylogenetic trees with 32 organisms each. The 16S tree
was chosen as a reference. Four trees (L18, S14, S16 and 23S) were chosen for detailed comparison.
The selected trees are highlighted in the histogram view with red border.
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Figure 4.15.: Subunits of the ribosome (center) are often used as basis to calculate phylogenetic trees. Different
subunits lead to different trees.

varying assumptions on the evolutionary model, which are reflected in algorithm and parameter choice (see Fig-
ure 4.15). Some of the parameters like the substitution matrix used for sequence alignment of proteins can only
be estimated as it represents the evolutionary distance which itself is the subject of examination. Thus, the de-
rived trees are highly susceptible to parameter choices [LBX∗01,Ham10]. The simultaneous analysis of multiple
trees is expected to lead to more insight into the evolutionary processes and/or to compensate for uncertainties in
the descriptor choice or model parameterizations.

A typical research project deals with 10 to 50 phylogenetic trees or even more, while the number of organisms
in the analysis spans orders of magnitude, from highly specialized questions on some ten, up to thousands of
entities obtained from high-throughput analysis protocols. If we focus on phylogenetic trees, we assume n ≥
2 rooted trees with the same leaf elements (organisms). Although the trees presented in this application are
predominantly binary, the approach is not restricted to them.

Biologists focus on the analysis of evolutionary relationships among a selection of bacteria. The relationship
between the selected bacteria is commonly determined by comparison of the 16S rRNA sequences. This compar-
ison leads to the phylogeny, approved by the community of biologists. Nevertheless, such sequence comparison
can also be conducted using other sources such as conserved proteins, acknowledged to aid in finding the correct
phylogeny. The ribosome is a molecular structure ubiquitously distributed in all living organisms. To this respect,
the biologists are interested in the analysis of the effect of the data source on the resulting phylogenies.
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Thereby, they solve the following tasks:
T1 Identification of globally interesting trees for reference purposes

and determination of various patterns in subhierarchies of the trees:
T2 The conservation of every subhierarchy of the reference tree in all other trees.
T3 Distribution of a selected subhierarchy throughout the dataset.
T4 Trees with high global similarity but low local similarity and vice versa.
T5 All (dis)similar structures in all compared trees with respect to the reference.

The comparison of phylogenetic trees is a starting point for further biological analysis. As this analysis is very
time and resource consuming, the biologists need to concentrate on the most promising starting points. The
presented tree comparison tool aids biologists to track down these highly promising pointers even in large data
sets and to form working hypotheses for research.

4.3.1. Phylogeny Calculation

The relationship of two organisms is calculated on a common data source. Choosing an appropriate data source
for phylogenetic tree calculation is however still an area of ongoing research. In this use case, sequences encod-
ings of different parts of the ribosome, namely rRNA and proteins have been employed.

The input data consists of bacterial genomic data downloaded from GenBank data base (GbDB). The biologists
extracted the desired sequences encoding ribosomal parts out of the whole genomes using BioPython [CAC∗09]
and Hidden-Markov-Models (HMM) in the PFAM data base [FTM∗07]. To calculate the phylogenetic trees,
they applied the following web based tools of phylogeny.fr [DGB∗08]. The alignments were performed using
the MUSCLE [Edg04] algorithm. After the so-called “curation” of the alignments with GBLOCKS [Cas00]
phylogenetic trees have been computed with PhyML [GG03, AG06].

This resulted in 34 phylogenetic trees with 32 organisms each. The trees are named according to the ribosomal
parts encoded by source sequence (e.g, 16S, L4, . . . ). The employed naming convention is: letters before numbers
for proteins and letters after numbers for rRNA. To confirm the suitability of the data sources used, the biologists
compared the phylogeny of our calculated 16S data to a larger data set already validated by the community
biologists [WHM∗09]. The subset is in very good agreement with the one acknowledged by the experts. Thus
the 16S phylogenetic tree can be used for the comparative study described in this section.

4.3.2. Results from Visual Analysis Process

The presented analysis process started with the selection of a reference tree based on the global similarity of
the trees (T1). The comparison of the implemented scores in the overview matrix showed that the element-
based score exhibited the best discrimination properties (see Figure 4.10 and 4.11). Therefore, it was used in
the following analysis. Potentially interesting reference trees are usually characterized by high or low scores
compared to all other trees. These trees were identified in the sorted matrix (see Figure 4.10 (d)). Following this
track, one would choose the S16 tree, because it showed up as the most distant tree. However, in this study, we
concentrated on tree 16S as it refers to a biologically-validated phylogeny [WHM∗09]. Looking at the global
scores in the matrix column corresponding to this reference tree (see Figure 4.10 (b)), the biologist found out that
the derived phylogenetic tree strongly depends on the underlying data set.

The sorted histograms below the matrix allowed the analysts to identify interesting patterns in the score distri-
bution for the elements of each compared tree (T4). Initially, their focus was on the most dissimilar trees. They
identified the S14 and S16 ribosomal proteins as two of the most deviating trees to the reference tree (Figure 4.16
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(d)). Moreover, these trees are most dissimilar to all other trees as well (the two right columns in Figure 4.10 (d)).
This was an interesting finding, because the S14 protein is involved in the assembly of the ribosome suggesting a
highly conserved function and thus a highly conserved sequence [HBB∗08]. Additionally, the S14 tree exhibited
a bi-modal score distribution (T3). The distribution was characterized by a large amount of low- and high-scored
elements (Figure 4.16 (d)). It therefore indicated similar and different structures to the reference tree inside the
same tree.

The consensus tree offers the possibility to analyze the stability of subtrees across the dataset (T2). Examina-
tion of the consensus tree identified two interesting, highly conserved clusters. Such a finding raised attention,
because it contradicts the initial statement that “phylogeny computations strongly depend on the underlying data
set”. The closer analysis of the distribution of the two selected clusters (T3) in the trees revealed outliers with
a low conservation. Besides the already conspicuous S14 and S16, the L18 tree attracted attention (Figure 4.16
(a) & (b)). Despite its high global similarity to the reference, it had a very low conservation for both selected
substructures (Figure 4.16).

The identification of extrema throughout the whole data set (T5) can only be seen if all trees are simultaneously
displayed. For a large number of trees, this leads to a cluttered view (see Figure 4.13 (a)). To reduce the
complexity of the visualization, the biologist hid all substructures above a similarity of 0.25. This clearly reveals
the most dissimilar structures compared to the reference tree (see Figure 4.13 (b)). Their closer analysis showed
that Xanthomonas campestris, a plant pathogen, was present in the opened leaves of most trees. This indicated
that the relative position of Xanthomonas campestris differed significantly from the approved 16S reference tree
throughout the dataset.

This study helped biologists to take a closer look on function and structure of the ribosomal proteins S14,
S16 and L18 for the identified species. They now especially concentrate on the question, why the phylogenies
resulting from those protein sequences exhibited such organism clusters. This research could lead to previously
unknown connections between the analyzed species.

The software presented in this section called “ViPhy” (www.viphy.org) [BvLH∗] was made publicly avail-
able and is currently used in the area of biology and bioinformatics by different groups worldwide e.g., in the
universities of Edinburgh or California, Berkeley.
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(a) (b)

(c) (d)

Figure 4.16.: 16S consensus tree and score histograms with background coloring according to the selected ele-
ments. a) & b) The selection of a highly conserved pair of organisms. The globally similar L18 tree
does not contain the marked substructure as one of few. c) & d) The selection of a subtree of seven
organisms and their scores across the data set.
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5. Extended Comparison Visualization of Large
Datasets With Hierarchical Structure

The approach presented in Chapter 4.2 works very well for small trees up to dozens of leaves. If the tree size in-
creases, more and more overlap of tree elements occurs, especially if multiple trees are displayed simultaneously.
Optimization of the tree layout only diminishes the problem a little, but if a tree contains a lot more elements
than horizontally available pixels, overlapping objects are unpreventable.

Therefore, I propose a new approach called CloudTrees, which utilizes the unavoidable overlap to reveal im-
portant information (see Section 5.2). Additionally, tree simplification algorithms can be applied as overlay
or preprocessing step (or both). As state of the art simplification algorithms do not consider the specific re-
quirements of a comparison scenario, I propose a new approach, specialized on the identification of interesting
subtrees in the comparison context (see Section 5.2.2).

5.1. Related Work

This section focuses on the visualization and analysis of large trees. Related work for the visualization and the
comparison of trees in general can be found in Section 4.1.

Several layout techniques try to position nodes on the screen so that the tree structure is visible even for large
trees. To delay negative overplotting effects, space efficient techniques can be applied techniques like treemaps
(see Section 4.1.1) or root-centered layouts spreading the tree in all directions. ConeTrees [RMC91] and its ex-
tensions [CK95,NCA06] often use a three dimensional representation. This allows a layout without overlapping
elements but depending on the rotation and orientation in space, the overlap occurs in its two dimensional screen
representation and navigation is more difficult.

There are several two dimensional layout techniques which place the root in the center of the screen and then
apply a recursive sub-division of the surrounding space. Circular approaches like in RINGS [TKL02] adding
distortion techniques for a better analysis of details or balloon trees [LY07] optimizing the circular layout for
unbalanced trees do not use the space very efficiently. Nguyen et al. apply more space efficient techniques us-
ing arbitrarily shaped polygons [NH03]. Schulz et al. [SSH09] propose a recursive in partitioning of similar
sized areas combining it with point based rendering. They include different interaction techniques like filter-
ing, zooming and a special re-layouting routine for details on demand. This reduces the negative effects of
overplotting but for a high space efficiency, the trees need to be balanced and all nodes should have at least
3 children. Balzer and Deussen use different levels of detail to represent large graphs [BD07]. Distortion-
based techniques (e.g., fisheye views) allocate more display area to the parts of the tree of higher interest to the
user [TAvHS06, CN02, HC04, MGT∗03, TS08].

Layout techniques stretching the borders of overplotting and reduce its negative effects but can not prevent it.
Simplification-based approaches follow the overview + detail strategy [Shn96] and reduce the amount of details
shown in the overview, what makes the analysis much easier [HMM00]. The displayed elements should have a
higher relevance to the user than the hidden.
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5. Extended Comparison Visualization of Large Datasets With Hierarchical Structure

There are several approaches to define the interestingness of elements in general [EF10] and for graphs or
trees in special. This can either be defined interactively by the user letting them collapse or expand nodes on
demand [SSH09] or selected subtrees are getting more display space [MGT∗03]. Algorithmic tree simplification
is commonly used for visualization of hierarchical clustering (e.g., [HDM98, CMP09]). The algorithms employ
graph and clustering metrics for defining subtrees for simplification. Herman et al. [HDM98] apply the Horton-
Strahler Number [Str57] reflecting different aspects of the size of subtrees. The Hierarchical Clustering Explorer
[SS02] includes the distances between clusters represented by the elements in the trees for the identification of
key nodes. Chen et al. [CMP09] proposed a combination of node distances, leaf count and node balance to
extract the overview tree.

All these techniques only work on the structure of a single tree without analyzing similarities and differences to
other trees. Therefore, their direct applicability for tree comparison is limited. In particular, interesting subtrees
that are found in several trees may be hidden as their structure may not be highly relevant in one single tree.

5.2. Approach: Cloud Trees

In the following, I present a new technique for visualization of large trees specifically focused on tree compar-
ison called “CloudTrees”. First the basis technique for drawing large trees with similarity score information is
introduced which then is extended with the visualization of the information on simplification. Finally, CloudTree
specific interaction techniques are presented.

The CloudTree visualization technique aims at providing users with information on similarity scores through-
out the tree. Often users search for dissimilar subtrees in generally similar trees. However, this information is
often difficult to recognize when visualizing large trees either due to small node size or overplotting, especially
if there are more nodes in one line than available pixels (see Figure 5.2a). CloudTree visualization merges the
information of the comparison score of multiple nodes in one pixel, i.e., each pixel represents the comparison
scores of all superposed elements. This idea is distinctly related to density-based visualization (e.g., CloudLines
for time series [KBK11, DLH11]), however my superimposition scheme directly focuses on similarity analysis
tasks.

As users may focus on different tasks, a flexible coloring scheme is applied. The users can interactively vary
their analysis focus, e.g. putting an emphasis on small, highly similar subtrees (see Figure 5.2b and c).

5.2.1. Cloud Tree Technique

The CloudTree visualization algorithm consists of three steps (see Figure 5.1).

1. Calculation of the general layout
In a first step, the initial layout of the tree is calculated on a sufficiently large grid to avoid overplotting (see
Figure 5.1(a)). The layout choice is not relevant for the cloud technique itself. A traditional, orthogonal
top-down layout is used, as it is very beneficial for the user’s perception [BKH∗11].

2. Determination of the compact layout
For the visualization of the tree, the initial layout is scaled to the available display size. As several graphs
need to be shown simultaneously, this step is needed for most of the trees. For this scaling, the center of
each node n and edge e is mapped to a corresponding pixel in the lower resolution display space.

3. Score visualization
The similarity score is mapped to color of the nodes which are represented as circles with user defined
radius r(n). As color is used for score visualization, node colors of overlapping elements are combined
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5.2. Approach: Cloud Trees

(a) Layout on arbitrary large grid (b) Projection to actual image size (c) Computation of the pixel values

Figure 5.1.: Schematic steps of the CloudTree calculation. Each blue square represents a pixel. a) Layout of
the tree on an arbitrary large grid. b) Projection to the low resolution pixel grid of the visualization
and determination of the impact nodes for each pixel. c) Calculation of the pixel value based on the
score, size and distance of the impacting nodes.

in a special scheme, where I differentiate between inner and leaf nodes. The final color of screen pixels
representing inner nodes depends on the underlying visual tree data and the employed color scheme. Each
inner node contributes to the color value of all pixels in its so called “impact radius” r(n). For each screen
pixel, the final pixel value for coloring is calculated as the sum of the weighted scores of all inner nodes
IN(Pi) contributing to the pixel Pi (see Eq. 5.1 and Figure 5.1(c)). The pixels in the resulting image are
colored according to their calculated values applying a user defined colormap. In this examples, the same
colormap as in section 4.2.4 is used.
Leaf nodes are special as they are identical in all trees and thus always have a similarity score of 1.0.
Therefore, they are not included in the above-mentioned calculation and drawn in a user selected color.
The pixel value is calculated as follows:

Score(Pi) =
1

∑n∈N(Pi)
Weight(n)

· ∑
n∈IN(Pi)

Weight(n) · ŝe(n) (5.1)

The weight(·) is a function of the node radius r(n), node score ŝe(n) and the d(Pi,n) – the distance (e.g.,
Euclidean) of the center of the contributing node to the respective pixel Pi. For example, Equation 5.2
shows the function for emphasizing small, highly similar trees which otherwise would be hidden (see
Figure 5.2(c) and Figure 5.2(d)). The function can be interactively changed. For example, the use of
1− ŝe(n) instead of ŝe(n) in the weight function, would propagate dissimilar regions.

Weight(n) = (1− d(Pi,n)
r(n)

) · ŝe(n) · (1−
SubtreeSize(n)

TreeSize
) (5.2)
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5. Extended Comparison Visualization of Large Datasets With Hierarchical Structure

(a) Normal small node visualization (b) Normal mid-sized node visualization

(c) CloudTree with linear score contribution (d) CloudTree with quadratic score contribution

Figure 5.2.: CloudTree visualization of a tree containing 9999 nodes. a) Standard visualization of the tree. For
avoiding overplotting, the node diameter was set to 1 pixel. Due to their small size, similarity scores
are not readable. b) The node radius was increased to 5 pixel. c) The node radius was increased to 30
pixel. All nodes contribute equally to the pixel score. Some previously invisible, similar regions can
be spotted easily (highlighted in purple rectangles). d) Small, highly similar regions are emphasized
by scaling the similarity score to its square (see Eq. 5.2).
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5.2.2. Simplification for Comparison of Multiple Trees

As the compared trees may be quite large for direct inspection of their similarity, I introduce a new simplification
algorithm, which reduces the tree size while considering the similarity among multiple trees (see Figure 5.3 for
an illustration).

The idea of tree simplification is to show only the most important structures in the tree and to hide the unim-
portant parts. The main challenge of simplification approaches is the definition of importance, which is closely
related to the analytical tasks (see Section 4). In this case, I concentrate on the comparison of several trees. So
the interestingness of a subtree is based on three factors:

1. Pairwise similarity of subtrees: Depending on the focus of the analysis, the user is interested in the
identification of very similar or dissimilar subtrees. In general, similar substructures in overall dissimilar
trees and vice versa are most interesting. In the following, I assume the retrieval of similar substructures.

2. Size of the subtrees: Usually, large subtrees with the desired similarity are more interesting than small
trees for two reasons. The statistical relevance of large patterns is higher and the collapsing of large
subtrees contributes more to the simplification of the tree.

3. Conservation of the subtrees: Highly similar substructures which can be found in several trees are more
interesting for the user. For example, the information about evolutionary relationships in frequently occur-
ring subtrees is more reliable for biologists.

Figure 5.3.: Tree simplification idea. Similar subtrees occurring in many trees are simplified (collapsed) so they
can be represented by only one symbol, e.g., a simple mark or glyph.
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5. Extended Comparison Visualization of Large Datasets With Hierarchical Structure

Figure 5.4.: Heatmap visualization of the compared trees including details of a selected cell. The contained
subtrees can be merged on demand.
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5.2. Approach: Cloud Trees

The conclusion is that the most relevant subtree for simplification (in the following called “Subtree Cluster”
(SC)) has a very high score, is large and can be found in many trees throughout the dataset. However, in real-
world applications, there is a trade-off among these three factors. For example, a higher score for the same
tree size is better but, at the same time, the equal score for a larger tree is more relevant. So it is difficult to
automatically determine which structures should be collapsed. Therefore, I rely on user expertise in weighting
these factors.

For simplification support, we propose a heatmap-based visualization showing the three above-mentioned
criteria. It enables the user to define her interest (see Figure 5.4). In the view, each subtree of the data set is
treated as an object assigned to a cell of the heatmap according to its score (x-axis) and size (y-axis). The cell
color reflects the number of contained subtrees. There are two possibilities for color normalization – global vs.
local along tree sizes. Both normalization and heatmap resolution can be chosen interactively. Nevertheless, the
local column-wise normalization is preferable as it allows a better comparison among equally sized trees.

Detailed information about subtrees in a selected heatmap cell can be displayed on demand (see Figure 5.4).
It includes data on their pairwise score distribution with all subtrees in the dataset ordered by size and score. In
this way, the user can iteratively identify interesting structures and form Subtree Clusters (SC) for simplification.
If the user selects a set of trees as SC, all contained subtrees with a lower consensus score are removed from the
heatmap as they are now represented by the SC. Higher scored subtrees remain as they might contain additional
valuable information for the analyst. Usually, the user starts from the upper right corner of the heatmap (trees
with both high score and large size) and continues to the left. Additionally, an arbitrary set of user selected
subtrees from a cell can for be displayed for detailed visual exploration.

Additional simplification on demand The resulting trees from the above-described simplification may still be
relatively large. Therefore, the user has an option to further simplify the trees using the techniques for individual
trees referenced in Section 5.1. In this use-cases, the Strahler Number [Str57] is employed as simplification mea-
sure, as it is independent of the tree structure and requires no node distances. The threshold is user-defined and
nodes representing subtree clusters are always preserved. If a father of a SC is discarded during the simplification
process, the former grandfather becomes the new father.

5.2.3. Extended Cloud Visualization for Simplified Trees

Simplified trees can be displayed as overlay above the CloudTree. By this, we ensure the visibility of the subtrees
which were identified as interesting during the simplification. Every node of the simplified tree is positioned on
the respective pixel on the CloudTree. Because the original trees can be simplified in two ways, each simplifi-
cation is represented differently in the view, so that the user can distinguish the type of collapsing applied (see
Figure 5.5(a)).

1. Comparison-based simplification: Interesting substructures which were interactively defined using the heat
map view are represented by a mark (a green star in my case).

2. Structure-based simplification: All other nodes which were not pruned by the Strahler simplification pro-
cess are represented as black nodes in the overlay.

As an alternative view, to increase space efficiency, the simplified tree without the CloudTree can be shown. It
then uses the whole available display space (see Figure 5.5(b)).

39



5. Extended Comparison Visualization of Large Datasets With Hierarchical Structure

(a) (b)

Figure 5.5.: a) CloudTree with an additional overlay of the in the heatmap view defined interesting subtrees
(green stars) and the core structure after Strahler simplification. b) Presents only the simplified tree
as a compact visualization.

5.2.4. Interaction in CloudTrees

Interaction with the trees mainly aims on the selection of regions of interest for several analytical goals. For com-
parative tasks, the interest focuses on the distribution of the highlighted elements of one selected tree compared
to all other trees. To give an example, let us assume the existence of two similar but not identical subtrees in two
compared trees. The question which usually arises is: where are the elements of one subtree which discriminates
it from the other subtree in the compared tree. For the selection of subtrees, it needs to determined which exact
node is selected by the user. If more than one element is represented by a single pixel, interaction is complicated
as unique manual selection will not be possible. In the CloudTree visualization, the users can choose one of
several interaction modes that fits best to their analytical task. The interaction modes include the selection of all
contained elements, selection of only the best or the worst element or selection of the element with the largest
or smallest subtree. The selected node and its subtree are highlighted in the particular tree and, if present, also
in all other trees in the visualization (please see the video “CloudTrees” on the appended DVD). The selected
areas can either be highlighted, keeping the CloudTree coloring or rendered transparent to reveal more of the
underlying tree structure (see Figure 5.6). For a detailed analysis of a single subtree, the layout can be adjusted
on demand. More space is assigned to the selected subtree on expense of increasing the density of the unselected
tree. Alternatively, subtrees can be displayed in separate windows.
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5.2. Approach: Cloud Trees

(a) Selection in reference tree

(b) Highlighted distribution in compared tree

(c) Transparent distribution in compared tree

Figure 5.6.: Highlighting in the CloudTree: a) A subtree in the reference tree is selected and highlighted. b) All
in (a) selected elements are highlighted in the compared tree. In this case, they are distributed to 3
areas. c) An alternative highlight mode reveals the underlying tree structure.
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5.2.5. Visual Interface

The visual-interactive design offers four linked views representing various aspects of the analysis (see Figure 5.7).
View 1: Shows the similarity matrix reflecting global pairwise similarity between all trees and offers the selection

of one reference tree for detailed comparison with all other trees.
View 2: Provides information on score distribution of all nodes in each tree when compared with the selected

reference tree. The distribution pattern allows to see whether there are parts of a tree with better match
then other parts.

View 3: Shows the so called “consensus tree” view of the reference tree selected in view 1. It shows consensus
similarity scores (see Section 4.2.3.2) thereby offering a compact comparison of the reference tree with all
other trees.

View 4: Shows a user-selectable number of trees chosen for a detailed analysis with the nodes color-coded by
their similarity scores.

The linked views of the tree comparisons allow for the highlighting of selected structures and their best matches
in all visible trees (see Section 5.2.4).

Figure 5.7.: Tree comparison view. (1) The similarity matrix reflecting the pairwise overall similarity between
the trees. (2) Score distribution in trees compared to the reference. (3) Reference tree. Node color
represents the average score of the nodes throughout the data set. (4) Selected trees, node color
indicates subtree similarity to the reference tree shown in (3). Star shaped nodes and black overlay
nodes represent the respective simplified trees.
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5.3. Application to Chemical and Phylogenetic Data

In the following, the usage of my system for visual comparison of multiple large trees is demonstrated in two
different use cases:
1) Comparison of descriptors for chemical components based on hierarchical clustering
2) Analysis of the relationship amongst species conducted through a comparison of phylogenetic trees.

5.3.1. Chemical Descriptor Comparison

The analysis of vast amounts of chemical data is a common task in chemistry, biology and pharmacy. For
example, high throughput screenings (HTS) automatically conducts thousands of experiments, e.g. testing the
molecule activity against a target compound. All molecules above a certain activity threshold are selected and
the analyst’s task is to categorize these molecules and reveal the underlying systematics. This is done using
molecule descriptors. Many descriptors can be calculated for each molecule, some are one dimensional for
instance describing the weight or the charge of a molecule, other descriptors are multidimensional like the chi-
chain (10-D) or the fingerprint-based descriptor (with up to several hundred dimensions) [LG07]. One goal of
this exploratory analysis is to find connections between groups of molecules whose descriptors exhibit similar
characteristics. In this example, the used dataset consists of 20 descriptors for 5000 molecules. For hierarchical
clustering, average linkage with two distance measures is applied: Euclidean distance for the floating value
descriptors and the Tanimoto index [RT60] for the binary fingerprint descriptors. As a result, each descriptor is
represented by a tree with 9999 elements.

After the calculation of the similarity scores for the trees, the results are visualized using the heatmap view (see
Figure 5.9). It shows how the normalization facilitates correct interpretation of the data. Without normalization,
some quite large trees with very high scores can be observed (see Figure 5.9(a)). Normalization, however,
reveals that the most of the scores are around the theoretical minimum and that the trees are not as interesting as
initially assumed (see Figure 5.9(b)). The outlying large trees with high similarity are formed by a group of three
trees based on the descriptors for the sum of atomic polarizabilities, weight and normalized polarizabilities. The
polarizability heavily depends on the size of the molecule, so the number of atoms (which is roughly correlated to
the molecule weight) is used for the normalization. As the similarity of the mentioned three trees on a global level
is not surprising, a number of small trees (40–120 elements) with high similarity value (≥ 0.6) is selected. (see
Figure 5.8). In this selection, two groups of descriptors often appear together: The first consists of polarization,
normalized polarization and weight descriptors. The second group comprises descriptors for size, wienernumber,
kappashape and eccentric connectivity.

After the identification of interesting substructures we take a closer look using the cloud-tree visualization. The
dendrogram resulting from clustering in the polarization descriptor space is selected as reference tree, because it
already stood out in the simplification phase. As expected, the normalized polarization and weight trees are most
similar (top two trees in Figure 5.10(a)). The two trees on the bottom represent the second group of previously
noticed descriptors.

An additional overview of the simplified trees (small black nodes & green stars) reveals some interesting find-
ings. A highly similar region, which was not discovered before and is not captured by the simplified trees (see
Figure 5.10(a) purple rectangle), can now easily be identified. On the other hand, there are no noticeable patterns
visible around the stars in the top hierarchies (see Figure 5.10(a) pink rectangle). Without the previous simplifi-
cation step, these interesting subtree clusters would be missed. None of the stars is part of the simplified trees, as
they are not connected to the black Strahler overlay nodes. If the analysts would rely only on the simplified trees,
they would not find the previously identified similar regions represented by the stars (see Figure 5.10(a)). How-
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Figure 5.8.: Heatmap view, where each cell represents the average score of the contained subtrees. Cells contain-
ing a subtree with an maximum score > 0.6 are highlighted. The overlay shows a zoomed in view
of the subtrees with < 190 elements.
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(a) Score distribution without normalization (b) Score distribution with normalization

Figure 5.9.: Heatmap visualization of the comparison score (x-axis) versus subtree size (y-axis) of the chemical
compound dataset. The color of each cell reflects the number of subtrees in one cell. a) Scores
without normalization. b) Scores with normalization based on theoretic score minimum values. A
larger version of these images can be found in Figure 4.7.

ever, the reduced tree offers enough orientation for a further analysis of the subtree-clusters (see Figure 5.10(b)).
Some of the trees are very unbalanced and show finger-like patterns (see Figure 5.10(c), bottom row). This
pattern occurs, if many molecules are described with the same value e.g. using the ring-count descriptor. Many
molecules have the same number of aromatic rings.

5.3.2. Phylogenetic Tree Analysis

This use case focuses on comparison of phylogenetic trees. The trees describe evolutionary relationships among
species and are commonly used in evolutionary research. For example, the identification of close relationships of
bacteria can help to generalize knowledge about a specific species, which can support the extension of medical
treatment to other bacteria in the group. For a detailed description of the calculation of phylogenetic trees and the
tasks in the phylogenetic tree comparison see Section 4.3.1. In this example, a dataset from Liu et al. [LLW10] is
analyzed describing 5 trees, each containing 6323 species. Each tree was calculated using a different algorithm
(for details please see [LLW10]). One of the trees was hand-curated, therefore it serves as the reference tree for
this analysis example. Please note, that this is an n-ary tree which has significantly less inner nodes.

The heatmap view (see Figure 5.11) shows that the similarity of the subtrees is substantially higher scored
than in the first use case. This is not fully unexpected, because the subtrees generated by the different algorithms
illustrate the evolutionary relationship of the same species.

For a more detailed look at the data, Figure 5.11 shows a zoomed view on the trees up to 60 nodes. The
highlighted cells contain highly similar subtrees (with a score > 0.8). These are mostly subtrees with only three
elements – the smallest possible tree.

Different interesting subtree clusters are selected, some rather small with high similarity scores and two larger
ones, each having around 1200 elements with a score of ca. 0.48. The resulting trees still contain 8000 to 10500
nodes.

The following CloudTree visualization of all simplified trees shows a very heterogeneous score distribution
of the compared trees, while the reference consensus tree presents a good overall similarity (see Figure 5.7).
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(a) Cloudtrees including overlay

(b) Compact visualization of simplified trees (c) Comparison with many trees

Figure 5.10.: Comparison visualization of four trees to a reference tree. a) Cloud-tree visualization with an
additional overlay of the reduced trees. The pink rectangle highlights subtree clusters (stars), the
purple rectangle highlights a pattern which is only visible in the cloud trees. b) The simplified trees
offer enough orientation for a further analysis of the subtree-clusters. c) Figure showing 12+1 trees
for detailed analysis. Trees are sorted from similar to dissimilar to the reference tree.
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Figure 5.11.: Heatmap visualization of the phylogenetic trees. Cells containing trees with a maximum pairwise
similarity > 0.8 are highlighted. The overlay shows a zoomed in view of the subtrees with < 60
elements.
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This clearly shows that none of the algorithms really calculates the optimal result and the deviations may occur
at various positions and to various extents throughout the compared trees. On the selection of a subtree in the
reference tree, all contained elements are highlighted in all trees. Due to the high overall similarity, it is not
surprising that these elements are usually located in a small area of the respective tree, only one tree exhibits
some outliers. This means some of the species which are stated to have a close evolutionary relationship are far
distanced in this tree. This is an interesting finding for the biologist and starting point for further investigations.

Figure 5.12.: This figure shows the interaction with CloudTrees. A subtree in the reference tree (bottom left) is
selected. The contained elements are highlighted in all shown trees. One of the compared trees
shows an divergent pattern of the otherwise compact distribution.
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6. Visual Comparison of Datasets with Unknown
Structure

As shown in the previous chapter, the comparison of different descriptors leads to more insight during the ex-
ploratory analysis. The technique proposed in chapter 4 is based on hierarchically organized datasets or at least on
a hierarchic representation of the dataset (e.g., using hierarchical clustering). In contrast to this, in the following
chapter, I will present an approach which does not rely on a specific structure of the data.

To involve the users and their knowledge in the explorative analysis process, a visual representation of the
descriptors is needed. To allow a consistent visualization, this representation has to be independent of the dimen-
sionality of the descriptor. Therefore, I use different common dimensionality reduction methods like Principal
Component Analysis (PCA), Multidimensional Scaling (MDS) or self-organizing Maps (SOMs), projecting the
data of each descriptor into two dimensions. I present a novel color-based visualization technique to compare
these 2D projections. The technique allows to identify global similarity as well as local patterns and works for
different representations (e.g., scatterplots or grid based techniques like SOMs) (see Section 6.2.2). Additionally,
a representation of the projection/mapping quality can be included in the visualization (see Section 6.2.4.1). To
guide the user through the analytical process, I propose an automatic calculation of the descriptors similarity
adapting various states applying techniques normally used to measure projection quality (see Section 6.2.1).

The work presented in this chapter is partially based on [BHvLF12, SvLB10] and [BvLBS11].

6.1. Related Work

This work is related to approaches for the dimensionality reduction of high dimensional datasets e.g., for visu-
alization or model construction.. The data should be represented as accurate and at the same time as simple as
possible. These approaches can be divided in two classes of algorithms: feature extraction and feature selection.
Feature extraction methods project the data in a low dimensional, extracted space, by minimizing or maximizing
algorithm specific criteria. The new, extracted descriptors do not necessarily have a direct connection to the
input descriptors. Feature selection approaches construct the low dimensional space as a combination of few
selected input descriptors. For this selection, many techniques for the evaluation of single descriptors or fea-
tures have been proposed. Each descriptor is evaluated individually using different metrics e.g. different sorts
of entropy (Shannon entropy [SW49], entropy of distances between data points [DCSL02]), gauss distribution
similarity [DF84] or mutual information. For the comparison of two features or a feature input and a classi-
fication, different correlation coefficients can be calculated [Hal99], e.g. Pearson’s or Spearman’s correlation
coefficient [OHS05]. For a broader overview, please see the survey of Guyon and Elisseeff [GE03].

All of these scores calculate a global value for each descriptor, but no local, object-wise scores. Thus, it is
not distinguishable if e.g. a medium score is caused by a general medium divergence or by a high variation of
few objects. In contrast, object distance and topology based methods calculate a score for each point, whereas
the score for the whole descriptors is a combination of them. These approaches are used for the feature se-
lection based on dimensionality reduction e.g. preserving the local distances [HCN06] or keeping the nearest
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neighbor distances and simultaneously maximizing the global pairwise distances [WS06]. Alternatively, these
neighborhood approaches are used for the evaluation of dimensionality reduction. More details can be found in
Section 6.2.1 where I compare different scores for their capabilities for descriptor comparison.

6.2. Approach

My approach combines two aspects. First, pairwise distances between all descriptors are calculated automati-
cally, which supports the handling of large datasets. Based on these distances, groups of similar descriptors are
identified (e.g. by clustering of the descriptors) and potentially interesting descriptors can be recommended to
the user for further analysis. The second component is the interactive comparison visualization. The visualiza-
tion allows the analyst not only to review the results of the automatic comparison, furthermore it allows a very
detailed inspection. It helps for example to identify local patterns. To give examples and evaluate the effects
of comparison algorithms and visualizations, I introduce a synthetic test dataset providing a solid ground truth.
For its fast creation, I introduce PCDC (Parallel Coordinates Data Creation), which offers a parallel coordinates
based interface to allow a detailed control of the sampling parameters [BHvLF12]. The datasets are created based
on 4 different models containing zero to three gausian distributed clusters each. Objects which are not within a
defined cluster are distributed equally in the free (i.e. not occupied by a cluster) value range. The objects were
created multiple times for each sampling model. After an initialization, 25%, 50%, 75% and 100% of the objects
where re-sampled resulting in 5 datasets per model. Each of the 20 datasets contains the same 4500 objects and
thereby represents a different descriptor. For details, see Table 6.2 and Figure 6.1

The idea behind the creation schema is twofold. On the one hand to compare the influence of re-sampling
within each model and on the other hand the comparison of different models. More variables will be covered in
future work (see Section 11.1).

6.2.1. Comparison Measures

In this approach, I rely on a pairwise comparison of the descriptors. Although it would be possible to build
a descriptor for a descriptor e.g. measuring properties like entropy or density, its usefulness in a comparison
scenario would be limited. These measures are too general and unspecific to provide a sustained comparison base
because different object distributions could have similar values. The measures I use are commonly employed to
assess the projection quality of different algorithms. They compare the structure of a high and a low (typically two
or three) dimensional dataset represented by some sort of neighborhood relationships of the contained instances
[Koh82]. This neighborhood is usually calculated measuring the pairwise distances between all objects in the
dataset using an appropriate distance function. The comparison of two datasets containing the same objects can
now be calculated based on the raw distance or on a local neighborhood ranking. Both approaches have their
advantages (see Figure 6.2), but the most recent approaches rely on topology based measures as they have a
broader applicability.
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ID Dimensions Classesa Cluster Noise Resampling Name Model
1 10 3 C1,C2,C3 Initial M1S1

M1
2 10 3 C1,C2,C3 25% M1S2
3 10 3 C1,C2,C3 50% M1S3
4 10 3 C1,C2,C3 75% M1S4
5 10 3 C1,C2,C3 100% M1S5
6 10 3 C1,C3 C2 Initial M2S1

M2
7 10 3 C1,C3 C2 25% M2S2
8 10 3 C1,C3 C2 50% M2S3
9 10 3 C1,C3 C2 75% M2S4
10 10 3 C1,C3 C2 100% M2S5
11 10 3 C3 C1,C2 Initial M3S1

M3
12 10 3 C3 C1,C2 25% M3S2
13 10 3 C3 C1,C2 50% M3S3
14 10 3 C3 C1,C2 75% M3S4
15 10 3 C3 C1,C2 100% M3S5
16 10 3 C1,C2,C3 Initial M4S1

M4
17 10 3 C1,C2,C3 25% M4S2
18 10 3 C1,C2,C3 50% M4S3
19 10 3 C1,C2,C3 75% M4S4
20 10 3 C1,C2,C3 100% M4S5

aC1,C2:2000 objects; C3: 500 objects

Table 6.1.: 20 synthetic datasets were created according to four different sampling models (M1, M2, M3, M4).
Each model has ten dimensions and contains 4500 objects assigned to the three classes C1, C2 and
C3. The objects of each class form either a cluster with gaussian distribution or are equally distributed
as noise.
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(a) sampling model M1

(b) sampling model M2

(c) sampling model M3

(d) sampling model M4

Figure 6.1.: Visualization of the sampling models and the sampled data. Each row represents one model defining
the distribution of the objects of the three classes C1 (purple), C2 (green) and C3 (yellow). The first
column shows the models defined in PCDC, the second includes colored sampled data and the third
column contains the sampled data without labels.
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(a) (b)

Figure 6.2.: Comparison of topology and distance-based measures. a) In both two dimensional distributions,
the distance between the blue and the other colored objects is identical but the topology changes.
Topology based measures would take the difference between the point clouds into account, whereas
distance based measures would not. b) In this scenario, the topology is constant but the distance
changes. Distance based measures are advantageous to topology based ones.

As each comparison algorithm emphasizes slightly other criteria, I implemented seven representative state of
the art algorithms covering three families of topology based approaches as well as a distance based approach.
Each of them depends of a respective parameter k representing the neighborhood rank which lies between 1 and
the number of objects in the dataset.

• Trustworthiness and continuity (T&C, topology based) [VK01] measures changes of the neighborhood
from within to outside of k. These large changes in topology indicate big dissimilarities of the compared
descriptors. In contrast to the other scores, no changes of the topology within the range of k are regarded.
Especially for large k, the result differs from other scores like LCMC, PP or MRRE (see Figure 6.3).

• Local continuity metacriterion (LCMC, topology based) [CB09] measures neighborhood changes within
the range of k. For small k, changes within k can be regarded as insignificant or as only slight difference
between the compared entities.
• Mean relative rank errors (MRREs, topology based) [LV07] measure both types of changes in topology.
• Bnx [LV09] (topology based) subtracts the number of neighbors departing and approaching within the

range of k. Thereby, it is possible to identify a direction in the change of topology.
• Our score, Projection Precision (PP, distance based) [SvLB10] measures the difference in the distance

between the k nearest neighbors in one descriptor compared to the distances of the same objects in an other
descriptor.

Rank based as well as the distance based approaches heavily depend on the selected parameter k, defining the
number of neighbors included in the score calculation. A comparison using small k can result in a good score,
even if the descriptors are globally dissimilar whereas local patterns could be missed out using a large k. To
enable the analyst to identify the differences between the different algorithms or parameter settings, a hierarchy
for each algorithms/parameter combination was calculated using hierarchical clustering (average linkage). Each
tree contains the same descriptors represented by the leaves, so my approach for comparing trees could be applied
(see Section 4).

The result shows, that all measures which sum up topology changes within k (LCMC, MRREs and PP) produce
similar results (see Figure 6.3). For small k, T&C are similar, too, but with increasing k the similarity decreases as
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the disparities of the algorithms (within k vs. outside k changes) have a stronger impact. Furthermore, the special
approach of Bmx calculating the direction of changes is clearly visible as it produces dissimilar results compared
to all other measures. In consequence, PP is used as standard comparison measure. Changes in the neighboring
topology are often more interesting for the user as this is e.g. a relevant information for cluster assignment.
Additionally, as the score is calculated per object, local changes can be visualized (see Section 6.2.4.1).

For the calculation of the computational complexity, n is assumed as the number of objects with k=n and m is
the number of compared descriptors. The calculation can be split in two parts. First, the ranking or distance ma-
trices for all descriptors are calculated in O(m∗n2 ∗ log(n)). Second, for the comparison differences in distances
or rather coranking matrices are calculated and evaluated. Both is done in O(n2) for each of the O(m2) pairwise
descriptor comparisons. This results in a total worst case runtime of O(m∗n2 ∗ log(n)+m2 ∗n2).

All implementations of topology based measures employ an idea of Lee and Verleysen [LV09]. They formu-
lated a so called coranking matrix which is a joint histogram of two ranking matrices of two compared descriptors.
Different areas of this coranking matrix can then be evaluated building the basis for different comparison mea-
sures. This enhances the constant proportion of the calculation. The single-threaded calculation of all mentioned
measures for a dataset containing 20-30 descriptors for 10000 objects each takes under five minutes.

6.2.2. Comparison Visualization

Each descriptor and thus each visualization of the described objects may have a different topology. Often, this
information is mapped to the relative positions of the objects in space. The idea of my approach is to combine
two differing topology information in one visualization. One is, as usually, mapped to position, the other is
represented by color (see Fig 6.4 for a toy example combining two 1D representations). By this, the topology
information of the two descriptors can be merged in one visualization which alleviates their comparison.

The visualization of the descriptor comparison builds upon a two-dimensional representation of the data which
can either be displayed as scatterplot or grid-based visualization to reduce overplotting. The projection of the data
relies on the topology preservation property of dimension reduction algorithms. From a variety of approaches, a
selection containing PCA, Kernel PCA, MDS, Sammons Mapping and SOM is considered.

For descriptor comparison, I extend the scatterplot and grid-based (SOM) visualization with similarity infor-
mation. I propose a dedicated color visualization scheme for pairwise comparison of two descriptors in one single
view. The data of the reference descriptor Da are used for color coding of the data of the compared descriptor
Db. A two-dimensional colormap is applied for the color coding as the individual views of the data are in 2D (see
Section 6.2.3). The objects of the compared descriptors are then shown in the two-dimensional projected space.
The color distribution of the objects in the compared space indicates the similarity of the two descriptors (see
Figures 6.7 and 6.10). As the color coding is based on colormaps with a homogeneous color gradient, objects
which are nearby in the reference are similarly colored. If neighbouring points in the comparison visualization
have similar colors too, then these objects are neighbors in both compared descriptors. If two neighboring points
in the comparison visualization have dissimilar colors, they are far distant in the reference (see Figure 6.5).

6.2.3. Two-Dimensional Color Maps

Coloring the data in a two-dimensional space, such as in a scatterplot or SOM grid, is a challenging task. It is
difficult to balance the following beneficial properties at the same time: a perceptual linearity of the color space,
a high color resolution and the preservation of all pairwise prototype distances [KVK99]. For two-dimensional
coloring, in particular SOM coloring, a number of color-based visualization techniques were proposed [KK98,
Him98, KVK99, KVK00, Him00]. The idea is to apply high-contrast color space to illustrate the SOM grids
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Bnx 

PP 

LCMC 

MRRE(1) 

MRRE(2) 

Qnx 

T&C (1) 

T&C (2) 

Figure 6.3.: This figure shows a comparison of the different algorithms. Each field represents a comparison of
the distance matrix of all pairwise comparisons of the 20 artificial datasets. The color reflects the
calculated similarity score which changes using different k and different algorithms to create these
matrices. Each algorithm was run with six different k (1%, 10%, 25%, 50%, 75% and 100% of the
data size)
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Input Data Processing Comparison Visualization

Descriptor 1: Number of atoms

Descriptor 2: Number of nitrogens

Figure 6.4.: Two meaningful data descriptors of biochemical data and their comparison. Each descriptor captures
different data properties (atom resp. nitrogen count). Left: The input data is sorted according to each
descriptor. Center: Color is mapped to the first ordering. The sorting is compared using connectors.
Right: Compact comparison view. Color mapping based on object identity revealing descriptor
correspondence.

(a) Reference coloring (b) Comparison coloring

Figure 6.5.: This image demonstrates the comparison of two plots. a) Reference plot. Objects are colored accord-
ing to the reference 2D colormap. b) Two comparison plots, each representing a descriptor compared
to the reference. In the first, the distance in color of the objects is similar to their distance in space,
so it is regarded as similar to the reference. In the second comparison plot, color and space distance
is not similar.
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distance relations as good as possible. These approaches use extraction of subspaces from, for example, the
RGB or the CIELab color space. Compared to RGB, the CIELab color space is perceptually linear, which
is beneficial for expressing distance relations by color. In return, the RGB color space is a regular cube and
therefore quite easy to implement, whereas the CIELab color space has an irregular 3D shape and suffers from
an additional projection needed to access CIELab.

(a) CIELab:regular rect. (b) CIELab:stretched rect. (c) RGB:2 channels (BG) (d) RGB:2 channels (GR)

(e) RGB:2 channels (RB) (f) RGB:3 channels (g) RGB:3 channels (h) XYZ

Figure 6.6.: Comparsion of colormaps for a 18x12 SOM grid. a) Rectangular cut out of the CIELab color space
at L=55. b) Skewed rectangle cut (CIELab, L=55). c), d) and e) Two channels of RGB mapped to x
and y axis, leaving the third constant. f) and g) Three channel RGB color scheme, diagonally cutting
the RGB color cube [Him00]. h) Color scheme in XYZ color space.

The decision for a two dimensional color map is the result of a comprehensive comparison of current colormap
techniques. Figure 6.6 contains some of the most promising color map approaches for the grid of 18x12 cells.
Note that the grid resolution can be adjusted. In my opinion, the CIELabs, benefiting from a perceptually linear
color scheme, cannot be adequately exploited, because either only a small linear subspace with a low color
resolution can be used, or an additional nonlinear algorithm needs to be applied to project the SOM grid to the
CIELab color space. A demonstration of the poor color resolution can be seen in Figure 6.6 a) and b). They show
that the resulting color contrast is so low that adjacent grid coordinates can not be distinguished clearly. After
extensive experiments with the RGB color space, considering two channel and three channel approaches, I made
the decision to follow Himbergs approach [Him00] to use a linear section of the RGB cube with maximized color
resolution. The goal was to increase the perception of color differences in SOM comparison. Thus, the colormap
is spanned with the four corner colors cyan, yellow, blue and red (see Figure 6.6(g)).

6.2.4. Scatterplots

The scatterplot-based comparison of two descriptors relies on the display of individual objects. For comparison,
both positions of one object in spaces Da and Db have to be shown in one plot. We color code every object
in the projection of Da using a 2D colormap (see Figure 6.7a,b). This color is assigned to the corresponding
objects in projection p(Db), respectively. If objects have similar neighboring objects in both projections, their
neighbors have similar colors in the visualization. In this way, local and global similarities of the two compared
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descriptors can be evaluated. In general, a homogeneous color distribution indicates a high similarity whereas a
heterogeneous color distribution shows differences of the two descriptors (see Figure 6.7c,d).

(a) Reference coloring (b) Object coloring

(c) Similar descriptors (d) Dissimilar descriptors

Figure 6.7.: Scatterplot-based descriptor comparison visualization. Top: Object coloring. Bottom: The descrip-
tor comparison. a) The reference color scheme mapped to the background and b) to the objects in
the reference space. c) The homogeneous color gradient indicates a high similarity, d) the inhomo-
geneous gradient shows differing descriptors.

6.2.4.1. Projection Precision

Dimensionality reduction usually comes with a loss of information. In consequence, the 2D scatterplots con-
tain errors, the relative positions of the objects in high and low dimensionality may differ. To reflect this,
the projection error was calculated using the distance based quality measure which was also used in Section
6.2.1 [SvLB10]. The precision score can be mapped to the size, so that wrong positioned objects have an smaller
influence on the perception of the visualization (see Figure 6.8).
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Figure 6.8.: The score of the precision of the projection is mapped to the size of each object.

6.2.5. Self-Organizing Maps

To ensure scalability, SOMs were used as they allow a good overview of the input space even for large data sets.
They offer a 2D grid-based projection of an high dimensional space, where each cell can represent several objects.
During the training process of the SOM, the neuronal network is dynamically adapted to the data, thus allowing
a more effective representation of the data than a scatterplott with an static grid as overlay. In analogy to the
scatterplot view, a two-dimensional colormap is used to indicate the neighborhood coherency. The color mapping
is based on a coloring of the reference grid using a two-dimensional colormap (see Section 6.2.3 for details) and
object correspondence between grids. In the compared grid, the color of each cell Ccomp

x is determined by the
color of an corresponding cell Cre f

corr in the reference grid. However, in SOM view, objects from one compared
cell may belong to several cells in the reference grid. In my approach, Cre f

corr is determined by the position of
the majority of objects OCcomp

x ∈Cx
comp in Cre f (see Figure 6.9 for an illustration). In Section 6.2.5.1, a further

extension of this technique is presented regarding the reliability of comparison visualization.
For better visual quality of the SOM comparison view, the following additional data representations have been

implemented: color interpolation for empty cells, color shifting for reference SOMs and visualization of color
unreliability. All of this options are interactively steerable.

Depending on the input data structure, the result of the SOM algorithm can include few empty cells. They
represent an area of the featurespace without data samples. The user can visually compare these areas in different
feature spaces by interpolation of the colors of neighboring cells (see Figure 6.11(b)).

The SOM forms an adaptive grid, so the distances between neighboring cells are not constant. Therefore, I shift
the colors of the two-dimensional colormap according to the distance of the SOM cell centers (see Figure 6.11c).
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Figure 6.9.: Schema of the SOM comparison coloring. Top row: reference SOM. Bottom row: compared SOM.
Left: An unambiguous color assignment, where all cell members from the compared SOM are
grouped in one cell of the reference SOM. Right: The color assignment using majority principle
– the cell color is used where the most elements are situated.

(a) Reference colormap (b) Homogeneous result

(c) Inhomogeneous result (d) Locally homog. result

Figure 6.10.: Grid-based descriptor comparison visualization using SOM. a) The reference color scheme, b) ho-
mogeneous color gradient indicating a high similarity, c) the inhomogeneous coloring for differing
descriptors, d) locally homogeneous coloring showing descriptors well discriminating subgroups
of objects.
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(a) Original coloring (b) Interpolation (c) Color shifting (d) Coloring with reliability

Figure 6.11.: Visual extensions. Top: Illustration of improvement of visual display. Bottom: Display of coloring
quality in SOM comparison. The columns show examples of SOMs. Left: a reference SOM, center:
a homogeneous SOM, right: an inhomogeneous SOM.

This function resembles the so-called U-Matrix which helps to identify the structure of the SOM clustering
[VA00].

6.2.5.1. Reliability

The SOM coloring uses matching of cell elements between the reference SOM and the compared SOM. In the
easiest case, all objects Oi of the compared cell |Ci| are in one cell of the reference SOM, so the unreliability
of the cell coloring is zero (see Section 7.3.1 for details on SOM cell coloring). If the objects of a cell in the
compared SOM (descriptor Db) are distributed over several cells in the reference SOM (descriptor Da), a higher
unreliability is expected. The unreliability of a cell Ci in the compared SOM is measured by a score uCi , which
takes into consideration the distance of the cells in the reference SOM to which the elements of the compared
SOM cell Ci are matched and the selected majority cell Ri. The distance is calculated as the distance of the
descriptors in the cell centers d(Ri

Da ,Rk
Db) using Euclidean distance measure. If the cells are located closely,

the object distribution can be handled as similar.
As visual representation, unreliability can be mapped to the cell color (via alpha channel or one of the axes of

the color space) or cell size (reduced corresponding to the unreliability score). Cell size encoding has turned out
to be very effective and intuitive (see Figure 6.11d). The background color of the reduced cell is colored in the
cell color with a higher, user steerable transparency. In this way, the impression of the SOM coloring remains
stable, so the color gradient is still visible and on the other hand, the cell reliability is easy to evaluate.

6.2.5.2. Examples

Based on the synthetic dataset introduced in Section 6.2, different aspects of the visual comparison approach
could be evaluated. For the comparison within the classes, the initial sampling of each model was compared
with descriptors using the same model, but an increasing number of newly sampled objects (25%, 50%, 75%
and 100%) (see Figure 6.12). As expected, the homogeneity of color decreases while the ambiguousness of the
colormapping increases. Also this effect is visible in all models, it is accelerated in models with a lot of noise.

For the analysis of the comparison between different sampling models, the initial sampling of the first model
was compared to the initial sampling of all other models (see Figure 6.13). Similar cluster structures are clearly
visible just as the dissimilarity in the noise regions is explicit, too. Please note, that a class in one SOM does not
necessarily have the same color as in an other SOM as SOMs a rotationally invariant.
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(a) M1S1 vs. M1S1 (b) M1S1 vs. M1S2 (c) M1S1 vs. M1S3 (d) M1S1 vs. M1S4 (e) M1S1 vs. M1S5

(f) M2S1 vs. M2S1 (g) M2S1 vs. M2S2 (h) M2S1 vs. M2S3 (i) M2S1 vs. M2S4 (j) M2S1 vs. M2S5

(k) M3S1 vs. M3S1 (l) M3S1 vs. M3S2 (m) M3S1 vs. M3S3 (n) M3S1 vs. M3S4 (o) M3S1 vs. M3S5

(p) M4S1 vs. M4S1 (q) M4S1 vs. M4S2 (r) M4S1 vs. M4S3 (s) M4S1 vs. M4S4 (t) M4S1 vs. M4S5

Figure 6.12.: Visualization of the comparison of the sampled data within each sampling model (see Table 6.2).
Each row, representing one model, starts with a comparison of the initial clustering to itself. The
following columns contain instances of the same model with a resampling rate of 25%, 50%, 75%
and 100%. The homogeneity of the color gradient decreases with increasing resampling rate.
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(a) M1S1 vs. M1S1 (b) M1S1 vs. M2S1 (c) M1S1 vs. M3S1 (d) M1S1 vs. M4S1

Figure 6.13.: Comparison of the different sampling models to model M1. The white spaces in the SOMs repre-
sents empty cells which contain no objects. The homogeneity of the visible color gradient decreases
with the decreasing similarity of the artificial ground truth data models.
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7. Visual Descriptor Comparison Pipeline

7.1. Introduction

The previous chapters presented techniques for the analysis of hierarchical structured datasets and for datasets
with an unknown structure. Although the used methods differ in their respective realization, the concepts have
some profound commonalities. Requirements and expectations on the exploratory analysis of descriptors vary
from task to task and from user to user. In some cases, only a fast grouping and calculation of representative
descriptors is desired. In other scenarios, the user needs to „dig deeper“. Either because the automatically
calculated output was not the expected or because he wants to understand the underlying characteristics of the
data or the used algorithms and their parameters to gain more insight. As an analysis process, especially when
dealing with large datasets, is complex, an interactive pipeline can help to guide the user through this process.
Usually, in such a pipeline the users starts with the first steps (e.g. steering some initial parameters) and work
their way up to the final calculation results. This approach works well if the users are familiar with the process,
the used data mining algorithms, their parameters and a well defined analytical goal. Untrained analysts have to
juggle through the pipeline or just hit the default option.

In this Chapter, a generic pipeline for the visual comparison of descriptors is presented which can be applied
to both approaches. In the propose pipeline the user interaction starts in the last step of the calculation, the result
view. The analysts get a proposed result of representative descriptors and it is up to them to work with the result
as it is or take a closer look at the analysis process.

The work presented in this chapter has been partially published in [BvLBS11].

7.2. Related Work

Finding relevant descriptors as low dimensional representation is closely related to my work and can be a part
of an exploratory descriptor analysis. Hence, I will present some relevant work of interactive systems for di-
mensionality reduction. As already mentioned, data descriptors consist of a set of features (numeric values)
representing complex data types. However, finding a proper descriptor is a challenge. Low dimensionality may
lead to under-representation of the objects, and high-dimensional descriptors may suffer from problems such as
“curse of dimensionality”, where the distances between near and far objects converge [AHK01, BGRS99].

The usage of algorithmic approaches solely is difficult for non-expert users as they need setting of, possibly
extensive, number of input parameters and work in a black-box manner.

Integration of user feedback in the analysis process is crucial when use case dependent parameter adjustment
and result evaluation are required. Many approaches interactively combining automatic calculations with visu-
alization in the area of feature selection have been proposed. Choo et al. [CLKP10] presented a framework for
data classification combining matrixes with parallel coordinates. A scatterplot shows the resulting projection
of a Linear Discriminant Analysis [Fuk90] which is iteratively refined during the classification process. Usu-
ally, dimension reduction methods focus on preserving structures of the high dimensional space. Johansson
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and Johansson enable the user to rank the importance of those structures by interactive steering of quality met-
rics [JJ09]. Tatu et al. [TAE∗09] proposed analytical methods to find and filter important structures to reduce
the complexity of the resulting visualization. The DimStiller [IMI∗10] framework supports the whole process
of feature selection. Additionally, the user gets guidance in every step of the pipeline, e.g., regarding parameter
choice. It however focuses on dimension reduction only for individual features and does not consider local sim-
ilarities. Building upon these approaches, I propose a strategy where the user can decide on the level of process
automation from a fully automatic up to a step by step assisted work flow.

7.3. Approach: Guided Interactive Analysis Pipeline

My approach aims at guiding the user through the process of finding representative descriptors of a given dataset.
Each of the selected descriptors should reflecting other aspects of the data. The input consists of several mul-
tivariate descriptors, each potentially having a different dimensionality or different data type. The output is a
subset of independent descriptors suitable for the use case at hand. In the workflow, the descriptors are compared
pairwise for finding groups of similar ones and thereby to choose representatives among them.

Figure 7.1.: Schema of the descriptor selection process. Every step (blue) encompasses automatic data processing
and visualization part. The input consists of many descriptors for one data set. These are automat-
ically compared and filtered. The result is a proposed set of independent descriptors is the starting
point for the interactive, guided analysis process. Feedback loops allow the user to refine results on
demand.

In order to adapt the algorithms to a given use case and improve result specificity, the user is involved in
the process. Offered guidance should facilitate the analysis for non-expert users. I have developed a dedicated
pipeline supporting the data descriptor finding process (see Figure 7.1). This pipeline consists of several steps
that are supported by both algorithmic and visual means. Every step of the pipeline supports visualization and
is interactively steerable. By combining the automatic and visualization functions, the results can be iteratively
refined by the analyst.

First, the input data (a set of descriptors) can be explored using dedicated visualizations. They support the
scalability with respect to the number of input data items. For large data sets, visual clustering using SOM is em-
ployed. Then, a pairwise comparison of the descriptors shows both, global and local similarities between them.
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These results are used for filtering of similar descriptors. The final recommendation step shows an overview of
results of automatic pre-processing, recommendations and offers the user the possibility to interactively refine the
results. The analyst receives additional guidance by the highlighting of interesting or critical patterns. Feedback
loops allow the user to interactively refine the results.

7.3.1. Pairwise Descriptor Comparison

The first step of the pipeline is the pairwise comparison of all input descriptors. Based on this, groups of similar
descriptors can be formed and redundant information can be found. Depending on the given input data, different
techniques can be applied. In this work, I propose measures for trees and high dimensional descriptors with
varying dimensionality. In other scenarios, the focus could be shifted to e.g. correlation or class label based
approaches. The automatic calculations should be accompanied by interactive visualizations supporting the user.
These should emphasize the key tasks in the comparison process like the identification of local dissimilarities in
globally similar descriptors. I present examples for comparative visualizations based on tree visualizations (see
Section 4.2.4 and 5.2.1), on scatterplotts (see Section 6.2.4) and on SOMs (see Section 6.2.5);

7.3.2. Hierarchical Clustering of Descriptors

Finding patterns in the descriptor space is one of the goals in their exploratory analysis. Due to the pairwise
comparison, distances between the representations are available and can be used for clustering. I use a hierar-
chical clustering approach (average linkage) to structure the data. This approach is beneficial as no additional
parameters except the linkage mode are required a priori. The resulting tree is visualized whereas the distances
are mapped to the edge lengths. The user can now interactively set a threshold for the maximum edge length
or select a number of clusters to determine the final clusters. Alternatively, the number of clusters can be esti-
mated automatically using the knee/elbow criterion for different quality criteria [TW05, TWH01, SC04]. This
can be used to find an appropriate number of clusters in combination with various clustering algorithms [SC04],
but in combination with hierarchical clustering it is not associated with computational expense. The respective
linkage-distance in each step serves as quality criterion for a cluster, the knee/elbow is marked by the point with
the biggest difference between two steps [CFC∗01].

This process not only gives the user more insight, it additionally can be used to reduce the complexity of
the descriptor space. High similarity of two or more descriptors implies that they carry the same information
regarding the neighborhood distribution of the described objects. A representative descriptor can be selected,
removing redundant information and reducing the dimensionality of the descriptor space. In my approach, the
one with the minimum average distance to all descriptors within the same cluster is selected. Note that the pre-
filtered descriptors can be interactively viewed and the pre-filtering can be rejected by the user in the next step
of the pipeline. This is in particular important for borderline decision cases or in cases where user knowledge
contributes to the decision making.

7.3.3. Recommendation Visualization and Exploration

The automatically calculated proposal for the compact representation of the descriptor space is presented to
the user in the last step of the pipeline. The result inspection is supported by interactive visual exploration
of descriptor similarity. The user can choose from just applying the proposed combination or to inspect and
adjust the steps of the process. User involvement in the process is advantageous especially in borderline cases
where the automatic filtering decision is close to the decision criteria (similarity threshold). Interactive data
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(a) initial clustering (b) cluster distances

(c) hierarchical clustering with proposed clusters

Figure 7.2.: This figure shows the result of a hierarchical clustering of 20 input descriptors (a). The edge length
reflects the distance of the descriptors. The threshold distance to define the highlighted clusters was
automatically determined using the elbow/knee criterion (b). The resulting clusters are individually
colored (c).
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space exploration can reveal new information, helping the user to make better decisions on descriptor filtering.
For example, the scoring function cannot reveal local similarities between objects in two descriptor spaces.
However, these can be highly relevant for the usage of descriptors for certain object classes (e.g., humans in 3D
object databases). The inspection is supported also in algorithmic way, highlighting such borderline decision
cases. The algorithmic and visual support of the adjustment process is described in the following.

During the clustering process, patterns which are recommended for further examination by the analysts are
automatically detected. These so-called examination markers can e.g. be cases where the distance to the next
cluster was very close to the threshold. This may indicate low confidence of the automatic cluster assignment
decision

The recommended set of descriptors is visualized on the basis of their two-dimensional projections (see Fig-
ure 7.3b top row). The view includes additional important descriptor information (e.g., the number of similar
descriptors or examination markers). This summary overview is an entry point to a deeper examination of the
decision space. For example, the comparison of one selected descriptor with similar filtered descriptors is shown
on demand (see Figure 7.3b bottom row). In this way, the understanding and adjustments of the filtering results
are supported. This exploration may lead to adjustments in the process – feedback to the previous interactive
steps of the pipeline.

(a) Descriptor comparison matrix (b) Result view

Figure 7.3.: Visual descriptor comparison. a) Initial overview of pairwise descriptor correspondence. b) The
result view after descriptor filtering. The top row shows the representative of the clusters or unclus-
tered descriptors. The bottom row shows the comparisons of one descriptor (top row in yellow) with
related descriptors of the same cluster. This supports understanding of the filtering decisions.

7.4. Application to Pharmaceutical Data

In this section, the approach is demonstrated on a biochemical dataset following the introduced workflow. Re-
searchers in biological and pharmacological sciences analyze large sets of molecules, e.g., as output of High
Throughput Screenings (HTS). In HTS, many molecules are tested for reactivity with one specific molecule of
interest. The resulting datasets contain several hundreds or thousands of molecules with high reactivity. The
task of the analysts is to find few, promising compounds for further examination. The selection criteria are use
case depended. Not only the data structure, but also user expertise and further factors such as costs have to be
considered. Moreover, as shown in Figure 6.4, often there is more than one valid description of a given dataset.
Therefore user interaction in the analysis process is needed.

69



7. Visual Descriptor Comparison Pipeline

The dataset contains 9989 molecules, described by 20 standard pharmacophore descriptors, divided into two
groups. The first group consists descriptors of 13 basic, Quantitative Structure-Activity Relationships (QSAR)
for, e.g., fragment complexity or the number of hydrogen-bond donors with a dimensionality between one and
ten [BST04]. The second is a set of so called fingerprints, binary descriptors classifying whether the described
molecule fulfills certain conditions or not. The group consists of 7 fingerprints with a dimensionality from 26 to
400.

The analysis task combines two intentions: 1) Finding relevant groups of compounds and structures in the data,
and 2) find differences and commonalities to reveal the underlying characteristics of the data. The identification
of groups is important for the process of drug development. Single molecules with high activity might be outlier
and form no reliable basis for further (expensive) research. Larger groups of active molecules, especially if they
share a common backbone, are more promising candidates. Their compact description ideally captures only the
relevant chemical features which caused their reaction characteristics. Based on this, new active compounds
which were not part of the HTS analysis can be extrapolated.

As outcome of the automatic analysis process, three different groups and two single descriptors were proposed.
Their overview is shown in Figure 7.5. One of the larger groups containing seven descriptors is represented by
the KappaShape descriptor. The quick comparison visualization in the result view already offers more insights
(see Figure 7.3). The number of different molecule groups differs e.g., the AtomCount descriptor has a homoge-
neous color gradient showing around 5 different colors (groups) whereas the AromaticActoms descriptor shows
only one big and two smaller groups. The polarization descriptor (Apol-norm) has the lowest similarity to the
reference, which is reflected by the low reliability of the cell correspondence.

To get more details, the analyst takes a closer look on the previous clustering step (see Figure 7.2) of the ana-
lysis pipeline. It illustrates the position of the polarization descriptor at the border of the red cluster. Some of the
descriptors have only very small distances, which is also visible in the direct comparison (see Figure 7.4). The

(a) WienerNumber (b) WienerNumber vs. KappaShapeIndices

Figure 7.4.: The WienerNumber and KappaShapeIndices descriptors have a very similar topology of the de-
scribed molecules. This is also visible in the comparison visualization, showing a very homogeneous
color gradient.

blue cluster is is dominated by the fingerprint descriptors. In this dataset, most of the complex, high dimensional
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fingerprints could be represented by the only one dimensional ring count. This finding is not only chemically
relevant but helps to reduce the dimensionality for the representation of the dataset in further data mining or
simulation steps.

Going one step back again in the pipeline brings the analyst to the comparison matrix (see Figure 7.5). Some
of the SOMs e.g., the three very similar descriptors LargestChain, RingCount and ExtendedFingerprint26 have
only few populated cells in the corresponding SOMs. Some of the SOMs are dominated by one color (e.g.

(a) red group (b) blue group (c) green group

Figure 7.5.: Comparison matrices of the three clusters.

ExtendedFingerpint50 and ExtendedFingerpint100) (see Figure 7.6). A detailed inspection reveals, that most of
the elements in the ExtendedFingerpint50 are concentrated in only one cell. Here, the increase of dimensionality
of the ExtendedFingerpint100 is useful it helps to distribute especially these compounds over the SOM. Although
there is a big overall distance between the groups, the visualization helps to find local similarities e.g., between
the APol and the ExtendedFingerpint100 descriptor.

(a) FingerPrint50 (b) FingerPrint100 (c) FingerPrint50 (d) FingerPrint100

Figure 7.6.: a) Most of the molecules are concentrated in one cell of the FingerPrint50 SOM. b) The Finger-
Print100 SOM shows a better distribution. c) Shows the reference coloring applied to the Finger-
Print50 SOM. d) The comparison visualization reveals, that the FingerPrint100 SOM especially
distributes the objects witch are agglomerate in the FingerPrint50 SOM. In this case, the additional
50 dimensions of the FingerPrint100 help to enhance the analysis.
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7. Visual Descriptor Comparison Pipeline

7.4.0.1. Summary

In this exemplary analysis scenario, each step revealed more information. The analyst could work with the
proposed result only, giving information about the number of clusters and the respective dominating descriptors
and their chemical properties. Digging deeper helps to find interesting local characteristics and anomalies, which
might lead to a better understanding of the data and refinement of the analytical methods e.g., choosing other
threshold parameters or calculating additional descriptors.
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Part II.

Exploration of Time Dependent Data
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8. Introduction

Time dependent data appear in many scientific and business areas like climate or wildlife research, stock trades
or clinical test series. Time series and their analysis is a broad field, but in general, one or more properties of
the observed objects are measured at certain time points. This could be, for example, the position in longitude
and latitude of cars and their actual movement speed at every given point in time. The connection of consecu-
tive points in time to descriptors places high demands on the approaches which are applied for the exploratory
analysis. A broad variety of Visual Analytics solutions was proposed and are specialized on the analysis of time
series.

Most often, visualization of time series focuses on one dimensional time series, where the different properties
of the observed objects at each time step are observed independently. This makes it difficult to find patterns
involving additional information like dependencies of features or behavior of groups of objects. If the analyzed
time series is very long, not every point in time can be displayed simultaneously. In these cases, either some
moments are selected for visualization or several time points and their properties are merged. Each of these
techniques is represented in my work. For the analysis of categorical, time depended data, I combine automatic
selection of interesting time points with an interactive visualization called Time Parallel Sets (TIPS) (see Chapter
9). For the exploration of sequenced time series, where each symbol represents similar input subsequences, I
combine different linked visualizations, each specialized on other aspects of the data (see Chapter 10).
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9. Categorical Time Dependent Data

In this chapter, the analysis of time-dependent data of grouped or categorized objects is addressed, which is
relevant to various application domains. The groupings may be pre-defined (e.g., animal herds in biology), or
may be a result of previous analysis (e.g., clustering). In both cases, when the group membership changes over
time, it is necessary to examine these aspects (e.g., which herds change members and when).

The analysis tasks include:
• tracking group sizes and contents over time,
• tracking (sub)sets of objects (e.g., a set of objects changing the same groups between two points in time),
• tracking group memberships of individuals,
• analyzing group changes (how many group members switch to which group),
• examining objects added to and removed from groups (e.g, newly born or died animals).

The main challenge is the scalability with respect to the number of group changes and the number of time
points. Therefore, a visualization combined with automatic data analysis is needed. The related works either
only focus on interactive visualization of group changes [KBH06,ZKG09,LSP∗10], or only on time development
of the group sizes [HHN02].

To ensure scalability, I present Time Parallel Sets (TIPS), a detailed visualization of interesting time points
and group dynamics combined with an automated time series analysis. I propose different algorithms for the
calculation and selection of interesting points in time, depending on different group dynamic patterns.

The approach is demonstrated in two application areas: Emergency evacuation of buildings and activity track-
ing of people over long time periods. An application to weather data can be found in [vLBA∗12]. The application
cases were analyzed in cooperation with Natalia and Gennady Andrienko from Fraunhofer IAIS, Bonn.

The work presented in this chapter is partially based on [BvLAA11] and [vLBA∗12].

9.1. Related Work

This work relates to the areas of spatio-temporal visual data analysis, visualization of (time-varying) categorical
data and analysis of time series. As dynamic categorical data often stem from clustering of other time-varying
data, an overview of the work in this domain is given as well.

Visualization of categorical data: The Parallel Sets approach by Kosara et al. [KBH06] displays multivariate
categorical data. In particular, it shows group memberships across several categorizations building upon parallel
coordinates [Ins85]. Similarly to Parallel Sets, Interactive Sankey diagrams [Fro05] show categorical data over
several dimensions while improving the visual design. Mosaic plots [Hof08] and KVMap [May07] use space
filling approach for multi-dimensional categoric data. Mosaic plots divide the rectangular space recursively ac-
cording to number of objects in each category. KVMaps use regular splitting, where color coding shows the
number of objects in each category.
Categoric data in geographic context is often shown on maps (e.g., by color coding of geographic areas according
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to category value) or using special visualization techniques. For example, for hierarchically organized categoric
data, spatially-ordered treemap technique has been introduced [WD08]. Recently, Wood et al. [WBDS11] pre-
sented BallotMaps – an abstract visualization of spatial ordered data (voting rankings for voting regions). It
shows the relative preference of a candidate for regions and for parties (categories) according to name order. All
of these approaches however do not deal with categories changing over time.

A special case of categorical data are clustering results. Zhou et al. [ZKG09] and Lex et al. [LSP∗10] propose
approaches for clustering result comparison. They both consider several groupings of data objects according
to different clustering results. The visualization is similar to Parallel Sets [KBH06], however it focuses on
individual objects. The view connects each object across all clusterings while minimizing edge crossings. These
approaches do not regard time dependency of the data and put strong emphasis on individuals rather then groups.

Visualization of time-varying data: A recent book on visualization of time series [AMST11], built upon the
survey presented by Aigner et al. [AMM∗08], provides a broad overview of techniques for visual analysis of time
series. Most relevant to my work is the approach of Hao et al. [HDKS07], who proposes an importance-driven
time series visualization. In the view, more important time intervals are provided with more screen space. Data
which are more up-to-date or have higher variance are deemed more important. Moreover, Ziegler et al. [ZNK08]
visualize time series based on the changes between pairs of time steps and in this way, important value changes
can be identified.

Visualization of time-varying categoric data: ThemeRiver [HHN02] approach shows time changes of topic
categories over times in a stacked chart, where bar sizes denote the number of objects in each group (i.e., number
of articles per topic). The developments in the number of objects in each category can be examined. A similar
approach is the History Flow [VWD04], which displays the development of documents by authors. The focus is
on identification of important themes/authorships in each time step. Both approaches, however, do not include
the changes of group membership between time steps.
Sequence data also can be seen as time-varying categorical data without an explicit time dimension. There are
several approaches for visual analysis of such data. They disregard the exact time and concentrate only on states
(sequence values) and their changes. Often they are represented as state-change or state transition graphs, where
each node is a state and an edge represents a state change. Edge thickness and node size represent the number
of objects [vHvdWvW01, VJC09, BBG∗09]. The main disadvantage is that the exact time of transitions is not
visible in the graph. It can only be seen in another linked view. Moreover, these approaches do not take spatial
information into account.
Recently, a new approache for analyzing group changes over time have been presented by Turkay et al. [TPRH11],
which deals with clustering results of time-varying data. The visual analysis shows which cluster an individual
object belongs to over time (similar to [LSP∗10]) and focuses on assessment of cluster quality development. They
however, disregard geographic location of the data, so spatio-temporal analysis is not possible and the selection
of points in time, which is crucial for large datasets, is not provided.

Spatio-temporal visual data analysis: The paper by Guo et al. [GCML06] demonstrates two approaches to
exploration of categorical changes that are applied in geovisualization. In this work, categories of spatial objects
(states of the USA) are defined by clustering of combinations of values of multiple time-varying attributes. The
authors suggested two complementary ways to visualize the cluster membership of the objects over time. The
first is the classical “small multiples” approach [TH83], where a small map for each time step in which the cluster
membership of the objects is represented by color. The second is a matrix with the rows corresponding to objects
and columns to time steps; the cells are colored according to the cluster membership. The ”small multiples” are
good for exploring the spatial distribution of the categories at each time step and the differences between the
distributions at different time steps. The matrix is suitable for exploring the evolution of each individual object.
However, both displays do not support the exploration of object groupings and detection of coherent changes of
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multiple objects sufficiently. Besides, it is cognitively difficult to examine a large number of maps showing data
at different time steps. The displays also do not provide a convenient overview of the overall evolution.

Automatic identification of significant time steps in time series data: The above-mentioned approaches to
visualization of categorical data cannot be straightforwardly applied to long time series of categorical values.
There may be not enough screen space to represent all time steps and changes between them. Hence, there is a
need for scalability in the approaches, e.g., representing all time steps in a summarized form and selected time
steps in more detail. Good selection of time steps plays a crucial role.

There are numerous visual and computational methods for identification of important time steps in time series
[HJM∗11, ZJGK10, ZNK08, LH11], videos [PDT09, TV07] or other types of data. They try to compress the
underlying data set into a small set of key time steps that would best represent the data set. There are various
methods, such as largest difference between time steps, regular spaced time steps with succeeding removing of
less important time steps. They mostly work with quantitative data, so they need to be extended or adapted to
categorical data.

9.2. Approach: Time Parallel Sets (TIPS)

The proposed data display called Time Parallel Sets (TIPS) extends the Parallel Sets concept [KBH06] with the
time dimension and includes additional glyphs for easier identification of group changes. I introduce:
• The tracking of group changes on three levels: whole groups, sets of objects and individuals.
• The automatic data analysis selecting representative points in time for deeper examination. The automatic

identification of interesting time points focuses on patterns of group changes of objects over time. It
supports different interestingness functions and a visual feedback to find appropriate parameters.

9.2.1. Interactive Visualization

The visualization shows two levels of detail (see Figure 9.1). The groups are color-coded and shown in user-
defined order on vertical axis. On the bottom, the distribution of all objects among groups at every moment is
shown. The main view in the upper part displays the object distribution (bars) and the group changes of objects
(edges between bars) in selected time moments, whose temporal positions are shown in the lower part by vertical
lines.

In the main view, each vertical bar represents the group distribution in one moment. Edges between neighbor-
ing bars represent objects group changes between two points in time. Their color is optionally based on source
or destination group or has a color-transition from one to the other color. The changes can additionally be shown
by the color coding of the narrower bars aside of every group. It indicates the proportional group membership of
the contained objects in the time steps before and after the current one. It is especially useful when the outgo-
ing/incoming edges are strongly overlapping or to increase space efficiency, if many points in time are displayed.
The dataset analyzed does not necessarily contain the same / all objects in every point in time. For representing
this fact, added and removed objects are indicated as triangles at the side of the group bars (see Figure 9.2).
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Figure 9.1.: Exemplary TIPS visualization. The Display is divided into two parts. Each group is represented
by one color. A) The upper part shows the group distribution (bars) and group changes (edges)
in selected time points (T12, T13, T14 and T16 in this case) B) The lower part shows the object
distribution in the whole time period. Here, time points of interest can be selected and then are
highlighted in gray (black box)

(a) (b) (c)

Figure 9.2.: Example visualization of box-border properties. a) Visualization of eight points in time without box-
borders. b) The borders on each box reflect the target of the edge. Object which are not present in
the previous or following time point are indicated by triangles (black box). c) Visualization without
edges to increase space efficiency.
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To enhance the data analysis, not only the overview upon group changes but also the tracking of sets of
interesting objects over time is important. Tracking encompasses three different aspects of the data which are
highlighted:

1. Tracking of groups: The bars of the selected groups are highlighted as well as all leaving edges. The user
can comprehend the characteristics of this group and the objects contained, e.g., if leaving objects always
swap together to one group or not (see Figure. 9.3(a)).

2. Tracking group changes: A transition matrix shows the number of group changes aggregated over time
as a heat map. The cells indicate common and extraordinary group changes. They are linked to the main
view for highlighting or hiding the represented transitions. Thereby, rare transition can be identified and
analyzed in more detail. (see Figure 9.4).

3. Tracking of individuals and object sets: An object or a set of objects can be selected, e.g., by clicking
on an edge. Consequently, all bars, side bars and edges containing the selected objects are automatically
highlighted proportional to group size. In this way, the transitions of a set of objects across groups can by
examined, e.g., to check if the set objects have common transitions (see Figure. 9.3(b)).

(a) Selection of group (b) Selection of transition

Figure 9.3.: Example visualization and tracking. a) The purple group was selected. All purple bars and edges are
highlighted. b) A transition (black box) was selected. The contained objects are highlighted in all
other groups or transitions.

9.2.2. Automatic Selection of Intersting Time Points

The analysis of categorical changes (i.e., transitions), as proposed in this work, relies on a adequate selection of
time points. Regarding the limited screen space and cognitive human skills, it is not possible to visualize every
step in the main view. The more compact overview visualization in the bottom window allows a visualization of
the fraction of each class in every point in time, but important group changes might be hidden (see Figure 9.5). A
constant or random sampling of time points might miss relevant information, too. I propose to present only those
time moments (and categorical changes) to the user, that uncover important data properties. I have therefore
developed several algorithms for user-guided automatic time selection. These algorithms can be applied to the
whole data set (for all objects in all time steps) or for subsets of the data set (e.g., for a selected set of objects,
selected time periods or for selected categories). The selection is a guided process, whereat the user is provided
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Figure 9.4.: The transition matrix is used to highlight the selected group changes. Thereby, rare transition can be
identified and analyzed in more detail. In the matrix selected transitions are highlighted by a block
border.

Figure 9.5.: This figure shows the importance of the selection of interesting points in time. On the left, the points
in time are selected regularly. On the right, interesting points in time are detected automatically,
revealing previously hidden group changes.
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with visual feedback on the sensitivity of the results to the algorithm parameters. Note that the results can be
adjusted interactively, where the user can additionally include in or exclude moments from the proposal.

Hence, the final choice of reference time points relies on a combination of automatic data analysis and user
expertise. Algorithms for the selection of reference times require setting of parameters. A good setting of the
parameters is essential, but not trivial. Small changes in parameters may have large effects on the results or vice-
versa, large changes in parameters may not effect the result at all. Therefore, I follow a visual analytics approach
combining automatic data analysis with interactive visualization. In particular, an interactive visualization of the
automatic data analysis results for various parameters is provided. It shows the impact of parameter choice on
the result. The user may then make an informed decision concerning the choice of the parameters.

In the following, new algorithms and the visual-interactive interface for time selection are presented.

9.2.2.1. Transition Weights

For task-specific time selection, the user may employ transition weights w that influence the selection of time
steps. Larger weights are assigned to more important transitions.

The weights often represent distances (dissimilarities) between categories. For the presented use case (see
Section 9.4), these distances can be determined by

1. geographic location of regions L(c) (e.g., activity locations),
2. data values (e.g., cluster distances as Euclidean distance of cluster centers)
3. context-dependent differences between categories (e.g., shopping and work are more distant than shopping

and sport).
Setting some weights to zero serves as filtering, so that irrelevant transitions are not taken into consideration.
The choice of the right weight calculation method is left to user expertise. Especially, if clustering is used, the

choice of the appropriate clustering method and its parameters are not tackled in this work as I concentrate on
time selection.

9.2.3. Definitions

It is assumed that the type of data containing objects has certain categorical attribute values and certain locations
in different time steps. Objects are denoted as oi ∈ O, i = 1, . . . , n, where n is the number of objects in the data
set. The time steps t ∈ T , t = 1, . . . ,τ, are assumed to be equally spaced, or their spacing is irrelevant to the
analysis. It is allowed that an object oi in time step t j may not exist, or the data about this object may be missing.
The number of available objects at time step t j is denoted as nt j . The number of objects existing in at least one
of the time steps ti and t j is denoted nti∨t j . Note that, in the data analysis, the user may focus only on a subset of
time steps T S, T S ⊂ T or on a subset of objects OS, OS ⊂ O.

It is defined that object oi in time step t j has a categorical value ck (i.e., is a member of group ck, is classified
as ck or has class ck) as C(oi, t j) = ck, ck ∈C, where C =

⋃m
k=1 ck is the set of all categories. m is the number of

distinct categories (i.e., the number of categorical values/states or classes). Moreover, it is defined a categorical
value c0 (missing), where missing or non-existing objects in specific time steps belong to C(oi, t j) = c0. In the
algorithms, the category c0 is also included in the calculations. Therefore, C is extended as C0 =C∪{c0}. For
simplicity, we refer to C0 as C, i.e., C0 ≡C.
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Object oi is defined as member of a categorical change (i.e., transition) Trt1,t2
ck,cl , when C(oi, t1) = ck∧C(oi, t2) =

cl . This object transition is denoted as Trt1,t2
ck,cl (oi). Please note that t1 and t2 are not necessarily consecutive time

steps, i.e., there may be any number of other time steps between them.
The number of objects participating in a certain transition Trt1,t2

ck,cl is defined as N(Trt1,t2
ck,cl ). The number of all

objects that change categories between time steps t1 and t2 are defined in Equation 9.1.

N(Trt1,t2) = ∑
ck∈C,cl∈c,ck 6=cl

(N(Trt1,t2
ck,cl

)) (9.1)

The weight for the transition Trck,cl is denoted as wck,cl . It is assumed that all weights are non-negative
wck,cl ≥ 0, and
∃k, l : wck,cl > 0 and mw = max∀ck 6=cl (wck,cl ).

The weighted number of transitions is calculated as in Eq. 9.2.

WN(Trt1,t2) = ∑
ck∈C,cl∈C,ck 6=cl

(wck,cl ·N(Trt1,t2
ck,cl

)) (9.2)

9.2.4. Algorithms for Time Selection

The algorithms select combinations of time steps that adequately represent the data developments for the task at
hand. In this respect, two types of the analytical intent of the user are distinguished:

1. Get an overview of the mainstream data developments and overall trends. A selection of time steps support-
ing this goal is called globally representative. Globally representative selections can be made according to
following criteria:

a) Activity-based: reveal the time periods of high and low transition activity.
b) Similarity-based: reveal similarities between time steps and repetitive patterns.

2. Get information on specific facets of the dataset and reveal uncommon development patterns. A selection
of time steps supporting this goal is called focally representative.

1. Activity-based globally representative time selection: To provide a global overview of the data, the al-
gorithm aims at giving low prominence to low levels of transition activity and high prominence to high level of
activity. The algorithm selects a subset of time steps T S ⊂ T so that the relative number of transitions between
any two consecutive time steps within this subset tS

i ∈ T S and tS
j ∈ T S is approximately equal. The number of

transitions is normalized, which accounts for the changes in the object sets between time steps. The same number
of transitions in a small data set (small number of objects N) may be more relevant than in a large data set.

I introduce two variants of the algorithm that are based on the number of objects changing groups: one taking
into account the total number of transitions between two time steps and the other looking at category-specific
transitions (see Algorithm 9.2.4.1). Variant (a) relies on the total number of transitions between selected time
steps. It it suitable for a general overview of the transition activity, however, it does not distinguish whether these
transitions happened among few categories or were more widely distributed across categories. The category-
specific number of transitions is captured in variant (b), which supposes that transitions between a pair of time
steps {ti, t j} are relevant if there is a significant difference between the number of transitions for all pairs of
different categories (WDN). The calculation is presented in Equation 9.3.
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WDN(Trt1,t2,t3,t4) =
∑ck,cl∈C abs(WN(Trt1,t2

ck,cl )/−WN(Trt3,t4
ck,cl ))

(mw ·nt1∨t2∨t3∨t4)
(9.3)

Note that the second variant can be used also for further selection of relevant time steps from a subset of
consecutive time steps selected by the first variant (see Section 9.2.5).

Algorithm 9.2.4.1 ACTIVITY-BASED GLOBAL TIME SELECTION

T S = {t1}
tre f = t1
for all ti ∈ T, i > 1 do
a) condition on total count
if WN(Trtre f ,ti)/(mw ·ntre f∨ti)≥ d then
b) condition on category-based count
if WDN(Trtre f ,tre f+1,ti,ti+1)≥ d and i < τ then

T S← T S∪{ti}
tre f ← ti

end if{ for both conditions}
end for
T S← T S∪{tτ}
return T S

The results of algorithm 9.2.4.1 depend on the setting of the parameter d. The user is provided with information
on the time selection given a threshold d for an informed decision (see Section 9.2.5).

2. Similarity-based Global Selection of Time Steps This algorithm is meant to reveal repetitive patterns
in object distribution across the categories, particularly, in periodic data. Data with periodic variation require
specific ways of selecting representative time steps. When analyzing data for multiple periods (e.g. weather
over many years), the analyst is not so much interested in changes between consecutive time steps and in differ-
ences between time steps within one period as in similarities and differences between the periods and long-time
trends over many periods. For dealing with periodic data and for revealing repetitions in arbitrary data, I propose
similarity-based time selection, which employs clustering of time steps by similarity of the corresponding data.
The result is a set of time clusters, each containing a subset of time steps T K = {T K1 ,Kk },T Ki =

⋃
tki

j . Each time
cluster gives a selection of time steps to be interactively explored. The user needs to explore all time clusters to
construct a full picture of the data developments.
For the time step clustering, the distance (amount of dissimilarity) between time steps can be measured as dis-
similarity of the object classes taking into account their weights (see 9.2.2.1). The choice of clustering method
and its parameters is user-defined. Several clustering algorithms (e.g., K-Means , SOM, DBScan) [WFH11] are
provided for this purpose.

3. Activity-based Focal Selection of Time Steps: This algorithm is used when the user wants to focus on
particular data developments. There are two variants, which search for pairs of time steps with either very high
or very low transition activity (the latter case means irregular transitions, i.e., outliers). This algorithm selects a
set of time pairs formed by consecutive time steps T S =

⋃
{ti, ti+1}, where the weighted number of transitions is

higher/lower then a threshold d (see Algorithm 9.2.4.3a and b). The threshold d is user-defined using a visual-
interactive interface (see Section 9.2.5). Please note that in case of searching for outliers in transitions, the
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Algorithm 9.2.4.2 SIMILARITY-BASED GLOBAL TIME SELECTION

Determine distances of time steps
for all ti ∈ T do

for all t j ∈ T, i≤ j do
dist(ti, t j) = ∑ck∈C,cl∈C(wck,cl ·N(Tr

ti,t j
ck,cl ))

end for
end for
T K ← cluster(T)
return T K

normalization of transition count is not used (e.g., when only one object changes categories ck,cl). Weights for
finding unusual transitions are not used, apart from filtering out irrelevant transitions (i.e., with zero weight).

Algorithm 9.2.4.3 ACTIVITY-BASED FOCAL TIME SELECTION

T S = ∅
for all ti ∈ T, i < τ do
a) condition for high activity
if WN(Trti,ti+1)/(mw ·nti∨ti+1)≥ d then
b) condition for low activity
if 0 < N(Trti,ti+1

ck,cl )≤ d and wck,cl > 0 then
T S← T S∪{ti, ti+1}

end if{for both conditions}
end for
return T S

9.2.5. Visual-Interactive Threshold Selection

The setting of proper parameters for algorithmic data analysis is usually essential for gaining high quality results.
A good practice is to inform the user about the effect of the possible parameter choices on the result. In TIPS,
the selection of time steps in Algorithms 9.2.4.1 and 9.2.4.3 depends on the parameter d. If d is too small, all
time steps can be selected. If d is too large, none or only the first and last time steps are selected. The user is
provided with information on the distribution of the selected time steps depending on threshold d for an informed
decision.

For the threshold selection view, a set of threshold values d ∈ D is determined, for which the selected time
sets T S(d) are calculated. Thresholds d = d0 + i∗ds are used, i = 0, . . . , imax, where d0 is an initial threshold, ds
is the step between threshold values and imax is the stopping criterion. The values of d0 and ds depend on the
applied algorithm. For the algorithms 9.2.4.1 and 9.2.4.3, where 0≤ d ≤ 1, small values of the initial threshold
and the step: d0 = 0.05 and ds = 0.05 are choosen. The number of time steps in algorithms9.2.4.1 and 9.2.4.3
is generally non-increasing with growing d. Note that the Algorithm 9.2.4.1 a) selects time steps in a successive
manner with a fixed addition of the last step. There can be special cases where a time step is added close to the
end leading to an increase in the selected time steps by one when using larger d.

In the algorithm 9.2.4.1b), the number of selected time steps decreases with increasing d, as atypical events
in the data (... ≤ d) are from interest. The calculation starts with a high d0 and decreases it constantly. d0 =
(int)0.05 ∗ n and ds = −1.The choice of d0 is motivated by the general rule of thumb that ≤ 5% threshold is
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Figure 9.6.: Choosing a threshold for time selection algorithms. Left: The impact of the threshold on the number
of selected time steps. X-axis: threshold value, y-axis: number of selected time steps. Right: The
impact of the threshold on the temporal distribution of the selected time steps. X-axis: All time
steps, where selected time steps are shown in grey. Y-Axis: number of selected time steps. The
setting highlighted in red is chosen for visualization.

commonly assumed as atypical [KKZ09]. The imax determining the stopping of i increase is determined by the
data – when there are no relevant times selected, because the threshold is too high (too low in case of Algo. 3b).

The user is provided with a view on the relationship between the threshold and the number of time steps
selected by the algorithm (see Figure 9.6 top). This view was inspired by the work on selection of dimension
reduction threshold [JJ09]. The parameter setting is difficult, as a small change of the threshold may result in
a large decline of the number of time steps and vice versa. By looking at the line chart, the user may choose
a relevant number of times by, e.g., “elbow criterion” [KS96], which is often used for determining the number
of clusters as the point where adding more clusters does not add much information. This view, however, does
not show a deeper insight into the distribution of time steps across the data set. This is tackled in a new view
described below.

The new visualization shows details on the impact of threshold setting on the time selection (see Figure 9.6
right). It provides information both on the number of selected time steps for threshold di and on their positions.
The number of selected time steps is shown in a gray color scale on the left together with the value of the
threshold. The selected time steps are shown on the right as gray-shaded rectangles. Please note that only those
thresholds are shown, that give different results in comparison to the previous threshold values. The motivation
for this design choice can be seen in Figure 9.6 left. Many changes of threshold do not lead to changes in time
selection. Therefore, to compress this view, only different time selections are displayed. Moreover, this filtering
also compensates for non-optimal selections of the initial threshold d0 and the step ds.

Calculation complexity in the algorithms 9.2.4.1 and 9.2.4.3 is determined by the number of objects, number
of time steps and thresholds used for final calculation (O(N ·T ·D), where D is the number of thresholds used for
selection proposals). Note that the assessment of the calculation complexity for calculating clusters in algorithm
9.2.4.2 goes beyond scope of the paper. For more details regarding the complexity of cluster calculation, which
is the majority of the computational expense, please see [WFH11].

9.3. Application to Emergency Evacuation

The usefulness of my approach is demonstrated on the “IEEE VAST 2008 Challenge – mini challenge 4: evac-
uation data” [GPL∗08]. The dataset describes the movement of 82 subjects in a building over 837 points in
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time [AA10]. I partitioned the building into eight areas (see Figure 9.7 left) and put the subjects into groups
according to their location in every moment. The group coloring can be seen in Figure 9.7 right. At a specific
time, a bomb detonates and afterwards people die or start to move towards the exits (turquoise and purple areas).

The input data is visualized on the basis of 15 automatically recommended time points, which are highlighted
in the overview on the bottom (see Figure 9.8(a)). The distribution of the selected moments is unequal over the
whole time period. The automatic analysis using the algorithm for the activity-based global time selection (see
Algorithm 9.2.4.1) puts more emphasis on time periods of high movements (after the explosion). As can be seen,
most people reached one of the two exits. To reveal the escape routes, the subjects arriving in the particular
exits are highlighted. People using the bottom exits at the beginning were mostly located in the upper left or one
of the bottom regions. Many people as expected move towards the nearest exit, e.g., from the top left (red) to
the bottom left (green) region. Surprisingly, even some people from the top middle region (blue) preferred the
bottom exit to the closer right exit (see Figure 9.8(b)).

Figure 9.7.: The example dataset from the VAST challenge 2008 [GPL∗08]. (a) Trajectory based visualization
of the movement of the people [AA10] with partitioning of the building into 8 areas. (b) Coloring of
the areas.

If a security analyst wants to improve the escape routs, she can first highlight all people, who remain in the
upper right (orange) area after the evacuation (see Figure 9.8(c)). Some of them have never moved (probable
victims of the bomb). Interestingly, there is one person who came from the upper mid (red) area. She did not
take the shortest path so she did not manage to exit the building fast enough.

The analyst can then focus on the analysis of the behavior of people who move differently from the rest
or in an unexpected way (away from exits). Those few region changes are selected in the transition matrix (see
Figure 9.4) and are then highlighted in the main view (see Figure 9.9(a)). As it turns out, only some of the marked
transitions (orange to blue and blue to red) are visible in the initial view (using automatic time selection). The
other transitions (purple to orange and blue to pink) are not captured by the selected points in time. Therefore, the
selection of the representative time points was recalculated, ensuring to show all selected transitions and at the
same time achieving a overview about the whole data with the desired 15 key points in total (see Figure 9.9(b)).
Tracking these people reveals that despite their odd routing, the majority reaches the exits (see Figure 9.9(c)).
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(a)

(b)

(c)

Figure 9.8.: Visualization of the evacuation data. a) Data visualization using relevance-based time selection. b)
Tracking of people who reach the exit on the bottom. c) Tracking of people who were located in
orange area at the end.
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(a)

(b)

(c)

Figure 9.9.: Analysis of unexpected transitions. a) Initial time selection shows only some of the selected tran-
sitions. b) Overview of interesting transitions using transition-based time selection. c) Tracking of
selected transitions. Despite the unexpected movement, most of the highlighted people reach the exit
in time.
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(a) Milan regions (b) Trajectories on Wednesday (c) Trajectories on Sunday

Figure 9.10.: Use case data. Milan has been divided into geographic regions forming categories (a). Mobile
phone caller trajectories on Wednesday (b) and Sunday (c).

9.4. Application to People Movement

As a second example, the proposed approach is applied to mobile phone call records . This was done in coopera-
tion with Natalia and Gennady Andrienko from Fraunhofer Institute IAIS, Bonn, who provided the data and their
geo-visualization toolkit. The dataset contains 5,108,298 mobile phone call records from 367,730 customers of
an Italian mobile phone company WIND collected over a period of 9 days in Milan area. From these data, we
have constructed caller trajectories and divided them into daily tracks. The territory of Milan has been split into
307 Voronoi polygons built around the positions of the network antennas. Since these polygons are not mean-
ingful in this case, we grouped them into larger regions reflecting the geography of the city (see Figure 9.10).

To explore and compare the mobility of the phone users on a typical working day and at the weekend, we
select two subsets of trajectories from the database: from Wednesday and from Sunday. We also remove the
trajectories of stationary customers who made all their calls in the same cell or a few neighboring cells. This
gives us 6,943 trajectories of mobile customers on Wednesday and 4,496 on Sunday. It signifies lower calling
activity at the weekend. From these trajectories, we generate time series of visited regions with a time step of 30
minutes and visualize them in TIPS.

With the help of tools for interactive threshold selection, we select 10 globally representative time steps for
Wednesday and Sunday (see Figure 9.11). The selected time points indicate a later start of activity on Sunday
than on Wednesday.

The behavior of callers between the selected time steps is shown in TIPS (see Figure 9.12). The colors
correspond to the city division. Grey color means that the locations of the callers are unknown; this occurs
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(a) Wednesday (b) Sunday

Figure 9.11.: The overviews of the selected time moments with respect to the choice of threshold. It shows that
the majority of phone call activity on Sunday (b) start later and finish than on Wednesday (a).

before the first call and after the last call. Main activity starts later on Sunday (by 9:30) then on Wednesday
(by 8:30), based on globally relevant time point selection. Movement pattern between areas is very similar on
both days, although time spans of these activities differ. The most visible flows are from “unknown” and to
“unknown”, while the flows between regions are much smaller. The summary view on the bottom shows: On
Sunday compared to Wednesday, the presence of people by regions is proportionally lower in the Center (red)
and Linate (green) and proportionally higher in e.g. San Siro (purplish red) and Milano 2 (cyan). The presence
in Milano 2 is notably higher in the first half of the day.

A detailed inspection using TIPS (see Figure 9.12b) revealed, that there are much more activities on Sunday
than on Wednesday in Milano 2 (cyan). Hereupon, we have used interactive selection of trajectories by visited
areas and thus created a new instance of TIPS with the selected subset. On Wednesday, the presence of people
in this region was rather constant, and there were no unusual change patterns (no focally representative time
steps were detected). On Sunday, something particular was going on in Milano 2 in the first half of the day.
Using the link to the map display, we select the trajectories of the people who stayed in Milano 2 at the selected
representative time moments presented in Figure 9.13 top. Figure 9.13 left shows these trajectories. All or almost
all trajectories meet in a single point. Hence, we can identify the place more precisely where unusual activities
occurred on Sunday. Figure 9.13 right shows this place and its surrounding with more geographical detail. The
place is near the metro station Cascina Gobba. By searching on the Internet for the possible reason of the unusual
activities, we found several videos in YouTube showing the flea market at Cascina Gobba, which explains our
finding.

92



9.4. Application to People Movement

(a) Wednesday

(b) Sunday

Figure 9.12.: Daily movements for Wednesday (a) and Sunday (b). The figure allows to compare the calling
and movement behavior of people between a weekday and at weekend. It shows, that the majority
of phone call activity on Sunday start later then on Wednesday. Although the general movement
patterns show high similarities, the proportion of people in regions varies, especially in the center
of Milan (red) and in Milano 2 area (cyan).
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(a) Representative time moments

(b) Trajectories for Milano 2 area

Figure 9.13.: Visualization of trajectories of people visiting Milano 2 area (in cyan) on Sunday. a) TIPS view
with representative time steps. b) Trajectories of the people who were in Milano 2 at these time
steps. Right: Zoom into the area where all trajectories meet.
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In this chapter, an interactive visualization tool for the analysis of large and complex time sequences is introduced.
It combines multiple linked views, each specialized on the analysis of other aspects of the time sequence. Time
sequences are an symbolic representation to reduce the complexity e.g., of long or high dimensional time series.
Typically, similar patterns are represented by only one symbol, again reducing complexity. Sequences of these
symbols represent the source data and are expected as input data of the approach. The tool is presented using
time series data as exemplary input. The preprocessing step converting the source data to sequences relies
on an idea of [SBVLK09] and is briefly presented in Section 10.2.1 for a better motivation of the usecase.
Subsequently, the algorithmic part covering the similarity calculation of subsequences (see Section 10.2.2) and
the different visualizations (see Section 10.2.3) are described in detail. Section 10.3 describes an exemplary
workflow analyzing the previously introduced financial data.

The work presented in this chapter is partially based on [BMvLS09].

10.1. Related Work

The idea of converting a continuous time series to a symbolic sequence has been proposed by Lin et al. [LKLC03].
They split the continuous range of an one dimensional time series in a few blocks with a previously defined du-
ration. Thereby, the data can be compressed dramatically, which allows the fast and efficient handling of large
databases [SK08]. They extended their approach with a tree like visualization where each subsequence is repre-
sented by a path from the root to the leaves. This visualization scales well with the number of subsequences but
not with their length or the number of available symbols [LKL05]. My work is based on a SOM-based frame-
work to discretize high dimensional time series which was proposed by Schreck et al. [SBVLK09]. For more
details please see Section 10.2. Recently, Ward and Guo presented an approach, which projects high dimensional
time series into the two dimensional space using multidimensional scaling [WG11]. Similar moments in time are
placed nearby, which are connected according to the time flow. Thereby, similar subsequences form similar paths
and enable and intuitive comparison of sequences. However, the comparison of many sequences might lead to
overplotting.

A lot of work for analyzing sequences has been done in the biological area. They typically do not focus on
time dependent, but on DNA or protein sequences e.g. BLAST [AGM∗90] for the comparison of two or Clustal
[CSK∗03] for the comparison of multiple sequences. In the analysis of biological sequences, it is convenient to
insert gaps for a better alignment of local patterns. This does not work for time dependent data as the temporal
component is an important and immutable component of the analysis.

In the text mining domain, a lot of work has been done on the analysis of sequential patterns. For example,
Wong et al. [WCF∗00] introduced an efficient algorithm to search for frequent subsequences in large texts which
we use in our approach, too. However, the time component is missing in the text mining cases as well.
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10.2. Approach

The approach combines multiple visualizations to explore the similarities and differences of the input data. After
the preprocessing and an user steerable pairwise similarity definition of the symbols, the user can analyze the
data in different visualizations, each specialized on other questionings. The strength of the respective parts are
combined by linking all visualizations to form a bigger picture of the analyzed data set.

10.2.1. Input Data and Preprocessing

This approach is designed for the general analysis of sequenced time depended data. For the illustration of
the approach, example data from the financial sector is used. The generation and preprocessing of this data
is described by Schreck et al. [STKF07, SBVLK09] and is not part of this thesis. However, their approach is
described brifely for a better understanding of the used data. The datasets contains risk estimations and return
values for the stocks of 60 companies over a period of 500 days. The goal of the explorative analysis is to find
patterns of interest. The characteristics and/or the particular interestingness of these patterns is not known á priori
as it heavily depends on the analyzed usecase and dataset. Examples for such patterns in the given scenario could
be either the similar behavior of multiple companies within a given time period or single companies developing
against the trend or to identify periodicity of discovered patterns. A common approach for the analysis of two
dimensional data is using a scatter plot. In case of two dimensional time dependent data, the time aspect can be
visualized using animation or, to allow an better overview, trajectories. This works well for small datasets with
only few objects and short time periods (see Figure 10.1(a)) In large datasets, the display gets crowded quickly
(see Figure 10.1(b)). To reduce the complexity of the data, the time series were spitted into smaller chunks of
five days to be in accordance with the length of one trading week. A few weeks with missing values e.g. caused
by holidays were discarded. Afterwards, each five-day-trajectory was normalized to have the same minimal and
maximum values. The reasoning behind the normalization is based on the particular question the analyst wants
to answer. External factors (e.g. increasing costs of a resource) have a smaller influence on big companies with a
high market capitalization than on small companies. Hence, without normalization, similar reactions e.g. in the
risk assessment would not be comparable. To decrease the complexity furthermore, representative patterns were
calculated using a SOM projection [Koh01]. Each neuron is represented by a 10-dimensional vector according
to the input trajectories (two dimensional position on each of the five points in time). After the training process,
each neuron represents several input trajectories and can be directly visualized as trajectory. As the neurons
are organized in a two dimensional network, the result of the training is a two dimensional map visualizing the
prototypes which are sorted according to their local similarity (see Figure 10.2). For these SOM calculations, the
framework of Schreck et al. [SBVLK09] was used. Besides the interactive visualization and parameter steering,
it provides several quality measures to evaluate the projection quality.

10.2.2. Definition of Similarity

The input data contains several time depended sequences of symbols. In the exemplary usecase, each sequence
is represented with the reduced set of different trajectories, based on the prototypes of the SOM calculation.
The goal of the analysis is always the identification of patterns in sequences of symbols. Each pattern can be
represented by an subsequence of arbitrary length between 1 and the maximum length of a sequence. For the
comparison of two (sub)sequences, an appropriate distance measure has to be defined. On the lowest level, this is
the distance between two symbols. In the financial case, it is represented by the euclidean distance between the 10
dimensional vectors of the prototypes. Other scenarios e.g. the comparison of amino acids in protein sequences
use non symmetric distances according to mutation probabilities acquired in biological experiments [HH92]. To
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(a) (b)

Figure 10.1.: a) Trajectories can be used to represent the movement of the objects over time. In this usecase,
each company is visualized according to risk estimations and return values of their stocks. b) The
visualization of many objects over longer time periods leads to an massive overplotting effect.

give the users the possibility to integrate their domain knowledge in the analysis process, they can interactively
change and define the automatically preprocessed distances. Using the SOM visualization, similarities of the
symbols can be redefined (see Figure 10.3). Distances can be set for each pair of symbols separately or using
predefined masks like radial kernels. A for one object defined distance mask can then be generalized to all other
objects. Additionally, groups of similar objects can be defined, reducing the set of symbols used in the following
calculations and visualizations.

The distance of two subsequences is defined as the sum of the pairwise distances of the symbols at the partic-
ular position. To increase scalability, the number of occurrence of a substructure within the dataset has to pass
a user defined threshold. The used algorithm is based on an idea by Wong et al. [WCF∗00], who use it for text
analysis. The result is a lexicographic tree containing all subsequences passing the choosen threshold.

10.2.3. Interactive Sequence Analysis

The sequence analysis tool combines different interactive visualizations, each representing other aspects of the
data.

• The sequence view offers an overview of the sequences and supports their sorting according to several
aspects.
• The heatmaps allow a compressed view on the frequency and distribution of patterns over time or over

the sequences.
• The scatter plot visualizes the relationship of different, user selected attributes.

In all views, the visualized subsequences can be filtered according to length and number of occurrence. In the
following, these views and their connections are described in detail.
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Figure 10.2.: This figure shows the result of the SOM calculation with the weekly stock patterns as input. The
green dot represents the first day, the red dot the fifth day. Each cell shows a prototype which
represents several input objects, whereas the cells are sorted according to local similarity.

98



10.2. Approach

(a)

(b) (c) (d)

Figure 10.3.: This figure shows the visualization for the interactive definition of distances between symbols. It
is based on the results of the SOM calculations. The distances can not only be defined pairwise
but different masks which represent similarity patterns can be used. a) Circular mask with cubic-
quadratic scaling b) Line mask with linear scaling c) Grouping of objects d) Abstract visualization
with alphabetical representation of each object.
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Figure 10.4.: The sequence view visualizes the complete input sequences. Selected subsequences can be high-
lighted. All in this or in other views selected subsequences are listed on the right side of the display.

10.2.3.1. Sequence View

This view visualizes the input sequences (see Figure 10.4). The symbols can either be shown as abstract letter
combination or using an arbitrary renderer to visualize e.g. trajectories. As default, the sequence of each object
is shown in one line and each column represents one point in time. To get more detailed information, zooming
with and without line wrapping is included. The objects can be sorted by occurrence of selected subsequences or
according to arbitrary meta data e.g. in the case of financial data, key data like market capitalization or number
of employees. Subsequences which can be selected in this and the other views are listed on the right side for
further investigation.

10.2.3.2. Heatmap View

The heapmap view offers a compact visualization of the dataset and can be used to identify e.g. outliers (see
Figure 10.5). One axis represents all patterns of the dataset, the other represents all time points or sequences.
The bars represent the frequency of the respective pattern respectively the number of difference patterns at a
given time point. Each cell in this matrix represents a subsequence at the respective point in time, whereas
the number of occurrence is mapped to color ranging from blue (zero) to yellow (max). The patterns are then
sorted according to their number of occurrence at the a selected point in time (see Fig 10.5(b) and 10.5(c)).
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Alternatively the time can be replaced by the sequence id to analyze the frequency of patterns over all sequences
(see Fig 10.5(b)).

10.2.3.3. Scatterplot View

The scatterplot offers an easy and intuitive way to evaluate the dependency of the patterns of selected variables.
Selected points are indicated by uniquely colored borders. The three displayed variables (mapped to x-axis,
y-axis and color) on the axis can be divided into six categories and individually selected by the user.

• Data specific properties which depend on the used dataset e.g. in this usecase maximal risk or average
return value. If analyzing biological sequences, this could be chemical properties like charge or solubility.
• Frequency of the subsequences
• Length of the subsequences
• Internal similarity reflecting the similarity of the respective symbols within each subsequence. This value

is only displayed for subsequence with a minimal length of two as it is calculated as the average of the
pairwise distances of all contained symbols.
• Time related characteristics e.g. the variance or absolute frequency of the points in time where the respec-

tive subsequence occurs.
• Sequence related properties like the number of sequences containing the respective pattern or the average

occurrence per sequence.

10.3. Application to Financial Data

In the following, an exemplary workflow based on the previously introduced financial dataset is presented. Each
trajectory symbol represents the progression of risk assessment and return evaluation over five days. The total
length of the analyzed time series covers 500 days resulting in 100 5-day-trajectories. As starting point for the
analysis, getting an overview is advantageous. First, a view on the heatmap reveals a quite prominent outlier
shown by a bright yellow pixel (see Figure 10.5(a)). It is selected as interesting and stored in the pattern list
on the right for further analysis e.g. to get more details about the distribution in the sequence view. Next, the
scatter plot gets attention, selecting frequency on the y-axis and the average frequency per sequence respectively
per company on the x-axis. The color represent the particular length of the subsequences. The two axes exhibit
a strong correlation, so short subsequences appear more often per company than long ones, which was to be
expected (see Figure 10.7). Again, outliers are selected: The subsequence which occurs most often (blue),
which has the highest frequency per sequence (yellow) and one of the most unique subsequences (green). The
previously in the heatmap selected pattern was automatically highlighted in red. With this list of potentially
interesting patterns, the analyst switches to the sequence view. First, the blue, most often occurring symbol is
highlighted but it appears to be randomly distributed (see Figure 10.8(a)). Next, the other three patterns are
highlighted and the sequences are sorted according the frequency of their occurrence. A strong distribution
pattern is visible (see Figure 10.8(b)). The red trajectory is part of the green one and they show a increased
appearance at the 46 & 47 week. Thus, many companies exhibit similar characteristics at the same point in
time, which can serve as a starting point for a deeper financial analysis. The yellow pattern is only visible in
one company, but there it appears twice. Again, this unique characteristics of the company is from interest for
the financial analyst. With this sequence analysis tool, the users can analyze large, time dependent datasets.
The combination of the different strength of the linked views allow a identification and drill down to potentially
interesting patterns.
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(a) (b) (c)

Figure 10.5.: Heatmap View: Each heatmap visualizes the number of occurrence of each subsequence at each
time point and ranges from zero (blue) to the respective maximum (yellow). The bars represent
the accumulated frequency of the respective column or line. a) Ordering according to the total
frequency of a pattern. b) Ordering according to the frequency in the selected point in time t1 c)
Including patters within a selected similarity threshold.
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Figure 10.6.: Heatmap View: The heatmap visualizes the number of occurrence of each subsequence within each
complete input sequence.

Figure 10.7.: The scatterplot visualizes the dependencies of different, user selected variables. The color repre-
sents the length of the displayed subsequence. This visualization helps to find potetially interesting
subsequences (e.g., outliers) of subsequences or the correlation of variables.
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(a) (b)

Figure 10.8.: Overview of all sequences. a) The most frequent subsequence is highlighted in blue, but no pattern
is visible. b) Highlighting of the other three subsequences which have been marked as potentially
interesting in the other views during the analysis process. The green and red subsequences occur
very often at the same point in time. The yellow subsequence in the first line occurs twice but only
in one company. Both findings are starting points for fuhrer financial analysis.
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11. Conclusion and Future Work

It could be shown, that Visual Analytics with its combination of interactive visualizations and data mining can add
a valuable application benefit in different areas like biology or evacuation planning. The particular approach and
methods applied depend on the respective use case and its data characteristics. I proposed new Visual Analytics
solutions for the comparison of descriptors and the explorative analysis of time dependent data.

11.1. Visual Descriptor Space Comparison

Comparing different descriptors of a data set provides inside about its patterns and characteristics. I proposed
different scores and visualizations to measure and analyze differences and commonalities for both, data with
hierarchic or unknown structure.

Approaches which try to provide the compressed and shared information of many descriptors, are useful for a
quick overview or an automated data processing. This work and the feedback of our cooperation partners as well
as of other users show, that a detailed comparison of different aspects of the data can lead to valuable insights
into the data. Local patterns can be detected and evaluated and the understanding of the detailed structure can
enhance the basis of decision making.

My novel tree comparison score takes structural differences of trees into account. Its combination with a
visualization tool featuring different linked views for different levels of detail allows for a detailed analysis on
the subtree level of many trees simultaneously. The evaluation of the tool in close cooperation with biologists
analyzing phylogenetic trees showed the usefulness of my approach. The CloudTree visualization technique
extends the scalability of the approach to trees with thousands of leaves. CloudTrees reduce the negative effect
of overplotting in the comparative analysis and provide the visibility of even small, but important details.

The evaluation of various state of the art quality measures, originally used for dimensionality reduction, shows
their applicability for the comparison of unstructured data. For the visual comparison of two datasets, a two-
dimensional color coding is used which can be applied to scatter plots or Self Organizing Maps (SOMs). The
SOM comparison visualization combines the dimensionality reduction and clustering capabilities of SOMs with
the comparison coloring and uncertainty encoding. In combination with an adaptive comparison pipeline, novice
users are guided through the analytical process. The automatic and visual comparison were tested and validated
using artificial data. To create these ground truth datasets, I proposed PCDC, an interactive tool for the controlled
and detailed creation of high dimensional data.

The combination of the automatic analysis and the interactive visualizations helped the user with the explo-
ration analysis of large datasets. By integrating the user in the analysis, previously unknown patterns could be
found and evaluated. The comparison of different representations of the data is a powerful tool, which easily can
be extended to other usecases like the parameter steering of algorithms. For example, in the case of the calcula-
tion of phylogenetic trees, the biologists were evaluating the influence of the selected representation using a fixed
set of parameters for the calculation of the phylogenetic tree. Another interesting question beyond this work is
the influence of varying parameters resulting in different trees which could be tackled using my tree comparison
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approach. First steps in this direction were recently taken by a master thesis under my supervision by Martin
Heß “Interactive Visual Comparison of Many Hierarchic Datasets”.

This work adresses the important issue of scalability regarding the number of trees which has not been ad-
dressed in this thesis . For the comparison of hierarchies, CloudTrees ensure scalability regarding the size of
the trees. The visualization of too many trees at the same time overburdens the user and makes it harder to see
details in the respective trees. A promising approach is the clustering of similar trees. I already proposed this
successfully for data with unknown structure in the comparison pipeline, where the datasets were hierarchically
clustered according to their similarity in terms of neighborhood preservation. For trees, the already established
element based similarity measure can be used to form clusters, identify cluster representatives and present them
to the users.

Another option for combining tree visualization with the 2D colormap-based approach could be the visual-
ization of hierarchies using treemaps [Shn92b]. Treemaps divide an usually rectangular space according to the
hierarchies in sub-rectangles and thereby form a two dimensional space filling projection. Assuming an appro-
priate layout, the two dimensional colormaps could be applied for their comparison.

Another important topic is the extension of the user evaluation. I already worked in close cooperation with
our partners from biology on the tree comparison system without the cloud trees. Since that time, the ViPhy
system for the comparison of hierarchies was published and used for research by different biologists worldwide.
We already showed examples of value added by the CloudTree extension. A wider user evaluation with domain
experts would in future contribute to a better understanding of its advantages and drawback. The same applies
to the SOM comparison pipeline. A controlled generation of ground truth test trees with specific sizes and
similarity patterns like it was done with PCDC for not hierarchically structured data would be beneficial for an
in depth testing of the cloud trees. However, making the tools available to the public as we already did with
ViPhy [BvLH∗11], Micato & MatrixVis [BSB∗10] and PCDC [BHvLF12] is very useful as the feedback from
domain experts helps a lot in improving them.

11.2. Analysis of time Series

Visual Analytics provides flexible, usecase specific tools for the analysis of large time dependent data sets. Time
Parallel Sets allow for an effective analysis of large sets of categorical data with a focus on class changes of
objects. They combine an automatic analysis for the identification of potentially interesting points in time with
an interactive visualization. I proposed different algorithms, each specialized on other problems like the identi-
fication of representative moments or the detection of outliers. In the detailed visualization of the automatically
or manually selected points in time, users have various interactive analysis options like the tracing of single ob-
jects or groups. The applicability of the approach has been shown in various application areas like emergency
evacuation of buildings and activity tracking of people over long time periods.

The transformation of long time series to sequences can help to compress the data. My approach supports the
analyst in the definition of symbol similarity and the analysis of the resulting sequences. Multiple linked views,
each specialized on other analytical problems allow for a flexible, task depended analysis. The approach has
been applied to financial risk and return estimations of 60 companies over 500 days.

In the future, the scalability of the approaches could be enhanced. In Time Parallel Sets, this applies especially
to the number of classes and their ordering as well as for the number of points in time, which is relevant for the
sequence analysis as well. The presented approach is suitable mainly for a small number of categories (i.e., small
number of category values). Generally, up to about ten categories can be handled in the visualization so that
the readability of the views is provided. However, often larger number of categoric values exist in the data set.
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This can lead to overplotting problems. In order to support the analysis of a larger number of categoric values, I
provide a possibility to interactively merge several categories into one category. For example, the user can merge
several similar activities into one broadly-defined activity such as tennis, walking and jogging can be integrated
into sports. Alternatively, the user can merge categories that are not in her focus into an “other” category. It
allows for targeted analysis of selected categories. As an illustration, Figure 11.1 shows a view on transitions for
all categories (left) and for the merged categories (right). The merged view provides a more abstract view of the
data with less overploting.

Figure 11.1.: An increasing number of categories can lead to overplotting effects. The merging of similar groups
could allow for more scalability.

The ordering of categorical states is important for both, good interpretation and readability of the visualization.
Often, this ordering is not pre-defined. We currently provide interactive user-defined ordering. In this case, user
experience and hypothesis about possible insights into the data determine the choice of ordering. Alternatively,
the ordering can be calculated on the basis of transition counts. For example, methods on the minimization
of edge crossings for cluster comparison visualization [LSP∗10, ZKG09] or on placement of graph nodes on
a line with minimization of edge crossing/edge length [DPS02] can be used. However, these approaches have
severe limitations. Finding the optimal solution is NP hard, but moreover, for time dependent data, it is not
clear, whether to apply these algorithms on all or only selected time moments. A global minimization may not
be optimal for the selected time points and local calculation for selected time points would imply changing the
ordering with each time selection change. Therefore, I currently rely on user-defined ordering.

Additionally, the automatic detection of interesting patterns or points in time could be enhanced in the sequence
analysis. Right now, for example, the user can select different attributes for the axis in the scatterplot view. Based
on algorithms for the evaluation of interestingness of two dimensional point clouds (e.g. [SBS11,LAE∗12]), axis
combination could be proposed. Additional meta data like the business sector or number of employees in case of
financial data, which is actually only used for visualization, could be integrated in the automatic analysis.

The scalability of both approaches, Time Parallel Sets and the sequence analysis, with respect to the number
of points in time could be extended by the specific handling of periodic data. Sometimes the periodicity itself is
interesting for the analyst, but in other cases, like annual patters in climate research, the periodicity is assumed a
priori. In Time Parallel Sets, only transitions varying from these patterns could be used to detect interesting points
in time. The determination of differences between multiple periods as well as for the sequences and subsequences
could be improved in future. For example, building on the work of Ding et al. [DTS∗08], who compared several
different distance measurements for the mining of time series could improve the robustness of the identification
of common subsequences. As these aspects of similarity measurement are very usecase specific, their influence
on the current analysis should be communicated and evaluated by the user.
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A. Publications

The thesis is partially based on the following publications:

A.1. Journal Publications, Book Chapters

1. VON LANDESBERGER, T., ANDRIENKO, G., ANDRIENKO, N., BREMM, S., KIRSCHNER, M., WE-
SARG, S., KUIJPER, A.:
Opening up the “Black Box” of Medical Image Segmentation with Statistical Shape Models
The Visual Computer, 2013, Volume 26, Issue 9, pp 893-905

2. VON LANDESBERGER, T., DIEL, S., BREMM, S., FELLNER, D.W.:
Visual Analysis of Contagion in Networks
Information Visualization , 2013, Volume 40, Issue 12, pp. 4934âĂŞ4943

3. VON LANDESBERGER, T., BREMM, S, KIRSCHNER, M., WESARG, S., KUIJPER, A.:
Visual Analytics for Model-based Medical Image Segmentation: Opportunities and Challenges
Expert Systems with Applications, Elsevier, 2013

4. LANDESBERGER, T. V., FIEBIG, S., BREMM, S., KUIJPER, A., FELLNER, D.W.:
Interaction Taxonomy for Tracking of User Actions in Visual Analytics Applications
Human centric visualization, Springer, 2012

5. TATU, A., ZHANG, L., BERTINI, E., SCHRECK, T., KEIM, D., BREMM, S., VON LANDESBERGER, T.:
ClustNails: Visual Analysis of Subspace Clusters
Tsinghua Science and Technology, 2012, Volume 17, Number 4

6. BREMM, S., VON LANDESBERGER, T., BERNARD, J. AND SCHRECK, T.:
Assisted Descriptor Selection Based on Visual Comparative Data Analysis
Computer Graphics Forum, 2011, Vol. 30(3), pp. 891-900

7. BREMM, S., SCHRECK, T., BOBA, P., HELD, S. AND HAMACHER, K.:
Computing and Visually Analyzing Mutual Information in Molecular Co-evolution
BMC Bioinformatics, 2010, Vol. 11, pp. 330

8. ANDRIENKO, G., ANDRIENKO, N., BREMM, S., SCHRECK, T., LANDESBERGER, T. V., BAK, P. AND
KEIM, D.A.:
Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns
Computer Graphics Forum, 2010, Vol. 29(3), pp. 913-922

9. SCHRECK, T., VON LANDESBERGER, T. AND BREMM, S.:
Techniques for Precision-Based Visual Analysis of Projected Data
Palgrave Macmillan Information Visualization, 2010, Vol. 9(3), pp. 181-193

10. ANDRIENKO, G., ANDRIENKO, N., BAK, P., BREMM, S., KEIM, D.A., LANDESBERGER, T. V.,
PÖLITZ, C. AND SCHRECK, T.:
A Framework for Using Self-Organizing Maps to Analyze Spatio-Temporal Patterns,
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Exemplified by Analysis of Mobile Phone Usage
Journal of Location Based Services, 2010, Vol. 4(3-4), pp. 200-221

11. BREMM, S., MAIER, S., VON LANDESBERGER, T. AND SCHRECK, T.:
Ein flexibles System für die explorative visuelle Sequenzanalyse
Datenbank Spektrum, 2009, Vol. 31(31), pp. 8-16

A.2. Conference Proceedings

1. VON LANDESBERGER, T., BREMM, S., ANDRIENKO, N. AND ANDRIENKO, G., TEKUSOVA, M.:
Visual Analytics Methods for Categoric Spatio-Temporal Data
IEEE Visual Analytics Science and Technology, 2012

2. VON LANDESBERGER, T., BREMM, S., SCHRECK, T., FELLNER, D.W.:
Feature-based Identification of Interesting Data Segments in Group Movement Data
GIScience workshop on GeoVisual Analytics , 2012

3. BREMM, S. , VON LANDESBERGER, T., HESS, M. AND FELLNER, D.W.:
PCDC - On the Highway to Data - A Tool for the Fast Generation of Large Synthetic Data Sets
EuroVA International Workshop on Visual Analytics, 2012

4. BREMM, S. , VON LANDESBERGER, T., HESS, M., SCHRECK, T., WEIL, P. AND HAMACHER, K. :
Interactive Visual Comparison of Multiple Trees
IEEE Visual Analytics Science and Technology, 2011, pp. 31âĂŞ40

5. BREMM, S., VON LANDESBERGER, T., ANDRIENKO, G. AND ANDRIENKO, N.:
Interactive Analysis of Object Group Changes over Time
EuroVA International Workshop on Visual Analytics, 2011, pp. 41-44

6. BERNARD, J., LANDESBERGER, T. V., BREMM, S. AND SCHRECK, T.:
Multi-Scale Visual Quality Assessment for Cluster Analysis with Self-Organizing Maps
Visualization and Data Analysis 2011 SPIE Press, 2011, pp. 78680N-1-78680N-12

7. LANDESBERGER, T. V., BREMM, S., BERNARD, J. AND SCHRECK, T.:
Smart Query Definition for Content-Based Search in Large Sets of Graphs
EuroVAST 2010 Eurographics Association, 2010, pp. 7-12

8. SCHRECK, T., VON LANDESBERGER, T. AND BREMM, S.:
Techniques for Precision-Based Visual Analysis of Projected Data
Proceedings of IS&T/SPIE Electronic Imaging: Visualization and Data Analysis, 2010, Vol. 7530, pp.
75300E-75300E-12

9. VON LANDESBERGER, T., BREMM, S., REZAEI, P. AND SCHRECK, T.:
Visual Analytics of Time Dependent 2D Point Clouds
Computer Graphics International, 2009, pp. 97-101
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The following list summarizes the student bachelor, diploma and master thesis supervised by the author. The
results of these works were partially used as an input into the thesis.

B.1. Diploma and Master Thesis

1. Sebastian Meier: Interactive Analyse von Zeitserien, 2009
2. Martin Heß: Interactive Visual Comparison of Many Hierarchic Datasets, 2013

B.2. Bachelor Thesis

1. Martin Heß: Visueller Vergleich hierarchisch organisierter Daten, 2011
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D. List of Abbreviations

CIE Commission Internationale de l’Éclairage (International Commission on Illumination)
HTS High Throughput Screening
LCMC Local Continuity Metacriterion
MDS Multidimensional Scaling
MRRE Mean Relative Rank Errors
PCA Principal Component Analysis
PCDC Parallel Coordinates Data Creator
PP Projection Precision
RGB Red Green Blue
SOM Self-Organizing Map
T&C Trustworthiness and Continuity
TIPS Time Parallel Sets
VA Visual Analytics
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