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Abstract

AT each stage of the visualization pipeline, the information is impeded by loss or by
noise because of imprecise acquisition, storage limitations, and processing. Further-

more, it passes through the complex and not yet well understood pathways in the human
visual system and finally to result into a mental image. Due to the noise that impedes
the information in the visualization pipeline and the processes in the human visual sys-
tem, the mental image and the real-world phenomenon do not match. From the aspect of
physics, the input of the visual system is confined only to patterns of light. Illumination
is therefore essential in 3D visualization for perception of visualized objects.

In this thesis, several advancements for advanced volumetric lighting are presented.
First, a novel lighting model that supports interactive light source placement and yields
a high-quality soft shadowing effect, is proposed. The light transport is represented by
conical functions and approximated with an incremental blurring operation of the opac-
ity buffer during front-to-back slicing of the volume. Furthermore, a new perceptually-
founded model for expressing shadows that gives a full control over the appearance of
shadows in terms of color and opacity, is presented. Third, a systematic error in percep-
tion of surface slant is modeled. This knowledge is then applied to adjust an existing
shading model in a manner that compensates for the error in perception. These new vi-
sualization methodologies are linked to the knowledge of perceptual psychology and the
craft of illustrators, who experimented with visual-presentation techniques for centuries.
The new methodologies are showcased on challenging acoustic modalities such as 3D
medical ultrasound and sonar imaging.





Related Publications

This thesis is based on the following publications:
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Part I Overview
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Introduction

There is a driving force more powerful
than steam, electricity and atomic energy:
the will.

—Albert Einstein

CHAPTER

1 Introduction

ONE of the unique features of humans is their highly-developed capability of com-
munication. In other words, they are able to abstract meaning from their sensory

input [162], such as hearing or vision. From all sensory modalities, the visual input is the
most important one, since as much as 70 percent of the combined input was estimated to
be affected by visual sensing [61].

Visualization is a scientific discipline that explores means and methods how to make
the visual communication even more effective. The information to-be-communicated is
represented in a form of datasets that are then presented to the user in a visual form.
The presentation is often not a straight forward process. Even though some datasets do
represent real-world phenomena, visualization is not satisfied with a photo-realistic repre-
sentation of 3D objects. Important is to maximize the information amount received on the
side of the user and that is not necessarily achieved by physically-correct visual effects
borrowed from computer graphics. Because the communication channel is complex, one
cannot assume that the distal stimulus, i.e., the real world object from which the infor-
mation is sampled, equals the proximal stimulus, i.e., the sensory input, and the mental
image extracted from the information received. For example, a physically correct repre-
sentation of a real world 3D scene on a computer screen does not mean that the mental
image extracted from this visual representation is equal to the real world scene itself.

From the theoretical point of view, at each stage of the visualization pipeline, the
information suffers a loss or is impeded by noise. The acquisition process of the real world
phenomenon already introduces noise to the signal due to imprecise measuring systems
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Figure 1.1: The visualization pipeline divided into the data-centric and user-centric parts shown on an
example of ultrasound examination.

and storage limitations. Secondly, the data undergoes processing in order to prepare and
enhance the data for the presentation stage. The data is modified and this might lead to
loss of signal quality. The presentation stage, including data enhancement and rendering,
yields a visual stimulus. Furthermore, the information passes through the human visual
system (HVS) in which the visual input is processed in a manner that is not yet entirely
understood.

We segregated the visualization pipeline into three major groups: the data-centric, the
algorithm-centric and the user-centric part. In Figure 1.1, we show this segregation on an
example of an ultrasound examination. Some of the stages are not entirely resident within
one part. The data acquisition naturally belongs to the data-centric part but also involves
a user who is performing the scanning. Data processing means that the data is modified
using a specific algorithm. Therefore, also this stage belongs into two groups: data-centric
and algorithm-centric. Visual mapping and rendering involves all three groups. Only
perception and evaluation of perception is entirely on the side of the user. In this figure,
we introduce a new connection that links the evaluation of perception and the rendering
stage. If the evaluation confirms an error in perception that the rendering technique can
be adjusted to compensate for this error and lead to better match between the proximal
and distal stimulus.

Regarding individual stages of the pipeline that contribute to the mismatch between
the proximal and the distal stimulus, the match will improve if one of the following con-

4
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Scope and Contributions

ditions applies:

• the acquisition hardware improves,

• the processing stage removes noise more effective with less loss of information,

• the rendering method is well-chosen for the type of data and accounts for the per-
ceptual error induced by the HVS itself.

1.1 Scope and Contributions

The HVS has been and remains an active area of research of several disciplines such as
physics, mathematics, psychology, neuroscience and computer science. From the aspect
of physics, the sensory input is confined to the patterns of light and to their projection
on the retina. Lighting is therefore also essential in visualizing shape and depth relations
of 3D objects. The central aim of this thesis is to link the knowledge from psychology
regarding the scene perception and the craft of illustration to the illumination models in
visualization. The individual contributions of this thesis are the following:

• new knowledge about perception of shape and depth in visualization of 3D objects
on 2D screens,

• connection between knowledge from psychology and craft of illustration,

• a new link in the visualization pipeline which allows to adapt the rendering method
based on measured perceptual error,

• advancement in global illumination of volumes by utilizing the obtained knowledge
and lead to better perception of shape and depth,

• application of our new knowledge to augment the perception surfaces using local
illumination (gradient-based shading),

• a showcase of the new models on challenging acoustic modalities: medical ultra-
sound and sonar imaging.

1.2 Thesis Structure

This thesis consists of two parts. The first part summarizes individual contributions and
findings and composites them into a big picture. The second part contains individual pub-
lications. The latter are provided verbatim, as they were published, only their formatting
was adjusted to fit this thesis and their bibliographies were merged.

The first part starts with an overview of works related to perception and illumination in
Chapter 2. A more detailed overview of related works is contained in the individual papers
in the second part of this thesis. Since we showcase our methods on ultrasound datasets,
we add an overview of important works related to processing and visualization of these
modalities. The section about related work is followed up by Chapter 3, the central part
of this thesis that is dedicated to perception-augmenting illumination. In Chapter 4, we
discuss the application of the new knowledge in the form of better visualization techniques
for medical ultrasound and sonar imaging. Finally, we conclude the thesis in Chapter 5.

5
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Pigmaei gigantum humeris impositi
plusquam ipsi gigantes vident.

—Sir Isaac Newton

CHAPTER

2 Background and Related Work

THIS chapter starts with a short overview of background knowledge concerning percep-
tion of shape and depth inferred from illumination followed by a survey of evaluation

methods of aforementioned cues from 2D renderings. Further on, selected approaches of
light-transfer computation in volumes are reviewed. For a more detailed overview, it is
suggested to study the dedicated sections of individual papers in Part II of this thesis.
Since our methods are showcased for usage in other domains, notably medical ultra-
sound, a selection of related works on processing and rendering of ultrasound datasets
is also provided.

2.1 Background on Perception of Depth and Shape

Evolution fine-tuned the HVS to deduce the shape of objects end their spatial arrangement
by observing their physical interaction with light. At the first glance, the HVS seems to be
constituted by a pathway that goes from the eyes to the thalamus and from there sequen-
tially to the first, i.e., cortical, and then to higher visual areas. This is, however, only on a
gross scale. On a finer scale, the pathway is segregated into two major subchannels [83].

Visual Pathways and Sensing of Depth

The subdivision begins in the retina in the arborization of the ganglion cells, i.e., the
neuron-type cells that receive input from photoreceptors via two intermediate layers of
neurons. The evolutionary older group of ganglions, which is developed also in other
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mammals, has larger arborization and thus collects input from more photoreceptors. This
type of ganglions is more concentrated in peripheral areas of the retina. They are re-
sponsible for sensing of, e.g., motion, spatial position and arrangement, and depth. Liv-
ingstone [83] refers to this pathway as to the “Where” system. The other, the “What”
system, begins in ganglion cells with smaller arborizations and humans have it in com-
mon only with other primates. These ganglions are more concentrated in the foveal area
of the retina and give us the ability of recognizing objects, based on their color and de-
tails. According to Livingstone, the Where system is colorblind and has high sensitivity
to contrast while the What system responds to color but has low contrast sensitivity. Since
the depth is processed by the Where system, luminance gradients are indeed sufficient to
evoke a sense of depth while chromatic contrast does not create this sense at all.

There is, however, a known optical illusion called chromostereopsis [2, 35] translated
as “stereoscopy from color” that seems to be in contradiction with the statements of Liv-
ingstone; Two stimuli (red and green or red and blue) located on the same depth plane are
perceived to be located at different depth planes. This effect is caused by the transversal
chromatic aberration (TCA) of the lens [39]. The refraction index of longer wavelengths
(reds) is greater than the index of shorter wavelengths (greens or blues). Therefore, the
binocular disparity of a red object is greater than of a blue or a green object, so red objects
appear closer. The TCA occurs in the lens, before the light enters the retina, where Liv-
ingstone claims the segregation of visual pathways begins. Chromostereoscopy occurs
before the start of the visual pathway discussed by Livingstone, so we find her explana-
tions complementing and not contradictory.

Notion and Perception of Shape

The shape of an object is defined by its contour and its surface and is invariant to similarity
transformations [120]. The deduction of the object shape involves the low and the high
cognitive level. At the low level, the HVS process the intensity variation of shading,
deformation of texture patterns, edges and vertices. At the high level, it handles salient
features, e.g., occlusion contours that separate the object from the background [147].
Therefore, shading alone cannot convey the complete information about the shape [33]
and vice-versa: certain shape cues can be extracted from contours only, but they are more
accurately inferred from a shaded image [23].

Since shading is specified by a number of parameters including a direction of the light,
viewer position and surface material, the HVS must assume certain parameter settings.
For example, the light direction is assumed to be 20◦–30◦ above the viewer [109] and
12◦ left from the vertical axis [86, 145]. However, this parameter assumption may vary
between observers. There is also an evidence that the pictorial relief, i.e., the imaginary
relief inferred from a 2D projection of the real world scene of a 3D scene, such as on
a computer screen, is systematically distorted [33, 109, 147]. Mamassian and Kersten
investigated the perception of local surface orientation [87]. They regarded the slant and
tilt of estimated normal vectors of selected points on the surface. By slant and tilt, we
understand angles as they are defined in Figure 2.1. Mamassian and Kersten noted that
ground truth slants below 20◦ are generally overestimated and above 20◦ underestimated.
O’Shea and others [109] approximated this distortion by an exponential function. This
choice was, however, not a scientifically-grounded but only consistent with the general
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NV
NV

τ
U

TILT
(a) (b)

P P
σ

ρ A

Figure 2.1: A slant angle θ is defined as the angle between the surface normal N at a point P and
the viewing vector V. τ denotes the tangent plane at P and U the up vector of the viewer’s coordinate-
system. σ is a plane such that P ∈ σ and V⊥σ and ρ denotes the plane defined by V and N. The
tilt angle φ is then defined as the angle in the left-handed system between U and A = ρ ∩σ in the
halfplane (ρ,V) defined by N.

expectation.
Why is the relief perceived flatter even though correct shading is used? This distortion

can be explained as follows. Because the two other important sources of depth cues,
i.e., binocular disparity and relative motion, that are both zero, the brain receives the
information that the rendering is, in fact, flat [83]. In addition, the presence of a frame,
i.e., we see that the computer screen is planar in reference to the environment, evokes
a subconscious assumption that the rendering is planar as well [151]. The brain receives
cues that are in conflict with the cues from shading. As a result, the mental image is flatter
than the distal stimulus.

2.2 Quantitative Evaluation of Shape and Depth Cues

The first psychophysical experiments to assess human perception of 3D shapes were con-
ducted in the 19th century. Unfortunately, we dispose only with little information about
these experiments and therefore, the conclusions made upon them should be thus consid-
ered with caution [147]. The notions object shape and -depth have a certain overlap in
meaning. We can quantitatively assess the local shape of objects by surface curvature or
local surface orientation (slant and tilt). Relative depth between two points on a surface
is nothing else than the z-gradient of the surface-orientation vector since the z-axis in
the image space is aligned with the depth. We found that the following experiments are
conducted most frequently to assess shape and depth of objects [82, 73, 147].

Relative depth probe task: In this task, observers are exposed to a shaded surface
and have to judge the depth of two points. The points are usually marked with dots of
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(a) (b)

Figure 2.2: Bad (a) and good (b) orientation of a gauge figure.

different colors. The task of the respondent is to select the point which appears to be
closer in depth. This task can be varied in such a way that user selects the depth of a
selected point in percent between two other reference points.

Gauge-figure task: In this task, introduced by Koenderink et al. [72], a Tissot’s indi-
catrix is employed. A Tissot’s indicatrix is a mathematical tool that indicates distortions
from projection. It is essentially a circle that together with a perpendicular stick consti-
tutes a gauge figure. On each trial, the respondents are asked to align the indicatrix with
the tangent plane of the surface. A bad and a good orientation of a gauge figure is shown
in Figure 2.2. The perpendicular stick of the gauge figure should be aligned with the sur-
face normal of the point where the stick intersects the surface. The cues of orientation of
the gauge figure come from the perspective deformation of the indicatrix and perspective
shortening of the stick. The cues about the surface orientation are inferred from shading.

Depth-profile adjustment mask: In this experiment, the surface is displayed overlaid
with aligned, equally-spaced dots. On each trial, participants adjust the corresponding
dots displayed in another window so that they fit the relief defined by the projections of
the dots on the surface displayed in the first window.

Koenderink et al. compared the aforementioned tasks [73] and came to the conclusion
that coherent results can be achieved across tasks and even across observers. They also
found that the task that is easiest to use is the gauge figure task. The judgment is the most
natural and instant, i.e., observers submit their answers based on what they see and not
what they deduce from their mental image.

2.3 Illumination

The input of human vision is conceived by patterns of light falling on the retina. Illumi-
nation is therefore indispensable in the process of visual sensing and is a must in realistic
rendering of scenes in computer graphics and 3D volume visualization.

Lighting models vary from simple ones which are easy to evaluate but are less realistic
than computationally-demanding ones based on physics [116]. Simple models evaluate
only a small neighborhood and are therefore easy to compute. A good representative is the
application of the Phong illumination model based on surface normals [117]. According
to this model, surfaces are shaded depending on the ambient, diffuse and specular term.
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(a) (b)

Figure 2.3: Visualizations of the bonsai dataset: slice-based volume rendering using a view-aligned
slice stack 2.3a and using a half-angle-aligned slice stack 2.3b.

The ambient term is constant, the diffuse term depends on the surface slant from the light
direction, i.e., the angle between the light vector and surface normal. The specular term
depends on the surface slant from the view direction. For volumetric data, Levoy [80]
suggested to use gradients to calculate the shading term in a surface-based illumination
model.

We refer to models that are based on surface normals or gradients as to derivative
approaches since gradients are first-order partial derivatives. In reality, they are approx-
imated by finite differences, which is a numerically sensitive operation. Therefore, they
do not suit well to data with a high level of noise such as MRI [57] and ultrasound [139].
This implies that a noise-prefiltering step needs to be undertaken in order to apply these
techniques effectively.

In contrast to local, derivative approaches, there are approaches with a non constant
ambient term that is obtained as the occlusion of a given point by a certain neighborhood.
We refer to these approaches as integrative since they integrate light energy over a certain
neighborhood. If this neighborhood is limited to a certain size, which is small compared
to the size of the entire scene, as it is in case of ambient occlusion, we refer to semi-
global approaches. Stewart [142] described vicinity shading which enhanced perception
by darkening of crevices. Hernell et al. [58] proposed local piecewise integration to ap-
proximate occlusion of a certain point by its neighborhood. Their model was later applied
in a medical context – for concurrent visualization of structural and functional MRI [104].

Evaluation of global illumination (GI) of a full scene is computationally expensive.
For interactive applications, this can be solved either by preprocessing [138, 126] or by
approximation [70, 34]. Sloan and others [138] suggested to precompute the radiance
transfer for the scene. Ritschel et al. [126] described an efficient encoding scheme for
visibility using spherical harmonics. The encoding scheme allows for real-time lighting
of dynamic scenes, e.g., volumes where the opacity transfer is adjusted interactively.

Several successful GI-approximation techniques took advantage of volume slicing to
approximate scattering. Kniss et al. [70] introduced half-angle slicing which supported
forward scattering and shadowing. The approach had two passes. In the first pass, they
rendered the scene from the view of the light source while in the second pass, from the
point of view of the camera. In both passes, they used slicing in which the slices are
aligned to the axis that is set halfway between the view and the light directions. The ad-
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(a) (b)
Figure 2.4: (a) Directional occlusion shading model applied on a 3D cardiac ultrasound dataset [134]
and (b) image plane sweep volume illumination, image by courtesy of Sundén and colleagues [146].

vantage of this choice of orientation is that the slices were rendered both from the point
of light source and the camera. One obvious disadvantage of this method was that it pro-
duced artifacts due to non view-aligned slicing as we show in Figure 2.3. More recently,
Schott and colleagues [134] proposed a directional occlusion shading model, a single-
pass approach that employed a view-aligned slice stack. The model allowed to simulate
forward scattering by incrementally blurring the opacity buffer during slice-based ren-
dering. Since the slice stack was view aligned, the light direction was constraint to the
view direction. A visualization of a 3D cardiac ultrasound dataset using the directional
occlusion shading model is shown in Figure 2.4a. Sundén et al. [146] filled the missing
gap and proposed an efficient scattering approximation for raycasters. Rays cast through
pixels were synchronized in lines depending on the light direction in the screen space. An
example of a visualization using their technique is displayed in Figure 2.4b.

Lindemann and colleagues [82] juxtaposed selected illumination techniques and com-
pared their effectiveness regarding image comprehension. A more detailed overview is
contained in the state-of-the-art report on volumetric illumination by Jönsson et al. [63].
Even though precomputation enables a use of the best-quality illumination effects for
real-time rendering, the preprocessing stage is very lengthy. At present, the approxi-
mation techniques have evolved to such an extent that the results are very realistic and
computed at interactive frame rates with no disadvantage of preprocessing delays [77].

Selected works that precompute or approximate on-the-fly realistic light transfer were
listed. Some works, however, consider a totally different approach: illustrative shading
styles. Artwork inspired Amy Gooch and collective [50] to map the shading coefficient to
a cool-to-warm color map. As a follow up work, Bruce Gooch and collective [52], they
added features including simple color shadows cast on a plane below the visualized object.
Ruiz and others [130] applied illustrative cool-to-warm mapping on ambient occlusion.

2.4 Processing and Rendering of Ultrasound Datasets*

* This section is loosely based on the article The Ultrasound Visualization Pipeline – A Survey [8] which
was co-authored by Veronika Šoltészová
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Since this thesis includes demonstration scenarios of its novel contributions on acoustic
modalities, notably on 3D ultrasound datasets, an overview of works related to ultrasound
volume visualization is provided as well. Ultrasound (US) scanning has growing popu-
larity as a tool for clinical decision making and is nowadays well established in patient
management [107, 108]. Comparing to other imaging modalities used in medicine such
as CT, MRI, SPECT and PET, ultrasound has many advantages. It has a low risk of af-
fecting the health of the patients and favorable cost. Furthermore, the scanning procedure
is also comfortable for the patient since it can be performed bedside using mobile, hand-
carried [48] or even pocket-size scanners [45]. Recently, matrix 3D ultrasound probes
came to the market and facilitated real-time acquisition of 3D volumes with high tem-
poral resolution. Unfortunately, ultrasound acquisition is not only prone to “shadowing”
(ultrasound waves do not penetrate through bone tissue) and “ghosting” because of rever-
berations, but also contain a high portion of noise and speckle.

Not only all these features make the US images difficult to interpret but also challenge
the visualization technology. It requires solutions that are robust to noise and speckle and
in addition satisfy the high temporal resolution of data acquisition. Successful presenta-
tion of ultrasound datasets is standing on two pillars: data enhancement and rendering.
In this chapter, we provide an overview of both: techniques for enhancing the ultrasound
datasets by reducing noise and speckle reduction followed by a survey of available ren-
dering techniques for ultrasound. As it is shown in Chapter 4, the discoveries discussed
in Chapter 3 are well suitable for ultrasound visualization and thus contribute to the state
of the art.

Data enhancement

The speckle pattern is a natural property of ultrasound imaging. The ultrasound images
are inferred from the pattern of sound waves that are reflected at tissue interfaces. The
reflection can be anisotropically diffuse, depending on the roughness of the tissue. This
causes interference of reflected waves which appears as a speckle pattern in the image. In
2D ultrasound images, the speckle pattern has enjoys clinical appreciation since it reveals
certain tissue properties. For 3D ultrasound datasets, the presence of speckle is only
impeding the visualization quality and therefore it is worth aiming at removing it.

Recent and most frequently used methods for speckle reduction are based on region
growing [18], adaptive filtering [14, 36, 135] and anisotropic diffusion [75]. Local statis-
tical analysis also showed to yield good results. Czerwinski and colleagues [28] described
an adaptation of the median filter that preserved boundaries and reduced the amount of
speckle. They computed medians for a set of lines passing through each data point and
kept the largest median as the new value at the respective data point. Coupé et al. [26]
adapted the nonlocal means filter [12]. They used statistical distance for weighting instead
of the Euclidean distance of the samples applied in regular bilateral filtering.

Rendering

Presentation of ultrasound datasets is challenging due to the nature of acoustic data, no-
table because of the inherent speckle and noise. Techniques that are normally used for
rendering other modalities might not suit visualization of ultrasound datasets. Nelson and
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(a)

(c)

(b)

(d)

Figure 2.5: Comparison of (a) a gradient-based approach using Phong illumination [117], and
gradient-free methods: (b) directional occlusion shading [134], (c) spherical harmonics [81] and (d)
the technique of Ropinski and others [127] applied on a 3D cardiac ultrasound dataset. Image by
courtesy of Birkeland and colleagues [8].

Elvis [103] examined suitability of then-existing rendering techniques, such as surface
fitting and direct volume rendering. Steen and Olstad [141] evaluated selected projections
techniques including the maximum intensity projection, average intensity projection, and
gradient magnitude projection for fetal ultrasound scans. Provided the good contrast be-
tween the fetus and surrounding fluid, the gradient magnitude projection came forth to
give the best detail. Careful choice of the opacity transfer function is also crucial. The
intensity values in ultrasound datasets to the strength of the echo at tissue interfaces and
not to tissue density. Therefore, the design of opacity transfer functions is different than
for other modalities. Hönigmann and colleagues [59] proposed a transfer function design
for hyperechoic structures located in hypoechoic fluid.

Regarding illumination, gradient-free techniques were indicated to be more suitable
for ultrasound visualization [127, 139]. Gradient estimation is an operation sensitive to
noise and therefore gradients computed in this way require preprocessing before they
can be used for illumination. Birkeland and colleagues [8] compared a selected set of
gradient-free to a gradient-based illumination technique (see also Figure 2.5). Some ultra-
sound workstations offer additional ways for communicating spatial cues, such as depth-
based color encoding. This approach is exploiting the effect of chromostereospsis [35].
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(a) (b) (c)

Figure 2.6: (a) A workstation screenshot from a 3D cardiac ultrasound examination, and (b) and (c)
images of a fetus captured by the HDLive system implemented on new Voluson E8 Expert work-
stations [44]. Images (b) and (c) are provided by courtesy of GE Healthcare, Healthcare Systems,
Ultrasound.

Features close to the viewer are toned with warm and far features with cool colors as in
Figure 2.6a. The new generation of ultrasound scanners supports highly advanced mate-
rial representation of a baby skin and light simulation [44]. Figures 2.6b and 2.6c show
and example of prenatal imaging with frontal and rear light source placement.
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Nature and Nature’s laws lay hid in night:
God said, ’Let Newton be!’ and all was
light..

—epitaph of Sir Isaac Newton, A. Pope

CHAPTER

3 Perception-Augmenting Illumination

THE individual contributions claimed in this thesis can be seen as fragments of one
story. Papers A, B and C create our theoretical basis for perceptually-augmenting

visualization that advances the state of the art at two fronts. First, our new methods for
gradient-free illumination inspired by the craft of illustration, enable interactive lighting
and expression of shadows. Second, our new model for gradient-based shading, which is
founded by our own analysis of perceptual study data, leads to more accurate perception
of surface orientation. In Papers D and E, we exploit our theoretical achievements to give
new and improved tools for experts of other domains such as visualization of ultrasound
in medicine and sonar acoustic imaging in the marine science. In this chapter, we focus
on our theoretical achievements. We extract parts from publications collected in Part II
that are necessary to understand them as one compact unit.

3.1 Gradient-Free Illumination

As our first step, we investigated the state-of-the-art techniques in illumination of vol-
umes. Our goal was to find a technique that allows for fast computation of global illu-
mination effects. As a result of our search, we selected the directional occlusion shading
model [134]. This model approximates high-quality illumination effects such as soft shad-
owing and forward scattering. Because of these effects, this model is a reasonable choice
for visualization of noisy datasets. Furthermore, the approximation is fast and requires no
preprocessing. Therefore it is suitable for interactive visualization and even live stream-
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Figure 3.1: A non transparent voxel casts a shadow footprint on a planer receiver. If α 6= 0, the footprint
is offset by | O1O2 |6= 0 and has an elliptical shape ε.

ing of data. However, consulting visualizations generated with the directional occlusion
shading model with a certified medical illustrator revealed an unfortunate limitation of
this model.

The light direction is constraint to the view direction but illustrators choose, as a rule,
illumination from top-left. We found that their choice of lighting setup is consistent with
research in psychology and perception. Humans assume the light source to be 12◦ left
of the vertical axis viewer’s vertical axis [86, 145] and 20◦–30◦ above the viewer [109].
With these light settings, the users performed the psychophysics task the best. In order
to obtain the best light-possible setting for perception, we proposed the multidirectional
occlusion shading model that overcomes the disadvantageous constraint of directional
occlusion shading but keeps all its advantages: quality of the shading effect and speed.

3.1.1 Multidirectional Occlusion Shading*

Before we explain how we amended the logic of the directional occlusion model, we
clarify why the architecture and notably, the light-simulation approach, constraint the light
direction to the viewer as a headlamp. Essentially, every point in the participating, semi-
transparent medium acts as an occluder. The semi-transparent participating medium is in
our case a volumetric dataset where each voxel intensity is mapped to color and opacity.
During the front-to-back slicing process in the viewing direction, each non transparent
voxel leaves a shadow footprint on the next slice. The footprints are approximated with
Gaussian blurring.

* More details about the multidirectional occlusion shading model are contained in Paper A
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Figure 3.2: Simultaneous front-to-back slicing and shadow propagation. The blue dots indicate not
transparent voxels on slicing planes. The underlying shadow buffer is shown in gray scale. The
shadow buffer from the previous iteration is blended with new footprints. This process is iterative.

Corrected light propagation scheme

The problem is that this blurring operation assumes the light direction to be aligned with
the viewing direction. Light that has a non zero angle with the viewing direction α 6= 0
produces footprints transversally-displaced on a planar receiver that are, in addition, cen-
trally asymmetric. We illustrate this situation in Figure 3.1, where a non transparent voxel
x produces an elliptic footprint ε that is displaced by ~O1O2. If the receiver plane would
be perpendicular to the light direction and the light aligned with the viewing direction, the
footprints would have zero displacement and circular shape C. In Figure 3.1, we explained
shadow casting from a point to the next plane. As we slice the volume, we propagate the
shadow through the whole volume as follows. By sampling the shadow buffer produced
at slicing step n− 1, we determine the occlusion of a voxel located on a slicing plane n.
The shadow buffer produced at level n is a blending of the opacity footprints of voxels
located at slicing plane n and the shadow buffer from the slicing step n−1. This process
of iterative blurring is illustrated in Figure 3.2.

The blurring kernel

Figures 3.1 and 3.2 show that the blurring kernel encodes the direction of the shadow
propagation. If the kernel is a centrally-symmetric Gaussian with no offset, the light di-
rection is consequently parallel to the view direction. According to our definition, the
kernel is a function of the angle between the light and the view direction α , the distance
between slices and the opening angle of the cone 2θ . The opening angle allows to ap-
proximatively simulate the size of the light source. For further detail about the kernel

19



3

Perception-A
ugm

enting
Illum

ination

Gradient-Free Illumination

(a) (b)

Figure 3.3: A human body CT rendered with (a) front lighting that corresponds to the directional
occlusion shading and (b) with top left lighting possible with the multidirectional occlusion shading
model.

specification, we refer the reader to Paper A.

Results and discussion

Our new concept of iterative blurring allows to interactively select frontal lighting, i.e.,
light source that is place in the hemisphere defined by the viewer. At the same time, the
new model possess all advantages of the previous directional occlusion shading model:
no precomputation necessary, a single volume traversal, fast approximation and a high-
quality soft shadowing effect. In Figure 3.3, we juxtapose visualizations rendered head-
lamp lighting and with top left lighting. This figure illustrates how a lighting setup can
support perception of depth. In Figure 3.4, we display another example of the effect of
variation of light parameters: direction, slant α and aperture 2θ . In this thesis, we are
showing the benefit of multidirectional occlusion shading only on still images, however,
an additional advantage of this method are depth cues gained through the interactive mod-
ification of the light direction.

We presented our new results to our consulting medical illustrator. She was positive
about the new light settings, however, she pointed out that even with the new method we
do not have a complete control over the appearance of the shadow. In some areas, the
shadowing becomes too strong and hides information. She, as an illustrator, never uses
pure black color to express shadows. Instead, she experiments with blue tones, darker
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(a) (b) (c)

Figure 3.4: A mummy visualized with multidirectional occlusion shading with different lighting param-
eters: (a) slant angle α = 0◦ and θ = 10◦, which are settings corresponding to front lighting, the only
possible setup with directional occlusion shading, (b) from top left and with slant α = 30◦ as suggested
by O’Shea and others [109] and θ = 10◦, (c) has the same illumination parameters as (b) except of
θ = 25◦.

tones of the original color and the contrast colors. Her feedback challenged us to work
out a more advanced model that would resolve the information obscuration problem.

3.1.2 Chromatic Shadows*

The craft of illustration has been a good source of inspiration for visualization science
so far. To solve the problem of information hiding and to find a better way of shadow
expression, we searched for more material in the history of art. Leonardo da Vinci set
the rules for shadow colors as follows [111]: “The white, from the sun and the air in
the open air, has bluish shadows.” This is indeed true. On a cloud-free, sunny day,
shadows of objects appear to be bluish. As a cause of Rayleigh scattering, the shorter
(blue) wavelengths of sunlight are scattered in the atmosphere while other wavelengths
pass straight through. Shadows are generated through blockage of direct sunlight, but
the ambient light that is scattered from the sky dome is present even in shadows. This
light is, indeed, bluish. This effect is clearly noticeable on white material with high
albedo, for example on snow, as Figure 3.5 demonstrates both in a photograph and in the
artwork [100].

It was the impressionists who started the trend of open-air painting that renounced
black. Instead, they expressed shadows with blue and complementary tones. As exam-
ples, we mention still lifes by Cézanne [16, 17], works of Manet [88], and the haystack-
and Rouen cathedral series of Monet [101, 102]. Figure 3.6 depicts a selection of afore-
mentioned artworks. “I continually search for the blue in shadows”: said the post-
impressionist van Gogh [111]. Blue shadow tones appear in his works [152], in the works

* More details about the chromatic shadows are contained in Paper B

21



3

Perception-A
ugm

enting
Illum

ination

Gradient-Free Illumination

(a)

(b)

Figure 3.5: Shadows appear in blue tones. This effect is best visible on a clear day on white objects,
such as snow: (a) a photograph and (b) an artwork titled La Pie (The Magpie) by Claude Monet [100].
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(a) (b)

(c) (d)

Figure 3.6: The Rouen cathedral (a) in full sunlight, harmony of blue and gold and (b) in sunlight from
the Monet’s Rouen cathedral series [102]. Still life with curtain and flower pitcher by Cézanne [17]
and The road-menders, Rue de Berne by Manet [88].
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S0=(17,0,0) S1=(24,2,-23) S2=(29,4,-30) S3=(33,4,-34) S4=(38,5,-37) S5=(43,5,-39)

Figure 3.7: A volumetric dataset generated from several sine waves. Using a step transfer function,
we visualize a Phong-shaded surface of color O = (60,0,0). We show how the shadow colors S0..S5
influence the surface perception in the shadow. Shadow colors S0..S5 have the same perceptual
distance from color O. Their luminance contrast is decreasing with increasing chromatic contrast.

of Matisse [91] and in works of contemporary artists as well [24]. Parramón [111] ana-
lyzed artistic styles from early prehistoric times until the 20th-century and attempted to
formalize the usage of color based on his observation of art history. In his book, he also
gives guidelines for expressing shadows that are consistent with the advice of our con-
sulting medical illustrator. He would never use black as a tonal color because it “grays,
dirties, and alters tone”. He as well segregates the shadow color into three. The main
color of shadows is blue. The 2nd color is the local color in a darker tone. The 3rd color
is the complementary color of the local color.

The principle

We propose a method that gives the user full control over the appearance of shadows. Soft
shadows are in most applications expressed by scaling the color of the shadow receiving
object by a scalar factor that we refer to as shadowiness S . This toning is nothing else
than a mixing (a linear combination) of the black color RGB = (0,0,0) and the original
color of the object. The toning operation results in a variation of luminance between the
original color where S = 0 and the total occlusion where S = 1. We propose to express
the shadow as a blending of a selected basic shadow color S S

RGB and the object color
S O

RGB. The range of luminance variation in available tones will shrink, but the range of
chromatic variation will increase. The local Phong shading, which is dependent on direct
lighting and the local slant of the surface from the light direction, is expressed by lumi-
nance variation. Since we now express shadows with additional chromatic variation but
less luminance variation, we leave more space for the luminance variation from shading.
In this way, the observer can see more shading variation and extract better shape cues
from the visualization. This effect can be clearly observed in Figure 3.7. We rendered a
synthetic object of a uniform gray color CIELAB O = (60,0,0). Color S0 has no chromatic
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Figure 3.8: Palette of shadow colors S0..S5 in the CIELAB space: O is the object color and shadow
colors S0..S5 are chosen along the planar arc CL. CL denotes the chromatic-luminance shift and
belongs to the circle in the CIELAB color space which is centered in O and has a radius ||OS0||. We
used the plane define by CL to clip a part of the CIELAB volume to reveal the color plane of our
interest. The difference in luminance between Sn−1 and Sn is constant.

difference to O but colors S1..S5 have increasing chromatic contrast and decreasing lumi-
nance contrast. The perceived contrast of S1..S5 to the object color O is constant because
the Euclidean distance in the CIELAB space is constant. This palette of shadow colors is
shown in Figure 3.8. The distance of colors Sn to O is constant, as well as the luminance
difference between Sn−1 and Sn.

The blue tone in shadow and perception

The observation that in open air, the color of shadows is blue, provokes two intriguing
questions: Did our vision adapt and develop accordingly? Would there also be some
perceptual benefit when using the blue tone in shadows in visualizations? We found no
direct evidence, but the following facts indeed support the hypothesis that perception of
details in low light condition is better in blue tones. Short-wavelength (blue) cones are
the most sensitive of all types of cones [55]. The rods are more than thousand times more
sensitive than cones and their sensitivity is shifted toward shorter wavelengths [55].

Another fact is that if we choose any other color as the basic shadow color than black,
depth perception should be theoretically affected. Why? Any other color has higher lu-
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minance than black and therefore, if we choose any other color as the basic shadow color,
the available range of luminance variation of available tones will shrink. The variation of
luminance is crucial for global depth perception [83]. In this context, blue tones are a bet-
ter choice than reds and greens. To show this, we converted all color that are reproducible
on computer screens as RGB colors, into the perceptually uniform CIELAB color space.
In Figure 3.9a, we plotted the L (luminance) values of all basic color tones to show that
the luminance of blue tones is inferior to the luminance of all other tones.

Shading enables to detect local features and shadows help to understand the global
spatial arrangement. If shading is expressed with a linear combination of the object color
Ob and black and shadowiness as a linear combination of Ob and the shadow color that
has non zero chromaticity, a certain range of available colors is obtained. This range
(area) depends on the choice of the shadow color. In Figure 3.9b, the areas are compared
for blue shadow color (SB), red shadow color (SR), and green shadow color (SG).

We also performed an initial testing regarding perception of local details and depth.
We tested the perception of local details, on synthetic surfaces of constant gray color
shaded with local Phong illumination model. We evaluated how precisely users perceive
the local surface slant with the gauge figure task [72]. To determine the radius of the just
noticeable difference (JND), we presented the participants with the scene visible though
a small circular aperture. The task of the users was to increase the radius of the aperture
until they are able to perceive color variation within the aperture. In both tests, the gauge
figure task and the JND radius task, we found a trend of improvement from S0 towards
S5. The biggest step towards improvement was from S0 to S1.

Finally, we tested the depth perception on volume visualization of objects that are
in general difficult to interpret – ultrasound volumes. Users had to relate the depth of a
selected point to the depth of two other reference points. We evaluated three conditions:
Phong-shaded with no shadows, shadows with a black basic shadow color (luminance
only) and shadows with blue basic shadow color (luminance+chroma). The result of the
test was consistent with the statement of Livingstone [83]. The depth cues became slightly
less accurate for the blue shadow condition and worst for the condition without shadows
and with local shading only.

Discussion

With inspiration from illustration craft, we proposed a new concept for expressing shad-
ows and pointed out its perceptual benefits. We investigated the effect of the blue tone for
perception of shape and depth. The initial testing allows us to suggest a concept that ex-
tracts the best of both, the visible shape cues and sufficient depth cues. For the object color
we tested, the biggest improvement in shape perception was observed when increasing the
luminance of shadow color only slightly (S1 – S2), and increase the chromatic contrast ac-
cordingly. Even more improvement of shape perception could be achieved if we used S3,
S4 or S5, but since we know that decreasing luminance affects depth cues, we suggest to
combine S1 – S2 to have the best of both, shape and depth cues.

We studied the perception only on one example that allowed us to give an initial
insight and should encourage further studies that would provide more complete under-
standing the effects of chromaticity and luminance in shadows on perception.
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Figure 3.9: (a) An orthogonal projection of the CIELAB color space in other to show the luminance of
individual colors. Cyan cannot be seen, but its position is plotted. (b) Available colors if we are using
black-toning to express shading and blue, red or green of the same luminance to express shadow:
Area-BLUE > Area-RED > Area-GREEN.

3.2 Gradient-Based Shading*

During our previous studies of shape perception, we observed an error trend in user re-
sponses. The slant, i.e., the angle between the viewing vector and estimated surface nor-
mal) is systematically underestimated. This observation led us to a new concept of the
visualization pipeline: we introduced a new link that considers the perceptual evaluation
of a rendering method in order to redesign the rendering method itself. The process of
evaluation and redesign can be iterative and thus converge towards accurate perception.
This concept is illustrated in Figure 3.10.

* More material is included in Paper C
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Figure 3.10: The concept of iterative evaluation and design of a rendering technique. The original
visualization pipeline contains no cycles and ends at the stage when the image is perceived by the
user. The new concept contains a loop; The accuracy of perception is evaluated and the original
rendering method is modified based on the measured error in perception.

3.2.1 Analysis of Perceived Surface Slant

As perception literature reports, the surface slant is underestimated [109, 147]. However,
there is no model that represents this phenomenon. We obtained our model by analyzing
user responses collected and published by Cole et al. [23]. They compared the accuracy
of shape cues extracted from line drawings generated by different automatic methods,
from line drawings made by hand and from fully shaded renderings. This was a large
scale study, the dataset contained ca. 275K solved gauge-figure tasks by 560 participants.
From the entire dataset, we focus on perceived slant as a function of the ground truth
slant in the fully shaded condition. We fitted a polynomial curve of 4th degree to the
data to model the function. However, this representation did not reveal a very interesting
property hidden in the data. The systematic underestimation differs for points, where in
the ground truth normal points upwards, left, right or downwards. In other words, the
underestimation of slant depends on the tilt of the ground truth normal. This finding is
displayed in Figure 3.11. We titled the sectors of tilt “north” (normals pointing upwards),
“east” (normals pointing right), “south” and “west”. The crossing points of the estimation
curves and the reference curve are boundaries between over- and underestimation of slant.
They are according to Mamassian and Kersten [87] approximately 20◦ which is, except
of the “south” sector, consistent with our finding 15◦–25◦.

In order to model the human perception of slant, we define two functions g(θG,φG) =
θP and f (θP,φG) = θG. The mapping g predicts that a surface normal with slant θG
(G for ground truth) will be perceived to have slant θP (P for perceived) and f is an
inverse function of g. So far, we have only defined four sector curves that map θG to
θP in the interval [0◦,90◦]. In a similar fashion, we obtained four additional curves for
sectors “north-west”,“north-east”,“south-east” and “south-west”. In order to define g for
the whole definition rage of φ ∈ [0,2π], we interpolated between the eight curves using
Matlab’s surface fitting tool [90]. f was defined based on interpolation of inverted sec-
tor estimation curves. In Figure 3.12 left, we show a color-coded map of g and f = g−1.
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Figure 3.11: Perceived surface slant vs. ground truth slant of fully shaded surfaces extracted from the
dataset of Cole et al. [23] for four sectors of tilt. The reference curve indicates a perfectly accurate
estimation and the overall estimation curve shows how the dependency would be if we pooled the
analysis over all sectors at once.
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normal which is perceived as θP.
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Ideally, such model should be defined for each user, since the bas relief can vary from per-
son to person and for each material, since we know that for example material specularity
influences perception of local shape [105, 148].

3.2.2 Perceptual-Statistics Shading

A substantial part of the shape cues extracted from a visualization come from shading of
surfaces. We have now concluded that the perception of shape is systematically distorted
and fitted a model of this distortion. We aim to exploit this new knowledge to achieve
more accurate perception of surface slant.

We want to achieve that a shaded point on the surface is perceived to have a slant equal
to its ground truth. A surface normal n=(x,y,z) has ground truth slant θG and tilt φG, both
defined in a projective space, but with the original shading, it is perceived to have slant
θP 6= θG. Therefore, we shade the point on a surface with a modified normal n′= (x′,y′,z′)
instead. Function f maps the perceived slants to the ground truth slants. Since we want
n′ to have perceived slant θ ′P = θG, it should have slant θ ′G = f (θ ′P = θG,φG). The new
normal n′ is now defined by its slant and tilt (θ ′G,φG). The new normal n′ is well-defined
by two angles that can be converted to the (x′,y′,z′)-representation. According to our
theory, a point shaded with a modified normal be perceived to have the ground truth slant
θG.

The concept of adjusting normals based on a perceptual-statistics model can be ap-
plied to any local surface shading model that causes a systematic error in perception and
allows creation of a perceptual model. In Figure 3.13, we show results of the proposed
normal (gradient) modification for regular diffuse shading, cool-to-warm shading and also
for gradient-based shading used in direct volume rendering. The modification was based
on the model we derived from diffuse materials rendered with stochastic raytraycing [22]
but ideally, the modification should be extracted for each shading style and each material
type in order to achieve the best results.

In order to validate the benefit of the modification based on perceptual statistics, we
conducted a new gauge-figure experiment with 40 participants. We compared the accu-
racy of slant perception with original shading and our shading. We investigated again
the original shading condition in order to have a more reliable result. Our model was
built on perception of renderings that were generated with a different rendering frame-
work, which could bias our results. We separated the responses according to the shading
condition. We analyzed all slants ∈ [0◦,90◦] and also each of the following subintervals
separately: [0◦,20◦], [20◦,40◦], [40◦,60◦], and [60◦,80◦]. The segregation was done on a
priori grounds. According to previous [87] and also our own observation, the underesti-
mation is zero for slants approximately 20◦ and greatest for slants [40◦,60◦]. Therefore,
we predicted different effects in each subinterval. We conducted an ANOVA analysis that
confirmed a significant main effect of the subinterval factorization. We observed a trend
towards a main effect even when pooled over the whole interval [0◦,90◦], but this trend
failed to reach significance. However, we identified a significant effect of improvement
of our shading condition in interval [40◦,60◦] where the underestimation was highest. In
this subinterval, our shading model reached an effect size r = 0.49 that is regarded as
impressively large within psychological testing literature [20, 21].
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Figure 3.13: Examples of the shading modification applied to (a) diffuse shading of a polygonal model,
(b) diffuse cool-to-warm shading of a stream surface, and (c) gradient-based diffuse shading applied
in direct volume rendering.
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The definition of insanity is continuing to
do the same thing over and over, and then
expecting different results.

—Albert Einstein

CHAPTER

4 Demonstration Cases

ONE of the goals of this PhD project was to improve visualization of medical ultra-
sound, but we have extended the impact of our contributions on underwater sonar

imaging as well. Both modalities have many characteristics in common. Both of them
belong to the category of acoustic imaging modalities. This means that they have similar
properties that make the 3D visualization challenging. These properties include speckle
and high amount of noise, depth-dependent resolution, shadowing and ghosting due to
reverberations. Furthermore, both modalities support live scanning, which presents an
additional requirement at the performance of the visualization framework.

In this chapter, we demonstrate how our theoretical contributions are useful in spe-
cific application cases. In Section 4.1, we demonstrate the benefits of gradient-free il-
lumination. Even though gradient-based illumination is not well-suited for the nature of
ultrasound, we show a way how to process the dataset so that gradient-based illumination
can be used. In Section 4.2, we describe a technology, which we developed in collabora-
tion with marine scientists that is capable of in-situ volume reconstruction and rendering.
Amongst other visualization features, it also applies gradient-free lighting.

4.1 Illumination of 3D medical ultrasound

The main advantage of the multidirectional occlusion shading model for our purposes
is its interactive performance. A rendering engine that implements this model is then
capable of supporting live streaming and in-situ rendering. Furthermore, the model ascer-
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(c)

(b)

(a)

(b)

(a)

Figure 4.1: Visualizations of 3D ultrasound using chromatic shadows: (a) liver vessels, (b) snapshots
from a heart cycle, (c) fetuses.
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P2

P1 P
forward integration

backward integration

(a) �nding tangets (b) streamline integration

Figure 4.2: Streamline variance filtering. (a) In the first stage, the tangent direction is selected. From
all investigated direction, we choose the direction with lowest variance of samples. (b) In the second
stage, for each point P, we perform streamline integration seeded in P and following the tangent vector
field computed in the first stage.

tains illumination effects of high quality. Finally, the illumination is not based on local
properties and therefore does not enhance the presence of speckle and noise. The percep-
tual improvement of additional chromatic shadows implementation does not consume any
additional (noticeable) performance. Therefore, we incorporate it into our visualization
framework as well. In Figure 4.1, we display a series of 3D ultrasound visualizations
using chromatic shadows.

Application of gradient-based shading on ultrasound data is not straight forward. Lo-
cal shading based on gradients contributes to local shape cues, but in our case, this visu-
alization style would enhance speckle and high-frequency noise. Therefore, we suggest a
preprocessing scheme that effectively eliminates speckle and maintains boundaries. Af-
ter such a preprocessing, we can also apply the perceptual-statistics shading method that
attempts to compensate the inherent flattening of mental image.

Variance-streamline filtering*

In order to decrease the amount of speckle in ultrasound datasets, we propose a filter
that locally adapts to tissue boundaries and is robust to noise. There has been attempts
to preserve edges by using bilateral filters that apply two types of weighting: distance-
based and difference based. This type of filtering can eliminate voxels that have very
different intensity values and therefore likely belong to another type of tissue. We are also
performing selective averaging but we pursue a different strategy. The filtering operation
is divided into two steps that are also explained in Figure 4.2. Even though the steps itself
have to be serialized, the computation that is necessary to perform for every voxel in each
of both steps can be run in parallel.

1. Determine the tangent direction: The output of this stage is a three-component
volume. The vector stored in each voxel is with the highest probability a tangent vector

* More details are contained in Paper E
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(b)

(a)

(b)

(c)

(a)

Figure 4.3: Streamline variance filtering applied on ultrasound volumes. (a) human heart visualized
with chromatic shadows without (left) and with (filtering). (b) liver vessels with gradient-based shading
and no shadowing without (left) and with (right) filtering. (c) liver vessels without (left) and with (right)
filtering and visualized using a combination of gradient-based illumination and chromatic shadowing.
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to a tissue boundary intersecting the respective voxel. This is performed by running an
exhaustive search amongst discretized directions as we show in Figure 4.2a. From all
investigated directions, we select the direction that has the lowest variance of samples. In
Figure 4.2a, we take three samples forwards and three samples backwards, i.e., M = 3.
The angular discretization during the search as well as the number of samples 2M + 1
taken along each direction are parameters that define the accuracy of the selected tangent
direction. The parameter M also influences the size of the features that will be filtered.
This stage is similar to the principal component analysis of the voxel neighborhood, where
the direction corresponding to the smallest eigenvalue is taken.

2. Integrate: In this stage, we filter each voxel with a kernel that is locally adapted to
the data. For each voxel P, the operator mask is constructed via streamline integration of
the vector field calculated in the previous stage. The integration step consists of forward-
and backward integration of N steps. The forward integration starts in P and constructs
the “forward” part of the streamline using the vector field that contains the tangent vectors
computed in the first stage. The backward integration also starts in P, but construct the
“backward” part of the streamline based on the inverted vector field. We illustrate this
procedure in Figure 4.2b where N = 2. N is a parameter that influences the quality of the
filtering result.

As a result, we obtain new datasets with decreased content of speckle and high-
frequency noise, that are easier to understand, e.g., Figure 4.3a. In addition, the smoothed
data allow for computation of better gradients. These can be then used for local illumina-
tion, such as our perceptual-statistics shading. Figures 4.3a and 4.3b show visualization
that incorporate gradient-based illumination.

In order to assess the quality of this filtering technique, we conducted an evaluation
of filtered liver datasets with a gastroenterologist. In liver, the location and the structure
of its vessel tree are important. It is especially useful when describing the location of
pathologies and also for pre-operative planning. It is crucial that the filtering algorithm
should not thin, disconnect or else modify the vessels. To test how well our method
preserves tissue boundaries, we compared gastroenterologist’s interpretation of the liver
vessel tree from visualizations using different filtering methods. In each of the three set-
tings, we rendered a non-filtered and four filtered datasets. We employed three frequently
used filtering methods including anisotropic diffusion, Kuwahara filtering, median filter-
ing. The fourth filtering method was our variance-streamline filtering. Inspired by the
experiment conducted by Cole and others [22], we asked the gastroenterologist to draw
the liver vessel tree over the rendering covered with a transparent foil. We demanded her
to filter the speckle mentally, but to draw the vessels according to what she saw. If, for
example, a vessel seemed thinned or even disconnected, her task was to draw it thinned or
disconnected. Finally, we compared the closeness of her line drawing of filtered datasets
to the line drawing of the non filtered dataset. In two out of three settings, the variance-
streamline filtering outperformed all other filtering methods. In one setting, the median
filtering performed slightly better. In addition to this evaluation, the gastroenterologist
made subjective statements concerning the quality of the data in which she consistently
preferred variance-streamline filtering.

Our implementation of this method in CUDA exploited parallel computation, but was
not yet optimized so that it would fit into a data-streaming framework. A filtering of a
dataset 2563 required approximately five seconds to accomplish on a modern graphics
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hardware. Therefore, this method cannot yet satisfy live streaming of volumes at the time
being.

4.2 Illumination of sonar data

Another type of acoustic acquisition we showcase our techniques on, is underwater sonar
imaging. As we mentioned earlier, acoustic modalities are challenging, especially be-
cause of the speckle and noise. In case of sonar imaging, we encountered an additional
problem. In order to provide instantaneous volume visualization from 2D sonar images,
a reconstruction is necessary and introduces unwanted delays. Direct acquisition of vol-
umes is possible only with 3D sonars. 2D sonars have much lower cost and therefore can
be affordable for fishing vessels and regular research vessels as well.

Unfortunately, the visualization technology has stagnated compared to the develop-
ment of sonar hardware. Currently, the visualization technology supplied with 2D sonars
is limited to basic slicing and volume visualization is possible only after a reconstruction
step. In-situ volume visualization is possible only with 3D sonar equipment. In collabo-
ration with marine scientists, we developed a new technology that makes in-situ volume
visualization, based on streamed sonar images, possible. We proposed a pipeline that
coupled the reconstruction and the rendering stage. We based the concept on slice-based
volume rendering that allowed us to apply the multidirectional occlusion shading model.

Pipeline

In order to explain how the concept of multidirectional occlusion shading fits into the
pipeline, we first give a short overview and briefly explain each stage. The data are ac-
quired using a 2D sonar of type Simrad ME70, which is mounted to sample the water
column vertically. In each data collection cycle, referred to as a ping, the transducer
transmits beams that cover a swat of 140◦. Further on, the beams are processed to remove
noise and converted to a bitmap. To each bitmap, a timestamp and transformation from
a high-end GPS device and an MRU unit are attached. See also stages acquisition and
preprocessing in Figure 4.4.

Previously, the only available in-situ visualization method for 2D sonars was slicing
as a direct output of the preprocessing stage. Our system supports instantaneous 3D visu-
alization. As our data input is a stream of images, we construct the volume visualization
based on a set of images from the stream. Therefore, the system requires an effective
storage management unit. The storage unit, also illustrated in Figure 4.4, handles the im-
ages, their timestamps and their transformations. In the following slicer stage, individual
images are transformed to the world coordinate system. The bounding box defined by the
transformed images is sliced front-to-back from the direction of the viewer. Each slice of
the view-aligned stack is reconstructed in the slice generator. The slice generator works
on-the-fly during the process of slice-based volume rendering. In order to incorporate the
multidirectional occlusion shading model, we add an opacity buffer to store intermediate
shadowing information during the traversal of the bounding box.

As we show in Figure 4.5, shadows not only contribute to the realism of the scene, but
also significantly improve the depth cues. In Figure 4.5a and 4.5b, we juxtapose renditions
without and with the illumination. Shadowing allows to judge distances instantly without
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Figure 4.4: Overview of our pipeline.

rotating the scene or other interaction. In Figure 4.5c captures a very large fish school, ca.
100m in length, that was captured in the North Sea in 2010.

Results

Marine scientists use the sonar equipment to observe and map processes of marine ecosys-
tems. They study the amount and biomass distribution of the stock and also the mor-
phology and behavior within fish schools, i.e., flocks of fish. With limited visualization
possibilities, their analysis was mostly limited to quantitative assessment and rudimentary
measurements of the fish schools. High quality illumination as well as other features of
our tool were new in the visualization technology used in their domain.

In order to objectively assess the utility of this technology, we contacted independent
marine scientists, who were not involved in the design process and a representative of the
sonar hardware manufacturer. According to the feedback we obtained, our new technol-
ogy would bring a clear advantage to the marine domain especially for 3D morphological
description of fish schools. The illumination was previously not incorporated in their vi-
sualization tools, but was now very well appreciated, since it contributed to a realistic
presentation of the scene and better depth perception.
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(c)

(b)

(a)

Figure 4.5: Demonstration of multidirectional occlusion shading in the pipeline for volume visualization
of streamed sonar images of fish school of sand eel swimming over a sea bottom. In (a) and (b), we
juxtapose renditions without (left) and with (right) illumination. (c) is a large fish school of sand eel
shown with illumination only.
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When I examine myself and my methods
of thought, I come to the conclusion that
the gift of fantasy has meant more to
me than any talent for abstract, positive
thinking.

—Albert Einstein

CHAPTER

5 Conclusions and Future Work

THE initial aim of this PhD project was to improve visualization methodologies for
medical ultrasound, especially focusing on ultrasound of liver and heart. In the

course of the project several inventions were made that aimed to target this modality, such
as our research concerning gradient-free illumination. Therefore, the goal of improving
visualization of 3D ultrasound has been reached. The application benefit of this thesis is
an upper layer that resides on a basis of theoretic advancements, which we would like to
point out.

Summary

This thesis advances the state of the art in volume illumination and illustrative visual-
ization. We propose a model that is capable of generating soft shadows in interactive
applications, where the user can interactively set the position of the light source anywhere
in the frontal hemisphere. To avoid the overdarkening and consequent information hiding
in shadow areas, we proposed to express the shadow by variation of chromaticity in ad-
dition to variation of luminance. This technique was inspired by the craft of illustration
where we observed that artists do not express shadows with pure black color. Since shad-
owiness is now expressed with an additional variation of chromaticity and less variation of
luminance, more effective luminance range is left for expressing shading. Because of this
fact, we first proposed a hypothesis that the shape perception will improve with our new
shadow specification. We conducted an experiment with users in order to show a trend
towards improvement of perception of shape in shadows. Analysis of results obtained in
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this experiment led to an interesting observation. The surface slant is systematically un-
derestimated. Even though we found evidence about this effect in literature, there was yet
no model that would approximate this feature of human perception of rendered images.
We statistically analyzed the error in a dataset from a perceptual study and proposed a
model that allows to predict how the surface slant angle will be perceived as a function of
the ground truth slant angle. This knowledge allowed us to modify the original illumina-
tion approach in order to achieve more accurate perception of surface slant. We conducted
a user study that confirmed the improvement.

In order to raise the impact of this thesis from purely theoretical level to the practical
level, we showcased several application scenarios of our new illumination methodologies.
We showed that our gradient-free illumination methods improve the quality of presenta-
tion of challenging acoustic modalities: medical ultrasound and sonar imaging.

Lessons learned

In course of the research performed during this PhD project, we made several invaluable
findings that surpass the scope of visualization. Our studies of illustration methodology
and perception literature encouraged us to analyze perceptual study data and conduct new
experiments. We highlight the most important take-home messages. The first two points
are results of literature study and not our own findings. Still, we would like to bring
this information to the awareness of the visualization community. All other findings and
observations origin from our own work.

• The light direction is assumed to be 20◦ −30◦ above the viewer [109] and 12◦ left
from the vertical axis [86, 145]. The default lighting in visualization application
should have these settings to maximize the accuracy of shape perception.

• Illustrators’ rules for expressing shadows are: the main color is blue, the secondary
color is the local color in darker tone, and the tertiary color is the complementary
color of the local color [111].

• The additional chromaticity and less luminance variation in shadows allows more
perceptually noticeable luminance variance for shading. Therefore, more shape
features will be noticeable in shadows.

• Luminance variation is crucial in depth perception [83]. By choosing any tone for
the shadow color other than black, the effective luminance variation interval shrinks
and the depth cues are affected. More research could be done to correct for this.

• Blue tones have the lowest luminance then other color tones. If a blue tone is chosen
as the basic shadow color, we obtain the highest chromatic variation for the lowest
sacrifice of luminance variation and less affected depth cues. From this point of
view, blue tones are most suitable to express shadows.

• The perception of the surface slant from 2D rendered images is deformed in a sys-
tematic fashion. This pattern is almost left-right symmetric. However, the slant of
surfaces, which normal vector is pointing upwards is perceived more accurately as
the slant of surfaces which normal vectors are pointing downwards. We have not
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found a similar discrepancy in slant perception depending on higher order deriva-
tives such as curvature.

Future Work:

Even though we made several advancements in illumination of volumes and knowledge
of perception, this area of research is far from fully explored. As an example, we find
worthwhile investigating the perceptual effect of interpolation in CIELAB instead of RGB
color space. We would be also delighted to see results of a study that shows the effect
other color tones in shadow on perception.

We have noticed that the modification of surface normals changes the appearance of
the object material, e.g., shininess. This observation could motivate attempts to character-
ize a model that adjusts the shading while preserving the appearance of the material. Our
shading modification has not reached the optimum, i.e., perfectly accurate perception of
slant. This might be due to the fact that shape cues are not solely extracted from shading,
but also from other salient features such as contours. The overall perception could be
further improved by a global deformation of the object that would compensate for the ad-
ditional mismatch between the distal and proximal stimuli. This will however deform the
overall appearance of the object as a distal stimulus and studies will need to be conducted
in order to reveal what happens with the proximal stimulus.
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A A Multidirectional Occlusion Shading Model
for Direct Volume Rendering*
Veronika Šoltészová1, Daniel Patel2, Stefan Bruckner3, Ivan Viola1

(a) (b) (c) (d)

Figure 1: Visualizations of a human hand using raycasting (a), and sliced-based volume rendering (b),
both using the Phong illumination. Directional occlusion shading model with a headlamp illumination
setup (c) and illumination from top-left (d). Illumination with top-left light position causes that the
fingers cast soft shadows on the body and evoke strong depth-perception cues.

Abstract

IN In this paper, we present a novel technique which simulates directional
light-scattering for more realistic interactive visualization of volume data.

Our method extends the recent directional occlusion shading model by en-
abling light-source positioning with practically no performance penalty. Light
transport is approximated using a tilted cone-shaped function which leaves
elliptic footprints in the opacity buffer during slice-based volume rendering.
We perform an incremental blurring operation on the opacity buffer for each
slice in front-to-back order. This buffer is then used to define the degree
of occlusion for the subsequent slice. Our method is capable of generating
high-quality soft shadowing effects, allows interactive modification of all il-
lumination and rendering parameters, and requires no pre-computation.

* This article was published in Computer Graphics Forum, 29(3):883–891, 2010 and presented at EuroVis
2012 in Bordeaux, France by Veronika Šoltészová

1 University of Bergen, Norway
2 Christian Michelsen Research, Norway
3 Simon Fraser University, Canada
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Introduction

A.1 Introduction

Local illumination models, such as the Phong model, are suited for conveying shape cues
for well-defined structures in volume data. However, they are generally not suitable for
visualization when the main goal is to emphasize three-dimensional structural arrange-
ments. In such a scenario, it is important to convey information about relative positions
and distances between individual features. The human visual system is adapted to in-
ferring three-dimensional information from illumination. Soft shadows, in particular, are
effective monocular depth cues. Not only do they provide occlusion information, but
the size and shape of the penumbra can be used to judge distances. Global illumination
models provide these cues at high computational costs, especially for volume rendering.
Visualization research has therefore focused on the development of new global illumi-
nation approximations for volume data that limit the complexity and allow for real-time
image synthesis. For this purpose, precomputation or parameter constraint strategies are
frequently employed. Both suffer from limited flexibility which can be problematic when
interactive exploration is required. The directional occlusion shading model introduced
by Schott et al. [134] is a forward scattering approximation based on a conical phase func-
tion. While the method is capable of generating realistic illumination at interactive frame
rates, it requires that the view and the light directions have to coincide. In this paper, we
introduce a multidirectional occlusion model, which removes this constraint.

The importance of illumination in 3D object perception has been well-studied [7, 67,
9]. To find out how to best improve volume rendering we have been conducting stud-
ies with medical illustrators. During our demonstrations of state-of-the-art visualization
techniques to experienced medical illustrators, their first critique point was the position-
ing of the light in the scene and the choice of non-standard colors. While visualization
researchers often carelessly define the light vector parallel to the view vector, this is con-
sidered a novice mistake in the domain of illustration. The resulting image is flat, akin
to photos taken with built-in front flash. To give depth to an image, as a rule, medical
illustrators use illumination from the top left. To further optimize the appearance of the
depicted structures, manual fine tuning is required.

The directional occlusion shading model for interactive direct volume rendering takes
the advantage of a headlight setup for performance reasons: by placing the light source
at the eye position, the samples required for illumination can be reused for compositing,
allowing the method to perform both operations in a single pass for a view-aligned slice
through the volume. Our approach uses elliptic occlusion footprints computed from the
light position, instead of the symmetric spherical footprints which were used in the orig-
inal paper. We achieve the same performance with the additional possibility to position
the light source anywhere within the hemisphere defined by the view vector. An example
of the significant improvement of depth perception compared to the previous method is
shown in Figure 1. A visualization of a human hand rendered with different techniques is
compared to the headlight and top-left shading. Both a professional illustrator and a user
study confirmed our subjective assessment which favored the rendering result 1a.

The remainder of this paper is structured as follows: In Section A.2 we review re-
lated work. Our multidirectional occlusion model is derived in Section A.3. Section A.4
provides additional implementation details. Results are presented and discussed in Sec-
tion A.5. Conclusions are drawn in Section A.6.
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A.2 Related Work

Levoy [80] proposed the use of gradients in volume rendering for evaluating a surface-
based local illumination model. While this common approach is effective in accentuating
material boundaries, it suffers from noise. In particular, gradient-based shading fails to
provide useful results in nearly homogenous regions. Illumination models which exploit
the volumetric nature of the data can therefore provide additional cues. Max [93] gives a
comprehensive overview of different optical models for volume rendering.

Yagel et al. [166] employed recursive ray tracing which allows for effects such as
specular reflection and shadows. Behrens and Ratering [5] added shadows to texture-
based volume rendering by using an additional shadow volume. The model presented
by Kniss et al. [70, 71] captures volumetric light attenuation effects including volumetric
shadows, phase functions, forward scattering, and chromatic attenuation using half-angle
slicing. Hadwiger et al. [54] presented a GPU-accelerated algorithm for computing deep
shadow maps for volume rendering. Rezk-Salama [125] proposed a semi-interactive ap-
proach for GPU-based Monte Carlo volume raytracing.

Ambient occlusion as described by Zhukov et al. [169] inverts the principle of light-
exposure of a point in space to obscurance by its close environment. Dachsbacher et
al. [32] refer to obscurance as antiradiance. They treat visibility implicitly while propa-
gating antiradiance as an additional quantity. The advantage of these approaches is that
they are view-independent: for fixed geometry, occlusion information only has to be com-
puted once and can then be applied efficiently during rendering, for example using texture
mapping. Several fast techniques which utilize this concept have been presented [13, 136].
Knecht [69] and Méndez-Feliu [96] provide comprehensive overviews of rendering tech-
niques based on ambient occlusion and obscurances.

In the context of volume visualization, the radiance at a point is determined by shoot-
ing rays in all directions from the point and averaging its degree of occlusion by other
parts of the volume. The result is an approximation of global diffuse illumination. It
produces soft shadowing effects which give a good indication of spatial relationships.
However, the opacity at any point is determined by the transfer function. Ambient oc-
clusion therefore requires an expensive computation step every time the transfer function
is modified. Stewart [142] introduced vicinity shading, a variation of ambient occlusion
to enhance perception of volume data by darkening depressions and crevices. To reduce
evaluation costs, occlusion calculations are reused. The approach of Ropinski et al. [128]
relied on local histogram clustering to precompute occlusion information for all possi-
ble transfer function settings. However, high frequency data, in particular the presence
of noise, reduces the effectiveness of their clustering approach and can lead to artifacts.
Additionally, their precomputation process is very time and memory consuming. Hernell
et al. [58] used a local approximation of ambient occlusion in volumes to limit compu-
tation times. In subsequent work [56, 57], they utilized local piecewise integration to
approximate global light propagation. This approach still requires ambience data for each
voxel to be recomputed when changing the transfer function, but their method is able to
run interactively by limiting the number of rays shot for evaluating the ambience and by
subsampling the rays using adaptive compression. In recent work, Ropinski et al. [127]
described a volumetric lighting model which simulates scattering and shadowing. They
use slice-based volume rendering from the view of the light source to calculate a light
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volume and raycasting to render the final image.
View-dependent approaches do not require extensive precomputation and therefore

allow fully interactive transfer function modification. This is frequently achieved by lim-
iting light evaluation from spherical local neighborhoods to conical neighborhoods. Des-
granges et al. [34] use incremental blurring to achieve shading effects without the use
of a gradient. The approach by Bruckner and Gröller [11] employed non-photorealistic
shadowing and emission effects for the purpose of illustration. Finally, as stated in the
previous section, our method is an extension of the model by Schott [134].

A.3 Multidirectional Occlusion Shading

The Directional Occlusion Shading model by Mathias Schott et al. (MS-DOS) [134] de-
scribes an approximation of light-scattering in particles of a volume. This simple method
generates soft a shadow effect and hence provides important shape and depth-perception
cues. Although the approximation of the light transfer delivers slightly different results
compared to reference images from a raytracer, it provides visually compelling shading
effects at interactive frame-rates and with no precomputation. However, the light transfer
approximation in the MS-DOS model constrains the light direction to the viewing direc-
tion. In this section we derive an approximation which does not limit the light to this fixed
direction.

A.3.1 Light Transport Equation

The directional occlusion shading model approximates transport of light energy L in a
medium. Every point in the environment receives a portion of energy, i.e., radiance com-
posed by background radiance Lb and medium radiance Lm. The medium radiance con-

α 2θ

ε

x

Figure 2: Conical phase function setup: a selected point in space x scatters light which we approxi-
mate by a tilted cone (α = tilt, θ = aperture). The axis of the cone is parallel to the light direction. The
projection of the light energy leaves an elliptical footprint ε on a selected viewing plane.
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L

L

front-to-back

α

V

V

2θ

Figure 3: Incremental blurring of the opacity buffer. We use a view-aligned slice-stack composited in
the front-to-back order.

sists of the emitted radiance Le and in-scattered radiance Li. The emitted radiance at a
point x depends only on the local environment of x. Unlike Le, the in-scattered radiance
Li integrates over global features:

Li(x,ω) =
∫

4π

L(x,ωi)Φ(ω,ωi)dωi (1)

where Φ(ω,ωi) denotes the phase function for two light-ray directions ω and ωi. Li
quantifies the total radiance incident to point x from all directions ωi. From Equation 1,
it can be seen that Li requires an expensive recursive evaluation. The MS-DOS shading
model and our model (multidirectional OS) simplify the evaluation which considerably
reduces the computational costs.

We assume that the medium emits light only in directions within a specific cone. The
phase function from Equation 1 can be therefore replaced by a simple cone-shaped phase
function Φθ ,α(ω,ωi) where θ is the aperture angle and α the tilt angle of the cone. A
schematic illustration of this scenario is depicted in Figure 2. A particle at a point x
scatters light which is received by particles inside the cone. The in-scattering term Li
is conceptually related to the fractional visibility which is equivalent to the opacity and
cumulates information about ambient occlusion.

Like the original model, we use a slice-based volume renderer with an additional
opacity buffer. Slices are composited in the front-to-back order and the opacity buffer is
incrementally filtered and used to determine the accumulated opacity for the next slice
as shown in Figure 3. MS-DOS operates on view-aligned slices and assumes that the
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Figure 4: A geometrical description of the cone-shaped phase function: the elliptical cone-section
defines a circle κ intersecting the center C of the ellipse ε. A side view (a) and a 3D view (b) of the
planar cone-section.

direction of the light source is aligned to the viewing direction. As a consequence, the
opacity buffer can be convolved with a symmetrical disc-shaped Gaussian kernel. To en-
able interaction with the light source, we change the symmetrical disc-shaped kernel to an
elliptical kernel. The ellipse ε is defined by the intersection of a tilted cone which repre-
sents the phase function Φθ ,α(ω,ωi) and the slice plane. The cone-shaped phase function
is tilted by an angle α which is limited to [0, π

2 −θ). This restricts the cone-section from
degenerating into hyperbolas or parabolas. Figure 4 describes this geometrical situation.

A.3.2 Analysis of the Geometrical Model

This section describes the analytical computation of the elliptical kernel, namely, the
derivation of its major and minor axes A = |A1A2| and B = |CC′| from a known tilt α ,
a cone aperture θ and a slice distance d. According to Figure 4a, we derive R from d, θ

and α as:

R = d
tanθ

cosα
(2)

The axis of the cone intersects the plane at the point O. When the tilt angle α = 0, the
cone section is a circle, and a1 = a2 = A. With a known R, we turn to the law of sine in
the triangles M A1V1O and M OA2V2. With α , θ , and R given, Equations 3 and 4 yield a1
and a2:

a1

sin(π

2 −θ)
=

R
sin(π

2 +θ −α)
(3)
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Figure 5: A detailed side-view of the intersection of ellipse ε and circle κ.

a2

sin(π

2 +θ)
=

R
sin(π

2 −θ −α)
(4)

A =
a1 +a2

2
(5)

With known a1 and a2, we use Equation 5 to calculate A which is the major axis of
the ellipse.

The center of the ellipse ε is in C with ‖OC‖ = ‖ a2−a1
2 ‖. We define a circular cone

section κ which intersects the point C. Consequently, the axis of the cone intersects κ

in its center S. This scenario is illustrated in Figure 4b. The intersection line ε ∩ κ is
perpendicular to A1A2 and intersects the center C of ε . Consequently, ε ∩κ is collinear
with the minor axis of ε . Figure 5 illustrates the side view of ε ∩ κ . In Figure 6, we
focus on the triangles M XV ′2V2 and M SCO, and on the circle κ . Basic analysis implies
Equations 6, 7, 8, and 9. Solving them, we determine B - the minor axis of ε .

sinα =
d′

‖OC‖
(6)

tanθ =
dR
d′

(7)

R′ = R+dR (8)

B =

√
R′2−‖OC‖2 +d′2 (9)
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′
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Figure 6: We introduce new literals for selected primitives: 6a the triangle M SCO, 6b the triangle
M XV ′2V2 and 6b the circle κ. These primitives are defined in Figures 4 and 5 by the same color
encoding. Note, that ||CC′||= B which is the minor axis of the ellipse ε.

A.3.3 Weighting Function

Light rays collinear to the cone axis hit the slice with the highest intensity. We revisit
Figure 4b: O is the point with the highest incident energy. We define a weighting function
as follows:

WL(x,y) = 1− k (10)

with k defined implicitly by:

(x− (1− k)‖OC‖)2

A2 +
y2

B2 = k2 (11)

Equation 11 results in a quadratic equation with two real roots from which we take
the maximum. A kernel with a linear fall-off from O towards the border of the ellipse
is illustrated in Figure 7a. Additionally, we apply the Gaussian function to smooth the
fall-off of the weights as illustrated in Figure 7b.

A.3.4 On-the-fly Convolution

We apply an incremental convolution of the opacity buffer Oi and the elliptical kernel Gε

for each slice i. As the light direction L changes, Gε has to be aligned respectively. We
project the light vector to the viewing plane which yields a 2D-vector L’ and rotate the
kernel so that its major axis is aligned with L’:

~OC
‖OC‖

=
L’
‖L’‖

(12)

The weight-distribution in Gε depends only on the tilt, aperture, light direction, and
slice distance. Therefore, an update is triggered only if one of these parameters changes.
In practice, we render the kernel Gε to a texture when an update is triggered. First, we
uniformly scale the ellipse so that it fits into a unit-square. Second, we set-up the texture
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(a) (b)

Figure 7: Elliptical kernels used for incremental blurring of the opacity buffer: with linear fall-off (a) and
Gaussian fall-off of the weighting function (b).

(a) (b) (c)

Figure 8: Visualizations of the gecko CT dataset with different setup of aperture θ and tilt angle α:
θ = 10◦ and α = 37◦ 8a, θ = 40◦ and α = 37◦ 8b, and θ = 40◦ and α = 5◦ 8c. Light is coming from
top-right for all images.

coordinates so that Gε is aligned correctly. During the volume rendering pass, we apply
inverse scaling operation to regenerate Gε of the correct size. In Figure 8, we visualize
the gecko dataset with different tilts and apertures.

Based on the incremental convolution (∗), we calculate a modulation factor λi for each
sample on the slice i which determines the visibility of the current slice:

λi =
1

1+Gε ∗Oi−1
(13)

In addition to the opacity buffer Oi, we use a color buffer Ci for each slice. The opacity
buffer for the next slice combines the opacity buffer of the previous slice with the opacity
of the current slice αi:

Oi = Gε ∗Oi−1 +αi (14)

The color contribution ci is multiplied by λi. The color ci and opacity αi propagate
to Ci+1 using traditional alpha-blending with the over operator. Our method requires
no precomputation and performs at interactive frame-rates. Due to incremental blurring
of the opacity buffer, shadows cast by highly occlusive regions fade-out smoothly with
distance. Compared to the state-of-the-art model, we thereby add a movable light source
with negligible performance penalty.

A.4 Implementation Details

Our new model was implemented as a plugin to VolumeShop [10] using C++ and OpenGL/
GLSL. Using the ARB draw buffers OpenGL extension, two render targets are written for

57



A

A
M

ultidirectionalO
cclusion

S
hading

M
odelforD

V
R

Results and Discussion

each slice: the intermediate rendered image and the occlusion buffer. The elliptical blur-
ring kernel is stored in an additional texture which is updated whenever the light source
parameters change. For all examples in the paper, we use a texture size of 128× 128.
When the lighting parameters change, we recompute the footprint. The major axis of the
ellipse is aligned with the projection of the light vector to the viewing plane by multiply-
ing GL TEXTURE matrix stack by a rotation matrix. In case the ellipse grows or moves
out of the texture, we apply translation and scaling to fit it into the bounding box of the
texture. During rendering, the inverse transformation is applied to access the kernel at
correct positions. However, massive downscaling of the coordinate system may lead to a
loss of precision. Users can interactively adjust the tilt, the aperture, and the XY-rotation
of the light source. This gives the user full control to set the light source arbitrarily in the
hemisphere defined by the view-vector. The parameters aperture, tilt, and rotation are set
by sliders in the user-interface.

A.5 Results and Discussion

In this section, we provide case-studies and comparisons to other volume rendering ap-
proaches and analyze the performance of our new method.

A.5.1 Case Studies

Medical illustrators generally place the light source in a top-left corner to improve depth
perception. Figure 9 depicts the carp CT dataset visualized under different illumination
conditions. While in Figure 9a, the image lacks depth, Figure 9b emphasizes the detailed
structure of the skeleton through shadows. Similarly, Figure 10 shows cases where illu-
mination leads to better perception of structures. In Figure 10a, the hand seems to directly
contact the body. In reality, there is a small gap which is visible in Figure 10b. Similarly
for Figures 10c and 10d: in Figure 10d, the eye sockets of the skull appear deeper than in
Figure 10c. We consulted a certified medical illustrator with over 25 years of professional
experience who affirmed that the visualizations generated using this kind of illumination
yield stronger perception cues. We presented her visualizations using different lighting
settings. Her task was to choose which lighting conditions suit medical illustrations the
best. She consistently preferred image such as those depicted in Figures 10b and 10d. The
illustrator further confirmed that interactive fine-tuning of the exact light placement is nec-
essary in many cases, in order to avoid excessive darkening of focus objects. In volume
data, regions with high gradient magnitude correspond to surface-like structures. Using
the gradient magnitude to add an additional local specular component to these objects
can further improve perception. Figure 11 presents a computer tomography of a human
foot generated with different illumination models and varying light source positions: Fig-
ures 11a and 11b use the multidirectional OS model enhanced by specular highlights, and
Figures 11c and 11d use the pure multidirectional OS model.

To gain a coarse impression on the impact of our technique on non-professionals,
we also conducted a small user study on a group of 42 participants with different back-
grounds. We presented them two series of result images: the human hand and the human
thorax which are shown in Figures 1 and 12. Their task was to choose an image which
in their opinion yields the strongest depth cues. From the series of different renderings of
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Figure 9: Visualizations of the carp CT dataset using the directional occlusion shading model with a
headlamp illumination setup 9a and using illumination setup conventional to medical illustrations 9b.

(a) (b) (c) (d)

Figure 10: Visualizations of computer tomography data using the directional occlusion shading model
with a headlamp illumination setup 10a and 10c using the illumination setup conventional to medical
illustrations 10b and 10d.

(a) (b) (c) (d)

Figure 11: Visualizations of a human foot acquired by computer tomography using the directional oc-
clusion shading model: using the Phong illumination model with the headlamp illumination setup 11a
and with the top-left lighting 11b. Visualizations 11c and 11d use the diffuse illumination model with
the headlamp and the top-left light-source setup respectively.

the hand, 39 participants (92.86%) favored the top-left illumination in Figure 1d, 2 partic-
ipants (4.76%) preferred the raycasting in Figure 1b and 1 participant (2.38%) preferred
the head-lamp illumination in Figure 1c. A majority of 41 (97.62%) participants also
preferred the top-left illumination of the thorax in Figure 12d and only one participant
(2.38%) selected the raycasted image in Figure 12a.

Local surface-based illumination of volume data employs the gradient to substitute
for the surface normal. However, gradients estimation frequently performs poor in the
presence of noise which can lead to distracting artifacts. Thus, for modalities such as
ultrasound, unshaded volume rendering is commonly employed. This makes the struc-
tures in the data difficult to interpret even for experienced medical professionals. The
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(a) (b) (c) (d)

Figure 12: Visualizations of a human thorax we used for user study: using raycasting 12a, sliced-
based volume rendering 12b, both using the Phong illumination followed by the directional occlusion
shading model with the headlamp illumination setup 12c and illuminated from top-left 12d.

(a) (b) (c) (d)

Figure 13: Visualizations of 3D ultrasound of cardiac data: user interface of a 3D cardiac ultrasound
workstation 13a, a clipped 3D cardiac ultrasound visualization using direct volume rendering and
Phong illumination model, rendered with a raycaster 13b, clipped 3D cardiac ultrasound visualization
using the multidirectional occlusion shading model with light coming from top-left 13c and bottom-
left 13d.

directional occlusion shading model as a gradient-free shading method can be used to
improve perception. Interactive light source modification enables the user to inspect and
understand the structures better. Figure 13 shows different visualizations of 3D cardiac
ultrasound: 2D slices and 3D volume renderings. The clipping plane reveals the inside of
the heart chambers. During examination, physicians see the ultrasound visualizations on
their workstations as in Figure 13a. We used a transfer function which shows the heart
in a similar fashion. Figure 13b shows that gradient-based shading is not well-suited for
ultrasound data. Multidirectional occlusion shading, on the other hand, reveals the struc-
ture, and interaction with light source enables the user to better perceive the depth of the
cavities.

We described a shading model which does not require precomputation and storage of
additional data, unlike deep shadow maps [54] or light volumes [127], and which allows
arbitrary light position within the hemisphere defined by the view vector. Half-angle
slicing, introduced in the work of Kniss et al. [70], generates shadows by using a slicing
direction halfway between view and light direction. However, choosing a slicing direction
which is non-parallel to the viewing directions leads to visible artifacts, especially when
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(a) (b)

Figure 14: Visualizations of the bonsai dataset: slice-based volume rendering using a view-aligned
slice stack 14a and using a half-angle-aligned slice stack 14b.

the light source tilt angle surpasses 60◦. Figure 14 clearly demonstrates a situation when
such artifacts are visible when half-angle slicing is used. In the original half-angle slicing
approach, the order of the slices is reverted if the light source is located in the hemisphere
opposite to the viewer. Reverting the traversal of the slice-stack is a possible extension
of our approach which would not limit the light vector to the hemisphere defined by the
view vector.

A.5.2 Performance Analysis

We tested the described method on a workstation equipped with an NVIDIA GeForce 295
GTX GPU with 1.7GB graphics memory, an Intel®Core i7 CPU with 3.07GHz and 12GB
of RAM. We measured the performance of our implementation using the gecko-dataset of
resolution 512× 512× 88 voxels, 0.5 voxels sampling distance and viewport-resolution
768× 407 pixels. We achieved interactive frame-rates of 19Hz with using the MS-DOS
and 18Hz with multidirectional OS using a 37◦ angle of aperture while interacting with
the viewing parameters. During interaction with the light source, which required update
of the kernel, we achieved 14Hz frame-rates. For comparison, using the same framework,
a simple slice-based renderer with no shadowing and Phong illumination achieved 25Hz
and a high-quality raycaster with Phong illumination and no shadowing achieved 21Hz.
We performed the same test with the foot dataset of resolution 256×256×256 voxels, 0.5
voxels sampling distance and viewport-resolution 531× 311 pixels. We achieved 15Hz
while using the original MS-DOS approach, 14Hz using our new method, and 12Hz dur-
ing light-source interaction. In this case, a simple slice-based renderer performed at 25Hz
and a raycaster at 22Hz. These tests prove that the interactive light-source placement is a
valuable extension of the original approach traded for a negligible performance penalty.

A.6 Conclusions

In this paper, we presented a shading model for direct volume rendering, which enables
the interactive generation of high-quality soft shadow effects without the need for pre-
computation. Our method extends a previous technique to enable interactive placement
of the light source. Using elliptic instead of circular footprints, we achieve almost the
same performance while greatly improving the flexibility of the method. Additionally,
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we discussed several applications of such a shading model and consulted a professional
illustrator to confirm the importance of freely modifying the light direction.
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B Chromatic Shadows for Improved
Perception*
Veronika Šoltészová1, Daniel Patel2, Ivan Viola1

(a) (b) (c)

Figure 1: Non-photorealistic shadows expressed in blue tones: (a) lungs and (b) ankles from the
visible female CT dataset, and (c) 3D cardiac ultrasound.

Abstract

SOFT shadows are effective depth and shape cues. However, traditional
shadowing algorithms decrease the luminance in shadow areas. The fea-

tures in shadow become dark and thus shadowing causes information hiding.
For this reason, in shadowed areas, medical illustrators decrease the lumi-
nance less and compensate the lower luminance range by adding color, i.e.,
by introducing a chromatic component. This paper presents a novel technique
which enables an interactive setup of an illustrative shadow representation for
preventing overdarkening of important structures. We introduce a scalar at-
tribute for every voxel denoted as shadowiness and propose a shadow transfer
function that maps the shadowiness to a color and a blend factor. Typically,
the blend factor increases linearly with the shadowiness. We then let the
original object color blend with the shadow color according to the blend fac-
tor. We suggest a specific shadow transfer function, designed together with a
medical illustrator which shifts the shadow color towards blue. This shadow
transfer function is quantitatively evaluated with respect to relative depth and
surface perception.

* This article was published in Proceedings of the Symposium on Non-Photorealistic Rendering and An-
imation (NPAR 2011), 105–115, 2011 and presented at named symposium in Vancouver, Canada by Veronika
Šoltészová. A typo in definition of shadowiness S has been corrected in the first paragraph of Section B.3.

1 University of Bergen, Norway
2 Christian Michelsen Research, Norway
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B.1 Introduction

Shadows are important monocular and also binocular [123] depth cues. Based on the
shadows, the observer can estimate the relative depth between the foreground object and
the background, and estimate the spatial ordering of occluding structures. When no shad-
ows are being cast, objects in a rendered scene often appear floating in the space. Thus
the realism of a scene increases significantly when shadows are cast.

During image synthesis, shadows can be computed accurately with physically-based
global illumination methods. Such rendering algorithms come with high computational
requirements and only simple scenes can be synthesized at interactive frame-rates. To
achieve interactive performance for volumes or complex meshes, shadowing approxima-
tion algorithms can be utilized. One category is approximations of global illumination
light propagation and the other category is dedicated shadow mapping algorithms that
calculate shadow geometry for each object in the scene.

High computational cost is not the only limitation of shadows. During data visu-
alization, the user should be provided with the best possible visual information. Here
shadows can result in unwanted information hiding as they darken the scene elements
in the shadow. A visualization user might thus receive intuitive depth cues, but due to
overdarkening caused by the shadows he or she might miss important features. Therefore
careful consideration should be taken when introducing shadows in 3D data visualization
scenarios.

The craft of illustration has been a great source of inspiration for visualizing data.
In the case of shadows, illustrators have tackled the problem of overdarkening. When a
shadow is cast, the area of an object in shadow is a darker color than the area outside
the shadow. Thus the logical way to modify the color of an object, based on the degree
of shadow, is to modify the luminance of the color. However, the illustrators approach
to tackle overdarkening is different from physically-based approaches that assume white
light. They change the color less in luminance but add a chromatic component so that the
area in shadow is still visible but the added coloring conveys that the area is in shadow.
Often, a blue tone is used for the shadows, however, also a complementary color to the
object’s material can be used. Blue color has been used to express shadowing in several
artworks such as still lifes by Cézanne [16, 17], paintings from the haystack- and Rouen
cathedral series by Monet [101, 102], the self-portrait by Matisse [91] and landscapes by
Coleman [24]. It is interesting to compare the two versions of da Vinci’s Virgin of the
Rocks shown in Figure 2. Compared to the painting [30] in Figure 2a, da Vinci used more
blue pigments in the later painting [31] in Figure 2b. The blue tones do not only enhance
the aerial perspective but allows to see more details in the shadowed areas. Instead of
using black as in Figure 2a, different blue shades are used in the crevices of the dress of
the Virgin and also in the shadow of the rocks in the distance.

Blue shadows imitate what is observable on a cloud-free sunny day, where objects in
shadow appear to be blue-toned. This is because the blue sky dome acts as an indirect
light source which is not perceivable on the object directly exposed to the sun light, but
becomes noticeable for an object in the shadow. Especially on white reflective materials,
such as snow, the blue tone in shadow is clearly noticeable. Due to the blue sky dome,
humans might be used to observe objects in the shadow as having a subtle blue tone and
it is possible that illustrators use this effect to overcome shadow overdarkening.
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(a) (b)

Figure 2: Leonardo da Vinci: Virgin of the Rocks. (a) The version from 1483–1486 located in Louvre,
Paris. (b) The version from 1495–1508 located in the National Gallery, London.

Inspired by the shadowing technique from the illustration craft, our goal is to provide
a non-photorealistic shadowing approach for 3D data visualization that handles overdark-
ening. For each sample we therefore extract the amount of shadow, i.e., shadowiness and
map it via the shadow transfer function to a color and a blend factor. Based on the amount
of the shadowiness, the user can flexibly control the visual appearance of the shadow. In
Figure 1, the technique is demonstrated on medical datasets. A flexible approach to inter-
actively control the optical properties of the shadow is the first contribution of the paper.

During an informal feedback, our chromatic shadowing method was well received
by illustrators. We were also interested in how the blue illustrative shadows performed
in terms of shape, contrast and depth perception compared to standard black shadowing
based only on luminance shift. Therefore we evaluated how subjects performed on per-
ception tasks in both scenarios. Based on the conclusions we draw from the evaluation,
we suggest an optimal choice for the shadow color in terms of both a shift in chromaticity
and luminance. This is the second contribution of the paper.
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B.2 Related Work

The human visual system is fine-tuned for inferring shape by observing how light inter-
acts with physical objects. Artists were early in recreating, in pictorial form, some of the
drawing cues that the brain infers shape from [49]. With the advent of optics and com-
puter graphics, automated algorithms for creating shape-cues is being explored. These
algorithms have both objective and subjective aspects. Examples of objective aspects are
which optical phenomena they recreate and how computationally expensive they are to
calculate. Subjective aspects can be which type of cues they give to the brain (distance,
curvature, motion) and how well the brain can make use of these cues. There exists opti-
cally complex phenomena which are computationally expensive to calculate, such as po-
larization [161]. They contribute towards photorealism, but give few shape cues, if at all.
On the other hand, using gradients for local shading on surfaces [117], and volumes [80]
produce strong shape-cues which in addition are fast and simple to calculate. They are
therefore widely used in interactive renderings. Shadows are also strong cues, but due to
their global nature, are more time consuming to calculate. Since the brain infers shape
well from less accurate shadows [156, 168], many shadow rendering techniques can be
accelerated by reducing their accuracy. In the following we give an overview of raytracing
methods and approximative but fast shadow algorithms.

Yagel et al. [166] employed recursive ray tracing for correct shadows. Behrens and
Ratering [5] added shadows to texture-based volume rendering by using an additional
shadow volume. Rezk-Salama [125] proposed a semi-interactive approach for GPU-based
Monte Carlo volume raytracing. Faster shadow calculations were achieved by limiting
the occlusion calculation to local neighborhoods; Ambient occlusion, where the radiance
at a point is determined by shooting rays in all directions from the point and averag-
ing its degree of occlusion by other parts of the volume, was described by Zhukov et
al. [169]. Dachsbacher et al. [32] treat visibility implicitly while propagating obscurance
as an additional quantity. These approaches are view-independent, therefore, for fixed
geometry, occlusion information only has to be computed once and can then be applied
efficiently during rendering. Hernell et al. [56, 57] present interactive ambient occlusion
by coarse neighborhood sampling. This approach requires ambience data for each voxel
to be recomputed when changing the transfer function. Knecht [69] and Méndez-Feliu
and Sbert [96] provide overviews of rendering techniques based on ambient occlusion.

Some shadow approaches do not require extensive precomputation and therefore al-
low fully interactive transfer function modification. The model presented by Kniss et
al. [70, 71] captures volumetric light attenuation effects using half-angle slicing. Schott
et al. [134] improves the speed of the half-angle method by aligning the light source
direction with the viewing direction. Speed-up is achieved by calculating the light atten-
uation in lock-step with the standard slice-based front-to-back traversal of the volume for
compositing transparencies. The result is that the radiance for each voxel is now based
on a conical neighborhood pointing towards the viewer, extending to the end of the vol-
ume. These methods therefore create view dependent shadows. Šoltészová et al. [139]
generalized the latter work for user-defined light source directions.

We recreate the effect of colored shadows seen in the works of artists and medical
illustrators. The concept is specified by introducing a user defined chromatic shadow
transfer function that gives control of color gradation in shadows. We achieve realtime
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shadows on volumetric data by building on the work by Šoltészová et al. [139]. The use
of artistic-coloring techniques in computer graphics has been performed earlier. By using
a colored shadow, we avoid losing detail in shadow areas of high darkness. A similar
motivation led Amy Gooch et al. [50] to recreate an illustrative rendering style for geo-
metric objects by mapping the local Phong grayscale shading intensities to a color scale.
As an extension, Bruce Gooch et al. [52] added silhouette curves, improved shading, and
simple shadow cast from geometry to a flat plane for conveying shape better. Inspired by
colored shadows found in illustrations, they provide an example rendering with a colored
shadow, without going into more detail. Ruiz et al. [130] present cool-to-warm mapping
on ambient occlusion. Their method requires precompution for the scene. None of these
papers quantify the effect with user studies as we do.

By user studies, our paper compares the perceptual effect of shading techniques. The
effect of shading on shape was performed by Ramachandran [124]. He found that when
extracting shape information, the brain assumes that there is only one light source illu-
minating an object. In our model, we operate with one light source. O’Shea et al. [109]
use local Lambertian shading and investigate how good a shape-cue this is. They find that
shape is perceived best when the light direction is above the viewpoint at an angle, this is
a setup which we use in our model. In one study [159] it was shown that global illumi-
nation has perceptual benefits over local illumination. Winnemöller et al. [163] evaluate
the shape-conveying effect that different non-photorealistic techniques have. Specifically,
they measure the effect of shading, texture, silhouette and motion on the perception of
shape. Besides all, they showed that when multiple shape cues are present in moving
objects, the cues may conflict and impede each other. For simulating global illumination,
Krivanek et al. [76] study how many point light sources are needed to get an acceptable
visual correspondence to a ground truth rendering.

Ware and Franck [158] performed user studies to find the effect of 3D stereo viewing
and motion on depth perception. Pfautz [115] discusses stereo and perspective depth cues.
Grossman and Balakrishnan [53] compared depth perception on a volumetric display.
Successful use of textures for conveying shape was investigated by Bair et al. [3].

B.3 Transferring Shadowiness to Chromaticity

In computer graphics, fast shadow-approximating techniques use multiplication of the
color: r,g,b ∈ [0,1] by the degree of their shadowiness S ∈ [0,1]. S = 1 means total
obscureness where colors become pure black and S = 0 signifies no shadow at all; colors
remains unmodified. As a consequence, shadow areas become darker and thus the depth
cues are enhanced. Unfortunately, the darkening is controlled only by the scene and light
setup. It cannot be assured that the shadowed areas do not become completely black
and mask out all visual information. When no shadowing is applied to the scene, visual
information in such areas such as local surface detail will remain, however the depth cues
from shadows are lost. In volume visualization, both aspects are important: the amount of
information being communicated from the image is crucial and also depth cues for better
3D-scene understanding.

We observed that illustrators tend to avoid expressing shadows by mixing the object
color with a pure black color. Our advising medical illustrator indicated that blue color is
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Figure 3: The non-linearity of the RGB grayscale: the grayscale colors converted to luminance (L*)
in the perceptually uniform CIELAB color space with the scale on the right and ∆L∗

∆g , the perceptual
distance between neighboring grayscale colors in the RGB space with the scale on the left. We
compare a shadow with a very dark gray color CIELAB = (5,0,0) / RGB = (17,17,17), a brighter shadow
color (24,0,0)/(57,57,57), and a chromatic shadow (24,-16,-39)/(0,66,116) of the same luminance level
as the brighter shadow. The arrow point to the region where features are visible only in the chromatic
shadow.

an optimal choice. In other words, she partially uses luminance contrast, i.e., darkening,
and partially chromatic contrast, i.e., mixing in a blue tone.

This can be explained by the fact that the human visual system does not distinguish
between individual colors in the lowest luminance range. In the perceptually uniform
CIELAB color space, the Euclidean distance between color vectors corresponds to their
perceptual distance. We converted gray values from RGB color space to CIELAB. As
the grayscale only varies in the L*-dimension (luminance), it is sufficient to regard the
first derivative of L* to show the perceptual distance between neighboring gray colors. In
Figure 3, we plot the RGB grays in the interval [0,255] converted to L* and the derivative
∆L∗
∆g . We observe that the derivative peaks in the low-middle range of the grayscale axis

in the RGB space which corresponds to the highest perceptual distance. Therefore it is
logical to use the more effective range of gray in terms of perceptual distance instead of
the pure black and use the chromatic shift to compensate for the decreased luminance
contrast in the artwork. Shadows encoded solely in the luminance channel do not have
the same contrast as shadows encoded with variation in luminance and chromaticity.

Through an adaptation of the fast shadowing methods for mimicking artistic illustra-
tion techniques, we combine the best of both scenarios: depth cues from shadows and
detail extraction when no shadowing is used. We propose a method which gives the
user full control over the shadow representation in terms of steering its color and opacity
and allows for mimicking the illustrative shadowing technique. A suitable choice of the
shadow color allows to communicate more local features in the shadowed 3D scenes.
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Figure 4: Palette of shadow colors S0..S5 in the CIELAB space: O is the object color and shadow colors
S0..S5 are chosen along the planar arc CL. CL denotes the chromatic-luminance shift and belongs to
the circle in the CIELAB color space which is centered in O and has a radius ||OS0||. We used the
plane define by CL to clip a part of the CIELAB volume to reveal the color plane of our interest.

Volume-based chromatic shadows

As we focus on visualization of volumetric data, our starting point is a volumetric ren-
derer which is capable of generating a soft-shadowing effect. Howevever, any shadowing
algorithm that outputs a scalar shadowiness value can be used.

With the shadow transfer function f , we map the shadowiness S to a color Cs
RGB and

a blend factor Cs
A: f (S )→ C s

RGBA. The original voxel color C o
RGB is blended with the

shadow color C s
RGB according to the blend factor CA to obtain the final voxel color CRGB:

CRGB = (1−C s
A)C

o
RGB +C s

AC s
RGB (1)

The function f is user-specified and it allows with a suitable choice of color to divide
the contrast energy of S into luminance- and chromatic contrast. In Figure 3, we show
the same part of an artificially created scene with three shadow presets. The dark makes
it difficult to perceive the surface shape in the dark crevices. The perceived color distance
of the original surface color, i.e., CIELAB = (60,0,0), to the shadow color is 55. Then
we increased the luminance of the shadow color, but the perceived color distance to the
original surface color decreased to 36 and the image lost its contrast. Then we compensate
for the loss of contrast by chromatic shift of the shadow color into the tones of blue. We
chose a color which has the same perceived color distance to the object color as the color
of the dark gray shadow.

In Figure 4, we present another example of the shadow palette on a visualization of
the CIELAB volume. Shadow color S0..S5 are equidistant from the object color O. With
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S0 = (17,0,0) S1 = (24,2,−23) S2 = (29,4,−30)

S3 = (33,4,−34) S4 = (38,5,−37) S5 = (43,5,−39)

Figure 5: A volumetric dataset generated from several sine waves. Using a step transfer function, we
visualize one surface in the color O. We show how the shadow colors S0..S5 influence the surface
perception in the shadow. O and S0..S5 are from the palette in Figure 4 and are defined in CIELAB.

growing i, Si contains less luminance contrast (∆L∗) and more chromatic contrast (∆a,∆b)
to the object color. An application of individual shadow-colors from this palette is showed
in Figure 5.

Image-based chromatic shadows

In theory, chromatic shadows can be generated in a post-processing step from two ren-
derings: one with and one without shadows. In this step, the renderings are compared
pixel-by-pixel. From the difference between luminance of individual pixels, one can find
the shadowiness S , apply f (S )→ C s

RGBA, and blend the shadow color with the original

70



B

C
hrom

atic
S

hadow
s

Results

(a) (b)

Figure 6: Comparison of chromatic shadows on a phantom volume generated (a) image-based as
post-processing and (b) volume-based during the volume rendering pass. We show that the image-
based method does not deal with the transparency correctly. The shadow color is applied as post-
processing (a) and cannot appear behind a semi-transparent surface as in (b).

pixel color in the rendering without shadows using Equation 1.
However, this image-based method has an important shortcoming: it does not handle

transparencies correctly. This is displayed in Figure 6a. We created an artificial dataset
where a semi-transparent thin layer encapsulates an opaque object on a flat board. It
is obvious that the shadowing on the surface does not appear to be drawn behind the
semi-transparent layer as it is in Figure 6b, which was rendered using the volume-based
approach. In addition, the volume-based approach also captures a subtle shadow on the
back-face of the semi-transparent layer cast by the opaque object located inside. It was
not our goal to show both figures with a corresponding coloring of the shadow, but to
highlight an important disadvantage of the image-based method. In volume visualization,
we need to handle transparencies correctly which justifies the choice of the volume-based
shadowing method.

B.4 Results

Our method is beneficial for volume rendering of data from several scientific domains.
The seismic dataset in Figure 7 contains many layers. Rendered with black shadows,
the space between layers becomes overdarkened and illegible as shown in Figure 7a.
The surfaces of the layers are better visible with our method as shown in Figure 7b. In
Figure 8, we show two pairs of medical visualizations comparing black shadows to our
method. Other example applications of our method for medical datasets are shown in
Figure 1. The lungs and feet are extracted from the visible female CT dataset (Figure 1a
and 1b). Figure 1c shows a 3D ultrasound volume of a human heart.

The non-photorealistic shadowing technique we described in this paper belongs to
the group of low-frequency lighting approximations and as suggested in previous works,
low-frequency lighting is suitable for visualization of data with low signal-to-noise ratio
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(a) (b)

Figure 7: A seismic dataset rendered with (a) black and (b) blue(chromatic) shadow color.

such as medical ultrasound or MRI [57, 127, 139] and seismic datasets [112]. Features
in shadows are illegible, especially in the medical domain. Figures 7 and 8 demonstrate
that our non-photorealistic shadowing technique brings a substantial improvement over
the previous shadowing techniques in terms of feature visibility.

We implemented a proof of concept of the described non-photorealistic shadowing
technique. We used the volume rendering framework VolumeShop [10] which is writ-
ten in C++ and uses OpenGL/GLSL. We chose the multidirectional occlusion shading
model [139] since it is capable of generating a high-quality soft shadowing effect at in-
teractive frame rates and therefore suited for interactive generation of illustrations. In
addition, this model allows us to place the light source anywhere on the hemisphere be-
hind the viewer. The chosen model supports only volumes but the concept of chromatic
shadows should fit well for meshes also.

The multidirectional occlusion shading model requires a slice-based volume renderer.
It computes shadows using incremental convolution: for each slice the volume samples
are multiplied with a 2D occlusion buffer generated at the stage when the previous slice
was rendered and a new occlusion buffer is produced for the next slice. Instead of mul-
tiplying the color of samples P(x,y) by the values from the occlusion buffer O(x,y), we
interpret them as shadowiness S and use to specify the shadow color.

The mapping function of the shadowiness to color and opacity is user-defined as a
1D transfer function. Currently, users specify the colors in RGB. Automatic shadow
color specification based on the voxel color can be seen as a possible extension of this
method. Colors defined in CIELAB which were discussed in this paper were converted
separately. The LAB ↔ RGB conversion was done using the standard illuminant D50
with the following XYZ reference values XYZre f = (96.4212,100.0,82.5188). This is
the same as used by Adobe Photoshop in the image editing mode [89].
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(a) (b)

(c) (d)

Figure 8: Visualization of medical data: cardiac ultrasound using (a) a black and (b) a blue shadow
color, lungs from a CT dataset rendered with a (c) black and a (d) blue(chromatic) shadow color.

These reference values were used to generate a CIELAB gamut volume shown in Fig-
ure 4. Compared to the previous multidirectional occlusion shading model, our method
requires a shadow color definition and that an additional color-mixing operation is per-
formed for every sample during volume rendering. This operation did not degrade the
performance of the application and we achieved the same frame rates as the referenced
work.

Initially, during informal meetings with an illustrator, when showing visualizations
with graylevel shadows, the illustrator commented that the images “look dirty”. With
standard shadow rendering, we had no control over the appearance of the shadow. We fol-
lowed the suggestions of the illustrator until we obtained satisfying visualizations which
utilized shadow colors of darker blue tones such as 1c and 8b. These results were driven
by a subjective quality assessment of the illustrator. Later we will give a statement about
the quantitative perceptual benefit of our method.

B.5 Validation

Our hypothesis was that an illustration-inspired shadow specification enhances the per-
ception of shape in shadow and allows to better distinguish features as compared to tra-
ditional shadowing techniques. Potentially, the modification of shadow might also affect
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Figure 9: An example screen capture from the surface-perception task. The gauge figure is drawn in
red.

depth perception. To quantitatively test our statements, we studied shape and depth per-
ception in three experiments. This allowed us to observe trends and dependencies in the
human perception of the scenes as a function of the darkness of the blue used for the
shadow. First, we measured the accuracy of perceived surface normals in shadowed re-
gions to prove our hypothesis that better visibility in the shadow will trigger more accurate
normal estimation. Second, we conducted a contrast test, where we measured and com-
pared the just noticeable variation of colors in images generated with different shadow
parameters. Finally, we studied relative depth estimation between points in the visual-
ization with luminance-only and chromatic shadow to evaluate the depth cues from the
image.

B.5.1 Surface Perception

To measure the accuracy of surface perception in images, we designed a gauge-figure
task. A gauge figure consists of a disk centered around a line and the user-task is to adjust
the orientation of the figure so that the disk is perceived to be tangent and the line to be
orthogonal to the surface. This task has been employed in previous work [72, 109] to
quantitatively assess surface perception from images. Figure 9 shows an example screen
capture from our experiment.

Setup

Each subject of the experiment was presented to a surface rendering which we artificially
generated from sine-waves. The wave composition was complex so the underlying func-

74



B

C
hrom

atic
S

hadow
s

Validation

tion could not be deduced from the image. In addition, we created a synthetic aperture
around the regions of interest to guarantee that the subjects did not try to extrapolate the
surface based on the whole scene. The aperture, .i.e., the window, had a rectangular shape
and not circular to avoid that the subjects mistook the aperture for the silhouette of the
object which would affect the results. We chose an artificially generated dataset for two
reasons. First, all prior knowledge of the surface can be excluded. Second, we are able to
calculate the ground-truth normals by analytic derivation of the function which we used
to generate the scene instead of finite differences.

We used the guidelines for drawing the gauge figure from the previous work [109]:
the gauge figure was rendered as a red line and a red disk using a perspective projection
and the depth buffer was cleared before rendering the gauge figure. Otherwise, the figure
could be partially occluded by the surface in locally convex areas. Both the line- and the
circle-linewidth were one-pixel wide to minimize occlusion. The locations of the gauge
figure were chosen randomly until a location in shadow was found. The subjects had to
adjust the orientation of the figure by rotating it around its fixed point using a left mouse
button. Subjects submitted the solved test case with the enter button and a new random
location was chosen. The orientation of the gauge figure was always reset to default
when it appeared at a new location. In addition, we allowed the user to scale the gauge
figure using the right mouse button and to toggle different modi: line only (no disk) and
fixed point only, i.e., one red pixel on the surface showing the fixed point. The diverse
toggle modi allowed for less occlusion of the surface by the gauge figure. We did not
allow positions of gauges at surface contours, i.e., locations where the angle between the
surface normal and the viewing vector is almost 90◦ to avoid ambiguity cases where the
location belongs to the region closer to the viewer or not.

Previous work [109] shows that light direction influences the accuracy . Therefore,
the illumination was fixed to be from top-left in all test cases.

For each surface, we tested the shadow colors from the palette shown in Figure 4.
In total, we utilized images of the same scene but from three different view-points so
that each surface had approximately the same level of difficulty. For each view setup, we
generated a series of images with varying shadow color. Figure 5 includes the examples of
one series with constant view-point and with varying shadow color but constant shadow-
to-object contrast. We restricted our experiment to the first five colors in the palette S0..S4.

Subjects and procedure

We performed the experiment on eight male subjects. Each subject was familiar with 3D
applications and computer graphics and had no prior knowledge of the hypothesis. All
subjects understood the notion of a surface normal. If they needed an optical correction,
e.g., glasses or lenses, they wore it during the experiment. None of the subjects were color
blind.

A session for one subject was divided into five subsessions, for each of the shadow
colors S0..S4 in random order. All subjects were confronted with all shadow color being
studied. In this way, we reduced the error induced by the overall ability to solve this task of
individual subjects. We always chose a scene from a different view-point for subsequent
sessions in order to avoid the subject remembering the scene from the previous subsession.
We involved at least a half-day break after the third session so that we did not show the
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Figure 10: Angular error of an average subject for shadow colors S0..S4. The error bars represent the
standard deviation.

scene from the same view-point in subsequent sessions and also to avoid tiredness of the
subjects. All sessions were performed on the same workstation on a monitor calibrated
by a Spyder3 device and under constant lighting conditions in the room.

Each subject solved at least 20-25 test cases, i.e., estimated surface normals, per im-
age. In total, we obtained 175-211 solved test-cases, i.e., samples, per shadow color and
1005 samples in total.

Results

For each test case, we calculated the angle between the estimated and ground-truth nor-
mal, i.e., angular error in degrees. We performed the angle calculation in the coordinate
system of the viewer. For this reason, we transformed the ground-truth normal, originally
in the coordinate system of the volume, using the inverse-transpose viewing matrix. The
comparison yielded an average error for each shadow color being tested.

Based on the scores for individual shadow color of each subject, i.e., average an-
gular error, we calculated the score of an average user for each shadow color shown in
Figure 10. The results of our small-scale study of shape perception reveal a trend of im-
proved shape perception towards brighter shadow colors under chromatic shift. The most
significant improvement is between S0 and S1.

B.5.2 Contrast Perception

According to the previous work [109], some of the errors we measured in the experi-
ment with the gauge figure can be attributed to the task itself. Therefore, to support our
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P1

P4

P2

P P
P4

Figure 11: A screenshot of the scene with shadows S3 used for the contrast experiment. For three
selected points, P1,P2,P4, we show an aperture with 45-pixels radius for the series of shadow colors,
S0..S5 depicted from left to right, that we tested in the experiment.

statement regarding the perceptual improvement using the non-photorealistic shadows,
we conducted an additional experiment. For selected shadow colors, we compared sizes
of smallest possible circular areas centered around a selected point where a subject is able
to perceive a just-noticeable difference.

Setup

We utilized the same dataset as for the gauge-figure task as shown in Figure 11. We
investigated six different shadow colors S0..S5. We revealed only a part of the scene
through a circular aperture with the radius of 3 pixels centered around a selected point in
the image. In each test case, the subject enlarged the radius of the aperture until he or she
could see a just-noticeable color variation through the aperture.

We chose seven different positions in the image for which we tested the aperture. The
points were chosen from locations in shadow and such that an aperture centered at these
points with radii 50 pixels reveal only such pixels which are attributed to the scene and
not to the background. Figure 11 shows three out of seven position which we studied.
For each point, the figure also shows a series of apertures for the whole palette of shadow
colors which we investigated in this experiment. After one test case was solved, a new
point was randomly selected from the set of pre-selected points in conjunction with a
randomly set shadow color.

Subjects and procedure

This experiment was performed on eight subjects. Six of them had computer-graphics
background and two had not. Seven subjects were male and one female. All subjects who
required an optical correction wore it during the experiment. The testing was performed
at the same calibrated monitor under constant lighting conditions. We explained the task
first. Then subjects were solving the test cases one after another. Between individual test
cases, we showed a gray screen for two seconds to neutralize the after image of the visual
stimuli.

In total, we gathered 500 solved test cases from all subjects.
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Figure 12: Average aperture radii for shadow colors S0..S5 at positions P1..P7.

Results

First, we compared average radii for each shadow setup for individual positions of the
aperture P1..P7 as shown in Figure 12. We observed four strong (P2,P4,P5,P6), two weak
(P3,P7) and one very weak (P1) decreasing trend. In Figure 11, P1, P2, P4 refer to aper-
ture positions P1 with a very low decreasing tendency, P2 and P4 which decreases faster
in the diagram shown in Figure 12. The plotted series of apertures in Figure 11 clarifies
the situation – the features around the aperture position P1 are very weak compared to P2
and P4. Logically, the benefit in feature perception from our technique is smaller in areas
where only subtle features are present.

We have therefore additionally separated aperture positions into two groups: G1=(P2,
P4,P5,P6) with strong features in the neighborhood and G2=(P1,P3,P7) with weak fea-
tures. Figure 13 compares average radii for individual groups and for all samples. The
samples within G1 also have a smaller standard deviation which indicates a higher ag-
gregation of the estimations while the estimations within G2 (weak features) seem to be
more dispersed. In favor of brighter shadows, some of the subjects commented that they
were confused whether they were seeing a weak feature or an illusion. The large devia-
tion can be due to that the subjects solved these ambiguous cases differently. S0 has lower
deviation within G2 because most subjects agreed at the same large radius. As for the
strong features, we obtained comparably lower standard deviations and a large difference
in favor for brighter shadows with a chromatic shift.

B.5.3 Depth Perception

Shadows in computer graphics are used to enhance depth cues in images. As we modify
the traditional representation of the shadow with the goal of improving the shape percep-
tion in shadowed areas, it is a question as to what extent the shadow modifies the original
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Figure 13: Average aperture radii for individual shadow colors and their standard deviations (error
bars) plotted for all positions, for a position with strong features in the neighborhood G1 and weak
features G2.

depth cues. Therefore, we conducted an experiment, where we compared the accuracy of
relative depth estimation for three different lighting effects: the black shadow approach
with decreased luminance in the shadow, illustrator specified shadow and no shadow (only
local Phong illumination). The subjects compared the depths of three points shown on the
image.

Setup

As a stimuli, we chose medical datasets acquired from 3D cardiac ultrasound. Tissue
scanned with ultrasound has a low signal-to-noise ratio and therefore, its surfaces cannot
be easily identified without training. The group of tested subjects included no clinical
experts in ultrasound, therefore we could exclude estimations based on prior knowledge.

We used in total four different scenes of ultrasound heart and applied three different
lighting effects to each of them. Light direction was constant for all lighting effects.

Procedure

This experiment was distributed to a wide number of people and 63 subjects participated
in this experiment. The tested group included 50 experts in computer graphics. The non-
experts included an artist, medical students, two pilots, and others. 55 subjects were male
and eight female. One subject was red-green color-blind.

Each subject was exposed to four ultrasound visualizations rendered with either Phong
shading without shadows, with an original soft shadowing effect using only darkening in
shadow, or with illustrative chromatic shadows. Three points appeared over the visual-
ization: a red, a blue and a yellow point as seen in the screen capture in Figure 14. The
yellow point was crossed in order to add an additional cue for yellow-blue color-blind

79



B

C
hrom

atic
S

hadow
s

Validation

Figure 14: An example from the testing of depth perception. Subjects were estimating the relative
depth of the yellow crossed point with respect to the red and blue slider and submitted their answers
using the slider.

subjects. The small graphics overlay instructed the subjects that the red point is located
at depth = 0 and the blue point at depth = 10 and to adjust the slider to the depth of the
yellow point defined by the red and blue points.

Each respondent downloaded the application and performed the experiment at his or
her workstation. The application gave clear instructions for the experiment and after the
experiment finished, it produced a logfile which the respondend returned via email. For
each of four possible scenes with a random selection of lighting effect, subjects solved
two such tasks. In total, we received 506 solved test cases.

Results

We regarded the absolute difference between the estimated and ground-truth relative depth
as the relative error. The ground truth was calculated with values from the depth buffer
containing depths of the first non-transparent sample. The depth range we indicated in the
instructions, i.e., [0,10] was scaled to the interval [0,1]. Errors greater than 1 signify that
subjects perceived the points in wrong depth order.

Our analysis is summarized in Figure 15. Even though the depth cues from blue shad-
ows are slightly degraded as compared to the black shadows, they are still significantly
superior than the local Phong illumination.
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Figure 15: Absolute difference between the estimated and ground-truth relative depth for local illumi-
nation with Phong, black and blue shadows. The box plot shows the minimum, maximum, median and
the interquartile range (q1-q3). Errors greater than 1.0 indicate wrong depth ordering of points.

B.6 Conclusion

We have described a technique which allows for mimicking the illustrative shadowing
technique: combining the luminance with the chromatic shift to express shadowiness.
This technique allows for better perception of details in the shadowed areas which we
proved in two experiments with users. We evaluated surface and contrast perception for
a palette of shadow colors ranging from dark gray to light blue. The two experiments
confirmed the advantage of our method in terms of perception of detail in shadows. Our
experimental setup does not detach the perceptual gain induced by luminance shift from
gain induced by the chromaticity shift and so we evaluated the perceptual gain for this
particular artistic shadowing technique. Therefore, a further study would be needed to
determine how much of the gain is induced by the chromaticity shift itself.

We also studied how our method affects the depth cues from images compared to the
original shadowing technique and Phong lighting with no shadowing. We conducted an
experiment where subjects estimated relative depth between selected points. The anal-
ysis revealed that the depth cue from image becomes slightly degraded as the shadow
becomes brighter. Therefore, the chromatic- and luminance shift should be combined
with consideration. From the first two experiments, we observed that the most significant
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improvement happened after the first chromatic shift from the dark gray shadow. There-
fore, we suggest interpolation towards S1-S2 as the optimal combination which extracts
the best of both methods: depth cues and perception in detail in the shadow.
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Figure 1: The concept of iterative evaluation-analysis-redesign of a visualization technique is shown
on a stream surface dataset. Analysis of the perceived surface slant while using a chosen shading
model – the Lambertian shading model [43] on the left leads to a statistical model of the perceived
error plotted in the middle. The statistical model of the error is then taken into account in the new
shading model which aims to compensate for it, shown on the right.

Abstract

THE process of surface perception is complex and based on several influ-
encing factors, e.g., shading, silhouettes, occluding contours, and top

down cognition. The accuracy of surface perception can be measured and
the influencing factors can be modified in order the decrease the error in per-
ception. This paper presents a novel concept of how a perceptual evaluation
of a visualization technique can contribute to its redesign with the aim of
improving the match between the distal and the proximal stimulus. During
analysis of data from previous perceptual studies, we observed that the slant
of 3D surfaces visualized on 2D screens is systematically underestimated.
The visible trends in the error allowed us to create a statistical model of the
perceived surface slant. Based on this statistical model we obtained from
user experiments, we derived a new shading model which uses adjusted sur-
face normals and aims to reduce the error in slant perception. The result is
a shape-enhancement of visualization which is driven by an experimentally-
founded statistical model. To assess the efficiency of the statistical shading
model, we repeated the evaluation experiment and confirmed that the error
in perception was decreased. Results of both user experiments are publicly-
available datasets.
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C.1 Introduction

The major effort of computer graphics initially focused on the production of synthetic
scenes which are indistinguishable from a photograph. From the visualization perspective,
the user-centric aspect of rendering is more important than the physics-centric, and the
focus is put on 3D scene understanding rather than on a physically-correct representation
of a scene.

From the user-centric aspect, 3D shape and depth cues are important. Depth cues al-
low for correct depth ordering of structures and depth judgment. To resolve these cues,
the visual system uses not only stereopsis, perspective and kinetic cues but also our under-
standing of occlusion, shadows and haze. The judgment of depth is based on the global
features of the scene while the judgment of shape considers mostly the local properties
of the objects in the scene. These local properties include, e.g., patterns of reflected light
which are based on the surface orientation and the illumination direction, and texture
deformation which is based on local curvature of the surfaces.

The user-centric aspect of rendering has been represented by styles that mimic tech-
niques used in the craft of illustration. These techniques claim to be more efficient in terms
of visual processing than a physics-centric representation of the same scene [51, 140].
Some rendering styles abstract from the realistic scene appearance by exaggerating the
Lambertian shading gradient transitions [132]. Even though this approach has initially
mimicked artwork, an increasing number of techniques are now motivated by new knowl-
edge from vision research [153, 154]. Although perceptual evaluations of rendering tech-
niques have been conducted in many recent reports, they have only rarely triggered a
re-design of the original technique with the goal of perceptual improvement [60, 118].

The shading models mentioned above have an imperative character – an algorithm
dictates the visual appearance which is displayed to the viewer. The viewer then extracts
relevant information such as surface of objects, depth, and distances between them. The
algorithm is independent of how accurately the intended information is conveyed. How-
ever, in contrast to previous shading models, we present a shading model that starts as a
classical imperative algorithm, but is then declaratively modified to improve the surface
perception. This can be achieved through several iterations.

In this paper we first analyze the error of perceived surface orientations from shading,
utilizing a common shading model (Figure 1 left). We perform statistical analysis on
data collected from a perceptual study that reveals systematic errors of human visual
perception. This error, i.e., angular deviation between the ground-truth and perceived
surface normals, is color coded and mapped to the stream surface in Figure 1 middle.
From the statistical error description, we define a correction scheme. Next, we re-render
the scene with a corrected rendering approach (Figure 1 right) and conduct another user
study to analyze the new error trend. We propose a new concept of iterative modifications
that allow the shading model to converge to a model with accurate perception where the
distal and proximal stimulus match.

The major contributions of this paper are:

• a new concept: our work represents a next step in user-centric shading for scientific
visualization that upgrades an imperative visualization algorithm with a declarative
optimization, motivated by increasing the accuracy of perception,
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• new knowledge: through perceptual evaluation we obtained new knowledge about
error-distribution according to the scene characteristics. This knowledge is captured
by datasets that will become publicly available at the time of manuscript publica-
tion,

• a new shading model: we obtain a new shading model from the iterative evaluation
and improvement concept that enhances surface perception.

• a publicly-available dataset which includes results of our experiment as well as the
look-up map stored as a texture.

Previous approaches, even if they evaluated some perceptual error, they have not used
it for any improvement scheme, which is a part of our declarative concept. Our work
presents a missing link in the visualization pipeline shown in Figure 2 in red which opens
a new field of possibilities.

Data

Data processing

Rendering

PERCEPTION

SIGNAL

ERROR

Visual mapping

Rendering

Figure 2: The concept of iterative evaluation and design of a rendering technique. The original visu-
alization pipeline contains no cycles and ends at the stage when the image is perceived by the user.
The new concept contains a loop; The accuracy of perception is evaluated and the original rendering
method is modified based on the measured error in perception.
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C.2 Previous Work

For two millenia, scientists have been trying to elucidate the mechanisms in the human
visual system (HVS) which are responsible for 3D shape perception. This topic remains
an active area of multiple research disciplines such as psychology, neuroscience, com-
puter science, mathematics, and physics. From the physics point of view, the sensory
information is limited to patterns of light and is confined to their 2D projection on the
retina. Using this sensory input, the HVS extracts information about the shape and the
arrangement of objects with respect to their environment [147].

C.2.1 Perception of surfaces

The shape of an object is defined by the properties of its contour and its surface which
does not change under similarity transformations. Despite the fact that the 2D retinal
projection of the object depends also on its orientation relative to the observer, the percept
of the shape tends to remain constant. This phenomenon is called shape constancy [120].

The HVS constructs a mental image of an object from a combination of top-down cog-
nition and sensory input. At the lower sensory level, this includes the intensity variation
of shading, texture gradients, edges and vertices. At the higher cognitive level, it includes
salient features such as occlusion contours (object-background separation) [147]. Cole
et al. showed that certain shape cues can be extracted solely from important lines, even
though shape cues from shaded images are more accurate [23]. However, shading alone
cannot yield the depth structure of a scene correctly [33]. The depth cues from shading
are poor when compared to the retinal disparity (stereopsis) and kinetic cues [62].

Shading is specified by multiple parameters, i.e., the local surface reflectance proper-
ties, the angles between the surface normal and the direction of the light sources and the
viewer. The judgment of shape is therefore a result of observers’ assumptions regarding
several parameters. The assumptions can vary between observers. Belhumeur et al. [6]
introduced the term bas-relief ambiguity; when an unknown object with Lambertian re-
flectance is viewed orthographically, there is an implicit ambiguity in determining its 3D
shape. For example, in a bumpy scene casting shadows, it is not possible to distinguish
whether the light direction is more slanted or if the bumps in the scene are deeper. The
object’s visible surface f (x,y) is indistinguishable from a generalized bas-relief transfor-
mation of the object f (x,y) = λ f (x,y)+µx+νy.

There is evidence that the pictorial relief, i.e., imaginary relief extracted from a 2D
projection of a 3D scene, such as a rendering or a photograph, is systematically distorted
relative to the actual structure of the observed scene [33, 147]. The variations among
observers’ judgments were revealed to be complex and thus could not be accounted for by
a simple depth scaling transformation. However, subsequent analyses showed that almost
all of the variance could be roughly accounted for by an affine shearing transformation in
depth [147].

Mamassian and Kersten investigated the perception of local surface orientation on a
simple smooth object, under various illumination conditions [87]. They analyzed per-
ceived local orientations for several points on the surface and quantified the slant and
tilt of the local tangent plane. By slant, we understand the angle between the surface
normal and the view vector and, by tilt, the azimuth direction of the surface normal in
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Figure 3: A slant angle θ is defined as the angle between the surface normal N at a point P and the
viewing vector V. τ denotes the tangent plane at P and U the up vector of the viewer’s coordinate-
system. σ is a plane such that P ∈ σ and V⊥σ and ρ denotes the plane defined by V and N. The
tilt angle φ is then defined as the angle in the left-handed system between U and A = ρ ∩σ in the
halfplane (ρ,V) defined by N.

the eye space [23]. This definition is illustrated in Figure 3. Mamassian and Kersten
observed that slant was underestimated for slants larger than 20◦ and overestimated un-
der this value. This systematic error in slant perception results from the lack of visual
reference and indicates that relative slant is a more robust cue [47]. Van Doorn and Koen-
derink [151] suggested that it is the presence of a frame that tends to flatten the pictorial
relief in a systematic fashion.

To resolve these ambiguities, the HVS tends to assume a certain light direction. John-
ston and Passmore suggested that the slant discrimination declined with rotation of the
light direction vector towards the viewpoint [62]. Follow-up studies indicated that this
direction is from above the viewer and 12◦ left from the vertical axis [86, 145]. O’Shea
and colleagues studied the assumed slant of the light direction on purely diffuse surfaces
with no shadows [109]. They demonstrated that the surface slants were most accurate
when the light source was 20◦ −30◦ above the viewer.

Fleming et al. studied mirror-material surfaces, i.e., surfaces riddled with specular
highlights that contained no shading [40]. They concluded that the HVS can somehow
exploit specular reflections to recover three-dimensional shape. The HVS treats specu-
larities somewhat like textures, by using the systematic patterns of distortion across the
image of a specular surface to recover 3D shape. Other studies also provide evidence
about the influence of specular highlight on the perception of surfaces and demonstrate
that the shininess of surfaces enhances the perception of curvature [105, 148].

In illustration, artists tended to exaggerate salient features such as curvature or im-
portant lines. Their methods have been mimicked by the graphics community. Exag-
gerated shading [132], geometry manipulation [68], light warping [153] and radiosity
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scaling [154] are good representatives. These techniques, however, were not derived from
prior knowledge of a measured perceptual error. In contrast to prior work, we are present-
ing a novel concept where the visualization technique is based on a statistical model of
the error in human perception. In particular, we target underestimation of surface slant of
diffuse shaded surfaces. However, our concept can be applied to any self-chosen visual-
ization technique which yields a measurable systematic error in perception.

C.2.2 Psychophysical experiments

The first experiments to human investigate perception of 3D shapes were performed in
the 19th century. The available information about these experiments is very poor, and
therefore one should interpret their results with caution [147]. In the experiment of Min-
golla and Todd [98], observers judged slants and tilts of numerous regions within shaded
images of ellipsoid surfaces under varying illumination direction. The ellipses also had
various shape, orientation and surface reflectance. Their conclusions were threefold: (a)
The HVS initially assumes that all surfaces have Lambertian reflectance, (b) the illumina-
tion direction must be known before shape detection can proceed, (c) surface orientation
is detected locally, and global shape is determined by smoothing over local surface orien-
tation.

The works of Koenderink et al. [73] and Todd [147] describe the three most frequently
employed experiments for probing perceived surfaces.

Relative depth probe task:

Observers are exposed to a shaded surface. Two points on the surface are marked with
dots of different colors. The observer is asked to choose which point he or she perceives
closer in depth by pressing a dedicated key.

Gauge-figure task:

This task, designed by Koenderink et al. [72], allows one to determine the perceived
orientation of a surface. It uses a Tissot’s indicatrix, i.e., an ellipse of distortion – a math-
ematical tool which characterizes distortions from a map projection. When the indicatrix
is aligned with a surface which is perpendicular to the viewing direction, it appears as a
circle. When the surface is slanted from the viewing direction, it is seen as an ellipse.
A gauge-figure consists of a Tissot’s indicatrix and a stick perpendicular to the plane de-
fined by the indicatrix. On each trial, the observers’ task is to align the indicatrix with the
perceived shaded surface. At the same time, the stick should be aligned with the surface
normal at the point where it intersects the surface. In Figure 4, we illustrate an example of
a bad and a good placement of a gauge figure. This task has been employed for example
by O’Shea et al. to measure the accuracy of surface perception under varying slant of the
illumination direction [109]. Šoltészová et al. utilized this test to compare the surface
perception for different styles of shadow rendering [140].

Cole et al. conducted a large-scale gauge-figure experiment, where they compared
the accuracy of surface perception from automatic and man-made line-drawing represen-
tations of objects compared to their fully-shaded renderings [23]. Their experiment is
the most relevant for our work. Their study was performed on 14 different images, both
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(a) (b)

Figure 4: Example of (a) a bad placement and (b) a good placement of a gauge figure (red-yellow
Tissot’s indicatrix) over a shaded surface.

organic and man made. On each object, they randomly selected 90, 180 or 210 positions.
In all, they collected 275K solved gauge-figure trials accomplished by a total of 560 peo-
ple and published this large dataset including user responses, datasets, scene settings and
documentation.

Depth-profile adjustment mask:

On each trial, observers are exposed to a shaded surface overlaid by aligned and equally
spaced dots. In a second separate window, these dots are presented over a blank back-
ground and the observer is asked to adjust them so that they fit the perceived height profile
defined by the dots in the first window.

Summary:

Koenderink and colleagues compared these three tasks [73]. Coherent results can be
achieved across observers and tasks. By far, the easiest and the most natural task to
perform is the gauge-figure task. The judgment is instant, with no obvious reasoning;
observers do not have to deduce their answers from their mental image. The pairwise
depth-comparison task is also easy, but feels more boring and less natural. The observers
have to abstract their answer from what they have perceived. It involves simple overt
reasoning. The cross-section reproduction tasks feel not so much unnatural as indirect.
With respect to reliability, the gauge-figure task is the most reliable.
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C.3 Perceptual statistics

In the original visualization pipeline, the data pass through the following stages until
they reach the observer. After the acquisition stage, the data can be analyzed, filtered or
processed in the data enhancement stage and later mapped to visual properties. Finally,
the data are rendered and presented to the user. In some cases, the effect on perception
is evaluated. Even though this is a step towards the perceptual aspect of visualization,
the link from the evaluation back to the design of the rendering technique is practically
non-existent.

In Figure 2, we show our new concept. We establish a new link that connects the
results of an evaluation of a chosen rendering technique and the rendering technique itself.
Starting from the rendering stage, the new pipeline now passes the following steps. The
rendering is a distal stimulus which yields some sensory input which is interpreted by the
HVS. This process is labelled perception. Evaluation refers to processing of the perceived
information into the signal which corresponds to the ground truth and the error. Applying
statistical methods to analyze the trends of the error allows us to model this error if it is
systematic. This new knowledge is then sent to the rendering stage again. The rendering
algorithm now becomes aware of the perceptual error it causes and can account for it.

If we see the pipeline shown in Figure 2 as a directed graph, the new link makes
the graph cyclic. This allows for the possibility to loop between the rendering stage,
evaluation and improvement. In this paper, we present how this concept can be used to
improve the perception of surface slant in visualizations viewed on monoscopic screens,
which is systematically underestimated [33, 147].

C.3.1 Analysis of the perceived surface slant

The perception literature reports that the surface slant, as deduced from monoscopic ren-
derings of 3D objects viewed on a screen, is systematically distorted, however there is
no model representing this phenomenon [109, 147]. The slant angle is understood as the
angle between the surface normal and the viewing direction. We describe this effect with
a mathematical model which we obtained based on statistical analysis of user responses.
A model derived from statistical analysis of user evaluation has not been available before.
It has been only attempted to model this effect as a parabolic function [109] or to use a
simple shearing transformation in depth [147]. These approximations are consistent with
the general expectation of perception but not founded on a statistical analysis of results of
a perceptual study.

We obtained our model by analyzing users’ responses collected as a publicly avail-
able dataset by Cole and co-workers as described in Section C.2.1. The dataset contained
results with fully-shaded and line drawing conditions. We analyzed only the responses
for the fully-shaded condition. The line-drawing condition was completely excluded. For
each of 1200 sampling positions, we obtained the ground truth normal including the slant
and the tilt angles and a corresponding set of normals estimated by the participants. In
addition, for each sampling position, the authors of the dataset published the median of
the corresponding set of estimates. They aimed to compare surface perception of 3D
object representations on flat screens using monoscopic vision [23]. The overall depen-
dency of estimated surface slant θE and the ground truth θG slant is approximated with
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reference curve

Figure 5: Perceived surface slant as a function of the ground truth slant extracted from the dataset of
Cole et al. [23]. Each dot represents the median of the entire set of trials at one sampling position.
The overall estimation curve is polynomial curve which is fitted to the data. The reference curve x = y
indicates how a perfectly accurate estimation.

a polynomial fitting curve of the 4th− degree and is shown in Figure 5. The overall es-
timation curve shows the trend of how humans tend to underestimate the surface slant.
We originally computed different fitting curves with various specifications and obtained
their goodness of fit (R2 value) using the curve fitting tool of Matlab [90]. For various
types of fit, we obtained the following R2 values: Fourier fit of 1st degree R2 = 0.773,
Fourier fit of 8th degree R2 = 0.780, exponential fit R2 = 0.774, cubic fit R2 = 0.773,
and for polynomial fits of 4th degree R2 = 0.775, 5th degree R2 = 0.775 and 8th degree
R2 = 0.776. As a trade-off between the complexity of the fit and the goodness of fit, we
chose the polynomial fit of 4th degree.

However, the aggregated scatterplot in Figure 5 does not reveal a very interesting
feature that is hidden in the dataset. We have separated the sampling positions into four
groups according to the tilt φ of the ground truth normal: Normals pointing upwards or
north φ ∈ (315◦,45◦], right or east φ ∈ (45◦,135◦], downwards or south φ ∈ (135◦,225◦],
and left or west φ ∈ (225◦,315◦]. We define tilt (consistently with the work of Cole et
al.) as the azimuth angle on a compass where the wind directions are N = 0◦, E = 90◦,
S = 180◦ and W = 270◦.
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Figure 6: Approximation of slant perception in four different sectors according to the tilt of the ground
truth surface normal. The reference curve indicates a perfectly accurate perception while the sector
estimation curves approximate the perception of slants in their respective sectors. We also plotted the
overall estimation curve which indicates the average perception of slants in all sectors.
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Figure 7: Functions g(θ ,φ) = θ ∗ and g−1(θ ∗,φ) = θ rendered as color-coded plots. Since f = g−1, the
right plot is also the look-up map which allows to efficiently find the slant angle θ of a normal which is
perceived as θ ∗.

In Figure 6, we visualize the dependencies in each sector as scatterplots and fitted
curves. The distribution and the sector estimation curves in the north and the south sector
are very different. The slant of normals pointing north is underestimated less than average
– the fitted curve is above the overall estimation curve. For the normals pointing south the
situation is opposite. These slants are more underestimated than average – the fitted curve
is under the overall estimation curve. The slant of normals pointing east and west are per-
ceived very close to the average – the overall estimation curve. This finding is consistent
with the statement of Todd that the underestimation of slant cannot be compensated by
simple scaling in depth but by a shearing transformation in depth [147].

The crossing points of the sector estimation curves and the reference curves indicate
the thresholds between over and underestimation of slant. In our results, these thresholds
correspond to approximately 15◦ −25◦ of the ground truth slant with the exception of the
south sector. Mamassian and Kersten expect this threshold to be approximately 20◦ [87]
which is consistent with our finding 15◦ −25◦.

We also considered a similar factorization of samples according toe the maximal cur-
vature (low, middle, high) but we did not find any remarkable dependencies between the
error and curvature.

C.3.2 The model of surface perception

In order to model the human perception of slant, we compute a 2D map f (θ ∗,φ) = θ

which predicts that the slant angle of a surface normal should be θ so that it is perceived
as θ ∗. We divide the samples into bins that represent eight sectors: north, south, east,
west, north-west, north-east, south-west, south-east. To obtain this map, we proceed as
follows. For each sector, we calculate a polynomial fitting curve of the 4th degree. Four
of these sector curves (north, south, east, west) are plotted in Figure 6. These curves
represent a function gφ (θG) = θE which maps the ground truth slant θG in the sector φ
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to the estimated slant θE . For each curve, we set two boundary conditions: the curve
must intersect points (0,0) and (90,90) since it is expected that the estimation of these
boundary values is correct. These boundary conditions also guarantee that all curves
start and end with the same functional value of θE and that the inverse function g−1

φ
is

defined on the whole interval of slant [0◦,90◦]. For g−1
φ

, the following condition holds:
g−1

φ
(θE)= θG. In other words, g−1

φ
predicts how the slant angle of a surface normal should

be so that it is perceived as θE and therefore f (θ ∗,φ) = g−1
φ
(θ ∗).

So far, we have defined g−1
φ

for eight values of tilt φ only. In order to fill the missing
values in the 2D map, we fit a smooth surface to the eight g−1

φ
aligned in polar coordi-

nates according to their respective φ . To fit the surface, we used the surface fitting tool of
Matlab [90]. Color-coded height maps of g(θ ,φ) and f (θ ∗,φ) = g−1(θ ∗,φ) are shown
in Figure 7. The height map f , represented as a texture allows for easy look-ups of the
functional values of f at runtime. This texture will be publicly-available for download.
While this texture is the best possible representation of our model, sometimes a functional
approximation of f (θ ∗,φ) might be required. We found that f̃ , which is a linear inter-
polation g−1

N=0◦ and g−1
S=180◦ , yields, even thought not identical, but very similar results.

With g−1
N and g−1

S as polynomials of 4th degree with coefficients (5.77e-6,-1.19e-3,7.3e-
3,0.11,0.0) and (4.21e-6,-6.73e-4,1.88e-2,1.69,0.0) respectively, we define f̃ as follows:

f̃ (θ ,φ) =| φ −180◦

180◦
| g−1

N (θ)+(1− | φ −180◦

180◦
|)g−1

S (θ) (1)

Ideally, the statistical model should be defined for each illumination algorithm indi-
vidually because different algorithms might yield different response curves regarding the
surface slant. We have obtained this model from renderings of objects from purely diffuse
and opaque materials. The mathematical model could be different for specular and shiny
or semi-transparent surfaces.

C.4 The statistical shading model

The shading information is one part of the sensory input which the human visual system
uses for constructing its mental image of the 3D world. Indirectly, we are able to ex-
tract shape and deduce the surface normals from our mental image even though we are
seeing only a 2D representation of an object, e.g., a photograph or a rendering on a com-
puter screen. We have now analyzed and concluded that the surface normal we perceive
is distorted from the ground truth normal of the depicted scene, and we have provided
a mathematical model of this distortion. The difference between the ground truth and
estimated surface slant is mapped to a 3D model and plotted in Figure 1. Illumination
algorithms used in computer graphics were until now unaware of this perceptual model.
With this new input information, we propose a concept of how an illumination model rely-
ing on surface normals can be corrected so that the mental image is closer to the depicted
scene.

A rendering of a given scene geometry (distal stimulus) using normal-based shading,
evokes its corresponding mental image (proximal stimulus) which can yield different per-
ceived normals as those of the original geometry. Our goal is to match the distal and
the proximal stimulus, i.e., to specify a shading model where the normals of the mental

94



C

Perceptual-S
tatistics

S
hading

The statistical shading model

image and the ground truth normals match. We achieve this by manipulating the normals
which are input into our shading model using a perceptual model corresponding to the
original shading algorithm. In Section C.3.2, we described how to obtain such model
and its approximating function f (θ ∗,φ) = θ . In our approach, we represented this func-
tion as a 2D look-up table stored as a texture where each pixel with coordinates (θ ∗,φ )
stores the value of f (θ ∗,φ) = θ . A color-coded representation of the look-up map and
the coordinate system are shown in Figure 7.

A surface normal n = (x,y,z) has slant θ and tilt φ given in projective space but
is perceived to have slant θ ′. We shade the point with a modified normal n′ = (x′,y′,z′)
which has slant θ ′′ = f (θ ,φ) and the same tilt φ . The components of the modified normal
n′ are then defined by the following equations:

x′ = sin(θ)√
x2+y2

x y′ = sin(θ)√
x2+y2

y z′ = cos(θ)
(2)

All illumination computation that follows is then executed with the new normalized
surface normal n′

||n′|| .
The concept of adjusting surface normals according to a given perceptual model is

applicable to any illumination computation scheme which is based on surface normals or
gradients. To demonstrate the effect of our approach, we applied our model to Lamber-

I.A

VI.AVI.A

VI.B

I.B

II.A II.B

III.BIII.A

V.A V.B

VI.A

IV.A IV.B

Figure 8: The Lambertian shading using original normals (A) versus statistical shading model (B)
shown on various datasets: I – cervical and II – pulley [23], III – a CT scan of a mummy, IV and V are
geometry representations of laser scans of a bunny and an angel, and VI – a stream surface.
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Figure 9: Comparison of a contrast-enhanced image and a statistically-shaded image. We plotted
the mean mapped intensities of a contrast-enhanced image and statistical shading. The error bars
represent the standard deviation σ of the mapped values.

tian shading and used purely diffuse-reflective materials. In all settings, the light source
conforms to the assumed light direction [109]. Figure 1 shows a stream surface before
(left-most) and after our modification (right-most). Figure 8 contains more examples.
A-images show the original shading with no modification of surface normals versus B-
images showing our statistical shading. We included both datasets defined as geometry
and as volumes to show the general applicability of our technique. Objects I (cervical)
and II (pulley) were also used by Cole et al. in their user experiment. Dataset III is a
CT scan of a mummy visualized using gradient-based shading. Datasets IV and V were
reconstructed from laser scans of a bunny and an angel. Dataset V is a geometry repre-
sentation of a stream surface. All surfaces were shaded using Lambertian shading without
(A) or with (B) modification of surface normals.
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On first reflection, it might seem that similar results could be obtained by simply en-
hancing the contrast of the image [1] as in the juxtaposed images in Figure 9. Our method
changes the intensities based on the surface normals, and therefore original intensities
are mapped on a range of intensities. In contrast, global contrast enhancement maps the
intensities on a single value. This shows that a global contrast-enhancement is a bijective
function while the statistical shading is not. This effect is plotted in Figure 9. The stan-
dard deviation σ of global contrast enhancement is always zero which is not the case for
statistical shading. Therefore, same results cannot be obtained by simply enhancing the
contrast of the image.

C.5 Verification

Our hypothesis here is that the modification of normals causes the estimation of surface
slant to be closer to the ground truth. To obtain empirical support for our hypothesis, we
studied perceptual judgments during the original shading condition (A) as opposed to the
statistical shading condition (B). We then formally analyzed the difference in performance
between the two conditions.

C.5.1 The Experiment

In order to measure the effectiveness of our technique, we conducted a new gauge-figure
experiment. Instead of just relying on the results of the experiment of Cole and co-
workers [23], we again tested condition A (original shading). This assured an appropriate
control baseline, as we used a different rendering framework. Cole et al. generated their
images with YafaRay which is a free raytracing engine [165] and defined their source of
illumination as an environment map. We used the commonly used Lambertian shading
model and directional illumination.

We selected four distal stimuli from the experiment of Cole et al. – one organic
dataset (cervical) and three man-made datasets (pulley, rockerarm, flange). Two of these
stimuli are depicted in both shading conditions, in Figure 8 – I. (cervical) and II. (pulley).
The stimuli were viewed on a flat computer screen using the same camera settings and
viewport size as Cole et al. For each stimulus, we selected respectively 41, 42, 39 and
38 sampling positions for placing the gauge-figure from Cole’s dataset. The positions
were heuristically selected from the whole set in the following way. For each object,
the ground truth slants were best-possibly distributed over the interval [0◦,90◦] and the
numbers of positions in each of four sectors (N,E,S,W) regarding the ground truth tilt
were also balanced. In total, we used 160×2 distinct test cases: 160 gauge-figure placing
positions and two shading conditions for each position. Each participant solved 2/3 of all
test cases so, in total, we collected at least 26 samples per test case and more than 8500
solved test cases overall.

Each of 40 participants attended two sessions. In each session he or she was tested
on two pairs of stimuli with a 10 minute break between the pairs. The first pair of stimuli
was presented in a different shading condition than the second. Half of the participants
started with shading condition A and the other half with the shading condition B. The
order was selected randomly in the first session, but in the second session, the order
of shading conditions was reversed. For example, a random participant might be first
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presented with the stimuli cervical and pulley, and the shading condition A, then he had
a short break to avoid fatigue and he continued with stimuli flange and rockerarm and the
shading condition B. When this participant came to the second session, he started with
the rockerarm, the flange, and shading condition A, and continued with the cervical, the
pulley, and the shading condition B. The number of samples per position was balanced
between participants.

We hired 40 participants for a financial compensation of 35USD equivalent for both
sessions. The group of participants included 19 female and 21 male participants of 19
different nationalities. Participants were 21-47 years old but 87.5% belonged to the age
group 20-30. Most of the participants were university students at the bachelor, master or
PhD level. All of them had normal or corrected vision (lenses or glasses). 18 participants
had skills with computer-assisted 3D tasks such as education in visual computing, math-
ematics or experience with 3D computer games. 37 participants worked on two different
days. In three cases, the first session was in the morning and the second in the afternoon
of the same day.

C.5.2 Accuracy measurement of participants

To determine the accuracy of each participant, we approximated his or her responses
for each shading condition (A and B) by two polynomial fitted curves of the 4th degree
fA(θG)= θE and fB(θG)= θE . θG and θE indicate the ground truth slant and the estimated
slant respectively. Each curve was computed from at least 106 samples. We define the
error measure E(a,b) at an interval of slants [a,b] as the area of the surface enclosed by
the reference curve R(θG) = θG and the user response curve U(θG) = θE :

E(a,b) =
∫ b

a
||U(θG)−R(θG)||dθG (3)

In Figure 10, we show the estimation curves of a selected participant for each shading
condition – red for A and blue for B. The figure also illustrates the meaning of the surface
area in a selected interval of slant angles (a,b).

C.5.3 Analysis

To formally test whether the shading algorithm significantly improved participants’ accu-
racy, we compared the error areas E between the two shading conditions A and B for each
of the 4 intervals of the curve, i.e., E(0◦,20◦), E(20◦,40◦), E(40◦,60◦), and E(60◦,80◦).
The division into subintervals was selected on a priori grounds. According to previous
evidence [87] and also concluding from our own analysis, the underestimation of slant is
zero at ca. 20◦ of ground-truth slant and highest for slants 40◦ − 60◦ (see also Figures 5
and 6). Hence we are predicted different effects in each subinterval.

We conducted a 4× 2 repeated measures ANOVA with the curve interval (4 levels)
as one factor and the shading condition (2 levels) as the other factor. Due to violations
of sphericity according to Mauchly’s test, reported degrees of freedom and p-values are
Greenhouse-Geisser corrected [46, 92]. The main effect of the curve interval was sig-
nificant [F(1.5, 59.8) = 68.4, p <0.00001]. A trend towards a main effect of the shading
condition failed to reach significance [F(1, 39) = 3.3, p = 0.08], although the area between
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Figure 10: The error areas of a selected participant for the shading condition A – EA(0◦,40◦) filled with
pink and for the shading condition B – EB(0◦,40◦) filled with blue.
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Figure 11: Interaction plot between E for the two shading conditions: standard (A) and new (B) in each
of four subintervals of the curve. The vertical bars denote the 0.95 confidence interval. We found a
significant improvement in the interval [40◦,60◦] – blue, a non-significant worsening in [0◦,20◦] – red,
and non-significant improvements in [20◦,40◦] and in [40◦,60◦] – black.

ideal and obtained curves was numerically greater for the shading condition B (our new
approach).

However, we obtained a significant interaction between the 2 factors, indicating that
the beneficial effect of our shading algorithm differed for the different intervals of the
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curve [F(1.8, 70.9) = 4.2, p = 0.02] as shown in Figures 11 and 12. Difference con-
trasts showed that a significant benefit of the algorithm was only obtained for the inter-
val [40◦,60◦] [F(1,39) = 12.4, p = 0.001, r = 0.49]. For intervals [0◦,20◦], [20◦,40◦], and
[60◦,80◦] respectively, p = 0.35, 0.10, and 0.56. The effect of shading algorithm at the first
2 intervals was re-checked with non-parametric Wilcoxon tests [160] due to violations of
normality for those distributions, but still failed to show significant differences (p = 0.23
and 0.09 respectively). Figure 10 illustrates that the difference in surface areas between
the two user estimation curves in the intervals [0◦,20◦], [20◦,40◦], and [60◦,80◦] is rather
small compared to the interval [40◦,60◦] where the curves were expected to be further
away from each other. Mean values and standard deviations of the error area distribution
for each shading condition and for each interval of the curve are listed in Table 1.

In summary we found a highly significant effect of shading for angles in the interval
[40◦,60◦]. Moreover, in this curve interval, our shading manipulation had an effect size
r = 0.49 that would normally be regarded as impressively large within the psychological
testing literature [20, 21], accounting for 24% of data variance (r2 = 0.24). Additionally,
the significance level of this effect was high enough to exclude arguments that the effect
was a Type I statistical error caused by multiple sampling at different intervals.

C.5.4 Discussion

Based on the results obtained in our gauge-figure experiment, we created a second model
of correction as described in Section C.3.2 and applied a second correction. Rendering
results of this iterative process of evaluation and re-design are illustrated in Figure 13.

We have shown that our modification of normals leads to more accurate perception of
normals slanted 40◦ − 60◦. Our technique is not photorealistic. One could ask whether
this is the case for other techniques which mimick methods from illustration and visual
art? Were illustrators aiming to improve perception? We do not have access to a percep-
tual evaluation of other existing illustrative techniques such as light warping [153], and
exaggerated shading [132]. In Figure 14, we juxtapose these to simple shearing along
the z-axis, and with statistical shading in order to allow a subjective visual comparison.
The two right-most visualization using the statistical shading model allow to compare the
result of an approximative evaluation of f (θ ,φ) using function f̃ and precise evaluation
using the lookup map.

EA(a,b) EB(a,b)
(a,b) µ σ µ σ

(0◦,90◦) 863.82 274.06 813.34 244.78
(0◦,20◦) 93.95 73.075 104.1862 72.59458
(20◦,40◦) 126.34 58.52 114.82 44.6
(40◦,60◦) 314.9 96.6 273.54 104.15
(60◦,80◦) 284.08 136.8 275.38 127.06

Table 1: Table of mean values µ and standard deviations σ for the error area distribution within
participants for each shading condition and each interval of the curve we analyzed.
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Figure 12: Probability density of the surface area error E with histograms and approximative normal
distribution curves for the entire interval [0◦,90◦] and four subintervals [0◦,20◦], [20◦,40◦], [40◦,60◦],
and [60◦,80◦] and for both shading conditions. In intervals [0◦,20◦] and [20◦,40◦], the normality of the
distribution is violated which can be deduced from the histogram. The orange dotted lines indicate the
difference between the mean values of the shading conditions within the same interval.
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(a) (b) (c)

Figure 13: Rendering results of a leopard gecko CT dataset of the iterative process evaluation and
re-design: (a) the original Lambertian shading, (b) the result of a modification after the first user study,
and (c) the result of a modification after the second user study.

(a) (b) (c) (d) (e) (f )

Figure 14: Comparison of (a) the Lambertian shading, (b) light warping, (c) exaggerated shading,
(d) shearing along the z-axis and our approach using (e) the approximating function f̃ defined in
Equation 1 and (f) the precise look-up texture to solve f (θ ,φ ,).

C.6 Conclusion

We described a new concept of the visualization pipeline which allows one to update
the rendering algorithm with new knowledge about how the human visual system mis-
perceives the shape of 2D object depictions. Specifically, we studied the perception of
surface slant of Lambertian-shaded surfaces and found a systematic distortion. We cap-
tured this effect as a function which predicts how the surface slant θ ∗ should be presented
so that it is perceived as θ . The function allowed us to modify the surface normals or gra-
dients in the Lambertian shading model in a manner that was shown, via empirical testing,
to objectively improve slant perception. Even though the trend for improvement did not
reach significance when pooled over all slant values, we found a significant improvement
in the interval (40◦,60◦) where the distortion is the highest of the slant perception is the
highest.

C.6.1 Lessons learned

We found that the perception of normals pointing upwards in the eye space is clearly
the most precise when compared to all other directions. Perception of normals pointing
downwards is clearly the most inferior. Accuracy in the left and right directions is very
similar. This characteristic of perception is illustrated in Figure 7 in the plot of g(θ ,φ).
This shows that human ability to estimate surface slant is best on surfaces where normals
point upwards and worst on surfaces where normals point downwards. We have not found
a similar dependency of the estimation error from higher order surface derivatives such as
curvature.

C.6.2 Limitations and future work

We studied the distortion of human surface perception using stimuli rendered with Lam-
bertian shading of diffuse and opaque surfaces. Therefore, we cannot make a statement
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about this distortion if a different rendering algorithm, e.g., shadowing or ambient oc-
clusion, were to be used, or if the objects were be made of a different material, e.g.,
semi-transparent or shiny. Each rendering algorithm and material should be studied indi-
vidually and provided with a perceptual distortion model which is an inspiration for future
research.

Since we have not evaluated the results after the second iteration, we are not able say
whether the iterations really converge to a perfect solution. Shape cues are not formed
solely from shading. Even though shape extraction from a shaded image is more ac-
curate, Cole et al. showed that certain shape cues can be extracted from line drawings
as well [23]. Our method does not modify important lines since we are not deforming
the objects. Therefore, we suggest that our method can be combined with a perception-
enhancing geometry deformation in order to achieve the best results.

The manipulation of shading can influence the appearance of objects’ material. The
reason is that variations in shape tend to dominate variations due to shading [154]. This
effect is visible in Figure 13. As we apply iterative modification of normals, the surface
appears more shiny. This observation opens a new interesting direction of research to
attempt to characterize a model that adjusts the cues from shading and contours while
preserving the appearance of the material.

We observed that techniques that mimic illustrators’ techniques are pursuing the same
goal and, in our qualitative judgment, yield similar subjective effects. Speculatively, this
suggests an intriguing hypothesis that illustrators used exaggeration of shading to better
match the distal and the proximal stimulus.
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D Stylized Volume Visualization of Streamed
Sonar Data*
Veronika Šoltészová1, Ruben Patel2, Helwig Hauser1, Ivan Viola1

Figure 1: Visualization of a large fish school of sand eel floating above the sea bottom reconstructed
live from a series of 2D slices. The temporal outline color-encodes the temporal dimension of the
volume visualization.

Abstract

CURRENT visualization technology implemented in the software for 2D
sonars used in marine research is limited to slicing whilst volume visu-

alization is only possible as post processing. We designed and implemented
a system which allows for instantaneous volume visualization of streamed
scans from 2D sonars without prior resampling to a voxel grid. The vol-
ume is formed by a set of most recent scans which are being stored. We
transform each scan using its associated transformations to the view-space
and slice their bounding box by view-aligned planes. Each slicing plane is
reconstructed from the underlying scans and directly used for slice-based
volume rendering. We integrated a low frequency illumination model which
enhances the depth perception of noisy acoustic measurements. While we
visualize the 2D data and time as 3D volumes, the temporal dimension is not
intuitively communicated. Therefore, we introduce a concept of temporal
outlines. Our system is a result of an interdisciplinary collaboration between
visualization and marine scientists. The application of our system was eval-
uated by independent domain experts who were not involved in the design
process in order to determine real life applicability.

* This article was published in Proceedings of the Spring Conference on Computer Graphics (SCCG),
13–20, 2012 and presented at the named conference in Smolenice castle, Slovakia by Veronika Šoltészová. The
paper was awarded by the 2nd best paper award and therefore invited to the Computer Graphics Forum journal.
Furthermore, the presentation was awarded by the 2nd best presentation award.
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Introduction

D.1 Introduction

One of the main goals of marine-fisheries research is to map the processes of marine
ecosystems by observations and theoretical work. This includes surveys on research ves-
sels in order to estimate the biomass of the stock and to study processes such as the
behavior and morphology of fish schools, i.e., “flocks” of fish.

Scientific instruments on vessels for marine-fisheries research rely heavily on remote
acoustic sensing such as 2D and 3D sonars. The visualization software development
has stagnated compared to the development of the sonar hardware and only elementary
visualization toolkits are currently available; For the 2D sonars, the in-situ visualization
is limited to 2D views where the color is a function of the acoustic reflectance. Volume
visualization is available only as postprocessing [74, 137]. Basic volume visualization is
available only for the 3D sonars [94, 4]. However, 2D sonars have lower cost and can be
affordable for fishing vessels. Therefore, dedicated in-situ volume visualization based on
an input from a 2D sonar is worth aiming at.

Even though the structures of schools were revealed to be more complex [99, 110],
they can be viewed only as compact, homogeneous units. Because of such limitations in
visualization technology, the focus of scientific methods in fisheries can be oriented only
on the quantitative, non-visual analysis of the data such as rudimentary measurements
of the biomass [85]. Nevertheless, the structure and behaviour of fish schools is of high
interest because it can help to explain their yet poorly understood ecological meaning.

In collaboration with marine scientists, we designed an application for fast volume
rendering intended to be used in-situ on 2D sonars which scan the water column vertically.
We fill the gap in the dedicated visualization technology – we propose a visualization
tool which addresses the needs of the marine-research domain and brings the following
contributions to the state-of-the-art in visualization:

1. A successful application of 3D visualization based on 2D scans and time for a new
scientific domain.

2. An innovative architecture for an efficient volume rendering method which operates
directly on the 2D scans without prior resampling the space on a voxel grid. Thus, we
reduce the number of resampling stages.

3. A new time-to-live concept and an efficient storage mechanism tailored for the in-situ
visualization of streamed images.

4. A novel concept called temporal outlines as shown in Figure 1. They clearly com-
municate the temporal nature of the volume visualization – their color and thickness
associates parts of the volume with the time of acquisition.

Based on the discussions with independent domain scientists, we describe the ex-
pected use of our system. Our application extends the utility of 2D sonars and is an
evolutionary step in the visualization technology used in the marine domain.
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Related work

D.2 Related work

Volume visualization techniques have been investigated for more than two decades. So-
phisticated algorithms are now available and allow for visualization of large data in real-
time and offer excellent visual enhancements. However, only a few techniques are tailored
to 3D visualization of sonar imaging. For example, a framework called SonarExplorer
serves for the analysis and visualization of fish schools tailored to 3D-sonar imaging [4].
Explicit imaging of sonar data in 3D as in SonarExplorer can be achieved only using ac-
quisitions from a 3D-sonar. These are highly expensive and therefore, 2D-sonars became
a commodity.

Visualization of ultrasound images (US) in medicine is facing a similar problem: 3D
probes exist but 2D probes are cheaper and more widespread and in addition, yield images
of superior resolution. Without a 3D probe, doctors can acquire a volumes using freehand
US systems: a 2D probe with an attached positional-tracking system which allows for
volume reconstruction as post-processing. The acquisition by a 2D-sonar is analogous to
the freehand US in medicine. A vessel equipped with a 2D-sonar is equipped with a high-
end GPS device, a motion reference unit and a clock so that every scan can be positioned
in space and time. Eventually, the volume can be reconstructed in a post-processing
step [137].

Volume rendering of data consisting of a sweep of 2D scans requires prior reconstruc-
tion to fill the gaps between the scans on a regular voxel-array. In the state-of-the-art
technique on volume reconstruction from freehand US [65], an optimal orientation of re-
construction slices is selected. The volume is reconstructed slice-by-slice while following
this direction: The scans are sorted according to the acquisition time and successors are
paired. The intersection lines of these pairs and the current reconstruction plane define a
polygon. The intensity values given along the intersection lines are interpolated linearly
across the polygon which is then drawn into the reconstruction plane. Volume reconstruc-
tion causes a delay and introduces errors at two stages; first during volume reconstruction
and second during rendering.

Direct reconstruction during rendering of surfaces from freehand US in medicine was
supported by the stradx system [121]. Stradx included visualization techniques such as
slicing where a naive slice reconstruction would extract values along the lines of inter-
section of each ultrasound scan with the selected slice plane. To improve the quality,
they suggested the following interpolation scheme. They did not consider each scan to
be infinitely thin but assign it a certain thickness. The intersections of US scans and the
slice plane became smeared polygons which overlap over each other. In the overlapping
regions, they take the value which is closer to the center line of the respective slab. Later,
the system was extended by volume rendering [122]. The slicing method was used for
slice-based volume rendering. They stated that the slice reconstruction was fast because
as an optimized sequential algorithm was used but no detailed description of their imple-
mentation nor any references were given.

Many works address the problems related to the volume visualization of time-varying
data. We focus on related work solving data intermixing issues in the context of time-
varying volume data [15]. Woodring et al. presented a method for viewing high-dimensional
data using a projection on a hyperplane [164]. During the hyperplane projection, they
combined information from subsamples using schemes such as alpha composition, first
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hit, addition, MIP, average and deviation.
It is not straight-forward to depict motion in a motionless image. Illustrators or comic

artists use stylized motion-lines and arrows to deploy motion in static pictures [95]. In
non-photorealistic rendering, these methods are often mimicked. Stylized lines can un-
ambiguously create the sense of direction by their thickness and color variation relative
to the background. The thinner and sharper end of the stroke with less contrast to the
background shows where the flow is coming from [150, 157]. In visualization, stylized
temporal gradients and lines were employed to show the movement of time-varying data
within one frame [143, 64].

Our concept builds on the previous work on reconstruction [65] and direct rendering
of arbitrary scans [122]. Fused reconstruction and rendering of streamed sonar data is a
labor-intensive task. We describe an efficient storage system and an architecture designed
to harness the power of modern graphics hardware to achieve interactive frame rates.
Unlike the previous approaches, our framework integrates a shading model into the ren-
dering pipeline which notably enhances the quality of the visualization. In addition, we
provide novel illustrative overlays, temporal outlines, which help to depict objects from
the background and intuitively communicate the temporal dimension. The application de-
sign addresses needs of marine-fisheries research domain and the framework clearly fills
the gap in visualization of streamed 2D-sonar data.

D.3 Pipeline overview

Between acquisition and the final visual output, the data passes multiple stages. Figure 2
illustrates the overview of the system pipeline: acquisition, preprocessing and slice view
were part of the original package coming with the sonar. We add volume visualization
which operates on the images and the positioning information supplied by preprocessing
stage. This section leads through individual stages of the pipeline in order to present the
overall concept of our system.

Acquisition:

The source of the data is a 2D-sonar of type Simrad ME70 which is a multibeam scien-
tific echosounder used for biomass estimation, fish school characterization and behavior
studies [137]. In our case the sonar transducer is oriented downwards, therefore the water
column is sampled vertically as it is illustrated in Figure 2. The data is collected and saved
to the disk in a specific format. For each measurement a fan is sampled perpendicularly
to the bow of the ship. A fan constitutes data collected during one sampling cycle of the
sonar, also denoted as ping. The fans consist of 45 electronically stabilized beams with
an opening angle of 2◦ covering a swat of 140◦. The frequency band of the sound waves
is 70-120 kHz.

During a survey, the sonar samples data continuously at different sampling intervals.
The interval is decided by the user, sonar software and limited by hardware. For instance
if the user decides to increase the sampling range, the wave propagation time will increase
which again can increase the number of data points sampled for each beam. This will in-
crease the total time to sample one fan which in turn increases the sampling time between
fans.
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Figure 2: A conceptual overview of the system pipeline.

Preprocessing:

Data from the sonar is converted from waves to beams of acoustic reflection, i.e., fans,
and preprocessed to remove noise, mostly on a per-beam basis. Further reformatting of
the processed data involves the conversion of individual fans to bitmaps and a header file.
The header file contains the transformation matrix and timestamp of the fan. The transfor-
mation is captured by a high-end GPS device and a motion reference unit (MRU) which is
capable of measuring pitch, roll and heave of the vessel with a high level of precision. The
transformation matrix is used by the visualization application to transform each bitmap
into world coordinates. This stage is regarded as instantaneous in time regardless of wave
propagation time. With these settings and equipment, we retrieved on average 1-2 bitmaps
and headers per second.

Volume visualization:

Previously, the only instant visualization stage in the 2D-sonar imaging system was el-
ementary slicing in one dimension. In contrast, our system allows for instantaneous 3D
visualization. As the scans are streamed continuously, it is necessary to involve a stor-
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age management unit. We store the last n scans and their transformations. The renderer
operates on the data in the storage system. For each frame, the scans are transformed to
the world coordinates using the transformation in the associated headers and then to the
viewing coordinates. In the slicer stage, the bounding box of the transformed scans is
sliced with view-aligned planes as for slice-based volume rendering. We are not operat-
ing on a voxel grid and therefore slicing of the bounding box will show only intersecting
lines of the slicing plane and scans. Therefore, each slice must be reconstructed in the
slice-generator stage before it can be rendered and blended with the 3D visualization.
The rendering includes optional visual enhancements, in our case shadowing, temporal
outlines and a reference grid.

D.4 Direct volume reconstruction for rendering

The stream renderer operates on a set of 2D bitmaps which are placed in 3D space and
have an associated timestamp. First, we store a set of n most recent scans, where the
cardinality n is set by the user. We transform the scans by their corresponding transfor-
mation matrices to the world space and fit a bounding box around them. The bounding
box represents the proxy geometry for the volume rendering. As the volume defined by
the bounding box is not represented by a regular grid, it is not straight forward to design
a rendering algorithm for a volumetric dataset with such representation. Contrarily, the
data is in our case represented by a set of 2D scans which are arbitrarily placed in 3D
space. Therefore, the rendering stage must address an additional reconstruction problem
which fills the gaps between individual images.

Previous work on reconstruction from freehand ultrasound in medicine delivers high-
quality results but causes an additional delay before the rendering step. This is feasible
in some scenarios in the medical domain when the doctor makes his or her acquisition,
and inspects the volume after a delay. This is inapplicable for volume visualization of
data being streamed-in with frequency 1-2 images per second. Another disadvantage of
this approach is that the data is resampled at two stages; during reconstruction and during
rendering.

We are fusing reconstruction and rendering by extracting the best from the previous
work: reconstructing the volume on a view-aligned stack of planes using a high-quality
plane-reconstruction scheme [65] and using reconstructed slices for slice-based render-
ing [122]. The computation is adapted to exploit modern graphics hardware. We describe
a fast volume rendering solution for the stream input of 2D images and provide a novel
concept of showing the temporal aspect of the data. While our design choices address the
specific needs of the marine domain, the general concept of our system can be applied to
other domains, e.g., freehand ultrasound in medicine.

D.4.1 Plane reconstruction

As we showed in Figure 2, the bounding box of scans in the world space is sliced by
view-aligned planes. The scans and the slicing planes yield a set of intersection lines as
shown in Figure 2 in the slice generator. Drawing the intersection line segments only is
insufficient and therefore, the slice generator fills the gaps between the intersection lines.
In Figure 3, we see the scans as textured quads and quad-plane intersections become tex-
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VQVQ Pi

Gk
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VPQ
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TP

Sk Sk+1
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Figure 3: We define a hexahedron by connecting two scans Sk and Sk+1. These two faces of the hexa-
hedron are textured. For example, vertices VP and VQ have texture coordinates TP and TQ respectively.
The intersection by a view-aligned plane Pi defines a polygon Gk which patches the gap between the
intersection lines.

tured lines. A fast and high-quality interpolation and composition scheme is now needed
to fill the gaps between each pair of lines and treat the overlapping gaps.

The storage management keeps the quads in the order they were streamed in, i.e.,
sorted by their associated timestamps. We connect each pair of successive quads Sk and
Sk+1 in the sorted storage into a hexahedron as illustrated in Figure 3. The intersection
of the faces of the hexahedron and a slicing plane Pi defines a polygon Gk which fills the
gaps between the intersection lines. For example, the edge of the hexahedron VPVQ has
texture coordinates (TP,TQ) and intersects the slicing plane Pi. The intersection VPQ is
defined by a linear combination of VP and VQ:

VPQ = λPQVP +(1−λPQ)VQ with λPQ ∈ [0,1] (1)

The texture coordinates of the intersection TPQ will be calculated as linear combina-
tion of TP and TQ using the same λPQ as in Equation 1:

TPQ = λPQTP +(1−λPQ)TQ (2)

It can happen that two successive quads intersect and the connection of their vertices
does not yield a regular hexahedron, for example, if the curvature radius of the vessel
trajectory is smaller than the extent of the scan in world space. In this case, we split the
hexahedron along this intersection into two prisms and treat them as hexahedra with one
collapsed edge.

We interpret the bitmap intensity values and time as the first and second color chan-
nels in a texture. This allows for smooth interpolation of two attributes: intensities and
timestamps (time-to-live). According to the interpolated intensities, we apply a color and
opacity transfer function and render the polygon into the current slice. In the case that
two polygons overlap, we account for two compositing schemes.

Overwrite:

We replace fragments which have a lower timestamp with the values of the current poly-
gon. The hexahedra are processed in time-ascending order, also the polygons are drawn in
time-sorted order. Therefore, the buffer can always be overwritten in overlapping regions.
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Alpha blending:

Fragments which have a lower timestamp Cold are behind the fragments which have a
higher timestamp Cnew. We are using an over-operator as blending equation for the result-
ing color C:

C = αnewCnew +(1−αnew)Cold (3)

D.4.2 Data storage

The scans are stored in a 3D texture similarly as cards in an “index card”. When the
storage is full, we use the cyclic queue principle. The entry position E contains the r-
texture coordinate, of the oldest scan stored, i.e., with the lowest timestamp. When a
new scan is streamed-in, we render it in the place of the oldest scan and update the entry
position. It is convenient to have all scans stored in one texture because only one texture
needs to be bound per frame. A scan Si is then accessed with 3D texture coordinates
(s, t,r). The r-coordinate is constant for one scan. Texture coordinates of the intersections
are generated using Equation 2.

When calculating the intersections and their respective texture coordinates, we rely
on hardware interpolation between scan-pairs in the 3D texture. We create pairs as, e.g.,
in Figure 4a. As long as the starting timestamp E points to the beginning to the texture,
interpolation between pairs according to Equation 2 works correctly. However, if E points
another timestamp, two successive timestamps (9th and 10th) would not be neighbors in
the 3D texture if we had not one duplicated layer. This parity (n+ 1)th image is a du-
plicate of the 1st image and ascertains that the interpolation of texture coordinates works
correctly.

Our interpolation scheme delivers perfectly correct results for straight vessels trajecto-
ries. In order to obtain correct results for any type of trajectory, we would need to account
for rotation in our interpolation scheme for a substantial performance penalty. Coupé et
al. described a solution for this problem in the context of post-processing volume recon-
struction from freehand ultrasound in medicine [27]. They also analyzed the reconstruc-
tion error of their technique, nearest-neighbor interpolation and linear interpolation such
as ours. It is also worthwhile noting that their improvements in the reconstruction quality
are significant only for sparse scans and large rotation angles. Extending our interpolation
scheme by the idea of Coupé et al. would be a potential improvement of the precision but
according to our collaborators, is currently not needed.

To further increase the performance, we also allow for scan-skipping: the pairs are
created from every kth scan. Figure 4b illustrated pairing for scan skipping k = 2. In order
to close the chain, the last scan is always paired even though its pair skips < k scans.
In Figure 4b, the chain is closed with timestamps (9,10) and (11,12) even though k = 2.
The skipped scans are not removed from the storage. As they are located physically
between the paired scans, and therefore, the interpolated texture coordinates will point
to the “skipped” 3D-texture space. Scan-skipping with hardware interpolation over the
skipped frames is possible only if we involve 3D texture in the storage mechanism and
not a vector of 2D textures used in the previous work [65].
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Figure 4: The cyclic queue principle of our storage system. Examples of how scans located in physical
memory are paired according to their timestamps without (a) and with (b) skipping.

The skipping reduces the overhead connected with the calculation of the intersection
geometry but is a trade-off between precision and performance and the k-factor can be
used to achieve better performance. The skipping-induced error depends on the relative
displacement in space between successive scans related to the vessel trajectory but can be
controlled by the application. Three cases are illustrated in Figure 5. The exact skipping-
induced error estimation is beyond the scope of this paper but would allow for automatic
selection of the k-factor with respect to a preset error tolerance.
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(a) Straight trajectory 
constant speed

(b) Straight trajectory 
varying speed

(c) Curved trajectory 
constant speed

GAP k=1

GAP k=2

GAP k=1

GAP k=2

GAP k=1

GAP k=2

3D
 S

to
ra

ge
Re

al
 w

or
ld

Figure 5: Errors induced by scan-skipping. (a) No error when the vessel follows a line at constant
speed, all samples have correct texture coordinates. Error in interpolated texture coordinates when
(b) it changes speed, and (c) when its speed is constant but the trajectory is curved.

D.5 Temporal outlines

According to an independent domain expert from Simrad, the hardware vendor, time is
very important as this is a dynamic situation. The biology constantly changes as a func-
tion of time. It is absolutely necessary to know what is new and old information in order
to know the actual situation and how things have changed, e.g., in which direction is the
biology moving and how does the behavior change. We introduce a new concept of illus-
trative outlines which convey the temporal dimension of our data which is otherwise not
communicated. In our case, users observe a non-static environment and temporal outlines
are features which allow to establish a degree-of-confidence in different parts of the visu-
alization. The temporal dimension is encoded by their thickness and color of the outline.
A temporal outline is an image-space effect which is calculated after the volume render-
ing stage as an image-space effect. Therefore the performance consumption is negligible
compared to the volume rendering process. The concept is easily applicable for other
volume rendering techniques with a temporal attribute.

The generation of time-dependent outlines happens in three steps.

1. Buffer generation: We create a binary image segmentation, i.e., a membership buffer,
where each pixel belongs either to the fish school or to the background and a time-
stamp buffer. The time-stamp buffer stores the time attribute of pixels which are
members of the object in the membership mask.
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Figure 6: A membership buffer (a) and a time buffer (b). Pixels A belong to the object and B to
the background. Pixels B contain no timestamp and therefore, the stamps from the border of A are
propagated into the narrow band shown in yellow.

2. Dilation and blurring: We blur the mask with a kernel which size is time-dependent
– pixels with a low timestamp (more recent) are blurred more than pixels with a high
time-stamp (older).

3. Rendering: We render the contours using the difference image between the blurred
and original mask similarly to unsharp masking [84].

Buffer generation:

A rough separation of fish school from the water and the sea bottom can be achieved by
thresholding. Fish schools yield stronger echo than water but weaker than the sea bot-
tom. During volume slicing and reconstruction, we threshold the sampled values against
a user-defined threshold. Different threshold values allow the user to quickly explore the
density levels (MIP-levels) of the fish school. If at least one value satisfying the mem-
bership condition is sampled along a viewing ray, the pixel in the membership buffer
M (s, t) attributed to this viewing ray will be 1 and 0 otherwise. A pixel of the time buffer
T (s, t) contains the highest timestamp along the corresponding viewing ray if the pixel
is a member of the object and -1 otherwise. The timestamps are originally integer values
[0,n] where n represents the current time but later on scaled to the interval [0,1].

Dilation and time-dependent blurring:

The size of the Gaussian convolution kernel K we use for blurring the membership buffer
in pixel M (s, t) depends on the timestamp which is stored in the time buffer T (s, t).
Figure 6a shows an example of M . After the blurring operation, the values from pixel
A in the mask should have “spread” to pixels of the background B. However, pixels
of B contain no timestamps and consequently, the kernel size in B would be undefined.
Therefore, prior to the blurring operation, we perform a dilation step on time buffer in
order to spread valid timestamps into a narrow band around A. The dilation is illustrated in
Figure 6b. The width of the band is defined as the largest possible radius of K . According
to our propagation rule, we take the closest timestamp. If more valid equally-distant
stamps are found, we take the more recent one (higher timestamp). After the propagation,
M is blurred with a Gaussian kernel K of size f (T (s, t)):

f (T (s, t)) = 8(T (s, t)) with T (s, t) ∈ [0,1] (4)
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Figure 7: Integrated quantitative measurements: curved time axis above the fish school and the depth
axis on the left. We also integrated an optional horizontal grid which is shown in Figure 1.

The outlines are calculated in the image-space and their thickness is independent of
the distance to the viewer. Outlines attributed to more recent parts of the volume are
thicker and thus more prominent.

Outline rendering:

The outline is defined as a set of pixels at non-zero differences between the original and
blurred membership buffer. If this difference is non-zero, we perform a color look-up
based on sampled value from the underlying time buffer. The color is fetched from a
1D color transfer function. The color transfer function is a texture which contains low
number of color bands, e.g., 5-6. Each color encodes one time interval. The color with
the highest contrast to the background shows the most recent time interval as in Figure 1.
The color quantization to a low number of colors in the transfer function helps to read the
time interval because it is more difficult to read the time from a continuous map. Finally,
the outlines are drawn as an overlay over the volume visualization.

The construction of temporal outlines is similar to rendering of halos using unsharp
masking of the depth buffer [84]. The difference to our approach is that we are performing
blurring of the membership buffer instead of unsharp masking the depth buffer and most
importantly, our blurring kernel has not a constant size.

Integrating quantitative measures:

The colored temporal outlines require a legend showing which time interval corresponds
to which color. Instead of showing the legend next to the visualization, we embed it in the
volume view. The legend appears as a colored curve which follows the trajectory of the
sonar-transducer as shown in Figures 1 and 7. The labels of the time curve appear at the
boundaries between individual color bands and show the elapsed time in seconds from
the moment when the transducer was located at that point. As the legend is integrated and
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(a) (b)

Figure 8: Visualization of floating fish school with no illumination (a) and with applied multidirection
shading model (b). Shadows resolve the ambiguous depth cue – in the visualization without shadows,
it is not clear whether the fish school is attached to the bottom.

not drawn on the side, users efficiently associate time with parts of the vessel trajectory
and parts of the visualization. The curved legend represents the time axis, but the users
also need to assess the spatial dimensions in order to grasp the extent of features in the
fish schools. Therefore, we integrate also the depth axis which is snapped to one of
the horizontal edges of the bounding box and an optional grid. The distance between
individual grid lines is fixed to 10m.

D.6 Implementation details

We implemented a proof of concept of the described method using C++, OpenGL/GLSL
into the VolumeShop [10] framework. In this section, we describe an important optimiza-
tion of the intersection generating stage and display the performance of our implementa-
tion. Finally, we theoretically describe requirements for a raycaster which operates on the
same input data and reconstructs the volume during raycasting in fragment shaders and
shows why such implementation is infeasible.

Generation of intersections:

The calculation of geometry can easily become a bottleneck in our pipeline if not designed
carefully. The slice generator needs to produce intersecting polygons for each slice plane.
This implies a complexity of O(mn) with m number of slicing planes and n number of
hexahedra. It is therefore worthwhile to parallelize this process. Our system uses fast
hardware-based geometry generator using geometry shaders. The input geometry for
the shader consists of the individual hexahedra. As the input geometry is the same for
each slicing plane, we define it as a vertex buffer object (VBO) and upload it to the
graphics processor only once per frame. The VBO is updated with every ping when a new
scan is produced, i.e., maximum twice per second. The intersecting polygons present a
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Figure 9: Sand eel fish often school towards the sea bottom. In this case, there is only a relatively
small gap which is revealed by the shadow cast on the sea bottom.

substantially larger amount of geometry then of the hexahedra and are in addition viewer-
dependent. The hexahedra-definition in the VBO is view independent. It is therefore
advantageous to send a smaller amount of geometry to the graphics memory after a new
ping and then use it as VBO and produce the large number of intersecting polygons in a
geometry shader.

Illumination:

Lighting of scenes significantly enhances depth cues [9]. For this reason, we included
lighting in our pipeline. A comparison for a lit and non lit visualization is shown in Fig-
ure 8. We adapted the multidirectional occlusion shading model [139] into our system
for the following reasons: The model generates a high-quality soft shadowing effect in
volumes without gradients. This has two advantages. First, the approximation of gra-
dients in our pipeline would be very costly as we reconstruct the volume on the fly and
voxel’s neighborhood is not apriori known. Second, gradient-free lighting such as soft
shadowing yield superior result over gradient-based shading in noisy data such as MRI
and ultrasound [57, 139]. Furthermore, the model allows light-source specification in the
hemisphere defined by the viewer and thereby allows to preset the assumed light direction
which is in 12◦ left and 20◦−30◦ above the viewer [145, 109]. Finally, the model requires
slice-based rendering which fits well into our pipeline. An additional example where the
multidirectional occlusion shading is applied is displayed in Figure 9.

Incompatibility with a raycaster:

Even though raycasters offer more flexibility than slice-based renderers, they have several
disadvantages for our setup of data compared to our approach. Even though we do not
compare the quality of our results to a raycaster, we point out its implementation imprac-
ticalities which is a reason why slicing should be used. We are render the intersection
geometry into the view aligned slices. Therefore, we consider our approach to be object-
based. Contrarily, raycasting is considered to be image-based, because the color of each
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fragment is calculated by processing the geometry. Processing the geometry for each
sample along each ray is, even with optimization, infeasible compared to an object-based
method. In addition, our object-based approach reconstructs slices for volume rendering.
This setup allows us to apply the multidirectional occlusion shading which is one of the
state-of-the-art low-frequency lighting methods.

Performance:

Table 1 lists exact performance measurements of the volume reconstruction and rendering
pass of a scene composed of 128 sonar scans with resolution 434×343, such as Figure 1.
We summarized measurements for shadowing and no shadowing modi, different number
of slicing planes depending on the sampling distance and different scan-skipping levels k.
The table indicates a significant performance boost of the implementation using geometry
shaders and VBO for large geometry (128 scans, k=1). The table identifies the main
bottleneck of the system – the occlusion shading. The reason is that our implementation
of the model uses “ping-pong” buffers during the front-to-back slice traversal. Therefore,
our future work will address optimization of this stage. Nevertheless, the listed cases
indicate, that the shadow mode using a VBO achieves at least 3 fps and is able to keep up
with the stream rate of the sonar (1-2 images per second). Therefore, the shadow mode
can be used to view the in-situ visualization of the stream but during user interaction,
fast shadow-free rendering can be used. The time which is required to update the VBO
and the texture storage structure is negligible compared to the rendering time (0−16ms).
All measurements were performed at a workstation equipped with an NVIDIA GeForce
580 GTX GPU with 1536MB graphics memory, an Intel Core i7 CPU with 3.07GHz and
12GB of RAM.

518 slicing planes
Shadowing No shadowing

VBO:Yes VBO:No VBO:Yes VBO:No
k=1 297ms 830ms 0-4ms 608ms
k=6 281ms 312ms 0-4ms 109ms

259 slicing planes
Shadowing No shadowing

VBO:Yes VBO:No VBO:Yes VBO:No
k=1 203ms 359ms 0-4ms 312ms
k=6 187ms 203ms 0-4ms 47ms

Table 1: Rendering times required for the volume-rendering and reconstruction passes measured in
miliseconds (ms).
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D.7 Results and discussion with domain experts

The design of our system was conducted in collaboration with a domain expert. However,
in order to objectively detail the utility scenarios of our system, we conducted discussions
with independent domain experts from a marine-research institution and from the hard-
ware manufacturer who were not included in the design process. They pointed out the
following main benefits of our tool.

We presented our system to Simrad, the hardware vendor of the ME70 sonar. The
application was confirmed to be an evolutionary next step in visualization of the streams
of 2D sonars and the future potential for better understanding the school shape and in-
sight in the distribution in the water column. Scientists from Simrad found our results
convincing and encouraged us to prepare our application for installation on their research
vessel and to schedule with them a marine survey.

Our current results were generated from pre-recorded streams acquired during surveys
of sand eel at three different locations in the North Sea in April 2010. The scans from
a Simrad ME70 sonar were saved as images with associated headers and then streamed
offline to our system.

Shape and spatial location of schools:

Fish species can be in some cases interpreted by the shape of their schools [119]. Ac-
cording to the experts, captains currently learn to recognize fish species only using 2D
projections. For example, fish schools of mackerel have elongated shape. Recognition
only based on 2D projections is difficult and often fails.

Even though it is an illegal practice, fishermen often return the catch back into the
water after recognizing the misinterpretation; They must fulfill quota of fish brought to
the shore stated by the law. This causes that a substantial number of fish is sacrificed.
Currently, captains have to mentally reconstruct the 3D shape because there are only
slicing techniques or rely on the 2D projections. Our systems will assist the learning and
the interpretation process.

Early recognition of the shape allows to make decisions in real-time and adapt the
survey experiments; During the survey, the scientists usually look for a school of certain
species. After they have found it, they might want to take samples in order to verify the
species, to define the age and size distribution of fish within the school. For both, the
research and the commercial fishery, the time until the decision for the catch is made is
crucial – it should be made while the vessel passes over the school or else it can be too
late for a catch as the school might have moved. However, there are many factors which
complicate the decision making, e.g., the sonar captures only a part of the school. An
in-situ 3D visualization solution would be a great advantage.

Our tool brings clear advantages to the domain in terms of shape description. In
addition, the integrated grids enable rough estimation of distances in the volume. The
distance between individual grid lines corresponds to 10m in the real world. This allows to
quickly judge the extent of the fish school and distance between individual density levels
within the school marked by the outlines. For example, the school shown in Figure 1
spans approximately 100m. The grid is drawn at one depth level which is interactively
decided by the user. Intersections with the volume allow to measure the absolute depth of
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individual structures. Such measurements help to make decision whether the school is not
too small to be worth the catch or not too big so that it could destroy the vessel equipment.

Intensity levels and temporal dimension:

The marine scientists and fishermen are interested to see different levels of density, i.e.,
MIP levels in the biomass: Density distribution is important for behavioural information,
species identification and necessary to know for understanding the distribution (amount
and location) of the biomass value, e.g., is the main contribution only from a small part
of the school or does the entire school contribute significantly.

In Figure 1, MIP-level threshold = 0.47 and in Figure 7 = 0.44. The outlines are inde-
pendent of the transfer function setup. The definition of the threshold is interactive which
allows the user to browse in the MIP-levels independently of the transfer function. As the
next natural extension of our system, we will include volume calculation by summing-
up the thresholded samples during the rendering pass to provide the user with an exact
estimate.

In fishery research, the sonar images are always tagged with time stamps. It is essen-
tial to place the biomass in the space and in time as well. For example, when a vessel
passes over the same school several times, the embedded time information resolves the
ambiguity whether the fish school is one big school or a smaller school which has moved
since the last observation.

Fish swim or can be shifted by significantly by sea currents. If a current of the speed
of 1mph, e.g., speed of the Gulf Stream in its slowest and widest parts in the north [106],
the biomass is shifted by 26m/min which is a significant change in position. The input
stream composed of images and transformations does not contain any real-time informa-
tion about sea currents and fish-school movement. It is therefore impossible to compen-
sate for these movements. Still, our system encodes the temporal dimension in the color
and thickness of the outlines. The captain can relate parts of the volume to a time interval
in the past and establish a degree of confidence.

With our application, we put a new powerful tool into the hands of marine scientists
which has the potential to lead them to new discoveries and knowledge. In commercial
fishery, it would assist with fishing-quota control and more precise decision making.

D.8 Conclusion

In this paper, we have presented a rendering system for live volume visualization of
streamed 2D sonar data and their associated transformations. Our design fuses the volume
reconstruction and rendering of sonar images into one step and thus reduces the number
of resampling stages. The architecture of the system includes a new concept of storage
with fast data access in the texture memory, geometry calculation and interpolation which
is applicable for in-situ visualization of any spatially-located streamed data.

We introduced a novel concept of temporal outlines which associate parts of the vol-
ume visualization and the acquisition time of the sonar scans. Assuming that the sea en-
vironment is unstable, the temporal outlines establish a level of confidence in the volume
visualization. In addition, the outlines delineate regions of maximal projected intensities
higher than a user-defined threshold. Our implementation shows that this design allows
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for sufficient frame rates and is thus viable for in-situ use on vessels. The prototype of the
system was presented to the sonar hardware manufacturer and to the independent marine
scientists. They approved it as a natural step in the evolution in the visualization software
for 2D sonars which will certainly be beneficial for their work.
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Figure 1: Comparison of (a) a visualization of a raw 3D ultrasound scan of a phantom dataset and (b)
a visualization of the same dataset filtered with the lowest-variance streamline method.

Abstract

ULTRASOUND as an acoustic imaging modality suffers from various kinds
of noise. The presence of noise especially hinders the 3D visualization

of ultrasound data, both in terms of resolving the spatial occlusion of the sig-
nal by surrounding noise, and mental decoupling of signal from noise. This
paper presents a novel type of structure-preserving filter that has been specif-
ically designed to eliminate the presence of speckle and random noise from
3D ultrasound visualizations. This filter is based on a local distribution of
variance for a given voxel. The lowest variance direction is assumed to be
aligned with the direction of the structure. A streamline integration over the
lowest-variance vector field defines the filtered output value. The new filter
is compared to other popular filtering approaches and its superiority is docu-
mented on several use cases. A case study where a clinician was delineating
vascular structures of the liver from 3D visualizations further demonstrate
the benefits of our approach compared to the state of the art.

* This article was accepted to EG Workshop on Visual Computing for Biology and Medicine and in
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E.1 Introduction

Medical ultrasound enjoys popularity as the most preferred medical modality in a num-
ber of diagnostic and medical treatment scenarios [48]. This acoustic reflectance based
modality has very valuable characteristics in terms of practical bedside usage and price.
Most importantly, as a live modality it has an unbeatable temporal resolution and the spa-
tial resolution can be superior to standard 3D modalities such as computed tomography
and magnetic resonance imaging. Moreover, measuring well-studied acoustic phenomena
with ultrasound can provide useful information about flow, elasticity, or strain of imaged
tissue. Very important for patient safety is that no ionizing radiation is associated with
ultrasound examination and its usage within mechanical index limits is considered safe.

The most serious disadvantage of ultrasound imaging is the high presence of various
kinds of noise that impede the image interpretation. These kinds of noise have been inten-
sively studied and can be categorized into two distinct categories, random and structured.
Structured noise can be further categorized into subcategories such as acoustic scattering
(speckle), shadowing, or dropout. With regard to 2D ultrasound images, most of these
noise types can be distinguished by the sonographer given substantial experience. More-
over, speckle noise is often considered as a useful source of information, and there are
debates whether to keep speckle in diagnostic ultrasound imaging.

Three-dimensional ultrasound visualization is very different from the 2D case, how-
ever. In 3D renderings, random and structured noise impede the visual reconstruction of
imaged structures, occlude it, modify it, and are the origin of normal perturbation that
becomes a very dominant effect when calculating local illumination. Therefore, for 3D
visualization the goal is to eliminate all kinds of noise and give prominence to the signal.
Traditional noise removal filters, however, can potentially modify the signal up to such
an extent that it is no longer diagnostically relevant. Finding a clear separation between
signal and noise is not trivial and cannot be handled by common linear and non-linear
filters.

The scope of the presented work is a novel structure-preserving filtering approach that
is based on a local variance distribution and is designed specifically for the 3D ultrasound
visualization pipeline. Figure 1 demonstrates the method on a phantom model of the my-
ocardium [41]. Unlike traditional filters, its operator mask is a curve that locally aligns
to the structure. This eliminates structure thinning or removal of structural details as is
typical for other kinds of filters reviewed in Section E.2. Details on algorithmic descrip-
tion of the new filter are provided in Section E.3. The filtering is demonstrated on several
ultrasound phantom and anatomical datasets in Section E.4 and its structure-preserving
behavior is evaluated in Section E.5. Finally, the paper draws conclusions on conducted
research in Section E.6.

E.2 Related work

A large body of research has been devoted to pre-processing and data enhancement
for ultrasound. Sakas et al. [133] listed techniques with a good trade-off between loss
of information and quality. A recent survey by Birkeland et al. [8] provides a concise
overview over the ultrasound visualization pipeline, where several approaches include a
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pre-filtering step prior to rendering. In this section, we review only the most relevant
works related to noise reduction in ultrasound.

The following works are performing enhancement based on local data homogeneity.
Kuwahara et al. [79] described a filter which divides the neighborhood of a point P into
blocks and the filtered value in P was the mean value of the most homogeneous block, i.e.,
block with lowest variance. Karaman et al. [66] presented an adaptive filtering technique
for speckle removal for B-mode ultrasound. Smoothing operators (mean or median) are
applied in regions where the tissue is assumed homogeneous. These regions are obtained
by region growing which is constrained only by statistical properties and the distance
from the central pixel. Yanhui et al. [167] performed directional averageing based on 2D
homogeneity. Pixels, which have their homogeneity above a certain threshold, remain un-
changed. Other pixels are processed by their directional average filter. An edge detection
is followed by directional filtering along the edge with the higher edge-value (vertical or
horizontal). Farzana et al. [37] used a combination between the Euclidean distance be-
tween the origin pixel O and pixel J and a homogeneity parameter of O. This parameter
is obtained from blocks of O’s neighborhood which have homogeneity above a certain
threshold. Bilateral filters combine pixels based on their geometric closeness and photo-
metric similarity [149]. Viola et al. [155] presented hardware-based implementations of
the median, bilateral filter, and the Kuwahara filter.

Statistical analysis of data has been facilitated for filtering and segmentation purposes
in a number of works. Czerwinski et al. [28] proposed an adaptation of a median filter to
solve the problem of boundary-preserving speckle reduction in ultrasound. They took a
set of short lines passing through the center of a square-shaped kernel. Along each line,
they computed the median. Finally, they kept the largest median value for the pixel in the
center of the kernel. In their follow up work, they described how lines can be detected
in ultrasound images [29]. They also discussed different methods for hypothesis testing
that the actual line is going through the edge in the picture. Coupé et al. [26] adapted
the nonlocal means filter [12] based on Bayesian statistics. Instead of a simple distance
weighting used in the original nonlocal means filter, they used a statistical distance, i.e.,
Pearson Distance between two random variables X and Y that is based on their correlation
1−ρXY .

Statistical properties were also used for determining tissue similarity in general. Patel
et al. [113] used statistical moments (variance in combination with mean) for segmen-
tation of noisy datasets. They used statistical moments to determine similarity between
tissues. Their approach could be adjusted for automatic design of the operator mask.
Fattal and Lischinski [38] used a variational approach for opacity classification of 3D
ultrasound datasets.

Several works pursued adaptive filter design. Chinrungrueng and Suvichakorn [19]
employed polynomial surface fitting to intensities. They reported results which were
at least as good as results produced by a median filter but could be obtained for less
computation time. Caan et al. [14] described an adaptive filtering kernel which depends
on the space-variant level of noise and some similarity measures to the central pixel. The
adaptation was done as a weigthed Gaussian filtering where the weights were related
to the similarity of the neighborhood tensors. Eom [36] determined the shape and the
orientation of the filter based on distance and angle maps, i.e., distance of a pixel to the
nearest edge. The filter was then aligned to the edge tangent at the closest point of the
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P2

P1 P
forward integration

backward integration

(a) �nding tangets (b) streamline integration

Figure 2: Determination of the line segment n=3 with the lowest variance of intensities at two points
P1 and P2 (a). Streamline integration seeded in point P (b). Forward integration is shown in blue and
backward integration in pink.

closest detected edge.
Su and Seul proposed filtering with wavelets [144]. They replaced small wavelet coef-

ficients by zero and kept or shrank other coefficients. Anisotropic diffusion is a frequently
applied filtering method which smooths inside regions but not the edges itself [114]. The
edges are defined by local gradients. Michailovich and Tannenbaum [97] conducted a
study where they compared performances of three nonlinear filters: wavelet denoising,
total variation filtering [129] and anisotropic diffusion; and demonstrate their applicabil-
ity for speckle removal in medical ultrasound.

This short review of filtering methods illustrates the large body of existing work that
has addressed the problem of denoising an ultrasound signal. Still, to the best of our
knowledge, there is no work that took an approach similar to our lowest-variance stream-
line filtering, and is specifically designed to improve 3D ultrasound visualization. It is too
preliminary to claim that our technique outperforms any other form of filtering. In this
paper though, we have conducted first comparative steps and relate our work to selected,
most frequently used structure-preserving and denoising approaches.

E.3 Filtering Method

Speckle noise in 3D ultrasound poses a challenge to volume visualization since it
obstructs interpretation and identification of structures. To improve the quality of 3D
rendering, it is desired to perform a speckle-removal procedure. In data processing for
the medical domain, it is very important to preserve the boundaries of structures. This
is a problem of many filtering techniques: even though the boundaries and edges are
preserved, they move or change shape.

There have been attempts to preserve edges by using bilateral filters using weighted
averaging taking into account the distance and intensity similarity between voxels. This
approach is however sensitive to noise since the intensity similarity factor is based only
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on differences (local property of two points). Our approach pursues a different strategy.
We are performing a selective averaging, but the selection which voxels will be taken into
account is novel with respect to previous work. The filtering happens in two stages each
of which can be parallelized:

1. Determine the tangent direction For each point P in the volume (a voxel in our
context), select the direction which has the highest probability of all directions x to
be tangent to a fictive surface going through P. The outcome of this stage is a 3D
vector field.

2. Integrate For each point P, construct a short streamline seeded in P by integration
of the vector field produced in the previous stage. The streamline defines the shape
of the filtering operator mask.

With many speckle removal techniques available, our method is, to the best of our
knowledge, the only technique which utilizes the principle of streamline integration to
snap the filtering kernel to object boundaries. In this manner, we ensure after filtering, the
boundaries have moved minimally and have preserved their intensity. In Sections E.3.1
and E.3.2, we describe each of the stages.

I.A I.B

II.A II.B

III.A III.B

IV.A IV.B

Figure 3: Comparison of non-filtered and filtered datasets from medical ultrasound and MRI: I. and
II. 3D cardiac ultrasound, III. 3D ultrasound of liver, and IV. MRI of liver.

E.3.1 Local Direction of Lowest Variance

The ultrasound-inherent speckle noise poses a challenge to any local processing technique
of this modality. When determining the tangent directions it is therefore necessary to
evaluate a larger neighborhood, in order to find the direction of a boundary going through
a voxel in noisy data. We are evaluating variance in patterns within a local neighborhood,
since this is a robust measure used also in previous work for data classification [113].
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We assume that values along a line segment entirely inside one tissue material will
have lower variance of intensities than a line segment which is crossing several materials.
To find the orientation of a line segment with lowest variance for every voxel, we proceed
as follows. We align line segments centered in a point P to a discrete set of directions.
These directions are obtained by rotating an initial line segment in the XY and XZ plane
around P by an angle δ . This assures a minimal angular sampling rate of δ .

Each line segment is defined by the position P and the direction vector x. Since both
vectors x and -x could define the same line, we consistently select x with a positive y-
coordinate. Then we calculate variance of the set of samples for each of the line segments.
The direction xmin which corresponds to the line segment with the lowest variance will
be copied to the output 3D vector field at the position of P. Formally, we define xmin as
follows:

xmin | ∀x, Var
k∈−n..n

{ f (P+ k∆x)} ≥ Var
k∈−n..n

{ f (P+ k∆xmin)} (1)

where Var{.} is the variance of a set of values, f (P) is the voxel intensity at point
P, ∆ is a positive step size and n indicates how many samples are taken along the line
segment in the positive and in the negative negative sense. In our approach, we used
n = 5, where each ∆x amounts to the size of a single voxel. The principle is shown in
Figure 2a simplified in 2D. The xmin is shown in blue, all other line segments are shown
in black.

(a) (c)

(d) (e) (f )

(b)

Figure 4: Mesh representation of a laser scan of a bunny (a), voxelization of the mesh (b), filtered
with mean filter 3×3×3 (c), median filter 3×3×3 (d) Kuwahara filter 3×3×3, and our method n = 5,
m = 5.

E.3.2 Streamline Integration and Filtering

In the first stage, we obtained a 3D vector field where each vector represents the direction
of the line segment with minimal variance. At this point, we continue with the con-
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struction of the operator mask for each voxel P separately. This procedure is similar to
streamline integration with P being the seed point. See also the illustration in Figure 2b.

1. Forward integration constructs a part of the operator mask while integrating xmin
from the underlying vector field. In Figure 2b, this part of integration is marked in
blue.

2. Backward integration uses the inverted vector field, i.e., −xmin to construct the
second part of the operator mask, in Figure 2b illustrated with pink.

Both the backward- and the forward-integration parts are employing the Runge-Kutta
4 integration scheme [131, 78]. In this way, we obtain 2m+ 1 samples where m is the
number of integration steps. The filtered value P′ at point P is then determined as the
arithmetic mean of these samples:

P′ =
1

2m+1

m

∑
i=−m

f (Pi) (2)

With Pi being the ith integration step of the streamline and i > 0 being the forward
integration, i = 0 the seed point sample, and i < 0 backward integration. For the results
presented in this paper, we used m = 5.

E.4 Results

We have applied our technique to various 3D ultrasound and MRI data sets. In addi-
tion, we tested the technique by filtering the staircase artifacts on voxelized meshes.

Figure 1 shows the effect of the variance-streamline filtering applied to an ultrasound
scan of a phantom of a myocardium. The phantom is manufactured from a synthetic
polymer called PVA (polyvinyl alcohol) which has in crystallized form acoustic proper-
ties similar to the myocardium [41]. We also pre-filtered series of ultrasound volumes
capturing a human cardiac cycle. Figure 3 shows additional pairwise comparisons of fil-
tered and not filtered datasets: 3D ultrasound of the human heart extracted from a cardiac
cycle (pairs I and II), 3D liver ultrasound (III) and liver MRI (IV). The amount of speckle
and noise was significantly decreased, in particular in terms of smoothed walls of the my-
ocardium and liver vessels. The noise level in the MRI dataset decreased significantly as
well while the edges remained clear.

Our filter also performs well at eliminating voxelization artifacts. We applied several
frequently using filtering approaches to the voxelized mesh: mean filter, Kuwahara filter,
median filter. The mean filter creates fuzzy borders. The median filter and the Kuwahara
filter preserve sharp edges, but do not remove the artifacts. Our method preserves borders
and at the same time, removes a large portion of the artifacts. The original mesh, as well
as the voxelization and filtered datasets are compared in Figure 4.

We implemented this method as a preprocessing step in CUDA. While the second
stage of the filtering process can be executed during rendering, the 3D vector field has
to be precomputed as thew computation takes approximately five seconds on modern
graphics hardware for a volume of size 2563.
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E.5 Case Study

In data processing and in visualization, it is highly important to maintain structures so
that they represent the anatomic situation as precisely as possible. An uncareful prepro-
cessing could cause vessel thinning or sometimes even removing of thin branches. Vessels
are, however, very important because, e.g., in the liver they are influencing preoperative
planning decisions and are also useful for localizing pathologies. Anatomical partitioning
of the liver is determined by the liver vessel tree [25].

To assess the quality of our technique, especially its usability for filtering vessels
in medical ultrasound datasets, we conducted a quantitative evaluation with a clinician
specialized in gastroenterology. During the interpretation of ultrasound visualization, the
clinician mentally “removes” the speckle and other kinds of noise. To compare the result
of speckle removal from a visualization of non-filtered data, which is mentally filtered by
a clinician, and filtered data with denoising filters, we conducted the following task.

We presented the clinician a series of visualizations of liver ultrasound without the
pre-filtering. The visualizations were printed in an A4 format and put into an adhesive
transparent foil. The clinician used a marker to outline the vessel tree in the liver. For
each liver dataset, she received visualization of the original dataset and five pre-filtered
versions using different techniques: median filter 3× 3× 3, Kuwahara filter 3× 3× 3,
anisotropic diffusion with two distinct parameter settings, and our method. Concerning
the anisotropic diffusion, it is difficult to automatically find a good parametrization (time
step, κ , and the number of iterations) [42]. Therefore, we produced results with a series
of combinations and selected two best settings concerning structure preserving (diffusion
I) and level of noise (diffusion II). Moreover, the same parameter setting might be suitable
only for the dataset it was chosen for.

Our aim was to observe, where the clinician sees the vessels in the original ultrasound
dataset and compare these to the situation when this dataset is filtered with the most fre-
quently used techniques and our technique. Figure 5 showcases the test cases including
the original, i.e., the non-filtered dataset, and datasets filtered with five different tech-
niques, including ours. Each visualization corresponds to a line drawing made by the
clinician. She used a green marker to draw vessels and a red marker to draw where she
was not certain about the shape of the vessel wall. For the filtered datasets the clinician
was instructed to solve the task of vessel delineation only using the information extracted
from the visualization. Finally, for drawing over the non-filtered dataset, she was allowed
to view the 3D rendering of the dataset in an interactive application to get better insights
about the structures. Therefore we consider the vascular delineation in the non-filtered
dataset as the one, which is best representing the structural arrangement. For benchmark-
ing purposes the line drawing extracted from the filtered dataset is rated according to how
close it is to the line drawing from the non-filtered dataset.

In total, we evaluated three different scenarios of human vessel tree in the liver I,
II, and III. All three test cases including the corresponding line drawings are listed in
Figure 5. Inspired the quantitative comparison method proposed by Cole et al. [22], we
evaluated the similarity between line drawings extracted from the non-filtered dataset and
filtered datasets. We will refer to the drawings based on filtered data “filtered drawings”
and to line drawings based on original data as to “original drawings”. To obtain a simi-
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Scene Med Kuwahara Dif. I Dif. II VS
I 11.78 24.14 9.29 12.54 8.76
II 3.17 39.92 10.78 15.08 3.53
III 10.83 16.06 16.69 20.70 9.28

Table 1: Relative distance between the illustration extracted from the non filtered dataset and filtered
datasets using median (Med), Kuwahara, diffusion and variance-streamline (VS) filtering.

larity measure, we first converted each line drawing to a binary image where 1 signifies
line and 0 no line. Then we computed a distance field for each filtered drawing. To deter-
mine the similarity between an original drawing and a selected filtered drawing, we used
element-wise multiplication of the distance field of the selected filtered drawing and the
binary image of the original drawing. The sum of all values in the result image signifies
the total summed error. In order to obtain a relative measure, we divided the summed
error by the summed length of the corresponding filtered drawing. The summed length of
a drawing is simply the number of pixels with value 1 in the binary mask. This relative
measure is, in other words, an expected distance of each point on a filtered line drawing
to the closest point on its corresponding original drawing. The relative distances are listed
in Table 1. We can see that the variance streamline filtering has obtained the scores with
the smallest relative distance to the original drawings (with one exception in scenario II).

Additionally, the clinician rated the techniques subjectively based on the following
criteria:

• Are the borders clear or fuzzy? In general, it is difficult to define borders if they
appear fuzzy.

• Are the borders jaggy? Finding and interpreting smooth borders is easier.

• Does the filtering mehod cause that parts of the vessel are “cut off”, but a little
further, it seems that the vessel continues? Interpretation is difficult in this case.

Based on the visualizations of data, she subjectively rated the filtering methods in the fol-
lowing order (best to worst): variance-streamline filtering (our method), median filtering,
no filtering, diffusion I, diffusion II, and Kuwahara filtering. From the evaluation we can
conclude that both in our quantitative evaluation method and in subjective preference the
new variance-streamline filtering method was preferred over the other techniques.

E.6 Conclusions

We described a novel filtering approach which utilized the lowest variance direction
to locally identify borders of structures, and based on this information, the operator mask
is locally curved. This procedure is similar to streamline integration in a vector field. We
showed its applicability especially on medical ultrasound, an imaging modality that is
challenging 3D visualization due to its noisiness and speckle. In addition, we evaluated
how the new filtering method affects understanding of structures in ultrasound. Based on
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the quantitative analysis and subjective judgment made by a clinician, we can conclude
that our method preserves structures and at the same time eliminates noise which makes
the interpretation of the visualization easier.
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ORIGINAL MEDIAN KUWAHARA DIFFUSION I. DIFFUSION II. OUR METHOD

Figure 5: Comparison of the visualizations of the original dataset, median filtering 3×3×3, Kuwahara
filtering 3× 3× 3, diffusion I. (∆ = 3/44, 5 iterations, κ = 12), diffusion II. (∆ = 3/44, 7 iterations, κ =
14), and our method with n=5 and m=5. Below we showcase the corresponding line drawings made
by the doctor. She used a green marker except of those lines where she was rather uncertain. The
cube in the bottom right was used for registration of her drawings.

133





Bibliography





There are many shellfish... so why not being
selfish?

—Der Meister





Bibliography

[1] Adobe. Adobe Photoshop CS4 - The “Curves...” tool. www.adobe.com/

products/photoshopfamily.html, 2008.

[2] R. C. Allen and M. L. Rubin. Chromostereopsis. Survey of Ophthalmology,
26(1):22–27, 1981.

[3] A. S. Bair, D. H. House, and C. Ware. Texturing of layered surfaces for op-
timal viewing. IEEE Transactions on Visualization and Computer Graphics,
12(5):1125–1132, 2006.

[4] J.-P. Balabanian, I. Viola, E. Ona, R. Patel, and E. Gröller. Sonar Explorer: A new
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[16] P. Cézanne. Le panier de pommes. Art Institute, Chicago, 1894.
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netik, Tübingen, Germany, 1994.

[68] Y. Kim and A. Varshney. Persuading visual attention through geometry. IEEE
Transactions on Visualization and Computer Graphics, 14(4):772–782, 2008.

[69] M. Knecht. State of the art report on ambient occlusion. Technical report, Tech-
nische Universität Wien, Vienna, Austria, 2007.

[70] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for
interactive volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 8(3):270–285, 2002.

[71] J. Kniss, S. Premoze, C. Hansen, P. Shirley, and A. McPherson. A Model for
Volume Lighting and Modeling. IEEE Transactions on Visualization and Computer
Graphics, 9(2):150–162, 2003.

143



Bibliography

[72] J. Koenderink, A. van Doorn, and A. Kappers. Surface perception in pictures.
Perception and Psychophysics, 52(5):487–496, 1992.

[73] J. Koenderink, A. van Doorn, and A. Kappers. Ambiguity and the mental eye in
pictorial relief. Perception, 30:431–448, 2001.

[74] R. J. Korneliussen, Y. Heggelund, I. K. Eliassen, O. K. Øye, T. Knutsen, and
J. Dalen. Combining multibeam-sonar and multifrequency-echosounder data: ex-
amples of the analysis and imaging of large euphausiid schools. ICES Journal of
Marine Science: Journal du Conseil, 66(6):991–997, 2009.

[75] K. Krissian, C. F. Westin, R. Kikinis, and K. G. Vosburgh. Oriented speckle reduc-
ing anisotropic diffusion. IEEE Transactions on Image Processing, 16(5):1412–
1424, 2007.

[76] J. Krivanek, J. Ferwerda, and K. Bala. Effects of Global Illumination Approxima-
tions on Material Appearance. Proceedings of ACM SIGGRAPH, 29(4), 2010.

[77] T. Kroes, F. H. Post, and C. P. Botha. Exposure render: An interactive photo-
realistic volume rendering framework. PLoS ONE, 7(7):e38586, 2012.
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