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Abstract

Rendering computer-generated images is both memory and runtime intensive.
This is particularly true in realtime computer graphics where large amounts of
content have to be produced very quickly and from limited data. Tile-based
methods offer a solution to this problem by generating large portions of a spe-
cific content out of a much smaller data set of tiles.

This dissertation investigates the use of corner tiles for this purpose—unit
square tiles with color-coded corners. They tile the plane by placing them with-
out gaps or overlaps such that tiles have matching corner colors. We present
efficient algorithms to perform such a tiling that are both more flexible and less
prone to artifacts than existing algorithms. We also present solutions to combi-
natorial problems that arise when using corner tiles, and introduce high-quality
methods to perform the tile-based generation of two fundamental components
of any rendering system: textures and two-dimensional sample point sets.

The results of this dissertation are advantageous for both realtime and offline
rendering systems where they improve state-of-the-art results in texture syn-
thesis, image plane sampling, and lighting computations based on numerical in-
tegration.
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Zusammenfassung

Die Berechnung computergenerierter Bilder ist sehr speicher- und laufzeitinten-
siv. Besonders kritisch ist dies in der Echtzeit-Computergraphik, in der grole In-
haltsmengen sehr schnell und auf einer limitieren Datenbasis generiert werden
miissen. Kachelbasierte Methoden bieten fiir diese Herausforderung eine mog-
liche Losung an: Ein bestimmter Inhalt wird dynamisch anhand einer kleinen
Menge von speziell priparierten Kacheln generiert.

Diese Dissertation untersucht in diesem Kontext die Verwendung von ge-
farbten Eckkacheln. Eckkacheln sind quadratische Kacheln, die mit farbkodier-
ten Ecken versehen sind. Sie erlauben eine Parkettierung der Ebene, indem man
sie so anordnet, dass benachbarte Kacheln iibereinstimmende Eckfarben haben.
In dieser Arbeit prasentieren wir Algorithmen, die eine solche Parkettierung ef-
fizient erméoglichen und dabei gleichzeitig flexibler sind und zu weniger Arte-
fakten fiihren als existierende Algorithmen. Wir geben dariiber hinaus Losun-
gen fiir kombinatorische Probleme an, die bei der Verwendung von Eckkacheln
entstehen. Von praktischer Konsequenz sind auRerdem Methoden, die zwei der
wesentlichen Komponenten eines jeden Renderingsystems in hoher Qualitit ge-
nerieren kdnnen: Texturen und zweidimensionale Punktmengen.

Die Ergebnisse dieser Dissertation konnen sowohl fiir die Echtzeit-Computer-
graphik als auch fiir Offline-Systeme von Vorteil sein: In der Textursynthese, der
Abtastung der Bildebene und der Beleuchtungsberechnung anhand numerischer
Integration verbessern die hier vorgestellten Verfahren bisherige Methoden.
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1

Introduction

Creating rich and complex content is one of the major problems in computer
graphics, especially in interactive applications where large amounts of content
have to be produced very quickly and from limited data. Textures, for example,
play a significant role in the creation of believable images but must typically be
provided in the form of memory intensive images due to their visual complexity.
Other fundamental tasks, such as the generation of sample points, can be compu-
tationally expensive so that the best possible points may not become beneficial
unless they can be generated more quickly.

Tile-based methods offer a solution to both memory and runtime problems
by synthesizing large amounts of content out of a much smaller data set of tiles. If
the tiles can be aptly filled with portions of the desired signal in a preprocessing
stage, only an arrangement of these tiles—a tiling—has to be generated online.
Compared to the traditional direct approach, this may improve either the gener-
ation speed or the amount of necessary memory by several orders of magnitude.
Figure |1.1]illustrates the principal idea of tile-based methods using the example
of texture synthesis.

There are two main aspects that make such a tile-based approach challeng-
ing. First, the tiling must usually be non-periodic in order to hide the unavoid-
able repetition of content: If we would just repeat the same tile over and over,
the tiled result will likely show unsatisfactory artifacts. Second, the tile interiors
must be constructed very carefully because their content must seamlessly fit be-
tween adjacent tiles for every possible tiling and without reducing the quality of
the original signal.

1.1 History of Tilings

The history of tilings dates back to early examples in decorative art and orna-
mental design. In the islamic culture, for instance, small tile-like pieces where
used to decorate large parts of important monuments and mosques (see Fig-
ure[1.2(a)). In the occident, tilings became prominent in mid-20th century thanks

1



Direct Synthesis

Tile Construction Tiling Algorithm
Offline Online

Figure 1.1: Principle of tile-based methods using the example of textures synthe-
sis. A set of tiles is constructed in a preprocessing step such that only a valid
arrangement of these tiles has to be generated online.

to the graphic work of Maurits C. Escher whose tilings are often interesting be-
cause they contain variations of a single, complex tile only (see Figure [1.2(b)).
Similar tiling phenomena also appear in nature: The basalt columns at the Gi-
ant’s Causeway, for example, appear in the form of hexagons that cover large
parts of this coast in Northern Ireland (see Figure .

The idea of tilings in a strict mathematical sense can be traced back to Jo-
hannes Kepler who documented regular tilings of the plane in the early 17th
century [Kep19]. But the in-depth mathematical study of tilings did not really
start until the late 19th century with the works of Yevgraf Fyodorov
and Arthur Schoenflies [Sch91], who were the first to fully enumerate all dis-
tinct symmetry groups in 2D and 3D. In the 1960’s and 1970’s, tiles that can never
induce periodic tilings received increasing attention due to the works of Wang
Hao and Roger Penrose, both of which came up with sets of tiles that now bear
their names [Wané1), Pen74]. These tiles and the corresponding tilings are called
aperiodic and are of mathematical interest till this day [Cul96]. We will take a
closer look at these tilings and their theoretical properties in the following chap-
ter. Overall, however, this thesis will only briefly touch tiling theory because of
its limited applicability to computer graphics problems. A good introduction into
these aspects is the book by Griinbaum and Shephard [GS86].

1.2 Scope of the Thesis

This thesis concentrates on a specific class of tiles called corner tiles. Corner tiles
are unit square tiles with colored-coded corners and were developed concur-
rently by Ng et al. and Lagae and Dutré [LD06a]. They tile the plane by
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Figure 1.2: Tilings appearing in art and nature. [(a)] Sheikh Lotf Allah Mosque,
Isfahan, Iran, 1603-1618. [Man08] @ Regular Division of the Plane III, M. C. Es-
cher, 1957-1958. Basalt columns at the Giant’s Causeway in Northern
Ireland.

placing them without gaps or overlaps such that neighboring tiles have matching
corner colors. The tiles are not allowed to be rotated or reflected. Due to their
simplicity and flexibility, they have quickly proven to be among the most useful
tiles for two-dimensional computer graphics problems [LKF*08].

This thesis presents advances with respect to several aspects of tilings based
on corner tiles. The first aspect are tiling algorithms, i.e., algorithms to distribute
corner tiles in a way that is both efficient and less prone to artifacts than cur-
rent algorithms. In particular, we present a novel deterministic tiling algorithm
that yields a more uniform distribution of corner colors than current stochas-
tic algorithms. We demonstrate that the new algorithm is particularly useful for
tile-based texture synthesis.

The second aspect is the tile construction process. Here we concentrate on
two-dimensional sample point sets, which have numerous fields of application
within graphics such as sampling, numerical integration, or object distribution.
We present two optimization techniques for such point sets, each tailored for
one important characteristic of the points. The first technique distributes points
such that the volume of their Voronoi cells are of equal size which is advanta-
geous for low-dimensional numerical integration problems. The second tech-
nique distributes points such that their mutual distances are maximized which is
advantageous for sampling problems such as image plane sampling. Both tech-
niques improve the state of the art in their respective fields and become efficient
in a corner tile setting.

The last aspect are theoretical insights into corner tilings. We present solu-
tions to the so-called tile packing problem which seeks a toroidal arrangement of
all tiles in a given tile set where each tile is used exactly once. We also introduce



a new class of tile sets which contain only those tiles that are needed for a spe-
cific range of tilings. In an application scenario like tile-based texture synthesis,
these tile sets may save a significant amount of memory.

The insights and results provided by this thesis continue to improve the effi-
ciency and applicability of corner tile-based methods in computer graphics and
help in the ongoing effort to deal with and further increase the complexity of
computer generated images. Figure[1.3|gives a sneak peek of some of the results
of this thesis.

1.3 Summary of Contributions

The main contributions of this thesis are:

¢ Adeterministic tiling algorithm for fast and improved online corner tilings.
This is the first algorithm to consider a non-random distribution of corner
colors and yields improvements in tile-based texture synthesis.

+ A generalization of stochastic tilings where the probability for each corner
color can be locally adjusted. The resulting semi-stochastic tilings extend
tile-based texture synthesis to globally varying textures.

+ A method to prune tile sets based on neighbor information of corner colors
and a closed-form expression for the size of these tile sets. This allows the
construction of minimal tile sets tailored to a specific range of tilings.

« Solutions to the tile packing problem for compact corner tile sets over
three and four colors. So far, only a solution over two colors was known.

« Atile construction algorithm for spatially uniform point distributions based
on capacity-constrained Voronoi tessellations. The resulting point sets
yield improvements in several numerical integration problems occurring
in physically-based rendering.

+ A tile construction algorithm for spatially uniform point distributions us-
ing a new distance-based optimization method. The resulting point sets
show significantly higher mutual distances than previous methods and
yield improvements in image plane sampling.

* Three algorithms that add certain properties to any point set as a post pro-
cess. We utilize these algorithms during practical applications of our tiled
point sets.

These contributions have partly been published in the following publications:

D. Heck, T. Schlémer, O. Deussen. Blue Noise Sampling with Con-
trolled Aliasing. Conditionally accepted to ACM Transactions on
Graphics, 2012. [HSD12b]
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Figure 1.3: Some of the results presented in this thesis. (a) Packing solutions for
compact corner tile sets. Corner tile-based generation of optimized point sets
(b) and large non-periodic textures (c). Applications for the point sets include
depth-of-field (d), ambient occlusion (e), and global illumination (f).



D. Heck, T. Schlémer, O. Deussen. Aliasing-Free Blue Noise Sam-
pling. Technical Report, University of Konstanz, 2012. [HSD12al

> T. Schlémer, D. Heck, O. Deussen. Farthest-Point Optimized Point
< Sets with Maximized Minimum Distance. Proc. High Performance
%t Graphics, 135-142, 2011. [SHD11]

-~ T. Schlomer, O. Deussen. Accurate Spectral Analysis of Two-
L(¢ Z—.» Dimensional Point Sets. Journal of Graphics, GPU, and Game Tools,
— 15(3):152-160, 2011. [SD11]

S. Frey, T. Schlomer, S. Grottel, C. Dachsbacher, O. Deussen, T.
Ertl. Loose Capacity-Constrained Representatives for the Quali-
tative Visual Analysis in Molecular Dynamics. Proc. IEEE Pacific
Visualization Symposium, 51-58, 2011, [FSG*11]]

T. Schlémer, O. Deussen. Semi-Stochastic Tilings for Example-
Based Texture Synthesis. Computer Graphics Forum (Proc. Euro-
graphics Symposium on Rendering), 29(4):1431-1439, 2010. [SD10a]

T. Schlémer, O. Deussen. Towards a Standardized Spectral Anal-
ysis of Point Sets with Applications in Graphics. Technical Report,
University of Konstanz, 2010. [SD10b]

M. Balzer, T. Schlomer, O. Deussen. Capacity-Constrained Point
Distributions: A Variant of Lloyd’s Method. ACM Transactions on
Graphics (Proc. SIGGRAPH 2009), 28(3):86:1-8, 2009. [BSD09]

1.4 Structure of the Thesis

This thesis is organized as follows. In the next chapter we define non-periodic
tilings and corner tiles in particular. We view them in regard to other tilings
in computer graphics and present algorithms that efficiently tile the plane us-
ing corner tiles. The following chapters are then dedicated to the construction
of the tile interiors: textures in Chapter [3|and sample point sets in Chapter
We evaluate each of the methods presented and demonstrate how they improve
prominent applications of corner tilings in the fields of texture synthesis, image
plane sampling, and numerical integration. For tiled point sets, we demonstrate
this in a dedicated Chapter[5} The thesis concludes with a summary and outline
for future work in Chapter |6}



2

Non-Periodic Corner Tilings

We are interested in corner tilings of the plane that do not repeat themselves
periodically. Before we specify corner tiles in detail, we briefly define basic
nomenclature and recapitulate other types of tiles that have found application
in computer graphics. This allows us to view corner tiles in context and will give
a clearer picture of their advantages. We then discuss several algorithms that
efficiently generate tilings of the plane using corner tiles.

2.1 Definitions

In the following, we define the most important terms used in this thesis.

1. A tiling is an arrangement of plane figures that fills the plane without gaps
or overlaps.

2. Each plane figure is called a tile.
3. The set of of plane figures that may be used in the tiling is called the tile set.

4, To tile means to cover the plane with copies of tiles in the tile set, i.e., to
generate a tiling.

5. Atiling is called periodic if a translation exists that maps the tiling to itself.
Otherwise it is called non-periodic.

6. If a tile set does not admit periodic tilings, both the tile set and a tiling
using this tile set are called aperiodic.

The mathematical literature sometimes prefers the term tessellation over tiling.
But since tessellation usually describes the discretization of a free-form surface
in a computer graphics context (e.g., by generating a triangle mesh), this thesis
exclusively uses the term tiling.

The notion of periodicity implies infinite tilings. The tilings used in graphics,
however, are always finite. Nevertheless, we are still interested in the question
if there ever can or cannot be a systematic repetition of a portion of the tiling.
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Figure 2.1: Tilings in logic and mathematics. [(a)] Periodic hexagonal tiling.
[(b)|Non-periodic Wang tiling. [Wén61] [(c)] Aperiodic Penrose tiling. [Pen78]

Also note the difference between the terms non-periodic and aperiodic. A given
tile set may not be aperiodic (i.e. it may lead to periodic tilings) but—with a suit-
able tiling algorithm—may nevertheless only yield non-periodic tilings. This is
connected to the observation that, in graphics, the visual appearance of a tiling
is sometimes more important than its theoretical properties.

Figure [2.1| shows an example for each type of periodicity. Figure de-
picts a periodic tiling based on a single hexagonal tile that periodically tiles the
plane. In Figure on the other hand, we see a cutout from a tiling based
on a set of eight Wang tiles that is non-periodic. The tile set itself, however, is
not an aperiodic tile set because it also admits periodic tilings (for example, by
exclusively using tile b). The two rhombs by Roger Penrose in Figure are
a prominent example for an aperiodic tile set: No matter how we tile the plane
using these tiles, strict periodicity will never occur.

2.2 Tilings in Computer Graphics

In computer graphics, methods based on tilings date back to early days where
tiles appeared in the form of sprites in hardware-accelerated 2D graphics [LB09].
Although strictly periodic, they already fulfilled an intent similar to the non-
periodic corner tilings we are interested in, i.e., to save memory and give the
appearance of being a much larger portion of the same content.

Non-periodic tilings were not introduced to computer graphics until 1997
when Jos Stam [Sta97] utilized a set of Wang tiles [Wan61] for texture synthe-
sis. Wang tiles are square tiles with color-coded edges that must have matching
edge colors in order to form a valid tiling (see Figure[2.1(b)). They can be consid-
ered the predecessor of corner tiles and will be discussed in more detail when we
introduce corner tiles.



Other non-periodic tilings used in graphics include Penrose rhombs [Pen78]
and polyominoes [Gol65]. They were mainly used for generating spatially uni-
form point sets [ODJ04} [Ost07], which has also become a prominent application
scenario for Wang tiles [SCM00, [HDKO01},[CSHD03}, KCODL06]. We will take a closer
look at these methods when we discuss our own approach in Chapter 4, On
the other side of the spectrum Craig S. Kaplan investigated the computer-aided
generation of tilings for geometric art and ornament [Kap02]]. A comprehensive
overview over tile-based methods in graphics is given by Lagae et al. [LKF*08].

Some of these tiling concepts extend naturally to higher dimensions. Lu et
al. [LEQ*07] and Peytavie et al. [PGGM09], for instance, use three dimensional
Wang or corner cubes for the synthesis of complex volume data while Lagae and
Dutré [LD06c] use corner cubes for the synthesis of Poisson-sphere distributions.
Most results of this thesis do generalize to higher dimensions, too, but overall
the scope of applications for three or higher dimensional tilings is limited. Tile
sets typically grow exponentially with dimension and constructing tile interiors
in e.g. three dimensions is a lot more difficult than in two dimensions. This thesis
solely concentrates on the 2D case where the application of a tile-based method
is most beneficial [LKE*08].

2.3 Corner Tiles

Corner tiles are unit-square tiles with color-coded corners. They tile the plane by
placing them without gaps or overlaps such that neighboring tiles have match-
ing corner colors. If we allow C colors for the corners, there can be at most C*
distinct tiles because the tiles are not allowed to be rotated or reflected. We will
see in Chapter [3|that this is a desirable property for typical computer graphics
problems.

Corner tiles were developed concurrently by Ng et al. [NWT*05] and Lagae
and Dutré [LD06a] as an alternative to Wang tiles. Corner tiles address the corner
problem of Wang tiles: Due to their edge coloring, Wang tiles only guarantee
continuity of a tile’s content with respect to its horizontal and vertical but not
its diagonal neighbors. This often leads to continuity artifacts and is the main
reason why corner tiles are preferred over Wang tiles in computer graphics by
now [Lag07, PGGM09,SD10a].

To define corner tiles more formally, let T be a finite set of corner tiles and let
€ ={0,1,...,C—1}betheset of C > 2different colorsin T. As the tiles have four
corners, T can contain at most C* tiles. These tiles can be uniquely identified by
their corner color combination or by a tile index 1, i.e., they can be represented by
C-ary numbers with four digits (c;);_, or by the decimal integers 0,1,..., C*—1.
The two representations are connected by common radix conversion, i.e.

3
i= Z cj(i)Cj and ¢j(i) = (i/C)) mod C (2.1)
j=0
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Figure 2.2: [(a)] The complete corner tile set over two colors. [(b) A valid tiling
using this set.

for 0 < j < 3. In addition to the enumeration scheme, we sometimes denote the
corners based on common compass directions Cpw, Csw, Cse, and cpe. Figure
shows all corner tiles over two colors and a valid tiling using this set. We call
corner tile sets that contain all corner tiles over C colors complete.

2.4 Corner Tilings

How can we arrange corner tiles such that they form a valid tiling, i.e., a tiling
where tiles have matching corner colors? There are several requirements for
such a tiling algorithm:

1. The algorithm should be efficient.
2. The algorithm should generate tilings that are non-periodic.
3. The algorithm should generate tilings that do not show local repetitions.

Why are these aspects important? Efficiency is important because the tiling algo-
rithm forms the part of any tile-based method that is performed online. (Recall
Figure[1.1]) If the algorithm would not be efficient, the application of a tile-based
method would probably not be advantageous in the first place. In particular,
the algorithm should be compatible to the parallel nature of graphics hardware.
The second requirement is important because we generally want to hide the tile-
based nature of the generation process as much as possible. Generating tilings
that are non-periodic ensures that we minimize artifacts stemming from global
tile repetitions. The third requirement is more subtle and depends on the ap-
plication. Many tile construction procedures associate each corner color with
specific content such that repetitions of a corner color directly translate to ar-
tifacts in the synthesized results. Thus, we equally want to minimize artifacts

10
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Figure 2.3: Two tiling approaches. [(a)| Tiling by placing corner tiles one by one in
scanline order. [(b)] Tiling by assigning colors to an underlying integer lattice.

stemming from local color repetitions. We will examine each of the following
tiling algorithms more closely with respect to these three requirements.

Algorithmic Approaches

Cohen et al. [CSHD03] proposed a straightforward tiling algorithm for Wang tiles
that naturally translates to corners tiles. Tiles are placed in scanline order such
that neighboring tiles have matching corner colors (see Figure [2.3). Each tile is
chosen randomly among those tiles with a matching corner color combination.
Such a scanline approach fulfills our second requirement since choosing tiles
randomly prevents strictly periodic tilings. A general deficit of this approach,
however, is that it does not allow local tile evaluations: A tiling has to be gener-
ated in its entirety in order to evaluate a single tile of interest. A better way is to
align tile corners to the integer lattice points which have been assigned a color
¢ € C. This way, tiles are implicitly defined by the resulting corner color com-
binations and can be evaluated locally [Wei04,[LD06a]. This approach is captured
by a function h that maps lattice points to colors, i.e.

h:N; — €.

We call h the color distribution function. Tiling algorithms based on such a color
distribution function are called direct tiling algorithms (in contrast to the afore-
mentioned scanline algorithm). In the following, we consider different types of
color distribution functions for such a direct tiling algorithm and analyze the
types of tilings they produce.

Stochastic Tilings

An analogue way to produce non-periodic tilings using a color distribution func-
tion is to generate a random integer at each lattice point and then map this inte-
ger to the set of corner colors €. This can be achieved by building h upon stochas-
tic hash functions that ensure that corners shared by neighboring tiles obtain the

11
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Figure 2.4: Stochastic tiling over 6 colors.

same colors despite being evaluated independently. An example would be a hash
function of the type

h'(x,y) = P[(P[x mod n] +y) mod n]

where P is a permutation table of size n. The resulting color distribution func-
tion is then given by h : (x,y) — h'(x,y) mod C. Although, strictly speak-
ing, a permutation table-based color distribution function behaves deterministic,
we call these tilings stochastic tilings: They produce (pseudo-)random tilings in
the same sense linear congruential generators produce (pseudo-)random num-
bers [LD06b]. Figure[2.4|shows a stochastic tiling of size 16 x 8 over C = 6 colors.

Tilings based on stochastic hash functions are efficient and produce non-
periodic tilings since the random distribution of corner colors ensures a random
distribution of tiles. Hence, they fulfill the first two of our stated requirements.
The problem with stochastic tilings, however, is that this random distribution of
corner colors doesn’t impose any restrictions on the local distribution character-
istic of each corner color. Distributing colors randomly means that there can be
larger clusters of corners with the same color which results in unsatisfactory lo-
cal repetitions. We will analyze these defects more carefully after the discussion
of the following deterministic procedure.

Deterministic Tilings

We now turn to a novel color distribution function which does not involve ran-
domness and is fully deterministic. In particular, we are interested in a more
uniform distribution of colors in the following sense:

1. If a lattice point has a color c, it should be less likely that one of its neigh-
bors has the same color c. This avoids local clusters of the same color.

2. The overall distribution of a color c¢; should be similar to the overall distri-
bution of any other color cj. This ensures that no color is favored in any
part of the tiling space.

12



3. The distribution of all colors should not be regular but maintain a pseudo-
random appearance. This helps to avoid easily recognizable global pat-
terns of repetition.

These requirements parallel the characteristics of some point sequences of low
discrepancy [Nie92]. These sequences unfold incrementally in such way that not
only the total sequence up to n points offers favorable uniformity properties but
also the subsets of a consecutive partition of these points. Of particular interest
are radical-inverse based sequences which are intrinsically stratified and can be
utilized to pseudo-randomly enumerate the integer lattice.

In the following, we make use of such a low-discrepancy sequence to design
a color distribution function that yields a more uniform distribution of corner
colors than stochastic hash functions. We do this by mapping the enumeration
indices of the low-discrepancy sequence to the set of corner colors. This way,
we are able transform the uniformity properties of the considered sequence to a
deterministic color distribution function h.

Discrepancy

First of all, we briefly specify in which sense the utilized point sequences are
uniform. Let X = Xo,...,Xn_1 be a sequence of n points in the s-dimensional
unit cube I, Let B = {[0,v1] x [0,v,] X ... X [0,vs]}, vi € [0,1), be the family
of box-shaped subsets of I° anchored at the origin. Let X1, be the characteristic
function of a set b € B and A(b) its volume. Then the measure

n—1

D(B.X) = sup =Y xo(x) = Ab)

(2.2)

1=0

is called the star-discrepancy [Nie92]. It can be interpreted as the worst error pos-
sible if the points of sequence X are utilized to approximate the volume of any
box in B. A sequence X is said to be low-discrepancy if D% (X) € O(log® n/n).

Scaled Halton Sequence

Among many low-discrepancy sequences, we found the unscrambled Halton se-
quence [Hal60] to be a suitable choice for our purposes. It is based on the van der
Corput radical inverse function [vdC35] which maps integers to the unit interval
by mirroring the integer’s b-adic expansion around the radix point. The radical
inverse function is

¢op: Ny — Qnilo,1) (2.3)

o0 o0
i=> aci)b* = > ai)b !
k=0 k=0
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Figure 2.5: The first 72 points of the scaled Halton sequence induce a stratifica-
tion grid of size 8 x 9. Dividing the point sequence on the basis of these indices
yields a uniform subdivision of the grid cells.

where ay (i) denotes the (k + 1)-st digit of the integer i € Ny in base b. The
two-dimensional Halton sequence is then defined as

Xi = (o, (1), dv,(1))

for relatively prime bases by and b,. A typical choice for the bases are the first s
prime numbers for s dimensions, that is we choose b; = 2 and b, = 3.

Decomposing the integer into n least significant digits 1 € {0,...,b™—1}and
the remaining most significant digits h by i = b™h + 1 reveals the stratification
property [Kelo4]:

Pp(i) = Pu(b"h+1) =b""du(h) + dp(l)

& b"op(i) = ¢dp(h)+b"dp(l),
—_—
€lo1) €lo,b™)

i.e., the least significant digits select the stratum and the most significant digits
determine the point inside that stratum. Thus, if we multiply the point coordi-
nates of the Halton sequence by powers of their respective bases the scaled Halton
sequence

xi{ = (b1 d2(1), by2ds(i))

induces a stratification grid of size b]"' x b}'? with exponents n,,n, € Ny. Fig-
ure 2.5/ (left) shows an example where the first 72 points induce a stratification
grid of size 2% x 32, While the sequence unfolds, the grid cells get enumerated by
indices i’ € {0,...,b;"'b;? — 1} as shown for the first 10 indices.

Deterministic Color Distribution Function

One key observation is that the scaled Halton sequence enumerates the intrinsic
stratification grid and hence delivers a pseudo-random permutation of the grid
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Figure 2.6: Deterministic tiling based on the Halton sequence over 6 colors.

coordinates. Another key observation is that if we partition the Halton points
into k subsets of size m by

k—1

{XO, PP 7Xb?1b;271} — U {le, ey X(1+1)m}, k-, m 2 1,
i=0

every subset is of low-discrepancy, too [KG12]. Likewise, we can partition the
total set of grid cells into k subsets on the basis of the Halton point indices i’
and assume each subset to still be of good uniformity. Figure|2.5|(right) shows an
example for k = 2 where the first m = 36 cells constitute the first subset (blue)
and the second 36 cells the second subset (gray).

These observations let us construct a color distribution function for corner
tilings by considering the mapping

s/

1
heloy) e {WCJ '

Here, we choose the base exponents n; and n, such that b{"* > Ty +1and b)’? >
Ty + 1 for a tiling of size T, x T,,. Since the Halton sequence is deterministic we
call the resulting tilings deterministic as well. Figure (2.6 shows a deterministic
tiling of size 16 x 8. Although it is subtle in this example, note the more uniform
distribution of colors compared to Figure 2.4}

Implementation

Currently, the deterministic color distribution function is not efficient because
the enumeration indices i’ are derived in a “forward” manner from the original
integers 1 and not directly from grid coordinates (x,y). We would have to com-
pute every Halton point up to the first one that falls into cell (x,y). To solve this
problem, we utilize a connection between the index of a Halton point and the
coordinates of its grid cell discovered by GriinschloR et al. [GRK12]. It is based on
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the aforementioned decomposition of the index into least and most significant
digits where the least significant digits identify the stratum of the corresponding
Halton point. They can be derived from grid coordinates (x,y) by

_ X _
L= ¢b11 <b“1> and 1, = ¢b21 (bgu) ,
1 2

where ¢! is the inverse of (2.3) and reverses the digits again to yield the enu-
meration index. With the least significant digits at our hand, the index i’ can be
reconstructed using the Chinese remainder theorem [CLRS09,/GRK12] as

+/

i’ = (Lipymy + lpimy) mod (p1p2) (2.4)
= (P2(11m1 mod p1) + p1(lym; mod Pz)) mod (p1p2). (2.5)

Here, the pi = by * denote width and height of the stratification grid and the
my their modular multiplicative inverses (p; ' mod p,) and (p, ! mod p;). To
illustrate the full method, we include a GLSL example implementation as part of
a tile-based texture mapping application in Appendix[A.1}

Evaluation

Let us review this approach with respect to efficiency, periodicity, and local color
repetitions.

An implementation based on Equation (2.5) makes our deterministic tilings
as efficient as tilings based on stochastic hash functions with a time complexity
that is constant per lattice point. This allows realtime applications for e.g. tile-
based texture mapping at several hundreds frames per second.

Can these deterministic tilings be considered non-periodic? In theory, yes,
because the radical inverse function is a bijection [Kel03]. Equation illus-
trates that, in practice, the method is bounded by the largest intermediate result
that fits into the available integer range. In fact, our transformation in is
motivated by fact that the products l;p,m; and l,p;m; in quickly exceed a
typical 32-bit integer range. Due to the transformation the largest subtotal be-
comes max (p2Z,pZ,2p1p2) since l;, m; < p; and l,, m; < p,. For example, for
square tilings this prevents periodicity until sizes of approximately 463412,

To analyze local repetitions, we consider both a quantitative and a qualitative
analysis. For the quantitative analysis, we look at the local 8-neighborhood of
each corner and count the number Ny of identically colored neighbors. Since
we can expect an average iW(Ny) = 8/C for stochastic tilings, smaller values
indicate fewer local clusters:

Method C= 2 3 4 5 6 7 8
Stochastic 3.9970 2.6653 19981 1.5981 1.3328 1.1421 0.9993
Deterministic  3.4967 2.1548 1.5566 1.1536 0.8032 0.6968 0.6058
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These results are averages over 100 tilings of random sizes up to 4096 x 4096.
For the qualitative analysis, consider Figure[2.7|which lists several stochastic
and deterministic tilings of size 30 x 30. Tile borders have been removed to em-
phasize the color distribution across the underlying integer lattice. If we review
these tilings with respect to our uniformity criteria (see page(12) we see that

1. Clusters of the same color are largely absent for the deterministic tilings
while they can be quite prominent in the stochastic case, for example in
the bottom center for C = 3. This behavior is a consequence of the low-
discrepancy property of the underlying Halton sequence.

2. Each color shows comparable distribution characteristics across the tiling
space as illustrated by the individual color charts below each tiling. This
behavior is a consequence of the low-discrepancy property of the subsets
of the partitioned Halton sequence.

3. The color distributions are irregular and maintain a pseudo-random ap-
pearance. This is a consequence of the radical inverse function which (a) is
bijective and (b) is applied to two coprime bases which prevents apparent
correlations between both dimensions.

One may observe a slight directional pattern in the deterministic distribution
of colors. We will see in Chapter [3| that for an application like tile-based tex-
ture synthesis these artifacts are a lot less severe than the local color clusters of
stochastic tilings.

Semi-Stochastic Tilings

As a last color distribution function, we consider a mixture between the pre-
sented stochastic and deterministic approaches. The idea is to locally vary the
probability for each corner color and therefore allow a user-influenced distribu-
tion of corner colors. Because each color will be associated with specific con-
tent, this yields a direct way to influence the synthesized result. We will see in
Chapter[3|that this allows tile-based texture synthesis to include globally varying
textures.

We first define a random field on the unit square that provides the probabil-
ity for each corner color at each point in the square, i.e., each point x € [0, 1]
is assigned a discrete random variable X, that can take values from our set of
colors C. Let pc = Pr({Xx = ¢}),c € @, and let

C—1
o 1 --- C-—-1
P:= , =1
(Po P1 - Pc—1 > ;Pc

denote a discrete probability distribution (probability mass function) [Ros02].
With this definition the user may provide a color probability function p : [0, 1]> — P
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Figure 2.7: Corner color distribution of several stochastic and deterministic tilings of size 30 x 30.
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Figure 2.8: Semi-stochastic tiling over 6 colors.

where P denotes the function space of all probability mass functions, P = {P :
G — [0,1]] ZE;OI Pc = 1}. Thus, p assigns each point x an individual discrete
distribution Py.

To determine a corner color at a given lattice point (x,y) we now sample p
and the random variable at this lattice point. Hence, the corresponding color
distribution function h is given by

X
h:(x’y)HX[p<T +1’Ty+1>}
x Yy

where T, x T, denotes the size of the desired tiling. We call these tilings semi-
stochastic.

Figure[2.8|shows a semi-stochastic tiling of size 16 x 8. The underlying color
probability function p is depicted to the right where probabilities map to gray
values. (Black corresponds to 0, white corresponds to 1.) In this example, pairs of
corners share the same probability distribution which makes them equiprobable.
Note that the probabilities sum up to one everywhere.

Let’s take a closer look at semi-stochastic tilings in terms of the three require-
ments efficiency, periodicity, and local color repetitions.

In contrast to tilings based on a stochastic hash function, each corner color
is not computed directly but by sampling the random variable at a given lat-
tice point. Sampling a discrete random variable, however, can be done very effi-
ciently in constant time using the method of “aliases” [Wal77, Knu97]. Obtaining
consistent results for corners that are shared by neighboring tiles can be guar-
anteed by utilizing an (x, y)-dependent random number generator similar to the
one underlying stochastic hash functions. This leaves us only with the additional
burden of having to store the color probability function p which is often given in
discrete form in practice. Overall, semi-stochastic tilings can be generated with
similar efficiency to stochastic and deterministic tilings.

The problem of local or global repetitions—and thus periodicity—cannot be
answered in general for semi-stochastic tilings because it largely depends on
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the given color probability function. For example, if a color probability func-
tion makes every corner color equiprobable everywhere, the tilings behave like
stochastic tilings and share their properties in terms of global and local repeti-
tions. If a color probability function is constant (i.e., yields the same single color
everywhere), a tiling using a single tile is enforced, and repetition artifacts are
severe. One could try to design a color probability function in such a way that
repetitions become less likely but this is cumbersome as long as there is some
degree of randomness involved.

Pruned Tile Sets

The color probability function in Figure[2.8|has been chosen to demonstrate that
semi-stochastic tilings show an interesting behavior when looking at the neces-
sary number of tiles. In this example, there are no tiles that contain both one of
the outer corner colors (dark blue, dark gray) as well as one of the inner corner
colors (light blue, light gray). This means we can reduce the size of the necessary
tile set based on the range of tilings that can occur. Since we know that a corner
color c; will never be adjacent to a corner color c;, we are able to omit all tiles
with this pair of colors. We call such tile sets pruned. If an application only works
with one or a few color probability functions it is likely that pruned tile sets will
be sufficient for this application. This is an advantage of semi-stochastic over
stochastic and deterministic tilings.

Identifying non-adjacent pairs of colors is difficult for continuous color prob-
ability functions but simple for discrete ones which can be quickly scanned for
possible corner color combinations. Assume for now that we know that there are
k pairs of corner colors that will never share a tile. If we remove all tiles with
these k pairs, how many tiles do the pruned tile sets still contain?

Let k denote the number of such mutually-exclusive pairs of corner colors.
From the inclusion-exclusion principle we know that the number of tiles without
an s-element set S C C of corner colors equals

> : (2.6)
=c' -y @ (—1)(C—D)*.

=0if s>4

We see that the second summand disappears for s > 4 since (C — 1)* is a poly-
nomial of degree 4 [GKP94]. This reflects the fact that there can be no tile with
an (s > 4)-element set of corner colors when we have tiles with just four cor-
ners. Subsequently, let My denote the total number of tiles without k mutually
exclusive pairs of corner colors. Again, the inclusion-exclusion principle tells us
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K\C 2 3 4 5 6 7 8 9
0 16 81 256 625 1296 2401 4096 6561

1 2 31 146 431 994 1967 3506 5791
2 - - 60 261 716 1557 2940 5045
3 - - - - 462 1171 2398 4323
4 - - - - - - 1880 3625

Table 2.1: Sizes of pruned corner tile sets when all tiles with k mutually-exclusive
pairs of corner colors can be omitted from the corresponding complete corner
tile sets over C colors.

that
LIgyN
My = Z <p) (_1)p+1 NZp'
p=1

Using (2.6), we can transform this to

k
e (e (s 0 corve

= C* — 2k(6C? —12C — 6k + 13),

for 0 < k < [C/2]. This means, pruned tile sets are of size [Ty| = My if k
pairs of corner colors can be omitted. Table [2.1|gives an impression of the sizes
of several pruned tile sets. For example, for k = 1 pruned tile sets are 61.7%,
43,0%, 31.0% and 23.3% smaller than complete tile sets for C = 3, 4,5, 6.

2.5 Conclusion

We defined corner tiles and showed that they can tile the plane by deriving a
tiling from a colored integer lattice. Efficient tiling algorithms are then given by
color distribution functions which map lattice coordinates to the set of corner
colors. We presented two such color distribution functions as alternatives to the
stochastic hash functions in the literature. The first alternative is a determinis-
tic tiling algorithm based on the Halton low-discrepancy sequence. We showed
that this deterministic method yields a more uniform distribution of corner col-
ors across the tiling space and derived an efficient implementation. The second
alternative are semi-stochastic tilings which generalize the concept of stochastic
tilings and locally vary the probability for each corner color. We saw that these
tilings can be controlled by a user-defined color probability function and that
complete tile sets can be pruned by excluding tiles based on pairs of colors that
will not be adjacent. In the next chapter, we will see that both of these methods
are of value for tile-based texture synthesis.

21






3

Tile Construction for Textures

In the preceding chapter we saw that there are efficient algorithms to tile the
plane using corner tiles. By filling the tiles with content that is otherwise expen-
sive or difficult to generate, we can gain a significant increase in efficiency. This
chapter is interested in filling corner tiles with texture images, i.e., images that
mimic the surface properties of complex real-world objects. As surface proper-
ties are often difficult to describe mathematically, textures in the form of specif-
ically prepared images (e.g. edited photos) are one of the most important tools
to increase the realism in computer generated images. And because they are
image-based, they are typically able to capture a broader range of surface prop-
erties than textures that can be generated procedurally [EMP*03].

Texture images, or simply textures, can be characterized as Markov random
fields in order to distinguish them from general images [Li09, WLKT09]. From
this perspective, they can be viewed as realizations of stochastic processes that
are both local and stationary. An image is local if the properties of a certain pixel
only depend on the properties of its neighboring pixels. An image is stationary if
we observe it through a window of fixed size and find its appearance similar no
matter where we place this window. We will be mostly interested in stationary
textures in this thesis but will consider globally varying (non-stationary) textures
as a possible application scenario for semi-stochastic tilings.

Generating texture images in a (semi-)automatic way is known as texture syn-
thesis, and generating a large texture out of small (often real-world) examples
is called example-based texture synthesis. Example-based texture synthesis in turn
can be roughly categorized as pixel-based or patch-based [WLKT09]. Pixel-based
methods generate the output texture pixel by pixel from the provided exemplar.
Patch-based methods, on the other hand, copy larger portions of the exemplar to
the output texture and then try to merge these patches without apparent seams.

In the broad field of example-based texture synthesis, tile-based approaches
stand out as one of the fastest methods to synthesize textures. They form a
special case of patch-based texture synthesis where the tiles form patches that
seamlessly fit together. The construction of the tiles themselves, however, can
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take place pixel-based or patch-based, depending on the utilized method. In this
thesis, we build upon existing work in patch-based texture synthesis to fill the
interiors of our corner tiles. We present a variant of the tile construction process
by Lagae and Dutré [LD06a] and use it to evaluate the influence of our tiling algo-
rithm. We will see that tiling the plane using our deterministic tiling algorithm
readily improves the final result.

What makes this form of tile-based texture synthesis so attractive is that most
of the computational effort is shifted to a preprocessing phase during which the
tiles are constructed. Only the underlying tiling process is performed online
which makes the final synthesis very fast. Moreover, it is easy to integrate into
a standard graphics pipeline for which we include an implementation that com-
plements our tiling algorithm from the previous chapter. We will also see that
our semi-stochastic tilings are compatible with this approach. This allows us to
generate globally varying textures in a similar way.

3.1 Related Work

Tile-based texture synthesis was first considered by Stam [Sta97] and later ex-
tended to example-based texture synthesis using tiles by several researchers
[CSHDO03, NWT*05, [LD06a]. Cohen et al. [CSHD03] merged different patches of
an input texture by constructing Wang tiles in correspondence to their edge col-
ors and then generated stochastic tilings. Wei [Wei04] improved this stochastic
algorithm by allowing random access to tiles which is important for tile-based
texture mapping [LN03, [Lef08]. Lagae and Dutré [LD06a] translated the approach
of Cohen et al. to corner tiles, and Fu and Leung [FL05] extended the tiling mech-
anism to arbitrary surfaces. All of these approaches only consider stochastic
tilings.

Cohen et al. [CSHDO03|] were also the first to consider tile construction from
multiple input textures to generate globally varying textures. The example-
based synthesis of such textures was also considered by several pixel- and patch-
based approaches [Ash01, MZD05] but their performance is not comparable to a
tile-based approach. Neyret and collaborators [NC99, [LN03] considered to con-
trol tilings based on a probability distribution for manually created textures and
small patterns (textons), as did Lu et al. [LEQ*07] for volume illustrations but
these techniques do not directly translate to example-based texture synthesis.
Texture synthesis can also be viewed as an optimization problem where output
pixels are chosen according to an energy function that respects neighborhood
similarities [KEBK05] but such a method is not suited for realtime synthesis.

As mentioned, pixel- and patch-based approaches are often incorporated into
tile-based texture synthesis during tile construction [NWT*05, [LD06a, DZP07].
For example, we will use a variant of the “image quilting” technique by Efros
and Freeman [EF01]] to merge different patches inside our tiles. We will briefly
explain this technique in the next section.
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Figure 3.1: The corner tile construction process for textures. (Left) Selecting
example patches from several source textures. (Right) The selected patches are
arranged and merged to construct a specific corner tile.

3.2 Tile Assembly

We want to use corner tiles for example-based texture synthesis where the out-
put texture should look like a larger portion of an exemplary input texture. In
many cases, a single input texture is already sufficient for believable synthesis
results but the results generally get better if more than one exemplar image is
considered. If these exemplar images stem from the same source (e.g. a large
grass texture), we want the increase in variety to be reflected in the resulting tile
set. Similarly, if these exemplar images stem from related but different sources
(e.g. two grass textures where one also shows flowers), we want these sources to
be represented equally in the resulting tile set.

We extend the construction process by Lagae and Dutré [LD06a] to respect
these requirements. Figure (left) shows the first part: For a corner tile set
over C colors, C patches are evenly selected from the given source texture(s).
Most of the time, we have a one-to-one relationship between source textures
and corner colors but if there are fewer or more than C source textures, the as-
signment is performed in a round-robin fashion. A patch is a square cutout of a
given source texture at usually a quarter of the source’s size. The patches’ lo-
cations are chosen randomly within the boundary of their corresponding source
textures. The gray patch, however, is a unique patch for each tile whose location
is chosen during the second part of the construction process. Since we don’t want
to favor one of the source textures in the resulting tile set, the source texture for
this gray patch may be obtained by interpreting a tile’s corner color combination
as a discrete probability distribution. When sampled, this distribution yields the
value of the predominant corner color with a higher probability. For instance, in
the example, it is twice as probable that the gray patch is chosen from the input
texture corresponding to the red corner than from the other two.

One important aspect of this selection process is that it leads to a balanced
representation of the source textures across the resulting tile set. Another aspect
is that there is a direct connection between corner colors and synthesized out-
put, i.e., distributing corner colors roughly corresponds to distributing texture
content. For semi-stochastic tilings, this means that if we increase the proba-
bility of a desired corner color for a specific tiling region, then this leads to a
proportional increase of the probability that the associated texture content will

25



dominate this region after synthesis.

Figure (right) shows the second part of the construction process where
the selected patches are arranged and merged to construct a specific tile. It con-
sists of five steps:

(a) Identify the tile’s corner color combination.

(b) Arrange the associated patches according to this combination.

(c) Cut out the parts of the patches that reside inside the tile’s boundary.
(d) Cover the tile with a unique gray patch.

(e) Merge the gray patch with the other patches.

Note that because, in step (b), each corner patch is centered at the corresponding
tile corner, tiles with matching corner colors will later show texture content that
seamlessly fits together. We could omit the gray patch and directly try to merge
the corner color patches but results are generally better when each tile offers
parts of the input textures that is unique to this tile. This increases the overall
variety of texture content over the whole tile set.

To merge the patches, we use a variant of the “image quilting” method by
Efros and Freeman [EF0T]. The method consists of two steps:

1. Find a cover patch (gray patch) that best fits the selected corner patches.

2. Find the minimum error cut across the overlapping region of each corner
patch with the chosen cover patch.

Both steps consider the mean squared error (MSE) between PahA

grayscale versions of the relevant patches to estimate their
matching quality. Since tile construction is performed off- %Zg?
line and because computing the matching quality is reason-
ably fast, the first step can often be done by an exhaustive e

search that finds the cover patch with the globally minimal

MSE. The second step requires a bit more care and is illustrated in the inset fig-
ure. For a corner patch A, the overlap region is defined as the intersection of A
with the gray patch G, confined to the quadrant of the disk centered in the tile.
(The restriction to the disk prevents the merging process to replace texture con-
tent close to the tile’s corners.) Within this overlap region, the minimum error
cut is computed by dynamic programming: start from one of the region corners
and follow the minimum error in the local neighborhood of the current pixel.
For the upper left corner in the example and a current pixel (x,y), this neigh-
borhood is given by the pixel locations (x — 1,y), (x — 1,y — 1), and (x,y — 1).
The neighborhoods for the other corners follow analogously.
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The following figure shows an example result of the whole tile construction
process where a complete corner tile set over two colors has been automatically
generated from the input texture to the left:

In this example, the input texture is of size 128 x 128 so the resulting tile textures
are of size 64 x 64.

3.3 Tile Packings

We typically want to use such a texture tile set within a standard graphics pipeline
where it should support all of the features of a conventional (non tile-based)
texture, in particular mip-mapping and linear- or higher-order filtering [SM09].
Naively arranging all tiles on a single texture is problematic because this leads to
noticeable artifacts along tile boundaries [Wei04]. Lefebvre presented a
general solution to this problem using texture arrays where each tile gets sepa-
rately mip-mapped and filtered. In our case, however, many tiles share the same
texture information across their borders which allows a more elegant solution:
arranging all tiles of the tile set according to a so-called packing and using this
single packing texture as a conventional texture [Wei04].

A packing is an arrangement of tiles that is toroidal and uses each tile in a
given tile set exactly once (compared to a regular tiling where we use multiple
copies of a tile), and the problem of finding one is called the tile packing prob-
lem [Wei04, LD06d, LD0O7]. For complete sets of Wang tiles, the tile packing prob-
lem was solved by Wei [Wei04]. Here, solutions for higher dimensional packings
can be derived from one-dimensional packings (using Wang dominoes). There
is even a closed-form expression for the position of a specific tile in the pack-
ing. Finding a tile packing for corner tiles is a lot more difficult because of their
stricter matching constraints. The fact that corner tiles also constrain their di-
agonal neighbors prevents a solution analogous to Wang tiles. For complete tile
sets, solutions up to C = 4 were found by Lagae and Dutr’e [LD06d,[LD07]. In this
section, we present packing solutions up to C = 4 for so-called compact tile sets
which are useful for tile-based texture mapping in offline renderers.

Compact Tile Sets

Figure [3.2 shows such a tile set over C = 3 colors. This tile set uses all possible
combinations of colors for only three of the four corners. Then, for each of these
C? base tiles, there are exactly two alternatives for the remaining corner. Such
tile sets contain 2C3 tiles and are called compact. Compact corner tile sets are
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Figure 3.2: A compact corner set over three colors where each corner color ap-
pears equally often.

interesting because they are smaller than complete tile sets but still allow non-
periodic tilings via a stochastic scanline algorithm (see Section[2.4).

While there is only one complete corner tile set for a given number of colors
C, there are several compact tile sets. This is because there is no restriction on
the choice of colors for the remaining corner. For example, it can be the same
two colors for all tiles or a new choice of two colors for each tile individually. The
only exception is the case C = 2 for which the compact tile set is identical to the
complete one. We saw in the previous section that corner colors will eventually
be associated with specific content. For this reason it is preferable to have com-
pact tile sets where each corner color (and thus content) appears equally often.

We want to characterize this class of compact tile sets more precisely. Let j
enumerate the C* base tiles and let without loss of generality c,e be the corner
that can only choose between two colors. Let S; denote this subset of two colors
for tile j, so for each tile c,e € S; but cpw, Csw, cse € €. Over all subsets S;, each
corner color should then appear exactly 2C3/C = 2C? times:

VeeC: Zij(c) = 2C?, (3.1)

where xs denotes the indicator function of a subset S. We call compact tile sets
that fulfill this condition balanced. The compact tile set from Figure [3.2|actually
was such a balanced tile set, sorted in pairs of base tiles.

Tile Packings for Compact Tile Sets

In general, the tile packing problem can be considered a constraint satisfaction
problem which is solvable by combinatorial search methods [CLRS09]. Lagae and
Dutré investigated the packing problem from this angle and employed a
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backtracking algorithm similar to the classic n-queens problem. This approach
greatly reduces the giant search space of C*! possible arrangements and leads
to solutions for complete corner tile sets over two, three, and four colors before
excessive runtimes occur. Solutions for compact tile sets, however, were still
missing. We partly fill this gap with our solutions for compact tile sets over three
and four colors. (Recall that the compact tile set over two colors is identical to
the complete one and so are their packing solutions.)

We saw that compact tile sets differ from complete ones in that they only
contain all color combinations for three of the four corners. Each of these C?
base tiles then possesses two alternatives for the remaining corner. As explained
before, we are particularly interested in solutions for a compact tile set that is
balanced. A desirable side effect is that this further restricts the search space.

A toroidal tiling for all C* tiles of a complete corner tile sets can be achieved
by arranging them in a C? x C? square [LD07]. Since compact corner tile sets
contain only 2C? tiles, a packing for compact tile sets must often be non-square.
For texture mapping, however, it is still preferable to have a solution as close to
a square as possible. We thus searched for packings of size X x Y = 2C* where
without loss of generality Y is the largest integer smaller or equal to |v/2C3 | that
divides 2C? without remainder.

We then employ a backtracking algorithm that places tiles in scanline order
as long as some matching condition holds, and that falls back to the last valid
arrangement otherwise [LD06d].

TILE-PACKING(T, 1)

1 if|T| ==2C3

2 print T // Solution found

3 else

4 foreachjin{o,...,C* —1}\ T

5 if tile j can be placed at position i

6 place tile j at positioniand add jto T
7 TILE-PACKING(T, 1+ 1)

8 clear position i and remove j from T

The search starts by calling TILE-PACKING((), 0). The position i is to be interpreted
in scanline order, i.e., tile coordinates are given by (i mod X,1/Y). T is the set
of tiles that have already been placed. Tiles that are not in T are placed at a
position i only if the matching condition in line [5| holds. We set the matching
condition to

1. Tile j and its neighbors at position i must have matching corner colors, and
2. Balance condition (3.1) holds.

With this condition, we automatically search for both a tile packing and a com-
patible balanced tile set.
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Figure [3.3| shows the solutions we found. For C = 3 the packing is of size
9 x 6 and for C = 4 of size 16 x 8. Note that corner colors match toroidally
and that each color appears exactly 2C? times at a north east corner (or 8C? in
total), that is, the underlying compact set is balanced. (it is in fact the compact
set from Figure ) With these solutions, textures based on compact tile sets
can be filtered as efficiently as textures based on complete tile sets.

When we started the search, it was not clear if there is a packing solution for
compact sets for C > 2, in particular with the balance condition. For C = 2
it takes only a few milliseconds to find all 32 solutions. (The solutions collapse
to a single fundamental solution due to the torus condition.) However, the first
solution for C = 3 already took a few seconds, and the search for C = 4 had to
be performed in parallel and took roughly 144 days of CPU time. Once we had a
solution, many others could be found through rotation and reflection but it was
impossible to count all solutions using the backtracking approach.

3.4 Tile-Based Texture Mapping

Now that we have packing solutions for both compact and complete tile sets,
incoming texture coordinates (t,s) € [0, 1]? have to be mapped to coordinates
(w,v) € [0,1]? in the packing texture. For a tiling of size X x Y and a packing
solution of size W x H, this can be done in several steps:

1. Compute the tile coordinates (x,y) = ([tX], [sY]) and the texture coor-
dinates (u/,v’) = ({tX},{sY}) with respect to this tile.

2. Retrieve the tile’s corner colors and compute its index i by base converting
the corner color combination via Equation (2.1).

3. Look up the coordinates (x’,y’) of tile 1 in the packing solution.
4. Compute the final texture coordinates (u,v) = ((x'+u’)/W, (y’+v’)/H).

Here, {-} denotes the fractional part of a given scalar. To further illustrate the full
method, we include a GLSL implementation in Appendix|[A.1]in combination with
our deterministic color distribution function.

3.5 Evaluation of Tiled Textures

We now look at practical results when using our tiling algorithms from the pre-
vious chapter for example-based texture synthesis. We use the aforementioned
construction process to generate texture tile sets over various numbers of cor-
ner colors and generate large non-periodic textures at runtime using tile-based
texture mapping. In particular, we compare the results for stochastic tilings to
our deterministic tilings using the same sets of tiles.
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Figure 3.3: Tile packings for balanced compact corner tile sets over [(a)| two, [(b)]
three, and (c)| four colors. The solution over two colors was found by Lagae and

Dutré [LD06d].
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Figures [3.4] and [3.5| show several results when synthesizing stationary tex-
tures out of one or more example textures which are depicted below each pair
of results. The results are 10 x 10 cutouts from much larger tilings dynamically
generated on the GPU (for a screenshot, see Figure . The input textures have
aresolution of 128 x 128 pixels, so the cutouts have a resolution of 640 x 640.

The results for stochastic tilings underline that large clusters of the same
corner color can be harmful with respect to texture synthesis: They translate to
local repetitions of texture content. Increasing the number of corner colors from
two to three or four (and thus the number of tiles from 16 to 81 or 256) does not
necessarily improve on this behavior as indicated by the results in Figure[3.5| In
contrast, the deterministic tilings show a more even distribution of corner colors
that is free of color clusters and makes repetition artifacts muss less detectable,
even for C = 2 colors with only 16 tiles. Because the tilings are based on the
same sets of constructed tiles, these improvements stem solely from the better
arrangement of tiles using our method.

Figure [3.6|shows results based on semi-stochastic tilings that generate glob-
ally varying textures. In this case, the example textures were taken from dif-
ferent parts of the same underlying non-stationary texture function. This ap-
proach extends the range of current tile-based methods and yields a rich set of
tiles which can be used to generate large amounts of the same globally varying
texture. The corner colors of the underlying tilings have been distributed ac-
cording to user-specified color probability functions. For example, the bottom
result is based on the 6-color tiling from Figure

Both of the tiling methods generate textures as fast as existing stochastic
tiling methods and run at several hundreds frames per second on graphics hard-
ware. When the utilized color probability functions allow the usage of pruned
tile sets, semi-stochastic tilings also require significantly less texture memory
(40% to 70% less in our examples). Using semi-stochastic tilings, tiles can also
be interactively rearranged in correspondence to a changing color probability
function. In this case, the underlying tile sets have to be complete.

3.6 Conclusion

We showed how corner tiles can be filled with texture content such that tiles
with matching corner colors seamlessly fit together. We discussed a novel selec-
tion process that leads to a balanced representation of multiple example textures
across the resulting tile set. We also described the tile packing problem and pre-
sented solutions for balanced compact tile sets up to four colors. Solutions for
more than four colors remain an open problem, both for complete and compact
tile sets.

We saw that for tile-based texture synthesis, our deterministic tiling method
leads to less severe repetition artifacts than current stochastic approaches. As a
consequence, synthesized textures are of better quality, even when using smaller
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Figure 3.5: Texture synthesis results for corner tilings with three and four colors.
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Figure 3.6: Texture synthesis results for semi-stochastic tilings that generate
globally varying textures.

sets of tiles. Semi-stochastic tilings allow tile-based texture synthesis to be ex-
tended to globally varying textures if the utilized example textures stem from
the same underlying texture function. Both methods can provide efficient tex-
turing in connection with tile-based texture mapping.

Obviously, the final quality of the synthesized textures also relies on the
pixel- or patch-based approach that is employed during tile construction. The
basic algorithm by Efros and Freeman [EF01] was sufficient to generate good re-
sults and analyze the influence of the tilings alone. But we can expect even better
results if we consider a more recent technique [WLKT09].
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4

Tile Construction for Point Sets

We saw that corner tiles are very good at generating large portions of textures
once the tiles have been carefully filled with the appropriate content. In this
chapter, we are interested in filling corner tiles with another type of content:
point sets, i.e., collections of coordinates in two-dimensional space. Point sets
are one of the fundamental signals in computer graphics and are at the core of
any rendering system. This is because photorealistic image synthesis consists of
several sampling problems where the sample positions are either directly given
by or derived from point coordinates. These sampling problems range from im-
age plane sampling, light map sampling, and ray tracing to the evaluation of inte-
grals by numerical approximation [PH10]. In addition, point sets appear in non-
photorealistic rendering, geometry processing, and object distribution tasks.

In general, there is no universal point set that is the perfect match for every
application scenario. For example, while lattice points are acceptable for nu-
merical quadrature, they are generally unacceptable for image plane sampling
because of emerging moiré patterns. And while random points with a guaran-
teed mutual distance are considered excellent for image plane sampling, they
are typically inferior to carefully constructed deterministic points in an integra-
tion setting. Nevertheless, there are two properties that are favorable across
several application scenarios: uniformity and irregularity. A point set is uniform
when the average point density is approximately constant and when there are no
“holes” or “clusters” of points. A point set is irregular when there are no symme-
tries or regular structures in the distribution that may lead to moiré patterns or
other visually distracting artifacts. Satisfying both properties is the main chal-
lenge that sets the search for point sets in computer graphics apart from similar
undertakings in packing theory or statistical mechanics. We will define both
terms more precisely later in this chapter.

Generating point sets that are both uniform and irregular is hard if not im-
possible to do by construction. Deterministic methods based on number theo-
retic considerations (such as the Halton sequence from Chapter [2) come close
but are still far from optimal. Optimization techniques, on the other hand, may
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be able to find favorable point arrangements but only after a significant invest-
ment in runtime. Using a tile-based approach is a solution to this problem: we
can distribute points in an optimized way across several tiles and generate the
full point set later by generating a tiling. If we can ensure that the points are
arranged in such a way that they maintain their favorable properties across tile
boundaries, we benefit from the qualities of an optimized distribution without
having to sacrifice runtime.

This chapter introduces two optimization techniques that fulfill these re-
quirements and produce highly uniform, irregular point sets that are tileable
using corner tiles. The first method is based on capacity-constrained Voronoi
diagrams where each Voronoi cell is of equal size. We will see that the resulting
point sets are particularly suited for numerical integration. The second method
optimizes a given set of points with respect to their mutual distances which
guarantees that no two points are closer than a certain distance. We will see
that these points are particularly good for image plane sampling due to their
properties in the Fourier domain. Both methods yield arrangements that can
be considered uniform and irregular and become efficient in a corner tile set-
ting. Although both methods generalize to higher dimensions, we will solely
concentrate on the two-dimensional case. The benefits of well-distributed points
quickly diminish for higher dimensional integration problems and many prob-
lems such as image plane sampling are two-dimensional problems anyway.

In the following, we first define quantitative measures that allow us to cate-
gorize existing methods when discussing the background of point distributions
in computer graphics in Section[4.2] Sections [4.3|and [4.4 present both of our op-
timization methods without yet considering the distribution across corner tiles.
This is done in the following section which discusses how both methods can be
incorporated into a corner tile construction procedure. We will evaluate the final
point sets in the next chapter.

4.1 Quantitative Measures

We will be mostly interested in points distributed in the 2D unit torus [0, 1)? (the
unit square with periodic boundary conditions), in which the distance between
two points p = (x1,%2) and q = (y1,Y2) is measured using the toroidal norm

2

Ip—allT:= | Y (min{lx; —yil, 1 — xi — yi))2. (4.1)

i=1

This norm is typically preferred over the common Euclidean norm because the
spatial properties of point sets should be preserved when tiled across the domain
of interest, e.g. from pixel to pixel during image plane sampling.

If X denotes a point set containing n := |X| points, the geometrical relation-
ship between those points can be analyzed in terms of their toroidal Delaunay
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triangulation D(X). Since the Euler characteristic of the torus is x = 0, this gives
us fixed values for the number of vertices V, number of edges E, and number of
faces F in D(X):

V=n, E=3n, F=2n, (4.2)

because x = V —E + Fand E = 3F/2 for a toroidal triangulation.

Quantitative Uniformity Measures

We define the following three measures of uniformity for a set of points X:

dy:= min |x—vy|t local mindist,
yeX\{x}
dx := min X — =mind lobal mindist,
X x,yEX,x#y H Y HT xeX x &
_ 1 1
dx ::E Z dy average mindist.
xeX

The local mindist dy is the distance from a point x to its nearest neighbor in X,
the global mindist dx is the smallest separation between any two points in X, and
the average mindist measures the overall spacing of the point set. The advantage
of these measures is that they are general and not geared towards specific appli-
cations (e.g. numerical integration). The average mindist is also used in other
research domains such as ecology where it characterizes populations [CE54].

A point set that is uniformly distributed has both a high global mindist and a
high average mindist: a high dx means that the points do not cluster anywhere
and a high dx means that the points are evenly spaced. The largest mindist is
obtained if the points form a hexagonal lattice [T6t51]: dmax = (2/v/31)/2. We
generally report the distance measures relative to this maximum value

dx == dx/dmax, Ox:= dX/dmaXy SX = aX/dmax-

Note that this normalizes 6, i.e., dx € [0, 1].

Quantitative Irregularity Measure

To quantify irregularity, we make use of a measure from packing theory and
chemical physics called bond-orientational order [KTT00, TTDOO]. It is defined as

xeX [yeNy

where Ny is the set of neighbors of point x in D(X), 6x_, is the angle of the edge
(“bond”) x — y with respect to some arbitrary but fixed reference axis, 1 is the
imaginary unit, and k € N. The normalization constant 1/2E is derived from the
fact that each edge is visited twice during the summation.
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Figure 4.1: The computation of the bond-orientational order considers the geo-
metrical neighborhood of a point x in the Delaunay sense.

Figure [4.1]illustrates how to interpret {x: it measures the similarity of the
polygon around a point x to a perfect k-gon and sums up these local measures for
all points in X. A good choice for k is k = 6, measuring the similarity to a hexagon
locally and the similarity to the hexagonal lattice globally. One important argu-
ment for this choice is that the hexagonal lattice is the global maximum/mini-
mum for many optimization methods for point distributions, e.g. Lloyd’s algo-
rithm [LIo82]]. In general, bx € [0,1] while Yy, = 1 for a perfect hexagonal
lattice. In order for a point set to be irregular, {px should not be too large; in our
experience smaller than 0.6.

4.2 Background

Irregular sampling has been introduced to computer graphics in the form of
stochastic sampling to solve the aliasing problem [DW85]. Using a Poisson dis-
tribution as sample points turns coherent aliasing such as moiré patterns into
featureless noise. Cook [Co086] observed that a Poisson distribution with the ad-
ditional constraint that no two points are closer than a certain mindist reduces
this noise while still preventing strong coherent aliasing. These distributions
became known as Poisson-disk distributions and were conjectured to be the op-
timal distributions for image plane sampling [Mit91]. One supporting argument
was that imaging problems in nature show similar solutions, e.g. the receptor
distribution in the retina of primates [Yel83].

The reference algorithm to generate Poisson-disk distributions is the dart
throwing algorithm [Co086]. Sample positions are generated randomly but are
accepted only if 5 > t for all points and some threshold value t > 0. Since
the algorithm is slow and not guaranteed to converge for a given number of
points, many alternative methods have been proposed over the last 25 years.
Cook himself proposed to roughly approximate the distribution by randomly
shifting (“jittering”) regular grid points by a small offset. Later methods aimed
at accelerating the original dart throwing algorithm without compromising its
properties, either by incorporating acceleration data structures such as a uni-
form grid [Jon06, DHO6, WCE07, Wei08), [GM09, EDP*11, [K11] or by opting for a
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Generation Method dx 5x Px Note

Random 0.010 0.464 0.365
Jittered Grid® 0.049 0.586  0.363
Kernel Density? (t = 1) 0.426  0.864  0.436 I
Electrostatic Halftoning® (p = 0.002) 0.741 0.882  0.460 I
Dart Throwing® and variants? 0.750  0.805 0.367
Best Candidate® and FPSf 0751  0.839  0.396
Capacity-Constrained 0.764  0.891  0.519 I
CVT Centroids? and

methods using Lloyd’s algorithm” 0.795 0939 0.804 LR
Electrostatic Halftoning® 0.826 0.952 0.877 LR
Boundary Sampling! 0.829  0.862  0.400
Low-Discrepancy/ 0.903 0920 0.663 D,R
Farthest-Point Optimization 0.930 0.932  0.426 I

[Coo86] ° [Fatil] < [SGBW10] ¢[LD08] ¢ [Mitoi] f [ELPZ97] ¢ [DEG99] " [Llos2] ! [DHO6] - [GK09]

Table 4.1: Comparison of methods for uniform and irregular point sets with
respect to the global mindist Sx, the average mindist §x, and the bond-
orientational order \x. The notes mark (D)eterministic methods, (I)terative
methods, and methods that converge towards (R)egular arrangements.

tile-based approach [SCM00, HDKO01},|[0Dj04} LD06a, KCODLO06), 0st07]. A survey by
Lagae and Dutré reviews most methods existing up to 2008 [LD08].

We distinguish two main categories of algorithms: non-iterative algorithms
that generate point sets in one pass and iterative algorithms that improve the
arrangement of points in multiple passes. The relative mindist dx is a good mea-
sure to compare the uniformity of the methods while the bond-orientational or-
der V¥ is a good measure to compare their irregularity. Table [4.1] lists global
mindist, average mindist, and bond-orientational order for existing methods that
generate uniform but irregular point sets. The methods presented in this chapter
are listed as well and are set in italics. Since most methods are non-deterministic,
all measures are averages over an ensemble of 10 point sets containing 4096
points each. Figure[4.2]allows the visual inspection of some point sets.

Non-Iterative Algorithms

First, we observe that the classic dart throwing algorithm generates both uni-
form (6x > 0.75) and irregular points (x < 0.6). The approximation by a jit-
tered grid, however, is poor since points may get arbitrarily close together. The
maximum mindist that is achievable by dart throwing is limited to 6x = 0.77.
In general, this behavior does not change substantially for other methods that
imitate the dart throwing procedure [LDO08].

A non-iterative algorithm that is not based on a modified Poisson distribu-
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8x=0.087, Px=0.356 8x=0.750, Px=0.362 0x=0.867, Px=0.399 8x=0.780, Px=0.505
Jittered Grid® Dart Throwing® Boundary Sampl. Capacity-Constrained

8x=0.808, Px=0.819 8x=0.845, Px=0.815 8x=0.875, Px=0.662 8x=0.930, Px=0.424
CVT Centroids? El. Halftoning® Low-Discrepancy’ Farthest-Point Opt.

Figure 4.2: Gallery of example points sets along with their mindist dx and their
bond-orientational order {x. The number of points per set is 1024. The labeling
follows Table[4.1] The electrostatic halftoning example was computed in a non-
toroidal space.

tion was introduced by Eldar et al. [ELPZ97]. Given a few randomly distributed
seed points, the algorithm deterministically adds points according to the “far-
thest point strategy” which chooses the location with maximum distance from all
current points. Voronoi diagrams [OBSC00] can be used to obtain an O(nlogn)
implementation of this algorithm. In general, the results are comparable to dart
throwing with similar values of uniformity and irregularity. The algorithms by
Mitchell [Mit91]], Laine et al. [LSK¥07], and Kanamori et al. [KSN11] can be con-
sidered equivalent to this approach.

Most non-iterative methods have difficulty achieving a mindist larger than
approx. 0.75 because they cannot move points after they have been placed. This
causes later points to be placed in suboptimal positions and is the main reason
why iterative methods have been investigated in the first place. Exceptions are
the boundary algorithm by Dunbar and Humphreys [DH06] with x ~ 0.83 and
low-discrepancy point sets optimized for a high mindist [GHSK08), [GK09] which
can achieve mindists up to dx ~ 0.90. In general, these point sets are very uni-
form but not irregular (also see Figure[4.2).

Iterative Algorithms

To improve the uniformity of Poisson-disk point sets, some methods employ an
iterative algorithm by Lloyd [LIo82], commonly known as “Lloyd’s method”. The
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algorithm iteratively constructs the Voronoi diagram of the given point set and
moves each point to the centroid of its Voronoi cell. Unfortunately, since the
global minimum of the underlying energy function is a hexagonal lattice, an in-
crease in uniformity (dx ~ 0.8) is typically paid for with an increase in regularity
(Px = 0.8). Stopping the method before the arrangements become too regular is
sometimes possible but in general unsatisfactory [LD08]]. We will discuss Lloyd’s
method in more detail in the next section.

Two alternative iterative methods have been proposed in recent years. The
method by Schmaltz et al. [SGBW10] models the points as charged particles with
repelling forces. Simulating the movement of these particles results in uniform
point distributions with a mindist comparable to Lloyd’s method (6x ~ 0.83),
but it is also prone to producing locally hexagonal structures (bx ~ 0.88). The
same paper proposes a variant that breaks up these regularities by incorporating
random movements, but this variant also decreases uniformity (6x ~ 0.74).

The method by Fattal [Fat11] uses a similar approach where the point distri-
bution is drawn from a Boltzmann-Gibbs statistical model of interacting parti-
cles. Controlling a temperature value allows to trade uniformity for irregularity
and vice versa but achieving good values for both is difficult (6x = 0.43 when

Px ~ 0.44).

4.3 Capacity-Constrained Points

The main challenge for iterative methods that generate uniform and irregular
point sets is that they should reliably converge towards an equilibrium state that
does not become regular again. Achieving such behavior in an automatic and re-
liable way is surprisingly difficult. The problem lies not so much in the require-
ment that the points should be uniform (most methods in Table have at least
a high average mindist) but in keeping them irregular. Our first method achieves
this by introducing a constraint to the method by Lloyd [LIo82] that computes
centroidal Voronoi tessellations.

Centroidal Voronoi Tessellations

First, we briefly define centroidal Voronoi tessellations for the space Q := [0,1)?
with the toroidal norm . A Voronoi tessellation V(S) is a partition (tessellation)
of the given space induced by a set of points S C Q, often called generator
points or sites. The space is tessellated into n := |S| distinct regions Vj, each
corresponding to a site s; € S. Each region consists of all points x that are closer
to the region’s site s; than to any other site s; € S, 1 # j. A Voronoi tessellation
is called centroidal if each site s; coincides with the centroid z; of its Voronoi
region. The centroids (centers of mass) are given by

B Jv, xp(x) dx

= 7fvi Ak (4.3)

Zi
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where p(x) > 0 is a given density function defined on Q. Centroidal Voronoi
tessellations (CVTs) are related to the energy function

n—1

es,v) =y J o(x)[lx — sil|2 dx, (4.4)

i=0 " Vi

which is minimized only if V(S) is a CVT [DFG99,(0BSC00].

For the current discussion, let us fix the density function to be constant,
p(x) := 1. This provides a clearer picture of the centroid in the context of the
first three moments of each Voronoi region V; [SGB07]:

A ::J dx area (zeroth moment), (4.5)
Vi
1
Zi =— J x dx centroid (first moment), (4.6)
AiJv,
1
L = J x ® xdx inertia (second moment), (4.7)
idv

1

where u ® v denotes the outer product of two vectors u,v € Q. The tensor
I; describes the inertia (second moment of area) of the Voronoi region V; with
respect to the origin. Using the parallel axis theorem [LL76], we can derive the
inertia tensor with respect to the corresponding site s; as

= [z 02+ AJFE, — A @ Ay,
Here, E, denotes the identity matrix and A; := s; — z;. This allows us to express

the energy function £(S, V) as the sum of the Voronoi region’s second moments
with respect to their sites [SGB07]:

n—1 n—1
&(S,V) = ZJ |x — si||3 dx = Ztrace(l{). (4.8)
i=0 Vi i=0

This relationship gives us a more intuitive understanding of why CVTs approx-
imate the hexagonal lattice: The second moments become minimal for Voronoi
regions that approximate circles and the densest arrangement of circles in two
dimensions is given by the hexagonal lattice [T6t51].

Lloyd’s Method

Lloyd’s method [LIo82] generates CVTs from an input set of sites S by performing
the following steps:

1. generate the Voronoi tessellation V(S) of S,

2. move each site s; to the centroid z; of its Voronoi region Vj,
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8x=0.190, Px=0.279 0x=0.190, Px=0.279 8x=0.391, Px=0.326 0x=0.739, Px=0.297
Input Iteration 0 Iteration 1 Iteration 5

° . . .

0x=0.806, P x=0.380 0x=0.896, Px=0.661 0x=0.967, P x=0.951 8x=0.967, Px=0.951
Iteration 10 Iteration 30 Iteration 60 Output

Figure 4.3: Evolution of a random point set with 12 points when optimized via
Lloyd’s method [LIo82]. The arrangement approaches a hexagonal lattice and
thus becomes regular again. The black dots mark the original points, the blue
dots mark the centroids of their Voronoi regions.

3. if the new sites in S meet some convergence criterion, terminate; other-
wise return to step 1.

This algorithm can be considered a gradient descent minimization of the energy
function & which has the partial derivative 0€ /0s; = 2A;(si —zi) [DEG99]. Thus,
the common termination criterion is ||[VE(S,V)|| < € for a small e > 0. Each
iteration has a time complexity of O(n logn) [OBSC00].

Figure [4.3]illustrates Lloyd’s method for a random set of 12 sites. It can be
seen that the sites effectively repel each other and that the total distribution
of sites gets more uniform. It is this implicit repelling force that is the main
reason for the application of Lloyd’s method for sampling tasks in computer
graphics, not the fact that the method generates CVTs (there are faster methods,
e.g. [LWL*09, YWLATT]). In particular, CVTs itself are undesirable since they are
often not irregular (see the later iterations in Figure . In fact, for the bounded
2D case, Téth [T6t01] proved the famous conjecture by Gersho [Ger79] that in
globally optimal CVTs Voronoi regions indeed approach regular hexagons.

Capacity Constraint

Our algorithm is based on the method by Lloyd but constrains it such that it
converges to an equilibrium state with an irregular distribution of sites. The
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constraint we use is built upon the concept of capacity [AHA98]. Again, let S
denote a set of n sites that induce a Voronoi tessellation V(S) in the space Q
with the density function p. The capacity c; of a site s; € S with respect to its
Voronoi region Vi € V is defined as

ci = Jv p(x) dx.

i

We say that the distribution of sites adapts optimally to the density function p if
the capacity of each site fulfills the capacity constraint

ci=c* = J p(x) dx, (4.9)
Q

which intuitively gives each site the same “importance” in the distribution. For
p(x) := 1 and the toroidal space Q = [0,1)?, the constraint reduces to

i.e., each Voronoi region must be of equal size 1/n. We will see that this property
is useful in a numerical integration setting.

Capacity-Constrained Voronoi Tessellations

An arbitrary distribution of sites S and its Voronoi tessellation V(S) usually do
not fulfill a given capacity constraint for all sites. Instead, one has to compute
a capacity-constrained Voronoi tessellation [Bal09]. A capacity-constrained Voronoi
tessellation (CCVT) is a special Voronoi tessellation (power tessellation) that not
only depends on a set of sites S but also on a corresponding set of non-negative
capacities C. In our case (4.9), all elements c; € C are assigned the same value
c* such that the CCVT fulfills the condition >_(A; — ¢q)* = 0.

To compute CCVTs, we utilize a discrete-space algorithm by Balzer and Heck
[BHO8] that is based on a discrete variant of the CVT energy function (4.4):

m—1
E(P,A) =) |lpi—AlpdllF,
i=0

where the density function p is represented by a finite set P of m sample points
and A : P — S is a function which assigns each point in P to a site in S. The
ordinary Voronoi tessellation would be formed by assigning each point in P to
the closest site in S without any constraint; the capacity-constrained Voronoi
tessellation is formed similarly but assigns each site s; exactly ¢; € C points, in
our case ¢* = m/n. Sites then iteratively swap assigned points as long as this
minimizes &(P, A). Faster variants of this basic algorithm have been presented
by Li et al. [LNW*10] and Frey et al. [FSG*11].
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Figure 4.4: Evolution of a random point set with 12 points when optimized via
our capacity-constrained method. The optimization converges to an equilibrium
state with a distribution that is irregular. The resolution of the discrete space is
exaggerated in this example for illustrative purposes.

Capacity-Constrained Method

Both Lloyd’s method and CCVTs minimize the same energy function, but they
do so in very different ways. Lloyd’s method minimizes & by relocating the sites
until the ordinary Voronoi tessellation yields a local energy minimum. CCVTs
minimize & by optimizing the assignment A and keeping the sites fixed. We can
simultaneously optimize the assignment A and the location of the sites S if we
generate centroidal CCVTs by using a series of steps similar to Lloyd’s method:

1. generate the capacity-constrained Voronoi tessellation V(S, C) of S using
a set of capacities C conforming to our constraint (4.9),

2. move each site s; to the center of mass of its points p; € P, A(pi) = si,

3. if the new sites in S meet some convergence criterion, terminate; other-
wise return to step 1.

These steps generate centroidal capacity-constrained Voronoi tessellations (CC-
CVTs). Since the sites coincide with their centroids in this capacity-constrained
CVT, we call the final distributions of sites capacity-constrained as well. The ter-
mination criterion we use is ||[VE(P,A)|| < € for a small e > 0. Each iteration
has a time complexity of O(mn) [LNW*10].
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Figure 4.5: [(a)] Development of the quantitative measures during the capacity-
constrained optimization of 1024 random input points. [(b)| Histogram of the per-
centage of k-gons in the final Voronoi tessellations. |(c)|Normalized Voronoi re-
gion areas in the final Voronoi tessellations.

Comparison with Lloyd’s method

Figure [4.4] gives an example using the same random set of sites that was op-
timized by Lloyd’s method in Figure First, it becomes apparent that the
method converges very fast. For example, the sites are already evenly distributed
after the first iteration because the capacity constraint immediately enforces
Voronoi regions of equal size (5x = 0.679). The constraint also leads to a fi-
nal arrangement of sites that can be considered irregular (\x = 0.448) and that
does not resemble the hexagonal arrangement generated by Lloyd’s method. Fig-
ure[4.5(a)]underlines this by depicting the development of the quantitative mea-
sures during the optimization of a random set with 1024 sites. To minimize side
effects from a limited resolution m of the discrete space, we chose m very high
(such that m/n = 16384) for most results in this thesis.

One explanation for the effectiveness of our constraint can be derived from
the energy function which we saw becomes minimal for Voronoi regions
that approximate circles, i.e., when the sites form a hexagonal lattice. Since the
hexagonal lattice does not fit into the unit torus for an arbitrary number of sites,
CVTs approach the global minimum only locally by large patches of hexagons
with a few non-hexagons in between (see Figure[4.6|left). Furthermore, a region
that forms a k-gon is less optimal with respect to € than a region that forms a
(k + 1)-gon with the same area. Since our capacity constraint enforces Voronoi
regions of the same area, the energy can no longer benefit from area differences
between k-gons and (k + 1)-gons and thus it becomes less likely that larger
patches exclusively consist of hexagons (see Figure[d.6|right).

These observations are supported by the other two plots in Figure [4.5] for
which we analyzed an ensemble of 10 distributions with 1024 sites each. Fig-
ure[4.5(b)|shows a histogram of the percentage of k-gons present in the final (or-
dinary) Voronoi tessellations and Figure shows a boxplot of their (normal-
ized) areas. The CVTs consist of 87.8% hexagons, 6.1% pentagons, and 6.1% hep-
tagons. The pentagons are significantly smaller than the hexagons which in turn
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Figure 4.6: Color-coding the Voronoi regions reveals the distribution of k-gons
across the tessellation. Regions with k < 6 are filled blue, regions with k > 6 are
filled black, and hexagonal regions are filled white.

are significantly smaller than the heptagons. The CCCVTs, on the other hand,
show a distribution of k-gons that is more heterogenous with 69.6% hexagons,
15.5% pentagons, 14.7% heptagons, and a small fraction of quadrilaterals and oc-
tagons. Their areas are more uniform as well, with those of the pentagons and
heptagons closer to 1. Note that these areas are measured with respect to the
ordinary Voronoi tessellation of the given sites, not with respect to the capacity-
constrained Voronoi tessellation (for which the areas are identical).

In the given examples, the initial distribution of sites was always irregular
(random, to be exact) with {x = 0.365. This irregularity is largely maintained
during the optimization using the capacity-constrained method but almost fully
disappears when Lloyd’s method is used. We have found this to be case for all
input point sets that are irregular. On the other hand, if the initial points are
(even partly) regular, both methods tend to leave these areas undisturbed, often
because the corresponding Voronoi regions are already beneficial with respect
to the energy €. In particular, some configurations are invariant to both meth-
ods because they already represent CVTs with Voronoi regions of equal size, e.g.
points from the Cartesian grid or Rank-1 lattices [Dam09]:

Such configurations represent local minima of the energy function € but are typ-
ically not stable, i.e., they are unlikely to emerge from the optimization of irreg-
ular input sites [LWL*09]). We will further evaluate the final point sets in the next
chapter.
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4.4 Farthest-Point Optimization

Our capacity-constrained method generates irregular point distributions that are
very uniform but their global mindist is not much higher than previous methods
(recall Table[4.1). Methods explicitly based on repelling forces [SGBW10, [Fatii]
are able to achieve higher mindists but only for the price of (re-)emerging reg-
ularities. In fact, it was conjectured by Lagae and Dutré [LD08] that dx < 0.85
in order to avoid regular configurations. The method presented in this sections
shows that this conjecture is not correct.

Our new optimization procedure is explicitly designed to improve a point
set’s global and average mindist. It does so by iteratively enlarging the minimum
distance between points monotonically until convergence. Since it can be inter-
preted as an iterative version of the farthest point strategy introduced by Eldar et
al. [ELPZ97]], we call the point sets farthest-point optimized and our method farthest-
point optimization (FPO). We will see that the resulting point sets have excellent
spectral properties and a significantly higher minimum distance than previous
methods. And unlike other iterative methods, our procedure does not converge
towards (locally) regular patterns. In addition, the close connection between
farthest points and Delaunay triangulations permits a very efficient implemen-
tation that operates in continuous spaces and requires only O(nlogn) per full
iteration. The principal is similar to the void-and-cluster method in halfton-
ing [Ulio3b), [ABS99] where a binary mask is optimized in discrete space to gen-
erate uniform halftone dither arrays.

In the following, we first present the main algorithm and discuss its runtime
complexity and convergence. We then discuss a variant of the main algorithm
that runs in only O(n) per full iteration and gives results of the same quality.

Main Algorithm

The basic algorithm is very simple: Each step takes a single point from a given
point set X and attempts to move it to a new position that is as far away from
the remaining points as possible, i.e., the farthest point. One full iteration consists
of moving each point in X once. As we will see, this iteration scheme converges,
and each full iteration increases the average mindist dx.

In general, the farthest point fy for a set of points Y is the center of the
largest circle that can be placed in the domain under consideration without cov-
ering any of the points in Y. This largest empty circle can be computed efficiently
using the Delaunay triangulation of Y, D(Y), where it corresponds to the largest
circumcircle of the triangles in D(Y). An equivalent formulation in terms of the
Voronoi diagram of Y was used by Eldar et al. [ELPZ97].

In our case, to move a point x, we need to inspect the Delaunay triangulation
(DT) of the remaining points X\{x}. Instead of calculating the full DT for each
point x, we build a full DT once and update it dynamically during the iteration:
Before we move x, we remove it from the DT, inspect the remaining triangles to
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Figure 4.7: lllustration of one full iteration applied to 5 points in the unit torus.
The grayscale image in the background represents the distance map of X\{x;},
the dotted circle is the largest empty circle, and the highlighted triangle the cor-
responding face in the Delaunay triangulation of X\{x;}.

find the farthest point f, and finally reinsert f as a new point into the DT. The full
algorithm can be formulated as follows:

FARTHEST-POINT-OPTIMIZATION(X)
1 D = DELAUNAY(X)

2 repeat
3 foreach vertex x in D
4 (f’ Tmax) = (X: dx)
5 DELAUNAY-REMOVE(D, x)
6 foreach tin D
7 (c,t) = center and radius of t’s circumcircle
8 if 1 > Thax
9 (f, Tmax) = (c,7)
10 DELAUNAY-INSERT(D, f)

11 until converged
12 return vertices of D

We make sure that a point is only moved to a new position if its new local mindist,
namely ryax, would be larger than its old local mindist d; otherwise, we simply
reinsert it at its old position.

Figure |4.7|illustrates how this procedure successively distributes five points
X = {xo, ..., X4} in the unit torus. The first panels show how the target position
for the first point x, is chosen: We search for the triangle in D(X\{x,}) that has
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Figure 4.8: Farthest-point optimization of a random point set with 1024 points.
Both the global mindist 5x and the average mindist dx increase rapidly during
the optimization. Still, the point set remains irregular (x = 0.416 after the last
iteration).

the largest circumcircle and move x, to the circle’s center. The distance map in
the background indicates that this is indeed the farthest point. We proceed in
the same way for x4,..., x4 as shown in the remaining panels. The distribution
has become much more uniform after only one full iteration.

It is easy to see that this farthest-point optimization always converges and
yields arrangements with a high average mindist 5x. The key observation is that
moving a point x to the farthest point of X\{x} maximizes, by definition, its local
mindist 0. In the worst case, no better position can be found and x remains at its
old position. However, because dx o _ 8y, the average mindist must increase
during a full iteration, so the optimization can never return to a previous point
distribution or get stuck in cyclic configurations. We stop the iteration as soon
as the increase of dx falls below a threshold €, i.e., as soon as SQQW - 5>°<1d < €.
This must happen eventually since dx is bounded for points in the unit torus.
Convergence is fast enough that we can use the machine precision for e.

For the global mindist we have 6x = min 64, so we are only guaranteed that
it is non-decreasing. It is easy to construct point sets where 6x remains constant
for several iterations. But dx is strictly increasing as long as all points are still
moving. For randomly distributed point sets we found this to be always the case.

In this case of random seed points, farthest-point optimization converges to-
wards distributions with a mindist x & 0.93. A few intermediate steps during
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the optimization of 1024 points are shown in Figure Since convergence be-
comes slower as we approach the maximum, we have found it useful to stop the
iteration earlier. In our experience, a threshold of 6x = 0.925 is a good compro-
mise between high-quality results and reasonable computation times. We will
study the convergence empirically later on.

Even though most input point sets converge towards irregular arrangements,
some stable configurations are regular, for example points from the hexagonal
lattice or a honeycomb pattern. In these cases, no point can be moved to a posi-
tion that is “farther” away from the remaining points. This is similar to the be-
havior of the Voronoi-based optimization techniques from the previous section
but with one important difference: If there are defects in the regular arrange-
ments, FPO quickly breaks up the regularity. One reason is that the method can
move points over longer distances than the previous techniques since it operates
globally, not locally. In this sense, FPO doesn’t actively randomize its input, but
it amplifies irregularities. This intuitively explains why the algorithm does not
converge towards regular arrangements.

Runtime Complexity

We now consider the runtime complexity of the inner loop in our pseudo-code
FARTHEST-POINT-OPTIMIZATION. If we denote the average degree of a point (i.e.,
its average number of neighbors in the triangulation) by g, the runtime of lines
4-10 can be broken down as follows:

4: O(g) since we have to inspect the neighbors of x to determine d.
5: between O(g) and O(g?), depending on the algorithm used [Dev02].
6-9: O(n) since there are 2n triangles in D(X) as shown in Equation .

10: O(g) if we already know the triangle that contains the point. Otherwise,
between O(y/n) and O(logn), depending on the algorithm used to locate
the triangle [DLM04].

We assume that g = O(1) which is the expected complexity for bounded 2D
Delaunay triangulations [Dev02]. In this case, the overall runtime is O(n) for a
single movement and O(n?) for a full iteration. Two algorithmic improvements
allow us to push this down to approximately O(nlogn) per full iteration.

First, we can speed up the process of inserting the farthest point f into the
triangulation. In our experience, f almost always lies either inside the trian-
gle t corresponding to the largest empty circle, or at least close to it. (This could
already be seen in Figure[4.7]) Since we know t from lines 6-9, locating and in-
serting f can be done in approximately constant time.

Second, we can speed up the search for the farthest point by using a binary
search tree to keep track of the largest empty circle. This lets us find the far-
thest point in O(logn), but increases the time required for lines 5 and 10 also to
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O(logn), since structural changes to the triangulation must be reflected in the
tree. Taken together, this means that the running time is dominated by the tree
operations, and the time required for a full iteration is O(n logn).

Local Farthest-Point Optimization

This final O(n logn) algorithm is efficient, but since the tree operations must be
intertwined with the update operations of the Delaunay triangulation, its imple-
mentation is a little involved. As an alternative we can use the following variant
that only requires O(n) per iteration but converges more slowly.

The idea behind this modified algorithm is to simplify the search for the far-
thest point. When moving a point x, we do not attempt to determine the largest
empty circle but contend ourselves with a large empty circle in the neighbor-
hood of x. In other words, instead of checking the circumcircle of all triangles
in D(X\{x}), we restrict the search to a subset T C D(X\{x}) that is in some
sense “close” to x. If the expected size of T is independent of n, each point can
be moved in constant time.

There are many strategies for choosing T. In
our experience, the choice does not influence
the quality of the resulting point sets, only the
number of iterations required until convergence.
Here, we discuss the one that has proven to be a
good compromise between iteration and conver-
gence speed: we include in T all triangles that are
incident with the neighbors of x in D(X) (see em-
bedded figure). Since there are O(g?) such trian-
gles, moving a single point can indeed be done in
constant time. We will refer to this variant as local FPO, in contrast to the global
FPO that constitutes the main algorithm.

Because our convergence argumentation only relies on the fact that the local
mindist doesn’t decrease, it remains valid in the case of the local FPO. However,
since the local FPO moves points only locally, the mindist increases more slowly.
Nevertheless, both methods converge towards point sets that are indistinguish-
able. In fact, once the points are sufficiently well distributed, local and global FPO
are equivalent, since the farthest point of X\{x} is almost always located inside
the hole that results from removing x. This suggests a hybrid algorithm that uses
the global O(nlogn) algorithm for the first few iterations and then switches to
the more efficient O(n) variant. In practice, this has turned out to be the fastest
variant of farthest-point optimization.

Convergence

We studied the convergence speed of both global and local FPO empirically. The
result is illustrated in Figure Both §x and dx increase rapidly at first and then
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Figure 4.9: Average convergence of 5x (solid lines) and 8x (dashed lines) for ran-
dom sets of 512, 4096, and 32768 points, from left to right. The inset magnifies
the region 0.75 < dx < 0.95.

converge more slowly towards a maximum around 0.932. The achieved maxi-
mum isn’t the same for each set but consistently falls between 0.93 and 0.933.
For both algorithms, the three curves for the average mindist (dashed lines) lie
almost on top of each other. This means that convergence of dx is mostly in-
dependent of the number of points, which underlines how effectively FPO dis-
tributes the points. The convergence of the global mindist (solid lines) depends
more strongly on the input size, especially for the local variant.

In order to set these curves in context, the following table compares the
number of iterations required to obtain well-distributed point sets with Lloyd’s
method and our capacity-constrained method from the previous section.

Method 0x = 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925

[LIo82] 70 113 425% - - - - -
CCCVT method 111 357*% - - - - - -
Local FPO 3 4 6 8 14 27 64 352
Global FPO 1 2 2 3 4 6 13 118

5)( = 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925

[LIo82] 2 3 4 5 8 13 29 122
CCCVT method 2 2 2 4 10 50 414* -
Local FPO 1 1 1 1 1 2 3 10
Global FPO 1 1 1 1 1 2 2 6

The results are averaged values from optimizing 10 sets of 4096 random points.
The asterisk indicates that the mindist could not always be achieved. It becomes
apparent that both FPO variants are far more effective than the other methods at
spreading out the points: A handful of iterations are typically sufficient to obtain
highly uniform point sets. The bond-orientational order of the final points of
both local and global FPO is 1{px = 0.426, i.e., they can be considered irregular.
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4.5 Tile Assembly

Both our optimization methods are able to generate very uniform, irregular point
sets but since they are iterative methods, they often have to be combined with a
tile-based technique to make them beneficial. Corner tiles are a very good basis
for this because of their simple shape and their ability to force continuity with all
their neighbors (horizontal, vertical, and diagonal). There is one remaining chal-
lenge, however: How can we distribute the points across the corner tiles in such a
way that they maintain their properties (capacity constraint, high mindist) even
over tile boundaries? Furthermore, do the optimization methods still work with-
out limitations despite possible boundary restrictions?

This section addresses these questions by presenting variants of both opti-
mization methods that are compatible with a tile construction process for corner
tiles. To put things in perspective, we briefly discuss previous tile-based meth-
ods for point distributions. We then sketch the construction process we use for
our corner tiles. This is followed by the discussion of the variants of both op-
timization methods, the capacity-constrained approach and farthest-point opti-
mization.

Background

Tiling a set of precomputed sample points across a given domain has already
been considered in the early days of computer graphics by Dippé and Wold [DW85].
Although this approach is general and suits every point set in the unit torus, the
strict periodicity is harmful for some applications where it yields artifacts such
as moiré patterns. We will see this in more detail when we evaluate the spectral
properties of the generated point sets in the next chapter.

Shade et al. [SCM00] were the first to consider aperiodic tilings of point sets.
They generate points across Wang tiles using an extended dart throwing algo-
rithm that only accepts points if the Poisson-disk criterion is not violated across
all possible neighbors. Hiller et al. [HDKO1], Cohen et al. [CSHD03], and Kopf et
al. [KCODLO06] presented variants of this approach that employed Lloyd’s method
instead of dart throwing. The methods suffer from artifacts near tile boundaries,
not least because of the multiple constraints along tile boundaries [LD08]].

In 2004, the first method based on a type of tiles other than Wang tiles was
presented by Ostromoukhov et al. [0ODJ04]]. They used a hierarchical tiling based
on Penrose rhombs where point positions are given by the vertices of the tiling
and used correction vectors based on Lloyd’s method to hide regularities. Ostro-
moukhov later introduced an improved method based on polyominoes [0st07]
that shows less artifacts but that still relies on Lloyd’s method.

Lagae and Dutré [LD05a, [LD05b] were the first to consider explicit construc-
tion processes for distributing points across square tiles. They identified edge
and corner regions on Wang tiles that should be partly shared among all tiles in
the set, and interior regions that should be unique for each tile. This approach
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gave them better control over the quality of the final distributions, in particu-
lar in terms of artifacts near tile boundaries. An extension for corner tiles was
presented in 2006 [LD06al] which we adopt and discuss in more detail in the fol-
lowing. Li et al. [LLLFO8] presented a variant of this construction process that
allowed rotation of corner and edge regions. Both Lagae and Dutré and Li et al.
generate pure Poisson-disk distributions, optionally followed by Lloyd’s method.

Construction Process

In order to fill corner tiles with well-distributed point sets that seamlessly tile
the plane, one has to pay special attention to the tile boundaries. Points along
these boundaries should be well-distributed with respect to all possible neigh-
bors. This means in particular: points close to tile edges should fit all possible
horizontal and vertical neighbors, and points close to tile corners should fit all
possible horizontal, vertical, and diagonal neighbors. At the same time, each
tile should contain as many points as possible that are unique to this tile as this
lessens potential artifacts from repetitions. These observations are respected in
the construction process of Lagae and Dutré [LD06a] which we briefly recapitu-
late here.

First, corner tiles are dissected into three types of re- \/i\—/i\\jid
gions: corner regions, edge regions, and interior regions. T
Corner regions and edge regions are shared among tiles
while interior regions are unique to each tile. Each tile is
constructed out of these regions according to its corner color
combination (see embedded figure). The shape of each re-
gion is derived from the desired spatial properties of the final point sets. Here,
a desired mindist d is a good criterion because it ensures that points in differ-
ent edge regions don’t influence each other. This leads to corner regions that
are regular octagons with edge length d and edge regions that are rectangles of
height d and width 1 — (1 + v/2)d.

Since corner tiles have C corner colors, there will be C distinct corner oc-
tagons, and since corner tiles are not allowed to be rotated, there will be C? dis-
tinct edge rectangles for each orientation (horizontal and vertical), i.e., 2C? edge
rectangles in total. The number of interior regions equals the number of tiles in
the tile set, e.g. C* for complete tile sets.

Figures to illustrate the full construction process for each tile. In
this example, the final tiles should contain n = 64 points each.

First, the C corner octagons are constructed (see Figure [4.10). This involves
generating a well-distributed point set of n points in the unit torus and simply
cutting out the points that fall within the corner octagon.

With the corner octagons at hand, we can construct the edge rectangles by
first placing the corresponding corner octagons (see Figure[4.11). The remainder
of the domain is then filled with additional points such that the point density
remains constant for the given number of points n.. Only these additional points
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are then optimized; the corner points remain fixed. The additional points are
also not allowed to enter the corner octagons. Again, we cut out those points
that fall within the edge rectangle.

Finally, we can construct the full tile by first arranging corner octagons and
edge rectangles according to the tile’s corner color combination (see Figure|4.12).
The tile interior is then filled with as much additional points as is needed to have
exactly n points inside the tile’s boundary. Again, only these additional points
are optimized while not allowed to enter the corner and edge regions. The final
tile is constituted by the points that fall within the tile’s boundary (including
those from the corner and edge regions). Since potential neighboring tiles share
the “other” halves of the corresponding corner octagons and edge rectangles,
their point sets fit seamlessly across their boundaries.

This construction process is simple enough to potentially work with vari-
ous methods to distribute points across corner, edge, and interior regions. But
while the construction of the corner octagons doesn’t impose restrictions on the
utilized generation method, the construction processes of the edge and interior
regions are disallowing parts of the domain. In addition, some points have to
be held fixed during the generation of the additional points while still influenc-
ing their placement. Generating points under these restrictions is comparatively
easy with an extended dart throwing algorithm [LD06¢| LLLF08] because the orig-
inal algorithm is rejection-based anyway and as such can easily incorporate re-
gions that are prohibited. In the following, we discuss how both our optimization
methods are able to work under these restrictions, too, while not compromising
their qualities in a substantial way.

Tiled Capacity-Constrained Points

Again, we want to optimize a given set of points X containing n := |X| points in
the unit torus. However, this time m < n points in X are assumed to be fixed
in the sense that they are not allowed to move from their initial positions. We
assume without loss of generality that the fixed points are the first m points in X.
In addition, let D C [0, 1)? identify the region of the unit torus that the non-fixed
points are not allowed to enter. We call this region the disallowed region. We are
then interested in optimized points X under the restriction

xie€D,0<i<m and xi€Dm<i<n. (4.10)

We use the following steps to compute capacity-constrained points under this
restriction.

1. generate the capacity-constrained Voronoi tessellation V(X, C) of X using
a set of capacities C conforming to the capacity constraint (4.9),

2. for each movable point x;, m < i < n, compute its center of mass z,

(a) ifz; € D, move x; to zi,
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(a) (b) (© (d)

Figure 4.10: Constructing a corner octagon involves optimizing a point set over
the unit torus and then cutting out the octagon with edge length d.

@) ) © @

Figure 4.11: Constructing an edge rectangle involves (a) placing the two corre-
sponding corners, (b) filling the unit torus with additional points, (c) optimizing
those additional points, and (d) cutting out the rectangle.

(a) (b) (©) (d)

Figure 4.12: Constructing the full corner tile involves (a) arranging the corner
octagons and edge rectangles according to the tile’s corner color combination,
(b) filling the tile interior with additional points, (c) optimizing those additional
points, and (d) cutting out the final tile.
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Figure 4.13: The complete corner tile set over two colors filled with ny = 64
capacity-constrained points.

(b) otherwise, compute the point of intersection y; of the line segment
X1z with D that is closest to z;, and move x; to yi,

3. if the new points in X meet some convergence criterion, terminate; other-
wise return to step 1.

These steps are a restricted variant of our capacity-constrained method from Sec-
tion[4.3] We use the same termination criterion as for the unrestricted method.

Note that we compute the capacity-constrained Voronoi tessellation for all
points in X but only move the non-fixed points with an index m < 1 < n. Also
note that we only accept the centroid as the new position for a point if the cen-
troid is outside the disallowed region D. Otherwise, we move the point to the
intersection point of the line segment X;z; with D that is closest to the centroid.
Such an intersection point must exist because in this case x; ¢ D but z; € D.
For complex disallowed regions (e.g. consisting of many non-connected com-
ponents) there may be multiple intersection points in which case choosing the
closest may lead to abrupt point movements across parts of D but for the “well-
behaved” disallowed regions of the presented construction process, this is not
an issue. We also didn’t have a single case where the algorithm did not converge
although we cannot guarantee that this holds for arbitrary choices of D.

Figure shows an example set of corner tiles over two colors where each
tile was filled with ny = 64 capacity-constrained points using the aforemen-
tioned construction process. The desired mindist d was set to an average value
for capacity-constrained points at a normalized value of 0.75 (recall Table [4.1).
We will see that point sets resulting from tilings with such a set of corner tiles
show similar properties to point sets directly generated by the original capacity-
constrained method.

Tiled Farthest-Point Optimized Points

Similarly, the following variant of FARTHEST-POINT-OPTIMIZATION allows us to
generate farthest-point optimized points under the restriction (4.10).
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Figure 4.14: The complete corner tile set over two colors filled with ny = 64
farthest-point optimized points.

RESTRICTED-FARTHEST-POINT-OPTIMIZATION(X, D, m)

1 D = DELAUNAY(X)
2 repeat

3 foreach vertex x; in D withi > m

4 (f, Tmax) = (x4, dx;)

5 DELAUNAY-REMOVE(D, x;)

6 foreach tin D

7 (c,t) = center and radius of t’s circumcircle
8 ifr >rmaxandc ¢ D

9 (f, T‘rnalx) = (C:T)

10 DELAUNAY-INSERT(D, f)

11 until converged

12 return vertices of D

Again, we use the same termination criterion as for the unrestricted method.

The main differences with respect to the unrestricted method are the ad-
justed loop in line [3| and the adjusted condition in line [8f The loop now only
considers the vertices in the Delaunay triangulation which correspond to the
non-fixed points in X (we assume the order of the points is preserved by D(X)),
and the condition now only accepts those circumcenters which do not fall into
the disallowed region D. This means that we may not end up with the center
of the largest empty circle as the new position for the current point, but only
with the center of the largest empty circle with respect to the allowed domain.
Note, however, that the method still converges because we still only accept cir-
cumcenters that improve a point’s local mindist. In fact, because global FPO is
able to move points not only locally, the convergence argument holds even for
arbitrarily shaped disallowed regions D. We will see that this is also the main
reason why FPO is a bit more robust in its restricted variant than the capacity-
constrained method.

Figure shows an example set of corner tiles over two colors where each
tile was filled with ny = 64 farthest-point optimized points using the construc-
tion process and RESTRICTED-FARTHEST-POINT-OPTIMIZATION. The mindist d was
set to an average value for FPO points at a normalized value of 0.925.
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Comparison with Non-Tiled Points

We now compare the unrestricted and restricted optimization methods when
they are incorporated into the corner tile construction process. As a visual ex-
ample, Figure shows 8 x 6 stochastic tilings from complete corner tile sets
filled with capacity-constrained points (top) and FPO points (bottom). Visually,
the repeated corner octagons and edge rectangles are almost undetectable. In-
stead, the appearance is dominated by the tile interiors which repeat much less
often and are unique to each tile. We will see, however, that the tile-based na-
ture of the generated point sets cannot be hidden as easily from Fourier spectrum
analysis which we perform in the next chapter.

For now, let us concentrate on the quantitative measures. Table [4.2] lists
global mindist, average mindist, bond-orientational order, and CCVT energy for
capacity-constrained point sets generated by complete corner tile sets with num-
ber of colors C, number of points per tile n¢, and total number of points n. By
CCVT energy, we mean the normalized energy

n—1 1 2
e =nY (n-1),
i=0

where V(X) denotes the ordinary Voronoi tessellation of the point set X and A;
the area of Voronoi region V; as before. It is the energy being minimized by
capacity-constrained Voronoi tessellations when the capacities conform to our
constraint (4.9). All measures in Table[4.2are averaged values over an ensemble
of 10 tile sets generated from different seed points. We chose to use the packing
solutions for complete corner tile sets as example tilings because this ensures (a)
that the measures can be used unaltered (the packing solutions are toroidal), and
(b) that each tile is used exactly once.

We see that the boundary restriction during tile construction affects both
the global mindist and the CCVT energy but less the average mindist and the
bond-orientational order. The global mindist suffers most because the restricted
capacity-constrained optimization works only locally. For example, the method
is not able to resolve situations where a point “wants” to move to its centroid in-
side the tile boundary but is not allowed to. This can lead to close-by positions of
two points as is also detectable in Figure (top). More important is the CCVT
energy which is the main feature of capacity-constrained points and should be
close to zero. We see that the energy decreases with the number of points per
tile ny but is largely independent of the number of colors (and hence the number
of tiles). This is because the size of the boundary region is inversely proportional
to the number of points per tile and thus its influence decreases when ny in-
creases. Still, for all examples the energy is of the same order of magnitude as
the unrestricted (non-tiled) capacity-constrained points. Overall, a good com-
promise between tile set size and favorable CCVT energy is a tile set with C = 2
colors and ny = 256 points per tile.
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Figure 4.15: 8 x 6 stochastic tilings based on the tile sets from Figures (top)
and (bottom). The repeated corner octagons and edge rectangles are almost
undetectable.
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Method C ny¢ n dx dx Px & (x1073)

Tiled 2 16 256 0.544 0.849 0.470 7.34
3 16 1296 0.492 0.839 0.464 8.40
4 16 4096 0.424 0.841 0.463 8.26
2 64 1024 0.473 0.863 0.481 6.00
3 64 5184 0.392 0.862 0.487 5.72
4 64 16384 0.329 0.862 0.486 5.79
2 256 4096 0.318 0.876 0.501 4.02
3 256 20736 0.339 0.877 0.501 4.26
4 256 65536 0.294 0.877 0.502 4.26

Non-Tiled 4096 0.764 0.891 0.519 1.49

Table 4.2: Quantitative measures and normalized CCVT energy for various
capacity-constrained tilings based on complete corner tile sets with number
of colors C, number of points per tile n, and total number of points n.

Table[4.3|shows the same measurements for point sets generated by complete
corner tile sets filled with FPO points. Here, the boundary restriction mostly af-
fects the global mindist and less the average mindist or the bond-orientational
order. Generally, the global mindist gets larger as we allow more points per tile.
This is for the same reason the CCVT energy became better in the case of the
capacity-constrained points, namely that the influence of the boundary region
with respect to the overall distribution decreases as n increases. At the same
time, the global mindist gets smaller as we increase the number of corner colors.
This is because more corner colors impose more restrictions on the overall distri-
bution of points across all tiles, and hence increases the probability for situations
where two points get relatively close. Still, the fact that even the restricted FPO is
guaranteed to increase a point’s local mindist leads to global minimum distances
as high as 6x = 0.91. Overall, a good compromise between tile set size and global
mindist is a tile set with C = 2 colors and ny = 64 points per tile.

4.6 Conclusion

This chapter introduced two new optimization methods for uniform and irregu-
lar point distributions in the unit torus. Capacity-constrained point distributions
cover the domain uniformly by having Voronoi cells of almost equal size and
farthest-point optimized distributions are uniform in the sense of very high mu-
tual distances. Both methods become efficient when combined with a corner-tile
based approach without substantially limiting their favorable properties.

In this chapter, we also saw that the bond-orientational order is a good mea-
sure to characterize the irregularity of point distributions. This raises the ques-
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Method C Nyt n dx 5x Px
Tiled 2 16 256 0.847 0.906 0.410
3 16 1296 0.818 0.903 0.398
4 16 4096 0.795 0.903 0.409
2 64 1024 0.892 0.919 0.409
3 64 5184 0.868 0.919 0.411
4 64 16384 0.844 0.919 0.408
2 256 4096 0.910 0.926 0.417
3 256 20736 0.891 0.926 0.417
4 256 65536 0.873 0.926 0.416
Non-Tiled 4096 0.930 0.932 0.426

Table 4.3: Quantitative measures for various FPO tilings based on com-
plete corner tile sets with number of colors C, number of points per tile
14, and total number of points n.

tion if it would be a reliable termination criterion for Lloyd’s method—a feature
still missing in the computer graphics literature. Early tests indicate that it does
work well to prevent the appearance of hexagonal arrangements but that this
early termination also prevents good values for the global minimum distance.

On the other hand, the high minimum distance obtainable by farthest-point
optimization raises another question for irregular point distributions: Are we
able to increase the minimum distance any further without introducing regular
structures? We cannot conclude that our points have indeed reached the limit
for irregular distributions but results using other approaches [GHSK08| [GK09,
Dam09] at least indicate that (semi-)regular configurations are hard to avoid if
one aims for an even higher minimum distance.
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5

Evaluation of Tiled Point Sets

In the previous chapter, we presented two new optimization methods for point
distributions, each of them utilized to distribute points across sets of corner tiles.
We first evaluated the tiled point sets by considering quantitative measurements
such as their mutual distances and their orientational order. In this chapter, we
want to analyze and evaluate the point sets more thoroughly by considering both
qualitative analysis and their behavior in practical applications such as image
plane sampling and global illumination.

The qualitative analysis will be performed in two parts: in the spatial and in
the frequency domain. In the spatial domain, we will consider a point set’s radial
distribution function which characterizes its spatial distribution by a 1D profile
of pairwise point distances. As the radial distribution function has not yet found
much application in computer graphics, we include a brief introduction in this
thesis. In the frequency domain, we will analyze the point sets by their power
spectrum which measures the power of each frequency component of a point
set’s Fourier transform. We will be interested in both a 2D visualization of the
power spectrum and a radially averaged 1D profile. The importance of the 1D
profile stems from the fact that it is directly related to the radial distribution
function in the spatial domain.

To assess the quality of the point distributions in practical applications, we
will consider two fundamental scenarios. The first is image plane sampling where
the points are distributed across the image plane to yield images that are of low
noise and free of coherent aliasing. In this scenario, the points’ frequency charac-
teristics are of particular importance. The second is physically-based rendering
by ray tracing where the points determine ray directions to estimate the distri-
bution of light in a virtual scene. This scenario involves the numerical approx-
imation of the inherent lighting integrals and relies on the points’ uniformity
properties. In some examples of the latter scenario, we make use of one of three
simple algorithms we included in the appendix. These allow us to further im-
prove results in certain lighting situations.
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5.1 Spatial Analysis

In order to characterize the spatial properties of a given point set X, we can ask
the following question: What is the mean number of points in X that fall within
a disk of radius r? Since our points are designed to be isotropic and statistically
homogeneous [IPSS08], we can expect that, on average, we get the same answer
no matter where we center this disk. This means that the answer should only
depend on the disk radius and we could plot the answer as a 1D curve depending
onlyonr.

Ripley’s K Function

We are able to count the number of points in a disk D with radius r and its center
being located at an arbitrary point ¢ with the help of the indicator function by

n'(c,7) == Z XD, (X). (5.1)

xeX\{c}

Note that we do not count the point ¢ should it happen to be part of the point set
X. With this definition, an estimator for the mean number of points within a disk
of radius r is given by

fi(r) == % Z n’(x,7). (5.2)

xeX

That is we place a disk at each point in X and count the number of points within
distance r. The following function is then known as Ripley’s K function [Rip77]:

K(r) == E[i(r)]/p, 120,

where E denotes the expected value and p the point density. In our cases of n
points in the unit torus, it is simply p = n.

In order to estimate the behavior of a whole method (for example “dart throw-
ing”), we can average K over k point sets generated by this generation process.
This linearly reduces the variance of the estimator [Ros02]. For example, random
point sets are generated by a Poisson process and it is easy to see that in this case
K(r) = mr?. This is analogous to having a Monte Carlo estimator for the area of
a disk with radius r.

Radial Distribution Function

While Ripley’s K function captures all the statistical information we are inter-
ested in, the resulting curves become easier to understand if we slightly trans-
form it:
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Figure 5.1: Example radial distribution functions for random, jittered grid, and
dart throwing point sets.

This function is known as the radial distribution function (RDF) or pair correlation
function in physics and spatial statistics [IPSS08]|. It is proportional to the deriva-
tive of Ripley’s K function but is typically easier to understand because it is not
cumulative and approaches 1 as 1 — oo. In addition, for a Poisson process, we
have g(r) = 1 which means we can easily observe the deviation from a set of
points that are totally uncorrelated. The RDF also allows an intuitive probabilis-
tic interpretation: The probability 7t(r) of finding a point in distance r from an-
other point is 7t(r) = g(r)/p.

With a few exceptions (such as the Poisson process), we -
usually do not have closed-form expression for the RDF of a // ;?\\
specific generation process. Thus, to approximate g, we could [ (7
numerically differentiate the estimate of Ripley’s K function \ / ) )
or, equivalently, partition the disks into concentric rings R; of \ l
central radius r; and width Ar. (See embedded figure.) We are
then able to replace and with an estimator for the mean number of
points within each ring:

"(c,11) := Z XRCT and 7(r;) = Zn X, Ti).

xeX\{c} XEX

This is equivalent to setting up a histogram of the distances between all pairs of
points and choosing a bin width equal to the width Ar of each ring. The choice
of Ar is a delicate balance between smoothing and precision and recommended
to be in the order of p—1/2 [[PSS08].

It is interesting to note that a RDF does not uniquely identify a specific point
generation process (i.e., two different processes can have the same RDFs) and
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Figure 5.2: Radial distribution functions for untiled capacity-constrained and
farthest-point optimized points.

that it is easy to construct RDFs to which no corresponding point process ex-
ists [TS03,[UST06]. A more complete introduction to the RDF and similar statistics
can be found in the book by Illian et al. [TPSS08].

Figure [5.1] shows estimated RDFs over k = 10 sets of random, jittered grid,
and dart throwing points with 4096 points each. For dart throwing, the mini-
mum distance was set to a normalized value of d4,ts = 0.75. We generally scale
the distance axis by the same normalization factor of (2/y/31n)7%/2 so that we
can directly read off this mindist. We see that the RDF for random points indeed
approximates 1 while the other methods influence close distances, either only
softly (jittered grid) or hard (dart throwing). We also see that all RDFs approxi-
mate 1 as 1 — oo which implies that there is always a distance o after which
the points become uncorrelated.

Capacity-Constrained Points

Let’s take a look at the RDF of our capacity-constrained points. Figure|5.2|(left)
shows the RDF for plain (i.e., untiled) capacity-constrained points. We see that
its profile is comparable to the dart throwing profile from Figure[5.1]in the sense
that both are zero at first and then rapidly increase to a local maximum around
T = dx. But while the transition for dart throwing point sets is sharp (stemming
from the hard minimum distance constraint), the transition is smoother for the
capacity-constrained points. This underlines the optimization characteristic of
the capacity-constrained method in which points implicitly repel each other but
without a hard distance constraint.

We also see that an increase of the probability that the points have a certain
mindist leads to a decrease of the probability that they have a distance around
1.5 times their average mindist (at r ~ 1.35). This is a natural consequence of
a high 5x because points must roughly arrange at multiples of dx if the mindist
should be preserved. This correlation between points continues in an oscillating
manner until veorr & 4 after which g(r) — 1.
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Figure 5.3: Radial distribution functions for tiled capacity-constrained points
based on tile sets with C colors, ny points per tile, and total number of points n.

Figure[5.3|shows the same function for tiled capacity-constrained points based
on the complete corner tile sets from Chapter[4} The tilings are consistent with
those used for the quantitative measures, i.e., they follow the packing arrange-
ments with increasing number of colors C, number of points per tile n, and
total number of points n. We see that the curves generally follow the profile of
the non-tiled points but with one important difference: They show peaks at dis-
tances that correspond to the underlying tile grid, revealing the repetitions that
occur at the tile boundaries. These peaks worsen with an increasing number of
tiles (because boundary points are repeated more often) and better with an in-
creasing number of points per tile (because boundary points are overwhelmed
by interior points). For ny = 256 they almost disappear, even for C = 4. Note
that the distance ranges of the plots double from row to row in order to keep the
peaks at the same position.

Farthest-Point Optimized Points

We now take a look at the RDF of farthest-point optimized point sets. Figure
(right) shows the RDF for plain (i.e., untiled) farthest-point optimized points. As
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Figure 5.4: Radial distribution functions for tiled farthest-point optimized points
based on tile sets with C colors, ny points per tile, and total number of points n.

farthest-point optimization aims at optimizing a point’s local mindist, the pro-
file is also comparable to the dart throwing profile. In contrast to the RDF of
capacity-constrained points, however, the transition at 1 = 0x is sharp and
the local maximum significantly higher than for dart throwing or the capacity-
constrained method (g(8x) = 30.3). This underlines the small variance of the
points’ local minimum distances, i.e., dx ~ &x. We also see that g oscillates
stronger than for the other methods and that reor & 6. This illustrates that not
only the distance of each point to its direct neighbors is relatively constant but

also the distance to its second and higher-order neighbors.

Figure[5.4/shows the radial distribution functions for tiled FPO points, gener-
ated by the corresponding corner tile sets as before. The behavior is very similar
to the behavior of the tiled capacity-constrained points: Peaks at multiples of the
tile grid show up until the ratio of the number of tiles to the number of points per
tile is sufficiently small. Again, from the perspective of the RDF, a tile set with
ny = 256 points per tile is sufficient to hide the tile-based nature of the genera-
tion process for the considered tilings. Generally, the number of points per tile
should surpass the number of tiles in the tiling at least by a factor of 16 for the
peaks to disappear.
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5.2 Spectral Analysis

Point sets with a uniform but irregular distribution have a characteristic energy
distribution in the Fourier domain: If the points are widely spaced, the spec-
tral energy is low in a circular disk around the origin, and if they are irregularly
distributed, the energy varies smoothly outside this empty inner ring. Point sets
with such a spectrum are known as blue noise patterns in computer graphics in an
analogy to the corresponding color in the spectrum of visible light [Mit87, [Ulig8].
We will see that both methods presented in this thesis generate blue noise point
sets.

In order to perform a proper Fourier analysis of a point set X, we can repre-
sent it as a superposition of Dirac d-functions by s(x) = >y 8(x—x;). Its Fourier
transform F{s(x)} = S(w) is then given by

Fs(x {Zéx—x]}

x;€X

=) FHdlx—x)}

XjGX

— Z efiwx]- — S(LU),

X]'GX

where w = 27tv denotes a real-valued spatial frequency. We also have to con-
sider that many point generation methods are not deterministic (i.e. they yield
different point sets for different seeds). From a signal processing point of view,
we can interpret them as stationary stochastic processes of finite average power
[Uli93a]. We can then characterize their spectral behavior by the corresponding
power spectrum.

Power Spectrum

The power spectrum P of a stationary stochastic process is the Fourier transform of
its autocorrelation function [PM96]. Since we typically don’t know the autocor-
relation function, we have to estimate the power spectrum, similar to estimating
the radial distribution function during spatial analysis. We do this by averaging k
periodograms. A periodogram is the squared magnitude of the Fourier transform.
An estimator P for the power spectrum is thus given by

1 k—1
=D [Fsi0f’

where the s; represent unique point sets generated by the process with n points
each. In digital signal processing, this procedure of averaging periodograms is
known as Bartlett’s method [PM96]. In practice, we estimate the power spectrum
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from k = 10 periodograms and visualize it by rendering grayscale images using
a logarithmic tone mapping. The tone mapping we use is x — log, (1 + orx) with
o = 0.25.

Radial Statistics

From the 2D power spectrum, we can derive two useful one-
dimensional statistics, the circularly averaged power spectrum // MN
and the variance of this measurement, characterizing the H ‘ / z ‘
anisotropy. For this purpose, we partition the spectrum domain / /
into concentric rings R, of central frequency w, and width //
Aw, comparable to the partition during spatial analysis. w,
denotes the critical frequency after which the radii exceed the power spectrum.
Estimators for the 1D power spectrum P and the anisotropy A are then given by

Plwy) = Z Plw and Alwy) = ———

|Rwr wicRe.

where R, | denotes the number of frequency samples within Ry, and V?(w;)
the squared variance of the spectrum samples, i.e.,

Viw) == 3 (Pla) - Plwy)>

|Rwr| —1 wiERwr

The anisotropy is usually plotted in decibels.

We see that radial distribution function and 1D power spectrum are mea-
sured in a similar fashion albeit in different domains. Both are obtained by cir-
cular averages in their respective domains and for a Poisson process, both take
on the constant value 1. This is no coincidence. For isotropic point sets, both are
connected by the equation [IPSS08]

Plw) =1+ pH{g(r)},

where H denotes the Hankel transform [Bra99] (Fourier transform of circularly
symmetric functions). This relationship is also the reason why the power spec-
trum is used in other research domains where it is known as the structure fac-
tor [KTTO0, TTDOO, TS03]. Interestingly, these research domains are often inter-
ested in the opposite direction: to draw conclusions about the spatial properties
of “points” (particles) by observations made in the frequency domain, for exam-
ple through scattering experiments. Wei and Wang [WW11] recently derived this
relationship independently in a two-dimensional variant.

To get an impression of these statistics, Figure shows power spectrum,
circularly averaged power spectrum, and anisotropy for the processes behind
random, jittered grid, and dart throwing point sets. We see that random point
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Figure 5.5: Example spectral analysis of random, jittered grid, and dart throwing
point sets.

sets approximate a Poisson process with unit power, P(w,) =~ 1, and no ob-
servable anisotropy, A(w,) =~ —kdB. Generally, an anisotropy close to this
level indicates good circular symmetry for the specific generation method. We
also see that both jittered grid and dart throwing show the aforementioned blue
noise characteristic to various degrees: low power for lower frequencies and a
smooth (or no) oscillation around 1 for higher frequencies with no perceivable
anisotropy.

In all of the examples in this thesis, the Fourier transform of each point set is
sampled at the integer values in the range [—w/dmax, W/ dmax] Wwhere w indicates
a window width. It is determined empirically at w = 5 as is the ring width at
Aw = 2. Also note that the DC peak has been removed from all plots.

Capacity-Constrained Points

Figure|5.6| (top) shows the spectral results for plain capacity-constrained points.
We see that the points exhibit the blue noise property with almost no energy
in lower frequencies and anisotropy only around the DC peak. Compared to the
power spectrum of a Poisson-disk process (“Dart throwing” in Figure[5.5), there is
fewer energy in lower frequencies and the transition to the principal frequency
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Figure 5.6: Spectral analysis of plain capacity-constrained and farthest-point op-
timized points.

(the first local maximum after the DC peak) is steeper. We will see that this is ad-
vantageous for an application like image plane sampling where the region below
the principal frequency should be as close to zero as possible.

Figures [5.7 and [5.8] show the same analysis for tiled capacity-constrained
points as already considered during the spatial analysis. We can observe that
while the circularly averaged power spectra stay almost always intact, the 2D
power spectra and the anisotropy curves reveal even subtle correlations in the
final points sets. The underlying tile grid is all the more apparent in the power
spectrum, the larger the ratio of the number of tiles (via C) to the number of
points per tile ny becomes. This is similar to what we observed with the RDF
during spatial analysis but in this case the anisotropy curves reveal the correla-
tions even for good ratios such as C = 2 and ny = 256. We conclude that for
high-quality results the ratio of n to the number of tiles |T] in the tiling should
be at least ny/|T| > 16.

Farthest-Point Optimized Points

Figure 5.6 (bottom) shows the spectral results for plain farthest-point optimized
points. We can see that the spectrum profiles can be considered “blue noise” as
well, with virtually no energy in lower frequencies and a very steep transition
to the principal frequency. This is a consequence of maximizing the minimum
distance between points in the spatial domain. We also see that, after the prin-
cipal frequency, the power continues to oscillate around 1. We suspect this to
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be related to the small variance of the point-to-point distances but have no hard
evidence. In fact, we were unable to determine the end of the oscillation be-
cause the amplitude falls off so slowly. Nonetheless, the low-energy part below
the principal frequency make the FPO points an even better candidate for image
plane sampling than the capacity-constrained points.

Meanwhile, Figures [5.9] and show analysis results for tiled FPO points.
The results are similar to those of the capacity-constrained points when we com-
pare each of them to their untiled counterparts: Artifacts from the tile grid be-
come hardly detectable once we use enough points per tile. This underlines that
the variants of both optimization techniques employed during tile construction
are able to keep the favorable characteristics of the original methods and, e.g.,
do not introduce additional artifacts.

5.3 Image Plane Sampling

The main motivation for analyzing point distributions with respect to their spec-
tral properties can be explained by considering the fundamental task of image
plane sampling [Gla94] for which blue noise point sets have long been conjec-
tured to be ideal [Mit91]. During image plane sampling, the points are distributed
across the image plane and mark the positions at which the image function is be-
ing sampled. In computer graphics, we typically only have the information from
these samples to reconstruct the original image function because the original
function is often defined only implicitly, for example by a given scene descrip-
tion, material properties, camera setup, and more.

Sampling and Reconstruction

Let us briefly recapitulate the sampling and reconstruction process from the
computer graphics point of view. A general introduction can be found in any
textbook on signal processing [PM96] and a good introduction from a computer
graphics angle in the books by Glassner [Gla94] or Pharr and Humphreys [PH10].

From a signal processing perspective, sampling a continuous image func-
tion f by a set of samples X represented by s(x) = } y 8(x — x;) amounts to
the product

fa(x) = f(x) - s(x),

where f 4 describes the discretized image function. In the frequency domain, this
is equal to the convolution of the Fourier spectrum F of the image function with
the Fourier spectrum S of the point set, i.e.,

Fa(w) = F(w) » S(w).

This convolution results in shifted copies of F across the Fourier domain where
the displacement and scaling of each copy is determined by the spectral proper-
ties of the point set. This already hints at why point sets with no energy in the
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Figure 5.11: The full sampling and reconstruction pipeline.

lower frequencies are preferable for image plane sampling: Copies are placed far
apart and the valuable low-frequency parts of the image spectrum remain intact.

So far, we did not make any assumptions about the image function (it only
must be compatible with point sampling) nor about the utilized points. We know
from classical sampling theory that the original function f can only be recon-
structed exactly from f if two conditions hold: F must not contain frequencies
above some finite frequency wy after which F(w) = 0 and, simultaneously, the
point set X must consist of points arranged on a rectangular grid not farther
than 1/2wy apart. Otherwise, the shifted copies of F start to overlap and it be-
comes impossible to isolate an uncontaminated copy of F, a process known as
reconstruction. The error due to a potential overlap is known as aliasing and the
necessary sampling frequency wy is known as the Nyquist frequency. If a given
image function has w¢ < o0, it is said to be band-limited.

In computer graphics, however, most of the interesting image functions are
not band-limited as they contain discontinuities, so the uniform sampling theo-
rem based on rectangular grid points does not fit. Thus, it is hard to avoid alias-
ing in the final images. For example, using the aforementioned rectangular grid
samples results in a systematic overlap of the image spectra which yields alias-
ing that is coherent (e.g. moiré patterns). We will see this shortly when we sample
a difficult test function. Luckily, several countermeasures allow us to attenuate
such coherent aliasing by a substantial degree:

Prefiltering We remove frequencies in F higher than the Nyquist frequency of
the final pixel grid. Because we do not know the image function explicitly,
exact prefiltering is seldomly possible in practice.

Supersampling We increase the sampling frequency by sampling at a higher
rate than the Nyquist frequency of the final pixel grid. We then have to
resample to the output resolution.

Non-Uniform Sampling We do not align sample positions with the pixel grid
and make the aliasing incoherent. Frequencies higher than the Nyquist
frequency then appear as noise.

Often, none of these techniques alone is sufficient enough to yield satisfactory
images which is why they are often combined. In particular, prefiltering is typi-
cally used in conjunction with supersampling: The image function is temporarily
reconstructed from all “supersamples” and the frequencies beyond the Nyquist
frequency of the pixel grid are removed by applying a digital filter. In fact, su-
persampling alone can sometimes be considered a (local) prefilter of the image
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function [HD11]. The final reconstruction of the image function from this pixel
grid is then performed by the output device (e.g. display or printer). The full
sampling and reconstruction pipeline is summarized in Figure

In recent years, reconstructing functions using non-uniform sampling has
found increasing attention [Mar01] but obtaining a general result comparable
to the uniform case is a lot harder. For example, it is possible to reconstruct a
function from a non-uniform sampling pattern if it is used periodically but the
underlying functions must still be band-limited [ST06]. The contributions in this
thesis touch both non-uniform sampling and supersampling. Both of our meth-
ods generate irregular (non-uniform) point sets that may conform to a higher
sampling rate than the pixel grid and are typically distributed across the whole
image plane, i.e., regardless of pixel boundaries. We will see that both methods
are very effective at mapping aliasing to high frequency noise which generally
yields better images than comparable methods at the same sampling rate.

Zone Plate Test Function

We can evaluate the image plane sampling qualities of our points by considering
a case where we actually know the underlying image function. In particular, we
would like to judge their quality in relation to the occurring frequencies. A com-
mon test function for such a case is a sine wave of the form z : x — Z[1+cos(A?)]
[Mit90] where A := ||x|| is the length of a two-dimensional sample point (vector)
x € [0,1)2. In computer graphics, this type of function is often called zone plate
in an analogy to test plates for optical systems [Goo04]. In signal processing, it is
often called chirp or sweep signal because the frequency of the sinusoid increases
with time (in our case with A). This means that z must eventually produce fre-
quencies that are beyond the Nyquist frequency of the pixel grid at wpx = Fm
where m x m denotes the resolution of a quadratic output image. This way,
aliasing is inevitable, either in coherent form or in the form of noise.

Following Heck and Deussen [HD11]], we use a generalized form of this func-
tion which allows better control over the occurring frequencies:

z':0,1)> — [0,1]
1
X 2 [1 + cos (w(oc)\ + d)))].
We choose the frequency w, the parameter «, and the phase ¢ as:

W = WpxWmax Wmax = 0,
o == min(A/Amax, 1) Amax > 0,
¢ := max(A — Apax, 0).

Here, Wmax denotes the maximum frequency relative to the Nyquist frequency
of the pixel grid, and Ap,x denotes the desired distance of wax to the origin. For
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Figure 5.12: Examples when sampling the test function z” with a regular sampling
pattern corresponding to the pixel grid (top) and several irregular sampling pat-
terns for Wmax = 4v/2 and Amax = /2 (bottom).

filtering, we use the common filter by Lanczos [Duc79] which is defined as

sinc(x)sinc(x/a) if x| < aq,
r(x) =
0 otherwise.

The corresponding function in two dimensions is given by r(x,y) = r(x)r(y).
The parameter a defines the support of the filter. We use a = 2.

Figure[5.12|(top) shows some examples when sampling z’ with a regular (uni-
form) sampling pattern of 512 x 512 points corresponding to the pixel grid at
resolution m = SIZEI Setting wmax < 1 yields no aliasing because there are
no frequencies larger than the Nyquist frequency of the grid. Setting wmax > 1
yields aliasing if this frequency occurs within range Apax < V2Wmax. We can
see this in the center examples where we get coherent aliasing in the form of
moiré or ringing patterns, most notably around w = 4 where the output looks
like the original signal around w = 0. The main configuration we use is shown
to the right where wmax = 4v/2 and Apax = V/2, i.e., at the outer corners the sine
has a frequency four times the Nyquist frequency of the grid. Note that an ideal
rendering of z’ would take on a perfect gray value of 0.5 for frequencies above
Wpx.

Figure (bottom) demonstrates the effect when regular sampling is re-
placed with irregular sampling. Coherent aliasing is replaced by incoherent alias-
ing in the form of noise. We also see the relation between aliasing and the energy

!Note that a printer or PDF viewer most likely distorts these images due to resampling.
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Figure 5.13: Sampling the test function z’ with point sets from the methods by
Dunbar and Humphreys [DH06], Schmaltz et al. [SGBW10], and our two methods
using approx. one sample per pixel (top) and two samples per pixel (bottom).

distribution in a point set’s power spectrum (recall Figure[5.5). The less energy in
the lower frequency parts of a point set’s power spectrum, the better we are able
to cleanly capture the low frequency-part of the image function. Increasing the
mutual distances between points (from random to jittered grid to dart throwing)
increases the effective Nyquist frequency of the sample pattern while their ir-
regularity keeps high frequency-aliasing mapped to noise. The example to the
right shows what happens when a semi-regular point set such as points from the
Halton sequence [Hal60] is used: We get a mixture of noise and moiré patterns.

Figure shows the result of our two methods in comparison to the two
state-of-the-art methods by Dunbar and Humphreys [DH06] and Schmaltz et al.
[SGBW10]. For this example, we precomputed untiled sets of 512 x 512 and
2 x 5122 sample points in order to judge the quality of both methods without
influences from the tiling process. Both of our methods yield very good results.
Low-frequency content is kept even clearer than for the state-of-the-art methods
and aliasing is mapped to higher-frequency noise. The FPO points do a particu-
larly good job in this case, offering a good compromise between moiré artifacts
and noise. Their high minimum distance result both in a high effective Nyquist
frequency (which lessens aliasing) and a high uniformity (which lessens noise).
At approx. 2 samples/pixel the solution already approaches an ideal one. For
these reasons, we will mostly concentrate on FPO points in the remaining image
plane sampling scenarios.

Figure shows what happens when we replace the 512 x 512 untiled FPO
points by tiled FPO points generated from complete sets of corner tiles. This al-
lows us to study the influence of the tiling process with varying number of corner
colors C and number of points per tile n. For reference, the first column shows
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Figure 5.14: Sampling the test function z’ with tiled FPO points based on com-
plete corner tile sets with varying number of corner colors C and number of
points per tile n¢. The size of the underlying tilings is given below each render-
ing and was chosen such that the total number of points equals 512 x 512.

a naive periodic tiling where a single tile is repeated over the whole domain.
While the point’s sampling behavior with respect to low-frequency content stays
mostly untouched, coherent aliasing reappears above the Nyquist frequency if
we use too few points per tile. Interestingly, this behavior cannot be remedied
by simply using more tiles as is evident by very similar renderings from column
to column. One explanation for this is that the coherent aliasing largely stems
from the tiles’ repeated boundary points whose influence on the total point set
doesn’t diminish until we use more points per tile. This is also supported by the
points’ anisotropy plots from Figures 5.9 and [5.10| which generally remained at
the same level despite increasing C. For ny > 64, however, the tiled results are
on a par with those of the untiled FPO points and become hardly distinguishable.

The employed tiling algorithm for these results was a stochastic tiling algo-
rithm because the arrangement of the tiles shouldn’t introduce additional corre-
lations to the final points (which could further amplify coherent aliasing). Our
deterministic tiling algorithm, however, generated only slightly worse results.
This underlines that the uniform distribution of corner colors is less important
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Figure 5.15: Sampling a checkerboard scene with dart throwing and FPO points.
for the generation of point sets than it is for the generation of textures.

Edge Anti-Aliasing

Another prominent image plane sampling-scenario is edge anti-aliasing. Edges
are interesting because they constitute discontinuities in the underlying image
function. This means that edges must suffer from aliasing almost always as the
corresponding frequency in the Fourier domain goes to infinity. While this is
a worst-case scenario from a signal processing point of view, from a perceptual
perspective errors due to edge aliasing may actually be less critical than other
forms of coherent aliasing [Nai98},[LA06]. This is mainly because, at edge bound-
aries, moiré patterns can be harder to observe than e.g. traces of noise.

A consequence for the underlying sample point sets is that their uniformity
properties become more important than their ability to cleanly capture low-
frequency content. The more uniform a point set, the less noise can be observed
at edges. This perceived quality often corresponds to a lower numerical error
when comparing the results with reference images obtained by using many more
samples per pixel.

Figures and [5.16| demonstrate this when sampling dedicated edge anti-
aliasing scenarios with points obtained by dart throwing and farthest-point op-
timization. We compare the resulting images by computing mean squared er-
rors (MSE) in relation to reference solutions using 4096 random samples/pixel.
In Figure we render a slightly tilted, infinite checkerboard which yields
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Figure 5.16: Sampling a series of edges with dart throwing and FPO points. The
closeups use approx. 6 samples/pixel.

edges of many different orientations as well as frequency content above the
Nyquist frequency. Although the visual differences are subtle, note the better
edge anti-aliasing (bottom of the closeups) and reduced noise in regions beyond
the Nyquist frequency (top of the closeups) for the FPO points. The MSE is also
20% to 33% lower. Figure shows similar results when sampling a series of
circles and lines. Increasing the uniformity of point sets by farthest-point opti-
mization noticeably enhances edge anti-aliasing, both visually and numerically.

These observations remain true when using tiled FPO points. In fact, for these
edge anti-aliasing scenarios, the results for tiled and untiled FPO points can be
hardly distinguished, even for small sets of 16 tiles with ny = 16 points per tile.
MSEs also stay very close and often only differ after the fourth decimal place. We
suspect this is a direct consequence of the low to medium frequency character-
istic of edges which are insensitive to the high-frequency aliasing problems we
could observe when sampling the zone plate function z’.

Lens Sampling

As a third application, we consider the problem of sampling a virtual camera lens
to simulate optical effects such as depth of field. This can be considered an im-
age plane sampling problem, too [PH10]: The n points on the image plane that
fall within a certain pixel are randomly coupled with n well-distributed points
on the lens to form the full camera rays. As before, we cover the image plane
with one large set of FPO points, but across the camera lens, we reuse a second
set of points and randomly shift this set on the unit torus for each pixel, i.e.,
xi(k) == (xi(k) 4+ &i(k)) mod 1 where &; is a random vector chosen uniformly
in [0,1)% and x; (k) selects the k-th coordinate of x;. This technique is known as
Cranley-Patterson rotation [CP76] and has the advantage of preserving the impor-
tant minimum distance property of FPO points.

In Figure [5.17} we rendered a scene where a camera lens is configured such
that only one object lies in the focal plane and the other objects are out of focus
and appear blurred. Because blurred image content corresponds to low frequen-
cies in the Fourier domain, we can expect FPO points to do a particularly good
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Figure 5.17: Lens sampling for depth of field with dart throwing and FPO points.
The chess scene is courtesy of Wojciech Jarosz [HJW*08].

job in such a setting. (Recall their power spectrum from Figure[5.6|where we saw
that they leave low-frequency content almost undisturbed.) The visual and nu-
merical results in Figure support this assumption. For example, for 8 FPO
points the amount of noise remaining in out-of-focus image regions is almost as
low as with twice the number of samples when using pure Poisson-disk points by
dart throwing.

5.4 Numerical Integration

While image plane sampling is best to be considered a signal processing prob-
lem, many other sampling problems in graphics are best understood as numeri-
cal integration problems where (unknown) integrals are estimated by summing
up contributions from point samples [PH10]. There are some results that connect
sampling from a signal processing point of view and sampling from a numerical
integration point of view but, so far, results are sparse and not under-
stood in its entirety.

We are particularly interested in the integrals occurring in physically-based
rendering where the central task is to estimate the value of the light transport
equation (LTE) at any point x in a virtual scene

L(x,w) = Le(x, w) +J fr(x, w, wi)L(y, —wi)l cos 0| dwy,
SZ

where w and w; denote outgoing and incoming light directions respectively, S?
the unit sphere around point x, f, the bidirectional scattering distribution function
(BSDF) and 0; the angle between the surface normal at point x and w;. The
point y := h(x, w;) is the closest point from x in direction w;, determined by a
ray casting function h. The LTE is formulated from the perspective of geometric
optics where light is propagated in terms of rays between different surface points
and where outgoing, emitting, and incoming light are measured in radiance. This
modern form of the LTE was famously introduced as the rendering equation by

Kajiya [Kaj86].
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Solving the LTE in analytical form is only possible in few cases of simple
scene complexity. It is possible to simplify the equation by limiting the BSDFs
but this sacrifices generality and is usually undesirable in physically-based ren-
dering. The classic approach to solve the LTE in its general form is by numerical
integration where the integral of a function f : I* — R is approximated by aver-
aging weighted point samples at locations {xo,...,xn—_1} € I by

Ls f(x) dx & ;) wif(xq).

For the weights, we usually have w; € [0,1], > ; w; = 1. This approach is a good
choice for a computer graphics setting where point sampling is possible by ray
tracing.

Among many schemes for the choice of the corresponding sample locations
and weights, the following three are the most popular within graphics: Monte
Carlo integration, quasi-Monte Carlo integration, and volume-weighted quadra-
ture. We briefly review these techniques and their error bounds in the following.

Monte Carlo Integration

Monte Carlo methods [Sob94] were among the first to robustly estimate graphics
integrals such as the LTE [Kaj86}/Gla94]. In its most basic form, point locations are
realizations of independent and identically distributed random variables over
I* and the weights equal at w; := 1/n. Since the method is probabilistic, the
corresponding error bound can only be probabilistic as well. We have

1 30(f)
LS f(x) dx — - ZO f(xi)| < T

with a probability of approx. 0.997. Here, o(f) denotes the standard deviation of
the function f. The power of the method does not only stem from the fact that
it is simple but also that the error bound is both independent of the dimension s
and any smoothness properties of f. The big disadvantage is that the error falls
off very slowly at a rate in the order of O(1/4/n).

There are two variants of this basic form of Monte Carlo integration, one that
alters the point locations and one that alters the weights. In importance sampling,
point locations are not chosen uniformly anymore but as proportional to f as
possible while the weights are kept equal, w; := 1/n. Importance sampling is
only possible if we know something about the shape of f which, in graphics, is
only sometimes the case. In weighted Monte Carlo integration [YKS78], on the other
hand, point locations are chosen uniformly again but the weights conform to the
volumes of the corresponding Voronoi regions, w;i := A;. (The definition of A
was given in Eq. (4.5).) In this case and under the assumption that f is twice-
differentiable, the error is in the order of O(1/n?/%). This improves upon the
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convergence of pure Monte Carlo integration for dimensions s < 4 but we have
to compute the full Voronoi diagram in order to determine the w;. Generally, the
dependence of the convergence rate on the dimension s is also a disadvantage
and is known as the curse of dimension(ality).

Quasi-Monte Carlo Integration

Quasi-Monte Carlo methods [Nie92] are similar to Monte Carlo methods but re-
place random points with deterministic points of higher uniformity. These de-
terministic points often rely on number theoretic construction rules. For ex-
ample, many are based on the radical-inverse function (such as the Halton se-
quence from Chapter [2) but some are based on lattice rules [Dam09], and others
use construction matrices [GHSK08| [GK09]. The common feature they share is
that all of them are low-discrepancy, that is their star-discrepancy is in the order
of O(log® n/n). (Recall the definition of star-discrepancy from Eq. (2.2).) A good
introduction to quasi-Monte Carlo methods with applications to graphics can be
found in the report by Keller [Kel03] or the thesis by Wachter [Wc07].

The importance of a low star-discrepancy stems from the following deter-
ministic error bound which is known as the Koksma-Hlawka inequality:

J, 0= 23 )| < Vi R,

where V(f) denotes the variation of f in the sense of Hardy and Krause [Nie92].
Just as in plain Monte Carlo integration, we have equal weights w; := 1/n.

A nice property of the Koksma-Hlawka inequality is that the error is divided
into a property of the integrand and a property of the point set. Unfortunately,
the variation V is seldomly finite in computer graphics because discontinuities
occur so frequently. Thus, the error bound can only serve as an indicator for
the favorable behavior of low-discrepancy points. In practice, however, low-
discrepancy points often show a significantly faster convergence rate compared
to random points [KK02].

Volume-Weighted Quadrature

Volume-weighted quadrature uses the idea of weighted Monte Carlo integration
to choose the weights according to the volumes of the corresponding Voronoi
regions and combines it with the idea of point locations that are well-distributed.
More specifically, it connects the integration error to the energy of a point set’s
Voronoi tessellation by [Pag97,[SGB07]

n—1
| foodx— 3 nro| < el ecx,w),
I i=0
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where V(X) denotes the Voronoi tessellation of X, € the energy from Eq. (4.4),
and || - ||, the L®-norm.

Similar to the Koksma-Hlawka inequality, this error bound is separated into
a property of the integrand and a property of the point set. And similar to
weighted Monte Carlo integration, it can be shown that the error is in the or-
der of O(1/n?/%) if f € C%. Again, the functions in computer graphics usually
aren’t C?-continuous, so this error bound can also only serve as an indicator.
In addition, we still need the full Voronoi tessellation to determine the correct
weights.

Numerical Integration by Capacity-Constrained Points

The volume-weighted integration scheme is interesting because it suits the no-
tion of our capacity-constrained points. Recall from Section[4.3|that the energy &
is minimized only if the points X form a centroidal Voronoi tessellation. Since
the same energy function is minimized by capacity-constrained Voronoi tessel-
lations that are centroidal, we can expect a low integration error for capacity-
constrained points. Using our capacity-constraint , we have

n—1 n—1
Y Afx)~ = Y f(x) and  E(X,V) - min.
i=0 n i=0

This means we can use the same sampling-and-averaging quadrature rule that is
used for (quasi-)Monte Carlo points for our capacity-constrained points and still
benefit from a low energy &, indicating a low integration error. The Voronoi
region volumes are not strictly 1/n because € is defined with respect to the
ordinary Voronoi tessellation and not with respect to the capacity-constrained
Voronoi tessellation. In Table however, we showed that the volumes’ devia-
tion from 1/n is typically very small, i.e., the CCVT energy & is close to zero.

In the following, we demonstrate the benefits of capacity-constrained points
in practical applications by estimating various integrals occurring in physically-
based rendering. To this end, we integrated our tile-based capacity-constrained
points as a sampler into the PBRT rendering system [PH10]. Due to the necessary
(low) sampling rates, we mostly used a small tile set based on C = 2 corner
colors with ny = 16 points per tile and a stochastic tiling algorithm. If greater
versatility in the generated points is necessary, it suffices to either use compact
tile sets with C > 2 or complete tile sets with C = 2 but ny > 16. Obviously, for
a full coverage of the sample space, the total number of points must be dividable
by the number of tiles and points per tile without remainder. This is similar to
many deterministic point sequences which must often be power of two for a good
coverage [Kel03]. In cases where still other sampling rates are required, we rank
each tiles’ points using the ranking algorithm from Appendix|A.3]

We will compare our results with those from quasi-Monte Carlo integration
using the (0, 2)-sequence by Sobol’ [Sob67], a low-discrepancy sequence that has
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proven to be among the best and most versatile for integration problems in
graphics [GRK12]. Although the LTE is a high-dimensional (theoretically infinite-
dimensional) integral, it is usually more efficient to understand it as a combina-
tion of many one- and two-dimensional integrals because some dimensions are
highly correlated (for example, material properties captured by a BSDF or mul-
tiple non-singular light sources). Both the low-discrepancy and our capacity-
constrained points are thus integrated as 2D samplers into PBRT and will often
be transformed from [0, 1)? to a domain of interest.

In order to keep the integral estimators unbiased, we cannot use the same
point set over and over again but have to use unique point sets for every integral.
For (randomized) quasi-Monte Carlo integration, these unique point sets are of-
ten determined by scrambling [KK02] which preserves low-discrepancy proper-
ties. For our tile-based capacity-constrained points, we could either use Cranley-
Patterson rotations on the same point set or we could use different point sets
obtained by different stochastic tilings. Both of these techniques preserve the
capacity constraint, but only the former yields an unbiased estimator. We thus
use Cranley-Patterson rotations in the following although the bias of the latter
technique is usually not visible once the points are generated by many tiles.

Generally, numerical error corresponds to noise in the final images, so we
can again judge results both visually and by considering the MSE to a reference
solution using many more samples per pixel.

Direct Light Estimation

First, we will numerically approximate the direct lighting integral (DLI). The DLI
computes the incident radiance at a point x that arrives directly from light sources.
For efficiency, it is often separated from the full LTE and then combined with an
explicit method for the remaining indirect light, for example path tracing [Kaj86]
or Metropolis light transport [VG97]. 1t is defined as

Lix,w) = Le(x, @) +J 1 (6, w, wi)La(x, W) cos 8] das,
SZ

where L4 denotes the incident radiance directly from light sources. When ap-
proximating the DLI, the sample points are used to determine the directions wj.
For m light sources, this is typically done by distributing m unique point sets Y;
across their surfaces and connecting these points with the surface point x. Simi-
larly, the evaluation of the BSDF at x uses its own point set Y’ to sample f;.. The
results are then combined using multiple importance sampling [VG95].

Figure shows the result for a simple test scene illuminated by a single
circular area light source and objects with only constant (diffuse) BSDFs. Using
capacity-constrained points generally yields images with less noise and a lower
MSE than using the (0, 2)-sequence: Soft shadows appear smoother and surfaces
appear less noisy. Because the light source is circular, this indicates that the
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Figure 5.18: Estimating direct light in a simple test scene using points from the
Sobol’ (0, 2)-sequence and our capacity-constrained points. In the closeups 16
integrator samples were used.

properties of capacity-constrained points remain advantageous even after map-
ping the points from the unit torus to a disk [SC97].

Trajectory Splitting

This first example uses only one image sample per pixel but multiple integrator
samples for the evaluation of the DLI. Usually, both multiple image samples as
well as multiple integrator samples are desirable. In this case, it is advantageous
to assign each image sample a set of integrator samples such that each set of inte-
grator samples is well-distributed as well as their union. This way, the full sample
space is covered much better than with sets that are well-distributed only with
respect to a single image sample. Because a single primary ray is split into mul-
tiple secondary rays, this technique is known as trajectory splitting [KK02, PH10].
To support trajectory splitting using capacity-constrained points, we use the
distance-based partition algorithm from Appendix It partitions any set of
points into equally-sized subsets such that each subset is well-distributed in terms
of the points’ mutual distances while their union constitutes the original point
set. The following figure shows what happens when we partition the 1024 capacity-
constrained points from Figure[4.2]into eight subsets with 128 points each.

§x = 0.810 0.808 0.807 0.807 0.817 0.813 0.809 0.808
The average mindist below each plot indicates good uniformity for each subset.
Figure shows the result when estimating the DLI using trajectory split-
ting. The scene now involves two light sources, one circular area light source
and one “infinite” light source where the samples are warped according to an
HDR environment image. The scene also combines diffuse, glossy, and measured
BSDFs using a microfacet distribution. In the closeups, we keep the product of

image samples and integrator samples constant at 16 combined samples (cs). For
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Figure 5.19: Estimating direct light by trajectory splitting points from the Sobol’
(0,2)-sequence and our capacity-constrained points. In the closeups 16 com-
bined samples (cs) were used.

performance reasons, we precompute the partition for the capacity-constrained
points while the (0, 2)-sequence can be partitioned by construction (each succes-
sive set of power of two points is a (0, m, 2)-net of low-discrepancy [KG12]).

Using partitioned capacity-constrained points yields a lower error for every
combination of pixel and integrator samples. In particular, the MSE remains
roughly constant despite the varying numbers of pixel vs. integrator samples.
The MSE plot also underlines the importance of the partition procedure. The
naive variant (“Cap. Con. no part.”) assigns each image sample a set of capacity-
constrained integrator samples, but doesn’t ensure that the union of the integra-
tor samples is also well-distributed. This quickly becomes inferior to the parti-
tioned results, even when using twice the number of combined samples.

Ambient Occlusion

As a third example, we consider the estimation of ambient occlusion [ZIK98]. Ambi-
ent occlusion determines how much of the hemisphere around a surface point x
is occluded by other surfaces. It can be defined as the integral

1
Alx,m,1) = ﬂJ ’ )V(x,wi,r)lcowildwi,
H2(n
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Figure 5.20: Estimating ambient occlusion using points from the Sobol’ (0, 2)-
sequence and our capacity-constrained points. The San Miguel scene is courtesy
of Guillermo M. Leal Llagun.

where
1 if||h(x,w)—x| >,
0 otherwise,

V(ix,w,r) = {

is a variant of the visibility function, and H?(n) denotes the hemisphere around
point x with normal n. (Recall that h is the ray casting function that returns the
closest surface point from x in direction w.) Estimating ambient occlusion is a
good way of measuring how well the properties of a sample set translate to the
unit hemisphere when determining the directions wj.

Figure[5.20shows ambient occlusion results for a scene with complex geom-
etry and a fixed parameter r. As from a number of samples greater than four, the
capacity-constrained points clearly outperform the low-discrepancy points, con-
sistently yielding a lower MSE. In some cases, visual results using the capacity-
constrained points are practically as good as for the (0, 2)-sequence at only half
the sampling rate. (Consider, for example, the results for 32 and 64 spp.)
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Figure 5.21: Distributing virtual point light sources for “instant global illumina-

tion” using the Sobol’ (0, 2)-sequence and our capacity-constrained points. The
Sibenik Cathedral model is courtesy of Marko Dabrovic and Mihovil Odak.

Instant Global Illumination

As a last example, we consider the distribution of virtual point lights (VPLs) in
an alternative approach to solve the LTE sometimes referred to as instant global
illumination [WKB*02, PH10]. In this approach, sample point sets are used in a
preprocessing step to mark the origins of a small but fixed number of light paths
that are traced throughout the scene. VPLs are created along these paths at each
point of intersection and which are then used during final rendering.

Although the point sets are not directly used for numerical integration, their
distribution qualities are equally crucial for this approach. And similar to tra-
jectory splitting, it is advantageous to use multiple sets of light paths that are
well-distributed both with respect to a particular set as well as in the aggregate
over all sets. For this approach to the LTE, a potential approximation error may
not only show up as noise but also as a systematic error stemming from the finite
set of VPLs: Parts of the image may appear too dark or too bright, depending on
the distribution of the VPLs.

In the instant global illumination example in Figure most of the light
stems from a large sphere intersecting the ceiling of the utilized model. We com-
pare capacity-constrained with low-discrepancy points when spawning a fixed
number of 128 light paths at a varying number of light sets. Since we only want to
assess the point sets’ quality with respect to the resulting distributions of VPLs,
we used the same image sampling pattern for both experiments.

We see that the capacity-constrained points again yield lower MSEs of the
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final images than the Sobol’ points. More importantly, the results show less arti-
facts due to an overall better distribution of VPLs. As highlighted in the closeups,
approximation artifacts are less severe for the capacity-constrained points, with
fewer noticeable spots stemming from an uneven distribution of VPLs.

5.5 Conclusion

In this chapter we thoroughly evaluated the spatial, spectral, and practical qual-
ities of the tile-based point sets generated by our two optimization techniques
from the previous chapter. We saw that both methods yield point sets that have
blue noise spectral properties. In this regard, farthest-point optimized points
stand out and improve upon the state of the art in the fundamental task of image
plane sampling.

Capacity-constrained points, on the other hand, are favorable for numerical
integration problems due to a related error bound in volume-weighted quadra-
ture. Although this error bound doesn’t strictly hold for many graphics prob-
lems, we saw that capacity-constrained points often improve upon state-of-the-
art results using quasi-Monte Carlo integration for 2D integration problems that
occur in physically-based rendering.

An interesting open question is if it is possible to construct point sets which
minimize the energy € and, at the same time, have equally-sized Voronoi re-
gions. A good candidate are Rank-1 lattices [Dam09] which strictly obey A; = 1/n
and show a very low energy €. On the other hand, Rank-1 lattices are strictly reg-
ular and may constitute unstable CVTs [LWL*09]. We conjecture that it will be
hard to further improve practical results using numerical integration by using
only different sample locations. Even using FPO points instead of the capacity-
constrained points for the integration problems already yields very similar re-
sults in practice.
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6

Summary and Future Work

Efficiently generating complex content is one of the fundamental problems in
computer graphics. The results of this thesis show that a tile-based method us-
ing corner tiles can be a feasible solution to this problem. Due to their square
form, corner tiles are conceptually easy, allow straightforward tilings, and admit
a broad range of tile construction methods. Once a set of corner tiles has been
constructed, only a valid tiling using this set has to be generated online. Depend-
ing on the type of content, this may decrease the memory or runtime complexity
for a specific generation process by several orders of magnitude.

We introduced two novel tiling algorithms for corner tiles, both of which are
advantageous for the synthesis of non-periodic textures. Our deterministic tiling
algorithm yields a more uniform distribution of texture content that is less prone
to repetition artifacts than current stochastic algorithms. Our semi-stochastic
tiling algorithm allows the synthesis of globally varying textures while still being
compatible to tile-based texture mapping using graphics hardware.

Two-dimensional point distributions are another fundamental component
of any rendering system. We introduced two new optimization methods that
generate highly uniform, spatially homogeneous point distributions. Capacity-
constrained point distributions are based on capacity-constrained Voronoi tes-
sellations which enforce Voronoi regions of equal size. We demonstrated their
advantages for numerical integration problems occurring in physically-based
lighting computations. Farthest-point optimized point distributions are opti-
mized with respect to their mutual distances and yield improvements in signal
processing-based sampling tasks such as image plane sampling. Both methods
improve the state of the art in their respective fields.

This thesis concentrates on two-dimensional corner tilings. A generalization
to s-dimensional corner cubes is not difficult but the practical benefits of such
corner cubes in a computer graphics setting remain to be seen. Complete sets
of corner cubes would contain C?’ cubes and constructing cube interiors is likely
to be significantly more complicated than in two dimensions. Some research
has already been done in this direction but, so far, the restriction on the type of
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content is quite strong [LEQ*07, PGGM09].

Some of the results of this thesis have already inspired further research in
the last two years [LNW*10, [Fat11,[XLGG11}ICYC*12}[CG12,|dGBOD12]. Still, there
are several interesting open questions for future research:

Corner Tile Packings The compact tile packings presented in this thesis com-
plement the packing solutions for complete tile sets in the literature for
C < 4. Can we find solutions for C > 47 Is there a direct construction
method for these solutions?

Tiling Algorithms Our semi-stochastic tiling algorithm often works with pruned
tile sets, and our deterministic tiling algorithm works with complete tile
sets. Is there a comparable tiling algorithm that also works with compact
tile sets?

Tile Construction In this thesis, we only considered tile construction proce-
dures for textures and sample point sets. Can we faithfully construct cor-
ner tiles for other types of content, e.g. complex geometry?

Texture Synthesis The presented texture tile construction method is quiet ro-
bust in the case of stationary textures but for globally varying textures, the
results depend more strongly on the input textures. Is it possible to merge
related input textures with as good results as stationary input textures? Is
there a way to make this process recursive to support level-of-detail?

Image Plane Sampling For irregular point sets, farthest-point optimized points
offer the largest minimum distance yet. Such point sets have long been
conjectured to be ideal for image plane sampling [Mit91]. Recent results
indicate large mutual distances may not be the most important aspect for
such point sets, after all [HSD12a,[HSD12b]. Is there a precise way to mea-
sure the noise/aliasing tradeoff for image plane sampling?

Numerical Integration Capacity-constrained points deliver good results for sev-
eral integration problems in physically-based rendering but some proper-
ties (e.g. a good partition) have to be added as a post process. Is there a way
to add these properties during the tile construction process? Can we make
the process recursive akin to tile-based Poisson-disk point sets [KCODL06]|?

To support the adoption of the methods presented in this thesis and simplify a
comparison to future methods, we provide exemplary implementations for most
of our algorithms]]

'http://thomas-schloemer.org
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Appendix

In this appendix, we include an example implementation for a tile-based texture
mapping application using our deterministic color distribution function from
Chapter |2} We also discuss three algorithms that add different properties to a
given point set. The first algorithm partitions a point set into equally-sized sub-
sets such that each subset is well-distributed. The second algorithm determines
a ranking for a point set such that it may unfold in a well-distributed manner.
And the third algorithm adds the Latin hypercube property to a point set such
that it becomes stratified in each dimension.

A.1 Deterministic Corner Tilings Implementation

To illustrate the computation of the deterministic color distribution function
from Chapter [2} we give a full example implementation for a tile-based texture
mapping application using GLSL [SA12]. A tile packing solution is expected to be
encoded as a one-dimensional array in the variable tp.

uniform int nc; // Number of corner colors

uniform ivec2 pows; // Halton powers pg

uniform ivec2 exps; // Halton exponents ng

uniform ivec2 minverses; // Halton multiplicative inverses

uniform ivec2 tsize; // Tiling width and height

uniform ivec2 tpsize; // Tile packing width and height

uniform samplerlD tp; // Tile packing

uniform sampler2D tpdecal; // Input texture in tile packing arrangement
in vec2 coords01; // Texture coords in [0,1]72

out vec4 texcolor; // Final output color

int vdc_inverse(int inverse, int ndigits, const int base)

{
int index, digit;
index = 0;
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while (ndigits > 0) {
digit = inverse % base;
inverse = inverse / base;
index = index * base + digit;
ndigits--;

}

return index;

}

int corner_color(int x, int y)
{
int 11
int 12

vdc_inverse(x, exps[0], 2);
vdc_inverse(y, exps[l], 3);

int prod = pows[0] * pows[1];

int sl
int s2

(pows[1] * ((11 * minverses[0]) % pows[0])) % prod;
(pows[0] * ((12 * minverses[1l]) % pows[1l])) % prod;

int index = (sl + s2) % prod;

float ri = float(index) / float(prod);
return int(ri x float(nc));

}

void main()
{
// Tile coordinates
vec2 coords = coords0l * vec2(tsize);
int x = int(coords.x);
int y = int(coords.y);

// Corner colors

int c_ne = corner_color(x+1l, y+1);
int c_se = corner_color(x+l, y );
int c_sw = corner_color(x , vy );
int c_nw = corner_color(x , y+l);

// Tile index via tile packing

int ntiles = nc * nc * nc * nc;

int tidx ((c_ne * nc + c_se) * nc + C_SW) * NC + C_nw;
int tpidx texture(tp, float(tidx) / float(ntiles)).s;

// Texture coordinates for tile packing texture

vec2 uv_tile = fract(coords);

vec2 uv_tp vec2(tpidx % tpsize.x, tpidx / tpsize.x);
vec2 uv (uv_tp + uv_tile) / vec2(tpsize);

// Fetch the texture color
texcolor = textureGrad(tpdecal, uv, dFdx(coords) / float(tpsize.x),
dFdy(coords) / float(tpsize.y));
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A.2 Partition Algorithm

Inspired by the FPO algorithm from Section the following algorithm par-
titions a given set of points X € [0,1)% into m equally-sized subsets Y; such
that each subset is well-distributed in the sense of high average mindists dy, (see
Chapter [4). The algorithm is an iterative optimization method that guarantees
the strictly monotonic increase of ) _; Z_SYi until converging at a (local) maximum.

More formally, we are interested in partitioning X such that }_; 8y, — max

under the conditions
m

VYLY;YinY; =0,V =Vjl,i#j and [JVi=X. = (A1)
i=1
We assume that the total number of points [X| divides the desired number of
subsets without remainder such that each subset contains n := |X|/m points.
Our algorithm is based on the observation that if we swap a pair of points
y € Yiandy’ € Yj between two arbitrary but equally-sized subsets, then

1. SYi must increase ifSyi_y+y/ — <’_SYi >0,
2. Oy, must increase iféyj_y/+y —dy; >0,
3. Y ; 8y, must increase if (Syi,yﬂy —dy,) + (Syj,ylﬂj - Syj) > 0.

This means that swapping a pair of points between two subsets is beneficial for
the sum )_; 8y, as long as the gain in average mindist for one of the subsets
is bigger than the (potential) loss is for the other. This is captured by the fol-
lowing method which performs such a beneficial swap between two subsets and
returns 1 on success and 0 otherwise.

BENEFICIAL-SWAP (Y3, Yj)

1 Sy.l, Z_SYj = average mindist of Y3, Y
2 foreachyinY;
3 foreachy’inY;

4 swap Yi[y] and Yj[y’]

5 S(G, 5((1 = average mindist of Y;, Y;
6 A = (8%, —By,) + (8, — B,

7 ifA>0

8 return 1

9 swap Y[yl and Yj[y’]

10 returno

Note that the method swaps at most one pair of points between the two sub-
sets. Thus, calling BENEFICIAL-SWAP for any two subsets can only increase Y_; 8y,
and never decrease it. Also note that if two subsets stem from a partition that
already fulfills the conditions , these conditions remain valid after calling
BENEFICIAL-SWAP for the two subsets.
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The full algorithm now starts with a random partition that fulfills and
iteratively loops over all pairs of subsets, calling the swapping method once for
each pair. This concludes one full iteration of the partition algorithm. The algo-
rithm stops when there are no more beneficial swaps for all pairs:

OPTIMIZED-PARTITION(X)

1 {Y;i} = random partition of X with [Y;| = n

2 ns = X|

3 whileng >0

4 ng =20

5 foreach pair Yy, Y;

6 Mg = N + BENEFICIAL-SWAP(Y, Yj)
7 return{Y;}

Figure (left) shows the result when partitioning 1024 random points into
eights subsets with 128 points each. Note the good distribution of each subset
with average mindists around 0.75 even though the input point set itself is not
well-distributed. For better input point sets such as capacity-constrained points,
partition results get better, too. Consider, for instance, the example during the
discussion of trajectory splitting in Section[5.4]

Since swapping a pair of points can only increase ) ; Syi, the sum must in-
crease strictly monotonically during one iteration of OPTIMIZED-PARTITION. (See
right-hand side of Figure [A.1]) Consequently, the algorithm converges when
> 8y, "W — 3. 8y, °4 = 0 or, equivalently, when ng = 0.

Convergence, however, is rather slow and can be significantly speed up by
a variant of BENEFICIAL-SWAP that searches the most beneficial swap (instead of
just any) for the subsets under consideration:

MOST-BENEFICIAL-SWAP(Yj, Yj)
1 Syi, Syj = average mindist of Y;, Yj
2 Apax =0
3 foreachyinY;

4 foreach y’inY;
5 swap Yilyl and Y;j[y']
6 d{,,0%, = average mindist of Yy, Y;
7 AYl: (Yé’ -5 A)g+(8’ —dv.) )
Yi Yi Y Y;
8 if A > Apax
9 Apax = A,c =y, ¢’ =y’
10 swap Yi[yl and Y;j[y’']
11 if Apax >0
12 swap Y;i[c] and Y;j[c']
13 return 1

14 returnoO
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Figure A.1: (Left) 1024 random points partitioned into eight subsets. (Right) Con-
vergence behavior based on MOST-BENEFICIAL-SWAP.

This is the method we use in practice. Compared to BENEFICIAL-SWAP, it trades
runtime complexity for convergence speed which, overall, benefits the full algo-
rithm. In addition, the method can be significantly speed up itself if we utilize
Delaunay triangulations which particularly benefits the computation of the av-
erage mindists. Using DTs, it is not hard to see that the runtime complexity for
one iteration of the full algorithm becomes O(m?n? logn). In practice, it is near
O(n?logn) since we often have n >> m for our application scenarios.

A.3 Ranking Algorithm

In cases where we only need parts of an optimized point set, it is sometimes use-
ful to rank it such that it unfolds in a well-distributed manner. If we have a point
set X = {xo,...,Xn—1}, we want the subsets {xo,...,xx}, 0 < k < n to be well-
distributed, too. This is similar to the way some radical-inverse based sequences
unfold where subsequent points always “fall into the largest gap” [Kelo4].

We can mimic this property by the following simple procedure which is ap-
plicable to any given point set X with at least two points.

RANK(X)

1 n=IX

2 fori=0to1l

3 r = random integer in [i,n]

4 swap X[i] and X|[r]

5 fori=2ton—1

6 f = index of the point in X[i] ... X[n — 1] that is farthest from any point

in X[0]...X[1—1]
swap X[i] and X|[f]
8 return X

~

This algorithm is essentially a discrete space version of the original farthest-
point algorithm [ELPZ97] implemented as an in-place sorting algorithm. Starting
with two randomly chosen points, it sorts the points in such a way that the “next”
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point is always farthest from the already chosen points. If only the first point is
chosen randomly, the algorithm tends to produce subsets that resemble regular
point arrangements, similar to the original FPS algorithm. Randomly choosing
at least two points prevents this in practice.

If an input point set is irregular, the algorithm typically generates a ranking
where the subsets {xo, ..., Xk} are also irregular, with spatial and spectral char-
acteristics similar to point sets obtained by dart throwing. The following figure
shows example results for two ranked points sets, a random point set (top) and a
capacity-constrained point set (bottom):

k= 4 8 16 32 64 128 256

legll
X
Il

0.850 0.798 0.797 0.792 0.740

dx = 0.875 0.809 0.768 0.786 0.773 0.733 0.892

For both point sets, all intermediate steps can be considered reasonably well-
distributed with most 8x > 0.7. It is interesting to note that the average mindist
decreases with increasing index k which is probably due to the increasing lack
of freedom in choosing the next farthest point. It is also interesting to see that
a well-distributed total set doesn’t necessarily yield better subsets. The good
distribution quality of the total set only comes into play at later steps.

A.4 Latin Hypercube Algorithm

The Latin hypercube sampling property (LHS property) is a stratification prop-
erty that can improve the efficiency of multi-dimensional sample sets when pro-
jected onto any of the sampling dimension’s axes [Shi90]. It states that for a point
set X € [0,1)® with n points, in each dimension there is exactly one point in ev-
ery interval [i/n, (1+1)/n), 0 < i < n. In graphics, 1D projections of 2D point
sets matter in situations where a 2D function mainly changes in one direction,
e.g. during direct light estimation from long thin area light sources.

Saka et al. [SGB07] proposed an algorithm to add the LHS property to any
given point set. If & € [0,1) denotes a uniform random number, the simple
algorithm can be formulated as follows.
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LATINIZE(X)

1 n=IX

2 fork=0tos—1

3 sort the points in X by their k-th coordinate in ascending order
4 fori=0ton—1

5 if X[l ¢ [i/n, (i+1)/n)

6 X[kl = (i+&)/n

7 return X

The first []-operator denotes access to the i-th point in the array X, and the sec-
ond []-operator denotes access to the k-th component of this point. It can be
seen that after calling LATINIZE(X), the point set X indeed has the LHS property.

What is interesting about this algorithm is that although it significantly al-
ters the 1D projections of a given 2D point set, it does only slightly influence the
point set’s 2D properties. The following figure shows an example using a random
point set and a capacity-constrained point set where the lines visualize the 1D
projections along each axis.

Random Latinized Random Cap. Con. Latinized Cap. Con.

Both point sets show significantly improved 1D projections but because the po-
tential shift is implicitly attenuated by the sort operation, their relative locations
changed only slightly in two dimensions. For example, if we look at the RDF and
1D power spectrum of the capacity-constrained points, we see that they maintain
their characteristic spatial and spectral properties:

5 5F
4 .
3 L —
. :
2t 2
1F
0 . . . . . 4 .
0 2.0 4.0 6.0 8.0 0 50 100 150 200
distance frequency

The curves corresponding to the original capacity-constrained points are printed
in black and the curves corresponding to the latinized variants are printed in
blue. They are almost identical. Table on the other hand, shows the influ-
ence of the algorithm on our measures from Chapter[4} The most significant im-
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Method n dx Sx Px & (x107?)

Random 4096 0.010 0.465 0.365 -
Lat. Random 4096 0.018 0.469 0.364 -
FPO 4096 0.930 0.932 0.426 -
Lat. FPO 4096 0.772 0.895 0.423 -
Cap. Con. 4096 0.764 0.891 0.519 1.49

Lat. Cap. Con. 4096 0.692 0.879 0.511 2.10

Table A.1: Effect of LATINIZE on mindist, average mindist,
bond-orientational order, and CCVT energy of several points.

pact can be observed for the mindist 5x which generally decreases. The average
mindist also gets slightly worse while the other variables remain stable.

Nevertheless, when capacity-constrained points are used as sample points in
physically-based rendering, the improved 1D projections can be very useful in
certain lighting situations.
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