
B O R I S N E U B E R T

C O M P U T E R G R A P H I C S
A N D N AT U R E
S I M U L AT I O N - B A S E D A N D P R O B A B I L I S T I C M E T H O D S
F O R

I M A G E - A N D S K E T C H - B A S E D M O D E L I N G
A N D

A DVA N C E D S T O C H A S T I C P R U N I N G

D I S S E R TAT I O N

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

an der Universität Konstanz, Mathematisch- Naturwissenschaftliche Sektion,

Fachbereich Informatik und Informationswissenschaft,

vorgelegt von Boris Neubert.

Konstanz, 2011
U N I V E R S I T Y O F K O N S TA N Z

http://www.eg.org
http://diglib.eg.org

Reviewers/ Referenten:

1. Referent: Prof. Dr. Oliver Deussen, University of Konstanz, Germany

2. Referent: Prof. Dr. Daniel Keim, University of Konstanz, Germany

Date of Defense/ Tag der mündlichen Prüfung:

7.5.2012

für Daniela

II

Abstract

This thesis presents new methods for modeling and efficient rendering of botanical scenes and objects. The first method
allows for producing 3D tree models from a set of images with limited user intervention by combining principles of
image- and simulation-based modeling techniques. The image information is used to estimate an approximate voxel-
based tree volume. Density values of the voxels are used to produce initial positions for a set of particles. Performing a
3D flow simulation, the particles are traced downwards to the tree basis and are combined to form twigs and branches.
If possible, the trunk and the first-order branches are determined in the input photographs and are used as attractors
during the particle simulation. Different initial particle positions result in a variety, yet similar-looking branching
structures for a single set of photographs. The guided particle simulation meets two important criteria improving
common modeling techniques: it is possible to achieve a high visual similarity to photographs and at the same time
allows for simple manipulations of the resulting plant by altering the input photographs and changing the shape or
density, providing the artist with an expressive tool while leveraging the need for manual modeling plant details.
Following paper based on guided particle simulations coined the term self-organizing tree models.

The second method improves the concept of sketch-based modeling tools for plants. The proposed system converts
a freehand sketch of a tree drawn by the user into a full 3D model that is both, complex and realistic-looking. This is
achieved by probabilistic optimization based on parameters obtained from a database of tree models. Branch interaction
is modeled by a Markov random field, which allows for inferring missing information of the tree structure and com-
bining sketch-based and data-driven methodologies. The principle of self-similarity is exploited to add new branches
before populating all branches with leaves.

Both modeling methods presented in this work, produce very complex tree models. While this richness is needed
to model highly realistic scenes, it leads to a complexity that makes real-time rendering impossible. We present
an optimized pruning algorithm that considerably reduces the geometry needed for large botanical scenes, while
maintaining high and coherent rendering quality. We improve upon previous techniques by applying model-specific
geometry reduction functions and optimized scaling functions. We propose the use of Precision and Recall (PR) as
a measure of quality to rendering and show how PR-scores can be used to predict better scaling values. To verify
the measure of quality we conducted a user-study allowing subjects to adjust the scaling value, which shows that the
predicted scaling matches the preferred ones. Finally, we extend the originally purely stochastic geometry prioritization
for pruning in order to account for a view-optimized geometry selection, which allows to take global scene information,
such as occlusion, into consideration. We demonstrate our method for the rendering of scenes with thousands of
complex tree models in real-time.

IV

Zusammenfassung

Diese Arbeit beschreibt neue Methoden zur Modellierung und Bilderzeugung von komplexen Landschaften und
botanischen Modellen, die immer häufiger im Kontext von Landschaftsvisualisierung und in Filmen eingesetzt werden.
Mit steigender Rechen- und Speicherkapazität wurden Effizienzbetrachtungen bei der Modellierung zunehmend
unwichtiger und Benutzbarkeit und Expressivität rücken in den Fokus aktueller Forschung.

Die beschriebene Methode zur bildbasierten Modellierung beschreibt den Prozess 3D Modelle mit Hilfe von
Fotografien zu erzeugen. Das vorgestellte Verfahren verbindet dieses Prinzip mit Methoden simulationsbasierter Mod-
ellierung. Basierend auf einer geringen Anzahl Fotografien werden 3D Modelle von Pflanzen erstellt. Hierfür wird
zunächst approximativ das Volumen in Kombination mit Dichteinformationen bestimmt, die das Modell beschreiben.
Innerhalb des Volumens werden proportional zur ermittelten Dichte Startpositionen für Partikel erzeugt. Die Trajekto-
rien der Partikel während einer Partikelsimulation erzeugen im späteren Model die Zweige und schliesslich den Stamm.
Die Bewegungsrichtung der Partikel während der Simulation wird vom Verlauf der Hauptäste des fotografierten
Baumes beeinflusst und ermöglicht so ein ähnliches Abbild der fotografierten Pflanze.

Eine weitere Modellierungsmethode kombiniert Prinzipen der datengetriebenen und skizzenbasierten Modellierung.
Die fehlenden Informationen einer 2D Pflanzenskizze, wie beispielsweise 3D Positionen der Äste, werden ermittelt,
indem Informationen verwendet werden, die aus einer Datenbank mit Modellen gewonnen werden. Die Informationen
der Modelle in der Datenbank werden dabei mit Hilfe von Markov Random Fields ausgewertet. Faktor Graphen
ermöglichen es, die wahrscheinlichste Konfiguration der fehlenden Parameter basierend auf den Daten eines Models
der Datenbank zu ermitteln und so ein vollständiges 3D Modell zu erzeugen.

Die vorgestellten Methoden ermöglichen es detaillierte und komplexe Modelle zu erzeugen. Echtzeitdarstellung
erfordert aber die Komplexität auf ein Maß zu beschränken, das eine interaktive Darstellung ermöglicht. Wir stellen
ein Verfahren vor, dass modell- und szenenspezifisch die Komplexität der darzustellenden Modelle verringert. Um
eine hohe visuelle Qualität zu garantieren bedienen wir uns einem aus dem Informationretrieval bekannten Maß:
Precision und Recall. Wir zeigen wie ein auf PR basierendes Qualitätsmaß verwendet werden kann, um optimale
Parameter für dieses Level of Detail Verfahren zu bestimmen. Ein Vergleich mit einer durchgeführten Benutzerstudie
zeigt die Plausibilität der ermittelten Werte. Eine mögliche Anwendung des vorgestellten Qualitätsmaß ist die nicht-
stochastische, priorisierte Auswahl von Geometrie, die eine modellabhängige automatische Auswertung ermöglicht.
Wir zeigen, dass die Modelle eine signifikante Reduzierung der Komplexität und damit eine Echtzeitdarstellung
ermöglichen.

Acknowledgements

This work was possible with the kind help and support of various friends, colleges, and collaborators.

First of all I thank my advisor, Professor Dr. Oliver Deussen for the opportunity to work with his group. He not only
influenced my development as a researcher, but supported me as an advisor during Bachelor and Master theses and
arouse my interest in scientific research and the inspiring field of computer graphics. I also thank my second advisor
Professor Dr. Daniel Keim for his comments and reviewing the thesis and for keeping interested in other topics and
influencing the way I approach research topics and to Professor Dr. Carsten Dachsbacher for his support and valuable
discussions.

Additional thanks to my advisor for giving me the opportunity to work on various interesting topics and especially
supporting various research visits at other labs, learning different views and approaches to answer research questions.
Mike Sips and Pat Hanhrahan from Stanford University allowed me to work in the field of information visualization
and made it possible to work with various interesting researchers. Thanks to Michael F. Cohen for the enriching and
inspiring time at Microsoft Research together with Bill Chen and Eyal Ofek and the great opportunity to meet Pravin
Bhat, who I later had the pleasure to meet again at Weta Digital Research together with J.P. Lewis, Eugene d’Eon and
many more. Thanks for this inspiring and pleasant time.

Many thanks to my colleges at the computer graphics lab in Konstanz, Thomas Franken, Till Niese, Joachim Böttger,
Sören Pirk, Michael Balzer, Daniel Heck, Thomas Schlömer, and Johannes Kopf for the nice time and interesting
discussions.

I am deeply thankful for the support and patience of my mother and would also like to thank my family for the sup-
port they provided me through my entire life and in particular my wife, Daniela, without her love and encouragement, I
would not have finished this thesis.

In conclusion, I recognize that this research would not have been possible without the financial assistance of the
”Information Technology Baden-Württemberg (BW-FIT)” program and the ”Information at your fingertips – Interactive
Visualization for Gigapixel Displays” project.

Contents

Introduction 1

1 Introduction 3
1.1 Scope of the Thesis and Motivation 3
1.2 Contributions and Publications 4
1.3 Outline 6

I Modeling of Natural Objects 7

2 Introduction to Modeling Nature and Related Work 9
2.1 Mathematical Descriptions 10
2.2 Procedural Approaches 12
2.3 Image-based Modeling 13
2.4 Sketch-based Approaches 15
2.5 Simulation-based Modeling 16

3 Modeling through Simulation 17
3.1 Overview 19
3.2 Pre-processing 19
3.2.1 Alpha Matting 20
3.2.2 Branching Pattern 22
3.3 Computing the Tree Density 23
3.3.1 The Volume Rendering Equation 23
3.3.2 Computing the Linear Equation System 25
3.4 Particle Tracing 26
3.4.1 Solving Initial Value Problems 27
3.5 The Direction Field 29
3.6 Results and Discussion 31

X

3.6.1 Limitations of the Method 32
3.7 Conclusions 34

4 Data-driven Plant Modeling 35
4.1 Introduction 36
4.2 Probability Theory and Probabilistic Graphical Models 37
4.2.1 Bayesian networks 39
4.2.2 Markov Random Fields 39
4.2.3 Factor Graphs 40
4.3 Overview of System 40
4.4 From 2D Sketches to Factor Graphs 42
4.5 Tree Data Structure 43
4.5.1 Refined Markov Model and Factor Graph 44
4.5.2 From Local to Global Coordinate Systems 45
4.6 Markov Tree Inference 46
4.6.1 Inferring Branches with Fixed Global Parameters Ω 47
4.6.2 Inferring Branches Positions and Global Parameters Ω 50
4.7 Branch Propagation and Leaf Population 50
4.8 Database of Tree Templates 52
4.9 Results and Discussions 55

5 From Graphs to Models 59
5.1 Allometry 59
5.2 Branch Geometry 63
5.2.1 Open Uniform B-splines 63
5.2.2 Curve Framing 64
5.3 Meshing Bifurcations 67
5.4 Modeling details: Twigs and Leaves 70
5.4.1 Leaf Geometry, Position, and Orientation 72

II Rendering of Complex Scenes 75

6 Level-of-detail Algorithms 77
6.1 Mesh Simplification 78
6.2 Billboard Representation – Replacing Geometry Details with Texture 79
6.3 Stochastic Simplification 81
6.3.1 Point- and Line-based Rendering 82
6.3.2 Dynamic Polygonal Representations 84

XI

7 Realtime Rendering 87
7.1 Introduction 88
7.2 Improved Scaling for Pruning Algorithms 89
7.2.1 Area Preservation and Optimal Scaling 89
7.2.2 Precision and Recall 90
7.2.3 Experimental Validation and User Study 93
7.2.4 Impact of Scaling and View Direction 96
7.2.5 Detail Level Selection 97
7.3 Rendering Priority 98
7.3.1 Silhouette Preservation and Density Normalization 99
7.3.2 Varying Density 99
7.3.3 Orientation 100
7.3.4 Combined Prioritization 100
7.4 View-dependent Optimization 101
7.5 Color Variation 102
7.6 Results and Comparison 103
7.7 Conclusions 105

III Conclusion 107

8 Concluding Remarks 109

Bibliography 113

Introduction

1

Introduction

1.1 Scope of the Thesis and Motivation

Modeling and rendering botanical scenes has always been an important topic
in computer graphics research. Whereby both, photo-realistic display of
man-made objects and natural phenomena, such as smoke, clouds, skin, hair,
and plants have been a core objective in computer graphics research.

However, in comparison to man made objects that are already designed
with the help of computers, some properties of natural objects, especially
plants and large botanical scenes, are difficult to capture. This equally applies
to rendering of such scenes as well as modeling.

Nature is incredible complex on different scales. While complex models
of man made objects can often be presented in a computer readable form with
a few thousand polygons, natural objects like trees, demand a much higher
geometric complexity.

The early solution to handle this complexity was to use mathematical
descriptions that are capable of producing detailed models based on very effi-
cient mathematical description. However, working with these descriptions not
only requires a solid mathematical understanding, but also a thorough knowl-
edge in botanics, which makes modeling a cumbersome and complicated
task.

Recent developments in model synthesis foster the change from experts
to artists with the increasing demand of realistic models for computer games
and computer graphics application to movies. The increasing capacities
over the last years, both in computational power and memory space, relaxed
the constrains on high efficient descriptions of natural models and instead
raised the need for modeling methods that are easy to use and that support
the creativity of artists. Modeling tools suitable for modeling natural objects

4 COMPUTER GRAPHICS AND NATURE

had a stronger focus on expressiveness and ease of user versus efficiency
considerations.

Another important aspect in the paradigm shift was introduced with
the development of digital capturing devices such as digital cameras and
laser scanners. Image based modeling techniques were introduced with the
intuitive idea of using real world examples and capture devices to obtain
digital representations of the models rather than modeling certain objects.
However, while this method is very efficient for large scale objects such as
architecture, for image based capturing of plants, it is still difficult to obtain
digital representations of models fully automatic. This is due to non-unique
features that make registration of images very hard and due to the high
degree of occlusion for some parts of natural objects that raise problems for
algorithms based on digital images as well as methods based on laser scanner.

While complexity considerations with respect to model synthesis were ap-
proached by helping the user to generate complex models without the tedium
of manual modeling every repeated detail, complexity still affects image syn-
thesis. Usually even small scenes exceed the capabilities of modern graphics
hardware. These problems are usually addressed by simplifications algo-
rithms reducing the geometric complexity of models according to distance to
the viewer. However, most of the common level-of-detail approaches render
impractical for natural scenes, while other methods provide no mechanism of
measuring the quality of the simplified model.

Developing an image-space quality measure is an important first step to
answer the basic question: How to measure the quality of an image?

1.2 Contributions and Publications

The main contributions in the field of rendering and modeling of nature
summarized in this thesis are

• An algorithm combining principles of image-based and simulation-based
modeling. The idea of using particle simulations to model trees was
recently extended in an interesting work by Runions et al. [Runions et al.,
2007] and later Palubicki et al. [Palubicki et al., 2009]. A variant of the
proposed algorithm has also recently been used for modeling vegetation in
Disney’s feature film "Tangled".

• Combining sketch-based and data driven modeling. Successfully appli-
cation of probabilistic graphics models to capture the properties of a data
base of tree models and use this data to deduce missing information to
generate full 3D models from 2D sketches. Data-driven modeling de-
scribes the idea to use available data from existing models to interpret the

INTRODUCTION 5

sketches and deduce missing information in a plausible manner following
an expectation maximization approach.

• Proposing the use of Precision and Recall, well known measures from
Information Retrieval, to predict the visual quality of simplified models
as used in level-of-detail algorithms and answers the question of how to
adapt parameterized, continuous LOD algorithms to different models and
scene configurations. Precision and Recall are used to establish an image-
space quality measure that faithfully predicts optimal, model dependent
LOD parameters. While being especially suited for the rendering of
complex aggregate detail, it raises an interesting question of general
interest to the computer graphics community: How to measure the quality
of an image?

The result presented in this thesis and additional research results have been
published in the following publications in accordance with the practice for a
cumulative thesis:

Boris Neubert, Thomas Franken, and Oliver Deussen. Approximate image-based tree-modeling using particle flows.
ACM Transactions on Graphics (Proc. of SIGGRAPH ’07), 26:88:1 – 88:10, July 2007

Xuejin Chen, Boris Neubert, Ying-Qing Xu, Oliver Deussen, and Sing Bing Kang. Sketch-based tree modeling using
markov random field. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia ’08), 27:109:1–109:9, December 2008

Johannes Kopf, Boris Neubert, Billy Chen, Michael F. Cohen, Daniel Cohen-Or, Oliver Deussen, Matt Uyttendaele, and
Dani Lischinski. Deep photo: Model-based photograph enhancement and viewing. ACM Transactions on Graphics (Proc.
of SIGGRAPH Asia ’08), 27:116:1–116:10, December 2008

Billy Chen, Boris Neubert, Eyal Ofek, Oliver Deussen, and Michael F. Cohen. Integrated videos and maps for driving
directions. In Proc. of the ACM symposium on User interface software and technology, UIST ’09, pages 223–232. ACM
Press, 2009

Mike Sips, Boris Neubert, John P. Lewis, and Pat Hanrahan. Selecting good views of high-dimensional data using class
consistency. Computer Graphics Forum (Proc. of EuroVis ’09), 28(3):831–838, 2009

Boris Neubert, Soeren Pirk, Oliver Deussen, and Carsten Dachsbacher. Improved model- and view-dependent pruning
of large botanical scenes. Computer Graphics Forum, 30(6):1708–1718, 2011

Sören Pirk, Ondrej Stava, Julian Kratt, Michel Abdul Massih Said, Boris Neubert, Radomír Měch, Bedrich Benes, and
Oliver Deussen. Plastic trees: interactive self-adapting botanical tree models. ACM Transactions on Graphics (Proc. of
SIGGRAPH ’12), 31(4):50:1–50:10, July 2012b

Sören Pirk, Till Niese, Oliver Deussen, and Boris Neubert. Capturing and animating the morphogenesis of polygonal
tree models. ACM Transactions on Graphics (Proc. of SIGGRAPH Asia ’12), 2012a

6 COMPUTER GRAPHICS AND NATURE

1.3 Outline

The remainder of this thesis is organized in two parts reflecting the two major
areas of interest regarding the synthetic imagery of natural scenes: modeling
(Part I: Modeling of Natural Objects) and rendering (Part II: Rendering of
Complex Scenes).

The first chapter provides an introduction to the field of modeling and
discusses related work. Chapter 3 Modeling through Simulation introduces
the idea of simulation-based modeling in combination with image-based
methods. Chapter 4 Data-driven Plant Modeling deals with a method to
increase the modeling ease of trees following the sketch-based paradigm and
discusses the use of probabilistic graphical models to generate 3D models
from 2D sketches. Data-driven modeling describes the idea to use available
data from existing models to interpret the sketches and deduce missing
information in a plausible manner following an expectation maximization
approach. The final step generating 3D geometry from the intermediate graph
representation of the plant skeleton is described in Chapter 5: From Graphs
to Models.

The first chapter of the second part discusses related work in the field of
level-of-detail rendering algorithms relevant to natural scenes and objects.
Chapter 7: Realtime Rendering – Improved Model- and View-Dependent
Pruning of Large Botanical Scenes answers the question of how to adapt
parameterized, continuous LOD algorithms to different model and scene
configurations. Precision and Recall, well known measures from Information
Retrieval, are used to establish an image-space quality measure that faithfully
predicts optimal, model dependent LOD parameters.

Chapter 8 presents a summary of the results and introduces possibilities
for future research.

Part I

Modeling of Natural Objects

2

Introduction to Modeling Nature and Related Work

The development of computer graphics research as an independent discipline
within computer science found its starting point with the groundbreaking
work of Ivan Sutherland [Sutherland, 1963] 1 a student at the Massachusets 1 Ivan E. Sutherland. Sketchpad: A Man-

Machine Graphical Communication System.
PhD thesis, Massachusetts Institute of
Technology, Lincoln Lab, 1963

Institute of Technology (MIT) in the early 1960s, who then founded, together
with Dave Evans, the first computer graphics research lab at the University
of Utah in 1968. Not surprisingly, natural phenomena and objects came
into the focus of cg research with the emerging goal to render photorealistic
models soon after the foundations of computer graphics were laid. Benoit
Mandelbrot’s publication "The fractal geometry of Nature" [Mandelbrot,
1983] 2 was amongst the most influential publications on this topic at that 2 Benoit B. Mandelbrot. The Fractal

Geometry of Nature. W. H. Freedman and
Co., New York, 1983

time.

Without the nowadays common possibilities and software that allow for
detailed manual modeling, and with the need to have extremely memory
efficient model descriptions, describing nature in mathematical terms was a
very important step to be able to efficiently use the data and render pictures
within a computer graphics framework. In 1968 Aristid Lindenmayer [Lin-
denmayer, 1968] 3 formulated a method to model natural objects based on 3 Aristid Lindenmayer. Mathematical models

for cellular interaction in development,parts
I and II. Journal of Theoretical Biology, 18:
280–315, 1968

mathematical rules. Naturally, these were amongst the first methods used to
provide detailed geometry of natural objects.

With the fundamental step to the Reyes (Renders Everything You Ever
Saw) rendering architecture [Cook et al., 1987] 4 and the introduction of 4 Robert L. Cook, Loren Carpenter, and

Edwin Catmull. The reyes image rendering
architecture. Computer Graphics (Proc. of
SIGGRAPH ’87), 21:95–102, August 1987

triangles (in contrast to mathematical descriptions of surfaces and objects) as
rendering primitives more advanced modeling methods became interesting.

10 COMPUTER GRAPHICS AND NATURE

This chapter will briefly introduce some of the fundamental works within
natural modeling and retrace the development from purely mathematical
descriptions, to advanced user centered approaches, and finally to image-
based methods that focus on the capturing of real world plants.

2.1 Mathematical Descriptions

Even before computer graphics became an independent research discipline
mathematicians developed methods to formally describe various natural phe-
nomena. Techniques for mathematical descriptions of plants were introduced
as early as 1966 by Ulam [Ulam, 1966] 5 . They were soon followed by the 5 Stanislaw M. Ulam. Pattern of growth of

figures: mathematical aspects. In G. Keps,
editor, Module, Proportion, Symmetry,
Rhythm, pages 64–74. Braziller, New York,
1966

introduction of L-systems as a formalism for simulating the development of
multicellular organs in terms of division, growth, and death of individual
cells [Lindenmayer, 1968] 6 . Naturally, these descriptions were the first

6 Aristid Lindenmayer. Mathematical models
for cellular interaction in development,parts
I and II. Journal of Theoretical Biology, 18:
280–315, 1968

techniques adapted by the computer graphics community to generate natu-
ral objects and were later refined to meet the increasing demand for highly
realistic models.

The central concept of L-systems is that of rewriting. In general, rewriting is
a technique for defining complex objects by successively replacing parts of a
simple initial object using a set of rewriting rules or production.

(from [Prusinkiewicz and Lindenmayer, 1996])

Lindenmayer systems, or L-Systems, [Lindenmayer, 1968] allow the de- L-Systems
scription of a complex branching pattern based on simple rewriting rules,
formalized as grammars very similar to semi-Thue grammars, that are applied
to an initial state [Prusinkiewicz and Lindenmayer, 1996] 7 , defined as the 7 Przemyslaw Prusinkiewicz and Aristid

Lindenmayer. The algorithmic beauty of
plants. Springer-Verlag New York, Inc., New
York, NY, USA, 1996

tuple

G = (V ,ω ,P) (2.1)

where V is the alphabet (a set of symbols), ω is the initiator consisting
of a string of symbols from V (initial state) and P is a set of production
rules defining how symbols can be replaced with other strings contain-
ing symbols from V (see Fig. 2.1 for some examples of P). Prusinkiewicz
et al. [Prusinkiewicz et al., 1996] 8 later derived a systematic description for 8 Przemyslaw Prusinkiewicz, Mark Hammel,

Jim Hanan, and Radomír Měch. L-systems:
from the theory to visual models of plants.
In Proc. of the 2nd CSIRO Symposium on
Computational Challenges in Life Sciences,
volume 3, pages 1–12. CSIRO Publishing,
1996

INTRODUCTION TO MODELING NATURE AND RELATED WORK 11

(a) n = 5, δ = 25.7,
P = {F → F(+F)F(−F)F}

(b) n = 5, δ = 25.7,
P = {X → F(+X)(−X)FX ,F → FF}

(c) n = 7, δ = 22.5,
P = {X → F((X)−X)F(+FX), F → FF}

Figure 2.1: Lindenmayer System with
symbol set V = {F ,X ,+,−, (,)}

using L-systems to model plants.

In a classical L-System, the rule basis has to be written by the user. Since
rules work locally, small changes of values can cause large changes in the
overall shape, that are hard to predict. Such behavior makes modeling quite
cumbersome. Figure 2.1 shows an example of a grammar-based branching
system and the underlying grammars. Various extensions of L-Systems
have been proposed since then, e.g. parametric [Prusinkiewicz and Lin-
denmayer, 1996], open [Měch and Prusinkiewicz, 1996] 9 and differential 9 Radomír Měch and Przemyslaw

Prusinkiewicz. Visual models of plants
interacting with their environment. In Proc.
of SIGGRAPH ’96, pages 397–410, New
York, NY, USA, 1996. ACM

L-Systems [Prusinkiewicz et al., 1993] 10 . These extensions are able to

10 Przemyslaw Prusinkiewicz, Mark Ham-
mel, and E. Mjolsness. Animation of plant
development. In Proc. of SIGGRAPH ’93,
pages 351–360, New York, NY, USA, 1993.
ACM

create a variety of effects, but also result in additional parameters, that need
to be defined by the user. Prusinkiewicz et al. [Prusinkiewicz et al., 2001]
present a modeling interface for L-Systems to enhance the modeling ease, but
a large set of parameters still has to be defined by the user and the induced
changes are difficult to predict.

12 CO MPU TER GRAPHICS AND NATURE

Figure 2.2: Procedural plant modeling
[from Weber and Penn, 1995]

2.2 Procedural Approaches

Procedural approaches are usually restricted to produce a limited number of
forms. They are also able to limit the number of adjustable parameters for the
user. However, with increasing model complexity, the number of parameters
increases, too. While Oppenheimer [Oppenheimer, 1986] 11 uses only some 11 Peter E. Oppenheimer. Real time design

and animation of fractal plants and trees. In
Computer Graphics (Proc. of SIGGRAPH
’86), volume 20, pages 55–64, New York,
NY, USA, August 1986. ACM

basic parameters, following approaches such as the one presented by Weber
and Penn [Weber and Penn, 1995] have dozens (see Fig. 2.2 for a schematic
description of the parameters used).

In the xfrog system [Lintermann and Deussen, 1999] 12 procedural 12 Bernd Lintermann and Oliver Deussen.
Interactive modeling of plants. IEEE
Computer Graphics and Applications, 19:
56–65, January 1999

elements are combined using a simple rule system, which allows faster
modeling. However, the number of parameters is still large. Ijiri et al. [Ijiri
et al., 2005] 13 use interactive editors based on botanical rules to create plant 13 Takashi Ijiri, Shigeru Owada, Makoto

Okabe, and Takeo Igarashi. Floral diagrams
and inflorescences: interactive flower mod-
eling using botanical structural constraints.
ACM Transactions on Graphics (Proc. of
SIGGRAPH ’05), 24(3):720–726, July 2005

models. While these editors allow for an efficient production of flowers and
phyllotaxis, the production of complex trees is not their strength. Okabe
et al. [Okabe et al., 2005] 14 present a sketch-based interface for trees. Here,

14 Makoto Okabe, Shigeru Owada, and
Takeo Igarashi. Interactive design of
botanical trees using freehand sketches and
example-based editing. Computer Graphics
Forum (Proc. of Eurographics ’05), 24(3):
487–496, 2005

the user draws the outline of a tree skeleton and its shape. However, again
many parameters have to be adjusted to achieve specific species.

INTRODUCTION TO MODELING NATURE AND RELATED WORK 13

(a) (b) (c) (d)

Figure 2.3: Combination of procedural
and rule-based plant modeling [from
Deussen and Lintermann, 2005].

Rule-based systems are difficult for the novice user to operate because
they require not only specialized knowledge on biomechanics and biology
for effective parameter specification. The user must also understand how
the rules are applied or even formulated consistently. In a number of such
systems, the global shape of trees is difficult to control—slight changes in
local rules may result in significant changes in the global shape.

The xfrog system [Lintermann and Deussen, 1999] 15 and subsequent 15 Bernd Lintermann and Oliver Deussen.
Interactive modeling of plants. IEEE
Computer Graphics and Applications, 19:
56–65, January 1999

graphical L-System editors [Prusinkiewicz et al., 2001] 16 allow the user to

16 Przemyslaw Prusinkiewicz, Lars Münder-
mann, Radoslaw Karwowski, and Brendan
Lane. The use of positional information
in the modeling of plants. In Proc. of SIG-
GRAPH ’01, pages 289–300, New York, NY,
USA, 2001. ACM Press

manipulate complex parameters graphically. Despite the increased ease of
use, such systems still require the user to specify the less intuitive function
plots, curves, and surface parameters that govern appearance.

2.3 Image-based Modeling

Rather than requiring the user to manually specify the plant model, there
are approaches that instead use images as a basis to generate 3D models.
For example, Shlyakter et al. [Shlyakhter et al., 2001] 17 use an L-system- 17 Ilya Shlyakhter, Max Rozenoer, Julie

Dorsey, and Seth Teller. Reconstructing 3d
tree models from instrumented photographs.
IEEE Computer Graphics and Applications,
21:53–61, May 2001

based growth mechanism that is constrained by the visual hull produced

14 CO MPU TER GRAPHICS AND NATURE

Figure 2.4: Image-based volumetric
rendering. Left: one of the input
images. Center: two slices of the
reconstructed density volume. Right:
resulting model. [from Reche-Martinez
et al., 2004]

from photographs. A visual hull is reconstructed from the registered input
images. The medial axis diagram of the hull is constructed and used as the
tree skeleton. The smaller branches and leaves are added using an L-System.

A very precise but complex image-based modeling approach is described
by Reche-Martinez et al. [Reche-Martinez et al., 2004] 18 . In this case a set 18 Alex Reche-Martinez, Ignacio Martin, and

George Drettakis. Volumetric reconstruction
and interactive rendering of trees from
photographs. ACM Transactions on Graphics
(Proc. of SIGGRAPH ’04), 23(3):720–727,
August 2004

of carefully registered photographs is used to determine the volumetric shape
of a given tree. The data is stored as a huge set of volume tiles and therefore
requires a significant amount of memory. Furthermore, its generic volumetric
representation makes it hard to edit. The volume is divided into cells; for
each cell a valid visual representation is computed by a set of textures. Figure
2.4 shows one of input images together with the volumetric model rendered
from the same viewing direction. The complete set of textures represents the
tree quite faithfully. However, a large amount of texture space on the order
of tens of megabytes is needed. Also, it is not easy to show the tree under
various lighting conditions since the lighting is already incorporated into
the textures. This is avoided in the approaches described in the following
chapters (Chap. 3 and 4) by creating a 3D surface model using images or
a 2D sketch. Also, in the case of the image-based approach described in
Chapter 3 we do not need an exact registration of the input photographs and
instead create an approximate shape of the given tree.

Another image-based method for modeling smaller plants was presented
by Quan et al. [Quan et al., 2006] 19 . Here, an image sequence is recorded 19 Long Quan, Ping Tan, Gang Zeng,

Lu Yuan, Jingdong Wang, and Sing Bing
Kang. Image-based plant modeling.
ACM Transactions on Graphics (Proc. of
SIGGRAPH ’06), 25:599–604, July 2006

and the model is computed from these images in a semi-automatic way.
Although the results are of high quality, the amount of required user input
prevents modeling complex objects where such a method would be particu-
larly interesting. This is mainly due to the fact that complex plants consist of
many at least partially occluded areas and the required clustering needs to be
manually adjusted.

INTRODUCTION TO MODELING NATURE AND RELATED WORK 15

Tan et al. [Tan et al., 2007] 20 proposed another method to reconstruct the 20 Ping Tan, Gang Zeng, Jingdong Wang,
Sing Bing Kang, and Long Quan. Image-
based tree modeling. ACM Transactions on
Graphics (Proc. of SIGGRAPH ’07), 26:87:1
– 87:8, July 2007

3D model from multiple images. The user can also manually edit the branch
structures. However, the system requires a significant amount of preprocess-
ing work such as segmentation of branches, leaves, and background. User
intervention may be required to correct errors in the 3D branch extraction
or seed branch growth. However, mismatches between the construction of
hidden branches and observed leaves tend to produce floating leaves.

Image-based approaches have the best potential for producing realistic-
looking plants, since they rely on images of real plants. At the same time,
they can produce only models of preexisting plants. Designing new plants
would be a major issue without manual editing. Both the approaches in the
following chapters provide a good compromise that requires only a small
amount of intuitive input to produce new and realistic-looking trees.

2.4 Sketch-based Approaches

Sketch-based systems were developed to provide a more intuitive way of
generating plant models. For example, Okabe et al.’s system [Okabe et al.,
2005] 21 reconstructs the 3D branching pattern from 2D drawn sketches 21 Makoto Okabe, Shigeru Owada, and

Takeo Igarashi. Interactive design of
botanical trees using freehand sketches and
example-based editing. Computer Graphics
Forum (Proc. of Eurographics ’05), 24(3):
487–496, 2005

in different views by maximizing distances between branches. They use
additional gesture-based editing functions to add, delete, or cut branches.
Moreover, example-based editing is supported to generate branches or leaves
using some existing tree models.

Their system, however, requires the user to draw many branches to de-
scribe detailed structures. Because their system does not support automatic
propagation of branches, a complex tree would require extensive user inter-
action. In comparison, our system allows the user to generate 3D models
by merely drawing a few strokes in single view and optionally defining the
overall shape of the tree by loosely sketching the contour of the crown.

Ijiri et al.’s system [Ijiri et al., 2006] 22 is based on L-systems. The user 22 Takashi Ijiri, Shigeru Owada, and Takeo
Igarashi. The sketch L-system: Global
control of tree modeling using free-form
strokes. In Smart Graphics, pages 138–146,
2006

draws a single free-form stroke to control the growth of a tree. The change
in the shape of the stroke is used as a graphical metaphor for modifying
the L-system parameters. However, this system supports only two simple
production rules, and the user is not allowed to control the overall shape of
the tree. This severely limits the expressive power of the system.

16 COMPUTER GRAPHICS AND NATURE

2.5 Simulation-based Modeling

The following chapter presents a method for producing 3D tree models from
input photographs with only limited user intervention, as a combination
of sketch- and image-based modeling. An approximate voxel-based tree
volume is estimated using image information from loosely registered input
photographs. The density values of the voxels are used to produce initial
positions for a set of particles. Performing a 3D flow simulation, the particles
are traced downwards to the tree basis and are combined to form twigs and
branches. If possible, the trunk and the first-order branches are determined in
the input photographs and are used as attractors for a particle simulation. The
geometry of the tree skeleton is produced using botanical rules for branch
thicknesses and branching angles. Finally, leaves are added. Different initial
particle positions lead to diverse yet similar-looking branching structures for
a single set of photographs.

The idea of using particle simulations to model trees was recently ex-
tended in an interesting work by Runions et al. [Runions et al., 2007] 23 and 23 Adam Runions, Brendan Lane, and

Przemyslaw Prusinkiewicz. Modeling trees
with a space colonization algorithm. In Proc.
of the Eurographics Workshop on Natural
Phenomena, pages 63–70. Eurographics
Association, 2007

later Palubicki et al. [Palubicki et al., 2009] 24 .

24 Wojciech Palubicki, Kipp Horel,
Steven Longay, Adam Runions, Bren-
dan Lane, Radomír Měch, and Przemyslaw
Prusinkiewicz. Self-organizing tree models
for image synthesis. ACM Transactions on
Graphics (Proc. of SIGGRAPH ’09), 28:
58:1–58:10, July 2009

3

Modeling through Simulation – Approximate Image-Based
Tree-Modeling using Particle Flows

Simulation-based design [Ebert et al., 2003] 1 has a long tradition within 1 David S. Ebert, Oliver Deussen, Ronald
Fedkiw, F. Kenton Musgrave, Przemyslaw
Prusinkiewicz, and Jos Stam. Simulating
Nature: Realistic and Interactive Techniques.
SIGGRAPH ’03: Course Notes 41, 2003

computer graphics research. It is used for simulation of all kind of natural
effects such as water simulation, smoke, or clouds. The obvious benefit from
simulation-based design is that instead of dealing with tedious definitions
of rules for one instance or manual modeling of a single model, the inherent
properties of the models are encoded within the simulation rules. With a
hypothetical, perfect simulation system all observed phenomena would there-
fore be emergent properties of the simulated results. However, simulations
always provide only a simplified model of the underlying system either to
reduce the simulation complexity or because of a lack of understanding of all
underlying principles.

This chapter proposes the use of particle simulations for the modeling of
branching structures of trees.

Figure 3.1: A tree is modeled using
a set of input photographs. We show
some examples of input and resulting
3D tree models. If image information is
not available, e.g. the foliage is missing,
the user is able to sketch it (right). The
models approximate the input images
while forming botanically plausible
branching structures.

18 COMPUTER GRAPHICS AND NATURE

Modeling complex botanical tree geometry has posed a challenge for
computer graphics for decades. Beginning with abstract branching structures,
the complexity and visual appearance has been enhanced over the years
in such a way that today many tree models appear photo-realistic to us.
However, creating these types of models is still cumbersome. To mimic a
specific tree or a given tree shape, many parameters have to be manually
adjusted. Image-based modeling methods try to overcome this problem by
using a set of photographs to create the geometry directly.

In recent years some techniques have been published that try to create
exact 3D representations for given trees. In contrast to these methods the
proposed approach produces qualified approximations, thus avoiding exact
registration and many numerical problems while still achieving plausible
branching structures. The models still show differences to the input; how-
ever, it is possible to create a variety of similar models by changing initial
parameters of the system.

The input is a small set of photographs of a tree taken from different views.
Usually two images are sufficient for a good approximation. In contrast to
other approaches, we do not need an exact registration of these images and
interactively arrange them in the system. Since the images typically contain
unwanted background, separating the trees using common algorithms for
alpha matting is necessary.

The general idea of this approach is to combine a bottom-up construction
with internal and external constraints. We compute a voxel-model of the tree
volume with each voxel containing a density estimate of the tree’s biomass.
Proportional to this density, particle positions are initialized and traced
downwards to the tree basis using a 3D flow simulation. Simple rules direct
and force them to form twigs and subsequent branches. This creates plausible
tree skeletons and, by later adding leaves, complete trees.

The particle simulation is directed by the main branching structures found
in the input images to achieve a high similarity of the models to the given
input photographs. Therefore, if possible, the trunk and the main branches are
extracted from the photographs and used as two-dimensional attractor graphs
for each input image. These attractor graphs are combined to influence
the 3D particle simulation by modifying their directions. Subsequently, a
triangular mesh is built around the resulting 3D graph using allometric rules
as described in Chapter 5. While primarily focussing on automatic image-
based construction, it is also possible to interactively guide the method to a
desired result. By painting densities and by changing directions for particle
simulation, the produced geometry can be modified in various ways. The user
is able to locally adapt the model without having to adjust many parameters.

MODELING THROUGH SIMULATION 19

3.1 Overview

The proposed approach can be summarized as a particle simulation with
external constraints from input images and internal botanical restrictions. It
can be divided into five steps, which are computed one after the other. The
outline below also reflects the further structure of the chapter:

1. Pre-processing: For each given input image the tree is separated from the
background and a 2D attractor graph is computed or sketched by the user.

2. Creation of the voxel model: A voxel-grid is filled with density values
by back-projecting the input images. The values of the voxels are an
estimate of the tree density.

3. Computation of direction fields: Direction fields from 2D attractor
graphs are used to transfer information of the input images to the particle
simulation. These fields provide direction vectors for each input image
plane. Combining these vectors for all image planes yields vectors that
direct the particles in the subsequent 3D flow simulation.

4. Particle simulation: Random initial positions in proportion to the density
values are set for particle flow simulation. The traces of the particles are
influenced attraction forces to nearest neighbors and by the direction fields.
As a result the main tree skeleton is obtained in form of a 3D graph.

5. Production of geometry: The tree skeleton is now converted into 3D
geometry using allometric rules. Tiny branches and leaves are added and
create the final foliage.

3.2 Pre-processing

Usually the input images contain background objects. Therefore the first step
is to separate the tree from the background. This is particularly complicated
for natural objects with many holes. Fortunately, in recent years a number
of methods for performing alpha matting have been published [Ruzon
and Tomasi, 2000, Pérez et al., 2003, Sun et al., 2004] 2 . Usually these 2 Mark A. Ruzon and Carlo Tomasi. Alpha

estimation in natural images. In Proc. of
IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’00), pages
18–25, 2000; Patrick Pérez, Michel Gangnet,
and Andrew Blake. Poisson image editing.
ACM Transactions on Graphics (Proc. of
SIGGRAPH ’03), 22:313–318, July 2003;
and Jian Sun, Jiaya Jia, Chi-Keung Tang,
and Heung-Yeung Shum. Poisson matting.
ACM Transactions on Graphics (Proc. of
SIGGRAPH ’04), 23, August 2004

methods are not fully automatic. A common setup lets the user create an
initial trimap that specifies the pixels of the object, pixels of the background
and an uncertainty region. In this case, pixels with appropriate colors are
selected in the input images. The separation algorithm fills the uncertain
regions with either opaque (foreground), transparent (background) or partly
transparent pixels based on an interpolation, which takes the image gradients
into account . The results from the matting procedure, as described by Sun

20 COMPUTER GRAPHICS AND NATURE

et al. [Sun et al., 2004], are interpreted as a density estimation of the tree for
the corresponding view (see Figure 3.2(b)).

3.2.1 Alpha Matting

An important pre-processing step is the separation of the tree from the
background. In recent years there has been a number of algorithms dealing
with alpha matting of natural objects.

Most algorithms have in common that the Intensity I of a pixel in the
image is seen as a linear combination of foreground color F and background
color B with

I = αF +(1−α)B.

For a given Image I we need to find the fore- and background color and
the corresponding alpha values.

The first approaches in this area simplify the problem by introducing a
known background color distribution that is either blue for the Bluescreen
Matting as introduced by Smith and Blinn [Smith and Blinn, 1996] 3 or 3 Alvy Ray Smith and James F. Blinn. Blue

screen matting. In Proc. of SIGGRAPH ’96,
pages 259–268, New York, NY, USA, 1996.
ACM

given by an additional picture taken without the foreground object known
as Difference Matting. Current methods are not relying on additional infor-
mations about the background color distribution and allow alpha matting of
natural objects on arbitrary backgrounds [Chuang et al., 2000, Zongker et al.,
1999, Chuang et al., 2001]. These methods typically start with a manually
edited trimap indicating fore-, background, and uncertain regions.

(a) (b)

Figure 3.2: a) Input image; b) tree
density estimation with corresponding
attractor graph.

MODELING THROUGH SIMULATION 21

In 1984 Porter and Duff [Porter and Duff, 1984] 4 introduced the alpha 4 Thomas Porter and Tom Duff. Compositing
digital images. Computer Graphics (Proc. of
SIGGRAPH ’84), 18:253–259, January 1984

channel concept that allows for complex image compositions. One of the
image operations is the Over composition defined as

C = αF +(1−α)B

with the resulting color of the current pixel C, foreground color F , back-
ground color B, and α as blending value.

This is the basic concept used for Bluescreen Matting [Smith and Blinn,
1996], one of the first matting techniques. The foreground object is captured
in front of an unicolored background and then the under determined problem
is solved

α = 1−α1(Cb−α2Cg)

with Cb blue and Cg green channel, using the additional condition

0.5≤ α2 ≤Cb ≤ α2Cg.

The parameter α1 and α2 are manually set by the user.

Other algorithms which rely on information about the background color
distribution are the so called Difference Matting techniques. Here the differ-
ence between known background and the given image is used to estimate α

with α = 1 or α = 0, depending on a threshold value.

Recent techniques that are solving the more general problem of alpha
matting objects in front of arbitrary unknown backgrounds (Natural Image
Matting) are proposed by Ruzon et al. [Ruzon and Tomasi, 2000] 5 and 5 Mark A. Ruzon and Carlo Tomasi. Alpha

estimation in natural images. In Proc. of
IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’00), pages
18–25, 2000

(a) Input image (b) Resulting alpha map (c) Foreground object

Figure 3.3: Alpha matting input
images.

22 COMPUTER GRAPHICS AND NATURE

Chuang et al. [Chuang et al., 2001] 6 . They generally rely on a manually 6 Yung-Yu Chuang, Brian Curless, David H.
Salesin, and Richard Szeliski. A bayesian
approach to digital matting. In Proc. of
IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’01), volume 2,
pages 264–271. IEEE Computer Society,
December 2001

edited trimap. The results are foreground color F , background color B,
and the α value for each pixel of the uncertainty region. Both algorithms
(Ruzon et al. and Chuang et al.) are based on probability distributions.
Ruzon et al. define a transition region that is split into several smaller regions
that are used as samples to define the foreground color distribution P(F) and
the color distribution of the background P(B). The observed color C is based
on a color distribution of the current image P(C) that is a combination of
P(B) and P(F) and is used to estimate α for a given pixel.

Alpha matting is performed for all input images. The resulting alpha maps
(the alpha values of each pixel of the image – see Fig. 3.3(b)) and foreground
images (Fig. 3.3(c)) are used in the following to deduce information about the
branching pattern of the tree and to initialize the 3D density distribution.

3.2.2 Branching Pattern

In a second step, the images are used to sketch an estimate of the underlying
tree skeleton in the corresponding view using the Livewire approach [Chodor-
owski et al., 2005] 7 . The algorithm needs a target point – usually the foot 7 A. Chodorowski, U. Mattsson, M. Langille,

and G. Hamarneh. Color lesion boundary
detection using live wire. In Proceedings of
SPIE Medical Imaging: Image Processing
vol. 5747, pages 1589–1596, 2005

point of the tree or the position of the first branching on the trunk (see Fig.
3.2(b)). Additionally, seed points for the branches have to be determined.
This can be done automatically by randomly selecting points on the tree sil-
houette or by manually introducing seed points, which usually creates better
results.

The attractor graph is now computed with every branching point forming
a node in the graph. The algorithm starts at each seed point and finds a path
through the visual structures of the input image to reach the target point (this
is in fact another kind of particle simulation). The result reflects the main
branching structure of the tree in the image. This is done for all photographs
and we call the resulting graphs attractor graphs, see Figure 3.2(b) and 3.4 Attractor Graph
(a,b). If no information is contained in the image, an arbitrary skeleton is
produced or the user can provide the information as a manually sketched
graph. This provides an intuitive way to influence the resulting model and
gives the user an additional modeling tool.

MODELING THROUGH SIMULATION 23

3.3 Computing the Tree Density

For now let us assume the camera model of the input images to be a parallel
projection and to have two input images at a right angle. In the previous
step we obtained the alpha values of the input photographs, and now we
construct an initial 3D estimation of the plant volume that encompasses a
voxel grid. Initial density values for the voxels are estimated from the input
photographs. A discretized version of the volume-rendering equation allows
us to compute the desired solution. Solving for a least-square solution results
in a refined density volume that is later used for the branching structure
and as a bounding volume for the final foliage. Each voxel Vi in the grid is
assigned a density value αi. An iterative algorithm is used to refine the values
after initialization. In the final density distribution, voxels with higher α
values will belong to parts of the plant that contain many leaves or branches.

3.3.1 The Volume Rendering Equation

A well known method to generate images from volumetric representations is
found in [Sabella, 1988, Max, 1995] 8 using a discrete form of the volume- 8 Paolo Sabella. A rendering algorithm

for visualizing 3d scalar fields. Computer
Graphics (Proc. of SIGGRAPH ’88), 22:
51–58, June 1988; and Nelson Max. Optical
models for direct volume rendering. IEEE
Transactions on Visualization and Computer
Graphics (TVCG ’95), 1(2):99–108, 1995.
ISSN 1077-2626

rendering equation for an emission-absorption model without scattering:

I(sn) =
n

∑
k=0

bk

n

∏
j=k+1

θ j. (3.1)

The value θ j is the transparency of voxel j and bk is the light emitted from
the k-th voxel.

Considering the given input images as a solution for Eq. 3.1, it is possible
to reconstruct the density values of the volume grid V . Reche-Martinez

(a) (b) (c)

Figure 3.4: Example attractor graphs
(a-b); (c) attractor graphs embedded in
the image planes.

24 COMPUTER GRAPHICS AND NATURE

et al. [Reche-Martinez et al., 2004] 9 use a similar approach to reconstruct 9 Alex Reche-Martinez, Ignacio Martin, and
George Drettakis. Volumetric reconstruction
and interactive rendering of trees from
photographs. ACM Transactions on Graphics
(Proc. of SIGGRAPH ’04), 23(3):720–727,
August 2004

the volume model for their image-based rendering algorithm and rely on
the same assumptions. However, it is important to note that in this case an
accurate reconstruction is not needed, since in the proposed approach images
are not directly rendered from the volumetric reconstruction. Instead we
use the density information to subsequently produce the density of a surface
representation of the plant. This allows us to apply a simple reconstruction
method and a relatively coarse grid with typically 25×25×25 voxels.

To initialize the density αi for the i-th voxel Vi we project the voxel back
onto each input image. We determine the average density of the projected
area and use the minimum value as an initialization for αi. Note, that the
resolution of the voxel grid is typically much coarser than the input images
we use, so many pixels are combined for one projected area.

Figure 3.5: Density values for one
image plane. High density values are
marked by large squares.

This initial value would only be correct if all other contributing voxels
had zero density and therefore is an upper limit for the transparency. Voxels
with initial density values below a predefined threshold are rejected and not
considered in the following steps. This can be seen as implicit space carving
and reduces the complexity in the following steps considerably without
reducing the quality of the resulting density estimate.

(a) (b) (c)

Figure 3.6: Estimating the tree density:
(a) Initial density values for three
input images; (b) Voxel grid by back-
projection; (c) Refined voxel grid

Solving the system of linear equations in an iterative way similar to Reche-
Martinez et al.[Reche-Martinez et al., 2004] leads to the refined 3D density
distribution. In Figure 3.6 a) a set of three input density images is shown.
The initial alpha values of the voxel grid can be seen in Figure 3.6 b); the
resulting least square solution is shown in Figure 3.6 c). In the solution,
negative results are considered empty voxels. In Figure 3.5, the computed

MODELING THROUGH SIMULATION 25

density values for one image plane are shown. Their density values are
indicated by the size of grey squares.

3.3.2 Computing the Linear Equation System

Based on Eq. 3.1 a system of linear equations is set up in the following way:
For each pixel in each input image the voxels that contribute to the intensity
value of this pixel are determined. This is accomplished by following a ray
from a center of projection (or orthogonally to the input image in the case
of an orthogonal projection) and marking all visited voxels. Since we use
an absorption-only model, the density value of the pixel αp is related to
the density values αi of the traversed voxel and the transparency relation
αk = 1−θk:

αp = αn +(1−αn)(αn−1 +(1−αn−1)(. . . (1−α1)α0) . . .)

By substituting the density values with the corresponding transparency
values θi = (1−αi) we achieve

θp =
n

∏
i=0

θi. (3.2)

A linear equation for each pixel in each input image can be found after
applying the logarithm to both sides of the equation. The combination of
all equations results in a highly overdetermined set of equations, since the
resolution of the voxel system is rather small with respect to the resolution of
the input images. The system is denoted by:

Ax = b (3.3)

with A ∈Rpsize×voxel , x ∈Rvoxel and b ∈Rpsize with psize = images · pixel,
a vector that contains all pixels of all input images. For A we have ai, j = 1, if
the j-th voxel is hit by a ray through the i-th pixel.

The solution for Eq. 3.3 is found by using a least square fitting, thus by
solving

AT Ax = AT b.

In Figure 3.6 a) a set of three input density images is shown. The initial
alpha values of the voxel grid can be seen in Figure 3.6 b); the least square
solution is shown in Figure 3.6 c). In the solution negative results are consid-
ered to be empty voxels.

26 COMPUTER GRAPHICS AND NATURE

In the case of using a perspective camera model, the back-projection of
the pixels requires a more precise registration of the images. Not only the
orientations, but also the position of the center of projection as well as the
focus angles have to be known. For a detailed description of how to deal
with such a situation please refer to Reche-Martinez et al. [Reche-Martinez
et al., 2004]. However, as stated above, for the proposed method only an
approximate registration is needed, since density estimation and particle
tracing are tolerant against inconsistencies. This is demonstrated in the
accompanying video by showing models with completely uncorrelated input
images and models that were created from only a single image.

3.4 Particle Tracing

Particle positions for the main tree skeleton are initially set using the 3D
density values. The particles are placed randomly in the voxels in proportion
to their density. Since little is known about specific botanic measurements of
the total number of branches in different tree species, a heuristic is used that
can be manually adapted if the resulting tree model is not convincing. For
medium-sized trees between 500 and 1000 particles are used and for large
models usually between 1000 and 2000.

As mentioned above, the proposed method extends the method by Rod-
kaew et al. [Rodkaew et al., 2003] 10 in order to achieve specific tree skele- 10 Yodthong Rodkaew, Prabhas Chongstit-

vatana, Suchada Siripant, and Chidchanok
Lursinsap. Particle systems for plant model-
ing. In B. Hu and M. Jaeger, editors, Plant
Growth modeling and Applications (Proc. of
PMA ’03), pages 210–217, 2003

tons and shapes according to input photographs. This is done by introducing
attractor graphs to particle tracing and by establishing additional rules. In the
following section the general particle simulation step is discussed, followed
by a discussion of the introduced refinements.

A particle pi is represented by a position xi, velocity x′i, and mass mi. It
moves under the influence of time-dependent forces represented by fi(xi,x′i, t).
The Newtonian law gives us fi = mi ·x′′i and x′′i = fi/mi which is a well studied
differential equation of second order [Hockney and Eastwood, 1988, Witkin
and Baraff, 1997] 11 and usually written in the form of coupled first order 11 Roger W. Hockney and James W. East-

wood. Computer simulation using particles.
Taylor & Francis, Inc., 1988; and Andrew
Witkin and David Baraff. Physically
based modeling: Principles and practice.
SIGGRAPH ’97: Course Notes, 1997

differential equations:

[xi,x′i] = [x′i, fi/mi] (3.4)

This system can be solved iteratively using an explicit Runge-Kutta
method as found in Press et al. [Press et al., 1992] 12 . During simulation, the 12 William H. Press, Saul A. Teukolsky,

William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C: The Art of Scien-
tific Computing. Cambridge University Press,
New York, NY, USA, 1992

MODELING THROUGH SIMULATION 27

positions of the particles are updated according to their mass and external
forces. The mass can be seen as some kind of reluctancy of a particle to
change the current orientation and/or velocity.

One important aspect of the force is to implement the particle attraction.
This attraction is needed to form the tree skeleton similar to the given im-
ages. Particles close to each other are forced to join and subsequently move
forward together. This is implemented by searching the nearest neighbor for
each particle and combining them if their distance is below a given threshold.
The basic particle tracing mechanism can be written as follows:

Initialize particle positions according to voxel density
while particles not at tree basis do

foreach particle pi do
determine forces fi

determine velocities and positions (Eq. 3.4)
end
determine nearest neighbor and join if close enough

end
Algorithm 1: Particle tracing

The particle traces are stored as a 3D branching graph, which describes the
main tree skeleton. This basic simulation is now refined in order to match our
modeling requirements.

3.4.1 Solving Initial Value Problems

The forward Euler method is the simplest explicit method to solve an initial Euler Method
value problem (IVP, see Press et al. [1992, 707 ff] and Stoer and Bulirsch
[1978, 115 ff]) described as

y′ = f (x,y) y(x0) = y0 (3.5)

with f (x,y(x)) being the derivative y′(x) of the solution y(x) of Eq. 3.5.
For h 6= 0,

y(x+ h)− y(x)
h

≈ f (x,y(x))

or

y(x+ h) ≈ y(x)+ h f (x,y(x)).

holds.

28 COMPUTER GRAPHICS AND NATURE

Choosing a step size h and starting with the initial value x0 and y0 = y(x0)

one gets at xi = x0 + ih, i = 1, . . . ,n approximate solutions ηi for yi := y(x) of
the exact solution y(xi):

η0 = y0

and for i = 0,1,2, . . .

ηi+1 := ηi + h f (xi,ηi)

xi+1 := xi + h.

A general description of these methods is given by

Φ(x,y,h, f)

and starting with x0,y0 as initial values approximate solutions ηi for
yi := y(xi) of the exact solution y(x) are found with

η0 := y0

ηi+1 := ηi + hΦ(xi,ηi,h, f)

xi+1 := xi + h

.

For the Euler-Cauchy method we get Φ(x,y,h, f) := f (x,y). Single step
methods of higher order can be described using more complex Φ, as for
example the second order Heun method with

Φ(x,y,h, f) :=
1
2
[f (x,y)+ f (x+ h,y+ h f (x,y))]

or the fourth order Runge-Kutta method with Fourth order Runge-Kutta method

Φ(x,y,h, f) :=
1
6
[k1 + 2k2 + 2k3 + k4] (3.6)

and

MODELING THROUGH SIMULATION 29

k1 := f (x,y)

k2 := f (x+
1
2

h,y+
1
2

hk1)

k3 := f (x+
1
2

h,y+
1
2

hk2)

k4 := f (x+ h,y+ hk3)

Generally higher order methods provide higher mathematical stability and
stiffness at the costs of multiple evaluations of f (see Eq. 3.6). Other methods
for the solution of initial value problems such as multistep or exploration
methods are not described here, since the Runge-Kutta method with adaptive
stepsize is sufficient for the class of problem in this case.

3.5 The Direction Field

The simulation so far combines the particle traces to small branches that
merge and form the skeleton. The particles are directed towards the tree
basis and towards their respective nearest neighbors. Additionally, for each
2D attractor graph from the input images (see Section 3.2) we create a two-
dimensional discrete vector field in the according image plane. Our goal is
to direct the particles in such a way that they simultaneously move towards
the attractor graphs in any of the image planes that correspond to these input
images.

We project the particle position into each of the image planes using the
respective projection. Then we determine the direction vector from the vector
fields in the global coordinate system. With two input images at a right
angle, we would obtain two vectors perpendicular to each other. Generally
speaking, we get a set of direction vectors for which we compute the average.
This vector, when projected back onto the image planes, is the average
direction and is used as part of the external force that is applied to the particle.
Theoretically there is a chance that all direction vectors might sum up to zero,
however our practical experiments have never supported such a case.

The direction field is computed by applying a distance transform to the
attractor graph. For each position xi, j in the direction field the closest point on
the attractor graph gi, j is computed; let vi, j = gi, j− xi, j be the vector pointing
towards the gi, j. Additionally we compute the tangential vector of the graph
ti,k at position gi, j.

Normalized versions of these two vectors, v̄i, j and t̄i, j, are used for com-
puting the forces on a particle close to xi, j. We modeled this force as a

30 COMPUTER GRAPHICS AND NATURE

(a) (b) (c)

Figure 3.7: (a) Result for linear
blending without particle attraction; (b)
result for constant blending including
particle attraction; (c) result for linear
blending including particle attraction.

weighted sum using the blending function h(d) which depends on the dis-
tance d = |vi, j| to the graph:

fi, j = h(d) · v̄i, j +(1−h(d)) · t̄i, j (3.7)

If the blending function is linear, particles far away from the graph are
directed towards gi, j and particles close to the graph into the tangential
direction ti, j in gi, j. If instead we use a constant function h(d) for all d > 0,
the particles are directed at a fixed angle towards the closest point gi, j on the
nearest graph segment.

The direction vectors fi, j are computed for a two-dimensional grid which
is embedded in each of the image planes. The resolution for these grids does
not need to match the resolution of the voxel grid nor the resolution of the
images. In our practical tests a grid of 100 by 100 proved to be sufficient.

(a) (b)

Figure 3.8: (a) Direction field for
a given graph and linear blending
function h(d), the vectors close to
graph segments point down the graph;
(b) for a constant blending function, the
vectors point at a given angle towards
the nearest segment.

In Figure 3.7 and 3.8 we demonstrate the particle flow for a two-dimensional
case. Figure 3.8(a) shows a direction field for a linear blending function h(d),
in (b) for a constant function. Figure 3.7 (a) shows the result for a flow simu-
lation using the field of subfigure (a), but without attraction between particles.
In (b) the field of Figure 3.8(b) is used, this time including attraction. The
branches now have a nearly fixed branching angle due to the given field.
Finally, Fig. 3.7 (c) shows particle flows with linear h(d) and attraction, the

MODELING THROUGH SIMULATION 31

Figure 3.9: Two results for a given
direction field and different initial
particle positions (see Figure 3.12).

most often used case. In this case the graph follows the given direction field
quite closely.

3.6 Results and Discussion

Figure 3.10, 3.11 and 3.12 show three tree models with their corresponding
input photographs. Animations of the models can be found in the accompa-
nying video. The geometric complexity of the models is 555,000 triangles
for the first tree and 285,000 triangles for the second. In both cases the given
shape and structure of the input is approximated quite faithfully by the mod-
els. In Figure 3.11 a pine tree is created from two quite poor photographs.

The modeling works in most parts at interactive rates. The pre-processing
separates the tree in the input images and creates the attractor graph in-
teractively. The volume model is created within a few seconds. The flow
simulation of the particles needs about 5–10 seconds for 1000–2000 particles
and 200 iterations. The branch geometry can be produced within a matter
of seconds and the leaves are also added within seconds even for complex
models. All times were recorded on a standard PC with 3 GHz.

In many cases the trees in the images are partly occluded by other objects
or have a shape that is deformed due to natural reasons. In this case it is
easy to fix the problem in the input images by drawing and removing density
(see Figure 3.12). Another situation is due to the seasons. We had three
photographs of an oak at winter time. So we created a tree skeleton (Figure

32 COMPUTER GRAPHICS AND NATURE

(a) (b) (c) (d)

Figure 3.10: One example of the cre-
ated tree models: (a) input photographs;
(b) 3D model in view corresponding to
upper photograph; (c) view correspond-
ing to lower photograph; (d) another
view.

3.9) and added density to the images by simply painting some strokes. The
result is a tree model that looks natural and reflects the sketched density by its
branches and foliage.

3.6.1 Limitations of the Method

While the proposed method creates high quality models, it has some limi-
tations: As outlined above, the branching patterns at smaller branches are
influenced not only by branching angles but also by specific patterns in which
branches appear. Such branching patterns are hard to simulate using particle
flows since in this case complicated interaction of particles during the flow
simulation is needed or a post-processing step after simulation has to be
performed. A moved branch might interact with other branches, or curvature
might need to be adapted, etc. Following strictly the simulation-based model-
ing paradigm, it is impossible to solve this issue completely, but to minimize
these problems the above mentioned compound leaves are introduced: a
number of simple leaves arranged procedurally on a small twig.

It is also not possible to create all tree species as convincingly as others us-
ing simulation-based modeling. Some trees change their shape and structure
among branching levels. This is hard to simulate without creating different
direction fields and particle rules for different branching levels. That said, a
more complex simulation system could be able to capture these properties as
well, which is an interesting field for future research.

MODELING THROUGH SIMULATION 33

Figure 3.11: Pine tree example.

Figure 3.12: Sketch-based modeling
of an oak. Left: input photographs;
middle: sketched density; Right:
resulting model. Please note the hole
in the left part of the tree that can also
be found in the sketched density of the
corresponding view. The skeleton of
the oak is shown in Figure 3.9(d).

34 COMPUTER GRAPHICS AND NATURE

3.7 Conclusions

In this chapter a new image- and simulation-based modeling method for 3D
tree geometry is presented. By imposing image constraints in the form of
captured branching patterns and density distributions, the proposed method
is able to adapt the particle simulation to a given set of input images. This al-
lows to create convincing tree models that approximate a given shape. Using
different initial positions for the particles, different but similar tree skeletons
can be produced. Tiny twigs and leaves are added, the method runs at interac-
tive rates and also allows for the modeling of trees by manually altering input
images and direction fields for the flow simulation. The approach has been
tested with several sets of input images.

Coupling the approach with Level-of-Detail data structures is an interest-
ing focus for future research, since the produced models are often too com-
plex for interactive applications. The branching graph already incorporates
a hierarchy since it has larger and smaller branches. For distant models only
the large branches might be shown together with an visual approximation of
the foliage. Smaller branches and leaves might be generated on the fly when
needed. The presented simulation based modeling paradigm makes it possi-
ble, with little adaptions to the simulation system, to generate model details
on demand, without the need of storing intermediate model representations
and even without generating the full detailed model. This property makes
simulation-based modeling especially interesting for streaming applications.

4

Data-driven Plant Modeling

Figure 4.1: A tree sketch by Leonardo
da Vinci [Richter, 1970, Plate XXVII].

It is possible to interpret sketches of plants and trees using statistical prop-
erties of given 3D models. Sketches are not much different from pictures
or photographs. However, humans have the ability to abstract information
found in pictures and preserve this information in sketches. Automatically
deducing 3D information from pictures typically requires multiple instances
of images of the object, which is generally not possible for sketches due to
the aforementioned abstraction. This chapter proposes an algorithm that
utilizes prior information from 3D models to interpret single sketches of tree
branching structures and deduce a 3D branching model from one freehand
sketch, successfully filling the missing information needed to get a full 3D
model, which then can be used to render arbitrary views of the sketched tree.

It is an easy task for humans to find a plausible 3D structure from a single
source. This is usually done by utilizing world knowledge.

Providing world knowledge not only helps in the interpretation of the
sketch, but also gives a powerful tool to change the appearance of the final
model by changing the data used as prior.

To model the world knowledge this chapter introduces the use of Markov

Figure 4.2: Examples of 3D tree
models generated from freehand
sketches. From left to right: three
sketches, and the corresponding tree
models generated with our algorithm.

36 COMPUTER GRAPHICS AND NATURE

Random Fields (MRF) based on [Chen et al., 2008] 1 . MRFs not only allow 1 Xuejin Chen, Boris Neubert, Ying-Qing
Xu, Oliver Deussen, and Sing Bing Kang.
Sketch-based tree modeling using markov
random field. ACM Transactions on
Graphics (Proc. of SIGGRAPH Asia ’08),
27:109:1–109:9, December 2008

the capture of statistical properties of prior models from a large database
of full 3D plant models, but also provide well studied methods to find the
configuration of all possibilities that are most likely, given the underlying
statistical data coming from the tree model.

4.1 Introduction

Achieving realism is one of the major goals of computer graphics, and
many approaches ranging from physics-based modeling to image-based
rendering have been proposed. Unfortunately, creating new content for
realistic rendering remains tedious and time consuming. The problem is
exacerbated when the content is being designed. 3D modeling systems are
cumbersome to use and therefore ill-suited to the early stage of design (unless
the design is already well-formulated).

Designers therefore continue to favor freehand sketching for conceptual
design. Sketching appeals as an artistic medium because of its low overhead
in representing, exploring, and communicating geometric ideas. Indeed,
such speculative representations are fundamentally different in spirit and
purpose from the definitive media that designers use to present designs. What
is needed is a seamless way to move from conceptual design drawings to
presentation rendering, which is the focus in this chapter: extending sketch-
based modeling to complex and realistic-looking 3D tree models and thus
addressing one of the still existing gaps in this area.

This chapter introduces a new, easy-to-use, and flexible method for creat-
ing tree models from freehand sketching. It allows the user to very quickly
generate a variety of unique 3D models of trees. Given the 2D sketch, the sys-
tem searches for a 3D interpretation whose projection matches the sketch and
is natural-looking. The problem is formulated within a graphical modeling
framework, using a database of trees as priors. Inference is performed in two
steps. First, the initial shape is obtained by bottom-up local optimization at
each branch segment from tree root to the rest of the drawn branches. Second,
this shape is refined to avoid interpenetration between branches.

Once the 3D branches have been recovered, the model is augmented with
more branches using self-similarity as a guiding principle. Subtrees are ran-
domly selected and appropriately scaled and oriented before being attached to
end branches. Finally, the user can select the leaves to be automatically added
to the branches based on botanical rules. This completes the 3D tree model.
Examples of tree models generated from sketches can be seen in Figure 4.2.

DATA-DRIVEN PLANT MODELING 37

4.2 Probability Theory and Probabilistic Graphical Models

Most problems based on observations introduce uncertainty either through
noise on measurements or through the finite number of observations. Proba-
bility theory provides the mathematical framework to deal with uncertainty of
events and resulting probability distributions.

Graphical models provide a declarative representation within the field of
probabilistic reasoning and encode the knowledge of how a system works.
The key feature of graphical representations is the separation of this represen-
tation from algorithms that can be applied to obtain meaningful conclusions
and answer the question about what is possible and, even more importantly,
about what is probable. Probability theory provides the mathematical frame-
work to answer these questions based on two simple equations: the sum rule
and the product rule. In the remainder of this section the basic terminology of
probability theory is introduced. For an excellent and more detailed introduc-
tion to probability theory and machine learning see Bishop [Bishop, 2006] 2 2 Christopher M. Bishop. Pattern Recognition

and Machine Learning. Springer-Verlag New
York, 2006

or Koller and Friedman [Koller and Friedman, 2009] 3 .
3 Daphne Koller and Nir Friedman. Proba-
bilistic Graphical Models: Principles and
Techniques. MIT Press, 2009

Considering two random variables X and Y , that take the values xi with
i = 1, . . . ,M and respectively y j with j = 1, . . . ,L, the total number of instances
N = M +L, ni j being the number of instances for which X = xi and Y = y j.
Then the joint probability of X = xi and Y = y j becomes Joint Probability

p(X = xi,Y = y j) =
ni j

N
. (4.1)

Summing up all instances for X = xi, regardless of the outcome of Y with
ci = ∑ j ni j, the marginal probability for X = xi becomes Marginal Probability

p(X = xi) =
ci

N
. (4.2)

Combining 4.1 and 4.2 gives the sum rule of probability Sum Rule of Probability

p(X = xi) =
L

∑
j=1

p(X = xi,Y = y j). (4.3)

The conditional probability of Y = y j given that X = xi is defined as Conditional Probability

38 COMPUTER GRAPHICS AND NATURE

p(Y = y j|X = xi) =
ni j

ci
. (4.4)

The product rule of probability can be formulated from 4.1, 4.2 and 4.4 as Product Rule of Probability

p(X = xi,Y = y j) =
ni j

N
=

ni j

ci
· ci

N
(4.5)

= p(Y = y j|X = xi)p(X = xi). (4.6)

For the sake of simplicity the less accurate but simpler notion of p(X)

for p(X = xi) is used in the following chapters. Solving the product rule for
p(Y |X) then gives

p(Y |X) =
p(X ,Y)
p(X)

(4.7)

and, since the symmetry property p(X ,Y) = p(Y ,X) holds, translates into
Bayes’ theorem: Bayes’ Theorem

p(Y |X) =
p(X |Y)p(Y)

p(X)
. (4.8)

So far we have been looking into discrete probability distributions for
which X is defined over a discrete set of events xi. The extension to continu-
ous distributions is straightforward

p(x ∈ (a,b)) =
∫ b

a
p(x)∂x (4.9)

considering that the probability of the real valued variable x is part of the
interval (a,b).

All introduced rules apply equally to discrete and continuous distributions
and combinations thereof.

Probability theory uses graphical models as representation to visualize
the conditional independence structure between random variables. These
diagrammatic representations of probability distributions play an important
role in Bayesian statistics and can be grouped into Bayesian networks and
Markov networks, both being heavily used for machine learning with appli-
cations in computer graphics and vision [Szeliski, 2010] 4 . Both methods 4 Richard Szeliski. Computer Vision:

Algorithms and Applications (Texts in
Computer Science). Springer-Verlag New
York Inc, 1st edition, November 2010

provide insight into the model they represent and encompass the properties of

DATA-DRIVEN PLANT MODELING 39

factorization and independence; their difference is the set of independences
they can encode and the factorization of the distribution that they induce.
Bayesian networks operate on directed graphs while Markov random fields
are defined over undirected graphs.

a
b

c

Figure 4.3: Simple Bayesian network
representing the joint probability
distribution (see Eq. 4.11):
p(a,b,c) = p(c|a,b)p(b|a)p(a)

4.2.1 Bayesian networks

Given a joint probability distribution p(a,b,c) over three variables a,b,c and
applying the product rule (Eq. 4.5) gives

p(a,b,c) = p(c|a,b)p(a,b). (4.10)

Applying the rule a second time to p(a,b) Eq. 4.10 translates into

p(a,b,c) = p(c|a,b)p(b|a)p(a). (4.11)

x1

x2 x3

x4 x5

x6 x7

Figure 4.4: Complex Bayesian
network representing the
joint probability distribution
p(x1)p(x2)p(x3)p(x4|x1,x2,x3)p(x5|x1,x3)

p(x6|x4)p(x7|x4,x5)

This can be translated into a graphical model of this distribution in the fol-
lowing way. For each random variable a,b,c a node in the graph is generated.
Then for each conditional distribution on the right hand side of Equation 4.11,
directed edges are added to the graph connecting the nodes of the affected
random variables in the following way: for the factor p(c|a,b) edges from
node a and node b to the node denoted by variable c are introduced. Fac-
tor p(b|a) translates into a directed edge from a to b while p(a) does not
generate an additional edge (see Fig. 4.3 and Fig. 4.4 as examples).

Given any directed acyclic graph it is possible to find a decomposition of
the corresponding joint probability distribution by introducing a conditional
distribution as a factor for each node. Taking the node’s variable a as proba-
bility distribution conditioned on all variables of nodes having connections to
node a.

4.2.2 Markov Random Fields
A

B CBB
A

Figure 4.5: Complex Markov network:
Conditional independence can be
deduced as all path from subset A to
subset C pass through a group of nodes
B.

Another class of graphical models is described by Markov random fields
(MRF). In contrast to Bayesian networks MRFs are described by undirected
graphs and additionally allow for representing cyclic dependencies. In MRFs,
nodes are defined similarly for random variables and a set of edges that
connect two nodes. Conditional independence of random variables can be
identified by parts of the undirected graph being separated, i.e. all paths from
one set A of nodes to another set C pass through a group of nodes B (see

40 COM PUTER GRAPHICS AND NATURE

Fig. 4.5). For the inference of the branching parameter in this chapter we
used MRF and therefore limit the further explanations to the latter.

4.2.3 Factor Graphs

Both graphical models can be expressed in terms of factor graphs. These
graphs are undirected, bipartite graphs with two different kinds of nodes
directly representing the factorization of a function, with each factor directly
representing the probability distribution over the variables it is connected to
and therefore being less ambiguous. In addition to the nodes representing
the random variables, another kind of node represents a factor (usually
indicated by a squared node) of a subset of the random variables of the joint
distribution (see Fig. 4.6).

Considering a given factorization in the form of

p(x) = fa(x1,x2) fb(x1,x2) fc(x2,x3) fd(x3) (4.12)

x1 x2 x3

fa fb fc fd

Figure 4.6: Factor graph representing
the factorization
p(x) = fa(x1,x2) fb(x1,x2) fc(x2,x3) fd(x3).

the resulting factor graph G = (X ,F ,E) will have one node for each
variable xi ∈ X (denoted by a round node), one node for each factor f j ∈ F
(denoted by a square node) and one edge ek ∈ E connecting each factor to the
random variables on which it depends (see Fig. 4.6 for the resulting factor
graph of Eq. 4.12).

For a nice introduction to factor graphs see [Loeliger, 2004] 5 . 5 Hans-Andrea Loeliger. An Introduction
to factor graphs. IEEE Signal Processing
Magazine, 21(1):28–41, January 2004

4.3 Overview of System

Sketch

Database

Template
Selection

Branch
Reconstruction

Branch
Propagation

Leaf
Population

3D
model

Figure 4.7: Overview of the sketch-
based tree modeling system.

The components of the proposed tree sketching system are shown in
Figure 4.7. The user needs to simply provide a few strokes of branches, and

DATA-DRIVEN PLANT MODELING 41

optionally the crown of the tree. The database contains typical tree exemplars
and their associated global parameters. Based on the shape of the sketch,
the system first selects the closest tree exemplar (“template”); the template’s
global parameters are subsequently used as a prior for constructing the 3D
geometry.

Assuming that the sketch is drawn under orthographic projection allows
the problem of constructing the 3D geometry of the sketch to be reduced to
estimating the depths of branch segment endpoints. A reasonable shape of a
tree can be reconstructed from its projection because trees have characteristic
shapes, which provide powerful priors for 3D reconstruction. Such priors
allow humans to perceive tree shapes from sketches. The location of each
branch depends on the location of adjacent branches but the overall shape is
dictated by global tree parameters. The local interconnectivity of information
and imposition of global priors makes the reconstruction problem a natural fit
for the use of Markov random fields. There is a direct mapping of branches to
graph nodes, local interconnectivity of branches to interaction between nodes,
and global tree parameters to data terms at nodes.

As such, the problem can be formulated as a Markov random field, with
each branch segment as a node and its depth as a variable. More specifi-
cally, we are dealing with a Markov tree.resu (For a detailed description,
please refer to textbooks such as [Bishop, 2006] 6). In addition, we impose 6 Christopher M. Bishop. Pattern Recognition

and Machine Learning. Springer-Verlag New
York, 2006

rules governing the tree shape as spatial relationships between neighboring
nodes. These relationships are made explicit by introducing additional nodes,
producing a factor graph.

Solving the factor graph produces the 3D shape of the drawn branches.
The system then propagates branches using the principle of self-similarity:
randomly selecting replication blocks, scaling, and reorienting the geometry,
and then attaching them to open branches. If drawn, the crown constrains
the overall shape of the tree during branch propagation. If the crown is not
drawn, the branches are propagated by a fixed number of generations. To
complete the tree model, the user can either select a leaf template from the
tree database, or use the default leaf associated with the preselected template.
The system populates the tree based on botanical rules. While this is only an
approximation of natural diversity, the variety of trees shown in this chapter
demonstrates the visual modeling power and expressiveness of the proposed
system.

42 COM PUTER GRAPHICS AND NATURE

4.4 From 2D Sketches to Factor Graphs

Sketches can be seen as projections of a 3D model to a two dimensional
image plane. Inferring the intended 3D structure from a given sketch can
therefore be reduced to the problem of identifying plausible depth values for
each branching point in the sketch.

The strokes in the sketch are first split into a set of inter-connected branch
segments bi, that are each represented by the position of their end point pi

and their direction vi (see Fig. 4.8). Given a parent segment bp and its child
segment bc, vc is defined as vc = pc − pp. Since we assume orthographic
projection we only need to extract the depth z associated with the end point of
this segment.

(a)

pb

1c
b

2c
b

(b)

pcP 1pcP 2

1c
z

2c
z

pz

(c)

Figure 4.8: Mapping the sketch to
a factor graph. (a) Tree sketch, (b)
corresponding Markov tree, (c) final
factor graph. Each node in the graph
represents a branch segment in the
sketch.

From the sketch, 2D coordinates of the branch nodes X = {x1, . . . ,xN}
and Y = {y1, . . . ,yN} are observed for the N branch segments of the tree.
Thus a first formulation to maximize the posteriori given the sketch including
Z = {z1, . . . ,zN} is

p(Z|X ,Y) =
N

∏
i=1

fi(vi,v j) (4.13)

with b j being the parent branch of bi assuming independence between
child segments. The posteriors in Eq. 4.13 are made explicit by introducing
the factor nodes in the resulting factor graph (see Fig. 4.8 c)).

As one can see from this formulation, we need to make certain assump-
tions about the factors fi(vi,v j). In this case this is done by introducing
global gaussian distributions defined by observations of models in the data
base. Since the number of observations for pairs of positions pi and p j in
world space would be way too sparse, one can define the position of the child
node p j in local coordinates of the parent node. introducing rotation angles α
and γ , and a scale value s. For now, assuming identical distribution for these
parameters, a set of global parameters per model can be defined as

Ω = {µs,σs, µα ,σα , µγ ,σγ} (4.14)

with µ and σ being the mean and variance of gaussian distributions for the
respective parameter s ∼ N (µs,σs), α ∼ N (µα ,σα), and γ ∼ N (µγ ,σγ).

This defines the factor as

fi(vi,v j|Ω) = p(si|Ω)p(αi|Ω)p(γi|Ω) (4.15)

DATA-DRIVEN PLANT MODELING 43

implicitly encoding the parent child relation between b j and bi.

4.5 Tree Data Structure
α

γγ

(a)

α

α

γγ

(b)

α

α

α
α

γγ

(c)

Figure 4.9: Illustration of tree param-
eters described in Section 4.5 for a
different number of lateral branches.

The tree is composed of a set of branch segments. Each branch segment bi

is represented by the position of its end point pi and its direction vi. Given a
parent segment bp and its child segment bc, vc = pc −pp. The transformation
of these two vectors are modeled by a scale s and rotation matrix Rpc such
that vc = sRpcvp. Each branch segment bi has its local coordinate system, the
position of the end point pi and the segment vector vi. The relation between
parent-child branch segments is represented by the geometry transformation.
In the local coordinate system of the parent bp, the scaled rotation from
the segment vector vp of bp to its child segment vector vc is defined by a
scale s and two rotation angles α and γ around the x and y axis of the parent
coordinate system respectively. An alternative formulation then yields
vc = sRy(α)Rx(γ)vp.

The branching shapes are typically spatially variant for the whole tree. To
account for this, a Gaussian distribution is used to characterize the probability
distribution of the tree parameters. The scale s of each pair of parent-child
segments has the identical distribution, that is s ∼ N (µs,σs).

In physical biology the most obvious distinction in branching angles
is between lateral and apical growth. The active tissue in plants is called
meristem that develops either in apical (primary) or lateral buds (secondary).
While the assumption of identical distribution is generally true for apical
branches, it can be refined in the case of lateral branches.

For a parent segment bp with K child segments {bc1 , . . . ,bck}, one of the
segments is identified as the apical continuation of bp, and the divergence
angles and the orientation adjustment angles of all the apical segments are
assumed to have identical distribution, that is N (µα ,σα) and N (µγ ,σγ)

respectively.

The other child segments are lateral. While the divergence angle of all
the lateral segments have identical distribution, that is N (µβ ,σβ), the
distribution of orientation adjustment angles depend on their label. Based
on the different orientation adjustment angle, the child segments distribute
evenly around their parent segment. As shown in Fig. 4.9,

1. For branches with only one child branch (K = 1) one can safely assume
that the child is an apical branch with

αc1 ∼ N (µα ,σα)

44 COMPUTER GRAPHICS AND NATURE

and

γc1 ∼N (µγ ,σγ).

The distribution parameters of the child segment are θ1 = {µα ,σα , µγ ,σγ}.

2. If K = 2, the rotation angles of the two child segments are

αc1 ∼N (µα ,σα)

γc1 ∼N (µγ ,σγ)

and

αc2 ∼N (µβ ,σβ)

γc2 ∼N (µγ +π ,σγ)

respectively. The resulting two sets of distribution parameters are
θ1 = {µα ,σα , µγ ,σγ} and θ2 = {µα ,σα , µγ +π ,σγ}.

3. For more than two child branches (K > 2), the rotation angles of the apical
segment are

αc1 ∼N (µα ,σα)

γc1 ∼N (µγ ,σγ).

For the remaining lateral child segments rotation angles are

αci ∼N (µα ,σα)

γci ∼N (µγ +
2π(i−1)

K−1
,σγ)

with i = 2, . . . ,K. The corresponding parameter sets for each child segment
are: θ1 = {µα ,σα , µγ ,σγ} for the apical and θi = {µβ ,σβ , µγ +

2π(i−1)
K−1 ,σγ}

with i = 2, . . . ,K for the lateral branches.

Taking this distinction between lateral and apical branching angles into
account gives an extended set of global parameters and an slightly extended
factor graph in the following way. Let Ω = {µs,σs, µα ,σα , µβ ,σβ , µγ ,σγ}
denote the global tree parameters, one can deduce the Gaussian distribution
parameters θi of the rotation angles of each child segment bci according to
its label li. Reconstructing the 3D branches within the graphical modeling
framework is described in the following sections.

4.5.1 Refined Markov Model and Factor Graph

The goal is to look for the optimal depth zi of each branch bi so that the
transformation parameters have the largest probability according to the
Gaussian distributions defined by the global parameter set Ω. As indicated

DATA-DRIVEN PLANT MODELING 45

in Section 4.5, for a parent segment with K child branches, there are K
sets of parameters θi with i = 1, . . . ,K associated with the rotation angles.
To differentiate between the type of child branches, another variable is
introduced: The label for the child segment, li to get the distribution from Ω.
This leads to a refined formulation of Eq. 4.15 with the joint probability of
the two branch vectors vi, vpi and label li of the child segment:

fi(vi,vpi , li|Ω) = p(si|Ω)p(αi|θli)p(γi|θli) (4.16)

allowing a refined factor graph, as seen in Fig. 4.10 c), introducing the
label set L = l1, . . . , lN as an additional variable and an extended formulation of
Eq. 4.13 with

p(Z,L|X ,Y) =
N

∏
i=1

fi(vi,v j, li|Ω). (4.17)

The child segment label lci between each pair of parent-child segments
is introduced as another variable node to the factor graph. The square node
fpci between bci and bp represents the conditional joint probability defined in
(4.16). By multiplying all factor nodes in the factor graph, one arrives at the
posterior p(Z,L|X ,Y ,Ω) in Eq. 4.17 for the whole tree.

pb

1c
b

2c
b

(a)

pcP 1pcP 2

1c
z

2c
z

pz

(b)

pcP 2

1c
z

2c
z

pz
2cl clpcP 1

1

(c)

Figure 4.10: Mapping the sketch to
a factor graph. (a) Markov Tree, (b)
corresponding factor graph, (c) final
factor graph with additional nodes for
branch type label. Each node in the
graph represents a branch segment in
the sketch.

4.5.2 From Local to Global Coordinate Systems

The tree parameters Ω specify the rotation Rp
c between parent segment and

child segment in the parent’s local coordinate system while the observed
(x,y) and unknown z are defined in the global coordinate system. To convert
the coordinate systems from local to global:

vc = sRpcvp = sR0
pRp

c Rp
0vp, (4.18)

46 COM PUTER GRAPHICS AND NATURE

where Rpc = R0
pRp

c Rp
0 , Rp

0 is the rotation matrix from the global coordinate
system to the local coordinate system of the parent segment and R0

p is the
inverse is used.

The rotation angles α and γ of each pair of parent-child branch segments
can then be deduced from the rotation matrix Rp

c .

4.6 Markov Tree Inference

Inference is the process of deducing the values of unknown variables of the
graphical model in a way such that they pose the most likely configuration
according to the probability distributions. By inferring the unknown variables
of the branch segments, the 2D sketch is mapped to the 3D branches by
relying on the global tree parameters Ω of the template selected from the
database (Section 4.8). The default behavior of this system is to jointly
estimate the depths of the branch segments and Ω, using the template values
as initialization. As a result, in optimizing the tree shape based on the sketch,
the final tree parameters may drift from those of the template. The user can
choose to override this default behavior and ensure that Ω is preserved during
the optimization. The characteristics of the final reconstructed tree would be
the same as those of the template, but at the cost of a sub-optimal fit to the
sketch.

Overriding the default behavior makes the optimization simpler, because
Ω is unchanged throughout the optimization. This case is described first in
the next section. Branch interaction (ensuring good spatial distribution and
avoiding interpenetration) is accounted for in the optimization. The default
system behavior is described in Section 4.6.2, where both tree shape and Ω
are optimized in an EM-like (expectation-maximization) fashion (see system
overview in Fig. 4.11).

3D Model

ΩParameters

2. ICM Refinement

3. Parameter Estimation

Model

2D Sketch

Interaction
Branch

Ωameters

eter Estim

2D S

3D M3D M

3 P

on ent ICM Refifif nemenRefifif nemen2.

1. Bottom-Up Inference

Figure 4.11: The framework of
Markov tree inference.

DATA-DRIVEN PLANT MODELING 47

4.6.1 Inferring Branches with Fixed Global Parameters Ω

In Eq. (4.17) the calculation of rotation angles between child and parent
segment vectors depends on the rotation matrix R0

pi
linking local to global

coordinate systems, as shown in Formula (4.18). Unfortunately, there is no
closed-form solution for the objective function defined in Formula (4.17).

The global inference in Formula (4.17) can be approximated with a two-
step approach. The first step is bottom-up inference, which computes a local
solution at each generation of parent-child branches, starting from the root
and ending with the terminal segments in the sketch. The second step refines
the first step’s results using the Iterated Conditional Mode (ICM) (see [Besag,
1986] 7 and [Bishop, 2006]). 7 Julian Besag. On the statistical analysis of

dirty pictures. Journal of the Royal Statistical
Society B, 48(3):259–302, 1986

BOTTOM-UP INFERENCE :

To handle the rotation chain in the tree, we use ancestral sampling [Bishop,
2006] to get the best sample of the unknown variables zi and li of each branch
bi generation by generation, starting from the root segment. Generally, the
root branch segment br’s local coordinate system is consistent with the global
coordinate system R0

r = I (identity 3×3 matrix) and zr = 0. Then, we estimate
the hidden variables of its descendant branch segments generation by genera-
tion. The rotation between the local and global coordinate systems of a child
segment is propagated as R0

c = R0
pRp

c .

Suppose a parent branch segment bp has a segment vector vp and local-
to-global rotation R0

p. Suppose, also, that bp has K child branches bci with
i = 1, . . . ,K. For this generation, while fixing vp, accounting for the optimal
values of zci the label lci , i = 1, . . . ,K associated with the child branches are
selected to maximize the posterior ∏

K
i=1 p(vci ,vp, lci |Ω). The label lci of all

the child segments of bp must be unique.

This can be done by analyzing all possible combinations in an exhaustive
search. Testing all combinations of the labels and choosing the best solution
at each generation gives the required results. The posterior in Formula (4.17)
can be approximated by optimizing child branches from root to terminal
nodes.

Figure 4.12 is a simple illustration of the local optimization. Here, the
parent segment bp has two child segments bc1 and bc2 , whose labels lc1 , lc2

and depths zc1 , zc2 are unknown (see Fig. 4.12 a)). There are two possible
combinations of labels of bc1 and bc2 (Figure 4.12 b)). Under each hypothesis
of segment labels, the corresponding parameter prior θ1 and θ2 for bc1

and bc2 are extracted from Ω as described in Section 4.5. For each child

48 COM PUTER GRAPHICS AND NATURE

segment, the optimal zci to maximize the posterior p(vci ,vp, lci |Ω) given the
hypothesized branch label lci is searched for (Figure 4.12(c) shows the case
for child segment bc1). Finally, the solution under the label hypothesis that
maximizes ∏2

i=1 p(vci ,vp, lci |Ω) is chosen as the solution.

pb

1c
b

2c
b

(a)

OR

pb

1c
b

2c
b

2c
bcbc

pb

1c
bcbc

1c
l 1=

2c
l 2=

pb

1c
b

2c
b

2c
l 1=

1c
l 2=

pb

1c
bcbc

1c
lclc =

2c
bcbc

2c
lclc 1=

(b)

Figure 4.12: Illustration of optimiza-
tion for one generation: (a) Sketch, (b)
two hypotheses of labels for the child
segments, and (c) given the hypothesis,
search depth z (here, for bc1).

An initial 3D shape of the drawn branches is found by optimizing the
unknown variables at each node from the root of the terminal nodes genera-
tion by generation. The next step is local refinement to account for branch
interactions (competition between branches and avoiding interpenetration).

ICM REFIN EMENT:

Since the process of bottom-up inference produces local solutions at every
generation, following up with Iterated Conditional Mode (ICM) [Bishop,
2006, Besag, 1986] to refine the result is necessary. In order to avoid the
complexity caused by the mapping between different branch coordinate
systems, the depth zi of each vertex is directly refined to make the divergence
angle and scale of each pair of child and parent segment as consistent with
the corresponding global parameters as possible.

More specifically, for a pair of parent-child segment bi and bpi , the distri-
butions of scale si with

si = |vi|/|vpi | (4.19)

and divergence angle

αi = arccos
(

vi ·vpi

|vi||vpi |

)
(4.20)

are defined following si ∼ N (µs,σs) and αi ∼ N (µα ,σα) if li = 1, and

DATA-DRIVEN PLANT MODELING 49

βi ∼N (µβ ,σβ) otherwise (see Section 4.5). The probability considering
these two items is defined as

psa(vi,vpi |li,Ω) =
N

∏
i=1

p(si|Ω)p(αi, li|Ω). (4.21)

During the growth of a tree, each branch competes with others to get as
much space as possible. As a result, the tree branches typically distribute uni-
formly within the tree volume. We model this competition between branches
as a probability field to affect the inference. The 3D space constrained within
the crown is discretized to voxels (in experiments a grid of Nv = 25×25×25
is used), with each voxel’s branch density being di at its center pvi

. The
probability of a segment growing to the point pi is

pd(pi) =
Nv

∏
i=1

exp
(

−kedi

1+ ‖pi−pvi
‖2

)
(4.22)

where ke is the branch interaction factor. Its default value is ke = 5. By
encouraging the branch to grow to the position where the density of the
branches is low, the branches attempt to get as much free space around them
as possible.

At each step of ICM, we update one node by

z(t+1)− z(t) =
∂ pICM

∂ zi

∣∣∣∣
{v j}, j=1,...,N, j 6=i

(4.23)

while fixing the other nodes to increase

pICM =
N

∏
i=1

psa(vi,vpi |li,Ω)pd(pi). (4.24)

The refinement terminates when the changes in the nodes fall below a
predefined threshold ∑

N
i=1 |z

(t+1)
i − z(t)i |< ε (ε = 0.01).

INTERPENETRATION BETWEEN BRANCHES

During the inference of the depths of branches, branch interpenetration is
avoided if possible. Interpenetration is checked for right after the bottom up
inference and affected branches are moved away from each other along the
z-axis. The ICM refinement step is then applied to make the branching shape
more consistent.

50 COMPUTER GRAPHICS AND NATURE

4.6.2 Inferring Branches Positions and Global Parameters Ω

The default behavior of the system is to jointly optimize Z, L, and the global
tree parameter Ω to better fit the current sketch. An EM-like (expectation-
maximization) algorithm can be introduced to simplify the inference. In the
expectation step, the integral of all hidden variables (Z and L) is computed
to estimate the parameters Ω, since the primary interest is to find the opti-
mal hidden variables rather than parameter estimation, and to modify the
expectation step to reflect this.

At iteration t, instead of evaluating the expectation given parameters Ω(t),
the optimal hidden variables Z(t) and L(t) of all the branches that maximize
the posterior p(Z(t),L(t)|X ,Y ,Ω(t)) (E-step) are deduced. The maximization
step uses Z(t) and L(t) to estimate Ω(t) by maximizing p(Ω|Z(t),L(t),X ,Y)
(M-step):

p(Ω|Z(t),L(t),X ,Y) =
N

∏
i=1

p(Ω|si,αi,βi,γi). (4.25)

At the E-step, Z(t) and L(t) are computed using fixed parameters Ω(t) in
the same way as described in Section 4.6.1. At the M-step, the four parame-
ters of the child branches are mapped to the Gaussian distribution defined by
Ω, that is (si,αi,βi,γi) ∼ {N (µs,σs),N (µα ,σα),N (µβ ,σβ),N (µγ ,σγ)}.
The tree parameters are updated (Ω(t)→Ω(t+1)) as the average and variance
of the branch rotation angles and scale at iteration t.

During experiments fewer than 10 iterations are required to generate good
results. This allows for reaction times of the system at interactive speed.
The results show that the reconstructed 3D tree model is plausible even
though it is a local solution. After depths of all the branch segments have
been recovered, cubic B-spline curves are used to interpolate the shape of
the branches and generate meshes according to Neubert et al. [Neubert et al.,
2007] 8 (and described in detail in Chapter 5). 8 Boris Neubert, Thomas Franken, and

Oliver Deussen. Approximate image-
based tree-modeling using particle flows.
ACM Transactions on Graphics (Proc. of
SIGGRAPH ’07), 26:88:1 – 88:10, July 20074.7 Branch Propagation and Leaf Population

The sketch drawn by the user is typically sparse, because humans tend to
abstract and reduce the information to the necessary. The resulting 3D model
associated with the sketch alone is unlikely to look compelling due to the
lack of complexity. One option to overcome this oversimplification would be
for the user to draw a complicated tree structure, but this would be manual-
intensive. While this option is supported by the proposed system, there is a

DATA-DRIVEN PLANT MODELING 51

better way: the system automatically adds complexity to the model based on
what has already been drawn.This automatic feature is based on the principle
of self-similarity which is widely used in plant modeling [Shlyakhter et al.,
2001, Tan et al., 2007] 9 . The system randomly picks a replication block 9 Ilya Shlyakhter, Max Rozenoer, Julie

Dorsey, and Seth Teller. Reconstructing 3d
tree models from instrumented photographs.
IEEE Computer Graphics and Applications,
21:53–61, May 2001; and Ping Tan, Gang
Zeng, Jingdong Wang, Sing Bing Kang, and
Long Quan. Image-based tree modeling.
ACM Transactions on Graphics (Proc. of
SIGGRAPH ’07), 26:87:1 – 87:8, July 2007

(a parent segment and its child segments) from the model, picks an open
branch segment, scales, and orients the replication block, and attaches the
transformed replication block to the open branch.

The growth of branches is limited by the crown—more specifically, its
surface of local revolution (see [Okabe et al., 2005] for details). If the new
propagated branches reach this surface, they are scaled back to touch the
surface, and the propagation terminates there. Note that if the crown is not
drawn by the user, the system propagates the branches by a fixed number of
generations, usually fixed to five generations, which produces good results.
The user can specify a different number if desired. Figure 4.13 shows branch
propagation results with and without crown. By drawing the crown, the user
exerts more control over the shape of the tree.

Figure 4.13: Effect of additional
crown definition. Top row: without
crown, bottom row: with crown. From
left to right: sketch, two views of the
complete tree model.

Generally, the casual user does not draw strokes with similar scales in two
successive generations. This results in branch segments that are much longer
than their parent segments. To make the tree appear more natural, the system
introduces new lateral branches along such disproportionately long branches.
By propagating a fixed number of generations, the system is able to produce a
3D tree model with reasonable complexity and realism.

52 COMPUTER GRAPHICS AND NATURE

The branch growing procedure is similar to the hidden branch construction
algorithm described in [Tan et al., 2007], but with two important differences.
First, they compute the 3D hull from multiple photos, while ours is generated
from a 2D curve. Second, in their system, the branch growth is achieved by
randomly orienting branches before adding them to the tree. In our system,
the new branches inherit the branch angle parameters associated with the
replication blocks, thus fixing their orientations with respect to the open
branches. To make the tree appear more natural, our system also introduces
new lateral branches along disproportionately long branches caused by an
inaccurate sketch.

The leaves and twigs (small branches) attach to large branches in regular
and predictable ways. Instead of generating the leaf geometry from a sketch,
the system uses the leaf model associated with the chosen database template
by default (Section 4.8). The user can override the default leaf model by
selecting a different one from any other tree exemplar in the database. The
leaves are replicated and placed on branches based on botanical laws gov-
erning leaf arrangement. For example, the leaves on the same twig can be
directly opposite or alternate with a deviation angle.

In the following section the tree database is described, which is used
to supply an appropriate set of tree parameters Ω as prior to the graphical
modeling framework.

4.8 Database of Tree Templates

The chances of producing natural-looking tree models are enhanced if ge-
ometry reconstruction is guided by pregenerated natural-looking ones. Such
models can be obtained through image-based modeling [Reche-Martinez
et al., 2004, Tan et al., 2007] or through manual modeling [Lintermann and
Deussen, 1999] 10 . The proposed tree modeling technique does not rely 10 Bernd Lintermann and Oliver Deussen.

Interactive modeling of plants. IEEE
Computer Graphics and Applications, 19:
56–65, January 1999

on the method through which the tree models in the database are generated;
instead the technique adapts to whatever tree parameters are supplied and
what source the parameters are coming from. In the current implementation
tree models are used that were generated using the method described in [Neu-
bert et al., 2007] as templates. There are 20 different tree exemplars in the
database; chosen to represent a reasonably wide variety of trees.

The exemplar that best matches the sketch is chosen from the system as
the template for 3D reconstruction. The selection is achieved by comparing
the crown and branching shapes of the sketch with the 2D silhouettes and
projected branching shapes of exemplars in the database.

DATA-DRIVEN PLANT MODELING 53

ΩParameters ΩParameters

3D Geometry

2D Silhouettes

Leaf Template

Exemplar 1

Exemplar 2

Exemplar M

Exemplar 1

Database

3D Geometry

Exemplar

...

Figure 4.14: Structure of tree database.

The user may draw the crown as a single curve or series of curves (shown
in Figure 4.15 as solid green curves). The system then computes the convex
hull (red dashed lines) of both the crown and branch strokes except the root
branch.

(a) (b) (c) (d)

Figure 4.15: Different crown shapes
drawn as user input (green solid
curve): (a) complete convex crown;
(b) incomplete convex crown; (c)
incomplete crown with several strokes;
(d) concave crown with several corners;
The red dashed lines are the part added
to the complete convex crown shape.

A footprint descriptor [Lamdan et al., 1988] 11 of this convex hull is 11 Yehezkel Lamdan, Jacob T. Schwartz,
and Haim J. Wolfson. Object recognition
by affine invariant matching. In Computer
Vision and Pattern Recognition (Proc. CVPR
’88), pages 335–344, 1988

used during the template selection process. It is a simple but robust method
to measure the similarity of curves. First, the crown curve is normalized
such that max(w,h) = 1, where w,h are the width and height of the crown’s
bounding rectangle. Let the center of the normalized curve be C. We then
compute the radial distance distribution from C to the curve, yielding a Kf

dimensional vector f (for Kf regularly sampled directions). f is the footprint
descriptor. Each tree exemplar is associated with a set of 2D silhouettes under
different views. We compute the footprint descriptor fE for each silhouette in
the same manner. The similarity of the crown shape between the sketch S and
the exemplar E under a view v is defined as

Lc(S,E|v) = −‖fS − fE|v‖. (4.26)

To measure the similarity between the branching shapes of the sketch and
exemplar, the average 2D length ratio and angle between each pair of parent-
child segments of tree is calculated. For a parent segment in the 2D sketch,

54 COMPUTER GRAPHICS AND NATURE

it is not clear which child segment is apical or lateral. The system assumes
that the child segment with the smallest 2D angle with the parent segment
is apical, while the rest are assumed to be lateral. Assuming the length ratio
s2D, apical angle α2D, and lateral angles β2D of the 2D branches are Gaussian
distributed, their mean and standard deviation: x2D ∼N (µx,2D,σx,2D) are
estimated, where x = s,α ,β . For each exemplar in the database, its 3D ge-
ometry is projected to 2D under different views. For each 2D projection, the
Gaussian distributions of length ratio se,2D, apical angle αe,2D, and lateral an-
gle βe,2D between each pair of parent-child segments are similarly estimated:
xe,2D ∼N (µx,e,2D,σx,e,2D), x = s,α ,β . The similarity of the branching shapes
between the sketch and the exemplar under view v is defined as

Lb(S,E|v) = − ∑
x=s,α ,β

(µx,2D−µx,e,2D|v)
2

σ2
x,2D +σ2

x,e,2D|v
.

If the user draws the crown, the similarity between the sketch and exem-
plar (from a given view v) is the sum of similarities in crown and branching
shapes:

L(S,E|v) = Lc(S,E|v)+Lb(S,E|v). (4.27)

If the crown is not drawn, the similarity is set as L(S,E|v) = Lb(S,E|v).
The exemplar is selected for which similarity between one of its views and
the sketch (given by L(S,E|v)) is maximized. This exemplar (with parameters
Ω) will be the default template for the shape inference. User Selection

Alternatively the user may choose to override the default by simply
clicking a thumbnail to select an exemplar.

Figure 4.16 shows the results generated from the same sketch but with
different exemplars. This illustrates that the system is capable of generating
models that can look radically different, depending on which tree exemplar is
chosen.

Note that the selected exemplar serves to provide a good initial point of
the tree parameters; the final parameters inherit tree characteristics from both
the selected exemplar and the drawn sketch. Therefore, perceptually different
3D tree models can be generated from different sketches based on the same
exemplar and vice versa. Biological Parameters

The tree exemplars serve to add realism to the output, but are not abso-
lutely necessary. It is possible to just have preset tree parameters which are
then used for all sketches. However, the resulting tree shapes may not appear

DATA-DRIVEN PLANT MODELING 55

(a)

(b)

(c)

(d)

(e)(b) (e)

Figure 4.16: Different results gener-
ated from the same sketch, but with
different manually assigned exemplars.
(a)(b) are two different exemplars used
to guide the inference; (c) is the input
sketch; (d)(e) are corresponding output
tree models.

as compelling. As with most data-driven recovery systems, the more tree
exemplars that are available (with a wider variation of shapes), the better the
results are expected to be.

4.9 Results and Discussions

Figure 4.17 shows a variety of results generated from sketches of different
trees. The complexity of the sketch ranges from a small number of drawn
strokes to a large number, with and without the optionally sketched crown.
As shown in (a), a complex and reasonably realistic-looking tree can be
generated from just 8 strokes. Of course, the user can better control the
specific shape of the tree by drawing more branches and the crown, as can be
seen in (b). Figure 4.17(c), (d) and (e) show three other tree models generated
from sketches with varying numbers of strokes, with and without the crown.

Generally, the user can create visually compelling tree models at interac-
tive rates using the proposed system (for a 2.67 GHz PC). The reconstruction
of simply sketched strokes is accomplished interactively. In case of incom-
plete or very sparse sketches realistic tree models can be produced, as shown
in Figure 4.17 (a) and (b) after few additional propagation steps. The user has
the option of generating more complicated tree models with more branches,
at the expense of longer propagation time. For example, the propagation of

56 COMPUTER GRAPHICS AND NATURE

(a)

(b)

(c)

(d)

(e)

Figure 4.17: A variety of results
generated from sketches of different
trees. From left to right: sketch, after
branch reconstruction and propagation,
and two views of the complete tree
model.

DATA-DRIVEN PLANT MODELING 57

Figure 4.18: Another comparison
between the exemplar and resulting tree
model. From left to right: Exemplar
automatically selected by our system,
input sketch, and output tree model.

Figure 4.19: Failure example. From
left to right: sketch, two views of the
reconstructed branches.

Figure 4.17 (e) took about 50 seconds to produce 4,291 branch segments.

The system is able to generate complex and realistic-looking trees having
distinct branching structures from freehand sketches and is able to cope with
irregular shapes (Figure 4.18). There are significant differences between the
exemplar and the output. However, it is not easy for our system to model
the tree with curvy branches such as liana or calyx canthus. Figure 4.19
shows such an example. The user intended to draw a tree with a curvy main
branch growing along one direction. However, the optimization objective
was designed to make the branches consistent throughout the whole tree and
to make them spread out. As a result, the generated 3D model does not look
very natural (as seen from a side view).

In the current implementation, the system can generate trees with a
particular type of branching structure. While many tree species can easily be
approximated by exploiting the self-similar property of trees, others such as
palm trees or spruces are hard to create. It is possible to modify the system
to accommodate spatially-varying parameter sets or branching structures,
but this is a topic for future work. The cost would be a more complicated
interface which presents the user with more (potentially domain-specific)
options.

There are several other possible extensions to the system. It currently
has no editing options—it would certainly be useful for the user to be able
to interactively rotate the completed tree and edit different views whenever
necessary. Editing operations include branch removal or addition and depth
changes in combination with interactive and automatic updates through the
system. Furthermore, in our current implementation, the propagation of
thousands of branches could not be finished at interactive rates. In the future,
the implementation could be optimized to achieve interactive propagation.

58 COMPUTER GRAPHICS AND NATURE

The current version of the system does not provide the option for speci-
fying environmental effects to influence the shape of the tree model. It may,
in certain cases, be desirable to be able to specify obstacles (e.g., buildings)
for the tree to “grow” around. Another interesting case is to generate models
of several trees in close proximity to each other, with each influencing the
development of others.

5

From Graphs to Models
(a)

(b)

Figure 5.1: Leonardo da Vinci’s
observations about branch radii [Plate
XXVII from Richter, 1970, p. 115].

There are several ways to faithfully reconstruct or generate the 3D branching
graph of a tree model. This chapter will describe another important part in
generating realistic models: the step from branching graphs to triangle based
representations of the model. The following sections describe how the final
geometric representation is generated based on the branching information
given in form of a branching graph and can be described in three steps. In
the first section (Sec. 5.1) allometric rules are described to deduce realistic
branch radii. Section 5.2 will introduce a method to generate a water-tight
meshing of the brach geometry and bifurcations. Finally, Sec. 5.4 focuses on
the generation of model details including small twigs and leaves according to
botanical principles.

5.1 Allometry

The first step to generate a mesh from a branching graph is to deduce the radii
of the individual branches.

Leonardo da Vinci’s (1453-1519) notebook [Richter, 1970] 1 is the first 1 Jean Paul Richter. The Notebooks of
Leonardo da Vinci, volume 1. Dover
Publications Inc, New York, 1970. reprinted
1888

written record of the relationship of branching radii. He states that the sum of
the area of two branches equals the area of the parent branch (see Fig. 5.1):

All the branches at every stage of its height when put together are equal in
thickness to the trunk [below them].

[Richter, 1970, p. 205, Sec. 394f]

Da Vinci formalized the simple mathematical relation of the diameters as

d0
2 = d1

2 + d2
2. (5.1)

60 COMPUTER GRAPHICS AND NATURE

This simple relation proofed to capture the real world surprisingly well pipe model of plants
and was later basis for the so called pipe model of plants [Shinozaki et al.,
1964a,b] 2 that still is used to explain certain properties of plants. 2 K. Shinozaki, K. Yoda, K. Hozumi, and

T. Kira. A quantitative analysis of plant
form - the pipe model theory I. Basic
analysis. Japanese Journal of Ecology, 14:
97–104, 1964a; and K. Shinozaki, K. Yoda,
K. Hozumi, and T. Kira. A quantitative
analysis of plant form - the pipe model
theory II. Further evidence of the theory and
its application in forest ecology. Japanese
Journal of Ecology, 14:133–139, 1964b

Theoretical and experimental biology discovered many more such rela-
tions that are described with the classical allometric equation [Niklas, 1994,
pp.123]3 (power function equation):

3 Karl J. Niklas. Plant Allometry: The
Scaling of Form and Process. The University
of Chicago Press, 1994

Y1 = βY2
α (5.2)

here Y1 is the variable of interest and Y2 is variable measuring size, α and
β are parameters describing the mathematical relationship between the two
variables. Transforming Eq. 5.2 into linear form gives power function equation

logY1 = logβ +α logY2. (5.3)

In linear form it can be seen that α is the slope (and therefore called
scaling exponent) and β is the value of Y1 if Y2 = 1 (scaling coefficient).
Some of the allometric relations based on this power law are found through
theoretical assumptions based on fluid simulations or material properties,
others are found empirically through regression analysis.

Murray [1927]4 analyses an allometric relation closely related to Leonardo 4 Cecil D. Murray. A relationship between
circumference and weight in trees and its
bearing on branching angles. The Journal
of General Physiology, 10(5):725–729, May
1927

da Vinci’s original observation. Murray investigates the link between circum-
ference of branches of a ramification. Based on sampled circumference c and
weight w of the branches at a branching point Murray empirically establishes
the following relation

logw = 0.850+ 2.49logc

w = 7.08 c2.49.

Based on the fact that the weight w0 of the branch before the bifurcation
equals the sum of the weights of both subbranches w1 +w2 (neglecting the
weight of the bifurcation itself) Murray establishes the following equation

w0 = w1 +w2

c0
2.49 = c1

2.49 + c2
2.49.

FROM GRAPHS TO MODELS 61

These observations are closely related to the dimensionality of fractals.
Benoit Mandelbrot [1983, Chapter 17]5 mentions Murray’s study in the 5 Benoit B. Mandelbrot. The Fractal

Geometry of Nature. W. H. Freedman and
Co., New York, 1983

chapter about natural branching systems as found in lungs, vasculatures,
botanical trees, and river networks.

While traditionally the dimensionality of a line is thought to be one-
dimensional, an area two-dimensional and a volume three-dimensional,
fractals define a non-integer dimensionality as

D =
log(number of self-similar pieces)

log(magnification factor)

or related to the Hausdorff dimension Hausdorff dimension

D = lim
ε→0

logN(ε)

log1/ε

where N(ε) is the number of self-similar elements of size ε that are
needed to represent the original structure.

For botanical trees Mandelbrot defines, besides the fractal dimension
D (which should be close to D = 3 to be nearly space filling), a second
parameter ∆ called diameter exponent. Tree structures that are highly self-
similar as for example the lung’s bronchial tree exhibit ∆ = D≈ 3, essentially
filling the outline of the complete lung. According to Mandelbrot the best one
can hope for botanical trees is that the self-similarity assumption holds for self-similarity assumption
the branch tips (defining the fractal dimensionality D). Leonardo da Vinci’s
observation is suggesting M = ∆ = 2 while Murray’s empirical evidence
suggests M = ∆ = 2.5. Mandelbrot suggests a value of M = 2+ ∆

D with
∆ = 2 and D = 3 and explaining that D and ∆ take up the integer Euclidean
dimensions of solids and surfaces according to

The problem of energy interchange in trees can be simplified by considering the
tree as a system in which as large [an area] as possible must be irrigated with
the minimum production of volume while at the same time guaranteeing the
evacuation of absorbed energy.

Mandelbrot finds following corollaries for the assumption that ∆ = 2 and
D = 3 important, considering realistic plant models:

62 COM PUTER GRAPHICS AND NATURE

• Branch’s leaf area is proportional to both the volume of the branch’s
outline and the cross-sectional area of the branch.

• The ratio between tree height h and trunk diameter d is constant: const. =
h3

d2 .

• Leaf and branch area are proportional to tree height cubed.

Using these functional proportions can greatly improve the esthetic quality
of the final model.

Figure 5.2: An important step generat-
ing the final model is to deduce branch
radii according to botanical principles.
Allometric rules allow to define the
relationship between branch radii d0,
d1, d2 and bifurcation angles α1 and
α2.

The next important step is to make qualified assumptions about the ratio
of the radii (in case of a bifurcation) of the two child branches. The intuitive
assumption is to use the ratio of the branching angles to model the ratio of the
radii with

d1

d2
=

α1

α2

Based on empirical evidence Murray [1926] investigates the relation be-
tween branching angles and radii of vessel systems and established following
relationship

cos α1 =
r0

4 + r1
4 − r2

4

2r02r12 (5.4)

cos α2 =
r0

4 + r2
4 − r1

4

2r02r22 (5.5)

cos (α1 +α2) =
r0

4 − r1
4 − r2

4

2r12r22 (5.6)

with parameters defined as in Fig. 5.2. Even though Eq. 5.6 are found
based on vessel systems they provide an interesting basis for plant models as
well.

Holton [1994]6 makes an comparable observation for the strands mod- 6 Matthew Holton. Strands, gravity and
botanical tree imagery. Computer Graphics
Forum, 13:57–67, February 1994

eling system introducing this relationship to computer graphics. Here the
underlying assumption is that a tree is made of several strands that are not
further divisible and are connecting the roots to the leaves without further
branching. Counting the number of strands that run trough a branch can be
used to determine the radius of the branch. Holton establishes the relation
between number of strands Si and branching angle αi with

α1 =
S2

S0
A

α2 = A−α1

FROM GRAPHS TO MODELS 63

with A as sum of both branching angles and S0 number of strands of the
main branch. Solving for S2 and S1 gives

S2 =
α1S0

A
S1 = S0−S2.

The diameter of the branch d than can be found with d = t
√

S with t being a
plant depending scaling parameter.

5.2 Branch Geometry

All described modeling methods have in common that at one point in the
modeling stage the intermediate data structure is a graph representing the
branching skeleton. The branching graph G is defined as the tuple of a set of
edges E and a set of nodes N representing a directed graph with no cycles

G = (N,E). (5.7)

Each edge e ∈ E is an ordered pair of vertices e = (V ×V). Each node n ∈ N
is associated with the real world position v of the vertex and the radius r of
the branch. This section deals with the mesh generation that allows to render
the final model based on a given branch skeleton.

5.2.1 Open Uniform B-splines

Using B-splines as approximation of individual branch sections increases
the realism of the model and allows for a parameterized representation of the
whole branch (see Fig. 5.4).

Uniform B-splines are a weighted sum of control points Pi

P(u) =
n

∑
i=0

PiNn,i(u) (5.8)

and the weight functions N are recursively defined (p = 4 for cubic splines) as

Ni,0(u) =

1, u ∈ [ui,ui+1[

0, otherwise

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u)+

ui+p+1−u
ui+p+q−ui+1

Ni+1,p−1(u)

with local support

64 COMPUTER GRAPHICS AND NATURE

Ni,p(u) = 0 u 6∈ [ui,ui+p[.

For cubic B-splines (p=4) the weight functions for one section of the
spline Ni,4 is defined as the union of four parts b0, b1, b2, and b3 with the
following properties [Salomon, 2005, pp.256]7: 7 David Salomon. Curves and Surfaces for

Computer Graphics. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005• Provide C2 continuity at the three points where they join.

• b0(t) and its first two derivatives should be zero at b0(0).

• b3(t) and its first two derivatives should be zero at b3(1).

Defining bi(u) = Aiu3 +Biu2 +Ciu+Di the above conditions result in

b0(u) =
1
6

u3 (5.9)

b1(u) =
1
6
(1+ 3u+ 3u2−3u3) (5.10)

b2(u) =
1
6
(4−6u2 + 3u3) (5.11)

b3(u) =
1
6
(1−3u+ 3u2−u3) (5.12)

and in general the Cubic B-Spline kth single segment formulation:

Ck(u) =
3

∑
i=0

Pk−3+iNk−3+i,3,τ (u),u ∈ [0,1] (5.13)

Ck(u) =
[
u3 u2 u 1

] 1
6


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0




Pk−1

Pk

Pk+1

Pk+2

 . (5.14)

1

0 1

b0b4

b1 b2

Figure 5.3: B-spline basis functions

5.2.2 Curve Framing

Defining the geometry around the graph structure requires to define a local
coordinate system for each point on the graph or curve – a so called moving
coordinate frame. This allows for defining a generalized cylinder with
arbitrary cross-sections along the curve axis with each cross-section properly
aligned with its neighbors to avoid twists. Frenet frames (see [Salomon,

FROM GRAPHS TO MODELS 65

(a) (b)

Figure 5.4: (a) Detailed view to
chiseled and smoothed branches; (b)
complete tree skeleton of an oak tree

2005]) are a convenient choice, because they are defined analytically in the
following way: Frenet frames

the first derivative P′(u) of a curve P(u) has the simple geometric mean-
ing of a tangent vector of the curve

T (u) =
P′(u)
|P′(u)|

(5.15)

while the second vector to define the Frenet frame is the principal normal
vector N(u) which points towards the center of curvature and is defined as

N(u) =
K(u)
|K(u)|

(5.16)

with

T

N
B

F0

Fn-1

Fn

Figure 5.5: Problematic behavior of
Frenet frames at saddle points: The
reversed direction of normal N from
frame Fn−1 to Fn would cause twists in
the resulting mesh.

K(u) =
P′′(u) ·P′(u)

|P′(u)|2
P′(u) (5.17)

and finally the binormal vector B(u) orthogonal to both N(u) and T (u)

B(u) = T (u)×N(u). (5.18)

However, from the definition one can see that in the case of N vanishing
the Frenet frame is undefined and even worse whenever the curvature vector
reverses direction causing twists in the orientation of consecutive frames (see
Fig. 5.5).

66 COMPUTER GRAPHICS AND NATURE

A better choice therefore are parallel transport frames (see [Hanson et al.,
1995] 8) minimizing torsions of consecutive frames. Such an improvement 8 Andrew J Hanson, Hui Ma, and Lindley

Hall. Parallel transport approach to curve
framing. Indiana University Techreport-
sTR425, pages 1–20, 1995

is achieved by propagating an initial frame along a curve using small, local
rotations, at the cost of losing the analytic properties of the frame.

The initial frame at the start of the curve can be found using curvature as
done for the Frenet frame. In the case of zero curvature choosing N0 as any
perpendicular vector to T0. Given this initial frame consecutive frames are
computed iteratively based on the last frame by computing Pi+1 and Ti+1 at
the new point on the curve and rotating the old reference frame, such that
Ti aligns with Ti+1. Rotating Ni and Bi in the same manner creates the new
reference frame at Pi+1. parallel transport frames

The rotation axis A is given by the normal vector of the plane defined by
two consecutive tangential vectors of the curve

A =
Ti×Ti+1

‖Ti‖‖Ti+1‖
(5.19)

and the rotation angle is given by

α = arccos
(

Ti ·Ti+1

‖Ti‖‖Ti+1‖

)
. (5.20)

If Ti = Ti+1 the rotation angle α becomes zero, although the cross-product
and accordingly the rotation axis A is undefined.

With Bi = Ti×A and Bi+1 = Ti+1×A, the intermediate frames can be
represented as rotation matrices

Mi =

T x
i Ax Bx

i

T y
i Ay By

i
T z

i Az Bz
i

 (5.21)

and

Mi+1 =

T x
i+1 Ax Bx

i+1
T y

i+1 Ay By
i+1

T z
i+1 Az Bz

i+1

 (5.22)

where T x is the x component of vector T .

The rotation matrix Ri between Frame i and i+ 1 becomes

Ri = M−1
i Mi+1 = MT

i Mi+1 (5.23)

since Mi is an orthonormal rotation matrix.

FROM GRAPHS TO MODELS 67

The normal Ni and binormal Bi at position Pi on the curve can then be used
to compute the global coordinates of points on the cross-section with local
coordinates C = (Cx,Cy), with ‖C‖= ri the branch radius of the curve section,
in the following way:

Psur f ace =
(

Cx Cy 1
)Nx Ny Nz

Bx By Bz

Px Py Pz

 . (5.24)

Constructing the mesh from the cross-section points to form generalized
cylinders is performed in a straight forward way. Let P0

i to Pn
i be n ordered

points along the branch cross-section corresponding to node ni on the curve.
Then, to form the cylinder from node ni to ni+1, we generate a triangle for
j = 0 to n−1 for each three points P j

i ,P j+1
i ,P j

i+1 and P j
i+1,P j+1

i+1 ,P j+1
i .

5.3 Meshing Bifurcations

Bifurcations are often modeled using generalized cylinders that intersect each
other without paying attention to produce closed meshes. For most parts in a
tree model this method is sufficient without introducing noticeable artifacts.
However, for bifurcations of branches with large radii or bifurcations of the
trunk, intersecting triangles may result in visible artifacts during rendering.

This section will provide a new method to generate closed meshes of bi-
furcations within a tree model, that can be refined using standard re-meshing
techniques [Biermann et al., 2000] 9 to produce high quality geometric 9 Henning Biermann, Adi Levin, and Denis

Zorin. Piecewise smooth subdivision surfaces
with normal control. In Proc. of SIGGRAPH
’00, pages 113–120, New York, NY, USA,
2000. ACM Press

representations.

At bifurcation points the endpoints of different branches need to be con-
nected. A minimal distance of the branch end points need to be guaranteed
to prevent surface polygons of different branches to intersect. This minimal
distances depends on the radii of the branches at the bifurcation together with
their branching angles. This minimal distance can then be used to cut the
branches before generalized cylinders are constructed and the void space is
used to generate the mesh of the bifurcation.

68 COM PUTER GRAPHICS AND NATURE

(e) (f) (g) (h)

Figure 5.6: Modeling of bifurcations.
(a) Low resolution bifurcation mesh.
(b) Resulting mesh after one subdivi-
sion step according to Biermann et al.
[2000]. (c) Resulting mesh after two
subdivision iterations. (d) Final result.The minimal distance is determined by calculating the radius of the

minimal enclosing sphere rsphere of the bifurcation. This is executed by
pairwise calculation of all branches Ei of the bifurcation. At this point the
branching graph holds information about the angle γ between two branches
and both radii r1 and r2. Fig. 5.7 b) shows that rsphere is the optimal radius if
the sum of both angles α and β equals the angle between the two branches γ . minimal enclosing sphere

FROM GRAPHS TO MODELS 69

r1

r2

rα

rβ

r

α

βγ

sphere

E1

E2

(a) α + β < γ resulting in rsphere
being larger than necessary.

r1

r2

rα

rβ

r´

α´
β´

sphere

E1

E2

(b) Optimal rsphere for γ = α + β .

Figure 5.7: Calculating the minimal
radius of the enclosing sphere rsphere
given two edges E1 and E2 and their
radii r1 and r2.

This allows for calculating angles α and β and the minimal radius of the
enclosing sphere rsphere given the preconditions

γ ,r1 and r2 known

γ = α +β

and
sinβ =

r2

rsphere
, sinα =

r1

rsphere

therefore

r1

r2
=

sinα

sinβ

=
sin(γ−β)

sinβ

=
sinγ cosβ − sinβ cosγ

sinβ

= sinγ
cosβ

sinβ
− cosγ

r1
r2
+ cosγ

sinγ
=

1
tanβ

sinγ
r1
r2
+ cosγ

= tanβ

and

β = arctan

(
sinγ

r1
r2
+ cosγ

)

α = arctan

(
sinγ

r2
r1
+ cosγ

)
. (5.25)

70 COMPUTER GRAPHICS AND NATURE

The radius of the enclosing sphere rsphere is

rsphere =
r1

sinα
=

r2

sinβ
.

From all pairwise combinations of branches the edges of the branches
need to be cut by the larges radius of all enclosing spheres. This guarantees
that the generalized cylinders will be intersection free at the bifurcations.

After the branch segment’s length has been reduced the two branches with
the smallest radius difference are connected. This connects the branches with
the smallest branching angles according to the allometric rules defined in
Sec. 5.1. From the resulting four faces the face with the smallest angle to the
next branch is connected to the end cross section (see Fig. 5.6 a).

This method creates so called water-tight meshes for the bifurcation and
branches. This is an important property for the mesh to allow for the use
of subdivision methods [Biermann et al., 2000] 10 to refine the mesh (see 10 Henning Biermann, Adi Levin, and Denis

Zorin. Piecewise smooth subdivision surfaces
with normal control. In Proc. of SIGGRAPH
’00, pages 113–120, New York, NY, USA,
2000. ACM Press

Fig. 5.6 b and c) and produce high resolution meshes.

5.4 Modeling details: Twigs and Leaves

In case of an image based approach one possibility to achieve a higher
similarity to the input photographs is to add model details based on botanical
motivated rules to the final tree model. Usually it is impossible to deduce
information for these parts of the tree model from the photographs due to a
high degree of occlusion. Length and frequency can therefore be deduced
only from the density estimation of the volume model in a way that high
density parts of the volume are refined with a larger number of twigs and
leaves compared to sparse regions. Additionally it is possible to add another
tool to change the appearance of the final model based on a small number of
additional parameters that are hard to deduce automatically from the input
photographs. Such parameters include length and tropism of the additional
branches. These parameters can be used for different models of the same
species and therefore do not limit the general power of the system.

As one of the parameters the user decides between mono-podial (branch-
ing with one main axis, observed on spruces and oak tress) and sympodial
branching patterns (see Fig. 5.8 and Deussen and Lintermann [2005, p. 14]).
Assuming Monochasium for the sympodial pattern, leads to a branching
pattern as seen in Fig. 5.8 b), which e.g. is typical for linden trees.

Additionally the material properties can be defined that allow to influence
the stiffness of the small branches. This simple parameter allows to influence

FROM GRAPHS TO MODELS 71

(a) (b)

Figure 5.8: a) Mono-podial and b)
sympodial branching configurations
(see [Deussen and Lintermann, 2005]).

the model appearance and create in a simple manner the characteristic
branching structure and tropism for several species (see Fig. 5.9).

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Resulting models for
different parameterizations of small
branches and twigs.

72 CO MPU TER GRAPHICS AND NATURE

5.4.1 Leaf Geometry, Position, and Orientation

(a) (b)

Figure 5.10: a) Creation of the tiny
twigs; b) leaf primitives.

After the geometry of the branches and trunk has been generated the position
along the branches and orientation of leaves need to be defined following
biological rules about leaf formations. Phylotaxis is the botanical term
to describe the arrangement of leaves on a plant stem. Along an axis or
branch four different arrangements (see Fig. 5.11) are identified: alternate
(distichous), opposite (decussate), whorled (three or more leaves attached to a
node), or in a repeating spiral (dispersed). This information is species specific
and can be used if the species of the tree model is know.

(a) Distichy (b) Dispersion (c) Decussation

Figure 5.11: Different leaf formations
(see Deussen and Lintermann [2005,
13f])

Using this informations makes it possible to define the point along the
branch that forms the bud f as well as the main axis of the leaf a and are
the basis to define the geometry that later supports the leaf texture. Model-
ing the positive phototropism of leaves, that is curvature towards the light Phototropism
source, is an important step to increase realism of the model’s appearance.
Heliotropism is a variation of phototropism that allows leaf lamina to respond Heliotropism
to changes in the direction of the sun’s rays. Both optimize radiation inter-
ception and increase the rate of photosynthesis. Adapting the orientation
of the leaf’s normal towards the sun is done by defining a point z inside the
plant and defining an optimal direction nopt =

a−z
‖a−z‖ . Rotating the leaf around

its main axis to minimize the angle between nlea f and nopt results in a good
approximation of the leaves phototropism

n•a = 0

n = argmin
x
(x•a).

and allows to find a second vector to define the leaf’s plane

s = n×a.

FROM GRAPHS TO MODELS 73

(b) (c)

Figure 5.12: Different leaf orientation
a) without b) with phototropism.

To create the foliage texture applied to this plane, we use photographs of
natural leaves, add an alpha buffer and use a quad or a small set of triangles
to support the texture (see Fig. 5.10(b)). In case of an image-based method
the positions of the leaves are determined by the density values of the voxels,
resulting in models where parts with high density values will contain propor-
tionally more leaves. For trees as in Figure 3.2 the leaves appear in spatially
clustered regions that we cannot represent with our course grid - therefore
we refine the leaf arrangement by projecting the position of each leaf to the
image planes and discarding leaves that are projected to empty or very sparse
regions.

(b) (c)

Figure 5.13: Different leaf orientation
a) without b) with phototropism.

Part II

Rendering of Complex Scenes

6

Level-of-detail Algorithms for Botanical Scenes and Mod-
els

Since the very beginning of computer graphics, rendering algorithms have
been high consumers of computational resources and memory. Independent
of the chosen rendering method, i.e. raytracing or radiosity, real-time or
offline rendering, one reason for high computational costs is the scene
complexity.

Various methods exist to reduce the cost of rendering. Spacial data struc-
tures reduce the number of geometry that needs to be processed. Another
large family of algorithms aims to reduce the rendering costs by reducing the
geometric complexity of the scene. In general these level-of-detail (LOD)
methods aim at cutting down the rendering cost, mainly by reducing model level-of-detail
detail or shading cost. This is basically one occurrence of the traditional
tradeoff between complexity and performance, fundamental to a large class of
problems in computer science.

This chapter provides a brief introduction to level of detail algorithms with
focus on the challenges and influence of special properties of natural scenes
to those algorithms. Luebke et al.’s textbook [Luebke et al., 2002] 1 provides 1 David Luebke, Benjamin Watson,

Jonathan D. Cohen, Martin Reddy, and
Amitabh Varshney. Level of Detail for 3D
Graphics. Elsevier Science, 2002

an excellent and more general overview of the huge body of work in this
field.

Level of detail algorithms can be classified according to different inherent
properties. Luebke et al. [Luebke et al., 2002] suggest to group LOD algo-
rithms into view-dependent versus view-independent, and continuous versus
discrete algorithms. In the context of ecosystem rendering the distinction

LOD Classification

78 CO MPU TER GRAPHICS AND NATURE

according to Deussen and Lintermann [Deussen and Lintermann, 2004] 2 2 Oliver Deussen and Bernd Lintermann.
Digital Design of Nature: Computer
Generated Plants and Organics. Springer
Verlag, 2004

into static and dynamic LOD techniques is a better choice and we keep this
notion in the following chapter.

Static algorithms precompute distinct model representations. The needed
Statictransition between different levels is achieved by blending between two

representations. This requires rendering of both representations during the
transition phase in combination with gradually changing the transparency.
With increasing distance from the plant increasing the transparency for
one model and at the same time decreasing the transparency of the next
representation.

Dynamic representations provide a way to change the models complexity
Dynamicaccording to the projected screen size gradually without the need for blending

between discrete representations. Both representations are often mixed
with each other or combined with the full detail model. With increasing
distance and therefore decreasing projected screen size the full detail model
is replaced by its representation that allows either dynamic or static level-of-
detail rendering.

The focus on geometry reduction techniques in the following section is
closely related to rendering of botanical scenes.

6.1 Mesh Simplification vsplitecol

vt vs

vs

v1

v1

vr

vr

Figure 6.1: Progressive Meshes: edge
collapse and vertex split operations.

Most objects in todays computer graphic environments are defined in terms
of triangle meshes. The early ideas with respect to level-of-detail algorithms
aimed at reducing the numbers of triangles used to model an object based on
local operations.

In this section, we describe the group of mesh simplification algorithms.
The underlying principle here is to simplify the mesh and effectively reducing
the number of polygons to describe a certain model. After briefly describing
the basic algorithm of this group, we will discuss the implications of natural
scenes and why these algorithms, while undoubtably useful for a large
number of objects, are less effective for most natural scenes and objects.

Hoppe [Hoppe, 1996] 3 proposed the use of a low level local operator that 3 Hugues Hoppe. Progressive meshes. In
Proc. of SIGGRAPH ’96, pages 99–108,
New York, NY, USA, 1996. ACM

reduces the mesh complexity by a small amount called edge-collapse (see
Fig. 6.1). This operator collapses an edge and replaces the edge by a single
new vertex, thus reducing the number of vertices and triangles to define the

LEVEL-OF-DETAIL ALGORITHMS 79

object step by step. The inverse operator is called vertex split, which adds an
edge and the adjacent triangles.

There are several variants [Luebke et al., 2002, pp.123] of this basic
algorithm used for view-independent and view-dependent simplification.

One special property of natural models prevents these algorithm from be-
ing successfully used in this context: natural models show a lack of detailed
closed meshes. There are usually two groups of geometry in a general plant
model: the leaves and the trunk. The trunk and branches are often defined
using generalized cylinders and make only a small portion of the overall
geometric complexity. Applying the edge collapse operator to such a kind
of mesh would immediately lead to a noticeable change in appearance of the
underlying geometry. Leaves often consist of only two triangles supporting
a leaf texture making an edge collapse without introducing strong visual
differences impossible.

6.2 Billboard Representation – Replacing Geometry Details with
Texture

One general technique to reduce the amount of geometry needed to model
details has nowadays become most common, and is often overlooked that it
was originally developed for this purpose. Replacing geometry details with
texture can be seen as one of the oldest simplification methods in computer
graphics. Instead of modeling every detail of a model with geometry, large
patches are filled with a color representation of the details, basically trading
memory and computational power required to store and process geometry
with higher memory requirements for texture storage and texture fetches.
Texture fetches are efficiently implemented in hardware and are resolution
dependent since they are typically realized at a very late stage in the graphics
pipeline (e.g. in the pixel shader for real time rendering on current GPUs).

Why Map Texture?

WHY MAP TEXTURE? In the quest for more realistic imagery, one of the
most frequent criticisms of early synthesized raster images was the extreme
smoothness of surfaces - they showed no texture, bumps, scratches, dirt,
or fingerprints. Realism demands complexity, or at least the appearance of
complexity. Texture mapping is a relatively efficient means to create the
appearance of complexity without the tedium of modeling and rendering every
3-D detail of a surface. (from [Heckbert, 1986] 4) 4 Paul S Heckbert. Survey of texture mapping.

IEEE Computer Graphics and Applications,
6:56–67, November 1986As already mentioned this technique is heavily used for plant models

since naturally leaf and bark details are represented as textures to reduce the
amount of geometry needed.

80 COM PUTER GRAPHICS AND NATURE

Figure 6.2: Billboard representations
[from Behrendt et al., 2005].

This technique has been successfully extended to replace geometry with
larger patches of textures that faithfully represent the details originally
modeled with triangles. Billboard Clouds are one method of this family that
was recently adapted to the special needs of tree models.

There are a variety of texture-based techniques, most notably impos-
tors [Schaufler et al., 1996] and billboard clouds [Décoret et al., 2003], which
have been tailored for tree rendering [Garcia et al., 2005, Lacewell et al.,
2006]. These techniques generate discrete levels of detail and therefore are
part of the static LOD group, which require special treatment to avoid dis-
tracting popping artifacts when adapting the detail, e.g. using the method
propose by Scherzer and Wimmer [Scherzer and Wimmer, 2008]. Decaudin
and Neyret [Decaudin and Neyret, 2004] use 3D textures representing parts
of a dense forest and aperiodic tiling to render large scenes by volume slicing.
However, this method only allows distant views, e.g. as used in flight simula-
tors. They further extended this approach to volumetric impostors [Decaudin
and Neyret, 2009], but this method shares the drawback of high memory
consumption with other texture-based techniques.

Behrendt et al. [Behrendt et al., 2005] 5 adapt the billboard cloud ap- 5 Stephan Behrendt, Carsten Colditz,
Oliver Franzke, Johannes Kopf, and Oliver
Deussen. Realistic real-time rendering of
landscapes using billboard clouds. Computer
Graphics Forum (Proc. of Eurographics
’05), 24(3):507–516, 2005

proach to tree models by applying a k-means clustering to the model’s
geometry and then representing these clusters by one or more billboards de-
pending on the structure of the bounding box of the point cloud (see Fig. 6.2).

LEVEL-OF-DETAIL ALGORITHMS 81

If the bounding box has two long sides and one short side the geometry is
represented by a single billboard. If there is only one long side the authors
chose a crossed billboard representation and if all sides have the same length
three billboards are used. A simple heuristic is used to identify the latter case:√

a ·b > f · c for the three sides a,b,c and f = 0.5.

Lacewell et al. [Lacewell et al., 2006] 6 choose a stochastic approach 6 J. Dylan Lacewell, Dave Edwards, Peter
Shirley, and William B. Thompson. Stochas-
tic billboard clouds for interactive foliage
rendering. Journal of Graphics, GPU, and
Game Tools, 11(1):1–12, 2006

to generate the billboard representation. They define an initial billboard
position and orientation based on a "seed" triangle chosen at random. The
vertices of the supporting triangle Ts are perturbed within an ε distance. All
remaining triangles T of the model are evaluated whether or not all vertices
of the triangle are located within the ε surrounding of the billboard plane
B, if so, the vertices of T are projected onto plane B. The sum of the area of
all projected triangles onto B are saved and stored as Bmax as a measure of
quality for this billboard. This step is repeated several times and the billboard
with the highest projected area is finally saved and the represented triangle
set is removed from the mesh. The algorithm terminates if all triangles are
removed from the original mesh.

6.3 Stochastic Simplification

In this section methods are introduced that apply stochastic sampling of the
model’s geometry to reduce the rendering load. Stochastic simplification can
be easily used with geometry representations that do not require topology
information, such as point rendering methods.

The QSplat algorithm [Rusinkiewicz and Levoy, 2000] and sequential
point trees [Dachsbacher et al., 2003] 7 adapt the size of prepositioned splats 7 Carsten Dachsbacher, Christian Vogel-

gsang, and Marc Stamminger. Sequential
point trees. ACM Transactions on Graphics
(Proc. of SIGGRAPH ’03), 22(3):657–662,
2003

(rendered point primitives) to the required sampling density. Point samples
can also be created on the fly, e.g. distributed randomly onto surfaces [Wand
et al., 2001], stratified [Wand and Straßer, 2002], or adaptively [Stamminger
and Drettakis, 2001] 8 . 8 Marc Stamminger and George Drettakis.

Interactive sampling and rendering for
complex and procedural geometry. In
Rendering Techniques ’01 (Proceedings
of Eurographics Workshop on Rendering),
pages 151–162, 2001

All these methods have in common that—when using fewer samples—
they preserve the total area by scaling the rendered remaining primitives.

Klein et al. [Klein et al., 2004] 9 used a stochastic simplification for 9 Jan Klein, Jens Krokowski, Matthias
Fischer, Michael Wand, Rolf Wanka, and
Friedhelm Meyer auf der Heide. The
randomized sample tree: A data structure
for interactive walk-throughs in externally
stored virtual environments. Presence:
Teleoper. Virtual Environ., 13(6):617–637,
2004

polygonal scenes, however, the scene elements are only discarded, not altered,
and thus this method is only suitable for coarse previews.

82 COM PUTER GRAPHICS AND NATURE

Deussen et al. [Deussen et al., 2002] applied stochastic simplification
to rendering complex ecosystems. For reducing geometry they replaced
the original triangles successively by lines and then points. Deussen and
Lintermann [Deussen and Lintermann, 2004], and later Cook et al. [Cook
et al., 2007] transfer this idea to complex geometry not restricted to point
representations. They demonstrate simplification by pruning and scaling
adapting not only to an object’s screen size, but also to motion blur and depth
of field. Their work is closely related to the algorithm described in Chapter 7.

6.3.1 Point- and Line-based Rendering

Using points as rendering primitives was already proposed by Levoy
and Whitted in 1985 [Levoy and Whitted, 1985] 10 and later revised 10 Marc Levoy and Turner Whitted. The use

of points as a display primitive. Technical
report, University of North Carolina at
Chapel Hill, 1985. TR 85-022

in [Rusinkiewicz and Levoy, 2000] 11 with the urging need for alterna-

11 Szymon Rusinkiewicz and Marc Levoy.
QSplat: A multiresolution point rendering
system for large meshes. In Proc. of
SIGGRAPH ’00, pages 343–352. ACM
Press, 2000

tive rendering systems caused by the increasing resolution of 3D scan-
ners and proposed as rendering primitive suitable for trees by Reeves and
Blau [Reeves and Blau, 1985] 12 . Advances in 3D scanning technology

12 William T. Reeves and Ricki Blau.
Approximate and probabilistic algorithms
for shading and rendering structured particle
systems. In Proceedings of the 12th annual
conference on Computer graphics and
interactive techniques, SIGGRAPH ’85,
pages 313–322, New York, NY, USA, 1985.
ACM

made it possible to get extremely detailed models with hundreds of millions
of polygons which lead to the problem of interactively displaying these ob-
jects. Rusinkiewicz and Levoy [Rusinkiewicz and Levoy, 2000] proposed
the QSplat algorithm to handle the large amount of data 3D scanner produce.
Compared to mesh based algorithms the authors especially designed the algo-
rithm to reduce the amount of computation necessary per primitive, partially
sacrificing the ability to exactly preserve 3D positions of any sample of the
original object.

Figure 6.3: The QSplat data structure
(from [Rusinkiewicz and Levoy,
2000]).

The underlying data structure used is a hierarchy of bounding spheres (see
Fig. 6.3) used for visibility culling, level-of-detail control, and rendering.
Each node of the hierarchy contains the sphere center and radius, normal and
color.

During rendering the preprocessed hierarchy is traversed recursively,
skipping nodes and the respective subbranches whenever the visited node is
not visible, and drawing a splat at the nodes position if either the node itself
is a leaf or the benefit of recursing further is too low. The size of the drawn
splat is determined by the projected size of the bounding sphere.

Weber and Penn [Weber and Penn, 1995] 13 describe a rendering system 13 Jason Weber and Joseph Penn. Creation
and rendering of realistic trees. In Proc. of
SIGGRAPH ’95, pages 119–128, New York,
NY, USA, 1995

LEVEL-OF-DETAIL ALGORITHM S 83

for plants based on points and lines. The tree geometry is divided into
different levels of visual importance, three levels for trunk up to small twigs
and one level for the leaves that are rendered using points. They provide a
detailed parameter list to determine the fraction of geometry that is rendered
based on polygons and lines or points.

Deussen et al. [Deussen et al., 2002] 14 proposed a method for rendering 14 Oliver Deussen, Carsten Colditz, Marc
Stamminger, and George Drettakis. In-
teractive visualization of complex plant
ecosystems. In VIS ’02: Proceedings of
the Conference on Visualization ’02, pages
219–226, 2002

objects with lines and points in the context of vegetation rendering (see
Fig. 6.4). Each model consists of parts that are rendered using points and
other parts that are naturally better approximated using line primitives. Parts
that are chosen to be represented with points are sampled with 2n points for
originally n triangles, sampling the triangles according to their area stored
in a single list. During rendering only a prefix of this list depending on the
projected area of the plant is drawn. This method allows to specify more
important parts of the plant that are slowly reduced during rendering.

The number of points that is needed to represent the plant faithfully
depends on the surface and the distance to the camera. The approximate
projected area of the triangles of the original model can be calculated as

A′
p =

1
2

Ap

r2 (6.1)

and the required number of points p as

p = cp
A′

p

A′
spnp

(6.2)

with A′
sp = d′2 being the required point splatting area and d′ the average

distance between two neighboring point samples in the image plane (which is
a user specified value to control the speed versus quality tradeoff).

Figure 6.4: Point- and line-based
representations [Deussen et al., 2002].

84 COMPUTER GRAPHICS AND NATURE

A general problem of using points as rendering primitives is flickering
which is a special case of aliasing and mentioned as a drawback in most
discussed publications.

6.3.2 Dynamic Polygonal Representations

Level of detail algorithms based on dynamic polygonal representations are
described in Deussen and Lintermann [Deussen and Lintermann, 2004] 15 . 15 Oliver Deussen and Bernd Lintermann.

Digital Design of Nature: Computer
Generated Plants and Organics. Springer
Verlag, 2004

Based on the fractal characteristics of plants the authors proposed a method
that removes geometry from the original mesh and scales the remaining
triangles to compensate the reduced geometry without changing the rendering
primitives which is called "drop and resize". The authors apply this method drop and resize
to the geometry representing the leaves of the plant.

Based on the overall surface area A of the plant model and the distance to
the camera r, the projected overall surface Ai can be approximated with

Ai =
1
2

A
r2 (6.3)

The scaling factor s for the remaining geometry with k leaves reduced
from originally n leaves can then be calculated with

s(k) = w
√

n/k+(1+w). (6.4)

For the delation rate (how fast geometry is discarded) the authors suggest
a square function depending on the camera distance (following Eq. 6.3). The
order in which the geometry is discarded is calculated according to positions
on a horizontal plane that follows the golden section rule. Stochastic Pruning

Later Cook et al. [Cook et al., 2007] 16 coined the term Stochastic Prun- 16 Robert L. Cook, John Halstead, Maxwell
Planck, and David Ryu. Stochastic simplifica-
tion of aggregate detail. ACM Transactions
on Graphics (Proc. of SIGGRAPH ’07), 26
(3):79, 2007

ing proposing a very similar technique. The algorithm is divided into five
aspects:

1. Detail level: Based on the projected area of a bounding volume determin-
ing the number of elements to exclude.

2. Rendering priority: Determining the order in which elements are ex-
cluded.

3. Area preservation: Compensating the excluded geometry by scaling the
remaining elements.

LEVEL-OF-DETAIL ALGORITHMS 85

4. Contrast preservation: Altering the colors of the elements to compen-
sate color differences due to scaling.

5. Smooth transition: Fading out excluded elements to avoid popping
artifacts.

The detail level λ for an object is the fraction of the elements that are in-
cluded during rendering. There are many factors that influence this parameter.
The authors considered size and blur and combined them to

λ = λsizeλblur.

The parameter λsize depends on B, the current size of the bounding box
measured in pixels. With B0 as the size at which simplification should start
and hB0 the size at which half of the elements should be excluded λsize

becomes
λsize = blogh(1/2)

with b = B/B0.

According to the authors the rendering priority order should not be
correlated to geometry position, size, normal, color or other characteristics,
but instead be solely based on a random number.

Similar to [Deussen et al., 2002] the average projected area during render-
ing should be preserved. The total area of all N elements with average surface
area a is N ·a. Rendering only a fraction of the original geometry decreases the
total area to λ ·N ·a, which has to be compensated by scaling the remaining
geometry by s in a way that (λ ·N)(a · s) = N ·a, which translates into

s =
1
λ

.

Due to the aforementioned limitations of mesh- and point-based ap-
proaches, the proposed method, described in the following chapter, is based
on dynamic polygonal pruning techniques. Especially the simple and efficient
idea of stochastically removing geometry makes such approaches extremely
simple to use and implement.

7

Realtime Rendering – Improved Model- and View-Dependent
Pruning of Large Botanical Scenes

Deussen et al. [Deussen et al., 2002] 1 and Cook et al. [Cook et al., 2007] 2 1 Oliver Deussen, Carsten Colditz, Marc
Stamminger, and George Drettakis. In-
teractive visualization of complex plant
ecosystems. In VIS ’02: Proceedings of
the Conference on Visualization ’02, pages
219–226, 2002
2 Robert L. Cook, John Halstead, Maxwell
Planck, and David Ryu. Stochastic simplifica-
tion of aggregate detail. ACM Transactions
on Graphics (Proc. of SIGGRAPH ’07), 26
(3):79, 2007

present a very simple and elegant approach for stochastic simplification.
However their solution does not consider any specific properties of the
individual model. The suggested λ and respective scaling is solely a function
of distance between viewer and model. Imagine two very different plant
models: one model with very dense foliage and a large number of interior
leaves and a different model with very transparent foliage (e.g. a birch).
According to Cook et al. the applied simplification parameters would be the
same.

The proposed method in this section [Neubert et al., 2011] 3 adapts 3 Boris Neubert, Soeren Pirk, Oliver
Deussen, and Carsten Dachsbacher. Im-
proved model- and view-dependent pruning
of large botanical scenes. Computer
Graphics Forum, 30(6):1708–1718, 2011

the LOD parameters considering model characteristics by analyzing the
rendered result. The basic assumption is that simplified models that cover the
same pixels as the full detail model are of higher quality. In the case of the
given examples the dense model would cover almost the same pixels than
the original model even with less geometry and moderate scaling, whilst
removing geometry from the birch would immediately change the number of
covered pixels and thus the quality of the resulting image.

In contrast to other LOD algorithms it is hard for stochastic simplification
to find a cost function based on distance error metrics (as common for
progressive meshes) since the beauty and strength of the original algorithm
lies in the fact that it is difficult to see the differences (which is only true for
aggregate details). This makes it difficult to make a qualified comparison
with these techniques.

88 COMPUTER GRAPHICS AND NATURE

This chapter presents an optimized pruning algorithm that allows for
considerable geometry reduction in large botanical scenes while maintaining
high and coherent rendering quality, improving upon previous techniques by
applying model specific geometry reduction functions and optimized scaling
functions. Precision and Recall (PR) are introduced as a measure of quality to
rendering and it is shown how PR-scores can be used to predict better scaling
values. A user-study in which subjects can adjust the scaling value, shows
that the predicted scaling matches the preferred ones. Lastly, the originally
purely stochastic geometry prioritization for pruning is extended to account
for view-optimized geometry selection, which allows to take global scene
information, such as occlusion, into consideration.

7.1 Introduction

Rendering of natural scenes with vegetation as rich as in the real world has
been a motivation of computer graphics research ever since. The complex
visual appearance and the inhomogeneous structure of botanical objects
makes real-time rendering of large scenes a challenging task that extends to
this day. The obvious main reason is the tremendous amount of geometry
that is needed to represent trees and plants. Storing as well as rendering such
objects with full detail is beyond the capabilities even of modern graphics
hardware. However, even if processing and rendering the data were possible,
then the small sub-pixel details due to the complex geometry can still cause
aliasing artifacts.

Many different approaches have been presented to render trees in real-time
as presented in Chapter 6. Most often simple billboards or impostors [Schau-
fler et al., 1996] are used, or automatically generated billboard clouds [Dé-
coret et al., 2003, Garcia et al., 2005] which are sets of billboards that better
preserve occlusion and parallax effects. However, these representations are
well-suited for distant objects and trees, but they are typically over simplified
and close views reveal the low quality. It is also not possible to achieve coher-
ent shading of the scene or to adapt the level of detail smoothly and without
noticeable artifacts due to the planar nature of billboards [Lacewell et al.,
2006].

In this section a rendering technique for complex botanical scenes based
on pruning is presented. Pruning techniques (stochastically) reduce geometry
by simply excluding some parts of the model, e.g. leaves, from the rendering
and correcting contrast and the total rendered area by scaling the remaining
leaves [Cook et al., 2007].

The proposed algorithms improves upon previous methods in several
respects:

REALTIME RENDERING 89

• describe a view-optimized pruning instead of purely stochastic simplifica-
tion of the geometry. This allows to account for global scene information,
e.g. thick and sparse forest and occlusion from neighboring trees.

• show that scaling of geometry after pruning should not be inversely
proportional to the geometry reduction.

• formalizing this by introducing Precision and Recall as a measure of ren-
dering quality. The measure does not consider pixel colors, but whether
the right pixels of a rendered object are set. This is validated by con-
ducting a user-study where subjects had to manually adjust the preferred
scaling value.

7.2 Improved Scaling for Pruning Algorithms

In this section the pruning and scaling described by Deussen et al. [Deussen
et al., 2002] and Cook et al. [Cook et al., 2007] is briefly recapped, and the
drawbacks of these approaches are discussed. Next Precision and Recall
measure for pruning and scaling are introduced, and the results of a user-
study conducted for validation is presented.

7.2.1 Area Preservation and Optimal Scaling

The main objective of simplification algorithms is to preserve the overall
appearance of the rendered models whilst using less geometry and thus
reducing rendering cost. Deussen et al. [Deussen et al., 2002] as well as Cook
et al. [Cook et al., 2007] propose a simple, and at first sight plausible rule:
when the geometry is reduced down to a certain fraction then the remaining
geometry is scaled such that the total area of rendered surfaces is equal to the
original area.

Cook et al. [Cook et al., 2007] denote this scaling factor as s = 1/λ ,
where λ is the fraction of rendered geometry. However, the surface area
that is visible after rendering the remaining geometry heavily depends on
the actual rendered model. One can easily think of models where a lot of
geometry can be removed and they would still cover the same projected area,
i.e. the remaining geometry covers (almost) the same pixels for a certain view
direction.

Stochastically pruning the geometry does not only change the area, but
also—in particular when pruning strongly—the depth complexity of the ren-
dered model. Cook et al. [Cook et al., 2007] account for this by calculating
the expected visible area of a subset of randomly chosen elements of a model,
and adapt the scaling factor accordingly.

90 COMPUTER GRAPHICS AND NATURE

Our results demonstrate an important and interesting fact: the largest
decrease in rendering quality due to wrong scaling does not occur for strong,
but for slight and moderate pruning, where the depth complexity correction
has only little influence. In the next section Precision and Recall as quality
measure is introduced, which does not only take the number of pixels but also
their classification into correctly set and unset pixels into account.

7.2.2 Precision and Recall

A key aspect in information retrieval is relevance which in general is a highly
subjective property. Different users may have different opinions about the
relevance of a document in a certain context or query. In the context of
computer graphics we are in a much better position. Considering relevance
as a dichotomic property of pixels that are relevant for a particular model
the idea to consider pixels that are set for the full detail model as relevant
and all others as non-relevant is the straight forward idea. However, utilizing
perceptional models to get a continuous notion of relevance should be the
next step.

relevant non-relevant

retrieved A∩B A∩B B
not retrieved A∩B A∩B B

A A N

Table 7.1: Contingency table

true positives (tp) = A∩B
false positives (fp) = A∩B
true negatives (tn) = A∩B

Table 7.2: Definition of the sets that
are part of Precision and Recall.

Measuring the quality of a level of detail algorithm can always be seen as
asking how well is the simplified model representing the information of the
full detail model. In this case measuring the effectiveness:

Effectiveness is purely a measure of the ability of the system to satisfy the user
in terms of the relevance of documents retrieved. (from [Rijsbergen, 1979,
p.114])

The key measures for effectiveness in information retrieval are Precision P,
Recall R, and Fallout F , that are defined according to Table 7.1 and 7.2 as

P = |A∩B|
|B|

R = |A∩B|
|A|

F = |A∩B|
|A|

with | · | being the counting measure.

Defining generality G as

G =
|A|
N

(7.1)

with N number of elements in the system as a measure of the density of
relevant documents in the collection gives a relationship of Precision, Recall,
and Fallout in the following way:

P =
R ·G

(R ·G)+F(1−G)
. (7.2)

REALTIME RENDERING 91

Precision and Recall (PR) are well-known statistical classifications or
measures for exactness and completeness. They are widely applied in the
domain of information retrieval and are closely related to sensitivity and
specifity to measure the performance of binary classification algorithms, such
as support vector machines and Bayesian networks [Rijsbergen, 1979] 4 . 4 C. J. van Rijsbergen. Information retrieval.

Butterworths, London, 2 edition, 1979

Several composite measures are used to avoid measuring effectiveness by
means of a pair of numbers (e.g. precision and recall). The simplest example
of this kind of measure is the sum of Precision and Recall as S = P+R or
S2 = P+R−1 or the harmonic mean

F = 2 · P ·R
P+R

.

In the following we will propose a composite measure suitable in the
context of level of detail rendering and discuss analogies of information
retrieval measures in the context of computer graphics.

(a) (b) (c)

Figure 7.1: a) Dark green: pixels
covered by original “model”. b) Light
green: pixels covered by the “model”
rendered with reduced geometry and
without scaling: no additional pixels
are covered and thus only the Recall
value is affected, while the Precision
score remains 1. c) The simplified and
scaled “model” covers pixels that were
not covered by the original model (red,
false positives). Dark green pixels are
false negatives, light green ones are
true positives.

Precision is defined as the ratio of correctly identified items (true posi-
tives) to both correctly and incorrectly identified items (sum of true positives
and false positives). In our case, when rendering a pruned model it is the ratio
of pixels that are correctly set, i.e. they would have been rendered for the
full-detail model as well, and the total number of set pixels.

Recall is the quotient of correctly identified items (true positives) and all
relevant items (sum of true positives and false negatives). Again translated
into this scenario: the ratio of correctly set pixels and the number of correctly
set pixels plus the number of pixels that should have been rendered, but
which are not covered by the pruned model.

Thus, Precision and Recall (PR) are defined as (true positives t p, false
positives f p, and false negatives f n):

92 COM PUTER GRAPHICS AND NATURE

set pixels that are...

true positives ...correctly set, i.e. rendered for the original and for the simplified model.
false positives ...wrongly set, i.e. rendered only for the simplified model.
false negatives ...rendered for the original model, but not covered by the simplified one.

Table 7.3: Classification of pixels for
Precision and Recall.

P =
t p

t p+ f p
(7.3)

R =
t p

t p+ f n
(7.4)

Table 7.3 gives an overview of the relevant pixels sets, which are shown in
Fig. 7.1 for a simple example. More formally, we denote the set of all pixels
covered by the original model as Porig, and the set of pixels rendered for the
simplified model as Psimpli f ied , and thus get:

t p = {p|(p ∈ Psimpli f ied)∧ (p ∈ Porig)}
f p = {p|(p ∈ Psimpli f ied)∧ (p /∈ Porig)} (7.5)

f n = {p|(p /∈ Psimpli f ied)∧ (p ∈ Porig)}.
1.

0
0.

0

Precision

Re
ca

ll

0.5 1.0

increasing scale in
cr

ea
si

ng
 g

eo
m

et
ry

 (λ
)

0.2

0.4

0.6

0.7

0.9

Ulmus Laevis
Fagus Sylvatica

Figure 7.2: The Precision-Recall
diagram for different plant models,
five different geometry levels λ , and
varying scaling values. An interesting
case is the Ulmus model (red): it does
not benefit from scaling for higher
λ -values, and scaling even lowers
the PR-score, i.e. the distance of the
PR-coordinate to the top-right corner
which represents the optimal score of
P = 1 and R = 1.

Precision and Recall are reflecting how well the simplified model is
representing the information—in this case the rendered pixels—compared to
the original model. The PR-scores for the original model, i.e. rendering at full
detail, are P = 1.0 and R = 1.0. The big advantage of PR is that not only the
number of pixels is taken into account, as the preservation of the projected
area does, but PR is also sensitive to whether the same pixels are covered.
Thus, models rendered with reduced geometry that cover almost the same
pixels as the original model will get PR-scores closer to the optimal P = 1.0
and R = 1.0.

Using PR-scores, it is now possible to define the optimal scaling value,
sopt , depending on the fraction of rendered geometry, denoted as λ (similar
to Cook et al. [Cook et al., 2007]). The underlying idea of this heuristic is
that one unset pixel that should have been covered is as bad as a set pixel that
should not have been covered. Consequently, we choose s in a way such that
we minimize the distance of the point (P(s),R(s)) (in the PR diagram) to the
optimal PR-score at P = 1 and R = 1 proposing a combined measure:

sopt(λ) = argmin
s

√
(1−P(s,λ))2 +(1−R(s,λ))2). (7.6)

REALTIME RENDERING 93

λ = 1.0
s = 1.0

λ = 0.6
s = 3.0

λ = 1.0
s = 1.0

λ = 0.6
s = 5.0

λ = 0.6
s = 1.0

λ = 0.6
s = 5.0

λ = 0.6
s = 3.0

λ = 0.6
s = 1.0

Original Model Original ModelOpt Param

Opt Param

Fagus Sylvatica Ulmus Laevis
Figure 7.3: An interesting case is the
Ulmus model (right): it does not benefit
from scaling for higher λ -values, and
scaling even lowers the PR-score,
i.e. the distance of the PR-coordinate to
the top-right corner which represents
the optimal score of P = 1 and R = 1.

Fig. 7.2 and Fig, 7.3 show PR results for different models, values of λ , and
scaling values s. In order to determine the optimal scaling, sopt , for a given
tree model we equidistantly sample λ in a preprocessing step and compute
the respective PR-scores. During rendering, we linearly interpolate sopt for
non-tabulated λ -values. An interesting, but also important, property of the PR
measure is that graphs for increasing λ are ordered towards the upper right
corner. This reflects the intuitive assumption that using more geometry better
resembles the original model.

1.
0

0.
5

Precision

Re
ca

ll

0.5 1.0

Cook
User Median
Opt PR

λ = 0.60

λ = 0.50

λ = 0.40

λ = 0.35

λ = 0.30

λ = 0.95
λ = 0.80

Figure 7.4: Comparison between
different scale values for Picea Abies.
Red: scale value according to Cook
et al. [Cook et al., 2007] sCook = 1/λ .
Green: user-preferred scale value
(median). Blue: optimal scaling value
found using PR-scores. Scaling does
not improve the PR-scores for this
model when more than 60% of the
original geometry is rendered. This is
also reflected in the preferred scaling
values obtained from the user study.

7.2.3 Experimental Validation and User Study

The experimental validation is based on an user study with 19 subjects
(both experienced and unexperienced in computer graphics) presenting an
unpruned, full detail model side-by-side with a simplified version of the same
model. The subjects were asked to choose the scaling value, for a given λ ,
such that the appearance of the reduced model resembles the full-detail model
as close as possible (see Figs. 7.4 and Fig. 7.6). This procedure has been
performed for ten geometry levels and five different tree models.

The study revealed that in particular for little simplification (λ > 0.8)
the user-preferred scaling values were not only considerably different for
every model, but also on average smaller than the scaling values computed

94 COM PUTER GRAPHICS AND NATURE

s=1.0 (Full Detail) s=1.1/1.15(PR/User) s=1.65 (Cook)

60 % Geometry

s=2.2 (User) s=2.7 (PR Opt) s=5.0 (Cook)

20 % Geometry 100 % Geometry

Figure 7.5: Comparison between
different scale values for Picea Abies.
Scaling does not improve the PR-scores
for this model when more than 60%
of the original geometry is rendered.
The reason is that this model exhibits
very dense geometry, and pruning does
not immediately impact the overall
appearance. This is also reflected in the
preferred scaling values obtained from
the user study.

according to Cook et al. [Cook et al., 2007]. For smaller values of λ the
standard deviation of the preferred scaling increased considerably, however,
the median value was typically very close to our sopt . The large standard
deviation can be explained by the fact that these geometry levels are actually
only used to render trees at large distances, while the model presented in the
user study was rendered at full size. This obviously makes it harder to judge
the appearance of the model and led to larger deviations in the preferred scale
value.

Figure 7.6: This screenshot shows the
implementation for the user study: the
subject is asked to adjust the scaling
factor (for different λ -values) for the
left model, such that the rendering
matches the full detail rendering on the
right as close as possible.

REALTIME RENDERING 95

Fig. 7.4 and Fig. 7.7 show the results of the user study. The preferred
scaling values are shown in the respective PR diagram in green, next to sCook

and sopt . On the left in Fig. 7.7 the values are shown in a PR diagram and
additionally the scaling values with respect to the different λ values on the
right. For two models the user selected values are in general larger than sCook,
for the Picea Abies model the user selected values are smaller; in all five
cases our method faithfully predicts suitable scaling values.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

Ulmus Laevis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

Salix AlbaSalix Alba

Sc
al

e

Sc
al

e

λ λ
Precision

Precision

R
ec

al
l

R
ec

al
l

Ulmus Laevis

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

Picea Abies

Sc
al

e

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

Acer Campestre Populus Trichocarpa

Sc
al

e

Sc
al

e

λ λ0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

(b)

Figure 7.7: Comparison between
user preferred scaling values indi-
cated in green (user median, first and
third quartile), scaling according to
Cook et al.(red), and scaling predicted
by our method (blue). The λ -values of
the PR-diagrams (top left) are sampled
with step size 0.1 starting at λ = 0.1.
The diagrams on the top right and
bottom show the user selected scaling
values for the same λ -levels as on
the top left. While the user preferred
scaling values for the Picea Abies
model are significantly lower than the
suggested Cook scaling, the scaling
values for Salix Alba and Ulmus Laevis
are higher. In all five cases the opti-
mal scaling values predicted with our
method are in close range to the user
preferred values.

96 COM PUTER GRAPHICS AND NATURE

7.2.4 Impact of Scaling and View Direction

Precision and Recall are defined in image space and therefore view-dependent
measures. However, the experiments indicate that for natural objects the devi-
ations in the measure are very small. This is because such objects, e.g. trees,
typically do not have a dominant view direction but rather uniformly dis-
tributed normals and vertex positions. This was also confirmed by the user
study where user-selected scaling values for two different views of every
model and geometry level (Fig. 7.8) are analysed. For both views, the vari-
ance and mean are very close (Fagus Sylvatica: s(λ = 0.2,V1) = 6.89 and
s(λ = 0.2,V2) = 6.75; s(λ = 0.6,V1) = 1.94 and s(λ = 0.6,V2) = 1.81. The
variance analysis (ANOVA) of the user-study data indicates that the hypoth-
esis (H0: mean is the same for both views) can be accepted with FV 1 = 0.07
and FV 2 = 0.62 for Fagus Sylvatica, and FV 1 = 2.66 and FV 2 = 0.14 for Picea
Abies, well below the critical F-Value of Fcrit(1,36) = 4.11 for α = 0.05.

View 1 View 2 View 1 View 2

λ = 0.2

Sc
al

e

View 1 View 2 View 1 View 2
λ = 0.6

Sc
al

e

2.5

2.0

1.5

1.0

10

8

6

4

2

*
*

* *

* *

*
*

Fagus Sylvatica Picea AbiesFagus Sylvatica Picea Abies

Figure 7.8: Comparison of the user
selected scaling values for two dif-
ferent tree models and two geometry
levels (left: λ = 0.2, right: λ = 0.6).
For the Fagus Sylvatica model the
users preferred larger scaling values
(independent of the viewing direction)
compared to the Picea Abies model.
Besides the view independence the
large difference in preferred scaling
values for different plant models is
significant and underlines the need
for model dependent scaling. Outliers
are indicated as circles, and the user
average as stars.

A very important property of the PR measure, and thus for the application
of this method, is that PR scores are invariant to rendering the models at
different screen sizes, i.e. scaling the model without changing λ . This can be
explained as follows: when reducing the size of a (pruned) model it is more
likely that multiple triangles are projected onto the same pixels, and thus
it is also more likely that all pixels covered by the original model and also
covered by the pruned one.

REALTIME RENDERING 97

7.2.5 Detail Level Selection

Rendering complex scenes is only possible if we reduce the level of detail
for distant trees and only render with high quality when trees are close to
the camera. Using the PR-score from Sect. 7.2.2, it is possible to define the
quality Q of a rendering as the distance of the PR-vector to the optimal value
(1,1):

Q(λ ,s) = 1−
√
(1−P(s,λ))2 +(1−R(s,λ))2. (7.7)

The general intention is to ensure that a tree at a certain distance, d, to
the camera will be rendered at a given minimum quality. This means that the
PR-vector for a model rendered with a geometry level λ (d) has to be within a
certain proximity to the top-right corner of the PR-diagram (see Fig. 7.10).

0.01 0.02 0.05 0.10 0.20 0.50 1.00

1
2

5
10

20
50

10
0

20
0

λ

S
ca

le

Cook
Ulmus Laevis
Acer Campestre
Populus Trichocarpa

Figure 7.9: As can be seen, it is
possible to reduce the geometry to
a larger extend for model Populus
Trichocarpa compared to model Acer
Campestre, in particular for small
values of λ . A log-log plot of scale vs.
fraction of remaining geometry, i.e. λ .
Note that the connected (sopt ,λ) and
(sCook,λ) lines in the PR diagram (see
Fig. 7.10) look very rough. The values
plotted against the geometry level λ ,
however, are smooth with the expected
exponential behavior. The smoothness
is important to avoid popping artifacts
during rendering.

That is, for rendering it is necessary to sample and store the function λ (d)
to provide this desired minimum quality for a given d. Note that determining
this function takes place in a precomputation step for every tree model.

There are various options to define minimum quality, e.g. letting the
user define a given maximum deviation from the optimal PR-scores and
computing λ (d) accordingly. Determining λ (d) such that the rendering
quality of the PR-optimized pruning and scaling matches their quality for
the same distance d to compare the proposed method to Cook et al.’s. That

98 COM PUTER GRAPHICS AND NATURE

Populus Trichocarpa0.
0

0.5 1.0

Ulmus Laevis0.
0

1.0

Acer Campestre0.
0

0.5 1.0

1
2

5
10

20
50

10
0

20
0

0.5

Re
ca

ll

1.
0

1.
0

Re
ca

ll

Re
ca

ll
1.

0
Precision Precision Precision

λ = 0.1

λ = 0.2

λ = 0.3

λ = 0.2

λ = 0.3

λ = 0.1

λ = 0.2

λ = 0.1

λ = 0.3

Figure 7.10: Precision-Recall graphs
for three different tree models. The
blue graph shows the optimal scaling
values sopt , the red one the standard
scaling values sCook (according to
Cook et al.). For rendering we choose
λ such that we maintain a minimum
quality that is required for a given
viewing distance. The minimum quality
requirements are indicated by the
circles centered at the top-right corner
of the PR diagram. As can be seen,
it is possible to reduce the geometry
to a larger extend for model Populus
Trichocarpa compared to model Acer
Campestre, in particular for small
values of λ . The λ -values are sampled
with 0.05 step size from λ = 0.1 to
λ = 0.4 and with step size 0.1 above.

is, rendering a model with the same PR-scores, but with less geometry if
possible.

This works as follows: Cook et al. use λCook(d) = (1− d)2 (with d nor-
malized to [0;1]) as a simple relation of distance and geometry. Rendering
the model with this pruning yields a quality Q(λ ,sCook). Next, determin-
ing the smallest λopt whose rendering with the optimal scaling sopt(λopt)

(Sect. 7.2.2) yields equal or better quality, i.e. Q(λopt ,sopt) ≥ Q(λ ,sCook).
This compound mapping yields a λopt and an associated sopt for a given
view distance d. Obviously this precomputation can only be carried out for
a finite number of values. Therefore using 10 equidistant samples in [0;0.1)
and [0.1;1.0), respectively, and linearly interpolating λopt from the stored
samples.

Fig. 7.10 shows the mapping of distance to pruning for three different
tree models. The plots show that model (a) and (c) can be rendered with
high quality (PR-score within the second circle depicted in Fig. 7.10) even
for a low value of λ = 0.2. For model (b) a higher λ -value is required even
for larger viewing distances. The plots of rendering with higher λ -values
reveal that model (b) and (c) suffer stronger from pruning, while model (a)
preserves most of the rendered pixels of the original model.

7.3 Rendering Priority

The rendering priority reflects the order in which geometry is removed from
the original model with decreasing λ . Cook et al. [Cook et al., 2007] tried to
avoid correlation in the rendering priority between order and position, size,

REALTIME RENDERING 99

surface normal, and color as much as possible, and thus prevent disturbing
artifacts when rendering with reduced geometry. However, they state that in
some cases the priority order might be found procedurally. In this section
different ways are proposed to find the rendering priority order algorithmi-
cally in a way that ensures higher Precision and Recall values. Note that it is
only the PR-scores that make it possible to compare different prioritization
heuristics.

7.3.1 Silhouette Preservation and Density Normalization

In order to optimize the rendering priority we need to determine which
parts of a model are close to the boundary and will potentially be part of the
silhouette, and which regions exhibit a high or low density of geometry.

Figure 7.11: Implicit surface used for
silhouette preservation.

To this end, it is important to define what the “boundary” of a (botanic)
model is. For this, implicit surfaces that tightly enclose a model can be used.
They have also been used to generate normal distributions for such models
that provide more realistic and expressive illumination of foliage [Luft et al.,
2007]. Implicit surface can be generated using metaballs [Blinn, 1982]: first,
a set of generation points P is chosen and an influence radius ri is assigned to
every point. The center of leaf-triangles are used as generating points and an
influence radius proportional to the overall plant height (5% in this case) is
choosen. The contribution of a single generator point pi ∈ P at a point in space,
q, to the global density function is defined as:

Di(q) =
(
1−‖q− pi‖2/r2

i
)2

.

The sum over the contributions of all pi yields the global density function:

F(q) = ∑
i

Di(q).

An iso-surface is then defined by a given iso-value a with F(q) = a, and
can be triangulated using marching cubes (see inset). To extract a tree’s tight
hull an iso-value is chosen such that a = 0.

In the following different prioritization heuristics based on the global
density function are discussed. Again, the quality is measured using PR-
scores.

7.3.2 Varying Density

First, regions of high geometric density within a model are identified using
the global density function. Triangles that are close to each other are likely

100 COMPUTER GRAPHICS AND NATURE

to be projected to the same location in image space. Thus removing triangles
in very dense region lowers the probability of overdraw while still keeping
chances high that all original pixels are covered even without scaling the
remaining geometry. The evaluation of this guided geometry prioritization
using the proposed PR measure, and experiments showed that the quality
improves for high values of λ . For such values, there are larger variations in
local density (see Fig. 7.12), as no, or little, density controlled pruning did
take place. These variations obviously vanish when reducing more and more
geometry prioritized in dense regions, which makes the density variation be-
come more uniform. When this point is reached, i.e. for smaller λ , switching
back to pure stochastic prioritization is beneficial. The performance increase
due to density prioritized pruning depends on the variance of F(q) within a
model, and thus models with almost uniform density do not benefit from this
strategy.

7.3.3 Orientation

As second heuristic the improvement of rendering prioritization based on the
deviation between a triangle’s normal and the normal on the nearest point
on the implicit surface (denoted as α) is investigated. Preserving geometry
facing outwards, i.e. small α , generally enforces a pixel coverage of the
rendered model that is closer to that of the full detail model. Scaling triangles
that resemble the models iso-surface turned out to perform well, especially
for small values of λ (see Fig. 7.12).

Pruning triangles close to the implicit surface with lower probability,
however, leads to inferior results. While at first sight it seems reasonable to
preserve the silhouette, keeping and scaling triangles close to the surface
results in many false positive pixels, in particular for strong scaling with
small λ . This leads to visible artifacts and low Precision and Recall scores.

7.3.4 Combined Prioritization

Both heuristics determine “survival probabilities” for the triangles of a model.
In our implementation we use an empirically found weighting to combine
both of them, where the orientation heuristic has smaller impact. Using the
aforementioned heuristics we compute a combined probability of keeping and
removing a triangle of the model using

PCombined = (PSilhouette)
2 +PDensity (7.8)

normalized to [0,1] and then sort the triangles for descending survival-
probability (adding a small amount of randomness) to obtain a single list

REALTIME RENDERING 101

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

λ

Q

∆λ

Stochastic + S
Stochastic
Density
Silhouette
Combined

+ S
+ S
+ S
+ S

cook

opt

opt

opt

opt

Figure 7.12: Comparison of priori-
tization heuristics to pure stochastic
ordering for the Ulmus model. The
red area shows the benefit of switching
from stochastic order with sCook to the
combined prioritization with sopt . It is
possible to maintain the quality with
less geometric detail, denoted as ∆λ .

representing the entire model. Similar to Sequential Point Trees [Dachs-
bacher et al., 2003], we can then render only a prefix of the list, according to
λ , to render a pruned model.

7.4 View-dependent Optimization

Considering the viewing distance and thus the projected size of a model is
of course one important aspect for choosing the geometry level. However,
occlusion also has impact on the required detail: partially occluded trees, or
trees that are completely surrounded by others, do not contribute considerably
to the scene’s appearance and thus should be rendered using less geometry. In
this section it is shown how to determine occlusion of trees at run-time, and
control the rendering accordingly.

For this the occlusion of each tree is analysed by testing the visibility
of a set of sample points distributed on its iso-surface. In principle there
are various possibilities to perform the visibility test, e.g. ray casting, or
using some form of precomputed visibility information. To facilitate real-
time rendering without precomputation, it is possible to use an image space
approach relying on the depth buffer of the camera image only. Obviously
this depth buffer is not available before actually rendering the geometry.
However, assuming smooth camera movement it is possible to exploit frame-
to-frame coherency and test the visibility of sample points using the depth
buffer and transformation of the previous frame. For abrupt movements, or
sample points that are projected outside the viewport, one can conservatively
assume full visibility and thus render the models at possibly higher detail

102 COMPUTER GRAPHICS AND NATURE

than actually necessary.

From the visibility of the sample points approximate occlusion factor for
each tree is deduced. The fraction f of visible to the total number of sample
points is used to control λ , in a way such that λoccl = λopt(d) ·max(f ,0.1).
A hysteresis function is used to avoid popping artifacts and smooth the
λoccl-values over time.

Figure 7.13: The tree hidden from
the camera (white sphere) is pruned
stronger than its visible neighbors.

7.5 Color Variation

The proposed method is suitable for rendering (groups of) objects that are
aggregated from a large number of randomly oriented and placed geometric
details. Typically one can also assume a near uniform color distribution, or
large-scale gradations, for botanical objects. Cook et al. [Cook et al., 2007]
intentionally do not correlate the rendering priority order to the color distri-
bution or any other model characteristics. Apart from color variation Cook
et al. propose a method to preserve color contrast during simplification. In
this section the effect of the pruning algorithm on three different kinds of
color variations is shown (Fig. 7.14). While large colored regions across
the objects are preserved (Fig. 7.14, top), smooth color gradations show the
effects similar to quantization artifacts, which is expected due to the geometry
reduction (bottom). The pruning becomes most apparent for small, randomly
distributed and salient details (red leaves in Fig. 7.14). Under strong pruning
the fraction of covered pixels is still preserved, but the distribution becomes
less random due to the smaller number of samples (bottom right). All these
artifacts become less apparent if the model is rendered with a size according
to the geometry level. Color variations between models are of course pre-
served, as the method does not prune across objects, and thus individual trees
can still be identified (Fig. 7.15).

REALTIME RENDERING 103

Salix Alba

 λ = 1.00 λ = 0.10 λ = 0.01

 λ = 1.00 λ = 0.01 λ = 0.10

Figure 7.14: Effect of model simplifi-
cation to intra model color variation:
boundaries of large colored regions
are maintained even for low detailed
models (top row). Smooth gradations
do not exhibit noticeable changes
under stochastic pruning, apart from
effects similar to color quantization.
The arrangement of small details (e.g.
the red leaves) obviously changes, but
still does not cause flickering. Note
that strong pruning typically occurs for
distance trees.

7.6 Results and Comparison

In this section the results of the proposed method and comparisons to Cook
et al.’s [Cook et al., 2007] method to assess rendering performance, and to
billboard clouds [Décoret et al., 2003] to demonstrate the benefits of this
(view-dependent) pruning over texture-based representations are presented.
The method is implemented using OpenGL and all tests and measurements
are performed using an Intel Core i7 at 2.8Ghz, with 4GB of memory, and a
NVIDIA Geforce GTX 295 GPU.

Comparison to Billboard Clouds For rendering botanical models most
real-time applications resort to a representation with relatively few textured
polygons recreating the original model. For video games these models are
often created manually, while billboard clouds [Décoret et al., 2003] can be
used to obtain such reduced models automatically. Note that these represen-
tations do not provide a “continuous” level of detail and switching between
different levels is prone to popping artifacts. The results are compared to
billboard clouds by evaluating the rendering quality according to the quality
measure Q (Sect. 7.2.5). It can be observed that the rendering quality varies
strongly with the view direction when using billboard clouds, and signifi-
cantly less with optimized pruning. Fig. 7.16 shows this comparison where
the parameters of our pruning are adjusted to match the average quality of a
billboard representation. Note that another applications of our PR-measure
can be the billboard cloud generation itself, where it can be used to identify
bad views for which the billboard representation needs to be improved.

Rendering Performance The method allows to render complex scenes

104 COMPUTER GRAPHICS AND NATURE

Camera

Camera

Camera

Opt

Cook

λ Cook

λ Opt

Figure 7.15: A scene with intentionally
exaggerated high inter model color
variance. Even for distant areas with
a low amount of geometry individual
tree models can be identified (top
layer). Bottom two layers: Geometry
distribution according to Opt and Cook.

0.80

0.75

0.70

0.65

0.60

0.55

λ = 0.12 s = 5.20
Billboard Cloud (n = 209)

360 °

40° 63° 151° 306°

O
rig

in
al

Q

Si
m

pl
i�

ed

Figure 7.16: Comparison of rendering
a 360◦ rotation of a billboard cloud
model (209 billlboards) and a pruned
model (λ = 0.12, s = 5.2). The
parameters for the latter are chosen
to match the average quality Q of the
billboard model. Note that the variance
for the billboard model is much higher.

REALTIME RENDERING 105

with 5000 tree models at interactive to real-time rates, i.e. 8 to 25 frames per
second at a resolution of 1600× 1200 (Fig. 7.18). The full-detail geometry
of the scene consists of more than 1.3 Billion vertices and renders at only 0.8
frames per second on the same hardware, i.e. far from interactive speed.

Opt PR Density Silhouette Combined

Avg 0.101 0.174 0.407 0.301
Min 0.043 0.022 0.308 0.014
Max 0.437 0.236 0.693 0.392

Table 7.4: Geometry reduction with
different prioritizations (Fig. 7.17)
compared to Cook et al. [Cook et al.,
2007]. For example, the combined
heuristic requires 30.1% less geometry
on average to render at the same quality
as Cook et al.

The optimized and prioritized pruning, together with the view-dependent
visibility tests reduces the number of vertices per frame to about 26 mil-
lion vertices. On average this yields a performance increase, compared to
Cook et al., of approximately 60-70% while maintaining the same quality
(determined using the PR scores). Fig. 7.15 shows a complex scene with
exaggerated color variation, individual tree models can still be identified even
for low geometry levels (top layer). The bottom two layers visualize the color
coded geometry level. While λCook is chosen depending on the camera dis-
tance λOpt is chosen individually for each tree model according to Sec. 7.2.5.
Fig. 7.17 shows a detailed evaluation of a standard camera path through a
scene with 1276 trees without culling.

0
5,

00
0,

00
0

10
,0

00
,0

00
15

,0
00

,0
00

20
,0

00
,0

00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Combined
Cook
Density
PR Opt
Silhouette

Ve
rt

ic
es

Position on Camera Path

Figure 7.17: Performance evaluation
of different heuristics for a camera path
through a scene with 1276 tree models
without culling. It can be seen that the
silhouette based prioritization performs
best for distant views (start and end of
the camera path). While the combined
prioritization performs slightly better in
walk through camera positions.

7.7 Conclusions

Conventional methods to measure the quality of models of different level of
detail usually take place in model space, measuring the total error between
original and simplified model as the sum of squared differences. The quality

106 COMPUTER GRAPHICS AND NATURE

Figure 7.18: This scene consists of
5000 trees (in total 1.3 Billion vertices).
With our optimized pruning we can
render this scene with 15 frames per
second when all 5000 trees are visible.
Pruning according to Cook et al. [Cook
et al., 2007] renders an image of the
same quality at 9 frames per second.

of resulting models of algorithms in the group of drop and resize methods
or simplified with the help of stochastic pruning is impossible to measure
this way due to different fundamental intentions between these methods;
stochastic pruning aims at preserving the visual appearance of the model in
image space rather than preserving the geometric representation in model
space. This boils down to answer the question: How well is the visual quality
of an image preserved using a simplified model?

To answer this question we introduced Precision and Recall as a measure
of quality for rendering complex geometry with pruning. We further im-
proved on previous methods by applying model specific geometry reduction
and optimized scaling as well as view-optimized pruning. The validity of the
established quality measure was evaluated by means of a user study which
indicates a considerable improvement compared to naive and purely stochas-
tic pruning. However, this work also raises new questions. One interesting
direction of future research is to consider more than just correct and incorrect
pixels in PR, e.g. by accounting for deviations in the normals, measuring con-
trast and color differences, or to evaluate how visible differences predictors
can improve the measure and whether their use amortizes.

Part III

Conclusion

8

Concluding Remarks

The topics of this thesis are the special properties of natural objects and
resulting requirements specific to a variety of computer graphics research
subjects. The required complexity of natural scenes is very high, which
makes it difficult to achieve a convincing visual quality and accomplish near
photorealism of resulting imagery. This complexity, which can be observed at
different scales, has implications to both modeling and rendering of natural
scenes and objects. While the lack of modern modeling software together
with the need for a very efficient way to store the model information caused
by limited graphics and cpu memory, lead very early to the development
of mathematical descriptions for plants, the decrease of these hardware
limitations lead to a change of modeling paradigm regarding natural objects.
The evident next research subject was to increase the ease of use of modeling
tools and decrease the tedium of manual modeling repetitive details.

The proposed modeling methods lead to improvements on this topics in
various ways. Using a guided particle simulation, we show that a combina- guided particle simulation
tion of image- and simulation-based methods can produce 3D models that
match the trees on the input images well. By imposing image constraints
in the form of captured branching patterns and density distributions, the
proposed method is able to adapt the particle simulation to a given set of
input images. Manually altering the input data and thus changing density or
shape of the resulting model is a powerful and expressive tool for intuitively
editing the model while the underlying simulation still provides a plausible
result. The term self-organizing models, coined by follow up research results, self-organizing models
describes this class of modeling algorithms very well.

The second modeling approach is motivated by the observation that
humans are able to deduce the 3D structure of complex structures from
simple 2D sketches, successfully deducing the missing information with
the help of common knowledge about trees. To capture this knowledge, we

110 COMPUTER GRAPHICS AND NATURE

introduce probabilistic graphical models based on a large data base of 3D
tree models. Inferring the most plausible configuration of parameters that
are missing in the input sketch, the system is able to produce high quality
3D models based on the probabilistic model. The underlying probabilistic
model is not only used to infer missing informations, but is used to add
additional details to sketches further increasing the modeling capabilities
and expressiveness of the system. This second project shows the prospects of
combining sketch-based and data-driven principles for modeling of trees. sketch-based and data-driven modeling

Finally, the implications of complexity to real-time rendering are elabo-
rated in the last part. Geometric simplification algorithms are well know in
the computer graphics community for years. One large group of these algo-
rithms reduce the geometric complexity by replacing details with textures,
while another group replaces complex parts with larger patches of geom-
etry of lower resolution. Usually the question how accurate the simplified
model is, is answered using model space quality metrics based on the sum of
squared differences between the original and simplified geometry. However,
in the case of trees both general methods have disadvantages due to structural
properties of the geometric representation of plants. Stochastic simplifica-
tion algorithms solve this by randomly selecting the geometry to render and
scaling the remaining geometry, following the principle of drop and resize of drop and resize
parameterized, continuous Level-of-Detail algorithms. As such, model space
quality metrics render impracticable for this kind of algorithm. Image space
quality measures are much closer to the idea, that what actually should be
preserved is the visual representation of the model.

The question of how to adapt these parameters according to distance, pro-
jection size, and model is the main objective of this method. We established
a quality measure based on Precision and Recall, well known measures from
Information Retrieval, to chose model specific geometry fraction and scaling
parameters. The conducted user study shows that the predicted parameter
sets match values chosen by the subjects. For a standard scene with 5000
plant models and originally more than 1.3 billion polygons, we measured
a significant performance increase compared to non-optimized stochastic
pruning algorithms. advanced stochastic pruning

Open question with regards to the research topic presented in this thesis
include further extensions of the idea of simulation-based modeling. While
the presented method is able to produce highly realistic models according to
input images using a simplistic particle simulation, further research suggest
to revert the direction the particles flow to form the model. While sacrificing further research
the possibility to use image information, this allows to include other aspects

CONCLUDING REMARKS 111

into the simulation system, as defined branching angles and competition
for sunlight. Based on simulation-based modeling and self-organizing tree
models, a promising further research direction would therefore be a more
sophisticated simulation system. Incorporating species specific simulation
parameters, such as material properties and environmental factors, could lead
to more expressive and biological accurate modeling system.

This interesting topic could benefit from a combination with probabilistic
models for development of growth models, not only to find plausible config-
urations of 3D structures from 2D sketches, but also to allow for appearance
transfer, and growth based editing operations.

Finally, the idea of image space quality measures has potential to be
extended to non-stochastic simplification algorithms. While model space
error metrics answer the question how well the geometric details during
simplification are preserved–and thus keeping the focus on the model itself–
they provide little insight into how much these details matter for a certain
rendered image, including scene configuration and projected scene size. This
aspect, how important a detail given a certain screen size is, is intuitively
encoded in image space measures. However, for general models the view-
independence property of image space measures no longer holds and thus
results for one view cannot be as easily generalized and transferred to other
views as for natural scenes.

Bibliography

Stephan Behrendt, Carsten Colditz, Oliver Franzke, Johannes Kopf, and
Oliver Deussen. Realistic real-time rendering of landscapes using billboard
clouds. Computer Graphics Forum (Proc. of Eurographics ’05), 24(3):
507–516, 2005.

Julian Besag. On the statistical analysis of dirty pictures. Journal of the
Royal Statistical Society B, 48(3):259–302, 1986.

Henning Biermann, Adi Levin, and Denis Zorin. Piecewise smooth sub-
division surfaces with normal control. In Proc. of SIGGRAPH ’00, pages
113–120, New York, NY, USA, 2000. ACM Press.

Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag New York, 2006.

James F. Blinn. A generalization of algebraic surface drawing. ACM
Transaction on Graphics, 1(3):235–256, 1982.

Billy Chen, Boris Neubert, Eyal Ofek, Oliver Deussen, and Michael F.
Cohen. Integrated videos and maps for driving directions. In Proc. of the
ACM symposium on User interface software and technology, UIST ’09,
pages 223–232. ACM Press, 2009.

Xuejin Chen, Boris Neubert, Ying-Qing Xu, Oliver Deussen, and Sing Bing
Kang. Sketch-based tree modeling using markov random field. ACM
Transactions on Graphics (Proc. of SIGGRAPH Asia ’08), 27:109:1–109:9,
December 2008.

A. Chodorowski, U. Mattsson, M. Langille, and G. Hamarneh. Color lesion
boundary detection using live wire. In Proceedings of SPIE Medical Imaging:
Image Processing vol. 5747, pages 1589–1596, 2005.

Yung-Yu Chuang, Douglas E. Zongker, Joel Hindorff, Brian Curless,
David H. Salesin, and Richard Szeliski. Environment matting extensions:
Towards higher accuracy and real-time capture. In Proc. of SIGGRAPH
’00, pages 121–130, New York, NY, USA, July 2000. ACM Press/Addison-
Wesley Publishing Co.

114 COMPUTER GRAPHICS AND NATURE

Yung-Yu Chuang, Brian Curless, David H. Salesin, and Richard Szeliski.
A bayesian approach to digital matting. In Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’01), volume 2, pages
264–271. IEEE Computer Society, December 2001.

Robert L. Cook, Loren Carpenter, and Edwin Catmull. The reyes image
rendering architecture. Computer Graphics (Proc. of SIGGRAPH ’87), 21:
95–102, August 1987.

Robert L. Cook, John Halstead, Maxwell Planck, and David Ryu. Stochastic
simplification of aggregate detail. ACM Transactions on Graphics (Proc. of
SIGGRAPH ’07), 26(3):79, 2007.

Carsten Dachsbacher, Christian Vogelgsang, and Marc Stamminger. Sequen-
tial point trees. ACM Transactions on Graphics (Proc. of SIGGRAPH ’03),
22(3):657–662, 2003.

Philippe Decaudin and Fabrice Neyret. Rendering forest scenes in real-time.
In Rendering Techniques (Proc. of EGSR ’04), pages 93–102, 2004.

Philippe Decaudin and Fabrice Neyret. Volumetric billboards. Computer
Graphics Forum, 28(8):2079–2089, 2009.

Xavier Décoret, Frédo Durand, François X. Sillion, and Julie Dorsey.
Billboard clouds for extreme model simplification. ACM Transactions on
Graphics (Proc. of SIGGRAPH 2003), 22(3):689–696, 2003.

Oliver Deussen and Bernd Lintermann. Digital Design of Nature: Computer
Generated Plants and Organics. Springer Verlag, 2004.

Oliver Deussen and Bernd Lintermann. Digital design of Nature - Computer
Generated Plants and Organics. Springer-Verlag, 2005.

Oliver Deussen, Carsten Colditz, Marc Stamminger, and George Dret-
takis. Interactive visualization of complex plant ecosystems. In VIS ’02:
Proceedings of the Conference on Visualization ’02, pages 219–226, 2002.

David S. Ebert, Oliver Deussen, Ronald Fedkiw, F. Kenton Musgrave,
Przemyslaw Prusinkiewicz, and Jos Stam. Simulating Nature: Realistic and
Interactive Techniques. SIGGRAPH ’03: Course Notes 41, 2003.

Ismael Garcia, Mateu Sbert, and Laszlo Szirmay-Kalos. Leaf cluster
impostors for tree rendering with parallax. In Eurographics ’05 Short
Presentations, pages 69–72, 2005.

Andrew J Hanson, Hui Ma, and Lindley Hall. Parallel transport approach to
curve framing. Indiana University TechreportsTR425, pages 1–20, 1995.

Paul S Heckbert. Survey of texture mapping. IEEE Computer Graphics and
Applications, 6:56–67, November 1986.

BIBLIOGRAPHY 115

Roger W. Hockney and James W. Eastwood. Computer simulation using
particles. Taylor & Francis, Inc., 1988.

Matthew Holton. Strands, gravity and botanical tree imagery. Computer
Graphics Forum, 13:57–67, February 1994.

Hugues Hoppe. Progressive meshes. In Proc. of SIGGRAPH ’96, pages
99–108, New York, NY, USA, 1996. ACM.

Takashi Ijiri, Shigeru Owada, Makoto Okabe, and Takeo Igarashi. Floral
diagrams and inflorescences: interactive flower modeling using botanical
structural constraints. ACM Transactions on Graphics (Proc. of SIGGRAPH

’05), 24(3):720–726, July 2005.

Takashi Ijiri, Shigeru Owada, and Takeo Igarashi. The sketch L-system:
Global control of tree modeling using free-form strokes. In Smart Graphics,
pages 138–146, 2006.

Jan Klein, Jens Krokowski, Matthias Fischer, Michael Wand, Rolf Wanka,
and Friedhelm Meyer auf der Heide. The randomized sample tree: A
data structure for interactive walk-throughs in externally stored virtual
environments. Presence: Teleoper. Virtual Environ., 13(6):617–637, 2004.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Princi-
ples and Techniques. MIT Press, 2009.

Johannes Kopf, Boris Neubert, Billy Chen, Michael F. Cohen, Daniel
Cohen-Or, Oliver Deussen, Matt Uyttendaele, and Dani Lischinski. Deep
photo: Model-based photograph enhancement and viewing. ACM Trans-
actions on Graphics (Proc. of SIGGRAPH Asia ’08), 27:116:1–116:10,
December 2008.

J. Dylan Lacewell, Dave Edwards, Peter Shirley, and William B. Thompson.
Stochastic billboard clouds for interactive foliage rendering. Journal of
Graphics, GPU, and Game Tools, 11(1):1–12, 2006.

Yehezkel Lamdan, Jacob T. Schwartz, and Haim J. Wolfson. Object
recognition by affine invariant matching. In Computer Vision and Pattern
Recognition (Proc. CVPR ’88), pages 335–344, 1988.

Marc Levoy and Turner Whitted. The use of points as a display primitive.
Technical report, University of North Carolina at Chapel Hill, 1985. TR
85-022.

Aristid Lindenmayer. Mathematical models for cellular interaction in
development,parts I and II. Journal of Theoretical Biology, 18:280–315,
1968.

Bernd Lintermann and Oliver Deussen. Interactive modeling of plants. IEEE
Computer Graphics and Applications, 19:56–65, January 1999.

116 COMPUTER GRAPHICS AND NATURE

Hans-Andrea Loeliger. An Introduction to factor graphs. IEEE Signal
Processing Magazine, 21(1):28–41, January 2004.

David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and
Amitabh Varshney. Level of Detail for 3D Graphics. Elsevier Science, 2002.

Thomas Luft, Michael Balzer, and Oliver Deussen. Expressive illumination
of foliage based on implicit surfaces. In Proc. of the Eurographics Workshop
on Natural Phenomena, pages 71–78. Eurographics Association, 2007.

Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freedman and
Co., New York, 1983.

Nelson Max. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics (TVCG ’95), 1(2):99–108, 1995.
ISSN 1077-2626.

Cecil D. Murray. The physiological principle of minimum work applied to
the angle of branching of arteries. The Journal of General Physiology, 9(6):
835–841, 1926.

Cecil D. Murray. A relationship between circumference and weight in trees
and its bearing on branching angles. The Journal of General Physiology, 10
(5):725–729, May 1927.

Radomír Měch and Przemyslaw Prusinkiewicz. Visual models of plants
interacting with their environment. In Proc. of SIGGRAPH ’96, pages
397–410, New York, NY, USA, 1996. ACM.

Boris Neubert, Thomas Franken, and Oliver Deussen. Approximate image-
based tree-modeling using particle flows. ACM Transactions on Graphics
(Proc. of SIGGRAPH ’07), 26:88:1 – 88:10, July 2007.

Boris Neubert, Soeren Pirk, Oliver Deussen, and Carsten Dachsbacher.
Improved model- and view-dependent pruning of large botanical scenes.
Computer Graphics Forum, 30(6):1708–1718, 2011.

Karl J. Niklas. Plant Allometry: The Scaling of Form and Process. The
University of Chicago Press, 1994.

Makoto Okabe, Shigeru Owada, and Takeo Igarashi. Interactive design of
botanical trees using freehand sketches and example-based editing. Computer
Graphics Forum (Proc. of Eurographics ’05), 24(3):487–496, 2005.

Peter E. Oppenheimer. Real time design and animation of fractal plants and
trees. In Computer Graphics (Proc. of SIGGRAPH ’86), volume 20, pages
55–64, New York, NY, USA, August 1986. ACM.

Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan
Lane, Radomír Měch, and Przemyslaw Prusinkiewicz. Self-organizing

BIBLIOGRAPHY 117

tree models for image synthesis. ACM Transactions on Graphics (Proc. of
SIGGRAPH ’09), 28:58:1–58:10, July 2009.

Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing.
ACM Transactions on Graphics (Proc. of SIGGRAPH ’03), 22:313–318,
July 2003.

Sören Pirk, Till Niese, Oliver Deussen, and Boris Neubert. Capturing and
animating the morphogenesis of polygonal tree models. ACM Transactions
on Graphics (Proc. of SIGGRAPH Asia ’12), 2012a.

Sören Pirk, Ondrej Stava, Julian Kratt, Michel Abdul Massih Said, Boris
Neubert, Radomír Měch, Bedrich Benes, and Oliver Deussen. Plastic trees:
interactive self-adapting botanical tree models. ACM Transactions on
Graphics (Proc. of SIGGRAPH ’12), 31(4):50:1–50:10, July 2012b.

Thomas Porter and Tom Duff. Compositing digital images. Computer
Graphics (Proc. of SIGGRAPH ’84), 18:253–259, January 1984.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, New York, NY, USA, 1992.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty
of plants. Springer-Verlag New York, Inc., New York, NY, USA, 1996.

Przemyslaw Prusinkiewicz, Mark Hammel, and E. Mjolsness. Animation of
plant development. In Proc. of SIGGRAPH ’93, pages 351–360, New York,
NY, USA, 1993. ACM.

Przemyslaw Prusinkiewicz, Mark Hammel, Jim Hanan, and Radomír Měch.
L-systems: from the theory to visual models of plants. In Proc. of the
2nd CSIRO Symposium on Computational Challenges in Life Sciences,
volume 3, pages 1–12. CSIRO Publishing, 1996.

Przemyslaw Prusinkiewicz, Lars Mündermann, Radoslaw Karwowski, and
Brendan Lane. The use of positional information in the modeling of plants.
In Proc. of SIGGRAPH ’01, pages 289–300, New York, NY, USA, 2001.
ACM Press.

Long Quan, Ping Tan, Gang Zeng, Lu Yuan, Jingdong Wang, and Sing Bing
Kang. Image-based plant modeling. ACM Transactions on Graphics (Proc.
of SIGGRAPH ’06), 25:599–604, July 2006.

Alex Reche-Martinez, Ignacio Martin, and George Drettakis. Volumetric
reconstruction and interactive rendering of trees from photographs. ACM
Transactions on Graphics (Proc. of SIGGRAPH ’04), 23(3):720–727,
August 2004.

118 COMPUTER GRAPHICS AND NATURE

William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms
for shading and rendering structured particle systems. In Proceedings of the
12th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’85, pages 313–322, New York, NY, USA, 1985. ACM.

Jean Paul Richter. The Notebooks of Leonardo da Vinci, volume 1. Dover
Publications Inc, New York, 1970. reprinted 1888.

C. J. van Rijsbergen. Information retrieval. Butterworths, London, 2 edition,
1979.

Yodthong Rodkaew, Prabhas Chongstitvatana, Suchada Siripant, and
Chidchanok Lursinsap. Particle systems for plant modeling. In B. Hu and
M. Jaeger, editors, Plant Growth modeling and Applications (Proc. of PMA

’03), pages 210–217, 2003.

Adam Runions, Brendan Lane, and Przemyslaw Prusinkiewicz. Modeling
trees with a space colonization algorithm. In Proc. of the Eurographics
Workshop on Natural Phenomena, pages 63–70. Eurographics Association,
2007.

Szymon Rusinkiewicz and Marc Levoy. QSplat: A multiresolution point
rendering system for large meshes. In Proc. of SIGGRAPH ’00, pages
343–352. ACM Press, 2000.

Mark A. Ruzon and Carlo Tomasi. Alpha estimation in natural images. In
Proc. of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’00), pages 18–25, 2000.

Paolo Sabella. A rendering algorithm for visualizing 3d scalar fields.
Computer Graphics (Proc. of SIGGRAPH ’88), 22:51–58, June 1988.

David Salomon. Curves and Surfaces for Computer Graphics. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

Gernot Schaufler, Wolfgang Stürzlinger, and Johannes Kepler. A three
dimensional image cache for virtual reality. Computer Graphics Forum, 15
(3):227–236, 1996.

Daniel Scherzer and Michael Wimmer. Frame sequential interpolation for
discrete level-of-detail rendering. Computer Graphics Forum (Proc. of EGSR

’08), 27(4):1175–1181, June 2008.

K. Shinozaki, K. Yoda, K. Hozumi, and T. Kira. A quantitative analysis of
plant form - the pipe model theory I. Basic analysis. Japanese Journal of
Ecology, 14:97–104, 1964a.

K. Shinozaki, K. Yoda, K. Hozumi, and T. Kira. A quantitative analysis of
plant form - the pipe model theory II. Further evidence of the theory and its

BIBLIOGRAPHY 119

application in forest ecology. Japanese Journal of Ecology, 14:133–139,
1964b.

Ilya Shlyakhter, Max Rozenoer, Julie Dorsey, and Seth Teller. Reconstructing
3d tree models from instrumented photographs. IEEE Computer Graphics
and Applications, 21:53–61, May 2001.

Mike Sips, Boris Neubert, John P. Lewis, and Pat Hanrahan. Selecting good
views of high-dimensional data using class consistency. Computer Graphics
Forum (Proc. of EuroVis ’09), 28(3):831–838, 2009.

Alvy Ray Smith and James F. Blinn. Blue screen matting. In Proc. of
SIGGRAPH ’96, pages 259–268, New York, NY, USA, 1996. ACM.

Marc Stamminger and George Drettakis. Interactive sampling and rendering
for complex and procedural geometry. In Rendering Techniques ’01
(Proceedings of Eurographics Workshop on Rendering), pages 151–162,
2001.

Josef Stoer and Roland Bulirsch. Numerische Mathematik 2. Springer, 1978.
ISBN 3-540-08840-7. 5. Auflage.

Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. Poisson
matting. ACM Transactions on Graphics (Proc. of SIGGRAPH ’04), 23,
August 2004.

Ivan E. Sutherland. Sketchpad: A Man-Machine Graphical Communication
System. PhD thesis, Massachusetts Institute of Technology, Lincoln Lab,
1963.

Richard Szeliski. Computer Vision: Algorithms and Applications (Texts in
Computer Science). Springer-Verlag New York Inc, 1st edition, November
2010.

Ping Tan, Gang Zeng, Jingdong Wang, Sing Bing Kang, and Long Quan.
Image-based tree modeling. ACM Transactions on Graphics (Proc. of
SIGGRAPH ’07), 26:87:1 – 87:8, July 2007.

Stanislaw M. Ulam. Pattern of growth of figures: mathematical aspects.
In G. Keps, editor, Module, Proportion, Symmetry, Rhythm, pages 64–74.
Braziller, New York, 1966.

Michael Wand and Wolfgang Straßer. Multi-resolution rendering of complex
animated scenes. Computer Graphics Forum (Proc. of Eurographics ’02), 21
(3), 2002.

Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf der
Heide, and Wolfgang Straßer. The randomized z-buffer algorithm: interactive
rendering of highly complex scenes. In Proc of SIGGRAPH ’01, pages
361–370, 2001.

120 COMPUTER GRAPHICS AND NATURE

Jason Weber and Joseph Penn. Creation and rendering of realistic trees. In
Proc. of SIGGRAPH ’95, pages 119–128, New York, NY, USA, 1995.

Andrew Witkin and David Baraff. Physically based modeling: Principles and
practice. SIGGRAPH ’97: Course Notes, 1997.

Douglas E. Zongker, Dawn M. Werner, Brian Curless, and David H. Salesin.
Environment matting and compositing. In Proc. of SIGGRAPH ’99, pages
205–214, New York, NY, USA, July 1999. ACM Press/Addison Wesley
Logman.

	Introduction
	Introduction
	Scope of the Thesis and Motivation
	Contributions and Publications
	Outline

	I Modeling of Natural Objects
	Introduction to Modeling Nature and Related Work
	Mathematical Descriptions
	Sketch-based Approaches
	Simulation-based Modeling

	Modeling through Simulation
	Overview
	Pre-processing
	Particle Tracing
	The Direction Field
	Results and Discussion
	Conclusions

	Data-driven Plant Modeling
	Introduction
	Probability Theory and Probabilistic Graphical Models
	Branch Propagation and Leaf Population
	Database of Tree Templates
	Results and Discussions

	From Graphs to Models
	Branch Geometry
	Meshing Bifurcations
	Modeling details: Twigs and Leaves

	II Rendering of Complex Scenes
	Level-of-detail Algorithms
	Billboard Representation – Replacing Geometry Details with Texture
	Stochastic Simplification

	Realtime Rendering
	Introduction
	Improved Scaling for Pruning Algorithms
	Conclusions

	III Conclusion
	Concluding Remarks
	Bibliography

