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Abstract
This thesis presents a novel computational framework that allows for a robust extraction
and quantification of the Morse-Smale complex of a scalar field given on a 2- or 3-
dimensional manifold. The proposed framework is based on Forman’s discrete Morse
theory, which guarantees the topological consistency of the computed complex. Using
a graph theoretical formulation of this theory, we present an algorithmic library that
computes the Morse-Smale complex combinatorially with an optimal complexity of
O(n2) and efficiently creates a multi-level representation of it. We explore the discrete
nature of this complex, and relate it to the smooth counterpart. It is often necessary to
estimate the feature strength of the individual components of the Morse-Smale complex
– the critical points and separatrices. To do so, we propose a novel output-sensitive
strategy to compute the persistence of the critical points. We also extend this well-
founded concept to separatrices by introducing a novel measure of feature strength
called separatrix persistence. We evaluate the applicability of our methods in a wide
variety of application areas ranging from computer graphics to planetary science to
computer and electron tomography.

Kurzzusammenfassung
In dieser Dissertation präsentieren wir ein neues System zur robusten Berechnung des
Morse-Smale Komplexes auf 2- oder 3-dimensionalen Mannigfaltigkeiten. Das vor-
gestellte System basiert auf Forman’s diskreter Morsetheorie und garantiert damit die
topologische Konsistenz des berechneten Komplexes. Basierend auf einer graphen-
theoretischer Formulierung präesentieren wir eine Bibliothek von Algorithmen, die es
erlaubt, den Morse-Smale Komplex mit einer optimalen Kompliztät von O(n2) kom-
binatorisch zu berechnen und effizient eine mehrskalige Repräsentation davon erstellt.
Wir untersuchen die diskrete Natur dieses Komplexes und vergleichen ihn zu seinem
kontinuierlichen Gegenstück. Es ist häufig notwendig, die Merkmalsstärke einzelner
Bestandteile des Komplexes – der kritischen Punkte und Separatrizen – abzuschätzen.
Hierfür stellen wir eine neue outputsensitive Strategie vor, um die Persistenz von kri-
tischen Punkten zu berechen. Wir erweitern dieses fundierte Konzept auf Separatrizen
durch die Einführung des Wichtigkeitsmaßes Separatrixpersistenz. Wir evaluieren die
Anwendbarkeit unserer Methoden anhand vielfältiger Anwendungen aus den Gebieten
der Computergrafik, Planetologie, Computer- und Elektronentomographie.





Summary

The rapid increase of the amount of image data produced in industry and scientific
research requires the availability of efficient tools to analyze this data. Various features
in the data have image densities larger or smaller than their neighborhood; they are the
extremal structures of the data. For instance, valleys on a planet’s surface are given
as minimal lines in an elevation map, while membranes of cells can be described as
surfaces of minimal intensity in an electron tomogram.

A super-set of these extremal structures is the Morse-Smale complex defined by
the underlying data. The Morse-Smale complex consists of critical points – the local
minimal, saddle and maximal points – and separatrices which are integral lines of the
gradient connecting the critical points. There are currently two main areas of research
in this field: solving algorithmic challenges in the construction of topological data
structures, and applying the topological techniques to extract meaningful features in
specific applications.

In this thesis, we address both areas: We develop an algorithmic library that allows
for an efficient computation of the Morse-Smale complex. We propose strategies how
the feature strength of each component of the Morse-Smale complex can be estimated.
We evaluate our tools in different application scenarios. In particular, this thesis targets
the following topics:

Morse-Smale Complex. Typically, the Morse-Smale complex is computed numeri-
cally using the information given by the gradient and the Hessian of the image. How-
ever, a robust numerical treatment can be very challenging, since the data is usually
affected by noise. In this dissertation, we develop combinatorial algorithms based on
discrete Morse theory that allow for an efficient, consistent and robust computation of
the Morse-Smale complex for 2- and 3-dimensional scalar data. In contrast to previous
approaches, our Morse-Smale complex computation has a provably optimal complexity
of O(n2) with n denoting the size of the input.

Persistent Homology. The evolution of topological features at consecutive thresh-
olds is described by persistent homology. This concept has drawn much attention since
it robustly identifies the most dominant topological features of the data. In particular,
pairs of critical points are assigned an importance measure which allows to separate
spurious critical points from dominant ones. The computation of persistence is usually
done algebraically. However, such an approach suffers from huge memory consump-
tion. In this thesis, we alleviate this effect by reducing the size of the processed data.
The Morse-Smale complex allows for an efficient computation of persistent homology
since it is, in general, much smaller than the input data but still contains all necessary
information. Using the Morse-Smale complex, we can significantly reduce the memory



consumption for large 3-dimensional data (up to a factor of 30 in real-world data). Ad-
ditionally and in contrast to the classic approach, the computational complexity of our
persistence computation scheme is output-sensitive, i.e., it depends only on the number
of critical points and not on the size of the data.

Hierarchy of Morse-Smale Complexes. Usually, different levels of detail of the
Morse-Smale complex are of interest in order to separate small-scale and large-scale
structures. This is especially important if the image data is affected by noise or sam-
pling artifacts. A distinction of the noise-induced structures and large-scale structures
can be obtained using the concept of persistent homology. Persistence robustly pairs
critical points according to their presence in the data. While this pairing gives rise to
a natural hierarchy in two dimensions, it does not directly yield a hierarchy in three
dimensions, in general. In particular, the construction of a perfect hierarchy becomes
NP-hard in higher dimensions, and heuristics must therefore be involved. In this thesis,
we present algorithms that efficiently create a hierarchy of Morse-Smale complexes for
2- and 3-dimensional data such that the hierarchy reflects the global appearance of the
topological structures.

The Persistence of a Separatrix. In various applications the feature strength of an
individual separatrix or parts thereof needs to be estimated. The above hierarchy is
insufficient for this task since it estimates the strength of each separatrix by a constant
value. Within this dissertation, we propose a novel measure of feature strength to
assess the importance of separatrices. This measure is globally defined and based on
persistent homology. The strength of a separatrix is not assessed by a constant value
but by an interval of importance estimating each point of a separatrix individually. Not
only does it allow to determine the most important (parts of) separatrices, it also serves
as a robust filtering measure of noise-induced structures.

Applicability and Evaluation. The methods presented in this thesis allow for an
efficient computation of the extremal structures in the data. We explore the useful-
ness of our computational framework in a wide variety of application areas: computer
graphics, planetary science, fluid dynamics, molecular and cell biology, computer to-
mography. To understand the strengths and limitations of our proposed framework,
we evaluate it to techniques that are frequently used in data analysis and discuss the
differences and similarities between them.
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Chapter 1

Introduction

1.1 Motivation

Measurements and numerical simulations are essential to get a deeper understanding
of the underlying processes in many scientific and industrial areas.

The objects under study within the data can be very complex. For perception of
these objects, the data must therefore be visualized. Common approaches visualize
the data by filtering and mapping techniques. For example, the color range and trans-
parency in a rendering system is adapted to the data to present it to the user in the form
of 2- or 3-dimensional images or animations. For some purposes, this qualitative form
of visualization is sufficient. However, for a deeper analysis of the structural features in
the complex settings of the application specific landscapes, it is necessary to character-
ize them in terms of parameters such as surface areas, volumes, distances or angles. A
quantitative analysis of this kind makes it necessary to identify and localize the features
of interest and to separate them from the background.

This processing could be performed manually under visual control. However, the
more and more automated data acquisition methods result in a huge amount of data sets.
Their manual processing is therefore a very time-consuming and cost-intensive task.
This processing also entails a user-specific bias. Some features might be overlooked or
falsely interpreted. An objective extraction of the features of interest is a challenging
task for a user and cannot always be given.

Computer-assisted feature extraction methods are therefore frequently employed
in many applications. Even though the results of a computer-based technique might
not be perfect when compared with the ground truth – which is usually unknown – it
is reproducible and allows for a meaningful comparison of the results from a multi-
tude of experiments. To assure the quality of the results, such methods should have
certain properties to be useful in practice: Firstly, they should be as automated as
possible to enable an objective analysis and thereby avoiding a user-specific point of
view. Secondly, the methods should be stable and reliable to guarantee that their out-
put can be compared and further processed. Thirdly, they should be efficient such
that automated analysis is less time-consuming than manual processing. Given such a
technique, image-based features can be robustly extracted in an objective manner.

A property of image-based features is that they have an extremal attribute. Based on
this attribute, we can classify them in three categories: Point-like features describe local
peaks in the data such as local temperature maxima in a heat-exchanger simulation or
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local minima in a pressure field derived from a fluid dynamics simulation. Line-like
features such as valleys in an elevation map or blood vessels in a computer-tomogram
appear as lines of maximal or minimal intensity in the data. In volumetric data, surface-
like features such as the membrane of a cell in an electron tomogram can be found as a
surface of minimal intensity.

Two different concepts are commonly used to extract such features: local analysis
or analysis based on the global point of view.

The local analysis investigates local properties of the feature’s intensity distri-
bution. For instance, a template describing a representative distribution of the fea-
ture [Fra06] can be used to trace line-like structures [RGH+12b]. Such a technique
solely uses the pixel information of the image. However, the design of such a template
is a very application-specific task and depending on the complexity of the template the
analysis can be very computationally expensive.

A more general approach is the use of information based on the derivatives of an
image. This enables a convexity/concavity analysis of a local neighborhood [KvD93].
Based on such an analysis, ridges and valleys can be extracted from an image. This
idea goes back to De Saint-Venant [dSV52] in 1852, and is nowadays a frequently used
technique in image analysis. A recent variant of this idea are Height Ridges [Ebe96]
which investigate the eigenvalues and -vectors of the underlying Hessian. Depending
on the sign of the eigenvalues, k-dimensional ridges are extracted from the image. Such
local analysis is very sensitive to noise in the image data; the level of noise gets strongly
amplified in the image derivatives. These distortions challenge a robust estimation of
the eigenvalues and -vectors, and thereby the computation of the ridges.

The global analysis investigates the monotony behavior within the image. The wa-
tershed approach is herein a commonly used technique. This theory has its roots in
the work of Maxwell [Max70] in 1870, and was generalized in 1934 in Morse’s sem-
inal work Calculus of Variations in the Large [Mor34]. The image decomposes into
its ascending and descending manifolds that originate at its critical points. In each of
these manifolds, the image behaves monotonically and a break of the monotony only
occurs across their borders. Later on, Smale [Sma61b] extended this theory allowing
to define the Morse-Smale complex: Critical points are in a neighborhood relation and
connected by unique integral lines. An important property of the Morse-Smale com-
plex is its structural stability, i.e., small changes within the image do not change the
relationship of the critical points.

An advantage of such global analysis is its robustness due to theoretical constraints.
The global point of view puts features into a relationship. Morse theory links the
occurrence of critical points of a function to the topology of the underlying domain. For
example, this constraint enforces that between two minima of a function a maximum
must occur. Such information is not available in a local analysis, and a misclassification
can very well occur here.

Although the constraints increase the robustness in theory, it can be difficult to en-
force them in the algorithmic design. Numerical algorithms that compute the Morse-
Smale complex usually perform local analysis by investigating each item individually.
The global constraints are not directly employed, which might also result in certain
misclassifications and an inconsistent Morse-Smale complex. Recently, a first strategy
was proposed by Chattopadhyay [Cha11] to compute this complex numerically in a
certified manner using interval arithmetic. Although the domain is currently restricted
to be planar or an implicit surface, the computation of the Morse-Smale complex over-
comes the typical numerical difficulties. However, the approach is limited to analytic
functions, and therefore not suited for the scope of this thesis.
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Robin Forman translated in his work Morse Theory for Cell Complexes [For98b]
the idea of Morse theory from the smooth into a discrete setting. Here, it is no longer
assumed that a sufficiently smooth function is given, only values assigned to the ele-
ments of the discretized domain are necessary. The coupling of the critical points of a
function to the topology of the discretized domain is formulated in a purely combinato-
rial manner. In some sense, this theory provides a discretization of the set of admissible
Morse-Smale complexes for a given domain. Only a finite number of possibilities ex-
ists, and, hence, this version of Morse theory is very suited for the algorithmic design.
Since statements in discrete Morse theory are formulated combinatorially, algorithms
do not need to make use of derivatives or any numerical procedure.

Discrete Morse theory not only allows for a stable and reliable computation of the
Morse-Smale complex, it also enables a multi-level representation of this complex.
While this is theoretically possible in the smooth setting [Mil65a] as well, a consistent
numerical realization is very challenging. On the other hand, the combinatorial setting
of Forman’s theory directly allows for it.

In the course of this thesis, we extract image-based features as a subset of the dis-
crete Morse-Smale complex. The proposed algorithmic framework enjoys the global
point of view of the Morse-Smale complex. Due to the combinatorial setting, we can
directly include the global constraints of Morse theory, and it enables the design of
robust algorithms that compute image-based features without any computational pa-
rameters. Since no user-interaction is necessary, features are extracted solely from the
information in the image, and therefore in an objective manner. The user is left with a
hierarchy of features and only needs to choose an appropriate level of detail for further
statistical analysis. The input is represented in a graph-theoretical setting that allows
for a running-time and memory efficient algorithmic design. Thanks to this design,
large 2- and 3-dimensional images can be processed on commodity hardware.

1.2 Related Work on Topological Data Analysis
In the following, we give a brief overview about topological data analysis. We focus
here on computational topology [EH10], due to its ability to extract relevant features
of the analyzed data.

From the topological point of view, features very often correspond to changes
of isocontours. A common way to detect these changes is by the use of contour
trees [Mor66] or the more general Reeb graphs [Ree46]. Both approaches compute
a graph which tracks the evolution of connected components of a scalar function de-
fined on a manifold over an increasing isolevel. While the contour tree requires that the
data is given on a simply connected domain, the Reeb graph works for arbitrary domain
topology. The computed graph consists of nodes, which represent the births, splits and
merges of the components, and arcs describing the adjacency of the components.

In the last decades, simple, fast and robust algorithms have been proposed [TV98,
CSA00, CMEH+04, TGSP09], which made them very useful in different areas of ap-
plication: clean isosurface extraction [CSvdP04] or feature driven visualization
metaphors [WBP07].

However, the contour tree and the Reeb graph do not capture all topological infor-
mation: Not all genus changes of the isocontours are detected by them [EH10]. This is
especially crucial in case of volumetric data. Encapsulated cavities cannot be detected
by Reeb graphs. A representation of the topological structure that captures all changes
is the Morse-Smale complex [Mor34, Sma61b]. In contrast to the Reeb graph, this
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complex describes the topological structure by analyzing the gradient flow behavior of
the given data [Mil63]. In this work, we use the Morse-Smale complex to analyze the
data since all topological information is represented by it.

The Morse-Smale complex consists of critical points and separatrices. In this set-
ting, the critical points are the local minimum-, saddle-, and maximum points, while
the separatrices are special gradient lines connecting the critical points [Cay59]. The
Morse-Smale complex induces a segmentation of the data into regions of monotonic
behavior [Mil65b] and is strongly related [NS94] to the concept of the watershed trans-
form [Max70]. In fact, the separatrices form a super-set of the watersheds and water-
courses [GC95, LLSV99].

There are three established methods to compute the Morse-Smale complex. The
classic approach employs numerical methods. In this setting, the critical points are
given by computing all zeros of the gradient. While the zeros can be computed exactly
in the piecewise linear context, a Newton-Raphson scheme [New69, Rap90] or similiar
needs to be applied, in general. The separatrices are extracted by solving a system of
autonomous ordinary differential equations. Starting at a saddle point, one follows the
gradient in the direction of the eigenvectors of the Hessian [Wei08]. Using interval
methods, the 2-dimensional Morse-Smale complex can be extracted in a numerically
certified manner [CVY12] on planar domains or implicit surfaces.

The second approach works in a piecewise linear context. In this setting, the critical
points are given by an analysis of the lower star of each vertex [Ban70]. Similar to
the classic approach, Banchoff’s definition also allows for higher-order critical points.
The separatrices are typically approximated as a sequence of steepest edges in the
triangulation. Edelsbrunner et al. [EHZ03, EHNP03] proposed the first approach for
the 2- and 3-dimensional case. In this approach, the separatrices follow the edges of
the triangulated domain allowing them also to merge. Bremer et al. [BEHP04] refined
this approach by subdividing the triangulation in the vicinity of the separatrices. Due to
the subdivision, the separatrices do not need to merge and could follow the interpolated
gradient.

In this work, we build upon a purely combinatorial approach proposed by Robin
Forman [For98b, For01] to compute the Morse-Smale complex. Such an approach
lends itself to computational purposes due to its discrete nature [Lew05, Gyu08, Bau11].
In contrast to the classic approach, it computes the Morse-Smale complex directly on
the grid given by the data. In this setting, the critical points are defined by the topolog-
ical changes in the sub-level sets of the data [Mil63]. These topological changes can
be computed efficiently by constructing a combinatorial gradient [RWS11]. In contrast
to the classic and piecewise linear approach, this combinatorial setting only allows for
first-order critical points. The relationship of the critical points to the piecewise linear
context was discussed by Lewiner [Lew12]. The separatrices are computed by start-
ing at the (combinatorial) saddle points and following the grid along the combinatorial
gradient field.

The first computational realization of Forman’s theory was presented by Lewiner
et al. [LLT03, Lew05] to compute the homology groups of 2- and 3-dimensional mani-
folds. In this framework, a consistent combinatorial gradient field is computed, and the
Morse-Smale complex is implicitly defined therein. The combinatorial gradient field
is represented by hypergraphs and hyperforests, which allow for a very compact and
memory efficient representation of the Morse-Smale complex. However, the frame-
work is only applicable to relatively small 3-dimensional data sets since links in the
graph are traversed multiple times during the gradient field construction. This results
in infeasible running time for data sets of reasonable size.
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Robins et al. [RWS11] followed the idea of Lewiner [Lew05]. They use a classic
breadth-first search in their combinatorial gradient field to compute the Morse-Smale
complex. However, the multiple graph traversals result in cubic running-time, mak-
ing this approach infeasible for real-world data. Inpired by the work of Lewiner and
Robins et al., we also use breadth-first searches in our graph, but we avoid multiple
traversals. Our approach results in quadratic running-time, which is provably the opti-
mal computational complexity.

An alternative approach to extract the essential critical points and separation lines
is proposed by Gyulassy et al. [GNP+06, GNPH07, Gyu08]. Their main idea is to con-
struct a gradient-like field based on a watershed-like transform and extract the critical
points and separation lines by a field traversal. This results in a graph structure that
connects the critical points by the separation lines. The proposed technique allows for
fast streaming of very large data. However, no guarantees about the consistency of the
graph with respect to the domain topology are given.

A Morse decomposition could also be computed using Conley index theory [Con78].
This theory was applied by Chen et al. [CMLZ08] and Szymczak et al. [SZ12] in the
2-dimensional discrete vector field context. An alternative approach was proposed by
Chen et al. [CDS+12] by introducing piecewise constant vector fields, combining the
Conley index theory with differential inclusions [AC84]. Although the scalar field
context is much more restrictive than the vector field context, i.e., no closed stream-
lines can occur, the ideas are applicable to scalar fields as well, as shown by Chen et
al. [CDS+12]. An algorithmic generalization to higher dimensions, however, is still
open.

Sampling artifacts and noise may create spurious topological structures. In many
applications, it is therefore beneficial to separate these structures from the dominant
ones representing the large-scale behavior of the analyzed data. The removal of topo-
logical structures such as critical points was first investigated by Smale [Sma61a] and
Milnor [Mil65a]. Recently, several techniques from the more general area of vector
field analysis were proposed for simplification [dLvL99a, dLvL99b, TSH00, TRS03a,
TRS03b, WTS+05]. The continuous setting of the presented ideas challenges their
application to discrete data. However, they can be applied in the smooth scalar field
context. Edelsbrunner et al. [EHZ03] presented a simplification strategy for the piece-
wise linear case in two dimensions. In their approach, the algorithmic challenge is the
unfolding of higher-order critical points.

In this work, we make use of the concept of persistent homology [EH08], which is
an algebraic method for measuring the importance of critical points. The basic concepts
have been independently developed by Frosini and Landi [FL99], Robins [Rob00],
and Edelsbrunner et al. [ELZ02]. Persistent homology was originally introduced for
piecewise-linear data. Bauer [Bau11] translated this concept into the discrete setting of
discrete Morse theory which enables the persistence computation also for combinato-
rial critical points.

A strong stability result for the persistence measure has been proven by Cohen et
al. [CSEH07]. This result guarantees that persistence can be used as a signature. When-
ever two persistence outputs are different, we know that the functions are definitely
different. It has also been shown that persistence can be used to simplify the Morse-
Smale complex [Zom01] of a 2-dimensional scalar function defined on a smooth man-
ifold. However, this result does not generally hold in higher dimensions as discussed
by Bauer [Bau11].

A heuristic that is commonly used to simplify the Morse-Smale complex is the
height difference of adjacent critical points. For the smooth 2-dimensional case, this
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heuristic coincides with persistence [DLL+10]. However, this is no longer true in
higher dimensions [Bau11].

In Lewiner’s approach [Lew05], a hierarchy of Morse-Smale complexes is implic-
itly given by a hierarchy of hyperforests. However, the hierarchy of hyperforests suffers
from multiple graph traversals. The simplification of the topological graph of Gyu-
lassy [Gyu08] is more intricate. This graph is explicitly represented and neighborhood
information and geometric embeddings need explicit storage. In three dimensions, cer-
tain pairs of critical points can be connected arbitrarily often [TWHS03a, TWHS07].
This results in a quadratic amount of memory [GBPH11] to store this information.
Gyulassy et al. [GBPH11] address this problem by changing the ordering of cancel-
lations. They introduce a heuristic to defer a cancellation if the number of arcs in the
graph that were newly generated exceeds a user-defined threshold. The choice of a
practical threshold depends on the data and might result in an insufficient number of
levels of detail.

In this work, we also use the heuristic of the height difference to guide the hierarchy
construction. However, the memory consumption and running-time of our algorithms
behave well in practice even for large 3-dimensional data.

Given the relevant topological features, they can be used to process and analyze the
underlying objects in several aspects: Since scalar fields usually suffer from noise, the
relevant topological features can be used to denoise the data in a constrained manner,
i.e., the most dominant topological structures should also be present in the denoised
version [GZ07, WGS10, Bau11, JWS12].

The resolution of surfaces and grids can be adapted to the their topological features.
For example, Theisel et al. [TRS03b] and Lewiner et al. [LLT04] proposed a mesh
compression technique while Dong et al. [DBG+06] used the topological information
to optimize quadrangular meshes.

The design of transfer functions to visualize 3-dimensional scalar data by volume
rendering heavily depends on the complexity of the data. Using the relevant topolog-
ical features, the design can be guided by them to allow for convincing visualizations
[FAT99, WS02, WDC+07, KKH12].

An interesting application in the area of image processing was proposed by Chen
et al. [CFL11]. They used topological information such as the number of connected
components or connectivity to constrain image segmentation.

The analysis of time-dependent data is a challenging subject since topological fea-
tures such as critical points need to be followed over time. Theisel et al. [TS03] and
Weinkauf et al. [WTGP11] proposed an algorithmic framework for the tracking of
critical points in the smooth setting. A combinatorial variant thereof was proposed
by Reininghaus et al. [RKWH12] based on the work of King et al. [KKM05]. Kas-
ten et al. [KRHH11, KHNH12] used this combinatorial framework to compute vortex
regions and their merge graph based on the acceleration magnitude of a vector field.

The interested reader is refereed to the work of López et al. [LLSV99] for an
overview and evaluation of image-based feature extraction. For a more detailed sur-
vey on persistent homology, we recommend the work of Edelsbrunner et al. [EH08].
An overview of the extraction of topological structures in the smooth setting is given
in the survey of Laramee et al. [LHZP07].
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1.3 Overview of the Thesis
In the following, we give an overview of the structure of this thesis. The thesis intro-
duces and describes a computational framework for the analysis of 2- and 3-dimensional
scalar data using topological methods. The techniques presented herein are applicable
to a variety of application data. The kind of data ranges from cryo-electron tomograms
showing macro-biological structures within cells to elevation maps of the Martian sur-
face.

This thesis consists of two parts. The first part deals with the algorithmic and tech-
nical aspects of the framework. In Chapters 2 and 3, we develop the algorithms needed
for the topological data analysis. We discuss their properties, analyze their complex-
ity, and illustrate them in experiments. The second part focuses on the computation of
the feature strength of topological structures. In Chapters 4 and 5, we present strate-
gies for efficiently estimating the importance of critical points and separatrices. This
assessment allows for a removal of those parts that carry no essential information.

We begin with the computation of the Morse-Smale complex and its multi-level
representation. We first introduce in Chapter 2 the mathematical theory that forms
the foundation of the algorithmic framework. We focus on the main statements of
algebraic topology and Morse theory needed for the algorithmic design. However, not
all details of these theories are given since this would go beyond the scope of this
work. The interested reader is referred to standard textbooks presenting the theory.
The aim of Chapter 2 is rather to convey the ideas of Morse theory and its implications
on topological data analysis.

The algorithmic framework is presented in Chapter 3. The framework should be
thought of as a library providing different algorithms that can be included in other
systems. The design of this library was guided by the following ideas:

Efficiency. The algorithms should be as efficient as possible to be useful in
practice. This concerns the computational complexity, the running times, and
the memory consumption.

Simplicity. The overall structure and operations done within the algorithms
should be as simple as possible to allow for a straight-forward implementation.

Usability. There should be no user-interaction necessary to run the algorithms.
Therefore, the framework should be free of computational parameters.

With these ideas in mind, our framework targets three algorithmic challenges:

Data Structures. The framework is placed in a graph theoretical setting. This
graph structure enables simple and efficient graph traversals. Depending on the
input, the graph is explicitly (e.g., triangulated surface) or implicitly (e.g., uni-
form grid) represented. Additionally, this graph structure allows for efficient set
operations. For example, subsets of links of the graph can be easily intersected.

Morse-Smale Complex. In contrast to previous algorithms, our framework al-
lows for an optimal computation of the Morse-Smale complex in three dimen-
sions with a complexity of O(cn) with c denoting the number of critical points
and n the size of the input. Previous techniques needed O(n3).

Multi-level representation. A hierarchy of 2- and 3-dimensional Morse-Smale
complexes can be constructed within the framework. This hierarchy is implicitly



20 Introduction

given in a sequence of combinatorial gradient flows, and allows for a distinc-
tion of spurious and important topological structures. In contrast to previous
approaches, the relative memory consumption is constant and the running times
behave almost linearily for well-defined data.

The algorithms within the library need no computational parameters. The computa-
tion of the Morse-Smale complex and its multi-level representation is solely based on
the scalar values of the input, allowing an objective analysis of the data. The algo-
rithms of Chapter 3 are based on the works [RGH+10, GRP+11, GRWH11, GRWH12,
RGH+12a].

The second part of the thesis describes the quantification of topological structures,
i.e., measuring the feature strength of the critical points, separation lines and surfaces.
We begin in Chapter 4 with an output-sensitive algorithm for computing persistent
homology. Given this strategy, we develop a new algorithmic pipeline to find feature-
point correspondences. In this chapter, we make the following contributions:

Persistent Homology. Assuming that the Morse-Smale complex is given, we
present a strategy that allows to compute persistent homology with a complexity
of O(c3) with c denoting the number of critical points of the input. In contrast to
the algebraic approaches, the complexity of this strategy is output-sensitive since
it only depends on the number of critical points and not on the size of the data.

Feature Point Correspondences. Persistent homology extracts the essential
feature points. We use this strategy to match persistent feature points between
two near-isometric surfaces. Our novel algorithmic pipeline is presented in the
second part of Chapter 4.

In Chapter 5, we extend the concept of persistence to separation lines and surfaces.
This defines a novel importance measure for higher dimensional topological features
that allows to distinguish their important parts. In this chapter, we make the following
contributions:

Separatrix Persistence. We introduce a novel importance measure for separa-
tion lines and surfaces in the 2- and 3-dimensional case based on the concept of
persistent homology. The multi-level representation of the Morse-Smale com-
plex (Chapter 3) does not respect the change of importance along a topological
structure, in contrast to our new importance measure. With this measure, we can
remove unimportant parts of these structures.

Applications and Comparison. Given the information provided by separa-
trix persistence, we use it to extract the extremal structures within 2- and 3-
dimensional scalar data. We provide different use-cases to illustrate the robust-
ness and applicability of our new importance measure in real-world data. This
includes a thorough comparison to local analysis techniques.

The strategies presented in the Chapters 4 and 5 are based on the works [WG09,
GMW+10, GRWH11, GRWH12, YGW+12, GSW12, PGW12].

We conclude this thesis with a discussion about the applicability of the computa-
tional framework. Especially, we investigate the effect of the discrete nature of the
input data on the geometric embedding of the topological structures. We also discuss
possible limitations and extensions in the area of topological data analysis.



Chapter 2

From Smooth to Discrete Morse
Theory

In this chapter, we present the theoretical foundation for the algorithms and techniques
developed in this work. These concepts not only guarantee the correctness but also the
robustness and reliability of the algorithms.

The domain where the input function is defined on is usually given as a manifold.
Such manifolds can be decomposed into cells, which are the main building blocks for
the theory. We therefore start with the definition of the cell-complex [Whi49]. Using
this cell-complex, we can define the Betti-numbers allowing a first differentiation of
the input data based only on the topology of the underlying manifold. The aim of
Section 2.1 is to give a brief informal overview about the needed concepts in algebraic
topology. We introduce notation and recapitulate the main statements of algebraic
topology needed for the algorithmic design. We follow here the elementary book by
Hatcher [Hat02], which provides a complete introduction to this topic as well as the
proofs of the presented theorems. The reader should be familiar with the notion and
the basics of simplical or cubical topology. A nice introduction to these topics is given
in the books by Edelsbrunner and Harer [EH10] and Kaczynski et al. [KMM04].

Having introduced the basic definitions, we will concentrate on the concept of
smooth Morse theory [Mor34] in Section 2.2. This theory relates the occurrence of
critical points of a smooth scalar function to the topology of the underlying manifold.
The focus will be the Morse-Smale complex [Sma61b] and its relationship to the un-
derlying manifold given by the Morse inequalities as well as the Morse isomorphism.
We will follow here the expositions of Milnor [Mil63, Mil65a] and refer the interested
reader to it for a complete description and the proofs.

Morse-Smale complexes are usually computed using numerical algorithms and pro-
cedures [Wei08, Cha11]. Before we introduce a combinatorial alternative, we discuss
the numerical challenges of such algorithms in Section 2.3.

In Section 2.4, we introduce the theoretical concept of the seminal work of Robin
Forman [For98a, For01] who translated statements of Morse theory from the smooth
setting into a discrete one. This discrete setting allows for combinatorial algorithms
that are free of any numerical issues, which greatly improves their robustness. We
concentrate on the main theorem of discrete Morse theory. The technical aspects of
this theory are presented in Chapter 3. For the complete proof of the main theorem, we
refer to Forman [For98a]. We only provide a sketch of it.
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Figure 2.1: Examples of cell complexes.

2.1 Cell Complexes and Homology Groups
The input function f : Ω→ R is usually defined on a manifold-like domain Ω ⊂ Rd .
Typical examples that arise in practice are spheres, tori, planes, or full cubes embedded
in R3. Such domains have specific properties. They encapsulate cavities or contain tun-
nels. Some of them can also be retracted to a single point. These properties constrain
the scalar functions defined on them. To understand these functions, we first need to
understand how such manifolds are assembled. The manifolds decompose into cells,
which are k-dimensional disks, and attaching maps. This composition is called the
cell-complex X and it is a compact representation of the manifold Ω. We now define
this complex and investigate what kind of information we can extract from it.

Before we give the formal definitions of the cells and the cell complex, we want
to motivate the idea by a simple example: We begin with two vertices as shown in
Figure 2.1a. Such vertices are interpreted as 0-dimensional cells. We connect these
two vertices by two edges as shown in Figure 2.1b. The edges are 1-dimensional cells
and their start- and end-points are attached to the vertices. We have constructed an
ellipse. In the third step (Figure 2.1c), we fill the ellipse by a 2-dimensional stretched
disk such that the boundary of that disk is attached to the two edges. We could now
continue to attach further cells to the filled ellipse. However, the procedure is always
the same: given a new cell, we attach it to the existing complex by gluing its boundary
to the cells of the complex. The dimension of the complex is given by the largest
dimension of the contained cells. This sketches the idea of a cell complex. We now
give its formal definition.

The building blocks of a cell-complex X are cells homeomorphic to open disks
and attaching maps identifying their boundary. The cell-complex X itself is given by
induction. Let ek be a k-dimensional open disk with boundary ∂ek (which is a k− 1
dimensional sphere Sk−1). We start with a discrete set of points X0, which are 0-
dimensional cells. The k-skeleton Xk is given by attaching k-dimensional cells ek

α to
Xk−1 by continuous maps ϕα : Sk−1 → Xk−1. We can interpret Xk as the quotient
space of the disjoint union Xk−1 tϕ ek

α with the equivalence relation x ∼ ϕα(x) for
x ∈ ∂ek

α . The equivalence relation represents the gluing of the boundary ∂ek
α of a

disk ek
α to the Xk−1-skeleton. The maps ϕα define a natural inclusion of the skeletons

X0 ⊂ X1 ⊂ X2 ⊂ . . . called the CW-decompostion of X .
In case of X = Xd , the cell complex X is called finite dimensional of dimension

d < ∞. The manifolds shown in Figure 2.2 are all finite dimensional. For example,
the sphere (Figure 2.2a) is constructed by attaching a 2-cell to a 0-cell1 while the torus
(Figure 2.2b) is constructed using a single 0-cell, two 1-cells and one 2-cell. We only
consider finite dimensional complexes in this work.

The attaching of higher dimensional cells defines a neighborhood relationship. If

1The 1-dimensional boundary of the 2-sphere is attached to the single 0-cell by a constant mapping. No
1-cell is necessary for this attachment.
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(a) Cell decomposition of a sphere: The
boundary (black line) of a 2-cell (dark gray
surface) is attached to a single 0-cell (black
vertex).

(b) Cell decomposition of a torus: The
boundary of two 1-cells (black lines) is
attached to a single 0-cell (black vertex).
The shell of the torus is represented by a
2-cell (light gray surface).

Figure 2.2: Examples of cell decompositions of smooth manifolds.

ek+1 is attached to ek, we write ek < ek+1 and call ek face of ek+1 and ek+1 coface of ek.
The cells {ek} form a basis of the free abelian group Ck. The elements of Ck are called
chains and are given as a formal sum ∑nα ek

α with nα ∈Z. Considering the oriented cell
complex shown in Figure 2.1b, elements of C1 are e1

1 + e1
2 and −e1

2, for example. For
the former element, the chain starts at e0

2, traverses e1
1 following its orientation, passes

e0
1, and follows e1

2 until it reaches its start point e0
2 again. The latter chain, however,

consists only of e1
2 but traversed in opposite direction.

Coefficients nα ∈Z indicate how often and in which direction a cell in a given chain
of Ck is passed. In this work, however, we do not take the orientation of a cell complex
into account. Therefore, it suffices to use coefficients that only flag cells belonging to
a specific chain. The coefficient group Z2 = Z/2Z does exactly this. Every coefficient
is taken modulo 2. Coefficients nα ∈ Z2 correspond to a specific group structure of Ck.
The addition of chains is performed by taking the symmetric difference of their cells.

Given the chain groups Ck, we can now define a homomorphism ∂k : Ck → Ck−1
that maps each chain ck ∈Ck to its boundary chain ∂ck ∈Ck−1. Noting that ∂k−1 ∂k = 0,
these homomorphism induce a chain complex C

C : Ck
∂k−→Ck−1

∂k−1−→ . . .
∂2−→C1

∂1−→C0
∂0−→ 0. (2.1)

If we specify a unique index for each cell ek in Ck, a k-chain corresponds to a
vector in Znk

2 , where nk is the number of k-dimensional cells in the complex. The k-
dimensional boundary operator ∂k can be written as an nk× nk−1 binary matrix (also
denoted ∂k) whose columns are the boundaries of the k-cells. Consider for example the
boundary operators ∂1 and ∂2 of the cell complex shown in Figure 2.1c. The complex
describes a full disk and consists of a single 2-cell (n2 = 1), two 1-cells (n1 = 2) and
two 0-cells (n0 = 2). Since we use coefficients in Z2, the boundary matrices ∂1 and ∂2
are given by

∂1 =

(
1 1
1 1

)
and ∂2 =

(
1
1

)
.
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Name Betti Numbers

Sphere β0 = 1, β1 = 0, β2 = 1

Torus β0 = 1, β1 = 2, β2 = 1

Klein Bottle
(Z): β0 = 1, β1 = 1, β2 = 0
(Z2): β0 = 1, β1 = 2, β2 = 1

Table 2.1: Examples of homologically different complexes.

Consider now the chain c = e2
1. Applying the composition ∂1∂2(c) yields

∂1∂2(c) = ∂1

((
1
1

)(
1
))

= ∂1

((
1
1

))
=

(
1 1
1 1

)(
1
1

)
=

(
0
0

)
.

Note that we are in Z2 and every coefficient is taken modulo 2.
The elements of the image Bk = im∂k of ∂k are called the boundaries and the ele-

ments of the kernel Zk = ker ∂k of ∂k the cycles of Ck. The image Bk and the kernel Zk
form a group with a structure induced by Ck. Since the composition ∂k−1∂k vanishes,
there holds Bk ⊂ Zk−1, and we can define the homology group as the quotient group

Hk(X) = Zk/Bk+1. (2.2)

The elements of the homology group Hk are those k-cycles that are not boundaries
of any k + 1-chain. The homology groups give us the opportunity to topologically
characterize a given complex X . In many applications, we are interested in the number
of connected components or in the number of tunnels present in X . Such information
are given by the elements of Hk. For example, the tunnel of a torus is represented by
a 1-cycle, i.e., a sequence of edges that forms a ring and is not the boundary of any
2-chain. The rank of the homology group Hk is denoted by

βk(X) = rkHk(X) = rkZk− rkBk+1. (2.3)

βk is also called the k-th Betti number of X and allows for a differentiation of cell-
complexes: β0 represents the number of components, β1 the number of tunnels, β2 the
number of cavities encapsulated in a given complex X , etc..
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(a) X = X0 (b) X = X1 (c) X = X2 (d) X = X3

Figure 2.3: Examples of cubical complexes.

Figure 2.1 shows some examples with the corresponding Betti-numbers. We want
to stress that something is lost using coefficients in Z2. Complexes that contain torsion
as the Klein Bottle are not fully described by Z2, see the universal coefficient theo-
rem [Hat02]. The Betti-numbers using Z2 are typically higher than using coefficients
in Z. In this case, for example, we cannot distinguish the Klein Bottle from a torus
using the Betti numbers. In this work, however, all manifolds are orientable and there-
fore torsion-free. In this case, the homology groups are independent of the choice of
coefficients. The Betti-numbers not only allow us to differentiate complexes by their
homology, they are also the foundations for the analysis of a scalar function defined on
this complex. In Section 2.2, we will see how the critical points of a scalar function
relate to the Betti numbers.

In the following, we emphasize two special kinds of cell
complexes that arise quite often, in practice. Surfaces and
tetrahedral grids are usually given in a triangulated form.
This triangulation induces a simplicial complex [EH10]. The
elements of this complex are the k-simplicies, which are
given as the smallest convex set in Rd which contains k+ 1
vertices that do not lie in a k-dimensional hyperplane. The
intersection of two k-simplices is thereby a k−1-simplex and
also contained in the triangulation, or empty. An example of
a simplicial complex is given on the right side.

Image data are usually given on a cubical complex [KMM04]. The cells of this
complex are vertices, edges, squares and full cubes. The vertices are defined as cross
products of degenerated elementary intervals [`,`] while the higher dimensional cells
are given by the cross products of elementary intervals (`,`+ 1). The boundary op-
erator ∂k maps a k-dimensional cube to its k−1-dimensional boundary. For example,
the boundary of a single full cube in R3 consists of six 2-dimensional squares while a
square has four edges in its boundary each of them bounded by two vertices. Figure 2.3
shows examples of cubical cell complexes.

The class of manifolds that we consider in this work are orientable surfaces embed-
ded in R3 and 2- and 3-dimensional cubes defined by a regular grid. Examples of such
grids that arise in practice are: uniform-, rectilinear-, or curvilinear grids. Hence, we
assume that a simplical or cubical complex is given.
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2.2 Smooth Morse Theory
In the following, we consider a sufficiently smooth scalar function f : Ω→ R on a
smooth manifold Ω⊂ Rd . The gradient ∇ f and the Hessian H f of f are defined by

∇ f =


∂ f
∂x1
...

∂ f
∂xd

 and H f =


∂ 2 f

∂x1∂x1
· · · ∂ 2 f

∂x1∂xd
...

. . .
...

∂ 2 f
∂xd∂x1

· · · ∂ 2 f
∂xd∂xd

 (2.4)

for a given coordinate system (x1,x2, . . . ,xd) and ∂/∂xi denoting the partial derivative
with respect to xi. A point p ∈ Ω is called critical iff ∇ f (p) = 0 for any coordinate
system. p is a non-degenerated critical point if additionally holds: det(H f (p)) 6= 0.
A smooth function f that only contains non-degenerated critical points is called Morse
function [Mor34]. The index of a critical point p is given by the number of negative
eigenvalues of H f (p). p is called a maximum if it is of index d and a minimum if the
index is 0. Otherwise, we call p a saddle.

Theorem 1 (Morse Lemma) Let f be a Morse function and p be a critical point.
There exists a local coordinate system (x1,x2, . . . ,xd) in a neighborhood U(p) ⊂ Ω

such that xi(p) = 0 for all i and f is locally given by

f (q) = f (p)± x2
1 · · ·± x2

d (2.5)

for each point q ∈U(p).

From Theorem 1 follows that the critical points of a Morse function f are isolated,
and, hence, finite in number. The index of a critical point corresponds to the number of
negative signs in Equation 2.5.

There is a close relationship of the critical points to the homology of the lower
level-sets of f . The lower level set of f is given by Lr( f ) = {x ∈ Ω | f (x) ≤ r} with
isovalue r ∈ R. Considering a sequence of monotonically increasing isovalues, the
topological structure of Lr( f ) changes: connected components are born, merge, or cre-
ate holes. This evolution is reflected by the Betti-numbers. Let us consider a function
f given on a 2-dimensional manifold as shown in Figure 2.4. A connected component
is always born at a minimum of f (Figures 2.4a and 2.4b). Given such an event, β0
is increased by the number of new components. At a saddle, two situations can oc-
cur: either two connected components merge (Figure 2.4c), which decreases β0, or a
component touches itself and forms a tunnel (Figure 2.4d), which increases β1. At a
maximum, a tunnel is closed (Figures 2.4e and 2.4f), which results in a lowering of β1.

Let Ck be the set of critical points of index k. The above observation is formally
given by the weak and strong Morse inequalities:

Theorem 2 (Weak Morse Inequalities) Let f be a Morse function, then there holds
for each k

|Ck| ≥ βk(Ω) (2.6)

where |Ck| denotes the cardinality of the set Ck and βk the k-th Betti number.

The k-th Betti number is always a lower bound for the number of critical points of
index k. For example, a Morse function f defined on a sphere must always contain a
minimum and a maximum.
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(a) A single connected
component.

(b) Three connected
components.

(c) Two components merge.

(d) Two tunnels are created. (e) A tunnel is closed, another
is created.

(f) All tunnels are closed.

Figure 2.4: The lower level set Lr( f ) for different choices of r of an artificial height
function f . The isovalue r increases from (a) to (f). The critical points of f are depicted
in (f) as colored spheres: minimum (blue), saddle (yellow), maximum (red).

Theorem 3 (Strong Morse Inequalities) Let f be a Morse function, then there holds
for each k

|Ck|− |Ck−1|+ . . .±|C0| ≥ βk(Ω)−βk−1(Ω)+ . . .±β0(Ω) (2.7)

where |Ck| denotes the cardinality of the set Ck and βk the k-th Betti number.

Theorem 3 relates the occurrence of critical points. For example, if a Morse function f
given on a sphere consists of two minima and a maximum, it must also contain a saddle
point. Otherwise, the strong Morse inequalities (2.7) would be violated.

Besides these occurrence constraints, there is also a neighborhood relation between
the critical points. The critical points are also part of a cell-complex that completely
describes the behavior of a Morse function f : the Morse-Smale complex.

The Morse-Smale complex induces a decomposition of the domain Ω in regions
where f behaves monotonically. It consists of critical points and integral lines of the
gradient ∇ f that connect pairs of critical points.

Let ϕ : R×Ω→Ω denote the negative gradient flow of f given by

∂

∂ t
ϕ(t,x) =−∇ f (ϕ(t,x)) and ϕ(0, ·) = idΩ. (2.8)

Given a non-degenerated critical point p of f , we define its ascending and descending
manifolds by

Ap = {q ∈Ω | lim
t→∞

ϕ(t,q) = p} and Dp = {q ∈Ω | lim
t→−∞

ϕ(t,q) = p}. (2.9)

The ascending and descending manifolds are herein embedded open discs of dimension

dim(Dp) = index(p) and dim(Ap) = dim(Ω)− index(p). (2.10)
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(a) Ascending manifolds (colored regions)
emanating from the minima (blue
spheres).

(b) Descending manifolds (blue lines)
emanating from the saddles (yellow
spheres).

(c) Descending manifolds (colored regions)
emanating from the maxima (red spheres).

(d) Ascending manifolds (red lines)
emanating from the saddles (yellow
spheres).

Figure 2.5: The ascending and descending manifolds of a terrain. The isolines are
depicted as gray lines.

Figure 2.5 illustrate the sets Dp and Ap for the artificial height function shown
in Figure 2.4. The ascending and descending manifolds of the minima and maxima,
respectively, are 2-dimensional manifolds while the manifolds emanating from the sad-
dles are 1-dimensional.

Given a pair of critical points (p, p̃) of f , we can now consider the intersection of
Ap and Dp̃. We say the Morse function f fulfills the Morse-Smale condition [Sma61b]
if the intersection Dp̃ ∩Ap is transversal for each pair of critical points (p, p̃). The
dimension of Dp̃∩Ap is then given by the indices of the involved critical points

dim(Dp̃∩Ap) = dim(Dp̃)+dim(Ap)−dim(Ω) = index(p̃)− index(p). (2.11)

For example, two curves on a surface are transversal if they only intersect in points,
while two surfaces are transversal if they intersect each other in curves. For a Morse
function f fulfilling the Morse-Smale condition, the intersection of its ascending and
descending manifolds define the Morse-Smale complex. Note that the Morse-Smale
condition is not very restrictive. Every Morse function can be slightly perturbed such
that it fulfills this condition without introducing new critical points.

An illustration for a simple 3-dimensional input function is given in Figure 2.6. We
show here only the manifolds emanating from the saddles. The manifolds emanating
from the extrema have similar characteristics as in the 2-dimensional case. Since the
intersection of the 2-dimensional ascending and descending manifolds is transversal,
saddles of opposite type are connected by 1-dimensional separatrices. For their numer-
ical treatment, we refer to Theisel et al. [TWHS03b].
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(a) Ascending (blue surfaces) and descending
manifolds (red surfaces).

(b) Decomposition into compartments where
f behaves monotonically (arrow lines).

Figure 2.6: Illustration of the ascending and descending manifolds for a 3-dimensional
input function. Arrows indicate the gradient flow. Blue and red spheres depict the
minima and maxima while the saddles of index 1 and 2 are shown as green and yellow
spheres, respectively. The 1-dimensional connections between two saddles are depicted
as white lines. The ascending and descending manifolds decompose the domain into
monotone regions.

The intersection of the ascending and descending manifolds consists of integral
lines γ : R→Ω connecting pairs of critical points (p, p̃) given by

γ
′(t) =−∇ f (γ(t)), lim

t→−∞
γ(t) = p and lim

t→∞
γ(t) = p̃. (2.12)

We want to emphasize that the intersection may consists of a family of integral lines.
Depending on the indices of the involved critical points, this family can span a surface-
or volumetric-like object.

In the following, we only consider pairs of critical points (p, p̃) that are successive,
i.e., index(p̃)− index(p) = 1. In this case, the integral lines defined by (2.12) are called
separatrices. The separatrices induce a boundary operator ∂ : Ck→Ck−1 between the
critical points with the property ∂k−1∂k = 0 [Bot88, Sch93]. This operator defines a
chain complex: the Morse-Smale complex

CM : Ck ∂k−→Ck−1 ∂k−1−→ . . .
∂2−→C1 ∂1−→C0 ∂0−→ 0. (2.13)

For notational simplicity, we slightly abused the notion of Ck in Equation (2.13).
Here, Ck denotes the free abelian group with coefficients in Z2 generated by the criti-
cal points of index k. Similar to (2.1), Equation (2.13) gives rise to homology groups
HM

k ( f ). The most fundamental theorem in Morse theory states that the homology
groups of the Morse-Smale complex carry the same information as the homology
groups induced by the cell complex of a smooth manifold Ω.

Theorem 4 (Morse Homology) Let Ω be a smooth compact manifold and f : Ω→ R
a Morse function fulfilling the Morse-Smale condition. Then there exists a canoncial
isomorphism

Hk(Ω)' HM
k ( f ). (2.14)
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f ′(x) = 0
f ′′(x)< 0

f ′(x) = 0
f ′′(x)< 0

f ′(x) = 0
f ′′(x)≈ 0

(a) A wrong classification of the type of
a critical point (central dot) may
result in a topological inconsistency.

(b) Noise may create spurious critical points
which obscure the large-scale structure of f .

Figure 2.7: Challenges of numerical algorithms.

Note that Ω is usually equipped with a Riemann metric. However, Theorem 4 does not
depend on it.

Due to Theorem 4, we can interpret the Morse-Smale complex as a very compact
representation of an input function where all redundant information are compressed,
and only the essential information – the critical points and their neighborhood relation –
is present.

2.3 Algorithmic Challenges of Smooth Morse Theory

The computation of the Morse-Smale complex for a given function f can be very chal-
lenging. As described in Section 2.2, the critical points are computed by finding all
zeros of the gradient and classifying them into into minima, saddles, and maxima by
the eigenvalues of the Hessian. The respective eigenvectors can be used to compute the
separatrices as the solution of a system of autonomous ordinary differential equations.

One of the biggest challenges that such numerical algorithms face is the discrete
nature of the critical points and their separatrices which necessitates many binary deci-
sions. For example, the type of a critical point depends on the sign of the eigenvalues
as illustrated in Figure 2.7a. From a global point of view, the central critical point must
be a maximum. Using numerical algorithms, however, its classification is a purely lo-
cal decision based on the eigenvalues. Since the neighborhood of critical point in the
center is almost constant, a numerical algorithm may wrongly classify it as a minimum.
Hence, the resulting Morse-Smale complex depends strongly on the computational pa-
rameters and numerical procedures.

From a topological point of view this can be quite problematic. As we have seen,
Morse theory relates the Morse-Smale complex of a generic function to the topology
of the underlying manifold. The topology of the manifold therefore restricts the set
of admissible Morse-Smale complexes. For example, every scalar function defined on
a sphere contains at least one minimum and one maximum. A first step to a certified
numerical computation of Morse-Smale complexes for the special case of a planar 2-
dimensional manifold was done by Chattopadhyay et al. [CVY12]. This work may
serve as a reference for numerical algorithms, however, its extension to more complex
manifolds and higher dimensions is still open.

In the next section, we introduce the basic ideas of Robin Formans seminal work on
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Manifold Admissible set of
Morse-Smale complexes

Discrete Morse theory Scalar data

Figure 2.8: The topology of the domain restricts the set of admissible Morse-Smale
complexes. Discrete Morse theory provides a discretization of this set. The objective
of this theory is to find a complex from this finite set of Morse-Smale complexes that
represents the given scalar data well.

discrete Morse theory. This theoretical framework provides a discretization of the infi-
nite set of admissible Morse-Smale complexes. This combinatorial and discrete setting
will allow us to design efficient and reliable algorithms to compute the Morse-Smale
complex on 2- and 3-dimensional manifolds. The guaranteed topological consistency
greatly improves the robustness of the presented algorithms. In some sense, it has
built-in error correction: a single misclassification of a critical point cannot occur, as
this would result in an inadmissible Morse-Smale complex.

A second advantage of the combinatorial setting is that it enables to handle spuri-
ous critical points. In many applications, one is interested in the large scale structure
of the input data. However, noise arising in the data acquisition process may obscure it
as illustrated in Figure 2.7b. An efficient analysis of the data is then almost impossible.
One is therefore interested in a consistent and controllable removal of spurious critical
points. Although this is theoretically also possible in the smooth setting [Mil65a], the
algorithmic realization becomes much easier in the combinatorial world, since topo-
logical consistency is guaranteed.

An illustration of the idea of discrete Morse theory is given in Figure 2.8. The
focus of this work lies in the last part of the shown pipeline: the efficient computation
of the More-Smale complex and its quantification for a discrete scalar field given on a
simplical or cubical complex.

2.4 Discrete Morse Theory
Discrete Morse theory aims to describe an input function f in a combinatorial fashion.
In Section 2.2, the input function f was a smooth Morse function given on a smooth
manifold such that all needed derivatives exists. In the following, the function f only
assigns a single scalar value to each cell of the complex X . We therefore interpret f
as a discrete function. We will see that all of the statements from Section 2.2 can also
be made if no continuity of f is required. Although the theoretical setting is applicable
to general cell-complexes, we restrict ourselves in this section to simplical complexes,
for simplicity. The elements of X are the k-dimensional simplices.

The function f : X→R is called discrete Morse function if for each simplex αk ∈X
holds

|{β k+1 ∈ X |β k+1 > α
k, f (β k+1)≤ f (αk)}| ≤ 1 and

|{γk−1 ∈ X |γk−1 < α
k, f (γk−1)≥ f (αk)}| ≤ 1.

(2.15)
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Figure 2.9: Simplicial collapse of a triangle to a vertex.

Loosely speaking, a discrete Morse function f assigns higher scalar values only to
higher dimensional simplices with at most one exception, locally, at each simplex.
The most trivial example of a Morse function is given by assigning each simplex its
dimension. In the next chapter, we will see how real-world data such as images are
transformed into a discrete Morse function.

If all (co)faces are of greater/smaller scalar value, the simplex αk is called a critical
simplex. More formally, the simplex αk ∈ X is a critical simplex if

|{β k+1 ∈ X |β k+1 > α
k, f (β k+1)≤ f (αk)}|= 0 or

|{γk−1 ∈ X |γk−1 < α
k, f (γk−1)≥ f (αk)}|= 0.

(2.16)

Intuitively, a discrete Morse function f allows us to construct a simplicial complex
by attaching simplices in a prescribed order. The collection of all simplices with a
scalar value smaller than a prescribed threshold c∈R together with their faces is called
the lower subcomplex X(c) of X by

X(c) = ∪ f (α)≤c∪β≤α β . (2.17)

Let us consider two subcomplexes X(c) and X(d) with X(c)⊂ X(d) and the prop-
erty that their difference X(d)\X(c) consists of a pair of simplices (α,β ) with α < β

and β being the only coface of α . We call (α,β ) a free pair and can obtain the sub-
complex X(c) from X(d) by removing the free pair (α,β ). This operation is called
simplical collapse [Coh73]. More generally, whenever the removal of a free pair from
a simplicial complex X̃ yields again a simplicial complex X , we say X̃ collapses to X .
If there is a sequence of simplicial collapses and expansions (the inverse of a collapse)
transforming X̃ to X , X̃ and X are simple-homotopy equivalent. For example, a triangle
is simple-homotopy equivalent to a vertex, see Figure 2.9.

Suppose now there are no critical simplices α with f (α) ∈ (c,d]. Then the sub-
complex X(d) collapses simplicially to X(c), i.e., both subcomplexes are homotopic
equivalent. On the other hand, let α be a critical k-simplex with f (α) ∈ (c,d]. Then
we can construct an attaching map φ : Sk−1→ X(c) such that X(c)tφ ek is homotopic
equivalent to X(d). Note that a critical simplex does not belong to any free pair.

The above argumentation sketches the idea of the proof of the main theorem of
discrete Morse theory:

Theorem 5 (Main Theorem) Let f be a discrete Morse function on a simplicial com-
plex X. The complex X is then homotopic equivalent to a cell-complex with exactly one
cell of dimension k for each critical simplex of dimension k.

The main theorem is the discrete analogue to Theorem 4. From a discrete Morse func-
tion f given on a simplical complex X , we can construct a cell complex that consists
typically of much fewer cells than X but still carries the same information – its discrete
Morse-Smale complex.
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From Theorem 5, one can now obtain that the weak and strong Morse inequali-
ties (2.6) and (2.7) also hold for a discrete Morse function. The discrete nature of the
cell-complexes and the input function f now enables us to design efficient algorithms
to compute the Morse-Smale complex such that the Morse-Smale complex is always
consistent with the topology of the underlying cell-complex. In contrast to numerical
algorithms, the combinatorial structure herein avoids the need of computational param-
eters which guarantees the reliability of the computed result.

In the next chapter, we present the algorithmic setting of discrete Morse theory. We
use a graph-theoretical formulation to represent the cell-complexes. In this setting, we
formulate algorithms allowing to compute the Morse-Smale complex combinatorially
as well as different levels of detail of this complex.
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Chapter 3

Computational Discrete Morse
Theory

In this chapter, we present the algorithmic framework developed in the course of this
thesis. This framework allows for a purely combinatorial computation of 2- and 3-
dimensional Morse-Smale complexes as introduced in Chapter 2 – no numerical algo-
rithms and computational parameters are needed.

Before we present the algorithmic framework, we provide an overview of the de-
veloped algorithms and notations used within these algorithms in Section 3.1. This
overview should serve the reader as reference for the subsequent technical details.

In Section 3.2, we introduce the graph theoretical setting in which the cell-complex
C is represented. The combinatorial information of C, i.e., the cells and their adja-
cency, is nicely encoded in an induced cell graph. Given such a graph, we can define a
matching on it. Such a matching will allow us to represent the combinatorial gradient
flow of a given scalar input. Critical points and separatrices are implicitly defined by
it. We present algorithms that enable an efficient computation of these structures by
use of their combinatorial properties. These algorithms are the basis for the subsequent
algorithms to compute the Morse-Smale complex.

Given the graph theoretical setting, we construct a combinatorial gradient field
based on an input function f in Section 3.3. This gradient field encodes the combi-
natorial flow of f and defines implicitly its Morse-Smale complex. We will use an
existing algorithm to compute this gradient field proposed by Robins et al. [RWS11].
The critical points in the resulting gradient field correspond provably 1-1 to the topo-
logical changes of the lower level sets. The gradient field is represented as a matching
in the induced cell graph, which reduces the memory overhead to a minimum. Only
Boolean masks which represent subsets of links and nodes of the graph are needed.
This is especially important for the computation of the Morse-Smale complex.

The Morse-Smale complex is only implicitly given by the combinatorial gradient
field. To construct an explicit representation, we present in Section 3.4 algorithms
that compute the Morse-Smale complex with an optimal complexity of O(n2) with n
denoting the size of the input.

The algorithms of Lewiner [Lew05] and Robins et al. [RWS11] use a classic breadth-
first search in the induced cell graph to compute the Morse-Smale complex. While a
simple breadth-first search computes the desired complex efficiently in the 2-dimensio-
nal case, its computational effort becomes cubic in the 3-dimensional case. In contrast,
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ComputeGradient
(Algorithm 5)

Basis BoundaryMatrix Sequence2D Sequence3D
Functionality (Algorithm 7) (Algorithm 11) (Algorithm 14)
GetManifold GetAllManifolds InitHeap
(Algorithm 1) (Algorithm 8) (Algorithm 15)

AlternatingRestrictedBFS CountPaths GetMinWeight2D GetMinWeight3D
(Algorithm 2) (Algorithm 9) (Algorithm 12) (Algorithm 16)

AlternatingEdges GetManifoldNodes GetPath2D GetPath3D
(Algorithm 3) (Algorithm 10) (Algorithm 13) (Algorithm 17)

GetIntersection IsUnique
(Algorithm 4) (Algorithm 18)

Table 3.1: Algorithmic overview of the computational framework.

our algorithm restricts the search space to the essential links of the graph. Due to this
restriction, the computational effort for the Morse-Smale complex becomes quadratic,
which is provably the optimal computational complexity in three dimensions.

After presenting the algorithms to compute the Morse-Smale complex, we intro-
duce a strategy to create a hierarchy representing different levels of detail of the com-
plex for the 2- as well as the 3-dimensional case in Section 3.5. Since sampling artifacts
and small fluctuations in the data may create spurious structures in the Morse-Smale
complex, we can use this strategy to differentiate spurious structures from those cor-
responding to the large-scale behavior of the function f . We greatly benefit from the
implicit representation herein. An explicit representation of the Morse-Smale complex
would require special data structures. While the design of efficient data structures is
already a non-trivial task, additional heuristics need also to be introduced to manage
the quadratic memory consumption in the hierarchy computation as shown by Gyu-
lassy [Gyu08]. Since these heuristics introduce computational parameters, the result
heavily depends on it; and the parameters need to be adjusted for each data set. The
algorithms developed in the course of this work need no computational parameters, and
therefore, allow for an user-independent multi-level represenation of the Morse-Smale
complex.

To the best of our knowledge, our algorithms combine for the first time a linear
memory consumption and a running time which behaves well in practice. Due to these
properties, large data sets can be analyzed on commodity hardware. The presented
algorithms are peer-reviewed and published in [RGH+10], [GRP+11], [GRWH11],
and [GRWH12].

3.1 Preliminaries

Before we start with the description of the algorithmic framework, we provide an
overview of the developed algorithms and notation used within these algorithms. The
basic idea of the presented framework is to keep it as modular as possible to allow for a
simple exchange of algorithms. Some of the algorithms are therefore relatively small.
The algorithms are designed to enable a straight-forward implementation using the
STL [MS95]. Only set operations are needed. However, performance improvements
can be achieved by using optimized containers that allow optimal access and enable
an efficient parallel computation provided by the BOOST library [Kar05]. Although
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Notation Relation Discription
G G = (N,E) cell-graph
N nodes of G
E links of G
Ek Ek ⊂ E links of index k
NT NT = N(T )⊂ N nodes covered by links T ⊂ E
EM EM = E(M)⊂ E links covered by nodes M ⊂ N
V V ⊂ E combinatorial gradient field
S S⊂ E integrated manifold
R R⊂ E restriction of integration
I I ⊂ E intersection of manifolds

Ck Ck ⊂ N critical nodes of index k in V
ck ck ∈Ck critical nodes of index k
CT CT ⊂ N critical nodes covered by T ⊂ E
` ` ∈ {0,1,2} layer of integration
j j ∈ {0,1} direction of integration

∂k ∂k : Ck→Ck−1 k-th boundary matrix
Q queue
h heap (priority queue)

Table 3.2: Overview of the notations used in the algorithms.

most of the notations are formally introduced in the subsequent sections, the following
overview should serve as reference and help the reader in the technical details of the
algorithms.

In the course of this chapter, three main algorithms are presented:

1. BoundaryMatrix (Algorithm 7),
2. Sequence2D (Algorithm 11),
3. Sequence3D (Algorithm 14).

Algorithm 7 computes the boundary operator ∂k that induces the Morse-Smale
complex CM (2.13). The output is a sparse matrix representing the adjacency of the
critical points. Section 3.4 describes in detail how this computation can be done ef-
ficiently. A multi-level representation of the Morse-Smale complex is computed by
Algorithms 11 and 14 for the 2- and 3-dimensional case, respectively. The technical
aspects are described in the Sections 3.5.1 and 3.5.3.

There are some elementary procedures that provide the functionality that manifolds
can be integrated and intersected. This functionality is essential and used by almost all
algorithms. The core of the framework consists of the functions

AlternatingRestrictedBFS (Algorithm 2), and
AlternatingEdges (Algorithm 3).

These two functions provide the technical part of the integration – the restricted breadth-
first search – of the ascending and descending manifolds and/or subsets of them. The
overall integration and intersection of these manifolds is done by the functions

GetManifold (Algorithm 1), and
GetIntersection (Algorithm 4).
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(a) Cubical complex. (b) Cell graph. (c) Both.

Figure 3.1: Illustration of a cell complex and its derived cell graph. a) shows the cells
of a 2× 2× 2 uniform grid in an exploding view. A single voxel is represented by
eight 0-cells, twelve 1-cells, six 2-cells, and one 3-dimensional cell. These cells and
their boundary relation define the cell complex. b) shows the derived cell graph. The
nodes representing the 0-, 1-, 2-, and 3-cells are shown as blue, green, yellow and red
spheres respectively. The adjacency of the nodes is given by the boundary relation of
the cells. The edges are colored by the lower dimensional incident node. c) shows the
cell complex and the cell graph to illustrate the neighborhood relation of the cells.

Besides these elementary procedures, the main algorithms 7, 11, and 14 use specific
sub-functions to complete their task. For example, the number of paths between two
critical points needs to be counted to compute the boundary matrix ∂k with coefficients
in Z2. This functionality is provided by Algorithm 9 and called by the main algorithm
BoundaryMatrix. An overview of all algorithms used within the framework is given in
Table 3.1.

The input of the main algorithms is always a combinatorial gradient field. We use
an existing algorithm proposed by Robins et al. [RWS11] to compute it. For complete-
ness, we provide a description of this algorithm in our graph-theoretical notation in
Section 3.3 and pseudo-code in Algorithm 5.

The subsequent algorithms compute subsets of nodes and links of a graph. Since
most of them appear frequently in many algorithms, Table 3.2 lists the most important
notations as reference.

3.2 The Graph Theoretical Setting
In the following, we assume that the input domain Ω ⊂ R3 is given as a simplicial or
cubical complex. We only consider 2- and 3-dimensional complexes. Following the
notation from Section 2.1, we denote the induced chain complex by C.

3.2.1 The Cell Graph
The combinatorial setting of Section 2.4 can be nicely represented in a graph theoretical
formulation: the cell graph G=(N,E) encodes the essential combinatorial information
of the chain complex C. The nodes N represent the basis elements of the free abelian
groups Ck, i.e., the k-cells of X . We use the barycenter of a cell as the geometric
embedding of the representing node. Each node uk is labeled by the dimension k of the
cell it represents. For simplicity, the notion of uk is used for representing the nodes as
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(a) Simplical complex. (b) Cell graph.

Figure 3.2: Illustration of a simplical complex and its derived cell graph. (a) shows
the cells of a 2-dimensional simpical complex. (b) shows the derived cell graph. The
nodes representing the 0-, 1-, and 2-cells are shown as blue, yellow and red spheres
respectively. The adjacency of the nodes is given by the boundary relation of the cells.

well as the corresponding cells. The boundary operator ∂ (2.1) defines the adjacency
information of the nodes. We represent the adjacency by the links E of G. If a cell uk

is in the boundary of a cell wk+1, then ek = {uk,wk+1} ∈ E. We label each link with
the dimension of the lower dimensional node. The link ek is said to be of index k. An
illustration of a cell graph of a cubical complex is shown in Figure 3.1. An example of
a cell graph induced by a simplicial complex is given in Figure 3.2.

We want to stress that the cell graph G is closely related to a Hasse diagram, see
Figure 3.3. Each layer ` corresponds to the nodes of index k. However, the geometric
embedding of the cells is naturally given in G. From the data analysis point of view,
such kind of representation is preferable.

The cell graph of a simplical complex is explicitly represented. The node- and link
indices of the graph are stored in arrays allowing direct access. The adjacency of the
nodes is given by the sparse boundary matrix ∂ as defined in Section 2.1. The memory
consumption of the cell graph representation is thereby proportional to the number of
cells in the simplicial complex.

The cell graph of a cubical complex, on the other hand, can be implicitly repre-
sented which avoids prohibitively large amounts of memory. We follow here the work
of Kovalevsky [Kov01]. The graph G is represented as a regular grid and the node-
and link indices of G are calculated on-the-fly based on the resolution of the cubical
complex. A node’s index is computed as the sum of the parities of its integer coordi-
nates. Links connect two nodes along one of the coordinate axes. We associate each
link with the end node of lower index along this coordinate axis and lay out the nodes

`= 0

`= 1

`= 2

(a) Hasse diagram. (b) Cell graph.

Figure 3.3: Two graph representations of a 2-dimensional cubical complex. The nodes
are colored by their index: blue (k = 0), yellow (k = 1), red (k = 2).
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(a) 2D Morse matching. (b) A 0-streamline (green line).

(c) 3D Morse matching. (d) A 0-streamline (green line).

Figure 3.4: Morse matching: The edges of the Morse matching are shown as black
solid lines. (a) shows a Morse matching of a 2D cell graph. The nodes of index 0, 1,
and 2 are shown as blue, yellow, and red spheres. (c) shows a Morse matching of a 3D
cell graph. The nodes of index 0, 1, 2, and 3 are shown as blue, green, yellow, and red
spheres. (b) and (d) show a 0-streamline in the corresponding Morse matchings.

and links separately in raster scan order. For nodes, this is the usual array layout. For
the links, we consider first a 2-dimensional example as shown in Figure 3.3b. Due
to the regular structure of the grid, a pattern is formed by the links that repeats only
every second row: links in first row point along x and links in second row point along
y. For the 3-dimensional case as shown in Figure 3.1b, the situation is the same. The
2-dimensional pattern repeats every second slice: links in first slice point along x and y
and links in second slice point along z.

3.2.2 Morse Matchings
The translation of an arbitrary input function to the axioms of a discrete Morse func-
tion (2.15) can be done in several ways. One way to do it, is the lower-star filtration
defined in Section 3.3. However, we are primarily not interested in the discrete Morse
function but in its combinatorial gradient flow. Not only are the critical points and
separatrices uniquely defined by this flow, it also allows for an efficient integration
of combinatorial streamlines. In our graph theoretical setting, the combinatorial flow
can best be represented by a matching. Chari [Cha00] showed that a specific class of
matchings, which is defined in the next paragraph, is in a 1-1 correspondence with the
set of discrete Morse functions.

A matching V ⊂ E is a collection of links in G such that none of these links are
adjacent. The matching V gives rise to a combinatorial flow. Assuming the cell graph
G is initially oriented from top to bottom, i.e., the higher dimensional nodes point to
the lower dimensional ones, the matching V now reverses the orientation of the links
e ∈ V . This allows a traversal of the cell graph G. Given a link e, a combinatorial
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(a) Critical Nodes (black). (b) 0-separation lines (green, blue).

Figure 3.5: Illustration of the critical nodes and separation lines of a 2D Morse match-
ing. The links of the Morse matching are depicted as solid black lines. The nodes of
the cell graph in (a) are labeled by their index. The saddle and the minima in (b) are
shown as yellow and blue spheres, respectively.

k-streamline is an an alternating sequence of links of index k in V and its complement
E \V beginning with e. If there are no closed k-streamline in G, i.e., the intersection
of the start- and end-link is empty, V is an acyclic matching. We call such an acyclic
matching V a Morse matching [Cha00]. Figure 3.4 illustrates a 2- and 3-dimensional
Morse matching and depicts a 0-streamline within.

The main task in computational discrete Morse theory is now to construct a Morse
matching V such that the following combinatorial definitions of critical points and
separatrices correspond to an input function f . We will show in the subsequent sections
how such a matching can be efficiently constructed. To emphasize that the input is a
scalar function, we call V also a combinatorial gradient field.

3.2.3 Critical Points and Combinatorial Separation Lines

In the combinatorial setting, the critical nodes are the unmatched nodes of V , i.e., the
nodes of the graph with no incident matched links. For a cell graph induced by a 2-
dimensional cell complex, we call a critical node uk of index k a minimum (k = 0),
a saddle (k = 1), or a maximum (k = 2). In case of a 3-dimensional cell graph, the
critical nodes are called: minimum (k = 0), 1-saddle (k = 1), 2-saddle (k = 2), or
maximum (k = 3). Given an initial orientation as described in Section 3.2.2, the critical
nodes have a similar interpretation as their smooth analogue: the 0-streamlines end in
minima, the 2-streamlines emanate from maxima, and at saddles we observe a mixed
behavior of the combinatorial flow.

A k-streamline connecting two critical nodes uk and wk+1 is called a combinatorial
k-separation line. For a 2-dimensional cell graph, there are two types of lines: the 0-
separation lines connect the saddles with the minima, and the 1-separation lines connect
the saddles to their maxima. Figure 3.5 shows an illustration of two 0-separation lines.
For a 3-dimensional cell graph, the 0- and 2-separation lines have a similar role: the
1-saddles are connected to the minima, and the 2-saddles to the maxima, respectively.
However, there are also 1-separation lines connecting the two types of saddles.

For the special case of the 3-dimensional cell graphs, we want to emphasize the
2-dimensional ascending and descending combinatorial manifolds emanating from the
two types of saddles. We call these objects combinatorial separation surface given by
all 1-streamlines emanating from a 1- or 2-saddle. We will need these surfaces later
on to compute efficiently the 1-separation lines. Note that combinatorial separation
lines and surfaces are given as discrete sets of links in G in contrast to their continuous
counterparts (2.9) and (2.12).
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(a) Two 0-separation lines can only merge. (b) 1-separation lines in 3D can merge and split.

Figure 3.6: Properties of separation lines. The edges of the Morse matching are shown
as solid black lines. Only the essential parts of the cell graph are shown. The nodes
of the cell graph are labeled by their index. The saddles in (a) are shown as yellow
spheres while the minimum is depicted as blue sphere. The repelling saddle in (b) is
shown as green sphere while the two attracting saddles are shown as yellow sphere.

3.2.4 Properties of Combinatorial Separation Lines

Using (2.8) and (2.9), the separation lines are given as the intersection of the corre-
sponding combinatorial ascending and descending manifolds. We only need to replace
the continuous negative flow ϕ with its combinatorial analogue. The combinatorial
flow is restricted to the links of the cell graph and is represented by the Morse match-
ing. In contrast to the smooth setting of Section 2.2, the separation lines can merge and
split due to their combinatorial nature.

To compute the separation lines, an integration of the ascending and descending
manifolds can be computationally expensive. However, we can make use of the spe-
cific structure of these manifolds to compute the separation lines connecting saddles
to the extrema. In this special case, the descending/ascending manifolds degenerate
to lines and are uniquely defined by a breadth-first search starting at the saddles. No
intersection is necessary. This stems from the fact that those lines can either merge or
split.

Consider for example a 0-separation line starting at a saddle as shown in Fig-
ure 3.6a. The 0-separation line covers 0- and 1-nodes of the cell graph. The 1-nodes
represent the edges of the cell complex. Since a matching is defined such that no two
matched links are adjacent, two 0-separation lines can only merge at a 0-node. A split-
ting of them would require that there exists at least two outgoing nodes. However, each
edge is always bounded by exactly two vertices. A 0-separation line can only enter at
one vertex and leave on the other vertex.

A similar argumentation holds for the separation lines connecting the saddles with
the maxima. For a 2-dimensional cell graph, a 1-node is always connected to at most
two 2-nodes. A 2-node in a 3-dimensional cell graph, on the other hand, is always con-
nected to at most two 3-nodes, i.e., a square or triangle in a cubical/simplical complex
is only in the boundary of at most two cubes or tetrahedrons, respectively. However,
these separation lines have a special characteristic compared to the 0-separation lines.
They can end in the boundary of the complex such that the end-node of the line is not
critical. In this case, the corresponding bounding cell contains only a single coface.
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We call such lines virtual combinatorial separation lines.
The critical nodes are easily collected by iterating over all nodes of the cell graph

and checking whether the incident links are matched. The separation lines that connect
the saddles with the extrema can be computed using Algorithm 1, 2, and 3.

Algorithm 1 GetManifold(G,V,cp, `)

Input: G = (N,E),V ⊂ E,cp ∈ N, ` ∈ {0,1,2}
Output: S⊂ E / integrated manifold

1: E`←{ek ∈ E : k = `} / set of links of index `

2: S← AlternatingRestrictedBFS(G,V,E`,cp) / integrate with restriction E`

The input of Algorithm 1 is the cell graph G, a critical node cp of index p and
the index ` of the links that should be integrated. We call the index ` also layer of
integration. The output is a set of links S representing the corresponding ascending
or descending manifolds emanating at a critical node cp (line 2). The pseudo-code of
Algorithm 1 as well as of the following algorithms is given in its most general form,
i.e., not restricted to a specific index or layer. In the special case discussed above,
the integrated manifolds of Algorithm 1 coincide with the separation lines if the input
critical node cp is a saddle.

Algorithm 2 AlternatingRestrictedBFS(G,V,R,cp)

Input: G = (N,E),V ⊂ E,R⊂ E,cp ∈ N
Output: T ⊂ R⊂ E / set of integrated links

1: T ← /0, Q← /0 / initialize
2: Q.push({cp, f alse}) / the links of the start node are unmatched
3: while Q 6= /0 do / breadth-first search
4: {up, f lag}← Q.pop() / get the next node and the flag of its links
5: W ← AlternatingEdges(G,V,up, f lag) / get the correctly flagged links
6: W ← (W ∩R)\T / apply restriction R and remove visited links T
7: for all {up,wk} ∈W do
8: T ← T ∪{up,wk} / add links to the output
9: Q.push({wk,¬ f lag}) / push next node with negated link flag

The integration is done by a breadth-first search restricted to the layer ` shown in
Algorithm 2. Since all links incident to a critical node are unmatched, the integration
starts with an unmatched link (line 2). The combinatorial `-manifolds consist of `-
streamlines which alternate between the Morse matching V and its complement. This
needs to be respected by the integration (lines 5 and 9, and Algorithm 3). However,
only those links are of interest that lie in the current layer and are not yet visited (line

Algorithm 3 AlternatingEdges(G,V,up, f lag)
Input: G = (N,E),V ⊂ E,up ∈ N, f lag ∈ { f alse, true}
Output: W ⊂ E / set of links

1: if f lag = true then
2: W ←{{up,wk} ∈ E : {up,wk} ∈V} / links belong to V
3: else
4: W ←{{up,wk} ∈ E : {up,wk} ∈ E \V} / links belong to E \V
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6). If there is such a link (line 7, 8 and 9), the integration continues (line 3), otherwise
it stops.

We now consider the special case of 1-separation lines in a 3-dimensional cell
graph. Those lines connect saddles of different index. In contrast to the 0- and 2-
separation lines, they can merge and split. Figure 3.6b illustrates a typical situation.
This stems from the specific structure of a 3-dimensional cell complex: an edge in a
cubical or simplical complex has more than two cofaces. Consequently, a 1-node is
connected to more than two 2-nodes. A 1-streamline can therefore enter a 1-node from
one direction, and leave it in several other directions. This property prohibits a direct
walk starting at a saddle as we have done it for the 0- and 2-separation lines.

To compute 1-separation lines in a 3-dimensional cell graph, we can make use of the
formal definition of separation lines: the intersection of the ascending and descending
manifolds (2.9). We first integrate the separation surface emanating from a saddle using
Algorithm 1. The intersection is then computed by Algorithm 4 using the separation
surface as restriction in the breadth-first search (Algorithm 2).

The computation of the 1-separation lines is symmetric: either one computes the
descending manifolds of all 2-saddles and intersects them with the ascending manifolds
of the 1-saddles, or vice versa. The flag j in Algorithm 4 defines this direction of
intersection. For simplicity, we only discuss the case for j = 0 in the following, i.e.,
we first compute the descending manifold of a 2-saddle c2. The layer of integration is
`= 1.

Algorithm 4 GetIntersection(G,V,S, `, j)
Input: G = (N,E),V ⊂ E,S⊂ E, ` ∈ {0,1,2}, j ∈ {0,1}
Output: I ⊂ E / intersection of two manifolds

1: CS←{u`+ j ∈ N : ∃{u`+ j,wk} ∈ S}∩C`+ j / critical nodes in the boundary of S
2: I← /0 / initialize intersection
3: for all cp ∈CS do / for each boundary critical node
4: S← S\ I / remove already visited links from the restriction S
5: I← I∪AlternatingRestrictedBFS(G,V,S,cp) / apply back-integration

The set of links S ⊂ E describing the separation surface that emanates from a 2-
saddle c2 (line 2) is computed using Algorithm 1. Algorithm 4 computes then the
intersection I of the manifolds of the adjacent 1-saddles with respect to S. The in-
tegrations starts with the complementary 1-saddles. We therefore collect all 1-saddles
CS ⊂C1 that are covered by S (line 1). These critical nodes are connected to c2. Finally,
we compute the set of links I ⊂ S of all combinatorial streamlines connecting c2 with
CS (line 3). Naïvely, one would compute the entire ascending manifold of all 1-saddles
CS and intersect the corresponding sets of links. However, this is not necessary. We
only need to integrate those parts that are also part of the descending manifold S of
c2. The intersection is always a subset of the links of the ascending as well as of the
descending manifolds. This is done by a restricted breadth-first search (line 5). Note
that each link e ∈ I is only visited once. The restriction is iteratively updated (line 4).

We want to note that Algorithm 4 can also be used to compute the separation lines
connecting the saddles with the extrema. However, the computation of the intersection
needs more computational effort than a direct walk starting at a saddle.

Having defined the combinatorial analogue of critical points and separation lines,
we can now investigate how a combinatorial gradient field V ⊂ E can be constructed
based on an input function f .
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3.3 Computation of Combinatorial Gradient Fields

The input function f usually assigns only scalar values to the 0-cells of a simpli-
cial/cubical complex X . Since each cell needs to be assigned with a number, we first
extend f to all cells of X by a so-called lower-star filtration: each cell is assigned the
maximum function value of the vertices it contains. This yields a function f̃ : N→ R
defined on nodes N of the cell graph G = (N,E).

As already mentioned, the main task in computational discrete Morse theory is to
construct a combinatorial gradient that corresponds to the input data f . Many such
algorithms have been proposed [BLW12, GBPH11, KKM05, Lew05]. In this work,
we make use of the algorithm ProcessLowerStars proposed by Robins et al. [RWS11].
The critical nodes of their combinatorial gradient provably correspond 1-1 to the topo-
logical changes of the lower-level sets (Section 2.2) of the input data in up to three
dimensions. Other algorithms [VS91, Gyu08, SN12] are not able to make such guar-
antees about the number of critical nodes in their gradient field. It may happen that
there is a large number of false positives due to the algorithmic design, which would
complicate or mislead a further analysis of the data. Also, the algorithm of Robins et
al. is very efficient, since it has linear running time and allows for an efficient parallel
implementation. The pseudo-code of this algorithm in our graph theoretical notation is

Algorithm 5 CombinatorialGradient(G, f̃ )

Input: G = (N,E), f̃ : N→ R
Output: V ⊂ E / combinatorial gradient field

1: V ← /0 / initialize
2: for all v0 ∈ N do / for each 0-node
3: s← v0 / create its lower star
4: W ←{w ∈ N : f̃ (w)≤ f̃ (v0)}
5: for p← 0, . . . ,d−1 do
6: s← s∪{wp+1 ∈W : ∃{up,wp+1} ∈ E, up ∈ S}
7: K← E(s) / get the links connecting the lower star nodes
8: C← /0 / initialize list of flagged nodes
9: abort← f alse

10: while abort = f alse do / start homotopic expansion
11: abort← true
12: for p← 0, . . . ,d−1 do / for each dimension
13: T ←{{up,wp+1} ∈ K : up,wp+1 /∈C∪N(V )} / nodes are not covered
14: L← T \{{up,wp+1} ∈ T : ∃{zp,wp+1} ∈ T, up 6= zp} / and unique
15: if L 6= /0 then / there are valid expansions
16: V ←V ∪ChooseLink(L) / apply homotopic expansion
17: abort← f alse
18: goto line 10 / continue homotopic expansion
19: else / there is no valid expansions
20: for k← 0, . . . ,d do / for each dimension
21: {uk

0,u
k
1, . . . ,u

k
m}← {uk ∈ S : uk /∈C∪N(V )} / unflagged nodes

22: if {uk ∈ s : uk /∈C∪N(V )} 6= /0 then
23: C←C∪uk

0 / flag an arbitrary unflagged node
24: abort← f alse
25: goto line 10 / continue homotopic expansion
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given in Algorithm 5.
Algorithm 5 decomposes the cell graph G into the lower stars [Ban70] defined

by f̃ (line 3, 4, 5 and 6). Note that this decomposition is disjoint, which allows for
good parallel scalability. Each lower star is now grown from its vertex using simple
homotopic expansions – the inverse of a homotopic collapse described in Section 2.4.
Such expansions are represented by the links of the cell graph (line 7).

The combinatorial gradient V is now constructed iteratively (line 10): each time we
expand a lower star using a link e ∈ E (lines 13, 14 and 15), we append e to V (line
16). A link e = {up,wp+1} ∈ E is admissible for simple homotopic expansion if the
following conditions hold:

1. up and wp+1 are not covered by a link in the current V (line 13),

2. up and wp+1 have not been flagged previously (line 13),

3. there is no other link {zp,wp+1} ∈ E that fulfills 1. and 2. (line 14).

If the set of admissible links L is empty (line 19), we flag an arbitrary node in the lower
star (line 23) that is not covered by a link in the current V (line 22). If no such node can
be found, the expansion stops. If L is not empty (line 15), an admissible link is chosen
based on an order defined by f̃ and appended to V (line 16).

As shown by Robins et al. [RWS11], the way we choose a link from L (line 16
of Algorithm 5) does not affect the overall number nor the type of critical nodes in
the resulting combinatorial gradient. However, the combinatorial streamlines are af-
fected by this choice. Since the combinatorial gradient is supposed to correspond to
the (continuous) gradient of the input, a natural choice is the link that represents locally
the steepest descent. However, other choices are also possible. In Chapter 6, we will
discuss a probabilistic alternative to the steepest descent.

Performance

In the following, we present some examples to illustrate the running time of Algo-
rithm 5 for real-world data. The experiments were done on an Intel Core i7-2720QM
CPU with 16GB RAM. To compute the combinatorial gradient field, we implemented
an OpenMP version of Algorithm 5. Table 3.3 shows the running time for different 3-
dimensional data sets. The neghip, hydrogen and aneurism are provided by The Volume
Library [Röt] while the beetle data set is provided by Gröller et al. [GGK]. We give the
running time for the computation of the combinatorial gradient field using Algorihm 5
with 4 physical (8 logical) cores and 1 core, respectively, and the corresponding speed
up factor.

Data Set Neghip Hydrogen Aneusrism Beetle Benzene Synthetic
(Size) (643) (1283) (2563) (4162×247) (4013) (10243)

Single Core 11s 1m 22s 10m 40s 27m 10s 41m 15s –
4×4 Cores 2s 18s 2m 28s 6m 36s 10m 01s 165m 23s
Speed Up 5.5 4.5 4.3 4.1 4.1 –

Table 3.3: Running times of Algorithm 5 for six data sets of varying dimensions. The
first row shows the running time to compute the combinatorial gradient field using
single threaded computation while the second row shows the times using the 4 physical
and 8 logical cores. The resulting speed up factor is shown in the third row.
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The speed up factor using a parallel implementation of Algorithm 5 is nearly opti-
mal. It running times increases linearly with the size of the data set independently of
the topological complexity of the data.

3.4 Computation of Morse-Smale Complexes

The combinatorial gradient field V only implicitly encodes the Morse-Smale complex.
In the following, we describe how an explicit representation of the Morse-Smale com-
plex (2.13) can be computed from V with an optimal complexity of O(n2) with n de-
noting the number of vertices of the cell complex C. We only describe the algorithms
for the 3-dimensional case since this is the more difficult part. However, they can also
be directly applied to 2-dimensional cell graphs.

The crucial part is to count optimally the number of separation lines between two
critical nodes thereby avoiding multiple traversals of the links E. Since we use coeffi-
cients in Z2, two critical nodes are adjacent in the sense of Z2 if there is an odd number
of separation lines connecting them.

The chain groups C` of the Morse-Smale complex (2.13) can be easily extracted
from N by collecting the nodes not covered by V . However, the efficient computation
of the boundary maps ∂` : C`→C`−1 is challenging.

Before we present our optimal algorithm to compute ∂` with a complexity of O(n2),
we describe a straight-forward realization proposed by Robins et al. [RWS11] with a
complexity of O(n3). The algorithms presented in the following make use of the basic
algorithms described in Section 3.2.3. Following the notation of Section 3.2, the cell
graph is denoted by G = (N,E) and its combinatorial gradient field by V ⊂ E.

3.4.1 The Algorithm by Robins et al.

Algorithm 6 shows a simple approach introduced by Robins et al. [RWS11] to compute
∂`+1 with a worst case complexity of O(n3), where n denotes the number of vertices
of C. Its input consists of the cell graph G = (N,E), a discrete gradient field V ⊂ E,
a flag j denoting the (ascending/descending) direction of integration, and the layer
of integration ` ∈ {0,1,2} yielding the boundary map ∂`+1. If j = 0, the algorithm
computes ∂`+1 by finding the boundaries of the elements contained in C`+1. If j = 1,
the algorithm computes ∂`+1 by finding the co-boundaries of the elements contained in
C`. Note that both cases result in the same ∂`+1, the choice of j only affects the running
time. In Section 3.4.4, we discuss which choice of j is appropriate, in practice.

The main idea of Algorithm 6 is to start a breadth-first search in each critical node
cp. The integration of the combinatorial manifold stops at its boundary. The critical
nodes in the boundary are adjacent to cp if there is an odd number of paths connecting
each of the boundary nodes with cp. Due to the combinatorial nature, the manifolds of
multiple critical nodes cp can merge. Iterating over the critical nodes (line 3) results
therefore in multiple traversals of the links and causes the cubic complexity.

The breadth-first search (line 5) is constrained by the definition of a combinatorial
streamline – the links of a traced path must always alternate between V and E \V
(line 7). Note that the additions in the lines 13 and 15 are modulo 2.



48 Computational Discrete Morse Theory

Algorithm 6 Robins et al. [RWS11] (G,V, j, `)
Input: G = (N,E),V ⊂ E, j ∈ {0,1}, ` ∈ {0,1,2}
Output: Binary matrix ∂`+1 / boundary matrix

1: Q← /0 / initialize
2: E`←{ek ∈ E : k = `} / links of index `

3: for all cp ∈C`+1− j do / for each critical node of index `+1− j
4: Q.push({cp, f alse}) / the links of the start node are unmatched
5: while Q 6= /0 do / breadth-first search
6: {up, f lag}← Q.pop() / get the next node and the flag of its links
7: W ← AlternatingEdges(G,V,up, f lag) / get the correctly flagged links
8: W ←W ∩E` / consider only links of index `

9: for all {up,wk} ∈W do
10: Q.push({wk,¬ f lag}) / push next node with negated link flag
11: if wk ∈CV then / if the node is critical
12: if k < p then / the node is a boundary node
13: ∂`+1(cp,wk)← ∂`+1(cp,wk)+1 / addition is modulo 2
14: else / the node is a coboundary node
15: ∂`+1(wk,cp)← ∂`+1(wk,cp)+1 / addition is modulo 2

3.4.2 An Optimal Algorithm

We now present our improved Algorithm 7 to compute ∂`+1 with a worst case complex-
ity of O(n2). The main idea is the following: We first collect all critical (unmatched)
nodes in V . For each of these nodes, we then integrate the corresponding manifolds
to collect the critical nodes in the respective (co-)boundaries but avoid multiple traver-
sals of the manifolds (line 1). Since the connections between critical nodes are de-
fined as the intersection of their manifolds, we apply a backintegration for each of the
(co)boundary nodes restricted to the already integrated manifold (line 2). This results
in a set of links describing all connections between critical nodes.

The challenging task is now to check whether a pair of critical nodes is connected
by an odd number of separatrices (line 4). If this is the case, these nodes are connected
in the sense of Z2 and are inserted in the boundary matrix (line 7 and 9). To count the
number of connections, we compute the multiplicity of paths from one critical node to
another critical node but restricted to the intersection of the corresponding manifolds.

Algorithm 7 BoundaryMatrix(G,V, j, `)
Input: G = (N,E),V ⊂ E, j ∈ {0,1}, ` ∈ {0,1,2}
Output: Binary matrix ∂`+1 / boundary matrix

1: S← GetAllMani f olds(G,V, `, j) / integrate all manifolds
2: I←GetIntersection(G,V,S, `, j) / compute intersection w.r.t. the boundary nodes
3: for all cp ∈C`+1− j do / for all critical nodes of index `+1− j
4: Cc←CountPaths(G,V, I,cp, `) / compute boundary nodes Cc w.r.t. Z2
5: for all wk ∈Cc do
6: if k < p then / the node is a boundary node
7: ∂`+1(cp,wk)← ∂`+1(cp,wk)+1 / add node to ∂`+1
8: else / the node is a coboundary node
9: ∂`+1(wk,cp)← ∂`+1(wk,cp)+1 / add node to ∂`+1
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The input of Algorithm 7 is similar to the input of Algorithm 6 and consists of the
cell graph G = (N,E), a discrete gradient field V ⊂ E, a flag j, and the index ` of the
resulting boundary map ∂`+1. For notational simplicity in the following explanation,
we only describe the algorithms in detail for j = 0 – we consider the boundary of
c`+1 ∈C`+1. However, all algorithms are designed to work also for j = 1. The choice
of j does not affect the overall computational complexity – it only affects the practical
running time of the algorithm, see Section 3.4.4.

The links S ⊂ E covered by the combinatorial `-streamlines emanating from all
elements of C`+1 are computed using Algorithms 8. In line 4, we remove all links from

Algorithm 8 GetAllManifolds(G,V, `, j)
Input: G = (N,E),V ⊂ E, ` ∈ {0,1,2}
Output: S⊂ E / set of link representing all manifolds

1: E`←{ek ∈ E : k = `} / links of index `

2: S← /0 / initialize S
3: for all cp ∈C`+1− j do / for each critical node of index `+1− j
4: E`← E` \S / remove all already visited links
5: S← S∪AlternatingRestrictedBFS(G,V,E`,cp) / add current manifold to S

the set of admissible links that are already visited by previous integration steps. Since
this is also done in Algorithm 2, each link is traversed only once.

Given the set of links S describing the manifolds of all critical nodes of index
`+ 1− j, we compute the intersection I ⊂ E with respect to the critical nodes in the
boundary of S using Algorithm 4. The intersection I contains the links of the combi-

Algorithm 9 CountPaths(G,V, I,cp, `)

Input: G = (N,E),V ⊂ E, I ⊂ E,cp ∈ N
Output: Cc ⊂ N / adjacent critical nodes w.r.t. Z2

1: NS← GetMani f oldNodes(G,V, I,cp, `) / nodes covered by 1-separatices of cp

2: CNS ←{up ∈ NS : @{up,wk} ∈V} / critical nodes in NS
3: P← /0 / control container for the breadth-first search
4: L←{cp} / initialize list of visited nodes with cp

5: Q.push({cp, f alse}) / all links of cp are unmatched
6: while Q 6= /0 do / constrained breadth-first search
7: {up, f lag}← Q.pop() / get the next node and the flag of its links
8: P← P∪{up} / add the node to the control container
9: W ← AlternatingEdges(G,V,up, f lag) / get the correctly flagged links

10: W ←W ∩ I / consider only links that are also part of the intersection I
11: for all {up,wk} ∈W do / for each link={start node, end node}
12: if wk ∈ NS then / the end node must be covered by the 1-separatrices of cp

13: if up ∈ L then / if the start node is flagged
14: L← L4{wk} / flag the end node w.r.t. Z2
15: Z← AlternatingEdges(G,V,wk, f lag) / get the links of the end node
16: Z← Z∩ I / restrict them to the intersection I
17: NZ ←{zq ∈ N : ∃{zq,wk} ∈ Z} / get their start nodes
18: if NZ ⊂ P then / all start nodes must already be processed
19: Q.push({wk,¬ f lag}) / the breadth-first search can uniquely continue
20: Cc← L∩CNS \ cp / restrict visited nodes to the critical nodes except cp
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natorial streamlines between all c`+1 and all critical boundary nodes. To compute the
boundary of an individual c`+1, we need to count the number of combinatorial stream-
lines connecting c`+1 with c`.

This is done using a simple graph algorithm shown in Algorithm 9. Its input is the
cell graph G, the combinatorial gradient field V , the gloabal intersection I, a critical
node cp, and the layer of integration `.

Since I represents all paths between critical nodes, we need to extract the set of
links that describe the local intersection defined by cp. The nodes covered by these
links restrict the counting of the paths. This is obtained in line 1 using Algorithm 10. To
count the number of paths between the critical nodes, we apply a constrained breadth-
first search (line 6) on the local intersection (line 12).

The constraint is given as follows: If there are multiple paths in the local inter-
section entering a single node wk, all paths must be processed before the breadth-first
search can continue at wk (lines 8, and 15-19). This guarantees that there are no racing-
conditions between the multiple paths in the breadth-first search.

The get the number of the paths between two critical nodes, we count how often
each node is visited during the breadth-first search. Since we are only interested in the
Morse-Smale complex with coefficients in Z2, it suffices to count the number of visits
modulo 2. This is obtained by taking the symmetric difference 4 in lines 13 and 14.
Finally, we restrict the visited nodes L to the critical nodes (line 20). Those critical
nodes are connected by an odd number of separatrices.

Algorithm 10 computes the nodes NS covered by a combinatorial manifold S that
emanates at a critical node cp. The integration is thereby restricted to the global inter-
section I (line 2). The nodes covered by the links are uniquely added to NS (lines 4-8).

Algorithm 10 GetManifoldNodes(G,V, I,cp, `)

Input: G = (N,E),V ⊂ E,cp ∈ N, ` ∈ {0,1,2}
Output: NS ⊂ N / nodes covered by the integrated manifold

1: E`←{ek ∈ E : k = `} / links of index `

2: S← AlternatingRestrictedBFS(G,V,E`∩ I,cp) / integration restricted to I
3: NS← /0 / initialize set of nodes
4: for all {up,wk} ∈ S do / for each link={start node, end node}
5: if up /∈ NS then / start node was not yet added
6: NS← NS∪{up} / add start node
7: if wk /∈ NS then / end node was not yet added
8: NS← NS∪{wk} / add end node

3.4.3 Computational Complexity

We now give a brief analysis of the computational complexity to compute the Morse-
Smale complex. We denote the number of vertices of C by n and the number of critical
nodes in a combinatorial gradient field by c. For the complexity analysis, we assume
a cubical complex is given. The argumentation below, however, can be generalized to
simplical complexes taking the degree of the nodes N in G into account.

Since the Morse-Smale complex can only be computed for a given combinatorial
gradient field, we also consider the construction of this field in the complexity analysis.
The complexity for the construction of such a combinatorial gradient field is O(n) using
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Algorithm 5 – for each node of index 0 we only work on its lower star which has a
constant size in the case of cubical complexes.

Analyzing the complexity of the Morse-Smale complex extraction described in Al-
gorithm 7 is more intricate. We start with the essential Algorithm 2: the restricted
breadth-first search. Due to line 6, the union in line 8 is disjoint. This implies that the
complexity of Algorithm 2 is O(|T |) with T denoting its output (a set of links). Algo-
rithm 8 is used to integrate all manifolds. Since Algorithm 8 only calls Algorithm 2, its
complexity is O(|S|) where S denotes the set of links representing the manifolds. The
computation of the intersection I using Algorithm 4 has a complexity of O(|I|): due to
line 4, the union in line 5 is disjoint.

Finally, we need count the number of paths for each critical node in Algorithm 7.
The complexity of the loop (line 3) is O(c) with c denoting the number of critical
nodes. The complexity of its body is given by the complexity of Algorithm 9, i.e., the
computational effort for the path counting.

To compute the nodes NS covered by the local intersection (line 1), Algorithm 10 is
used. This algorithm is a direct application of the restricted breadth-first search. Each
node is uniquely inserted and its complexity is therefore O(|NS|) ⊆ O(|I|). The com-
plexity of the body of the while loop in line 6 of Algorithm 9 is constant. It therefore
suffices to count the number of times that line 19 is executed. The node wk is only
inserted into Q if it belongs to the local intersection (line 12) and all neighboring nodes
zq ∈ NZ have already been processed (line 8 and 18). Since wk can only be inserted
by a neighboring node zq, it can therefore be inserted only once. The complexity of
Algorithm 9 is hence O(|I|), since only nodes contained in I can enter the queue at all.

In summary, we have the following complexities:

Algorithm 5 O(n)
Algorithm 7

d Algorithm 8 O(|S|)
Algorithm 4 O(|I|)

while-loop O(c)

d Algorithm 9 O(|I|)

Since there holds O(|I|) ⊆ O(|S|) ⊆ O(n), the overall complexity of Algorithm 7 is
O(n+ |S|+ |I|+ c|I|) ⊆ O(cn). Since there is a lower bound on the worst-case com-
plexity for the Morse-Smale complex extraction problem in three dimensions of O(n2)
[RWS11], our proposed algorithm is optimal.

3.4.4 Implementational Details
Running time To compute the combinatorial gradient field, the cell graph is de-
composed into lower stars of the 0-nodes. Since this is a disjoint decomposition, each
lower star can be processed in parallel. Also, the boundaries of the critical nodes are in-
dependent of each other, which allows a parallel computation. We process Algorithm 4,
7, and 8 in parallel using OpenMP.

We now discuss the influence of the integration direction j on the running time of
Algorithm 7. The flag j ∈ {0,1} of Algorithm 7 influences solely its running time,
and not its complexity. In three dimensions, the combinatorial 0-streamlines can only
merge, while the 2-streamlines can only split. Due to this property, the computation
of the co-boundaries of all 0-nodes ( j = 1, ` = 0) and the boundaries of the 3-nodes
( j = 0, `= 2) can be done with a complexity of O(n) [RWS11]. Changing the role of j,
on the other hand, yields a worst case complexity of O(n2): n saddles can be connected
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to a single extremum and each of the separation lines is space filling. The computa-
tional complexity for the boundary matrices ∂1 and ∂3 is therefore O(n). However, the
computation of ∂2 has a worst case complexity of O(n2), regardless of j [RWS11]. In
summary, the flag j yields the following individual complexities

∂1 ∂2 ∂3
j = 0 O(n2) O(n2) O(n)
j = 1 O(n) O(n2) O(n2)

Hence, the overall complexity of Algorithm 7 of O(n2) is not influenced by the choice
of j ∈ {0,1}.

In contrast, the practical running time depends on j. For most inputs, the best
choice in our experiments was

∂1: ( j = 0, `= 0),
∂2: ( j = 0, `= 1),
∂3: ( j = 1, `= 2).

Although the worst-case complexity is O(n2) for ∂1 and ∂3, in many practical cases
the computation of the (co-)boundaries of the 2- and 1-nodes amounts only to a line
integration, as in this setting, |W | ≤ 1 in Algorithm 2, line 5. Therefore, it is beneficial
to do a line integration starting at the saddles instead of a volume integration starting
at the extrema.

Memory requirements We only need to compute the boundary matrices ∂`+1 of
the Morse-Smale complex CM . Since ∂`+1 can be represented as a sparse binary matrix,
it does not require much memory. The memory consumption of the cell graph G,
on the other hand, depends on its representation. As discussed in Section 3.2.1, a
simplical complex is explicitly and a cubical complex implicitly represented. While
the adjacency information of an explicit representation is given by a sparse matrix, it is
always computed on-the-fly using index calculations for the implicit representation.

Since we enumerate the nodes N and the links E without gaps, we can represent
the combinatorial gradient field V simply by an array of bits of length |E|. The sets
used in the algorithms of this section can also be represented using Boolean arrays.
However, Boolean arrays of size |E| would result in a huge memory overhead when
using parallel computation. Since we only work on the intersection of manifolds, arrays
of size O(|I|) are sufficient. A look-up map translates global into local indices. This
allows for efficient set operations.

If the data values at the 0-cells of the complex are defined by 32-bit single precision
floats, then the total memory overhead factor of our method is about 3 in our current
implementation for a cubical complex. This enables the analysis of large 3-dimensional
image data on commodity hardware.

In case of a simplicial complex, we also need the Boolean masks discussed above.
However, we also need to represent the cell graph explicitly. All cells of the complex,
i.e., the vertices, edges, faces, and tetrahedrals, are explicitly represented by nodes and
their adjacency is represented by a sparse matrix. Depending on the sparsity of the
adjacency matrix, this explicit representation might result in a huge memory consump-
tion; the storage of the Boolean masks is negligible.
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Figure 3.7: Comparison of running times for the analytic function g. a) The gray and
yellow surfaces depict two different isolevels of the analytic function g. b) The circle
and cross markers show the running times over the nnumber of vertices n to construct
the boundary matrix over different resolutions for Algorithm 6 and Algorithm 7, re-
spectively. The semi-solid line depicts a least-square fitting of a linear function for the
cross markers. The dotted line depicts a fitting of a quadratic function for the circle
markers.

3.4.5 Performance Comparison
In the following, we compare the performance of Algorithm 6 [RWS11] and our Al-
gorithm 7. The experiments were performed on a machine with two Intel Xeon E5645
CPUs. To compare the performances, both algorithms were run single threaded.

Figure 3.7 depicts an analytic test function. The data set is given by sampling the
function g : [−2,2]3→ R

g(x,y,z) =1sin(1x)sin(2y)sin(3z)+ 2sin(2x)sin(1y)sin(3z)

+3sin(3x)sin(2y)sin(1z)+ 4sin(1x)sin(3y)sin(2z)

+5sin(2x)sin(3y)sin(1z)+ 6sin(3x)sin(1y)sin(2z)

+1cos(3x)cos(1y)cos(2z)+ 2cos(2x)cos(1y)cos(3z)

+3cos(1x)cos(2y)cos(3z)+ 4cos(3x)cos(2y)cos(1z)

+5cos(2x)cos(3y)cos(1z)+ 6cos(1x)cos(3y)cos(2z).

(3.1)

on a uniform grid of increasing resolution. Figure 3.7a shows an illustration of g. We
added a small amount of uniform noise in the range of [−0.5,0.5] to the samples to
investigate the performance of the algorithms.

Figure 3.7b shows the running times of the Morse-Smale complex extraction step
using Algorithm 6 by Robins et al. [RWS11] as well as of our Algorithm 7. The running
time of Algorithm 6 increases quadratically with the number of vertices in the complex.
In contrast, our method shows linear running time.

The running times using a single core applied to the analytic function g sampled on
a uniform 963 grid are: 486 seconds for Algorithm 6 and 25 seconds for Algorithm 7.
The construction of the combinatorial gradient field needs 10 seconds for both cases.

The reason for this behavior stems from the structure of the data which is also
often found in real-world data: the function g contains large scale structures but the
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added noise results in many critical nodes and the combinatorial 1-streamlines often
merge and split. This property dramatically increases the practical running time of the
algorithm by Robins et al. [RWS11]. The breadth-first search in Algorithm 6 traverses
the links multiple times. On the other hand, our Algorithm 7 is not affected by this
perturbation of the data. Each link is only traversed once. This restricted traversal
originates the optimal complexity of our Algorithm 7.

3.5 A Hierarchy of Combinatorial Gradient Fields
In real-world data, the Morse-Smale complex might be very rich structured. Especially
small-scale structures introduced by noise in the data acquisition process may create
spurious topological features. Therefore, one is interested in a meaningful but con-
sistent simplification of the Morse-Smale complex. Our framework allows for this by
computing a sequence of combinatorial gradient fields that represents the input field in
a hierarchical manner. The user is then able to select an appropriate level of detail to
efficiently analyze the data.

The construction of a hierarchy of combinatorial gradient fields consists of two
steps. In the first step, the initial combinatorial gradient field V0 ⊂ E is computed
using Algorithm 5. This gradient field represents the fine-grained combinatorial flow
of the input data. In the second step, the combinatorial gradient field is iteratively
simplified by removing the smallest fluctuation in every iteration. This simplification is
done by computing the `-separation line that represents the smallest height-difference
of adjacent critical nodes in a given gradient field Vk. Applying the simplification
iteratively yields a sequence V of combinatorial gradient fields

V = (Vk)k=0,...,m . (3.2)

We now interpret the gradient fields again as Morse matchings. In graph theoretical
terms, an `-separation line s ⊂ E connecting two critical points is an augmenting path
since it is alternating and its start- and end-node are not matched. We can produce a
larger matching Vk+1 ⊂ E by taking the symmetric difference

Vk+1 =Vk4 s. (3.3)

Equation (3.3) is called augmenting the matching. Since the incident critical nodes
of s are matched after the augmentation, the number of critical nodes is decreased by
two. An illustration of the augmentation process is given in Figure 3.8. The simpli-
fication stops if the matching cannot be augmented anymore. This is the case when
the minimal number of critical nodes of a cell complex is reached (Section 2.2), or all
remaining augmentations are not valid. This validity constraint is given by Theorem 6
and discussed later in this section. The final result represents the gradient field with the
coarsest level of detail. We want to emphasize that an augmentation of a matching only
poses local changes in V : there are always exactly two critical points involved and no
new critical points are created.

The sequence V is uniquely defined by the final matching Vm and the augmenting
paths (pi)i=1,...,m. An arbitrary element Vk ∈ V can be restored by

Vk =Vm4 pm4 . . .4 pm−k+1. (3.4)

Because the augmenting paths of cell graphs are typically rather short, this is a lot more
memory-efficient in our context than storing all elements of V individually.
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Figure 3.8: Illustration of Equation (3.3). The nodes of the graph G are labeled by
their index. The critical points of the combinatorial gradient field V are shown as black
spheres. Links belonging to V are depicted as solid black lines. The augmentation of V
along the green path s results in a coarser gradient field V4s where the saddle (yellow)
at one of its minimum (blue) are not critical anymore. A single minimum (blue dot)
remains in V4 s.

Equation (3.4) enables the user to select a combinatorial gradient field with a pre-
scribed number of critical points. However, there is a lower bound of critical points
due to the Morse inequalities, see Section 2.2. Alternatively, we can make use of the
height difference of the critical nodes connected by an augmenting path p as an im-
portance measure ωp. The user can set a fraction θ ∈ [0,1] to select a combinatorial
gradient field with a weight as close as possible to ωp1 +(1− θ)(ωpm −ωp1). This
approach can be useful in dealing with noisy data. Noise induces a very complex
structured Morse-Smale complex. The augmenting paths corresponding to the spu-
rious structures, however, have typically a very small weight, i.e., the two connected
critical nodes hardly differ in their scalar value. Hence, setting θ to a small value there-
fore removes all spurious structures in the Morse-Smale complex while the dominant
structures remain unchanged.

The above importance measure ωp is closely related to the concept of persis-
tence [ELZ02]. In two dimensions, both measures yield the same hierarchy [DLL+10].
However, this not the case anymore in three dimensions [Bau11]. Nevertheless, this re-
lationship motivates our use of the heuristic to take the smallest height difference as
simplification criteria. In Chapter 4, we introduce the concept of persistence, and dis-
cuss its relationship to our heuristic and the problems that occur in higher dimensions
in Section 4.4.

We need to make sure that the operation (3.3) does not create any closed combina-
torial streamlines. Such streamlines can only occur in the general vector field context,
and not in gradient fields. The requirements for the operation (3.3) are given by For-
man’s cancellation theorem [For98a]:

Theorem 6 (Cancellation Theorem) If two unmatched nodes are connected by a
unique `-separation line s in a Morse matching V , then V 4 s is a Morse matching.

Hence, we need to compute the `-separation line that represents the currently smallest
height difference and additionally connects two critical nodes uniquely.

In the following, we present the algorithms for an efficient simplification of a given
combinatorial gradient field given on a 2- and 3-dimensional cell graph. In two di-
mensions, the simplification process consists of finding the saddle-extremum pair that
has the smallest height difference of all pairs, and is uniquely connected. In the 3-
dimensional case, we additionally need to consider the saddle-saddle pairs. From the
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algorithmic point of view, the saddle-saddle pairs are much more intricate. A saddle
can be connected to an arbitrary number of other saddles. An efficient treatment of
these pairs is therefore necessary.

Joswig and Pfetsch [JP06] showed that the computation of a combinatorial gradient
field that contains the minimal number of critical nodes is NP-hard, in general. While
under certain conditions, an optimal simplification is possible in the 2-dimensional
case, it fails in three dimensions due to the specific structure of the cell graph. In
Section 3.5.5, we discuss this and stress some further properties of the simplification
process.

3.5.1 Simplification in 2 Dimensions
As we have seen in Section 3.2.4, the 0- and 1-separation lines in a 2-dimensional cell
graph G = (N,E) can either merge or split. This simplifies the construction of the
sequence V . We can integrate the separation lines directly using a restricted breadth-
first search.

Algorithm 11 Sequence2D(G,V, f̃ )

Input: G = (N,E),V ⊂ E, f̃ : N→ R
Output: list of augmenting paths p, Vm ⊂ E / the hierarchy

1: p← /0, h← /0 / initialize heap h and list of augmenting paths p
2: ∂1← BoundaryMatrix(G,V,0,0) / compute ∂1
3: ∂2← BoundaryMatrix(G,V,1,1) / compute ∂2
4: for all c1 ∈C1 do / for each saddle
5: {c0

k}← ∂1(c1) / get the boundary of the saddle
6: ω1←minu0∈{c0

k}
(

f̃ (c1)− f̃ (u0)
)

/ compute the smallest height difference

7: h.push(c1,ω1) / insert the saddle with the height difference in the heap
8: {c2

k}← ∂
−1
2 (c1) / get the coboundary of the saddle

9: ω2←minu2∈{c2
k}
(

f̃ (u2)− f̃ (c1)
)

/ compute the smallest height difference

10: h.push(c1,ω2) / insert the saddle with the height difference in the heap
11: while h 6= /0 do / simplification process
12: (c1,ω)← H.pop() / get the next saddle with its weight
13: if c1 ∈C1 then / check whether the saddle is still critical
14: (s,ω)← GetMinWeight2D(G,V,c1) / currently smallest height difference
15: (c̃1, ω̃)← h.top() / next element in the heap
16: if ω ≤ ω̃ then / is the current weight smaller than the next one
17: V ←V 4 s / augment the matching
18: p.push(s) / save the augmenting path
19: else / defer the saddle
20: h.push(c1,ω) / reinsert the saddle with the new weight
21: Vm←V / final matching

The pseudo-code for constructing the sequence V is given Algorithm 11. The input
is the cell graph G, the combinatorial gradient field V computed using Algorithm 5, and
the extended input function f̃ (Section 3.3). The output consists of Vm – the coarse-
grained gradient field – and a list of augmenting paths p. Together, these can be used
to reconstruct an arbitrary element of the sequence V (3.2).

In the first step, the boundary matrices ∂1 and ∂2 are computed using Algorithm 7
based on the given gradient field V (line 2 and 3). From the (co)boundary information
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Figure 3.9: Cancellation of the saddle-minimum pair (s, m2). The minima, saddles,
and maxima are depicted as blue, yellow, and red spheres, respectively. The 0- and
1-separation lines are shown as blue and red lines.

of all saddles c1 ∈C1 (lines 5 and 8), we can choose the adjacent minimum and max-
imum with the smallest height difference (line 6 and 9). We use the height difference
as weight ω for the saddle c1. We add c1 together with its weight ω in a heap structure
h (line 7 and 10). Based on those weights, we can detect the currently smallest fluctu-
ation. The heap h is organized in a way such that the element with the smallest weight
is the top element.

In the second step, we construct the sequence V (line 11). The top element of the
heap h is a saddle together with its weight. However, this weight can be outdated. The
augmentation process (3.3) changes the boundary information and thereby the height
differences. Critical points that were not connected in a prior level can be connected
now, or even non-critical anymore. Therefore, we need to check whether c1 is still a
saddle (line 13). If this is the case, we compute the currently smallest height difference
ω of the saddle c1 to its adjacent extrema (line 14) using Algorithm 12. If ω is still
smaller than the weight of the next element (lines 15 and 16), we can augment the
current gradient field V by taking the symmetric difference 4 of V and the separation
line s representing this weight (line 17). We store the path s in a container p to recover
this level of detail (line 18). Note that the saddle c1 and the extremum are not critical
anymore after applying the symmetric difference. We update derived information as
the sets of critical points Ck iteratively during an augmentation of V . On the other
hand, if the weight ω is larger than the weight of the next element (line 19), we reinsert
the saddle c1 with its new weight ω (line 20). If their are no valid augmenting paths,
the process stops and the gradient field V becomes the final element of the sequence V
(line 21).

The implication of the above augmentation for the Morse-Smale complex is shown
in Figure 3.9a. Let us consider the saddle-minimum pair (s,m2). After an augmentation
along the separatrix connecting (s,m2), these two nodes are not critical anymore, see
Figure 3.9b. The connectivity of the adjacent critical nodes has also changed. All
saddles that were connected to m2 are now connected to m1. The separatrices which
connected s1 to the maxima M1 and M2 are removed from the complex.

Algorithm 12 computes the separation line s with the smallest weight ω for a given
saddle c1. For a saddle c1, we first compute the 0-separation line s1 with the smallest
weight ω1 (line 1) and then the 1-separation line s2 with the smallest weight ω2 (line
2) using Algorithm 13. The separation line with the smallest weight (line 3) is used as
an augmenting path (line 4 and 6).
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Algorithm 12 GetMinWeight2D(G,V, f̃ , c1)

Input: G = (N,E),V ⊂ E, f̃ : N→ R, c1 ∈C1

Output: s⊂ E, ω ∈ R / augmenting path and its weight
1: (s1,ω1)← GetPath2D(G,V, f̃ ,c1,0) / best path to the minima
2: (s2,ω2)← GetPath2D(G,V, f̃ ,c1,1) / best path to the maxima
3: if ω1 ≤ ω2 then
4: (s,ω)← (s1,ω1) / best pair is a saddle-minimum pair
5: else
6: (s,ω)← (s2,ω2) / best pair is a saddle-maximum pair

The computation of a j-separation line s and its weight ω is done in Algorithm 13.
The separation line s of a saddle c1 is part of its descending ( j = 0) or ascending
manifold ( j = 1). In the first step, we therefore compute the descending/ascending
manifold S of c1 (line 2). The critical nodes covered by the links S are the connected
extrema NS (line 3). However, we need to be careful with the virtual 1-separation lines
(Section 3.2.4). Those end in a non-critical boundary cell of the cell complex (line
3) and are no valid augmenting paths. If both separatices end in the same extremum,
an augmentation along one them would create a closed streamline in the augmented
matching, which can not occur in combinatorial gradient fields (Theorem 6). Therefore,
we ignore the extrema that are twice connected to c1 (line 4). This also correspond to
the coefficient group Z2. The j-separation line s of the extremum representing the
smallest height difference is returned (line 5 and 6).

Algorithm 13 GetPath2D(G,V, f̃ , c1, j)

Input: G = (N,E),V ⊂ E, f̃ : N→ R, c1 ∈C1, j ∈ {0,1}
Output: s⊂ E, ω ∈ R / path and its weight

1: q← 2 j, s← /0, ω ← ∞ / initialize
2: S← GetMani f old(G,V,c1, j) / integrate both separation lines
3: NS← (N(S)∩Cq)∪{v1 ∈ N(S) : |

{
{v1,w2} ∈ E

}
|= 1} / get the end-nodes

4: if |NS|> 1 & NS∩Cq 6= /0 then / two different end-nodes, at least one is critical
5: (u,ω)←minũ∈NS∩Cq

∣∣ f̃ (c1)− f̃ (ũ)
∣∣ / smallest height difference (critical only)

6: s← AlternatingRestrictedBFS(G,V,S,u) / get the sole separation line

3.5.2 2D Examples
We first illustrate the ability to extract the Morse-Smale complex of a scalar field where
noise is present. We then apply Algorithm 11 to several triangulated 2D manifolds
provided by Aim@Shape [Aim]. All examples were computed on a laptop containing
an Intel Core i7-2720QM CPU.

For an illustration of a sequence V , we applied Algorithm 11 to a synthetic data set
depicted as a height field in Figure 3.10. The data set was produced by sampling the
analytic function f : [−1,1]2→ R

f (x,y) = sin(10x) sin(10y)e−3(x2+y2) (3.5)

on a uniform triangulation with 16k vertices. We then added uniform noise in the
the range of [−0.05,0.05] to the subdomain [0,1]× [−1,1]. The running time for the
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(a) V0 (b) Vm−23 (c) Vm−11

Figure 3.10: Synthetic noisy scalar field. Minima, saddles and maxima are depicted as
blue, yellow and red spheres, while 0- and 1-separatrion lines are shown as blue and
red lines, respectively.

computation of V using Algorithm 11 was less than a second on a standard laptop. Fig-
ure 3.10 shows the Morse-Smale complex of the initial combinatorial gradient field V0,
and two elements Vm−23 and Vm−11 of the sequence V . As can be seen in Figure 3.10a,
V0 includes all structures induced by the noise. The simplified combinatorial gradient
fields, however, only contain the dominant critical points and separation lines present
in f .

The overall running time for the computation of (3.2) using Algorithm 11 applied
to the Gaussian curvature of several surface models is shown in Table 3.4. The worst
case complexity of Algorithm 11 is O(n3), where n denotes the number of edges in the
triangulation. However, the empirical running time for practical applications is almost
linear (Table 3.4).

Surface Model triangles nodes in G links in G time (sec)
screwdriver 54300 162902 325800 <1

dinosaur 112384 337154 674304 <1
knot 957408 2872224 5744448 7

Table 3.4: Running time of Algorithm 11.

3.5.3 Simplification in 3 Dimensions
We now describe the construction of the sequence V for a given combinatorial gra-
dient field V on a 3-dimensional cell graph G = (N,E). The main idea is similar to
the 2-dimensional case. We want to compute the separation line between two criti-
cal points that represents the currently smallest height difference. However, the spe-
cific graph structure of G in three dimensions challenges this computation. While the
’best’ extremum-saddle pair can be similarly computed as in Section 3.5.1, the effi-
cient computation of the ’best’ saddle-saddle pair is more intricate. In prior work by
Lewiner [Lew05], this resulted in a non-feasible running time, and by Gyualssy [Gyu08],
it induced a large memory consumption (Section 1.2). Algorithm 14 shows a memory
and running time efficient alternative. An illustration of it is given in Figure 3.11.

Algorithm 14 depicts the pseudo-code to compute the sequence V . The main struc-
ture is very similar to the 2-dimensional case: we construct the heap containing all
saddles with their weight, then, the simplification process starts. However, we need to
take care about the specific structure of the cell graph in three dimensions. There are
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(a) 0-separation lines. (b) Separation surface. (c) Local intersection.

Figure 3.11: Sketch of Algorithm 14. The descending manifolds of the 1-saddle (green
sphere) are the 0-separation lines that connect the saddle to the minima (blue sphere).
Firstly, the minimum-saddle pair with the smallest height difference is chosen. Sec-
ondly, the local intersection defined by the 1-saddle is computed. The ascending man-
ifolds (blue surface) is integrated in a preprocessing step. This separation surface ends
in 2-separation lines (red lines) that emanate from 2-saddles (yellow spheres). The 1-
separation lines that connect the 1-saddle with the 2-saddles are shown as green lines.
The right 2-saddle is connected twice with the 1-saddle. This saddle is therefore not a
valid candidate for a simplification. From the remaining 2-saddles and the two minima
the critical node is chosen that has the smallest weight with respect to the 1-saddle.

two types of saddles and the 1-separation lines can merge and split. Therefore, we need
to apply some modifications.

The heap construction is done by Algorithm 15 (line 2). In line 8, we compute
the current weight of a saddle c ∈C1∪C2 using Algorithm 16. This also involves the
computation of the 1-separation lines, which can merge and split. However, the sets
of links covered by these lines are nested with respect to the sequence V . Less and
less links get covered but no new links are added applying Equation (3.3) iteratively.
We can make use of this property by precomputing the set of links I describing the 1-

Algorithm 14 Sequence3D(G,V, f̃ )

Input: G = (N,E),V ⊂ E, f̃ : N→ R
Output: list of augmenting paths p, Vm ⊂ E / the hierarchy

1: p← /0 / initialize list of augmenting paths
2: h← InitHeap(G,V, f̃ ) / construct the heap
3: S← GetAllMani f olds(G,V,1,0) / integrate all descending separation surfaces
4: I← GetIntersection(G,V,S,1,0) / intersect them with the ascending surfaces
5: while h 6= /0 do / simplification process
6: (c,ω)← H.pop() / get the next saddle with its weight
7: if c ∈C1∪C2 then / is the node still critical
8: (s,ω)← GetMinWeight3D(G,V, I, f̃ ,c) / smallest height difference
9: (c̃, ω̃)← h.top() / get the next saddle with its weight

10: if ω ≤ ω̃ then / is the current weight smaller than the next one
11: V ←V 4 s / augment the matching
12: p.push(s) / save the augmenting path
13: else / defer the saddle
14: h.push(c,ω) / reinsert the saddle with its new weight
15: Vm←V / final matching
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separation lines in the initial gradient field V0 (lines 3 and 4) and use them as restriction
in the upcoming breadth-first searches. This reduces the traversals in the graph G to a
minimum.

Algorithm 15 InitHeap(G,V, f̃ )

Input: G = (N,E),V ⊂ E, f̃ : N→ R
Output: heap h / the heap (priority queue)

1: h← /0 / initialize
2: ∂1← BoundaryMatrix(G,V,0,0) / compute ∂1
3: ∂2← BoundaryMatrix(G,V,1,1) / compute ∂2
4: ∂3← BoundaryMatrix(G,V,1,2) / compute ∂3
5: for all c ∈C1∪C2 do / for each 1- and 2-saddle
6: {c0

k}← ∂1(c) / get 1-boundary of c (minima)
7: ω0←minu0∈{c0

k}
(

f̃ (c)− f̃ (u0)
)

/ compute the smallest height difference

8: h.push(c,ω0) / insert the saddle with the height difference in the heap
9: {c1

k}← ∂2(c) / get 2-boundary of c (1-saddles)
10: ω1←minu1∈{c1

k}
(

f̃ (c)− f̃ (u1)
)

/ compute the smallest height difference

11: h.push(c,ω1) / insert the saddle with the height difference in the heap
12: {c3

k}← ∂
−1
3 (c) / get 2-coboundary of c (maxima)

13: ω3←minu3∈{c3
k}
(

f̃ (u3)− f̃ (c)
)

/ compute the smallest height difference

14: h.push(c,ω3) / insert the saddle with the height difference in the heap

The construction of the heap h is done using Algorithm 15. We first compute the
boundary matrices ∂1 (line 2), ∂2 (line 3), and ∂3 (line 4). For each saddle c ∈C1∪C2,
we compute the adjacent neighboring critical points and push the saddle c with its
minimal height difference as weight ω in the heap h (lines 6-11). Note that c is inserted
multiple times in h. However, we always check in Algorithm 14 if the saddle was
already processed (line 5).

Algorithm 16 computes the separation line s with the smallest weight ω for a given
saddle c ∈C1∪C2 that allows for an augmentation of the combinatorial gradient field.
To do so, we first compute the separation lines connecting c to its adjacent extrema
using Algorithm 17. In case c ∈C1, the 0-separation line s0 representing the smallest
height difference ω0 is computed (line 1), and, in case c ∈ C2, the corresponding 2-
separation line s2 and its weight ω2 (line 2). Note that these two cases are disjunct due
to the layer of integration. The separation line is used as a preliminary augmenting path
(lines 3-6) unless we find a 1-separation line with a smaller weight.

The computation of the 1-separation line s1 with the smallest weight ω1 starts at
line 7. Firstly, the local intersection S is extracted from the global I (line 7). Given this
set of links, all adjacent saddles {c̃i} of c that are covered by S are collected (line 8).
Note that this set can be empty. For each of the adjacent saddles {c̃i}, we compute their
weights {ω̃i} as the height difference of c and c̃i (lines 9 and 10). We sort the saddles
in ascending order (line 11). In case there is an adjacent saddle c̃i with a smaller weight
than the saddle-extremum pair (line 13), we check if the connection between the two
saddles c and c̃i is unique using Algorithm 18 (line 14). If the connection is unique,
we have found the augmenting path s with the smallest weight ω (lines 15 and 16).
Otherwise we continue the iteration (line 12).

Algorithm 17 computes the 0- or 2-separation lines that connect a saddle c to its
adjacent extrema. This algorithm resembles the 2-dimensional analogue given in Al-
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Algorithm 16 GetMinWeight3D(G,V, I, f̃ , c)

Input: G = (N,E),V ⊂ E, I ⊂ E, f̃ : N→ R, c ∈C1∪C2

Output: s⊂ E, ω ∈ R / augmenting path and its weight
1: (s0,ω0)← GetPath3D(G,V, f̃ ,c,0) / best path to the minima
2: (s2,ω2)← GetPath3D(G,V, f̃ ,c,2) / best path to the maxima
3: if ω0 then / c is a 1-saddle
4: (s,ω)← (s0,ω0) / take the 0-separation line
5: else / c is a 2-saddle
6: (s,ω)← (s2,ω2) / take the 2-separation line
7: S← AlternatingRestrictedBFS(G,V, I,c) / integrate local intersection
8: {c̃i}← N(S)∩

(
C1∪C2

)
\{c} / get boundary critical nodes (saddles)

9: for ũ ∈ {c̃i} do / for each saddle of opposite index
10: ω̃i←

∣∣ f̃ (c)− f̃ (ũ)
∣∣ / compute height difference

11: (c̃i, ω̃i)← sort({c̃i, ω̃i},ascending) / sort saddles in ascending order
12: for (ũ, ω̃) ∈ (c̃i, ω̃i) do / for each saddle of opposite index
13: if ω̃ ≤ ω then / is the weight smaller than the one of the extremum
14: (s1, f lag)← IsUnique(G,V,S, ũ) / compute connections
15: if flag = true then / is there a single connection between the two saddles
16: (s,ω)← (s1, ω̃) / use this saddle-pair as simplification pair

gorithm 13. The separation line s of a saddle c is part of its descending ( j = 0) or
ascending manifold ( j = 2). In the first step, we compute the descending/ascending
manifold S of c (line 2). The critical nodes covered by the links S are the connected
extrema NS (line 3). A restricted breadth-first search applied to the extremum with the
smallest height difference (line 5) yields the corresponding separation line s. Note that
the 2-separation lines can end in non-critical bounding cells (line 3) similar as in the
2-dimensional case. In this case, they are virtual and no valid augmenting path; we
ignore these lines.

The unique 1-separation line that connects two saddles is computed in Algorithm 18.
Here we use a modified version of the restricted breadth-first search given in Algo-
rithm 2. The basic idea is to start a combinatorial streamline integration from a saddle
c̃ (line 2). The integration needs to be alternating with respect to V (line 7) but we
restrict it to the already integrated local set of 1-separation lines S (line 8). By design,
all 1-separation lines emanating from c̃ restricted to S must end in the saddle c. Hence,
we know there is more than one path connecting c̃ and c if we observe a split of a 1-
separation line. We can abort the integration in this case (lines 12-14). If the separation

Algorithm 17 GetPath3D(G,V, f̃ , c, j)

Input: G = (N,E),V ⊂ E, f̃ : N→ R, c ∈C1∪C2, j ∈ {0,2}
Output: s⊂ E, ω ∈ R / path and its weight

1: q← 1.5 j, s← /0, ω ← ∞ / initialize
2: S← GetMani f old(G,V,c, j) / integrate the two separation lines
3: NS← (N(S)∩Cq)∪{v2 ∈ N(S) : |

{
{v2,w3} ∈ E

}
|= 1} / get the end-nodes

4: if |NS|> 1 & NS∩Cq 6= /0 then / two different end-nodes, at least one is critical
5: (u,ω)←minũ∈NS∩Cq

∣∣ f̃ (c1)− f̃ (ũ)
∣∣ / smallest height difference, critical only

6: s← AlternatingRestrictedBFS(G,V,S,u) / get the sole separation line
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line is unique, there exists only a sole link to continue the integration (lines 9-11). The
integration stops if we get to a critical point – the saddle c (line 5).

Algorithm 18 IsUnique(G,V,S, c̃)

Input: G = (N,E),V ⊂ E,S⊂ E, c̃ ∈C1∪C2

Output: s⊂ E, unique ∈ {true, f alse} / unique augmenting path
1: s← /0, unique← true, Q← /0 / initialize
2: Q.push({c̃, f alse}) / integration starts with c̃, all incident links are unmatched
3: while Q 6= /0 do / breadth-first search
4: {u, f lag}← Q.pop() / next node and the corresponding link flag
5: if u ∈ (C1∪C2)\{c̃} then / we are done, found the other saddle
6: return
7: W ← AlternatingEdges(G,V,u, f lag) / get the next links for integration
8: W ← (W ∩S)\ s / restriction to local intersection, remove already visited links
9: if |W |= 1 then / integration can be uniquely continued

10: s← s∪{u,v} ∈W / add link to augmenting path
11: Q.push({v,¬ f lag}) / push next node with negated link flag
12: else / found a split of 1-separation lines
13: unique← f alse / no unique connection possible
14: return / abort

3.5.4 Performance Analysis

In the following, we provide a performance analysis for the computation of the se-
quence V including a complexity analysis for practical cases. The running time and
the memory consumption of our algorithm are measured for different kinds of data sets.
All measurements were done on an Intel Xeon E5530 2.4 GHz system.

Applying Algorithm 14 to different data sets, we observed that noise significantly
increased the running time. Therefore, we consider a random field as a practical worst
case. We measured the behavior of the simplification algorithm with increasing data
size for two different scalar fields. The first one is a uniform random field of size 2563

with a range [−0.5,0.5], from which we took nested subfields of dimensions 323, 643,
1283 and 2563. For each of the subfields, we computed the complete sequence V using
Algorithm 14. The second field is a signed distance field of a microporous structure. In
the same way as for the random field, we have chosen a nested sequence of subfields.
Figure 3.12 shows in logarithmic scaling the running time and memory consumption
for both sequences.

Computational Complexity

The computational complexity heavily depends on the topological complexity of the
input data: the number of critical points and their connectivity. Both are a priori not
know. Especially, the 1-separation lines are crucial. Such lines could be space filling,
i.e., the lines cover the entire combinatorial separation surfaces which themselves can
cover the entire domain, and their computation is no longer of the complexity of a line-
integration but of a volume-integration. The design of a function with such kind of
space-filling curves is a non-trivial task. However, most of the input data are well de-
fined avoiding such behavior. In the following, we provide an analysis of Algorithm 14
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for typical non-degenerated input data. The number of vertices of the complex X is
denoted by n.

Neglecting degenerated cases, the complexity should be at most O(n5/3); in prac-
tice it seems to be lower.

Algorithm 14 initially computes all combinatorial separation surfaces of the 2-
saddles (line 3) avoiding multiple traversals of the links. A reasonable upper bound
for the size of a surface is n2/3. Since the integration is done for all 2-saddles, the com-
putation of the combinatorial surfaces is of complexity O(|C2|n2/3) ⊂ O(n5/3) with
|C2| denoting the number of 2-saddles.

The computation of the 1-separation lines is restricted to the separation surfaces
S, and each link in S is only traversed once (Algorithm 4, line 4). According to Sec-
tion 3.4.3, the complexity of Algorithm 4 is O(|I|)⊂ O(|S|)⊂ O(n2/3).

The crucial part in Algorithm 14 is the while-loop (line 5). The heap h consists
of all saddles. Each saddle is inserted with its ’best’ minimum, opposite saddle, and
maximum. Hence, the size of h is bounded by const c with c denoting the number of 1-
and 2-saddles. In line 10, the weight of the current saddle is checked whether it is the
currently smallest weight. In the worst case, all saddles are deferred, and every time
we need to iterate over the complete heap h to find the pair with the smallest height
difference. In practical cases, however, only const c-operations are needed to do so.

In Algorithm 16, the pair that represents the smallest height difference is com-
puted. Algorithm 17 computes the 0- or 2-separation line connecting the saddle to the
extrema. In practical cases, those lines are not space filling and their integration is a
line-integration of complexity O(n1/3).

The computation of the 1-separation lines, on the other hand, is more intricate.
The local intersection is extracted from the global set of links I. Considering non-
degenerated cases, the separation surfaces are not space filling. However, noise in
the input data may create surface-filling 1-separation lines that often merge and split.
An upper bound is therefore n2/3. Each link is only traversed once (Algorithm 18).
Therefore, the practical complexity of Algorithm 16 is O(n2/3).

In summary, the practical complexity to compute the hierarchy is:
O(|S|+ |I|+ cn2/3) ⊂ O(n5/3 + n+ cn2/3) ⊂ O(n5/3). We want to note that the the-
oretical worst-case complexity is O(n3) due to the possible saddle-deferring in the
while-loop.

While we observed the practical complexity for the artificial random field, we ob-
served almost linear running time for the distance function (see Figure 3.12a). This
indicates that the 1-separation lines are well distributed on well-defined data.

Memory Consumption

The following analysis of the memory consumption is given for a cubical complex, i.e.,
the degree of the nodes N in G is constant.

For the construction of the sequence, a Boolean vector, whose size is given by the
number of links in G, is needed to represent the current matching. The number of
nodes in the cell graph is eight times the number of vertices in the input grid. The
number of links in G is therefore bounded by 24 times the number of vertices. Since
the size of a Boolean is 1/32th of a single precision number, we need a factor of 0.75
of the input data to represent the matching. Three additional Boolean vectors of size
|N| are needed: the surface integration, its intersection, and the node matching. The
total factor is therefore 1.5 of the input data.
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(a) Running time. (b) Memory consumption.

Figure 3.12: Performance of Algorithm 14. The red solid lines show the running time
and the memory consumption for a uniform random field, the blue solid line for a dis-
tance field. The axes are shown in a loglog-scale. The full sequence V was measured
in all cases. The black dotted lines indicate a complexity of O(n) and O(n5/3).

Robins et al. [RWS11] proved that the critical points are in a 1-1 correspondence to
the topological changes in the lower level sets. Since (3.3) only decreases the number
of critical nodes, the size of the heap is given by the number of critical nodes in the
input field. In practice, there are much fewer critical nodes than regular nodes. Hence,
the size of the h is negligible. Note that only the scalar values for these critical points
need to be stored. They define the weight of an augmenting path.

The theoretical maximal memory consumption for separation surfaces is bounded
by the number of 1- and 2-nodes in G. Space filling surfaces, however, do not appear
in practice, and this bound is much lower, in general. Hence, the relative amount
of memory needed by Algorithm 14 is constant which is substantiated by the results
shown in Figure 3.12b.

3.5.5 Properties of the Hierarchization

In the following, we discuss three properties of the hierarchization process. These
properties especially occur in the 3-dimensional case.

Optimality. The overall goal of Section 3.5 is the computation of a sequence V such
that the topological complexity – the number of critical nodes – within V is decreasing
and the last element Vm ∈V contains the minimal number of critical nodes based on the
Morse inequalities (2.6). While this is possible in polynomial time for 2-dimensional
complexes that are manifold-like as shown by Lewiner et al. [LLT03], the general prob-
lem turns out to be NP-complete. This result was proven by Joswig and Pfetsch [JP06]:

Theorem 7 Given a simplicial complex X and a nonnegative integer k, it is strongly
NP-complete to decide whether there exists a Morse matching with at most k critical
faces, even if X is connected, pure, 2-dimensional, and can be embedded in R3.

Algorithm 14 therefore ends with a non-optimal Morse matching, in general. In
practice, this results in the fact that no unique augmenting paths can be found any-
more. Therefore, the final matching Vm contains more critical nodes than the Morse
inequalities demand, in general.
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(a) Subgraph of G with links
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(b) Multiple paths (blue)
between two saddles.
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(c) Unique path (blue) after
two augmentations (red).

Figure 3.13: Depiction of a combinatorial gradient field in a subgraph of G connecting
2-saddles (yellow) and 1-saddles (green). The critical nodes are labeled with their
assigned scalar value. The links of the matching are depicted as black solid lines.

Monotony. The construction of the sequence V is based on the heuristic that we want
to remove the currently smallest fluctuation in the data. The pair of critical nodes that is
connected by the augmenting path pi should have the smallest height difference of all
possible pairs. Applying the simplification process iteratively, the height difference of
critical nodes should therefore increase monotonically, and, hence, the weights of the
augmenting paths as well. While this is the case for the 2-dimensional case, this cannot
be expected in a 3-dimensional cell graph due to its specific structure, as explained in
the following.

Due to the degree of the 1- and 2-nodes, the 1-separation lines can merge and split.
Consider a subgraph of G with different saddle-saddle pairs as shown in Figure 3.13a.
Assume that the central pair represents the smallest height difference (ω = 1) and that
the yellow saddle popped out first from the heap h in Algortihm 14. However, this pair
cannot be augmented since there are three paths connecting them, see Figure 3.13b.
The yellow saddle is deferred with a greater weight given by its adjacent extrema. In
the next steps, other saddle pairs are augmented with a greater weight (ω = 2), see
Figure 3.13c. Parts of the corresponding augmenting paths, however, share links with

(a) g (b) Small amount of noise. (c) Large amount of noise.

Figure 3.14: Graph of the weights of the augmenting paths. (a) shows the weights
of augmentations for the artificial function g (3.1) over the number of augmentations.
The weights behave monotonically increasing. The monotony is broken in (b) where a
small amount of noise is added to g. The number of monotony breaks further increases
if the level of noise is increased (c).
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(a) Subgraph of G with links of index 1 only.

(b) Changed connectivity.

Figure 3.15: Illustration of the connectivity change due to a saddle-saddle simplifica-
tion. Shown is a subgraph of G connecting 2-saddles (yellow) and 1-saddles (green).
The links of the matching are depicted as black solid lines. The blue line in (a) depicts
an augmenting path. After the augmentation, the connectivity of the saddles (red lines)
completely changed (b).

the paths connecting the central pair. Due to the augmentations, the orientation of the
links is changed, and the central pair is suddenly uniquely connected. If the central yel-
low saddle is now next in line, the breadth-first search in Algorithm 18 determines the
central green saddle as partner with the smallest height difference (ω = 1). Since the
connection between them is now unique, the path allows for an augmentation. How-
ever, the weight of the augmentation is smaller than in the prior operations.

In practice, the breaks of monotony in the weight sequence are caused by noise.
The perturbations introduced by it force the 1-separation lines to short split-merge se-
quences as depicted in Figure 3.13b. To analyze this behavior, we sampled the artificial
function g (3.1) on an 1283 grid and added two levels of uniform noise to it. Figure 3.14
shows the results. The 1-separation lines in the pure function g are well distributed. No
deferring of saddles in the above sense can be observed. The weights of the augmenting
paths are monotonically increasing, see Figure 3.14a. However, adding a small amount
of noise in the range of [−0.5,0.5] results in 12 monotony breaks, see Figure 3.14b. If
we add noise in the range of [−1,1], the number of breaks increases further to 59, see
Figure 3.14c. This indicates that the level of noise heavily influences the number of
splits in the 1-separation lines.

Given an element Vk of V , this element might contain spurious pairs of critical
nodes, i.e., pairs that have a height difference smaller than the chosen minimal height.
However, investigating the graph of the augmentation weights as shown in Figure 3.14
gives an impression about the strength of the breaks and which level might be appro-
priate.

Connectivity. A simplification of a saddle-saddle pair can completely change the
connectivity of the adjacent saddles. Figure 3.15 depicts an exemplarily situation. It
may happen that the 1-separation lines of multiple 2-saddles merge and share sev-
eral links before they split again and end in 1-saddles, see Figure 3.15a. The 1-
streamline described by the shared links is in some sense a narrow one-way street.
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(a) V0 (b) Vm−13 (c) Vm−4

Figure 3.16: Illustration of different levels of details of V of the analytic function
g (3.1). Minima, 1-saddles, 2-saddles and maxima are depicted as blue, green, yellow
and red spheres, respectively. The p-separation lines are shown as blue (p = 0), green
(p = 1) and red (p = 2) lines. The isosurface (grey) in (c) illustrates the most dominant
minima and maxima regions. The hierarchy consists of 207 levels.

All 1-streamlines on the left side of this one-way street must cross it to enter the right
side1.

However, simplifying the gradient field along one of the 1-separation lines (the
blue line in Figure 3.15a) changes the connectivity of the saddles. Before the simplifi-
cation, all 2-saddles (yellow) were connected to the 1-saddles (green) on the right side.
Only the central 2-saddle was also connected to the 1-saddles on the left side. After
the simplification, none of the remaining 2-saddles is connected to the right 1-saddles
anymore, see Figure 3.15b. There is no 1-separation line connecting them. All of them
are now connected to the 1-saddles on the left side, which were not in their boundary
before, see Figure 3.15b.

Due to this property, it is necessary to recompute the (co)boundary information of a
saddle when it comes out of the heap. Previous simplification steps may have changed
its connectivity – even if this saddle was not directly involved. An explicit storage
of the connectivity of the critical points (as in [Gyu08]) is therefore also algorithmic
challenging. After every simplification step, the boundary information of all critical
points must be updated: new pairs are created but old pairs must also be removed.
In our graph theoretical setting, this is implicitly done. Specific data structures are
therefore not necessary. We want to note that this behavior cannot occur in the saddle-
extremum case due to the specific cell structure (Section 3.2.4). Saddles can only be
added to the (co)boundary of an extremum during an augmentation; a removal is only
possible if they take part in a simplification.

3.5.6 3D Examples
In the following, we present some examples to illustrate the running time Algorithm 14.
The experiments were done on an Intel Core i7-2720QM CPU with 16 GB RAM. Table
3.5 shows the running time for different 3-dimensional data sets of varying dimensions
and topological complexity. Besides computing the complete sequence V , it is in some
cases sufficient to compute only a subsequence of V in order to remove only the most

1This also indicates why the overall complexity for the computation of the Morse-Smale complex is
quadratic. In the worst case, all 2-saddles are connected to all 1-saddles.
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Data Set Neghip Hydrogen Aneusrism Beetle Benzene Synthetic
(Size) (643) (1283) (2563) (4162×247) (4013) (10243)
V5% 3s 26s 5m 01s 8m 03s 10m 20s 173m 50s

(Size) 2’804 12’103 27’516 236’317 87 167
V 3s 27s 7m 04s 8m 45s 10m 22s 174m 50s

(Size) 2’852 12’107 37’476 248’243 118 207

Table 3.5: Running times of Algorithm 14. The first and second rows show the running
times for the computation as well as the number of levels of a 5% and a complete
simplification, respectively.

spurious/noisy topological structures. Therefore, we also give the computation time
of Algorithm 14 for a 5% simplification, i.e., until the weight of the last augmenting
path corresponds to 5% of the data range. The size of the sequence, i.e., the number
of levels of detail, is given as well. Figure 3.16 shows the separation lines for different
levels of detail of the synthetic example g, see Equation (3.1). The running time is also
given in Table 3.5.

The construction time of V for the complex aneurism data set was approximately 7
minutes, which correlates to the work of Gyulassy et al. [GBPH11] with a reasonable
valence parameter. The aneurism shows also that the topological complexity of the
input data influences the running time of Algorithm 14. While for simple data sets as
the neghip, the hydrogen, or even the stagbeetle almost no difference can be observed
in the running times between the subsequence V5% and V , the running time increases
by 40% for the aneurism.
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Chapter 4

Quantification of Critical Points

In the previous chapter, we presented algorithms to compute a sequence V of combi-
natorial gradient fields and an explicit representation of the implicitly encoded Morse-
Smale complex. The sequence also allows for a differentiation of spurious and domi-
nant critical points. However, the computation of the sequence is based on the assump-
tion that two critical points are connected by a unique separation line. As shown by
Joswig and Pfetscher [JP06], not all critical points can be paired in this way. In fact,
this is an NP-complete task in Forman’s combinatorial setting, in general.

Edelsbrunner et al. [ELZ02] introduced the concept of persistent homology (Sec-
tion 4.1). In contrast to the homotopic operations in Forman’s combinatorial setting,
this theory investigates the homological changes of the lower-level sets. In particular,
persistent homology has drawn much attention since it robustly extracts the topological
structure of the data.

The main idea of the persistence algorithm is to create the boundary matrices ∂k
of the cell complex C as defined in Section 2.4. A matrix reduction, i.e., a Gaussian
elimination, performs a pairing of the cells such that the birth and deaths of homolog-
ical features are described by pairs of cells. Those cells are exactly the critical points
describing the homological changes in the lower-level sets. The strength of these ho-
mological features is assessed by the importance measure persistence, which can be
directly read from the reduced matrix. Similar as the sequence V , persistence allows
for a differentiation of spurious and dominant critical points. However, all critical
points are paired1 in contrast to the homotopic approach described in Section 3.5. This
enables a finer differentiation of the critical points.

In the context of computing persistence of 3-dimensional images, which are of-
ten noisy due to inaccuracy of the acquisition process, algorithms with good practical
running times have been proposed [CK11b] for exact computation, see Section 4.2.
However, exact computation of persistence, especially for large 3-dimensional image
data, remains a challenging problem due to huge memory requirements.

Forman’s discrete Morse theory [For98b, For01] allows us to reduce data in a way
which preserves its topological structure. This representation of the data – the Morse-
Smale complex – is much more compact but still contains all the necessary topological
information for persistent homology computation.

Inspired by the work of Robins et al. [RWS11], we use discrete Morse theory to
compute persistent homology. The strategy introduced in Section 4.3 allows for an

1Persistence pairs all cell of a cell complex except those representing its topology. However, the concept
of extended persistence [CSEH09] can be used to also pair those cells.
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f(x4)

f(x1)

f(x2)

f(x3)

f(x)

xx1 x2 x3 x4

Figure 4.1: Persistent homology of a 1D function f (x). The persistence pairs consist of
(x1,x4) and (x3,x2). The persistence of x1 and x4 is therefore given by f (x4)− f (x1),
while the persistence of x2 and x3 is given by f (x2)− f (x3).

output-sensitive computation of persistence with a complexity of O(cn+ c3) with n
denoting the size of the input and c the number of critical points within. While the
original, algebraic algorithm [ELZ02] needs O(n3), the currently best persistence al-
gorithm [MMS11] needs O(nω) with ω = 2.376. However, the number of critical
points is much lower than the size of the input in many practical cases. Hence, an
output-sensitive algorithm is preferable.

Our approach also allows for a memory-efficient computation of persistent homol-
ogy of large 3-dimensional images. For example, we only need about 14 GB of mem-
ory for a data set of size 1120×1131×1552, in contrast to the 500 GB that would be
necessary using standard algebraic algorithms. Additionally, it enables a parallel com-
putation on commodity hardware. The presented strategy is based on the published
works [GRWH11, GRWH12].

After describing the computation of persistent homology, we discuss in Section 4.4
the relationship between persistence and the simplification process presented in Sec-
tion 3.5. Although both concepts may yield the same hierarchy in two dimensions, this
is no longer the case in higher dimensions.

Section 4.5 is devoted to an application of persistent homology. We compute cor-
respondences between persistent feature points on near-isometric surfaces. In general,
the search space of intrinsic correspondences between two surfaces is too large to be
computationally tractable. Therefore, we use persistence to reduce the search space
by extracting distinctive features from both surfaces. Such features typically also have
the benefit of being more reliable to match because of their distinctiveness. Thus, the
search space is reduced in a strategic way.

We present a conceptually direct and simple algorithmic pipeline that is able to
match accurately feature points between two near-isometric surfaces. The pipeline con-
sists of established components that enables a straight-forward implementation. This
application of persistent homology is based on the work [YGW+12].
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4.1 Persistent Homology

Before we introduce persistent homology, we want to recapitulate how our input is
given. The input function f : Ω→ R only defines scalar values to the 0-cells of the
induced cell complex X . As described in Section 3.3, we extend f to all cells by the
lower-star filtration: each cell is assigned the maximum function value of the vertices
it contains. A filtration of the complex X with respect to f is given by the sub-level set
X t = f−1(−∞, t] with X t ⊆ X s for t ≤ s. Imagine that we start with an empty complex
and at each step of the filtration one or more cells are added.

We now give a basic intuition behind homology and persistent homology. We fol-
low here the works of Edelsbrunner et al. [ELZ02, EH10]. For our purposes, we can say
that homology detects topological features: connected components, tunnels, and voids
for a fixed thresholding (sub-level set) of a scalar function f . Persistent homology, in
turn, describes the evolution of topological features looking at consecutive thresholds.

For a 1-dimensional function f as shown in Figure 4.1, this measure can be de-
fined by considering the number of components of the sub-level sets. As t increases
the number of components in X t changes: when t passes the value of a local minimum
a component is born, while two components merge when t passes the value of a lo-
cal maximum. In this case, the maximum is paired with the larger minimum of the
two merged components. The persistence of the paired critical points is given as the
difference of their function values.

More precisely, given a complex X and a filtering function f : X → R, persistent
homology studies homological changes of the sub-level complexes, X t = f−1(−∞, t].
Persistent homology captures the birth and death times of homology classes of the sub-
level complexes, as the threshold t grows from −∞ to +∞. By birth, we mean that
a homology feature comes into being; by death, we mean it either becomes trivial or
becomes identical to some other class born earlier. The persistence, or lifetime of a
class, is the difference between its death and birth times. Homology classes with larger
persistence reveal information about the global structure of the space X , described by
the function f . The persistent homology groups are formally given as follows:

Consider two elements of the filtration: X t and X t+p. To define the persistent
homology groups, we need to factor the k-th cycles Zt

k of X t by the k-th boundaries
Bt+p

k of X t+p. The p-th persistent k-th homology group of a filtration element X t is
given by

Ht,p
k = Zt

k/(B
t+p
k ∩Zt

k). (4.1)

Loosely speaking, the elements of Ht,p
k are those cycles in X t that do not become

boundaries for at least p steps. The rank of Ht,p
k denotes the k-th persistent Betti Num-

ber β
t,p
k of X t .

The overall output of the persistence computation is the list of persistence pairs of
the form (birth, death). This information can be visualized in different ways. One well-
accepted idea is the persistence diagram [CSEH07], which is a set of points in a two-
dimensional plane, each corresponding to a persistent homology class. The coordinates
of such a point are the birth and death times of the related class. An example is given
in Figure 4.2b in Section 4.3.1.

An important justification of the usage of persistence is the stability theorem. Cohen-
Steiner et al. [CSEH07] proved that for any two filtering functions f and g, the differ-
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ence of their persistence is always upperbounded by the L∞-norm of their difference:

‖ f −g‖∞ := max
x∈X
| f (x)−g(x)|. (4.2)

This enables robust estimation of how persistence is affected by perturbation of the
input. For instance, adding noise to a function changes its persistence diagram only by
the noise amplitude. Also, this guarantees that persistence can be used as a signature.
Whenever two persistence outputs are essentially different, we know that the functions
are definitely different.

4.2 Related Work on Persistent Homology

In the following, we give an overview of previous work on computing persistence. For
general applications of persistence see [EH10]; for applications in the context of image
data, see [BEK10, MW10, RKG+11].

The standard, algebraic algorithm [ELZ02, EH10] for persistence has cubic running
time in the size of the input. While an example was constructed by Morozov [Mor05],
showing that this pessimistic estimation can actually occur, the behavior of this algo-
rithm is only slightly super-linear in practical situations [CK11b].

When focusing on 0-dimensional homology, union-find data structures can be used
to compute persistence in time O(nα(n)) [EH10], where α is the inverse of the Acker-
mann functions and n is the input size.

Milosavljevic et al. [MMS11] computed persistent homology in matrix multipli-
cation time O(nω) where the currently best estimation of ω is 2.376. Chen and Ker-
ber [CK11a] proposed a randomized algorithm to compute only pairs with persistence
above a chosen threshold. Despite showing better theoretical complexity, it is unclear
whether these methods are better than the standard persistence algorithm, in practice.

A recent variation of the standard algebraic algorithm [EH10], called killing, intro-
duced by Chen and Kerber [CK11b] significantly reduces the amount of computations.
This idea was also used in [WCV12], to compute persistence for n−dimensional im-
ages.

In general, purely algebraic methods suffer from high memory requirements. For
example, consider a data set of size 1120×1131×1552. The standard, algebraic persis-
tence algorithms [ELZ02, MMS11, CK11b, WCV12] work on the boundary matrices
∂k of the cell complex C as introduced in Section 2.1. Since all cells of C are consid-
ered, we can compute the memory consumption exactly neglecting boundary effects.
Assuming a sparse representation of the boundary matrix ∂k : nk×nk−1→ {0,1}, the
amount of its memory is given by

3

∑
k=1

8 |∂k|+16nk (4.3)

where |∂k| denotes the number of matrix entries and nk the number of k-dimensional
cells. Applying formula (4.3) to our example results in about 500 GB of memory,
which cannot be processed on commodity hardware. Note that Equation (4.3) does not
depend on the topological complexity but only on the data size.

In our approach, we alleviate this effect by reducing the size of data.
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4.3 Computation of Persistent Homology

While algorithms with good practical running times have been proposed [CK11b], ex-
act computation of persistence for large 3-dimensional image data remains a challeng-
ing problem due to huge memory requirements.

However, Forman proves that the homology of the cell complex C is always iso-
morphic to the homology of the Morse-Smale complex CM [For98b]. If the critical
nodes contained in the combinatorial gradient field V correspond 1-1 to the topological
changes in the sub-level complexes, then the persistent homology of C coincides with
the persistent homology of CM [RWS11].

Lewiner [Lew05] conjectured already that persistence could be efficiently com-
puted using discrete Morse theory. The first algorithmic approach was done by Robins
et al. [RWS11]. However, their algorithm to compute the Morse-Smale complex has
cubic running time. Inspired by their works, we use discrete Morse theory to compute
persistent homology based on the Morse-Smale complex. We greatly benefit herein
from the optimal complexity in the Morse-Smale complex computation (Section 3.4.3).

To compute persistence, we first compute the boundary matrices ∂k using Algo-
rithm 7. As discussed in Section 3.4, the computational complexity of our Algorithm 7
is O(cn) ⊆ O(n2) with c denoting the number of critical points and n the number of
vertices in a cubical complex C.

Then, we use the standard, algebraic algorithm [EH10] with a modification by Chen
and Kerber [CK11b]. This algorithm operates on a boundary matrix ∂k of the cubical
complex C representing the input data. The performance modification introduced by
Chen and Kerber significantly reduces the amount of computations, in practice. It
exploits the fact that cells being the creators of homology classes are zeroed in the
reduced matrix. By reordering the computations (starting from higher dimensional
cells), one first computes the killer cells. At this point the associated creator is also
known, so its column can be zeroed avoiding any computation. A reduced matrix
is computed, from which the list of persistent pairs, as defined in Section 4.1, can be
easily read. The modification does not improve the worst-case complexity, which is still
O(n3). But the authors of the paper show that in practical situations this modification
reduces running time by an order of magnitude. We refer the reader to [CK11b] for
more details.

In contrast to previous work in computing persistence [CK11b, WCV12], we apply
the matrix reduction algorithm to the Morse-Smale complex CM instead of the initial
cubical complex C. Since CM is much smaller than C in typical situations, storing the
boundary matrices consumes significantly less memory (see Table 4.1).

The computational complexity for the matrix reduction algorithm, which we use
to compute the persistent homology, is O(c2 n logn) in the case of cubical complexes.
Since we apply it to the Morse-Smale complex, the complexity reduces to O(c3). It
solely depends on the topological complexity of the input data. Including the Morse-
Smale complex computation, the complete complexity for our algorithm is therefore
O(cn+ c3).

4.3.1 3D Examples

In the following, we present some examples to illustrate our method. All experiments
were performed on a machine with two Intel Xeon E5645 CPUs, which provide 12
physical and 24 logical cores, and 24 GB RAM.
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(a) Narrow points of a Chaperon protein.

−1.35 66.56
−1.35

66.56

(b) Persistence diagram

Figure 4.2: Distance field of a Chaperon protein. An isosurface of a distance field,
computed from a protein, as gray transparent surface is shown in image a). The maxima
and the 2-saddles are shown as red and yellow spheres, respectively. Each sphere
is scaled by its persistence. Image b) shows the persistence diagram of the data set
containing all dimensions. The axes denote the data range of the distance field.

Table 4.1 shows the running time and memory consumption for different 3-dimen-
sional image data sets provided by [GGK, Bar, Röt]. We measured the total memory
usage of our method with one and 24 cores. We also included the memory consumption
and running times of a very efficient persistence method [WCV12] working on the
boundary matrices of the initial cubical complex. Note that a further comparison to
other techniques is also given in [WCV12].

The total memory consumption of our method is up to a factor of 30 less than us-
ing the persistence approach of Wagner et al. [WCV12]. In practice, the Morse-Smale
complex CM is much smaller than the cubical complex C. This enables the persis-
tence computation of large data. The memory overhead for the parallel computation is
neglectable.

In general, the running times depend on the number of critical points and their
connectivity, as can be seen for instance at the Xmas-Present example. In contrast to
the other examples, we only observe a speed-up factor of three using a parallel com-
putation. This indicates that the columns in the boundary matrix are very entangled
which increases its reduction time. However, using the Morse-Smale complex to com-
pute persistent homology decreases enormously the running time for the Xmas-Present
compared to the timings using the complete cell complex. The running times for the
other examples are similar to the timings of Wagner et al. [WCV12] using a single
threaded computation. However, all examples benefit from a parallel computation. We
observe a speedup factor of up to ten in our current implementation using 12 physical
cores.
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To investigate the behavior of Algorithm 7 for noisy data, we sampled pure uni-
form noise in the range of [0,1] on a uniform 2563 grid. While the cell complex con-
sists of about 108 nodes, its gradient field contains only about 107 critical points. Even
in the case of pure noise, the majority of nodes in G are non-critical nodes, which
yields a reasonable memory consumption of a factor 2 less than the approach of Wag-
ner et al. [WCV12]. Due to the large number of critical points and the absence of
large scale structures, the corresponding separatrices are relatively small and well dis-
tributed. Hence, they can be efficiently integrated. The timings as well as the memory
consumption are also given in Table 4.1.

We applied our method to a distance field, computed from a Chaperone protein,
shown in Figure 4.2. The objective is the extraction of the maxima and 2-saddles.
While the maxima represent the points with the greatest distance to the atoms, the
2-saddles correspond to the narrow points of the field: they define the minimal size
of an atom to enter the molecule from the outside. The data set is of dimension
1120× 1131× 1552 and contains 1’766’615 critical points. The approach of Wag-
ner et al. [WCV12] computation would theoretically require about 500 GB memory.
Our approach, in contrast, only requires about 14 GB even using multiple cores, and
can thereby be applied on commodity hardware. The total running time as well as the
memory consumption for this example are shown in the last row of Table 4.1.

4.3.2 Discussion
We presented an algorithmic strategy for a memory- and running time-efficient persis-
tent homology computation. Our strategy combines many useful properties:

1. The overall complexity for the persistence computation is O(cn+ c3).

2. The computation of persistence using the Morse-Smale complex requires signif-
icantly less memory.

There are some limitations of our approach:

1. Extending our techniques to more general inputs such as simplicial complexes
is possible, but would result in high memory-usage – we heavily exploit the
compact representation of the initial, cubical complex.

2. Our current method is limited up to three dimensions.

3. Using the single-threaded version, our current implementation can be consider-
ably slower than the algebraic approach for medium-sized data.

Despite these drawbacks, we believe that our method enables the application of
persistent homology in new fields. Our current implementation can already be used to
analyze very large, complex data sets.

It would be also interesting to see how our proposed algorithm scales for higher di-
mensional data (see limitation 2). The challenging part is thereby that the combinatorial
gradient field may contain extra spurious critical points in contrast to the 3-dimensional
case [RWS11].

A fundamental question, which is still an open problem in the literature, is the rela-
tion of the topological complexity of a given input data and the persistence computation
times (see limitation 3). Since matrix reduction is a global operation, the structure of
the underlying Morse-Smale complex is crucial. This structure also depends on the
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imaging process and the data format. For instance, the aneurysm and bonsai data are
given as 8-bit integer while the prone and supine data are 16-bit integer CT scans. This
may also contribute to the different timings shown in Table 4.1.
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4.4 Topological Simplification and Persistence

In the following, we briefly discuss the relationship between persistence and topologi-
cal simplification to create a sequence of combinatorial gradient fields V = (Vi)i=0...m
as introduced in Section 3.5. We focus here on the 3-dimensional case.

Topologically simplifying a combinatorial gradient field V means to reduce the
number of its critical points in order to create different levels of detail of the input
function f . All fine-grained topological features are present in the initial gradient field
V , while the last level contains only the dominant topological features of the scalar
field f .

Such a hierarchy can be obtained by increasing the set of links in V without in-
troducing any closed p-streamlines as discussed in Section 3.5. Consider two crit-
ical points up and wp+1 in a cell graph G = (N,E) that are connected by a unique
p-separation line q. This line is given as a sequence of alternating links that belong
either to E \V or V . Taking the symmetric difference Ṽ = V 4 q yields a new com-
binatorial gradient field Ṽ with an increased set of links where up and wp+1 are not
critical anymore, i.e., the links incident to these points are now matched. Note that this
operation does not create any cycles as long as there is a unique path connecting the
two critical points [For98b].

The symmetric difference not only removes two critical points from a combina-
torial gradient field, it also increases the length/area of the affected separatrices. The
extremum-saddle simplification (sb,m) in the top row of Figure 4.3 yields a merge of
the separation lines `1, `2 with `a: the length of `a is increased while `1 and `2 are
removed. The saddle-saddle simplification (s,sb) in the lower row of Figure 4.3, on the
other hand, increases the area of the separation surface Sa: the surface Sb merges into
Sa.

sasb m
`a`1`2

before after

sa

`a

ssa

Sa

sb

Sb

sa

Sa

Figure 4.3: Simplification increases the length (top row) and area (bottom row) of
affected separation lines and surfaces. Shown are the topological structures before
(left) and after (right) a simplification.
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(a) Initial Level (b) Coarsest Level

Figure 4.4: Persistence-based simplification. Shown are the extremal structures of the
initial field V0 (left) and the final field Vm (right), which still contains critical points.
Gray isosurfaces illustrate the underlying synthetic function.

A hierarchy of combinatorial gradient fields (Vi)i=0...m could be obtained by it-
eratively taking the symmetric difference with respect to the persistence pairs (Sec-
tion 4.1). However, this symmetric difference does not necessarily yield a combina-
torial gradient field where upcoming persistence pairs can be canceled in the sense of
Forman, as extensively discussed by Bauer et al. [Bau11, BLW12]: a necessary prop-
erty to reduce the number of critical points in the sense of Forman is collapsibility of a
discrete Morse function, but this is not always given for a generic 3-dimensional Morse
function.

The above theoretical argument results, in practice, in the following situation: when
creating a hierarchy in the order of the persistence pairs, one arrives rather early in a
deadlock where a unique separation line between two paired critical points does not
exist. An artificial example is shown in Figure 4.4. The input function consists of 129
critical points. However, only the first 32 persistence pairs could be removed using the
symmetric difference. The coarsest representation of the input function still contains
65 critical points. In fact, it follows from Joswig et al. [JP06] that it is an NP-hard
problem to pair critical points such that Vm contains the minimal number of critical
points, which itself is given by the topology of the domain (for a uniform lattice as
shown in Figure 4.4 this is a sole minimum).

However, Dey et al. [DLL+10] prove that the pairs of critical points created by the
simplification as described in Section 3.5 coincide with the persistence pairs for the
special case of a 2-dimensional Morse functions given on a smooth manifold. This
relation motivates the greedy approach in Algorithm 14 for the 3-dimensional case.

In practice, we found that the greedy approach is able to pair more critical points
than a persistence-based simplification. In the above example (cf. Figure 4.4) all critical
points could be paired with the greedy approach, and a sole minimum remains in Vm.
The greedy approach leads to longer separation lines and larger separation surfaces in
the coarsest level of the hierarchy. The coarsest level using the persistence pairing, on
the other hand, may contain a large number of unimportant critical points.
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Figure 4.5: Matching results for different models, where correspondences are shown
in the same color and connected by a line.

4.5 Application: Feature Point Correspondences

In the following, we present an application of persistent homology.
We can use persistence to find correspondences of persistent feature points on near-

isometric surfaces. To effectively match feature points, they should not only be distinc-
tive, but also intuitive and visually meaningful. This is important in visually evaluating
correspondence quality on real data, where no ground truth correspondence is available
for numerical evaluation, because dense matches derived from reliable sparse matches
will degrade in accuracy as their distance increases from the set of reliable matches.
Features should be derived from local surface properties, to allow for partial matches
and incomplete surfaces. They should capture surface properties that depend only on
the intrinsic geometry of the surface.

We can get a set of points with these properties from Gaussian curvature [Gau28].
For isometric surfaces, the Gaussian curvatures are identical. Therefore, the minima
and maxima of Gaussian curvature fields are a good candidate set for feature points.
However, Gaussian curvature is greatly affected by noise. This results in minima and
maxima of which only a small subset describe meaningful features. A robust way to
separate spurious minima and maxima from the important ones is by means of persis-
tent homology. We leverage this power of persistence to extract reliable feature sets. In
contrast to recently proposed techniques [SOG09], our features are efficient to compute
and direct, not requiring a multi-resolution structure.

In the following, we present a pipeline for feature point correspondence between
two surfaces and present straightforward applications of our pipeline to feature tracking
in time-varying data and dense correspondence computation, thereby demonstrating
stability and accuracy of our pipeline. We further demonstrate the effectiveness of our
method by a thorough evaluation on synthetic data with noise, holes and major missing
parts, and on real data. A gallery of some exemplarily results is given in Figure 4.5.
The following section is based on the work [YGW+12].

4.5.1 Related Work on Shape Matching

There are many recent works on feature extraction and surface correspondence, so for
conciseness we will only review the most relevant here. For a more exhaustive compar-
ison of correspondence methods, we refer the reader to a recent survey [vKZHCO11]
and a recent competition [BBC+10].
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Feature Extraction: Given a set of features on each surface, this reduces the search
space for correspondences. Given feature correspondences, we can compute dense
matches using seed growing [SHCB11] or front propagation [TM10].

The Heat Kernel Signature (HKS) [SOG09] organizes information about the intrin-
sic geometry of a shape in a multi-scale way that is stable under perturbations of the
shape. Hence, it is an effective feature detector and descriptor. Features are detected
as local maxima of the HKS for large scales. A later variant used persistent homology
to filter out unstable feature points [DLL+10]. While we also use persistence to filter
feature points, we apply discrete Morse theory to Gaussian curvature, thus making our
approach less computationally costly and conceptually simpler. We demonstrate that
the power of persistence to distinguish between features and noise allows us to use a
simple isometry-invariant scalar field to extract features for correspondence.

The difference of Gaussians (DoG) and histogram of oriented gradients (HOG) fea-
ture operators have been adapted to meshes, MeshDoG and MeshHOG [ZBVH09], and
applied to mesh matching. This method requires a multi-scale neighborhood structure,
whereas we only need a fixed neighborhood to compute Gaussian curvature.

Correspondence: Möbius voting [LF09] uses the observation that isometries are a
subset of the Möbius group to devise a method for automatic sparse surface correspon-
dence. After mid-edge flattening to the complex plane, triplets of points are chosen
from both point sets and a Möbius transform is computed in closed form. This is
followed by a voting scheme that is weighted by the estimated deviation from isom-
etry. A higher-order Markov random field (MRF) formulation of graph matching
combined with a voting and clustering scheme based on Möbius transforms has also
been proposed for both sparse and dense correspondence [ZWW+10]. This method
handles large deformations, partial matching and changes in scale. Blended intrinsic
maps [KLF11] find per-point blending weights for multiple low-dimensional intrinsic
maps computed using Möbius voting; these maps are then blended by linear interpo-
lation. This allows to search relatively small sets of possible deformations, yet still
handle large, anisometric deformations. Accurate correspondence results compared to
other recent methods are demonstrated for clean, genus zero meshes. We use these
methods for comparison because they are the current state-of-the-art and have demon-
strated equal or superior performance to competing algorithms [KLF11].

A feature-based dense correspondence method [TM10] starts by computing sparse
feature correspondences, and then uses a MRF and front-propagation to compute dense
correspondence. It is a well-established technique to extract feature points and explore
permutations of matches to find a combination with minimal alignment and deforma-
tion error [HAWG08, ZSCO+08]. Two of these methods [TM10, ZSCO+08] use the
geodesic integral or average to extract features, which are more expensive than Gaus-
sian curvature. The work of Huang et al. [HAWG08] uses principal curvature, which
is not isometry invariant.

Many methods make use of the isometry assumption, often using some kind of
embedding [vKZHCO11], which are often indirect and expensive to compute. If the
embedding is global then the method can be expected to have difficulty with partial
matching. A method leveraging the isometric assumption to register partially corre-
sponding surfaces that is robust to topological noise [TBW+09] samples the space of
feasible feature matches to explicitly examine alternative solutions. This method and
its extensions require significant preprocessing, whereas our method requires none.

Other methods based on the isometry assumption consider the heat kernel as an
isometry-invariant local surface descriptor. A topologically robust method for dense
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correspondence [SHCB11], that starts with a set of sparse correspondences as input,
successfully transfers a scalar function between surfaces undergoing major topology
changes. A heat kernel is computed at all points on both surfaces, and dense cor-
respondences are computed by seed-growing from the sparse correspondences. The
seed-growing algorithm is similar to the one we use in Section 4.5.3. Given one pair of
corresponding points, full correspondence can be computed for two isometric surfaces
using the heat kernel [OMMG10]. For every point on S, its image on S̃ is characterized
by the preservation of the heat kernel to the given corresponding points. Our features
are derived directly from the surface and our descriptors are based only on geodesics,
and therefore are not as computationally expensive as the heat kernel.

4.5.2 The Matching Pipeline
This section presents a pipeline to find feature point correspondences on two near iso-
metric surfaces S and S̃. We call two surfaces nearly isometric if the ratio of any
corresponding geodesic distances is bounded by a constant threshold τ . The idea of
this pipeline is to extract features as the most dominant extrema of the Gaussian curva-
ture in terms of persistence and to find near isometric correspondences between these
feature sets using modifications of established algorithms.

Feature Points and Persistence

In this work, we interpret feature points as extremal points of a curvature field. Since
we assume isometry, we use Gaussian curvature. In recent years, several techniques to
compute this quantity were proposed. We use a simple quadratic least-square fitting to
the underlying point cloud [CP03] to compute the Gaussian curvature. However, our
pipeline does not depend on this choice.

We consider the scalar field formed by the Gaussian curvature on a surface. Points
of minimal and maximal Gaussian curvature are critical points of this scalar field. A ro-
bust and consistent way to compute critical points is by means of discrete Morse theory.
We use the Algorithm 5 to compute the critical points in a combinatorial fashion.

Numerical issues in the curvature computation and noise may create spurious criti-
cal points, which challenge the upcoming matching. To distinguish noise-induced and
dominant critical points, we make use of the importance measure for critical points
as introduced in Section 4.1: persistence. We denote the most dominant minima and
maxima of the Gaussian curvature fields on the surfaces S and S̃ as feature points F and
F̃ , respectively.

Computing Correspondences of Feature Points

Correspondences between feature points are found as follows. For each feature point,
we construct a vector based on the geodesic distances between it and a set of sample
points on the surface. We measure the similarity of these vectors and find initial corre-
spondences by solving a minimization problem. We then enforce isometric consistency
of the set of correspondence pairs using graph matching, pruning inconsistent matches.
Finally, a post-matching method finds additional matches that are consistent with the
established correspondences.

Initial Correspondences: We first find an initial correspondence between the feature
sets by matching the spatial distribution of feature points. Looking from one feature
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Figure 4.6: Matching results for different models corrupted by synthetic noise. From
left to right: outliers, holes, topological noise, partial information, and Gaussian noise.

point x on S to a uniquely defined set of reference points Y , the distribution of those
points depends on the point of view of x and is unique up to intrinsic symmetry. When
measuring the distribution with an isometric quantity such as the geodesic distance,
this point of view is invariant under isometric transformations. We represent the view
point dependent distribution of Y in a quantitative manner by constructing two sets of
reference points Y and Ỹ of cardinality R from S and S̃ using geodesic farthest point
sampling [BBK08] and by considering the quantity f (x,y) = 1/(1+ g(x,y)), where
x ∈ F , y ∈ Y , and g(x,y) denotes the geodesic distance between x and y on S. The
function f measures the influence of the reference points on each feature point, and is
designed to allow for partial matching as nearby points are weighed more than distant
points, and the local neighborhood therefore has a greater influence.

The feature vector fY for a given feature point x ∈ F is given by the collection of
f (x,y j) for all reference points y j ∈ Y in non-decreasing order. Consider two surfaces
S and S̃ and their respective feature points F and F̃ . Assuming x ∈ F is the correspon-
dence of x̃ ∈ F̃ , the corresponding feature vectors fY (x) and fỸ (x̃) are expected to be
similar. Hence, we measure the dissimilarity Ψ of two feature vectors by their nor-
malized L1-distance. Computing the dissimilarity between all feature vectors of F and
F̃ yields a dissimilarity matrix. A good correspondence is found if the sum of all its
dissimilarities is small. Therefore, the aim is to find a minimum assignment by column
and/or row permutation to minimize the trace of the dissimilarity matrix. To solve this
optimization problem, we use the Hungarian algorithm [Kuh55], which results in a set
of correspondences Σ1.

Isometric Correspondences: In the following, we remove the pairs in Σ1 that are
not consistent with the assumption that deformations should be approximately isomet-
ric. We aim to find the largest set Σ2 of consistent correspondences. These corre-
spondences can be found using a kernel extraction method as proposed by Leordeanu
and Hebert [LH05] and used by Huang et al. [HAWG08]. Let (ci, c̃i) denote the i-
th correspondence in Σ1. Any two consistent correspondences {ci, c̃i} and {c j, c̃ j}
should satisfy the following near-isometry constraint: the minimum ci j of the two ratios
g(ci,c j)/g(c̃i, c̃ j) and g(c̃i, c̃ j)/g(ci,c j) should be larger than the stretching tolerance τ

with 0 < τ < 1. It is known that a set of correspondences satisfying this condition can
be found using a spectral method on a matrix M that depends on ci j and τ . For more
details, refer to [HAWG08].
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(a) Dense Matching (b) Tracking

Figure 4.7: (a) Visualization of dense correspondence results. The same color is
mapped from one surface to another using the dense correspondences. (b) Tracking
of the Eagle sequence. Tracked features are shown as colored curves.

Final Correspondences: As the set Σ2 might not contain all near-isometric feature
point matches, we add additional pairs of feature points in the final step. The additional
correspondences are found based on a modified geodesic triangulation technique. Let
FR ⊂ F and F̃R ⊂ F̃ denote the sets of the "rejected" feature points for which corre-
spondences have not been found yet. For each point in FR, we compute a feature vector
w.r.t. the matched points similar to above. The only difference is that the feature vector
is now ordered w.r.t. an arbitrary but fixed order of the correspondences in Σ2. We add
a new correspondence pair if the feature vectors of two points are symmetric nearest
neighbors under the dissimilarity measure Ψ and the new pair respects the isometric
threshold τ w.r.t. all correspondences in Σ2. All pairs that fulfill these conditions are
added to the set Σ3 of feature correspondences, which is initialized by Σ2.

4.5.3 Applications

Dense Matching: The first application is dense matching, which considers all points
except the correspondences as candidates and attempts to find correspondences for
them. The dense matching approach performs seed growing on the set Σ3 of coarse
correspondences. It is a variant of the approach by Sharma et al. [SHCB11], and it is
also closely related to our post-matching algorithm. Let F3⊂ S and F̃3⊂ S̃ be the sparse
corresponding point sets such that for every c ∈ F3 there exists exactly one c̃ ∈ F̃3 with
(c, c̃) ∈ Σ3 and vice-versa. Let Nk(x) denote the set of k-ring neighbors of a point x
on S. Consider z as an unmatched point on S, (c, c̃) ∈ Σ3 and z ∈Nk(c). We find a
correspondence for z in the set of unmatched neighbors Nk(c̃) of c̃ using feature force
vectors fF3(z). More precisely, we compare the feature force vectors fF3(z) and fF̃3

(z̃)
for all z̃ ∈Nk(c̃), and match z to the point in Nk(c̃) that has the most similar feature
force vector.

We visualize two dense matching results in Figure 4.7a. The same color is mapped
from one surface to another using the dense correspondences. Note that a globally
coherent correspondence is found even though some local mismatches occur, as can be
seen at the neck of the human model.

Tracking: The second application is tracking, where we are given a sequence of
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Table 4.2: Parameter settings for all models used in the tests.
Cat Cat (topo. noise) Centaur David Dog Horse Wolf Face 1 Face 2 Face 3

κ 0.05 0.008 0.05 0.05 0.04 0.03 0.05 0.04 0.10 0.02
τ 0.72 0.72 0.83 0.83 0.72 0.72 0.72 0.72 0.72 0.72

frames, extract feature points from these frames and find correspondences between
the consecutive frames. This application requires not only stable detection of feature
points, but also stable matchings between any two frames. Our goal here is not to define
a new framework for tracking, but to demonstrate the stability of our feature correspon-
dence, and hence we use a straightforward and direct use of our method for matching
two surfaces. This has the additional advantage of not requiring to process the entire
sequence as a batch, but rather allows the possibility to process it in sequence.

For demonstration, we use a time-varying synthetic model of an Eagle consisting
of 100 frames from Martinez Esturo et al. [MERT12]. Fig. 4.7b visualizes the tracking
results, where the tracked features are shown as colored curves.

4.5.4 Experiments
This section validates the proposed pipeline. We implement the pipeline using MAT-
LAB and C++ and test it on a standard PC. We use code from Surazhsky et al. [SSK+05]
to compute geodesics and code from Cao2 for the Hungarian algorithm. Our non-
optimized implementation takes about 3 minutes to find corresponding points for the
Cat model and about 1.5 minutes for the Centaur model.

We evaluate the algorithm on a large number of models of the
TOSCA [BBK08] database and some models of the BU-3DFE [YWS+06] database.
Similar to Bronstein et al. [BBC+10], we define the correspondence error C as fol-
lows:

C =
1

|Σ3| ·dg
min

{
|Σ3|

∑
i=1

g(ci,c′i),
|Σ3|

∑
i=1

g(ci,c′′i )

}
, (4.4)

where |Σ3| is the cardinality of Σ3, dg is the geodesic diameter of neutral pose S, (ci, c̃i)
is a correspondence pair in Σ3, c′i and c′′i are the ground truth correspondence and
the symmetric ground truth correspondence of ci in S, respectively, and the geodesic
distances g(ci,c′i) and g(ci,c′′i ) are measured on S. Here, the symmetric ground truth
c′′i is defined as the ground truth mapping of ci to its intrinsically symmetric part on the
shape, given by flipping the left and right sides of the model.

Our algorithm involves three parameters: the persistence threshold κ , the cardi-
nality R of the set Y of sample points and the deformation threshold τ . Regarding
parameter settings, we fix R = 800 and each of the other two parameters at one consis-
tent value per model, with the exception of the topological noise example, as shown in
Table 4.2.

Figures 4.9a and 4.9b shows the influence of the κ and τ parameter values on
the results of matching two Cat models. A correspondence ci is considered close
to its ground truth c′i if g(ci,c′i) < 0.05dg, close to its symmetric ground truth c′′i if
g(ci,c′′i ) < 0.05dg, and a mismatch otherwise. As expected, as the persistence thresh-
old κ increases, the number of features decreases and as the stretching threshold τ

increases, the number of matched pairs decreases.
2http://www.mathworks.com/matlabcentral/fileexchange/20328, 2008
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Figure 4.8: Matching between different object classes.

Synthetic Evaluation

We evaluate the robustness of our algorithm on TOSCA models from four perspectives:
isometric deformation, different categories of noise, different object matching and par-
tial matching. Whenever we match two shapes from the same object class, we match
the deformed/noisy model to the clean shape of the same object class in neutral pose.

To evaluate the robustness against noise, we artificially introduced five different
kinds of noise to some models: Firstly, we added three levels of Gaussian noise to
the deformed versions of the Cat, Centaur, David, Dog, Horse, and Wolf models (38
models total). The variances of Gaussian noise used in the experiments are 20%, 40%
and 60% of the model’s bounding ball radius.

Secondly, we added three levels of outliers to the aforementioned 38 models by
moving a vertex in the direction of its outer normal with probability 0.004 by varying
the strength of the offset. The outliers are modeled as a type of shot noise that is
typically present in scanner data from multi-view camera systems. The models are
corrupted by moving a vertex in the direction of its outer normal with probability 0.004.
We use three levels of outliers by varying the strength of the offset.

Thirdly, we added three levels of holes to the deformed versions of the Cat model
(10 models total). The first level removes the one-ring neighborhood of a set of vertices
distributed over the surface. The second and third levels enlarge the holes by removing
all triangles that are on the boundary of the model.

Fourthly, we removed parts of the models in three levels to simulate partial match-
ing. For each model in neutral pose, we removed a part by cutting the model with a
plane parallel to the symmetry plane of the model. The three levels represent the re-
moval of 17%,33%, and 50% of the model’s bounding box, respectively. The partial
models are then deformed into all other poses to generate all partial models.

Finally, we added topological noise to one of the Cat models.
Figure 4.9c shows the correspondence errors C for the Cat models with near-

isometric deformations and different types of noise. Note that the correspondence
quality does not degrade significantly for increasing levels of Gaussian noise, outliers
or holes. As expected, for increasing levels of partial matching, the quality of the cor-
respondence degrades more than for the other types of noise. However, even in case
where 50% of the surface was removed, the average correspondence error is below
30% of the geodesic diameter.

Non-Isometric Deformation: Figure 4.9d show C for the correspondences computed
between pairs of Cat models. For all of the models that have a mean correspondence
error above 0.03, we encounter the following problem. Some points on S correspond
to points close to their ground truth correspondences on S̃, while other points on S
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Figure 4.9: (a,b): Influence of parameter values on matching two clean Cat models.
The x-axes show the thresholds and the y-axes show the number of matches. (c,d):
Correspondence error C for the Cat model with different types and levels of degrada-
tion. Each bar in (c) is the mean over all model pairs, while each bar in (d) is for one
pair.

correspond to their symmetric ground truth correspondences on S̃. Hence, while all
correspondences are locally acceptable, the correspondence map is globally inconsis-
tent, which leads to a large value of C . We call this problem symmetric inconsistency
in the following, and the matching of the legs of the Dog and Wolf models in Figure 4.8
shows an example. However, the symmetric inconsistency only affects very few fea-
ture points as can be seen in the bar plots of Figures 4.9a and 4.9b. The majority of
feature points are correctly matched w.r.t. the ground truth or the symmetric ground
truth. Figure 4.5 shows some qualitative results.

Gaussian Noise: As Gaussian noise will change the intrinsic geometry of the shape, we
adjust the parameter τ depending on the specific level of noise. Basically, τ decreases
with the increase of the noise level. This is because stronger noise will create a greater
deformation than weaker noise does. Figure 4.6 illustrates matching a Centaur model
degraded by Gaussian noise and its corresponding clean model in neutral pose. As
demonstrated by both the small correspondence errors in Figure 4.9c and the qualitative
results in Figure 4.6, our method is able to match feature points even in the presence of
Gaussian noise.

Outliers: Figure 4.6 shows an example of matching a Horse degraded by outliers
and its corresponding clean model in neutral pose. Both the numerical evaluation in
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Figure 4.10: Comparison for Cat without noise and with second level of holes.

Figure 4.9c nd the qualitative results in Figure 4.6 demonstrate that our algorithm is
able to find high-quality correspondences, when applied to data with outliers.

Holes: Figure 4.9c shows that our method still provides comparable performance as
for clean models in terms of correspondence quality, although the existence of holes
might potentially result in significant changes in geodesic paths. Figure 4.6 illustrates
qualitatively that feature points are correctly matched.

Partial Matching: Figure 4.6 shows an example of matching a partial Cat model
to a complete Cat model. The feature points appearing in both models are visually
matched correctly. In a second experiment, we are interested in finding corresponding
pairs of vertices for shapes from different object classes, where parts of the shapes
are near-isometric and other parts are not. The partial matching results are illustrated
in Figure 4.8 (left). We observe that feature points describing semantically the same
region are correctly matched. For instance, observe that the hands and upper body
between Centaur and David. However, feature points could not be matched correctly
in regions of the surfaces that are semantically different, as expected. This can be seen
in Figure 4.8 at the head of Horse and the head of Centaur.

Topological Noise: Topological noise significantly changes the intrinsic geometry of
the surface, and is thus expected to cause problems for our algorithm. Figure 4.6 shows
the correspondences on a Cat model with topological noise.

Different Object Matching: Finding correspondences between two objects of dif-
ferent classes is challenging, since the surfaces are far from isometric. However, our
pipeline is able to match most of the feature points correctly, as can be seen in Fig-
ure 4.8 (right).

Comparison to Prior Methods

We compare the proposed method with two state-of-the-art matching algorithms:
Möbius voting [LF09] and blended intrinsic maps [KLF11]. To this end, we applied the
two methods to pairs of models of the same object from the TOSCA dataset. For the
comparison (Figure 4.10), we only use pairs of models for which our method does not
encounter the symmetric inconsistency problem. To compute the results for Möbius
voting and blended intrinsic maps, we use the code released by the authors [Kim].
Note that the implementation of Möbius voting may not reflect all the details of the
original implementation. Figure 4.10 shows the correspondence errors C for models
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Figure 4.11: Correspondences of scans with different facial expressions. The top row
shows the textured raw scans and the bottom row shows our results.

with non-isometric deformations and with holes. Note that our method generally com-
pares favorably to previous approaches. We observed this trend for different models
and types of noise in our experiments.

Real-world applicability

To assess the real-world applicability of our algorithm, we compute correspondences
between different face scans from the BU-3DFE database. These tests are challenging
because the meshes have inconsistent topology and different local shape features. The
results here are presented visually, as no ground truth is available to evaluate numer-
ically. The matching results are shown in Figure 4.11. Note that accurate correspon-
dences are found for different face shapes and expressions.

4.5.5 Discussion
We presented an algorithmic pipline for finding correspondences of persistent feature
points on near-isometric surfaces. As shown in Section 4.5, the pipeline combines
many useful properties:

• It is built from established components.

• It produces accurate and stable correspondences.

• It is conceptually direct and simple.

• It is computationally efficient.

There are some limitations of our approach:

• The symmetric inconsistency problem shown in Figure 4.8 (right). This prob-
lem is caused by the construction of the descriptors for feature points based on
geodesic lengths whose influence is inversely proportional to the distance. This
means that points that are far from a feature have little influence on its descriptor.
While this aids our method in computing correspondence information between
partially near-isometric surfaces, it causes this limitation.
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• The pipeline cannot stably compute high-quality correspondences when applied
to models with topological noise, see Figure 4.6. Topological noise significantly
changes the intrinsic geometry of a surface. Since our algorithm heavily uses the
assumption of isometry-invariance, these changes cause problems. To overcome
this, we include more feature points in this example by changing the parameter
value of κ to 0.008.

• The proposed pipeline may not find satisfactory correspondences for all features
in case of non-isometric shape matching, see Figure 4.8, because the two shapes
could have significantly different intrinsic geometry.

Despite these drawbacks, we believe that our pipeline allows for a straight-forward
computation of correspondences between persistent feature points. We show that our
method is robust against isometric deformations and different types of noise, including
Gaussian noise, outliers, holes, topological noise and scanner noise. Moreover, satis-
factory correspondences can be found even in the case of partial matching. We leave it
for future work to devise strategies to overcome the symmetric inconsistency problem
encountered when matching surfaces that have symmetric structures.



Chapter 5

Quantification of Separatrices

In Chapter 3, we introduced a strategy to create different levels of details of the Morse-
Smale complex. This strategy allowed us to reduce the Morse-Smale complex to its
essential topological structures representing the large-scale behavior of the data.

However, the simplification process of the Morse-Smale complex involves binary
decisions. A separatrix is either completely removed from the complex or not. In many
application cases, this simplification is only a rough indicator whether a separatrix is
important or not. Parts of a separatrix might be unimportant but others may be essential.
From the application point of view, an important image-based feature might be missed
due to the removal of the entire separatrix. Therefore, it is necessary to assess each
point of a separatrix individually by an importance measure.

Persistent homology as introduced in Chapter 4 assigns an importance value to each
critical point of the input data. Based on this importance, spurious critical points can be
distinguished from the dominant ones. An important justification of persistence is the
stability result of Cohen et al. [CSEH07]. This result states that persistent homology is
stable with respect to noise.

In this chapter, we introduce the concept of separatrix persistence. This is an im-
portance measure for every point along a separation line and surface, which allows us
to tell apart their dominant parts from spurious ones. The technique is founded on the
hierarchy of the Morse-Smale complex and persistent homology. It benefits from the
global nature of these two concepts and their stability against noise. The information
provided by persistence is propagated along the higher dimensional topological struc-
tures. Due to the simplification process, the propagation takes the large-scale behavior
of the features into account.

As discussed in Chapter 1, two different concepts are commonly used for extracting
extremal structures: the local analysis due to ridges and valleys, and the global point
of view by means of topology. In this chapter, we concentrate on the topological view.
The extremal structures are herein covered by the topological structures and form a
subset of them. We compare our extraction results to the results of a local analysis.
Therefore, we provide a brief discussion of the similarities and differences of the topo-
logical structures to ridges and valleys in Section 5.1. We will see that both concepts
extract features with an extremal characteristic. However, these characteristics differ
and depend on the point of view.

After this discussion, we introduce separatrix persistence in Section 5.2. We first
define this new importance measure for the 2-dimensional case. In this case, we ben-
efit from an optimal topological simplification based on the Morse inequalities (Sec-
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(a) Separation of gradient flow. (b) Attraction and repulsion.

Figure 5.1: Illustration of the analytic function f (5.1): The minima, saddles and max-
ima are depicted as blue, yellow, and red spheres. The 0- and 1-separation lines are
shown as blue and red lines, respectively. The integral lines of the gradient ∇ f are
illustrated by green and blue arrow lines in (a). The local attracting and repelling be-
havior of a separatrix can change as illustrated by the central separatrix in (b). The
bending of the gray isolines in (b) depicts a change from a local convex to a local
concave behavior of f . However, the gradient flow is still separated by the separatrix
(central red line).

tion 2.2). This will help us to convey the idea of the proposed technique. We then
extend this theory to three dimensions. As discussed in Section 4.4, the pairs of critical
points defining the hierarchy do not need to coincide with the persistence pairs. This
needs to be respected by the extension of separatrix persistence to three dimensions.

Separatrix persistence allows us to extract the extremal structures described by the
Morse-Smale complex: the most dominant (parts of) separation lines and separation
surfaces. In Section 5.3, we apply this importance measure to a wide range of appli-
cations thereby illustrating its robustness and applicability. We want to emphasize that
such structures are not isosurfaces or isolines of the examined scalar field, since the
scalar value varies on them.

The concept of separatrix persistence and its applications is based on the published
works [WG09, GMW+10, GSW12, PGW12].

5.1 Separatrices and Height Ridges
Two different concepts are commonly used for extracting extremal structures: the local
analysis due to ridges/valleys and the global point of view by means of topology. In this
work, we concentrate on the topological view. Nevertheless, we provide a discussion
of the similarities and differences between the local and the global approach in the
following.

A minimal/maximal point is canonically defined in arbitrary dimensions. How-
ever, its higher dimensional generalizations cannot be defined in a canonical way, i.e.,
several equated definitions exist for extremal lines or surfaces. This is documented
throughout the literature [KvD93, Dam99, LLSV99, SWTH07, PS08, SPFT12]. Be-
sides their global definition as topological separatrices [Max70], another frequently
used concept are Ridges/Valleys, which goes back to De Saint-Venant [dSV52]. The
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relationship between these mathematically different approaches (local vs. global def-
inition) was debated vigorously in the computer vision community in the early 1990s
(see, e.g., Koenderink and van Doorn [KvD93]). Nowadays, there is a consensus that
both approaches have their merits, and López et al. [LLSV99] provide an exhaustive
evaluation of the equated local and global definitions.

A recent variant of ridges/valleys is the Height Ridge definition [Ebe96]. This
definition is local and builds on the first and second derivatives of f , i.e., the gradient
∇ f and the Hessian H f . The local ridge definition investigates the convexity/concavity
of f in a local neighborhood of a given point. As elegantly formulated by Peikert and
Sadlo [PS08], ridge lines in a scalar field are found at locations where the vectors ∇ f
and H f ·∇ f are parallel. They can be extracted using the Parallel Vectors operator
[PR99, POS+11]. In case of 3-dimensional scalar fields, ridge surfaces can be found as
parts of the zero level set ∇ f ·e1 with λ1 < 0, where e1 is the eigenvector to the smallest
eigenvalue λ1 of H f . A consistent orientation of the eigenvectors at the vertices of
each cell is necessary to extract this level set. This can be achieved using a principal
component analysis [FP01].

In contrast, separatrices represent the border of adjacent compartments where f
behaves monotonically [Sma61b]. The separatrices literally separate the gradient flow
within these compartments. Let us consider the following example: the analytic func-
tion f : [−1,1]2→ R consisting of an anisotropic Gauss function g, a local distortion
d, and a rotation r with angle θ = π/4:

g(x,y) = 0.05 e−(200x2+300(y−0.1768)2)

d(x,y) = x+g(x,y) (cos(5x) sin(20y+10.6066)))

r(x,y) =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
d(x,y)

y

)
f (x,y) = sin(2π r1(x,y)) cos(2π r2(x,y))

(5.1)

Figure 5.1 provides an illustration of this example. Consider f as a height field and
assume that a separatrix is given connecting a saddle with a maximum, see Figure 5.1a.
Clearly, the central separatrix separates the flow (indicated by the arrows) of the left and
right side. Imagine that rain pours onto this terrain and water assembles around the two
minima. The water is rising and the shape of the water level is defined by the integral
lines of the flow. If the water level continues to rise, it will reach the saddle at some
time. This is the lowest point of separation. Continuing the rainfall, the two water
basins meet themselves along the separatrix. The water on the left side is separated
from the water on the right side. The coloring of the arrows in Figure 5.1a indicates
this. This separation represents a (weak) monotony break of f .

The monotony break that can be observed in Figure 5.1a is not locally given. The
saddle point is connected to two maxima and to two minima. These two minima are
essential in order to understand the extremal characteristic of the central separatrix.
Each of the two minima gives rise to compartments that meet each other along the
separatrix. In order to check for a monotony break, one needs to investigate if a set
of particles inserted in the gradient flow assembles in the same minimum or not. In
contrast to the local ridge definition, this kind of characteristic is global and cannot be
determined locally.

In fact, this global nature of a separatrix makes it very useful for feature extraction.
Real-world data sets are usually affected by noise. The small fluctuations caused by
the noise create local distortions similar to the example shown in Figure 5.1b. Within
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(a) Ridge lines. (b) Separatrices.

Figure 5.2: Extremal lines of the scalar field (3.1) following two different definitions.

small regions, the local attracting/repelling behavior of a separatrix can change. This
happens when the local landscape described by f changes from convex to concave,
or vice versa. However, its global nature prevents interruptions along the separatrix
in contrast to the local ridge/valley definitions. In order to interrupt the course of a
separatrix, the distortion must be so strong that new critical points are introduced.

It has been pointed out by Sahner et al. [SWTH07] that every separatrix can be
assigned a ridge counterpart: each saddle point of f gives rise to ridges as well as
separatrices (they do not need to coincide at any other places). However, not every
ridge can be assigned a separatrix counterpart [SWTH07]. Intuitively, this happens
when a ridge-creating fluctuation of f – as shown in Figure 5.1 – does not break its
monotony. This is also nicely shown by the “Ridges without Critical Points” example
of Peikert and Sadlo [PS08].

By definition (Section 2.2), separation lines are tangential to the gradient ∇ f .
Ridges lines, on the other hand, are defined as features where ∇ f is parallel to H f ·∇ f .
In fact, additionally requiring that they are also tangential to ∇ f yields an overdeter-
mined system as discussed by Schindler et al. [SPFT12].

There are several differences between ridges and separatrices from an algorithmic
point of view: ridges are local features based on the first and second derivatives, which
eases their extraction using parallel algorithms. This might be difficult for separatrices
due to their global nature. On the other hand, separatrices can be extracted combinato-
rially without any derivatives.

Figure 5.2 shows the ridge lines (left) and separation lines (right) of the three di-
mensional scalar field defined by Equation (3.1) on page 53. It can be seen that they
largely coincide and that both are in the center of the shown iso-surfaces which con-
firms their extremal characteristic. Interestingly, this example indicates that the local
and the global approach besides their different definitions can give very similar results.
Therefore, we will compare our topological approach in the subsequent sections to the
local analysis of extremal features.

5.2 The Persistence of a Separatrix
In the following, we introduce the concept of the persistence of a separatrix. This
concept is based on the multi-level representation of the Morse-Smale complex of a
scalar function and its persistent homology. The separation lines and surfaces form
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`1

`2

(a) Terrain with critical
points and
separatrices.

(b) Water assembles
around the minima.

(c) Dam is breached at
saddle.

(d) Two parts of the dam
remain as water
keeps rising.

Figure 5.3: Separatrix persistence assigns an importance weight to each point along a
separatrix. It respects that the importance of a feature may smoothly change along the
line.

a superset of the desired extremal structures. Our new importance measure allows us
to reduce the separatrices to this essential subset. This reduction does not require any
derivatives.

We begin with the definition for the 2-dimensional case. In this case, we bene-
fit from an optimal topological simplification based on the Morse inequalities (Sec-
tion 2.2). Then, we extend the notion to three dimensions. Before we start, we intro-
duce some notations used in the subsequent sections.

In the following, we assume that a Morse-Smale function f : Ω→ R with Ω⊂ R3

is given [Sma61b]. The domain Ω is either given as a simplical or cubical complex
of dimension two or three. As described in Chapter 3, a multi-level representation of
the Morse-Smale complex of f is given by a hierarchy of combinatorial gradient fields
V = (Vi). To simplify notation, we define the height difference h of two points x ∈ R3

and y ∈ R3 as

h(x,y) = | f (x)− f (y)|. (5.2)

To emphasize the relationship of the topological structures to the extremal struc-
tures, we sometimes call separation lines also extremal lines. Especially, lines that
connect a saddle with a minimum are called minimal lines, and separation lines con-
necting saddles with maxima are called maximal lines. The persistence pairs and their
importance is computed as described in Section 4.3. Given such a persistence pair
(z,w), we denote their persistence by P(z) and P(w). We want to stress that there
holds: P(z) = P(w) = h(z,w) for each persistence pair (z,w).

5.2.1 The 2-dimensional Case
Previous schemes assigned only a constant value to the separation lines, i.e., the per-
sistence of the saddle at which the separatrices emanate. To see why this does not
suffice if we are primarily interested in extremal lines, consider the following intuitive
example: Figure 5.3a shows the topological structures of a simple 2-dimensional scalar
field on a terrain. Imagine that rain pours onto this terrain and consequently the water
assembles around the two minima as shown in Figure 5.3b, where the blue surfaces
denote the current water level. In this particular example, the water level represents the
current persistence value during simplification. The two regions around the minima are
still separated from each other by a “dam”, i.e., the separatrices `1, `2 (red). Water is
rising and at some time it will reach the lowest point of the dam, i.e., the saddle. From
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(a) Before the removal of (s,m2).

m1

M1

M2

(b) Gain of persistence after the removal.

Figure 5.4: The cancellation of (s,m2) assigns a final persistence to the removed sepa-
ratrices (gray, dashed). Neighboring separatrices gain persistence (red, thick).

this moment on, water from both regions gets mixed, i.e., the regions are merged by
canceling (s,m2) and keeping m1 (Figure 5.3c). Previous simplification schemes would
also completely discard both red separatrices `1, `2 at once. However, most of the dam
is still there and remains to be there even if water keeps rising (Figure 5.3d). The two
remaining parts of the dam will only be completely gone once the water level reaches
their highest points, i.e., the maxima M1,M2.

We draw two conclusions from these observations: Firstly, `1 and `2 have to be
treated independently from each other after their saddle has been canceled. Secondly,
the slow decay of each separatrix has to be described by an interval and not a single
value. To do so, we give the following definition of the local strength of a separa-
trix I2D:

I2D(x) = h(x,s)+P(s). (5.3)

The local strength I2D measures the significance of every point on a separatrix for a
given combinatorial gradient field. As it is derived from classic persistence, it inherits
the stability under small perturbations. Obviously, I2D reaches its highest value at the
extremum. The point on ` with the lowest persistence is the saddle s since h(s,s) = 0.
Note that the value of I2D(s) depends on whether ` is a maximal or minimal line. This
is very important as it allows us to treat minimal and maximal lines independently: for
example, an important maximal line can be “crossed” by a number of spurious minimal
lines.

During topological simplification, the importance of affected separatrices changes.
Figure 5.4 illustrates the effect of the saddle-minimum cancellation (known from Fig-
ure 3.9) on the importance of the separatrices in the neighborhood of the removed
minimum m2: since the saddles on the right side of the domain have been reconnected
to the stronger minimum m1, their red separatrices gain persistence (shown as thick
red lines). A similar statement holds for saddle-maximum cancellations and blue sep-
aratrices. This change of importance is very essential since the repeated execution of
simplification steps distills the large-scale behavior of f . Therefore, the overall strength
of separation for a separatrix ` is given by taking the maximum of Equation 5.3 over
all levels of detail V = (Vi):
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Definition 1 (Separatrix Persistence 2D) Given is a hierarchy of combinatorial gra-
dient fields V = (Vi)i=0,...,m. Let ` be a separation line emanating at a saddle s at a
hierarchy level i. The persistence of the separatrix ` is defined for each point x ∈ ` as

S2D(x) = max
i=0,...,m

I2D(x). (5.4)

As already described, the connectivity of the critical points changes after a simplifica-
tion, see Figure 5.4. This also increases the length of adjacent separatrices (blue lines).
A point x that lies on a separatrix is therefore connected to multiple saddles if we con-
sider the complete sequence V . Since the local strength I2D is based on the persistence
of the saddle for a single gradient field, the maximum in Equation 5.4 takes the most
persistent saddle over the entire sequence V into account.

The weight of the hierarchy V is monotonically increasing in two dimensions (Sec-
tion 3.5.5). Therefore, the persistence of a separatrix is given by its local strength at
the moment when it is removed from the combinatorial gradient field. We combine the
computation of separatrix persistence with the process of topological simplification in
order to build up a feature hierarchy, i.e., determine the most important extremal lines.
To do so, we simplify the combinatorial gradient field as described in Section 3.5.1 and
compute S2D when separatrices are removed from V (shown as gray dashed lines in
Figure 5.4).

The computation of the persistence values of all separatrices is a global process
since we coupled it to topological simplification. But not only from an algorithmic
point of view: note that in general the distances between connected critical points in-
creases during simplification. The last elements of V contain those topological struc-
tures that represent the large-scale behavior of f .

5.2.2 The 3-dimensional Case

We now extend the notion of separatrix persistence to three dimensions, which assigns
an importance measure to each point of a separation line and surface.

We need to consider two differences compared to the 2-dimensional case: Firstly,
an optimal simplification based on the Morse inequalities of a Morse-Smale complex
cannot be expected anymore, see Section 3.5.5. Hence, the coarsest level of detail in
V probably contains insignificant and spurious topological structures. Secondly, the
hierarchy is no longer based on persistent homology. As discussed in Section 4.4, a
pair of critical points which is removed in the simplification process is not necessarily
a persistence pair. The definition of separatrix persistence in three dimensions will
address these facts.

Similar to the 2-simensional case, we first assess the local strength of separation
by considering the evolution of isocontours. Consider a single 1-saddle s and its com-
binatorial separation surface S as shown in Figure 5.5. The separation surface is the
boundary between the two volumes governed by the minima m1 and m2. Our goal is
to define the strength of this separation for each point on S. To do so, we observe
how the evolution of an isocontour affects the separation between the volumes. Let
f (m1) > f (m2). Also note that f (s) > f (m1) by construction. For an increasing iso-
value r, we have the following behavior for the isocontour:



100 Quantification of Separatrices

S

s

m1 m2

Figure 5.5: Illustration of the local
feature strength of separation surfaces.
The evolution of isocontours is de-
picted as yellow surfaces.
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Figure 5.6: Illustration of the local fea-
ture strength of separation lines. The
evolution of isolines is depicted as
black lines.

zero components r < f (m2)< f (m1)< f (s)

one component around m2 f (m2)≤ r < f (m1)< f (s)

two components around m1 and m2 f (m2)< f (m1)≤ r < f (s)

the two components merge at the saddle s f (m2)< f (m1)< r = f (s)

one component intersecting the separation surface f (m2)< f (m1)< f (s)< r

The separation surface is pierced by the isocontour for the first time when the two
components merge at the saddle. This infinitesimal small hole constitutes a breach of
the separation between the two volumes. In other words, the saddle is the weakest point
of separation between the two volumes. With further increasing r, the hole becomes
larger, and we find that the outer parts of S provide the strongest separation between
the volumes. Mathematically speaking, we define the local strength of separation I3DS

for all points x ∈ S as

I3DS(x) = P(s)+h(x,s), (5.5)

which has its smallest value at the saddle: I3DS(s) = P(s) denotes the persistence of s
and thereby the “life time” of the weakest point on the separation surface. Note that
P(s) = P(m1) = h(s,m1), if (s,m1) is a persistence pair, which is the case in a simple
scalar field as described above. Later on, we will consider scalar fields with more
topological structures, where (s,m1) may not be a persistence pair. A statement similar
to (5.5) holds for combinatorial separation surfaces emanating at 2-saddles.

The definition for the two separation lines `1, `2 of a saddle s follows the same
ideas, except that these lines do not separate volumes, but areas on two neighboring
separation surfaces Sa,Sb coming from two saddles sa,sb with f (sa) > f (sb) (Figure
5.6). Therefore, we observe the evolution of isocontours of f restricted to these sur-
faces, i.e., we consider isolines. They emanate at sa and sb, merge at s, and create an
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(a) Local Importance (b) Separatrix Persistence

Figure 5.7: Extremal lines scaled by local feature strength (left) and separatrix persis-
tence (right). Small fluctuations in the data cause an improper representation of the
dominant extremal structures using the local feature strength. Separatrix persistence,
in contrast, reveals the global structure.

increasingly larger hole in `1 and `2. It turns out, we can define the local strength of
separation I3D`

for all points x ∈ `1∪ `2 very similar to (5.5):

I3D`
(x) = P(s)+h(x,s). (5.6)

The use of the local strengths of separation I3D`
and I3DS does not accommodate the

global gestalt of the function; as shown in Figure 5.7a for a synthetic data set. Local
perturbations cause an erratic and unintuitive behavior of I3D`

and I3DS – if applied
directly to the unsimplified Morse-Smale complex.

We use the hierarchy of combinatorial gradient fields V = (Vi) from Section 3.5.3
to successively remove small perturbations and gain an increasingly global view of the
topological features. Note that the connectivity of critical points changes within V .
Additionally, combinatorial separation lines and surfaces may merge during the sim-
plification process. A point x on a separatrix can therefore separate multiple critical
points. Hence, we need to determine the maximal strength of separation for x by con-
sidering (5.5) and (5.6) over all elements of (Vi). We define for separation surfaces:

Definition 2 (Separatrix Persistence 3D for Surfaces) Given is a hierarchy of com-
binatorial gradient fields V = (Vi)i=0,...,m. Let S be a separation surface. At a hierar-
chy level i, the surface S emanates at a saddle s. At most two extrema are connected
to the saddle s at level i: let e denote the extremum with the smallest persistence. The
Separatrix Persistence S3D is defined for each point x ∈ S as

S3D(x) = max
i=0,...,m

(Pmax(s,e)+h(x,s)) , (5.7)

where Pmax(., .) denotes the maximal persistence of two critical points.

In other words, S3D(x) is the largest strength of separation that could be found over
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all hierarchy levels at the point x. This corresponds to (cf. Equation (5.5))

S3D(x) = max
i

(
I3DS(x)

)
(5.8)

= max
i

(P(s)+h(x,s)) (5.9)

= max
i

(P(e)+h(x,s)) (5.10)

but only if the saddle-extremum pairs (s,e) obtained by the hierarchy are actually
persistence pairs. As discussed in Section 4.4, this is not necessarily the case in 3-
dimensional scalar fields. This may yield the situation that a saddle point with a low
persistence is connected to an extremum with a high persistence. Taking only the per-
sistence of the saddle into account would result in an underestimation of the emerging
separatrices. We therefore use the maximum of persistence Pmax(s,e) in (5.7) of two
neighboring critical points (s,e), since it estimates the largest strength of separation.

Note that a separatrix exists only up to a level Vj in the hierarchy (Vi). Hence, (5.7)
is effectively computed for the levels V0, . . . ,Vj, and not further examined for levels
k > j.

Separatrix persistence for separation lines follows a similar scheme:

Definition 3 (Separatrix Persistence 3D for Lines) Given is a hierarchy of combina-
torial gradient fields V = (Vi)i=0,...,m. Let ` be a separation line. At a hierarchy level i,
the separation line ` emanates from a saddle s . From the saddle s a separation surface
emanates which has several other saddles in its boundary: let t denote the one with the
smallest persistence. The Separatrix Persistence S3D is defined for each point x ∈ ` as

S3D(x) = max
i=0,...,m

(Pmax(s, t)+h(x,s)) . (5.11)

Figure 5.7b shows the minimal lines of a synthetic data set that have been scaled by
separatrix persistence. In contrast to the local importance I3D, separatrix persistence
reflects the global gestalt of the function well.

A straightforward approach in computing S3D(x) is to iterate over each saddle s in
each level of the hierarchy (Vi)i=0...m and compute (5.7) and (5.11) for each point x on
the separatrices of s. However, a more efficient approach is possible by exploiting that
a simplification step Vi→Vi+1 creates only local changes in the Morse-Smale complex
(Section 3.5.5): only one pair of critical points gets removed with every simplification
step. Hence, we compute (5.7) and (5.11) only for the separatrices that are affected in
this step; and continue to the next level in the hierarchy. At Vm, we evaluate (5.7) and
(5.11) for the separatrices of the (few) remaining saddles. Since separatrices are given
as discrete set of links in the cell graph G, we assign the importance values only to
the nodes incident to these links. An explicit sampling of separatrices is not necessary.
This makes computing separatrix persistence very efficient, and can actually be done
while building the hierarchy.

5.2.3 Method Overview
The input of our algorithm is a scalar field f given on any discretization that can be
represented using a simplical or cubical complex. The latter allows for a very memory
efficient implementation, since node/links indices and neighborhood relations are im-
plicitly given (Section 3.2.1). Let n denote the number of vertices of the cell complex,
and let c denote the number of critical points of V0. The hierarchy of Morse-Smale
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complexes is computed as described in Chapter 3 for the 2- and 3-dimensional case.
The computation of their separatrix persistence is woven into this:

1. Initial Gradient Field: We use Algorithm 5 (Section 3.3) to compute the initial
combinatorial gradient field V0. The computational effort is O(n) and it allows
also for a parallel computation (Section 3.3).

2. Persistence: Since the persistent homology of the cell complex and the Morse-
Smale complex of V0 coincide, we can compute the persistence of the critical
points directly on the Morse-Smale complex itself [RWS11] with a complexity
of O(cn+ c3) in case of cubical complexes (Section 4.3).

3. Hierarchy: The hierarchy (Vi) is constructed as discussed in Section 3.5.1 and
3.5.3 for the 2- and 3-dimensional case, respectively. The computational effort
depends on the topological complexity, i.e., the number of critical points and
their connectivity, with a worst-case complexity of O(n3) (Section 3.5.4). How-
ever, for well-defined data the behavior is almost linear.

During hierarchization, we compute separatrix persistence (Section 5.2).

4. Geometric embedding: Finally, the topological structures are written out by
traversing (Vi) in reverse order. The computational effort depends on the size of
the structure, but is at most O(n).

We found it beneficial to consider only the topological structures above an ε-
persistence threshold to disregard small-scale structures. In our experiments, we set
ε to 10 percent of the data range. This worked out for all of our experiments. How-
ever, this parameter depends on the application and needs to be adapted to the purpose
of investigation. Since this parameter affects only the output and not the computation
itself, this adaption can be easily done in a post-processing step.

Given the extraction result, the user chooses an appropriate threshold for separa-
trix persistence to filter noise-induced and less important (parts of) extremal lines and
surfaces. After filtering by separatrix persistence, we remove small isolated lines and
surfaces. Since separatrix persistence is a smooth measure, we found it beneficial to
display the separation lines scaled accordingly, which elucidates the strength of a fea-
ture and allows for smooth phase-outs.

Note that different types of separation lines/surfaces share cells of the same dimen-
sion in the cell complex. This is by definition, see Section 3.2. Since these features
are independent from each other, we use sparse containers to store separatrix persis-
tence individually for separation lines and surfaces together with a reference to the
corresponding cell.

Due to the combinatorial nature of our algorithm, the extracted lines and surfaces
reflect the discrete nature of Ω. To obtain visually pleasing results, we apply simple
heat diffusion smoothing for surfaces and Bézier curve-based smoothing for lines. Note
that a strong heat diffusion smoothing yields a shrinking of the surface, and Bézier
curves are not able to capture kinks. We manually adjusted the smoothing strength
such that these deviations can be neglected in our investigations.

5.3 Applications of Separatrix Persistence
In the following, we present several applications of separatrix persistence for the 2- as
well as 3-dimensional case.
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Figure 5.8: Human torso. (left) κmax/κmin of the surface shown in front/back. (mid-
dle) Reduction of the result size by removing lines with very low persistence (green);
exemplified for the minimal lines of κmin. Kept lines are shown in black and scaled ac-
cording to separatrix persistence. (right) Perceptually salient convex edges are shown
in red, concave edges in blue.

5.3.1 Salient Edges on Surfaces

The input for the extraction of salient edges is a triangulated surface mesh and its
principal curvatures κmax,κmin. Our method does not depend on a specific way of
computing the curvatures. In fact, we found that it works well with different schemes.
For the examples in this section, we used a simple curvature estimation based on normal
variation.

In order to detect edges in convex regions, we start with computing the topological
structures of κmax. During the simplification as described in Section 3.5.1, we compute
the separatrix persistence, i.e., with each cancellation step we determine the persistence
of those separatrices that are removed from the gradient field (Section 5.2.1). They are
hereby fixed in the hierarchy, i.e., their importance has been determined and they are
added to the output. This is done until no further cancellation is possible. However, the
coarsest gradient field might still contain some separatrices due to the topology of the
domain. We compute their local importance and add them to the output as well.

This gives us the set of all separatrices reconnected to longer lines during the sim-
plification and augmented with our new separatrix persistence measure. From this set
we keep only the maximal lines and parts thereof which fulfill |κmax|> |κmin|, i.e., the
perceptually salient maximal lines. Similarly, we get the perceptually salient minimal
lines from the topological skeleton of κmin which fulfill |κmin|> |κmax|.

An appropriate threshold for separatrix persistence can be found by considering the
histogram of cancellations as it is shown for the torso dataset in Figure 5.8 (middle). It
measures the number of cancellations over the persistence P: a very high percentage of
cancellations takes place at very low persistence levels indicating the amount of noise
in the data set.

Examples

Figure 5.8 exemplifies – from left to right – stages of our pipeline for extracting salient
edges. Based on the principal curvatures we compute the set of salient convex and
concave edges. The strength of these features is given by separatrix persistence, which
is encoded for every point along the feature line. Since the result is usually rather
large, we apply an automatic filtering which removes all lines that have been canceled
early during topological simplification. Finally, we choose a threshold for separatrix
persistence to depict the most important features. Convex edges are typically displayed
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Figure 5.9: Results from left to right: dinosaur, screwdriver, knot model, plot of κmin
and concave edges of the brain model, blade.

in red, concave edges in blue. All models in this paper have been processed this way.
Figure 5.9 shows further results.

In all practical cases, we found that the overall computation time is equally dis-
tributed between the stages. Our technique is as fast as the other tested methods: the
feline data set (Figure 5.11) with its 100k triangles has been processed by all methods
(see below) in under a second on the same hardware.

Comparison to Ridge/Valley-Based Methods

Since there is a large body of previous work on salient edge extraction, we feel that
it is necessary to conduct a thorough comparison. In the following we compare our
technique to three ridge/valley schemes. We are grateful to the respective authors for
sharing their code or binaries with us:

Suggestive Contours. The SC-software package [DFR+] features a basic im-
plementation of the ridge/valley definition [Thi96] applied to a curvature field
computed by normal variation. The results are filtered by curvature threshold-
ing.

Crest Lines. The method of Yoshizawa et al. [YBS05] consists of two steps:
computation of a smooth curvature field by local polynom fitting and tracing of
curvature extrema. Curvature computation is steered by a parameter that defines
the size of the neighborhood ring, i.e., the locality of the curvature. Furthermore,
the software automatically smooths the input surface. The result can be filtered
by so-called ridgeness, cyclideness, or sphericalness.

Java View. This software package features the method of Hildebrandt et al.
[HPW05], where a discrete shape operator is used to obtain the principal curva-
tures. The method explicitly incorporates the possibility to smooth the extremal-
ities. The user has to adjust the number of smoothing steps and the step size.
Results are filtered by curvature thresholding.

Robustness to Noise Triangle meshes very often contain a certain amount of noise
caused by different sources. Therefore, feature extraction methods should have a cer-
tain insensitivity to noise. This is especially important when the results shall be used as
input for further computations. To assess the impact of noise on the extraction results of
the different methods, we use a simple generic model where we know the undisturbed
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[HPW05] [DFR+] Our Method
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Figure 5.10: Comparison of methods regarding their robustness to noise. All methods
had to deal with the raw input, i.e., any smoothing of the surface or the curvature
was forbidden. Curvatures have been computed in the default way for the respective
method, i.e., [HPW05] uses its discrete shape operator, while our method and the SC
package use normal variation. We used a clipping plane in the last two rows to expose
the feature line. As it can be seen, our method is less noise-sensitive thanks to its global
nature.

result and have full control over the amount of noise. We use a sphere that is scaled
in z-direction as shown in Figure 5.10. The structure we are looking for is the circum-
circle in the xy-plane, which is a maximal line of κmax. The objective is to reconstruct
a closed circle for different amounts of noise which is added to the model by displac-
ing the vertices into normal direction. The amount of displacement is randomized and
controlled by a parameter d which scales the white noise [0,1]→ [0,d].

Figure 5.10 shows the results where the rows denote different levels of noise and
the columns represent the different methods. We did not include [YBS05] in this com-
parison as the software did not give meaningful results for this type of model – most
likely an implementational issue and not a problem of the method itself.

Already the undisturbed model poses a problem for the straightforward ridge/valley
implementation of the SC package as it can be seen in the middle of the first row: the
circle is a set of disconnected lines whereas our method and [HPW05] are able to
extract the feature as a single closed line. As it seems, a standard ridge/valley imple-
mentation can already be affected by the very small amount of noise introduced by the
discretization of the analytic model. Also, the more robust computation of curvature
derivatives in [HPW05] pays off. Note, however, that our curvature computation is
comparable to the one used in SC (although the surfaces are colored differently, since
the SC software always uses an advanced colormap showing κmin,κmax while we just
show κmax).

In the second row, we added a small amount of noise. Both ridge/valley methods
are affected by it now whereas our topological technique still captures a single closed
line. We tried to push that a bit further in the last row by adding 10 times more noise.
Still, our technique detects a closed structure (with a number of branches) and both
ridge/valley methods are strongly affected. The reason why our topological method
is much more robust against noise than ridge/valley methods lies in its global nature:
local fluctuations are much less accounted for and removed early during topological
simplification. In addition, the more we simplify the topological skeleton, the more it
captures the overall shape of the model.
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[YBS05] [HPW05] [DFR+] Our Method
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Figure 5.11: Comparison of methods regarding parameter dependence and the connect-
edness of the results using the feline model. Compared to ridge/valley-based methods,
our technique yields qualitative similar results without derivatives and computational
parameters.

We are aware of the fact that smoothing the surface or the curvature would give
nicer looking results for all methods. However, “nicer looking” is not a criterion in
all applications and especially not, when the results are supposed to serve as input for
further computations. Smoothing may very well dislocate or otherwise alter the fea-
tures in an uncontrollable way. As the results of this comparison indicate, our method
is preferable in applications where noise is an issue and smoothing is not desired.

Parameter Dependence and Connectedness of Results In Figure 5.11, we used the
feline model to compare all three ridge/valley methods with our technique. This model
features some challenging filigree structures on the wing. All methods are able to
extract the most prominent edges. However, the basic ridge/valley implementation of
the SC package shows the most noisy results with a lot of disconnected lines especially
next to the head. Generally, our method generates longer lines. Note, how our lines
form connected subnetworks on the wing and the head. We observed this difference
to the ridge/valley-based methods in all our experiments and attribute it to the global
nature of our approach.

Figure 5.11 also lists the parameters of every method that had to be set up in order to
achieve the shown results. It is a major advantage of our method that the computation is
completely parameter-free. This makes it easier to use, especially in batch jobs where
parameter adjustments for individual meshes are prohibitive. Note that the ridge/valley
definition from [Thi96] itself does not impose computational parameters, since ridges
and valley are well-defined mathematical constructs. The implementation in the SC



108 Quantification of Separatrices

Figure 5.12: Comparison of valley networks: a) and b) show the valley networks man-
ually mapped by Carr [Car95] and Hynek et al. [HP03] as orange and yellow lines. c)
shows our automatic extraction result as blue lines (scaled by separatrix persistence).

package follows this road and does not add computational parameters. However, we
find that the results of the SC package are less satisfying than those of [HPW05] and
[YBS05]. Indeed, the latter two methods put more effort into an optimized computation
of curvature derivatives – this is where the additional parameters come into play. The
results in Figure 5.11 clearly show that this pays off compared to the basic ridge/valley
approach, but it also complicates implementation and application. Our method, on
the other hand, yields qualitative similar results without derivatives and computational
parameters – making it easier to use and implement.

5.3.2 Valleys on the Martian Surface
We now present a second application of separatrix persistence. The objective is the
detection and extraction of valley networks on the Martian surface.

The identification of valley networks and channels is an essential tool for geomor-
phological interpretations of the fluvial, glacial and volcanic history of Mars. While
the creation of valley networks by erosion is an accepted hypothesis, the flow of water
as the sole cause has recently been put into question [Ble10]. To investigate the origin
of the networks, their detailed properties have to be mapped at a global scale. In previ-
ous attempts of computer-generated global mapping, manual verification of the results
was necessary [LS09]. Herein, we automatically extract valley networks in terms of
extremal lines and compare the extraction results with manually mapped ones that were
published in [Car95, HP03].

Elevation maps of the Martian surface have a preponderance of craters scattered
on them. This complicates a direct application of the topological analysis. In terms
of persistence the craters correspond in general to dominant minima. The incident
separatrices are therefore also dominate. However, we can use the topological analysis
to circumvent this problem by masking out the craters.

Given an elevation map, we first compute the hierarchy of topological features as
in Section 3.5.1. In this first step, we are only interested in the minima. Among other
features, the minima represent craters. The data analyst chooses a level of detail such
that all craters contain at least one minimum. The set of minima are used as seed
points for a simple flooding algorithm. For each seed point, the flooding is done until
the corresponding crater is covered. Given this binary mask, we can now start to extract
all extremal lines. We compute separatrix persistence (Section 5.2.1) for the masked
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Figure 5.13: Different levels of detail of extremal lines: For a given elevation map,
a binary mask was computed to mask the craters. Four levels of the hierarchy are de-
picted – the initial topological structures (where all extremal lines are present) and three
less detailed levels are shown. The width of the extremal lines is scaled by separatrix
persistence.

elevation map. In this step, we are interested in the minimal lines and their importance.
We applied our new method to Mars Orbiter Laser Alimeter (MOLA) data with a

resolution of 128 pixels per degree. Specifically, we concentrated on the region that
was already investigated by Carr [Car95] and Hynek et al. [HP03]. This allows for a
comparison of their manual mapping with our automatically computed hierarchy. As
can be seen in Figure 5.12, the extremal lines extracted by our method cover most
of the lines manually mapped by Hynek et al. [HP03]. This indicates that separatrix
persistence assigns highly important-values to erosional structures. However, there are
also additional lines that were not mapped by them. Figure 5.13 depicts four levels of
the hierarchical representation of the masked elevation map. While in the initial level
all extremal lines were present, only the most dominant lines remain in the last levels.
The central channel is clearly the most dominant structure.

5.3.3 Computer Tomography
Computer tomography (CT) scans usually suffer from a large amount of noise which
challenges the extraction of the extremal structures therein. We computed separatrix
persistence as described in Section 5.2.2 and applied it to two data sets: a CT-scan
of an aneurism and a bonsai tree. As discussed in the Sections 1.1 and 5.1, extremal
structures can be extracted by a local or a global analysis, we compared our extraction
result of the bonsai data set to the concept of Height Ridges [PS08]. The computation
were done on an Intel Xeon E31225 (3.1GHz) CPU and 16 GB RAM. The running time
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(a) Isosurface (b) Filtered lines

Figure 5.14: Extraction of maximal lines in a CT-scan of an aneurism using separatrix
persistence.

of the complete pipeline as described in Section 5.2.3 was 4 minutes for the aneurism
and 15 minutes for the bonsai data set. Both data sets are given on a uniform 2563 grid.

The aneurism consists of many filigree structures describing its blood vessels. Due
to the noise, these vessels are interrupted and represented by scattered surfaces as can
be seen in the isosurface shown in Figure 5.14a. We applied our method with the goal
to extract blood vessels as maximal lines. Figure 5.14b shows the smoothed result
filtered and scaled by separatrix persistence. Even in the presence of noise, connected
blood vessels are robustly extracted.

Figures 5.15 and 5.16 show the results of [PS08] and our method, respectively,
applied to a CT-scan of a Bonsai tree. The objective in this data set is the extraction
of the tree-skeleton – the trunk with all its branches. It appears as lines of maximal
intensity in the CT-scan.

To extract the ridge lines, we first had to smooth this data set using a Gaussian filter.
This reduced the noise level such that we were able to extract a meaningful result. The
ridge definition alone yields a wealth of scattered lines, where the trunk and the tree are
not identifiable, see Figure 5.15a. Peikert and Sadlo [PS08] proposed a filter criterion
Fα based on the angle α between the ridge line and the gradient. Typically, α varies
between 5◦ and 60◦. We applied this filter criterion F45 with α = 45◦.

While this reduced the complexity of the extraction result, the trunk and its branches
are still not detectable, see Figure 5.15b. We restricted the ridge computation to regions
with f > 55. Using this restriction, the overall structure of the tree becomes visible.
However, the branches and the trunk are still represented by a scattered set of lines, see
Figure 5.15c.

We applied all topological computations to the original data set (no smoothing).
The result is shown in Figure 5.16a, where we show all maximal lines scaled by sepa-
ratrix persistence. While the overall scenery is quite complex, the structure of the tree
is already identifiable. Figure 5.16b shows the result after filtering by separatrix persis-
tence. Due to the combinatorial nature of our method, the maximal lines follow the grid
structure as it can be seen in the close-up of Figure 5.16b. We smoothed the maximal
lines to obtain a visually pleasing result, see Figure 5.16c. The smoothing introduced
only slight deviations in the geometric embedding. Note how the trunk and its branches
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(a) All ridges. (b) Filtered by F45.

(c) Ridges restricted to the volume with f > 55.

Figure 5.15: Height ridges of the
Bonsai data set.

(a) All maximal lines. (b) Filtered Lines.

(c) Most dominant smoothed maximal lines.

Figure 5.16: Maximal lines of the
Bonsai data set.

are nicely represented as a connected network in contrast to the ridge extraction result.

5.3.4 Scalar Quantities in Fluid Dynamics

We computed separatrix persistence as described in Section 5.2.2 and applied it to two
data sets from the fluid dynamics domain: In the first experiment, we extracted the
most dominant extremal lines and surfaces from a scalar quantity, i.e., the Q-criterion,
derived from fluid dynamics simulation of a Kármán vortex street. Similar as for the
bonsai example in Section 5.3.3, we compared our result to the method of Peikert and
Sadle [PS08]. The second experiment focuses on the most dominant parts of separa-
tion surfaces in an FTLE field. The computation were done on an Intel Xeon E31225
(3.1GHz) CPU and 16 GB RAM. The running time of the complete pipeline as de-
scribed in Section 5.2.3 was 3 minutes for the vortex street and 10 minutes for the
FTLE field.

Figure 5.17 demonstrates the results of our method applied to a scalar quantity de-
rived from a flow behind a cylinder. The data set was provided by Bernd R. Noack
(TU Berlin) from a direct numerical Navier Stokes simulation by Gerd Mutschke (FZ
Rossendorf). It resolves the so called “mode B” of the 3D cylinder wake at a Reynolds
number of 300 and a spanwise wavelength of 1 diameter. The data is provided on a
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(a) Vortex core lines (red) of a flow behind a cylinder as maximal lines
using separatrix persistence.

(b) Close-up of a maximal line
(red) extracted using our
method.

(c) Ridge lines (green) of Q extracted using [PS08]. (d) Close-up of a ridge line
(green) extracted using
[PS08].

(e) The separation surfaces (blue) of Q are a part of the strain
skeleton for Q < 0 [SWTH07]. They partition the domain into
vortex regions. Inside these regions, maximal lines (red) of Q are
shown, i.e., lines of maximal vortical behavior. Lines/surfaces
extracted using our method.

(f) All extremal lines of V0.

(g) Most dominant extremal lines
filtered and scaled by separatrix
persistence.

Figure 5.17: 3D unsteady flow behind a cylinder. Shown are extremal features of the
Q-criterion for t = π . The gray isosurface depicts the zero-level of Q while the level
Q = 2.7 is illustrated as yellow isosurface.

265× 337× 65 curvilinear grid as a low-dimensional Galerkin model. The examined
time range is [0,2π]. The flow exhibits periodic vortex shedding leading to the well
known von Kármán vortex street [ZFN+95]. This phenomenon plays an important role
in many industrial applications such as mixing in heat exchangers or mass flow mea-
surements with vortex counters. However, this vortex shedding can lead to undesirable
periodic forces on obstacles such as chimneys, buildings, bridges and submarine tow-
ers.

We analyze the Q-criterion [Hun87] of this flow, which is a derived scalar field
that allows to distinguish between vortex (Q > 0) and strain (Q < 0) behavior. The
latter measures the amount of stretching and folding which drives mixing to occur. As
pointed out by Sahner et al. [SWTH07], the minimal points/lines/surfaces of Q repre-
sent the strain skeleton, while the maximal features of Q denote the vortex skeleton.

Figures 5.17f-g provide a comparison between the unfiltered extremal lines and the
lines filtered and scaled by separatrix persistence. Minimal lines are shown in blue,
maximal lines in red. This exemplifies that separatrix persistence is able to reveal the
most dominant features. We additionally applied a derived filter criterion here: the
variance of separatrix persistence along a line. The idea is to favor lines that stay in
the center of a vortex, i.e., that have a rather constant Q-value and therefore a rather
constant separation strength.
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(a) Volume rendering. (b) Unfiltered repelling separation
surfaces.

(c) Surfaces filtered using
separatrix persistence.

Figure 5.18: FTLE of the ABC Flow. Filtering the separation surfaces of the Morse-
Smale complex using separatrix persistence reveals the most dominant surfaces of max-
imal FTLE value.

The most dominant maximal lines and ridges of Q are shown in Figures 5.17a and
5.17c, respectively. The ridge lines are filtered by the F45 filter [PS08]. We additionally
removed small isolated lines. Both extraction methods yield qualitatively very similar
results. However, the close-ups in Figures 5.17b and 5.17d reveal an important differ-
ence of the two approaches: The topological approach gives long, fully connected lines
(Figure 5.17b). In contrast, ridge lines are often split into several smaller parts in this
data set (Figure 5.17d). This is due to the fact that ridge lines are local features, i.e., it
is locally decided whether or not a point is on a ridge or not. Due to numerical insta-
bilities or noise, some of the local decisions along a ridge line may produce a “miss”,
which then leads to disconnected results. This cannot happen for the topological ap-
proach, since separatrices are global features. On the other hand, ridge lines do not
suffer from deviations due to smoothing.

Figure 5.17e shows the separation surfaces emanating at the 2-saddles of Q re-
stricted to Q < 0. Following Sahner et al. [SWTH07], this provides a partition of the
domain into vortex regions, which is nicely confirmed by the shown vortex core lines
in the center of each of these regions.

The Finite Time Lyapunov Exponent (FTLE) [Hal01] is a scalar field that describes
the separation of particles in a flow: high FTLE values indicate a strong separation,
i.e., neighboring particles diverge from each other during integration. Hence, one is
interested in finding surfaces of maximal FTLE value. We computed FTLE for the
well-known ABC flow from [Hal01]. This is an analytic flow given on a uniform 2563

grid and the numerically computed FTLE field exhibits almost no noise. We include
this example to showcase that separatrix persistence is not only useful for filtering
noise-induced structures, but also to find the most dominant parts of features, i.e., the
parts with the highest feature strength. Figure 5.18a shows a volume rendering of this
scalar field. The transfer function has been chosen to show only regions of very high
FTLE values. Figure 5.18b shows all separation surfaces emanating at the 1-saddles.
We find the most dominant parts of these surfaces by filtering them using separatrix
persistence, as shown in Figure 5.18c.
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Figure 5.19: Discrete
(top) and smooth
(bottom) representa-
tion of a subregion of
the cell membrane.

Figure 5.20: Extraction of a cell membrane in a cryo-
electron tomogram using separatrix persistence (left col-
umn) and ridge/valley definition (right column). The top
row shows the original data. The bottom row shows the
results after Gaussian smoothing.

5.3.5 Cell Biology
Cryo-electron tomography allows to visualize sub-cellular structures such as cell mem-
branes. This imaging technique suffers from a very low signal-to-noise ratio and ar-
tifacts arising from incomplete information (“missing wedge”), which makes an auto-
mated extraction of these structures very challenging [Fra06]. We applied our method
to a sub-tomogram (124× 154× 47) of a Dictyostelium discoideum cell [RGH+12b]
with the goal to extract the cell membrane as the dominant parts of the combinatorial
separation surfaces. We compared our result with ridge surfaces computed using the
technique of Peikert and Sadlo [PS08]. The computation were done on an Intel Xeon
E31225 (3.1GHz) CPU and 16 GB RAM. The running time of the complete pipeline
as described in Section 5.2.3 was 7 minutes for this data set.

The sub-tomogram shows the so-called Filopodium – a finger-like extension of the
cell. Figure 5.20 (left, upper row) shows the result after filtering using separatrix per-
sistence and smoothing the surface using heat diffusion (see Figure 5.19 for the effect
of the surface fairing). Although some holes within the membrane occur, its overall
shape is well recovered. As described by Rigort et al. [RGH+12b], the tomogram was
already filtered using non-local means [BCM05]. However, this filtering is not suffi-
cient for the extraction of ridge surfaces as shown in Figure 5.20 (right, upper row):
the membrane is only represented by a scattered set of small surface pieces.

The remaining noise level challenges the ridge computation, in contrast to the topo-
logical approach. We applied Gaussian smoothing to lower the noise level further. The
bottom row of Figure 5.20 shows the results for the smoothed version. Both extraction
approaches benefit from this smoothing step. The cell membrane is almost closed, only
few holes remain.



Chapter 6

Discussion

In the following, we discuss the applicability of the algorithmic framework presented
in Chapter 3. Since the overall setting is combinatorial, we especially discuss the
relationship and differences to the smooth setting. We also investigate the limitations
of our new importance measure separatrix persistence introduced in Chapter 5, and the
extension of our framework to higher dimensional data.

6.1 Smooth vs. Discrete Topological Structures
In Chapter 3, we presented algorithms that compute the topological structures – the
critical points, and the separation lines and -surfaces – within a scalar field. These
structures are given as a subset of links and nodes in the graph. Figure 6.1 shows
these structures of the electrostatic field around a benzene molecule. This data set was

(a) Topological structures of the 1-saddles (b) Topological structures of the 2-saddles

Figure 6.1: Separation lines and surfaces of the electrostatic field of a benzene molecule
for Vm−85 with 181 critical points. (a) shows the minimal structures: the 48 minima
(blue spheres), 78 1-saddles (green spheres), 0-separation lines (blue lines) and the
ascending manifold of the 1-saddles (blue surface). (b) shows the maximal structures:
the 12 maxima (red spheres), 43 2-saddles (yellow spheres), 2-separation lines (red
lines) and the descending manifolds of the 2-saddles (red surface). Due to symmetry,
only one half of the separation surfaces is shown.



116 Discussion

(a) (c)

(b) (d)

Figure 6.2: Comparison of combinatorial and continuous extremal structures for the
electrostatic field around a benzene molecule. (a) shows smooth extremal structures
extracted as in [TWHS03a]. The minima and the maxima are depicted as blue and
red spheres while the 1- and 2-saddles are shown as blue and red disks respectively.
The 1-separation lines are shown as blue-red stripes. Gray illuminated lines represent
streamlines emanating from the saddles. (b) shows combinatorial extremal structures.
The minima, 1- and 2-saddles, and the maxima are represented by blue, green, yellow
and red spheres respectively. The 1-separation lines are shown as green lines. Gray
illuminated lines depict the 2-separation lines emanating from the 2-saddles. (c) and
(d) show a close-up of the center 2-saddle with its surrounding 1-saddles and the cor-
responding 1-separation lines for the smooth and combinatorial case. Gray surfaces
depict the carbon and the hydrogen atoms and their bonds.

already analyzed in [TWHS03a] using numerical methods. Since sampling introduce
spurious critical points, we chose the hierarchy level Vm−85 such that we got the same
number of 1- and 2-saddles as in [TWHS03a]. The electrostatic field was sampled
on a 4013 regular grid using the fractional charges method described by Stalling et al.
[SS96].

As can be seen in Figure 6.1, the regularity of the underlying data set has been
perfectly captured. This poses a challenge for numerical algorithms, since guarantees
about finding all critical points can usually not be given. A side-by-side comparison
of the continuous and the combinatorial extraction results is shown in Figure 6.2. The
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close-ups in Figures 6.2 (c) and (d) reveal a high qualitative similarity between both
versions.

We make the following observations: Numerical algorithms require a larger number
of parameters, which are often difficult to choose. In this example, the continuous
version misses some 1-separation lines (saddle connectors), since a certain maximal
number of integration steps had to be chosen for the extraction algorithm [TWHS03a].
Of course, we could have changed that parameter and re-run the algorithm by Theisel
et al. [TWHS03a], but this still would not make it a proofably watertight case. The
combinatorial algorithm, on the other hand, captures all connectors by design.

On the other hand, the smooth nature of the flow is better communicated to a
viewer in the continuous version. For such visualization purposes, the classic con-
tinuous methods are preferable over the combinatorial ones. In contrast to the numer-
ically computed separation lines (Figures 6.2a and 6.2c), the geometric embedding of
the combinatorial separation lines shown in Figures 6.2b and 6.2d clearly reflects the
structure of the underlying grid.

The main reason for these differences in the geometric embedding is the combina-
torial representation of the gradient direction in terms of the directions provided by the
grid. We use Algorithm 5 proposed by Robins et al. [RWS11] to compute the combi-
natorial gradient field. Herein, the grid direction with the steepest descent is chosen
to approximate the continuous gradient. One could argue that a refinement of the grid
would reduce these differences, and the combinatorial structures would then converge
to the continuous ones. Unfortunately, this is not the case. When one follows the com-
binatorial gradient, the quantization error of the topological structures can accumulate
to a large value.

In the following, we investigate this behavior in detail.

6.1.1 The Steepest Descent
For simplicity, we now assume that a cubical complex is given. These complexes are
usually employed if image data are analyzed. However, we will also provide some
comments regarding simplical complexes.

The separatrices of a combinatorial gradient V are alternating paths in the cell graph
G with respect to V . Intuitively, the links in V should therefore reflect the direction of
the continuous gradient of the input data. However, at a given vertex u, there are only
a constant number of directions representable by the links of G. This implies that the
continuous gradient can only be represented in a quantized way. Loosely speaking, the
gradient direction is snapped to the links of the graph.

Therefore, the combinatorial gradient differs from the continuous gradient not only
by a sampling error, but also by a quantization error. The sampling error can be de-
creased using a denser sampling. However, this is not necessarily the case for the
quantization error.

The steepest descent strategy for the link selection in Line 16 of Algorithm 5 suffers
from this quantization artifact. Suppose that the exact gradient is almost constant in a
region K and points ’North-North-East’ as shown in Figure 6.3. At any given vertex
in K the steepest descent direction is therefore always ’North’ – independent of the
resolution used to sample the exact gradient. Any exact separatrix passing through K
is thereby approximated by a straight line going ’North’.

The same behavior can be also observed for simplical complexes. A triangulation
of a surface is usually designed in a way such that it represents the local details of a
surface well. Very often such triangulations are also locally structured which yields the
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Figure 6.3: Illustration of the steepest descent of a locally constant gradient (black
diagonal lines). The gradient is projected on a uniform grid (gray). The steepest descent
at the vertices of the grid (black arrows) always points north.

same problem as with the cubical complex. Only a limited number of directions are
available.

A possible way to resolve this problem is to increase the number of directions such
that the link selection corresponds to the continuous gradient. For a given simplical
complex, the number of available directions can be increased by employing a remesh-
ing. In many applications, however, a lot of effort is put into the design of a triangu-
lation and a subsequent altering of it is not desired. If a remeshing is employed, the
resulting triangulation must be locally unstructured, i.e., no specific direction should
be given by the edges of the triangulation.

The cubical complex is implicitly given which enables the treatment of very large
data. In contrast, the simplical complex is explicitly given; the cell and their adjacency
require an explicit storage. A direct translation of the cubical complex into a simpli-
cal complex would increase the memory consumption by several factors. This might
exceed the available memory on commodity hardware.

In the following, we will propose and investigate an alternative approach to dealing
with the quantization error: We choose the links adjacent to a vertex u in a probabilistic
fashion. Since we cannot represent the (continuous) gradient direction exactly, we pick
a link according to a random variable Xu. For a cubical complex, the probability mass
function g of Xu is defined by the scalar field f and the width and height of each pixel.
The basic idea is to design g such that the expected value of Xu corresponds to the
(continuous) gradient direction at u.

These random variables are independent. Assuming that in this setting the law of
large numbers [Ber13] is applicable, a path following this probabilistic combinatorial
gradient will therefore almost surely proceed in the direction of the (continuous) gra-
dient when the grid is refined. We now provide an idea how such a probabilistic link
selection can be designed for cubical complexes in the 2-dimensional case.

6.1.2 Probabilistic Steepest Descent
The probabilistic approach discussed in the following assumes a cubical 2-dimensional
complex. The idea is to replace the link selection in Algorithm 5. We choose the
direction (Line 16 of Algorithm 5, page 45) from the set of admissible links L in a
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probabilistic fashion instead of choosing the locally steepest descent.
The index of the links in L is either always 1 or always 0 (Line 14 of Algorithm 5).

Perhaps surprisingly, it suffices to choose the links of index 0 appropriately. The order
in which the links of index 1 are chosen has no effect. They are uniquely defined once
the links of index 0 and the saddle points have been selected. This fact motivated the
construction method of a combinatorial gradient by Lewiner et al. [LLT03]. In the
following, we therefore assume that L contains only links of index 0.

For a given vertex u0 ∈ N, the link selection strategy is given by a random variable
Xu. The value of this random variable is always a link in L. We now define a probability
mass function g : L→ [0,1] for Xu such that the expected value of Xu is collinear to the
(continuous) gradient at u.

We assume (without loss of generality) that the (continuous) gradient points North-
East, i.e., ∇ f (u) = ( fx, fy) with fx, fy ≥ 0. Furthermore, the width of the current pixel
is denoted by w and its height by h. The set L thereby consists of the directions (0,h)
and (w,0).

To simplify notation, we refer to g((w,0)) by λ . Since g is a probability mass
function, we have g((0,h)) = 1−λ . The expected direction E(Xu) is now given by

E(Xu) = (1−λ )

(
0
h

)
+λ

(
w
0

)
=

(
λw

(1−λ )h

)
. (6.1)

Since E(Xu) should be collinear to ∇ f (u) = ( fx, fy), the following condition must hold

det
(

λw fx
(1−λ )h fy

)
= 0. (6.2)

This yields

g((w,0)) =
h fx

w fy +h fx
and g((0,h)) =

w fy

w fy +h fx
. (6.3)

Since ∇ f (u) is not directly available, we approximate it using finite differences:

fx ≈
f ((u+(w,0))− f (u)

w
and fy ≈

f ((u+(0,h))− f (u)
h

. (6.4)

Denoting the height difference f ((u+(w,0))− f (u) by W and f ((u+(0,h))− f (u) by
H, and inserting (6.4) into (6.3) yields the final probability mass function g in terms of
f , w and h:

g((w,0)) =
h2W

w2H +h2W
and g((0,h)) =

w2H
w2H +h2W

. (6.5)

Note that, in practice, L may consist of more than two links due to the sampling of
f . Each link in L is therefore assigned the height difference weighted by the squared
length of the dual link. Its probability is then given by the normalized value with
respect to the other links in L.

6.1.3 Empirical Convergence
We now evaluate how the above probabilistic idea performs compared to the steepest
descent strategy. Let Ω = [−2,2]2 and α ∈ R+. The function f : Ω→ R is given as

f (x,y) =−e−α

(√
x2+y2−1

)2

−0.3(x+ y). (6.6)
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Figure 6.5: The analytic example f (6.6). (a) and (b) show the Hausdorff distance of
the approximated center circle to the reference circle for different choices of α and
increasing resolution. (a) shows the evolution of the error using the steepest descent
approach. (b) shows two statistical characteristics of the error of the probabilistic ap-
proach.

The function f describes a circle engraved on a tilted plane. The sharpness of this
circle is defined by the parameter α . For α → ∞, the circle becomes arbitrary sharp.
For α → 0, f gets flattened. Varying α allows us to simulate smooth as well as sharp
features appearing in many applications. An illustration of f sampled on a 20482 grid
for different choices of α is given in the first row of Figure 6.4. Integral lines of the
continuous gradient ∇ f are depicted by black lines using the dual streamline seeding
technique by Rosanwo et al. [RPP+09]. Converging integral lines indicate thereby the
existence of a separatrix. In the following paragraphs, we choose the engraved circle
as a reference feature. For illustration, it is shown as a white circle line in the first row
of Figure 6.4.

We applied Algorithm 5 using the steepest descent version as well as the proba-
bilistic version to construct a combinatorial gradient of f for different choices of α .
The resulting Morse-Smale complexes of the steepest descent version are shown in
the second row of Figure 6.4. Our reference feature – the white circle – is visually
well recovered for large values of α , which confirms also the extraction results in Sec-
tion 5.3 and of recently proposed methods [CCL03, KRHH11]. In many applications,
the desired features are sufficiently sharp.

However, deviations from the reference circle become visible if the feature gets
smooth, i.e., for small choices of α . The steepest descent version of Algorithm 5 is
not able to recover the circle for α = 20 and α = 21. The probabilistic approach, in
contrast, is able to recover the circle for all choices of α . The resulting Morse-Smale
complexes are shown in the third row of Figure 6.4.

To quantify the approximation error, we measured the Hausdorff distance [Hau14]
of the reference circle to the approximated circle. Figure 6.5a shows the approximation
error for Algorithm 5 using the steepest descent strategy in a log-log plot. Although the
extraction result looked visually reasonable for large α-values, there is no convergence
for any α . The Hausdorff distance to the reference circle is not decreasing if a finer
grid is employed.

For the probabilistic approach, we did 200 runs of Algorithm 5. Figure 6.5b shows
the mean value of the Hausdorff distance and its standard deviation. Both quantities are
converging to zero. Hence, the sampling as well as the quantization error are reduced
when a finer grid is employed. However, it needs to be noted that the approximation
error for very sharp features (α = 25) is slightly larger compared to the steepest descent
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Figure 6.6: Distribution of Hausdorff distance error. The blue, black and red curves
show the estimated probability density function of the Hausdorff distance between the
center circle and the reference circle (as shown in Figure 6.4) for different resolutions.

strategy when coarse grids are used. It is also worth mentioning that the convergence
speed is not optimal since we employed uniform refinements. Increasing the efficiency
may be achieved by developing an adaptive grid refinement approach. This may be
particularly effective since a high resolution is only needed in the vicinity of the sepa-
ratrices.

In Figure 6.6, we plotted a kernel density estimate [BGK10] of the probability den-
sity of the Hausdorff distance error for different resolutions. We applied Algorithm 5
using the probabilistic approach 1000 times to obtain a sufficient number of samples
for the density estimate. The overall shape of the densities suggests a sequence of
binomial error distributions that converge to a normal distribution.

To demonstrate that the probabilistic approach is convergent for general smooth
functions, we considered a set of smooth functions generated by the expression

2

∑
m,n=1

(
X (1)

m,n sin(mx)+X (2)
m,n cos(mx)

)(
X (3)

m,n sin(ny)+X (4)
m,n cos(ny)

)
, (6.7)

where the X ( j)
m,n’s are random variables uniformly distributed in [−1,1]. This ex-

pression is now evaluated on the domain [−π,π]2 discretized using two different grid
resolutions. We selected four representatives of this set of functions and applied the
steepest descent and our probabilistic version of Algorithm 5. The resulting separatri-
ces are shown in Figure 6.7.

It is apparent that the steepest descent approach does not yield separatrices with a
correct embedding. The proposed probabilistic link selection strategy, however, visu-
ally converges to the correct solution. We applied this idea to a much larger number of
such functions, and always observed the above behavior.

We can conclude that a probabilistic extension of Algorithm 5 yields combinato-
rial gradients whose separatrices converge to their continuous counterpart when the
grid resolution is increased. We can therefore benefit from the simplicity and robust-
ness of discrete Morse theory, and still obtain topological structures that converge to
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Figure 6.7: Comparison of the steepest descent and the probabilistic approach using
generic functions. The four rows show four different functions randomly generated
using expression (6.7). Red denotes a high function value, while blue denotes a low
value. Black lines depict integral lines of their gradient. The left two columns show
the extracted Morse-Smale complexes for each function sampled on a 5122 grid using
the steepest descent and our probabilistic link selection strategy, respectively. The right
two columns show the result on a 40962 grid. Minima, saddles and maxima are shown
as blue, yellow and red spheres, whereas the 0- and 1-separatrices are shown as blue
and red lines, respectively. Since separatrices are integral lines of the gradient, the blue
and red lines should follow the black lines. White arrows indicate regions where the
difference of the two approaches is visually apparent.
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their continuous counterpart. However, the presented idea is currently restricted to
2-dimensional cubical complexes.

To generalize the idea to general surfaces, a representation of the discrete metric
provided by the surface is necessary. Only then a convergent behavior can be expected.
Extending this idea to 3-dimensional image data is also not straight-forward. Combina-
torial 1-streamlines can merge and split in three dimensions due to the fundamentally
different structure of the cell graph (Section 3.2.4). It turns out that this property results
in space-filling combinatorial separation surfaces if the links are chosen in the above
probabilistic way. A more adapted link selection strategy is necessary.

6.2 The Importance of Separatrices
In Chapter 5, we introduced a novel importance measure to quantify the feature strength
of separation lines and surfaces. As we have shown in several applications, this impor-
tance measure is able to reduce the topological structures to their essential part. The
reduced structures allow for a meaningful analysis of the object under study.

The computation of separatrix persistence is based on two concepts: persistent
homology and a multi-level representation of the Morse-Smale complex.

To compute the multi-level representation, pairs of critical points are sequentially
removed. As discussed in Section 4.3, an optimal removal requires that the Morse-
Smale complex is collapsible which is not always given in three dimensions. Because
of this, the Morse-Smale complex cannot always be reduced to its minimal complexity
based on the Morse inequalities. This is especially the case if a high level of noise is
present.

Due to this property, separatrix persistence depends on the number of levels of de-
tail in the hierarchy of combinatorial gradient fields V . It may happen that only a small
number of critical points can be removed from the complex. In this case, separatrix
persistence captures only the local importance of the topological structures and fails to
reflect their global importance. In our experiments, however, the topological complex-
ity of the Morse-Smale complex could be sufficiently decreased such that separatrix
persistence allowed for a meaningful reduction.

To address this limited view on the global scale, a topology-based smoothing of the
scalar field could be beneficial. In case of noise-affected data, the 1-separation lines
tend to create short split-merge sequences as discussed in Section 3.5.5, and parts of
these sequences might not be resolved. However, such short split-merge sequences
only describe local distortions in the data. A topological smoothing approach could re-
move these distortions while preserving the overall topological structure. Such a tech-
nique could be based on recently proposed methods such as [GZ07, WGS10, Bau11,
JWS12]. However, a small-scale altering of the topological structures must be in-
cluded. Given such a smoothed scalar field, one could re-run the topological analysis,
and probably increase the view on the global scale.

Separatrix persistence assigns a uniquely well-defined importance measure to sep-
aration lines connecting the saddles with the extrema and to the separation surfaces.
However, this is not the case for the separation lines that connect the two types of sad-
dle in the 3-dimensional case. These lines are given as the intersection of the ascending
and descending separation surfaces. Since each type of surfaces is assigned by sepa-
ratrix persistence, its intersection is 2-valued at the 1-nodes. Depending on the point
of view, the 1-separation lines have either a minimal or maximal character. The user
needs to decide which characteristic is preferable in the analysis.
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Topological methods as well as local approaches such as ridges/valleys extract
image-based features. However, not all of them are meaningful in an application. For
example, the aim of the application presented in Section 5.3.2, is to extract valleys
of the Martian surface that describe erosional structures. However, not all creases are
caused by these structures. A second example can be seen in the comparison Fig-
ure 5.11 for the salient edge extraction. The topological method tends to create con-
nected extremal lines while ridge/valley definitions result in isolated lines. Which result
is preferable, depends on the application specific task. The filtering due to separatrix
persistence is purely image-based, no model knowledge is included. If the inclusion
of such knowledge is wanted, specific filter criteria that depend on the application task
need to be developed.

6.3 Extension to Higher Dimensions
The presented algorithmic framework works for 2- and 3-dimensional data given on
a simplical or cubical complex. One of the basic algorithm used within is the con-
struction of the combinatorial gradient field. As shown by Robins et al. [RWS11], the
critical points correspond 1-1 to the topological changes of the input data.

Theoretically, this algorithm is also applicable to higher dimensional cell com-
plexes. However, the proof of Robins et al. [RWS11] is limited to three dimensions.
While they assumed that their statements also hold in dimension four but using differ-
ent arguments, it fails in dimensions greater than four. In practice, this results in falsely
identified critical points, and therefore also in additional topological structures.

The Morse-Smale complex is defined by the intersection of the ascending and de-
scending manifolds, and thereby dimensionless. The same holds for the restricted
breadth-firsts search used in the algorithms presented in this thesis. Therefore, they
can also be applied in higher dimensional complexes. However, an evaluation of their
performance is open. The specific cell structure of higher dimensional complexes could
increase the complexity of the presented algorithms, i.e., in which way combinatorial
streamlines can merge and split. Additionally, the performances of the algorithms de-
pend on the order of falsely identified critical points by Algorithm 5. Such points yield
a multiple integration of a single topological structure.

6.4 From Discrete to Smooth
The combinatorial topological structures allow for an objective quantification of the
input data. However, they can also be used to generate meanigful visualization enabling
a deeper insight in the complex structure of the object under study.

Figure 6.8 shows a visualization of the electrostatic potential of the benzene mole-
cule. It captures the essential parts of the field given by the separatrices, i.e., the min-
imal and maximal lines of the potential. The combinatorial 0- and 2-separation lines
are computed as described in Chapter 3. Each point of these combinatorial separatrices
serves as a seed point for a continuous stream line integration in forward and back-
ward direction. Since integral lines in the vicinity of the separatrices are converging
in forward or backward direction, this results in bundles of stream lines highlighting
the flow behavior of the gradient of the electrostatic potential. The red stream lines
emanate from the 2-separation lines, the blue stream lines from the 0-separation lines.
The visualization elucidates the regular structure of the benzene molecule.
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Figure 6.8: Visualization of the electrostatic potential around the benzene molecule.



Chapter 7

Conclusions and Future Work

In this thesis, we introduced a computational framework that allows for an efficient
computation and quantification of topological structures in discrete scalar data. In par-
ticular, we presented a library of algorithms allowing to efficiently compute the critical
points, combinatorial separation lines and surfaces. Since noise and sampling artifacts
may create additional structures, we also presented algorithms to create a multi-level
representation of these structures and introduced the concept of separatrix persistence
to assess the feature strength of separation lines and surfaces.

The presented algorithms are purely combinatorial based on the discrete Morse the-
ory of Robin Forman [For98b]. In contrast to previous approaches, we presented an
algorithm that computes the Morse-Smale complex with a provably optimal complexity
of O(cn) ⊂ O(n2). We also presented algorithms that compute a multi-level represen-
tation of this complex for the 2- and 3-dimensional case. The combinatorial setting
increases the robustness of our algorithms and guarantees the consistency of their out-
put. In contrast to previous work, the relative memory consumption is constant and the
running time behaves almost linear for well-defined data.

All the algorithms presented in the course of this thesis do not depend on any com-
putational parameter. The computed Morse-Smale complex, its multi-level represen-
tation, and the quantification of the topological structures solely depend on the infor-
mation of the input data. This enables an objective analysis. The user only chooses an
appropriate level of detail for further analysis.

As we have shown, this complex can also be efficiently computed for large 3-
dimensional scalar data (> 10243) on commodity hardware. It would be interesting
to investigate an out-of-core realization of the presented framework since this would
enable its applicability to very large data. A first approach was proposed by Gyulassy
et al. [GBHP08] and some of the presented ideas could probably also be used in our
setting.

The Morse-Smale complex describes the input data completely from the homolog-
ical point of view. We presented a strategy that allows to compute persistent homology
using this complex with an overall output-sensitive complexity of O(cn+ c3). In con-
trast to the commonly used algebraic techniques, this strategy requires significantly
less memory. For a data set of a size of about 4 GB, our strategy reduces the memory
consumption from 500 GB to 14 GB.

A fundamental question, which is still an open problem in the literature, is the
relation between the topological complexity of a given input data and the persistence
computation times. Since matrix reduction is a global operation, the complexity of the
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underlying Morse-Smale complex is crucial.
We used persistence to compute meaningful features of two near-isometric sur-

faces. We presented a conceptually direct and simple algorithmic pipeline that is able
to computes accurately a correspondence between the features of the two surfaces.

We introduced a novel importance measure called separatrix persistence that al-
lows for a meaningful filtering of separation lines and surfaces. Since this measure
enjoys the global nature of the multi-level representation of the Morse-Smale complex
and is derived from persistent homology, it behaves stable with respect to noise. We
have evaluated our new measure on a variety of data sets from different domains, which
illustrates its robustness and applicability.

We thoroughly compared our new importance measure to local approaches such as
ridges/valleys. It is very interesting that certainly both concepts can give very similar
results. This is especially the case for the commonly used definition of Height Ridges.
As discussed by Schindler et al. [SPFT12], this definition states that ridge lines cannot
be integral lines, in contrast to separatrices. Those lines are by definition integral lines.
However, the computed extremal structures largely coincide in our experiments. In
this thesis, we discussed the relationship between our topological approach and Height
Ridges. It would be beneficial to further investigate the similarities of these concepts
to bring new insights in the area of feature extraction.

Besides the shown application cases, this framework could be extended to the com-
binatorial analysis of 3-dimensional time-dependent scalar data. First promising results
were already presented by Reininghaus et al. [RKWH12] and Kasten et al. [KRHH11]
for 2-dimensional data. While the tracking of the minima and maxima can be done
in a similar fashion, an extension needs to target the challenging question how 1- and
2-saddles can be robustly tracked over time. Such techniques are of great interest in
the area of turbulence research in physics [LBM+06].

From the application point of view, the convergence of separation lines and sur-
faces is still an open question. As discussed in Chapter 6, a probabilistic approach
yields convergent separation lines in two dimensions. While this observation is only
of empirical nature, a formal proof of convergence would substantiate the experiments.
The same approach is not directly applicable in three dimensions, since it might result
in space filling surfaces due to the specific structure of the cell complex. The multi-
level representation presented in this thesis uses the intersection of surfaces, and, in this
case, its computation is therefore very challenging using the probabilistic approach in
three dimensions.

The reconstruction of a smooth scalar field based on the information provided by
the topological structures is an interesting application of this framework. The Morse-
Smale complex induces a decomposition of the data into monotone regions. Its multi-
level representation merges implicitly similar regions based on the evolution of iso-
levels. This information could be used to create a multi-scale representation of the
scalar data itself. For the 2-dimensional case, efficient algorithms were already pro-
posed [WGS10, JWS12]. An extension to 3-dimensional data, however, is not yet
done.
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