
Error-concealed Image-based Rendering

Der Carl-Friedrich-Gauß Fakultät

Technische Universität Carola-Wilhelmina zu Braunschweig

zur Erlangung des Grades

Doktor Ingenieur (Dr.-Ing.)

vorgelegte

Dissertation

von Martin Eisemann

geboren in Köln

am 14. März 1980

Eingereicht am: 25.03.2011

Disputation am: 06.07.2011

Referent: Prof. Dr.-Ing. Marcus Magnor

Koreferent: Prof. Dr.-Ing. Jan Kautz
(2011)

http://www.eg.org
http://diglib.eg.org

ABSTRACT

Creating photo-realistic images has been one of the major goals

in computer graphics since its early days. Instead of modeling

the complexity of nature with standard modeling tools, image-

based approaches aim at exploiting real-world footage directly,

as they are photo-realistic by definition. A drawback of these

approaches has always been that the composition or combina-

tion of different sources is a non-trivial task, often resulting in

annoying visible artifacts. In this thesis we focus on different

techniques to diminish visible artifacts when combining multi-

ple images in a common image domain. The results are either

novel images, when dealing with the composition task of mul-

tiple images, or novel video sequences rendered in real-time,

when dealing with video footage from multiple cameras.

KURZFASSUNG

Fotorealismus ist seit jeher eines der großen Ziele in der Compu-

tergrafik. Anstatt die Komplexität der Natur mit standardisier-

ten Modellierungswerkzeugen nachzubauen, gehen bildbasierte

Ansätze den umgekehrten Weg und verwenden reale Bildauf-

nahmen zur Modellierung, da diese bereits per Definition foto-

realistisch sind. Ein Nachteil dieser Variante ist jedoch, dass die

Komposition oder Kombination mehrerer Quellbilder eine nicht-

triviale Aufgabe darstellt und häufig unangenehm auffallende

Artefakte im erzeugten Bild nach sich zieht. In dieser Disser-

tation werden verschiedene Ansätze verfolgt, um Artefakte zu

verhindern oder abzuschwächen, welche durch die Komposition

oder Kombination mehrerer Bilder in einer gemeinsamen Bild-

domäne entstehen. Im Ergebnis liefern die vorgestellten Verfah-

ren neue Bilder oder neue Ansichten einer Bildsammlung oder

Videosequenz, je nachdem, ob die jeweilige Aufgabe die Kompo-

sition mehrerer Bilder ist oder die Kombination mehrerer Videos

verschiedener Kameras darstellt.

iii

SUMMARY

Computer graphics is a large field of computer science that has

received a lot of attention during the last decades due to its

success in the movie, games and entertainment industry. The

ever-rising demands for realism in these application fields re-

sulted in a huge leap in complexity of models and scene rep-

resentation. This, in turn, leads to a variety of new challenges

to overcome, be it in acquisition, modeling, post production or

rendering. The direction taken by industry is currently to in-

vest enough money, time and manual labor in order to achieve

the desired results. Twentieth Century Fox invested 237, 000, 000

U.S. Dollars in James Cameron’s Avatar in 2009 [38], i.e., more

than 24, 000$ per second, obviously only few companies can af-

ford to follow this trend.

Image-based rendering techniques promise to be a cost-effec-

tive alternative by exploiting photo and video footage directly.

Since these are photo-realistic by definition, photo-realism is no

direct concern. But it turns out that high-quality image-based

rendering results require also a lot of hardware and precise se-

tups. For convincing results, hundreds of perfectly calibrated

input cameras may be needed even for small objects or rela-

tively simple scenes [146]. Therefore, the main problem of mon-

etary costs, necessary time and amount of manual labor, is only

shifted towards the costs of material expenses and time needed

for the camera and scene setup.

To reduce the number of cameras needed, a step from pure

image-based rendering to geometry guided image-based render-

ing can be taken. 3D scene reconstruction algorithms can pro-

vide approximate representations of the original scene geome-

try to facilitate rendering from fewer cameras. But as image-

based rendering has also become popular in the field of sports

events, additional constraints like real-time performance might

have to be taken into account. To handle this requirement, bet-

ter and faster hardware is needed, which brings one back to the

monetary problem. An alternative are faster reconstruction algo-

rithms, which, however, go hand in hand with lower rendering

quality. Visible errors emerge as the image reconstruction prob-

lem becomes more difficult.

The same problem of visible artifacts does not only occur in

movie productions or broadcasting. In fact, any image-based

rendering technique irrevocably suffers from incomplete or low

quality input data, whether it is free-viewpoint video [40], pa-

norama imaging [236] or even texture synthesis [261]. Manual

v

reworks become necessary again, requiring skilled, and well-

paid artists. The main challenge is to find new, efficient ways to

achieve high-quality renderings requiring fewer hardware, less

manual labor and sometimes even additional constraints, like

real-time performance.

The work presented in this thesis addresses these problems

and limitations in several fields of image-based rendering. In

the beginning we present a new technique for image upsampling

and multiscale panoramas from insufficient input images. Addi-

tional input images providing higher detail for certain regions,

but taken with different cameras, different white balancing or

color aberrations, as well as potential structural mismatches, are

seamlessly blended with the low resolution panorama image. A

detail transfer and enhancement mechanism is provided for re-

gions where no specific details are otherwise available. Further,

an easy and flexible rendering scheme for even larger zoom fac-

tors and real-time applications is introduced.

In the next part we present an easy-to-use video matting ap-

proach that allows even inexperienced users to create high-qua-

lity mattes. For certain scenes our video matting system is even

able to create foreground mattes for videos without knowledge

about the fore- and background and without any user interac-

tion at all.

In the last part of the thesis we deal with known deficiencies

in free-viewpoint video. If too few input cameras are provided

or the scene reconstruction is imprecise, visible artifacts seem

to be inevitable. We investigate the source of these errors in

detail and derive two different approaches to diminish the arti-

facts and create higher quality renderings with fewer cameras,

small camera calibration errors and imprecise 3D reconstruction.

Both are real-time capable and are therefore applicable to any

image-based rendering technique based on multiview projective

texture mapping.

vi

ZUSAMMENFASSUNG

Die Computer Graphik ist ein weites Feld in der Informatik, wel-

ches insbesondere durch seine Anwendung in der Film-, Un-

terhaltungs- und Spieleindustrie große Aufmerksamkeit erlangt

hat. Die steigenden Ansprüche an den Realismus sorgten für

einen immensen Komplexitätszuwachs der Modelle und Szenen-

repräsentationen. Dies wiederum bedingt verschiedenste neue

Probleme, die es zu lösen gilt, sei es in der Akquisition, Model-

lierung, Nachbearbeitung oder der Darstellung. Die Industrie

verfolgt dabei momentan noch den Ansatz nur genügend Geld,

Zeit und Arbeitskraft zu investieren, um das gewünschte Ergeb-

nis zu erzielen. Twentieth Century Fox investierte 237, 000, 000

U.S. Dollars in James Camerons Avatar in 2009 [38], d.h. mehr

als 24, 000$ pro Sekunde. Offensichtlich können sich solch einen

Aufwand nur wenige Firmen leisten.

Bildbasierte Darstellungsverfahren können eine kostengünsti-

ge Alternative anbieten, indem sie aufgenommenes Foto- und Vi-

deomaterial direkt zur Darstellung verwenden können. Da diese

bereits von der Definition her fotorealistisch sind, ist Realismus

kein direktes Problem mehr. Leider hat es sich gezeigt, dass qua-

litativ hochwertige, bildbasierte Darstellungsverfahren auch eine

Menge an Hardware und präzise durchgeführte Einstellungen

benötigen. Für überzeugende Ergebnisse sind oft hunderte, per-

fekt kalibrierte Kameras notwendig, selbst für schmale Objekte

oder relativ simple Szenen [146]. Das Hauptproblem der Kosten,

Zeit und Arbeitskraft wird dadurch zumeist lediglich umgelegt

auf die Materialkosten und Zeit, welche benötigt werden für Ka-

meras und die Szeneneinstellungen.

Durch Verwendung von geometrieunterstützten bildbasierten

Darstellungsverfahren kann die Anzahl benötigter Kameras ver-

ringert werden. 3D Rekonstruktionsalgorithmen liefern eine ap-

proximierte Repräsentation der original Szenengeometrie um die

Darstellung auch mit weniger Kameras zu ermöglichen. Da aber

bildbasierte Verfahren auch gerade im Sportbereich immer mehr

Anklang finden, kommen zusätzliche Anforderungen, wie etwa

Echtzeitfähigkeit, hinzu. Um diesen Anforderungen nachzukom-

men, wird bessere und schneller Hardware benötigt, was uns

wieder zum ursprünglichen finanziellen Problem zurückführen

würde. Eine Alternative würden auch schnellere Rekonstrukti-

onsalgorithmen liefern, welche jedoch Hand in Hand mit gerin-

gerer Qualität in der Darstellung gehen. Sichtbare Artefakte tre-

ten auf, da die Bildrekonstruktion entsprechend schwerer wird.

vii

Artefakte im Rekonstruktionsergebnis tauchen nicht nur in

der Film- und Fernsehproduktion auf. Tatsache ist, dass jedwe-

der bildbasierte Ansatz in seiner Qualität leidet, sobald er es mit

zu wenigen Daten oder Daten zu geringer Qualität zu tun hat.

Sei es Free-Viewpoint Video [40], Panoramafotografie [236] oder

selbst Textursynthese [261]. Kostspielige, manuelle Nachbearbei-

tung wird somit wieder notwendig.

Die große Herausforderung ist es also neue, effiziente Wege

zu finden um qualitativ hochwertige Darstellungen mit weniger

Hardware, weniger Handarbeit und manchmal selbst zusätzli-

chen Herausforderungen, wie Echtzeitdarstellung, zu erzeugen.

Die in dieser Dissertation vorgestellten Arbeiten gehen diese

Probleme und Limitierungen in verschiedensten Bereichen der

bildbasierten Darstellung an. Zunächst beschäftigen wir uns mit

dem Problem des Hochskalierens für digitale Bilder und Pan-

oramaaufnahmen aus unzureichenden Eingabedaten. Zusätzli-

che Bilder, welche einen höheren Detailgrad aufweisen für be-

stimmte Bereiche der aufgenommenen Szene, werden nahtlos

in das niedriger aufgelöste Panorama eingebunden. Schwierig-

keiten enstehen dabei durch unterschiedliche Kameramodelle,

Weißabgleich oder Farbabweichungen, sowie struktureller Dis-

krepanzen. Ein Detailtransfer sorgt zudem für mehr Details in

Bildregionen, für die ansonsten keine passenden Eingabebilder

gefunden werden konnten. Zudem wird ein flexibles Verfahren

vorgestellt für die Echtzeitdarstellung von noch größeren Zooms

in Bilder hinein.

Im darauffolgenden Abschnitt wird ein einfach anzuwenden-

des Matting Verfahren zur Trennung von Vorder- und Hinter-

grund in Videos vorgestellt, welches es auch unerfahrenen Be-

nutzern erlaubt qualitativ hochwertige Mattes zu erstellen. Für

manche Szenen kann der vorgestellte Algorithmus sogar die Mat-

tes für komplette Videos ohne weiteres Zutun oder Wissen über

den Hintergrund erstellen.

Im letzten Teil dieser Arbeit wird auf bekannte Schwierigkei-

ten und Unzulänglichkeiten in Free-Viewpoint Video Applikatio-

nen eingegangen. Sind zu wenige Eingabebilder für eine präzise

Szenenrekonstruktion gegeben, sind sichtbare Artefakte unver-

meidbar. Wir untersuchen detailliert die Ursprünge dieser Ar-

tefakte und leiten daraus zwei unterschiedliche Ansätze zu ih-

rer Vermeidung ab, um somit qualitativ verbesserte Bilddarstel-

lungen zu erzeugen, trotz weniger Kameras, kleinerer Kalibrie-

rungsfehler und ungenau rekonstruierter 3D Geometrie. Beide

Ansätze sind Echtzeitfähig und für alle bildbasierten Ansätze

einsetzbar, welche auf projektiver Texturierungmit mehreren Ka-

meras basieren.

viii

ACKNOWLEDGMENTS

There are so many people I would like to thank and express

my gratitude to in these acknowledgements, who supported me

and contributed to this dissertations in more ways than they may

imagine. First of all, I would like to mention my parents Freya

and Hans, my siblings Almuth and Elmar, for their support and

love, also my grandma Hadumuth (yes, this name really exists),

my nephew Finn and of course Myriam. She always supported

me, encouragedme at all times and even enduredmy sometimes

grouchy mood during the time of writing this thesis.

I would like to thank my supervisor Marcus Magnor, who

not only supported my research but before anything else gave

me the opportunity to work here at the Computer Graphics Lab

of the Technische Universität Braunschweig and therefore made

me meet so many wonderful people throughout the years. I

have never worked in a more friendly, collaborative and familial

environment and will never forget all those funny happenings

here.

I would like to thank Timo Stich for always showingme the joy

of science and for extending me such a warm welcome in Braun-

schweig. And I want to thank Christian Linz and Georgia Albu-

querque who shared the office with me and never complained

when I disrupted their thoughts. For this I should also express

a lot of my gratitude to Anita Sellent, our Ms. Mathematician.

But they were not the only ones, thank you Stephan Wenger,

Christian Lipski, Felix Klose, Lorenz Rogge, Kai Berger, Thomas

Neumann, Lea Lindemann, Kai Ruhl and Benjamin Meyer for

the helpful scientific discussions. Thank you Anja Franzmeier

for keeping all of the administrative part as simple as possible

for me and all of us. Therefore I should also mention Christin

Wähner, Markus Galda, Yasemin Yueksel-Glogowski, Benjamin

Flecken, Kristina Branz, Florian Barucha, Brian Schimmel, Arthur

Martens and Patrick McLaren. Thank you Carsten for keeping

our computers running and your trenchant sense of humor hit-

ting the nail on the head in so many situations. And thank you

all for the fun we had and hopefully will have in the future.

ix

CONTENTSI Introdu
tion 1
1 introduction 3

2 prerequisites 7

2.1 A Generic Image-based Rendering Pipeline 7

2.2 The Plenoptic Function 8

2.3 Image Formation . 9

2.4 Spatial Transformations 9

2.5 The Camera Model 13

2.6 Image Blending . 15

2.7 Image morphing . 15

2.8 3D Reconstruction . 16

2.9 Free Viewpoint Video 20

2.10 Optical Flow . 22

2.11 Matting . 23

2.12 Gradient Domain Compositing 24

2.13 Exemplar-based Texture Synthesis 26II Error Con
ealment in Seamless Image Synthe-sis 29
3 introduction 31

3.1 Background . 31

3.2 Related Work . 32

4 photo zoom 39

4.1 Introduction . 39

4.2 Dependency Graph Construction 41

4.3 Detail Transfer . 43

4.4 Constrained Multiscale Detail Synthesis 51

4.5 Results . 56

4.6 Discussion . 63

5 zipmaps: zoom-into-parts texture maps 67

5.1 Introduction . 67

5.2 Zipmaps . 68

5.3 Results . 72

5.4 Discussion . 73

xi

xii contentsIII Error Con
ealment in Video Matting 77
6 introduction 79

6.1 Background . 79

6.2 Related Work . 80

7 spectral video matting 83

7.1 Introduction . 83

7.2 Spectral Matting . 84

7.3 Spectral Video Matting 86

7.4 Results . 88

7.5 Discussion . 89IV Error Con
ealment in Image-based Rendering 91
8 introduction 93

8.1 Background . 93

8.2 Related Work . 96

9 error analysis 103

9.1 Introduction . 103

9.2 Problem Description 104

9.3 A Geometric Analysis of Ghosting Artifacts 107

10 filtered blending for multiview projective tex-

turing 115

10.1 Introduction . 115

10.2 View-dependent Ghosting Artifact Analysis 116

10.3 View-dependent Filtering 117

10.4 GPU Implementation 118

10.5 Results . 121

10.6 Discussion . 122

11 floating textures 127

11.1 Introduction . 127

11.2 Floating Textures . 129

11.3 Soft Visibility . 132

11.4 GPU Implementation 134

11.5 Results . 136

11.6 Discussion . 139V Con
lusion 141
12 summary 143

12.1 Future Work . 144

contents xiiiVI Appendix 147
a notation 149

b photo credits 151

Bibliography 153

Part I.Introdu
tion

1

1
INTRODUCT ION

I was afraid they would give me a math test to get in.

I was even more afraid they would give me a math test to get out!

— Don Marinelli

Images represent the fundamental basis of any visual research.

Computer vision focuses on images as input data with the aim

to transform the contained information into a new representa-

tion useful for tasks such as motion tracking, object recognition

or scene reconstruction. On the other hand, computer graph-

ics traditionally generates images as the output of its process-

ing pipeline, e.g. in data visualization, computer animation or

simply to synthesize new views for a geometric scene descrip-

tion, used in computer games or virtual environments. How-

ever, in the last two decades computer graphics evolved into

a new direction by making use of images also as input data

to its algorithms. This provided new, exciting ways to create

(photo-realistic) renderings. Examples are image-based render-

ing techniques [59, 146, 153], or the classic discipline of image

compositing [34, 189].

Compositing can be summarized as combining two or more

images into a single output image, similar to collages. Almost

any high-quality movie production that incorporates computer

generated content nowadays relies on this concept for a more

efficient workflow [34]. The most simple, though most heavily

used variant in movie production is the composition of differ-

ent images without changing their respective content. This can

be seen as a simple layering concept. Different images or im-

age patches are drawn on top of each other by simply painting

over the underlying content or by blending using an alpha mask

to describe the opacity of each layer. While the composition

itself is a rather simple task once the alpha mask has been cre-

ated, the preceding steps require more attention, especially the

object extraction, sometimes also referred to as matting or ro-

toscoping [253]. Extracting an object pixel-wise by hand can be

tedious enough for a single image, but for longer videos it would

become overwhelming. For more complex or semi-transparent

objects, like hair, it would be even impossible as pixel-wise copy-

ing could never extract a realistic matte. As transparent objects

are always a combination of the foreground and background

3

4 introduction

color, the matting problem becomes one of reconstructing the re-

spective colors as well as the transparency of the object. While

the task is manageable for simple backgrounds, such as a blue

screen [218], it evolves to a very complex task for natural back-

grounds [144, 145] and an even more complex task for videos

[17, 46]. Most research in this field of compositing therefore

aims at simplifying or reducing the workload of the artist to ac-

complish his or her object extraction task. Unfortunately, most

of the algorithms either rely only on color statistics [203], which

require controlled environments for good results, or they lack

the necessary robustness resulting in the necessity for a lot of

user interaction [46].

Another variant of the previously mentioned compositing is

the seamless integration of image patches (source) into another

image (target) [184]. In this variant, the content of the source is

adjusted in a way to preserve its overall structure and to seam-

lessly merge with the underlying content of the target. The goal

is to convince the viewer that he is looking at a single, realis-

tic image, in which he can no longer differentiate between the

different sources. In order to create realistic transitions between

a source and target image, structural mismatches between both

need to be removed. In some cases one even has to deal with fre-

quency mismatches, e.g., if the source or target does not convey

as high-frequency information in comparison to the respective

counterpart [234]. Again this can create visible seams between

the source and target which one has to deal with, either by hid-

ing the seams or, as we do in this thesis, by adding new, compat-

ible high-frequency information to the lower frequency part of

the image, i.e., new textural information has to be hallucinated

by some plausible means.

Generalizing the concept of image compositing, we can find it

in other fields of image-based computer graphics as well, e.g. at

the borderline between vision and graphics, namely in multi-

view image-based rendering, e.g. [40, 59, 146]. In this field an

essential requirement is the realistic reproduction of the input

data, with regard to plausibility instead of physical correctness.

Application examples are image morphing [23] to interpolate

between two views, or free-viewpoint video [40], where new im-

ages are created on the basis of a freely movable virtual cam-

era. The classic approach is to transfer the input images into the

output image domain and combine/composite them in a mean-

ingful and plausible manner. One application example, which

is already used by the industry, is the analysis of sports events

with changing viewpoints [115]. But imprecisions in the scene

reconstruction or camera calibration can lead to visually disturb-

ing artifacts.

introduction 5

This dissertation investigates several representative problems

of the spectrum of image-based computer graphics in the context

of image compositing:

• Seamless image compositing, upsampling and texture hal-

lucination dealing with several artifact-revealing aspects,

including color, content mismatch and frequency differ-

ences;

• Video matting for complex objects;

• Error concealment in image-based rendering techniques

which are based on projective texture mapping.

thesis structure and contribution

Parts of this dissertation have already been presented at various

conferences including the Eurographics conference, Graphics In-

terface and the Vision, Modeling and Visualization workshop

and have been published in the according conference proceed-

ings [69, 71, 73, 74, 77], journals [72], books [76] and different

technical reports [67, 68, 70, 75].

The basis of this dissertation is founded on these publica-

tions, but combines them under the unifying concept of error-

concealed rendering. After a short introduction and an overview

of the necessary background in the first part of this thesis, we

examine the problems occurring in seamless image and content

synthesis. The main contributions of this second part are listed

in the following.

• A system to automatically construct high-resolution im-

ages from an unordered set of low resolution photos is

presented in Chapter 4. It consists of an automatic pre-

processing step to establish correspondences between any

number of given photos. The user may then choose one

image, and the algorithm automatically creates a higher re-

solution result, several octaves larger, up to the desired re-

solution. Detail information is seamlessly added from the

other photographs, dealing with structural inconsistencies,

color aberrations and frequency mismatches. The applied

recursive creation scheme allows to transfer specific details

at subpixel positions of the original image.

• In Chapter 5 we present an easy, flexible and hierarchi-

cal representation to render detailed texture patches into a

classic texture map of limited resolution. Instead of saving

a single high-resolution texture map, a single low-resolu-

tion texture map is saved, and accompanying high-detail

patches are rendered at the interesting positions to provide

additional high-resolution content. This gives the opportu-

nity to render different texture patches on top of each other

6 introduction

without any artifacts such as z-fighting, aliasing artifacts,

or visible seams between the patches.

In the third part we deal with problems occurring in video

matting of complex objects.

• A new, simple-to-use and rapid approach to video matting,

the process of pulling a high-quality alpha matte from a

video sequence, is presented in Chapter 7. No additional

hardware, except for a single camera, is needed, and only

very few and intuitive user interactions are required for

foreground estimation. For certain scenes the approach is

able to estimate the alpha matte for a single video without

any user interaction at all.

In the fourth part of the thesis we present new algorithms to

deal with errors and artifacts in Free-Viewpoint Video and other

image-based rendering techniques.

• An analysis of the causes of artifacts in multiview projec-

tive texturing is given in Chapter 9; aliasing as well as

global filtering methods are discussed.

• A new graphics-hardware accelerated filtering strategy and

a view-dependent definition for ghosting detection to pre-

vent visible artifacts in multiview projective texturing and

image-based rendering in real-time is proposed in Chapter

10.

• A newmultiview texturing algorithm that warps and blends

projected textures at run time to preserve a crisp, detailed

texture appearance is presented Chapter 11.

• Both presented methods achieve interactive to real-time

frame rates on commodity graphics processing units (GPU).

They can be used in combination with many image-based

renderingmethods or projective texturing applications. Us-

age of the methods in conjunction with, e.g., visual hull

reconstruction [84] , light field rendering [146], or free-

viewpoint video [40], leads to improved rendering results

that are obtained from fewer input images, less accurately

calibrated cameras, and coarser 3D geometry proxies.

We conclude in the last part with some thoughts and discus-

sions about the achieved results, draw a conclusion and give an

outlook on future work and already published work by others

that build on the results of this thesis.

Additionally, to help with the different notations used through-

out the thesis we added appendix A on page 149.

2
PREREQUIS I TES

I have to apologize for the formulae here.

But these are not mine, so don’t blame me.

— Liang Wang

This thesis touches a variety of different topics in computer

graphics. Even though in-depth knowledge for all of these is

not necessarily a requirement when reading the thesis, we be-

lieve that a brief introduction into the different fields eases un-

derstanding.

2.1 a generic image-based rendering pipeline

Figure 1 provides an overview of a generic image-based render-

ing pipeline. Several images taken from one or multiple cameras

serve as input. In the preprocessing step additional information

is extracted from the images without altering the images itself,

e.g. camera parameters or segmentation masks. The images plus

extracted information can then be used to either alter the input

images themself, e.g. for a later composition task, or to recon-

struct the underlying 3D geometry of the scene depicted in the

images. If all necessary information and images are available,

the rendering step combines them in a meaningful way to pro-

duce the final output image. Of course, all additional informa-

tion produced by each of the different steps could be used as

input again to the former processing steps.

Input imagesInput images PreprocessingInnput imagesInput images
Input imagesInput imagesInput imagesOutput imagesReconstruction Rendering

3D geometryCamera parameters

Segmentation

…
Processed images

…

Figure 1.: Generic arrangement of a typical image-based rendering
pipeline.

7

8 prerequisites

(x, y, z)

θ

φ

Figure 2.: The plenoptic function describes the angular light distribu-
tion for every point in space.

2.2 the plenoptic function

Sensing our surrounding world has always been essential to us

as humans. Using our sense of sight, hearing, smell, taste and

touch we are able to experience our environment and process the

incoming information. Not surprisingly, the sense of sight is the

most important one for most of us due to our own evolutionary

roots. Our eyes serve as sensors capturing the incoming radi-

ance. Classic photo or video cameras are similar sensors used to

capture the distribution of light, which can be characterized by

the plenoptic function:

P(x, y, z, θ, φ, t,λ) , (2.1)

The plenoptic function describes light as a 7D function for ev-

ery viewpoint (x, y, z), viewing direction (θ, φ), point in time

t and wavelength λ [2]. Most image-based rendering systems

deal with a 5D subset of this function, discarding time and wave-

lengths, Figure 2, and if not stated otherwise we will adopt this

simplification throughout this thesis. If the object is assumed to

be in a transparent medium, like air, and the viewpoint is placed

outside the object’s visual hull the plenoptic function can even be

reparameterized as a 4D function in ray space [146]. The goal of

almost every image-based rendering system is to reconstruct the

complete function or parts of it as good as possible, using only

the camera calibration data, sometimes a geometry proxy and

a set of input images or video. Here, images constitute sparse

samples of the plenoptic function.

However, correct estimation of the plenoptic function is not

necessarily mandatory in computer graphics. Visual plausibility

is usually more important than a physically correct reconstruc-

tion. In the different approaches presented in this thesis, we will

2.3 image formation 9

not only resample, but change, adjust and hallucinate parts of

the plenoptic function.

2.3 image formation

In computer graphics images taken by a digital camera are rep-

resented as an array of pixels. Each pixel represents the integral

over a small solid angle area of the plenoptic function, described

by an rgb triplet. Therefore, an image can be described as a

function I : Ω ⊂ R
2 → R

3
+, which assigns to each pixel posi-

tion x = (x, y) ∈ Ω a vector (r, g, b) ∈ R
3
+. As the value of

the integral saved by a single pixel is assigned to discrete pixel

positions in N
2, we will assume that color values at any other

position /∈ N
2 are determined by bilinear interpolation, i.e. a

weighted sum of the four surrounding pixels. We will refer to

pixel positions as either x or (x, y), while the value at a certain

pixel is referred to as I(x) or I(x, y). If the parameters of the

cameras are known, we will sometimes refer to a specific pixel

positon and its associated value of image I as I(x, y, z, θ, φ) cor-

responding to the parameters of the plenoptic function P. Here

x, y, z are the camera’s position in world coordinates. We will

also use images as general information buffers to encode, e.g.,

opacity values or other information. In this case the co-domain

of I is changed accordingly.

2.4 spatial transformations

In this section we will introduce common spatial transforma-

tions of digital images. A spatial transformation is basically a

mapping between two coordinate systems, in our cases usually

between two images. So in the most general form a spatial trans-

formation W describes the relation between source coordinates

x1 to target coordinates x2 or vice versa:

x2 = WF ◦ x1 = x1 + (u, v)⊤ (2.2)

and

x1 = WB ◦ x2 = x2 − (u, v)⊤ (2.3)

where WF and WB depict the forward or backward warping

scheme. In a forward warping scheme each source position is

associated with a target position, while in the backward warp-

ing scheme each target position is associated with its source po-

sition, Figure 3. Both approaches have several advantages and

disadvantages and the choice which one to use needs to be based

on the application. The benefit of the backward warping scheme

is inherent prevention of unassigned data points in the warped

10 prerequisites

WF

WB

I1 I2

Figure 3.: Difference between forward and backward warping on a dis-
crete lattice. In forward warping (green arrow) each pixel in
the source image is associated with a position in the target
image, while in a backward warping (blue arrow) each tar-
get position knows its origin in the source image.

image, i.e., for each output pixel its source position is known and

can be easily queried from the source image to create the warped

output. A drawback is that occlusions are hard to handle and

detect. On the other hand, a forward warping scheme requires

some thoughts on the image representation. As several posi-

tions in the source image might be projected to the same target

position, the question arises how to combine the different sam-

ples. In addition, each source pixel, in general, influences more

than a single pixel in the output image, as the warped positions

are usually not discretized. Holes might also appear, as some

pixels in the target image might have not been assigned by any

source pixel. The two most general image representations for

forward warping are therefore point-based and grid-based repre-

sentations. In the point-based approach each pixel of the source

image is represented as a single point and is splatted onto the

target image according to its warping parameters. While being a

very flexible and general representation, point-based approaches

have the drawback of the aforementioned holes, and unassigned

data points in the output image need to be filled. Grid-based

approaches overlay a regular triangle grid on the source image

and transform each vertex according to its underlying warp pa-

rameters. The image domain is still contiguous after the map-

ping, but one needs to deal with overlap and disocclusion that

can result in visual artifacts. Both approaches can be efficiently

implemented on modern programmable graphics hardware to

run in real-time at almost no cost, [72, 227]. If not stated other-

wise, we will useW to represent the backward warping function,

as it is predominantly used in this thesis, and WI1→I2 to repre-

sent a complete pixel-dependent warp field that transforms im-

age I1 into I2 as good as possible.

2.4 spatial transformations 11

2.4.1 Projective Transformation

While being very general and able to represent arbitrary trans-

formations, the aforementioned warping schemes are not always

the best suited representations. An important subgroup, the pro-

jective transformations, rely on a mathematical formulation of the

warping to represent important transformations as translations,

rotations, scalings or any rigid 2D or 3D deformation. These

transformations can be conveniently formulated by matrix mul-

tiplications using homogeneous coordinates. We will start with

2D transformations, the 3D equivalent can be trivially derived.

A point x = (x, y) in Euclidean 2-space R
2 is represented by a 3-

tuple (wx,wy,w),w 6= 0 in the projective plane P
2. A projective

transformation in this space is defined as a linear transformation

of homogeneous coordinates by a non-singular matrix H :

x′ =









x′

y′

w′









= H









wx

wy

w









= Hx (2.4)

The de-homogenization to compute the actual 2D image position

of a transformed point is achieved by x′ ← (x′/w′, y′/w′, 1)⊤ An

interesting property of these transformation matrices is that the

multiplication is associative, i.e.

Hx = (H1H2)x = H1(H2x) (2.5)

and as we are dealing with homogeneous coordinates, H and

kH describe the same transformation for all k 6= 0, therefore we

will write

H ∼= kH, ∀k 6= 0 (2.6)

To categorize important transformations we group them ac-

cording to the number of degrees of freedom [110]. An overview

is given in Table 1.

The most specialized group of transformations is the Euclidean

group. In the 2D case it can be represented by a 3× 3 matrix for

which the upper left-hand 2× 2 matrix is a rotation matrix, the

first two rows of the last column represent a translation vector

and the last row is (0, 0, 1). With this representation the motion

of a rigid 2D object can be modeled. The accompanying trans-

formation matrix with 3 degrees of freedom looks as follows:

HE =









cos θ − sin θ tx

sin θ cos θ ty

0 0 1









(2.7)

12 prerequisites

group deformation invariant properties

Euclidean

3 dof
Length, area

Similarity

4 dof
Ratio of lengths, angle

Affine

6 dof

Parallelism, ratio of areas,

ratio of lengths on

collinear or parallel lines

Projective

8 dof
Concurrency, collinearity

Table 1.: Planar transformation hierarchy. Each row represents one
group of common projective transformations. From top to
bottom each group is a subgroup of the lower one and is cate-
gorized by its degrees of freedom (dof) and its most important
invariant properties.

The next subgroup, called similarity transformations, allows for

isotropic scaling in addition and is of the form

HS =









k cos θ −k sin θ tx

k sin θ k cos θ ty

0 0 1









(2.8)

with k 6= 0 and 4 degrees of freedom.

Fixing the last row to (0, 0, 1) but allowing for otherwise al-

most arbitrary values, always with the constraint that the re-

2.5 the camera model 13

sulting matrix must be invertible, results in the group of affine

transformations:

HA =









a11 a12 tx

a21 a22 ty

0 0 1









(2.9)

The geometric interpretation of such an affine transformation

can be simplified by decomposing the upper left hand 2× 2 ma-

trix A = [aij] to

A = R(θ)R(−φ)SR(φ) (2.10)

Reading the transformations from right to left, it can be seen that

R(−φ)SR(φ) is simply a scaling along an arbitrary axis in the

2D plane and R(θ) is a rotation around the origin.

Allowing for the full 8 degrees of freedom results in the most

general form of projective transformations, also called homogra-

phies or collinearities:

HP =









h11 h12 h13

h21 h22 h23

h31 h32 1









(2.11)

This representation supports rotation, arbitrary scaling, transla-

tions, shearing and perspective foreshortening.

2.5 the camera model

The previously introduced transformation model can easily be

extended to more than two dimensions to model the central pro-

jection of a classic pinhole camera. In this model the image pi

of a 3D point p is created by calculating the intersection of a ray

going from the camera’s projection center Ci to p with the image

plane of image Ii, see Figure 4. We use the superscript notation

pi to denote the projection of a point p into the image domain

of camera Ci. From the intercept theorem we can derive
y′

f = y
z ,

where the focal length f in this 2D example is the distance from

the camera’s origin Ci to the image plane Ii. In the classic pin-

hole model the image plane would be behind the camera, but in

computer graphics it is common to place it in front of the cam-

era to ease explanations and computations. This transformation

can be conveniently described by a matrix multiplication with

homogeneous coordinates:

pi =









x′

y′

z′









= Pi













wx

wy

wz

w













= Pip (2.12)

14 prerequisites

p

pi

Ci

Ii

y

y′

f

z

Figure 4.: Pinhole projection scheme.

where Pi is a 3× 4 projection matrix with 11 degrees of freedom,

basically the extension of equation (2.11) to points in P
3.

One can decompose the general projection matrix Pi into its

extrinsic and intrinsic parameters:

Pi = KR[I| −Ci] (2.13)

Here the 3× 3 rotation matrix R and the point Ci ∈ R
3 describe

the orientation and position of the camera in world space co-

ordinates, and I is the 3× 3 identity matrix. The 3× 3 matrix

K represents the intrinsic camera parameters, i.e., it defines the

coordinate frame of the image:

K =









fx s xp

0 fy yp

0 0 1









(2.14)

fx, fy represent the focal length, i.e., the scale along the x- and

y-axis of the image coordinate frame. s is a skewing parameter,

and xp and yp are the image coordinates of the principal point

of the projection, i.e., the intersection of a line which is orthogo-

nal to the image plane and goes through the camera’s origin Ci.

With these parameters the projection of a 3D point into a camera

is fully described. One interesting aspect, which will be heavily

used in Chapters 10 and 11, is that it is possible to establish ap-

proximate correspondences between two images I1 and I2 given

a geometric proxy GA, as one can compute the projections p1

and p2 of each point p on the proxy in the different images.

Unfortunately, in real cameras the projection is not that sim-

ple due to lens distortion and chromatic aberration. For a correct

projection these effects need to be taken into account in both pro-

jection and calibration. A variety of approaches exist to estimate

2.6 image blending 15

the necessary parameters, either based on images of known cal-

ibration patterns [33, 244, 280], prior knowledge of scene geom-

etry [51, 59], or general structure-from-motion or bundle adjust-

ment [110, 219, 243]. For the remainder of this thesis we will

assume that the camera calibration is provided by one of the

above-mentioned methods, and that image distortions which are

not handled by the pinhole model have been taken care of in do-

ing a preprocessing.

2.6 image blending

Image blending combines two or more images to a single result by

combining the weighted influences of the images. The simplest

blending scheme between two or more images is therefore

ω1I1 + ω2I2 + . . .+ ωnIn (2.15)

with ωi ∈ R. In order to keep overall intensity constant, the sum

of weights is usually bound to the constraint ∑
n
i=1 ωi = 1. If the

blended images provide similar content at the same pixel posi-

tions this simple cross-dissolve yields high quality results. If the

content differs artifacts appear, and it is necessary to adjust the

different aspects of the images like color, content or resolution,

as we will do in Chapter 4 of this thesis.

The above-mentioned simple weighting scheme is very restric-

tive as a single scalar value per image is used to provide the

blending parameters. In order to provide more flexibility, e.g. spa-

tial variation, we reformulate the weighting parameters ωi as

functions ωi : Ω ⊂ R
2 → R depending on the pixel position

(x, y) bound to the constraint ∑
n
i=1 ωi(x, y) = 1, or even depend-

ing on the parameters of the plenoptic function ωi : Ω ⊂ R
5 →

R, if this simplifies the explanation.

2.7 image morphing

Image blending provides a technique to create smooth transi-

tions between images. But in many cases the image structures

will not match. Image morphing combines image blending, Sec-

tion 2.6, with image warping, Section 2.4, to provide a more

plausible transition between two images. Image morphing dates

back to the early 1980s and the experimental art by Tom Brigham

[269]. It became a famous standard technique in the movie in-

dustry after its first high-quality appearance in 1988 in the Holly-

wood movie Willow and has been used for various special effects

since then [23, 269].

The image morphing process between two images can be for-

mulated as follows:

I1,2(t) = (1− t)((tWI1→I2) ◦ I1) + t(((1− t)WI2→I1) ◦ I2) (2.16)

16 prerequisites

with t ∈ [0, 1] and I1,2(0) = I1 and I1,2(1) = I2. Here t is the time

parameter that influences both the color influence and amount

of warping of the images. Hence, to generate a plausible inter-

mediate image the task is twofold. The images are first warped

towards each other based on the time parameter t that scales the

warp fields, and then blended according to the same parameter.

2.8 3d reconstruction

The warping functions described in Section 2.4 cannot only be

used for image warping or morphing but also to establish 3D

correspondences between two or more images, enabling one to

reconstruct a complete 3D model from input images. Depend-

ing on the task only a 3D model of the foreground or a complete

scene model is needed. For proper reconstruction the camera

parameters need to be known in advance. These can be deter-

mined by several methods and the choice depends on the task

[110, 219, 244].

As described in Section 2.5, assuming a pinhole camera model

the projection of every point p in a 3D scene into its image space

position pi can be computed. Given this dependency between

the 3D world and its 2D image equivalent, reconstruction of the

scene geometry is possible if a scene point is recorded by more

than a single camera. 3D reconstruction from images alone has

been a vast area of research for years [63, 210, 216]. Here we

will concentrate on the most commonly used and established

techniques for sparse multiview setups.

2.8.1 Model-based Reconstruction

The Free-Viewpoint Video System of Carranza et al. [40] com-

bines motion capture and 3D reconstruction by using a single

template model. In a first step the silhouettes of the object of

interest are extracted in all input images. A generic human

body model consisting of several segments, i.e. submeshes, and

a corresponding bone system is then adapted to resemble the

human actor and fitted to the silhouettes of each video frame

by an analysis-through-synthesis approach. A single parame-

terized template model cannot represent all possibilities of hu-

man shapes sufficiently, therefore the result can be improved

by identifying multi-view photo-inconsistent regions and fine-

tuning the mesh in these regions by enforcing a color-consistency

criterion [54].

Small details usually cannot be sufficiently recovered by these

methods, as the underlying mesh is quite coarse. An improve-

ment can be achieved by acquiring a detailed mesh beforehand.

Anguelov et al. [13] make use of detailed laser scans of an ac-

2.8 3d reconstruction 17

tor in different poses, from which they learn a pose deformation

model and a model of variation for the body shape in order to

simulate realistic muscle behavior on the model. De Aguiar et

al. [56] also make use of detailed laser scans of the actor which

they deform in order to maximize the congruence with the multi-

view recordings. Their system is not aiming for realistic muscle

behavior but is focused on arbitrary inputs, as e.g. humans wear-

ing different kinds of apparel, and markerless tracking, which is

less intrusive. Similar to Carranza et al. [40] a template model

is fitted to the videos first. In a next step the laser scan is de-

formed to fit the template model by specifying correspondence

points between the two meshes.

An even better correspondence match of the mesh with the

input video can be achieved by a multi-view analysis-through-

synthesis procedure, which fuses volume- and surface-based de-

formation schemes, and a multi-view stereo approach [57]. This

allows performance captures of people wearing a variety of ev-

eryday apparal and performing energetic motions.

While this approach delivers high quality results, it is not

suited for situations in which a high-quality laser scan of the

actor cannot be acquired beforehand. For such situations more

general methods are needed. A very interesting approach in this

direction was recently proposed by Hasler et al. [111]. They ac-

quired a detailed statistical model of human body shapes that

describe human pose and body shape in a unified framework.

Given the silhouettes of a person in several views the parame-

ters are estimated to find the best fit of the statistical model to

the given images. Although the model is based on detailed laser

scans, the resulting model might only roughly fit the captured

human actor. In addition, model-based reconstruction is usually

performed in an offline approach. Fast model-based approaches

achieving interactive reconstruction timings exist but quality suf-

fers in these cases [61].

2.8.2 Shape-From-Silhouettes

The shape-from-silhouettes approach by Laurentini et al. [138]

uses the extracted silhouettes from a finite set of viewpoints of

the object to determine its approximate visual hull. In 2D the

visual hull is equivalent to the convex hull, in 3D the visual

hull is a subset of the convex hull possibly including hyperbolic

regions. As the number of input images is limited, only an ap-

proximation of the visual hull, sometimes called inferred visual

hull, can be reconstructed. It is the maximal volume constructed

from backprojecting the silhouette cones of each input image

into 3D space and computing their intersection, Figure 5. As

this method rather conservatively estimates the real geometry,

18 prerequisites

C1

C2

C3

Figure 5.: The inferred visual hull (orange) of an object (blue) is esti-
mated by reprojecting each silhouette cone and computing
the intersection.

results can be quite coarse approximations of the real object. On

the other hand this algorithm can easily achieve real-time frame

rates [167] and can even be calculated in image-space rather than

3D space [166]. An improvement can be achieved by adding

color constraints in order to detect concavities as well [133, 209]

or to employ an optimization process, as it is done by Starck et

al. [223]. Their approach combines cues from the visual hull and

stereo-correspondences in an optimization framework for recon-

struction, cf. Section 2.8.3.

2.8.3 Depth-From-Stereo

Sometimes a whole scene has to be reconstructed, in which case

the previously mentioned method fail, if it is only based on sil-

houettes which can no longer be extracted. In this case depth-

from-stereo systems perform better, as they extract a depth map

for each input image, which can then be used for 3D rendering.

The basic principle of depth-from-stereo is triangulation. Given

two corresponding points in two images and the camera parame-

ters, the exact position of this point in 3D can be reconstructed,

Figure 6. Finding these correspondences can be arbitrarily hard

and ambiguous. To relax the problem of doing an exhaustive

search for similarity over the whole image, one usually makes

use of the epipolar constraint to reduce the search to a 1D line

search along the epipolar lines, Figure 6. Usually a rectification

precedes the line search so that it can be performed along the

same scanline, i.e. the input images are projected onto a plane

parallel to the baseline between the optical centers of the input

cameras [87]. For improved robustness, correspondence finding

can be performed, for example, by window-based cross corre-

2.8 3d reconstruction 19

Baseline

E
p
ip

o
la

r
L
in

e

C1 C2

p1 p2

p

Figure 6.: Using epipolar constraints and triangulation the 3D position
of any static scene point visible in both views can be recon-
structed.

lation [109]. If further knowledge about the scene is given or

scene constraining characteristics are assumed, as for example

local smoothness, more sophisticated methods based on energy

minimization can be employed [27, 32]. If more than two im-

ages can be used for depth estimation plane sweep algorithms

perform well [50]. In this approach a plane is placed at differ-

ent depths. The input images are projected onto it, and the

plane is rendered from the virtual viewpoint. The color varia-

tion at every fragment serves as a quality estimate for this depth

value. This approach is especially appealing in real-time acquisi-

tion systems, as it can be computed very efficiently on graphics

hardware [89, 147, 276]. Even dedicated hardware is nowadays

available for multi-view stereo reconstruction and has already

been successfully applied in an image-based rendering system

[177].

One of the first systems to achieve high quality interpolation

with a relatively sparse camera setup was the approach by Zit-

nick et al. [281]. Instead of matching single pixels or windows

of pixels, they match segments of similar color. As they as-

sume that all pixels inside a segment have similar disparities,

an over-segmentation of the image is needed. The segments are

thenmatched and the estimated disparities are further smoothed

to remove outliers and to create smooth interpolations between

connected segments belonging to the same object.

Methods based on this matching approach are commonly used

only for dense stereo, i.e. the distance between cameras and re-

sulting disparity is rather small. For larger distances, or fewer

cameras, additional information is needed for reconstruction.

Waschbüsch et al. [258] use video bricks which consist of a color

camera for texture acquisition and two calibrated grayscale cam-

eras that are used together with a projector to estimate depth in

the scene using structured light. The benefit of these bricks is

that depth ambiguities are resolved in textureless areas. These

depth estimations are used as initialization for geometry filter-

20 prerequisites

uv plane st plane

Figure 7.: Light Field Rendering: In a two-plane parameterized light
field the information to reconstruct the plenoptic function is
resampled into a 4D ray space [146]. The uv and st plane
represent the camera plane and the focal plane, respectively.
Any novel ray (orange line) is then interpolated from nearby
samples (blue lines) in this representation. For clarity only a
few samples are shown.

ing, based on bilateral filtering, to generate time-coherent mod-

els, removing quantization noise and calibration errors.

A recent comparison of some more multi-view stereo recon-

struction algorithms can be found in [210]. There are many

other 3D reconstruction methods, e.g. Shape-from-Texture [29]

or Shape-from-Shading [62]. But these are commonly not used

for multi-view stereo reconstruction and therefore we refer the

interested reader to the appropriate literature.

2.9 free viewpoint video

In classic movie making the director needs to decide before-

hand how the camera moves through and records the scene.

The goal of free-viewpoint video is to provide the possibility

to move freely around in a scene after it has been recorded

[40, 57, 223, 281]. What is needed for this additional degree

of freedom is a precise reconstruction of the plenoptic function,

Section 2.2. Generally, there is a continuum of possibilities to

achieve this goal. On the one end we have purely image-based

approaches, like the light field [146]. A large amount of images,

plus a few restrictions to project the 5D simplified plenoptic

function into a 4D ray space representation, allows for almost

direct sampling and reconstruction of the target image for arbi-

trary viewpoints, Figure 7. On the other end of the continuum,

geometry-based approaches try to deal with missing informa-

tion in the plenoptic function by providing detailed geometry

proxies that represent the captured scene, cf. Section 2.8. These

proxies can be used to establish correspondences between the

input views and the virtual camera, as described in Section 2.5.

2.9 free viewpoint video 21

α1

α2
C1

C2

Cv

I1

I2

Iv

p

p1

pv
p2

Figure 8.: Classic weighting scheme of input views based on the angu-
lar deviation. The influence of camera C1 for the depicted
viewing ray should be weighted higher than the influence of
C2, as the angle between the viewing rays observing scene
point p is smaller between C1 and Cv than between C2 and
Cv.

Techniques for new view synthesis render novel output views

based on the original content of the input images [59]. Thus, for

each pixel pv in the output view Iv, one has to determine the

color contribution of all relevant input views in which the scene

point p is visible. For instance, given the two input views I1 and

I2 in Figure 8, the color of pixel p1 projected onto the surface and

reprojected into Iv should be weighted stronger than the color of

pixel p2 for producing the output color of pv, since α1 < α2. I.e.,

the angle between the viewing rays passing through p is smaller

for camera C1 and the virtual camera Cv. In general, these color

contributions can be computed based on blending weights ωi

with

Iv(p
v) =

1

∑i ωi(pv) ∑
i

ωi(p
v)Ii(p

i) (2.17)

This projection technique is also called multiview projective tex-

ture mapping or view-dependent texture-mapping [59]. To re-

duce visual artifacts in this simple blending scheme, several as-

pects like viewing angle, visibility, spatial and temporal continu-

ity, can be integrated in the computation of reasonable weights,

as investigated by Buehler et al. [36]. These simple weighting

schemes, which are basically projected image blending as de-

scribed in Section 2.6, give correct results if certain conditions

are fulfilled, like correct camera calibration and a very precise

geometry representation of the scene. In addition, non-diffuse

materials can only be approximated.

All of the above-mentioned constraints are hard to fulfill in

practical applications. Acquisition with more than a few cam-

eras is very costly and not affordable for everyone. Precise 3D re-

construction is not always possible without additional hardware,

22 prerequisites

like laser scanners [55, 56, 57] or special cameras [258]. Real-time

applicability, e.g. for the transmission of live sports events [115],

poses additional requirements on the reconstruction, resulting

in even less robust results.

In Chapter 10 and 11 we will investigate how to loosen some

of these constraints. Our work in these chapters aims at high-

quality free-viewpoint video with only sparse camera setups,

Figure 9, imprecise camera calibration, and approximate geome-

try.

(a) parallel (b) circular

Figure 9.: Classic camera arrangements for free-viewpoint video with
sparse camera setups.

2.10 optical flow

Optical flow estimation has a long-standing history especially in

the field of computer vision [116, 159] and is frequently used

for dense motion estimation between images. The assumption

made is that the scene flow, i.e., the real 3D motion in a scene,

can be approximated by the apparent motion in the images. It

should be noted that the apparent motion might differ from the

projected scene flow, i.e., the projection of the true 3D motion

of an object onto the image plane. The warping formulation

WI1→I2 introduced in Section 2.4 is related to optical flow in that

it is based on per-pixel motion between different images.

Optical flow estimation is generally based on the so-called

brightness constancy assumption assuming that the intensity of a

moving object does not change from one image to the next and

brightness changes are only due to motion. Therefore the in-

tensity value at all corresponding pixels in the images I1 and I2
should be approximately the same:

I1(x, y)− I2(x+ u, y+ v) ≈ 0 (2.18)

2.11 matting 23

This formulation is susceptible to linear changes in the bright-

ness. Therefore, the gradient constancy assumption is added, as-

suming the gradient is approximately invariant under motion:

∇I1(x, y)−∇I2(x+ u, y+ v) ≈ 0 (2.19)

∇I(x, y) is the image gradient at position (x, y).
The solution to equation (2.18) and (2.19) can be ambiguous.

Essentially only one linear equation for the two unknown mo-

tion components is given. To solve this underconstrained sys-

tem additional assumptions are necessary. A common approach

is to impose a regularization on the motion field, resulting in

a piecewise smooth flow field where neighboring pixels should

have similar motion vectors. Hence

∇u(x, y) ≈~0 ∇v(x, y) ≈~0 (2.20)

The actual energy formulation that is to be minimized based

on these assumptions and the according algorithm is subject to

a vast number of research activities [19]. E.g. our GPU optical

flow used in Chapter 11 uses the following energy formulation,

which is based on the work of Brox et al. [35]:

E(u, v) = EData(u, v) + αESmoothness(u, v) (2.21)

EData(u, v) =
∫

Ω
ψ(|I1(x, y)− I2(x+ u, y+ v)|2

+γ|∇I1(x, y)−∇I2(x+ u, y+ v)|2)dxdy
ESmoothness(u, v) =

∫

Ω
ψ(|∇u(x, y)|2 + |∇v(x, y)|2)dxdy

The function ψ(s2) =
√
s2 + ǫ2 with ǫ > 0 is used to achieve a

robust energy function, which reduces the influence of outliers.

α and γ are weighting parameters for the smoothness of the re-

sult and for the influence of the gradient constancy assumption,

respectively.

A common technique to speed up the optical flow computa-

tion and to also allow for larger displacements is to use a mul-

tiscale approach [11]. The optical flow is then computed in a

coarse-to-fine fashion, i.e., the solution for the coarsest level of

an image pyramid is evaluated and the solution is then upsam-

pled and used as the initialization for the next level until the

final resolution is reached.

There are a lot more assumptions that can be incorporated in

the energy formulation of an optical flow algorithm, like color-

spaces, different regularizers or optimization strategies [19, 225,

279].

2.11 matting

The term matting refers to the problem of accurate foreground

estimation in a single image or video sequence. The goal is

24 prerequisites

to extract an object from image footage and create novel com-

posites, which is a very common editing task in movie pro-

ductions. For many complex objects, such as hair or fur, it is

important to not only extract a binary matte but to determine

both full and partial pixel coverage, also known as pulling a

matte, alpha matting or digital matting [253]. Since its early days

back in 1984 when Porter and Duff established the mathemati-

cal problem [189], there have been intensive research activities to

find automatic or semi-automatic approaches to extract the fore-

ground. Mathematically, the compositing equation describes the

digital matting process as a linear combination of foreground

color IF and background color IB in every pixel of an image I:

I(x, y) = α(x, y)IF(x, y) + (1− α(x, y))IB(x, y) (2.22)

where α(x, y) ∈ [0, 1]. If α(x, y) = 0 the pixel at position (x, y) is

called definite background and if α(x, y) = 1 definite foreground.

In most natural images, most pixels are definite foreground or

background. For accurate foreground estimation, it is impor-

tant to estimate the alpha values for mixed pixels as well. The

problem is severely ill-posed, as there are seven unknowns, two

rgb-triples and one α-value, and only one known color vector per

pixel. Therefore, additional information such as user-constraints

or prior assumptions on image statistics need to be incorporated

[17, 253, 255].

2.12 gradient domain compositing

In a number of problems in computer graphics and vision en-

ergy functions need to be minimized which are defined in the

form of a large linear system of equations:

Ax = b (2.23)

In such systems the solution vector x is the unknown solution,

while A and b are given. While it might be unconventional from

a graphics perspective to think in terms of linear systems of equa-

tions, this representation has several benefits for image editing

and optimization tasks. By vectorizing an image, i.e. concatenat-

ing each row of a grayscale image to get a 1D representation a

lot of classic image editing tasks can be represented. For exam-

ple, the Laplacian ∇2 of an image can be computed by the n× n

matrix













. . .

0 . . . 1 0 . . . 1 −4 1 0 . . . 1 0 . . . 0 0

0 . . . 0 1 0 . . . 1 −4 1 0 . . . 1 0 . . . 0
. . .













,

2.12 gradient domain compositing 25

(2.24)

where n is the number of pixels. In this case xwould be the given

image and b is the solution vector, so the solution is straight for-

ward to compute. Of course, in most cases this representation for

image editing tasks is only interesting from a theoretical point

of view, especially because setting up the full matrix A requires

n2 entries to be saved, which is prohibitive for images of the size

of several million pixels.

Still, there are two interesting findings which make this ap-

proach suitable for image editing tasks. First, most image edit-

ing operators can be represented in a very sparse matrix A, so

the matrix does not need to be saved explicitly. And given this

representation, one can actually solve the inverse problem. For

example, given the gradient images and the gradient operator,

what does the original image look like? Though it should be

noted that for this example the solution is only defined up to an

additive constant. This is also the idea behind the gradient do-

main compositing in image editing tasks such as seamless cloning

[5, 126, 184], panorama stitching [4, 143, 215], inpainting [264]

and many others. The goal is generally to compose two images

by adjusting the colors of (at least) one of them to create a seam-

less composite.

Given a source image IS and a target image IT as well as a

region of interest Ω with boundary ∂Ω, one seeks to find an op-

timal solution IR in a least-squares sense to the following mini-

mization problem:

min
IR

∫

Ω
|∇IR −∇IS|2 with IR|∂Ω = IT |∂Ω , (2.25)

where I|∂Ω denotes the pixels on the seam ∂Ω and∇ is the gradi-

ent operator. One searches for the best fitting image that fulfills

two constraints: The boundary pixels IR|∂Ω must match exactly

the colors of the target image IT |∂Ω and for the interior Ω the

gradient should match as good as possible the gradient of the

source image IS. Figure 10 illustrates the notations. The unique

IT IS

Ω

∂Ω

∇IS

IR

Figure 10.: Gradient domain compositing. Given the image functions
IS and IT as well as a composite region Ω, one seeks to
find the best interpolant IR in Ω under the guidance of
∇IS and given boundary values along ∂Ω so that IS can be
seamlessly composited into IT in the region Ω.

solution to the minimization problem in (2.25) can be found by

26 prerequisites

solving the Poisson equation with Dirichlet boundary conditions

[184]:

∇2IR − div(∇IS) = 0 with IR|∂Ω = IT|∂Ω (2.26)

which equals

∇2IR −∇2IS = 0 with IR|∂Ω = IT |∂Ω (2.27)

where div is the divergence operator ∂
∂x +

∂
∂y and∇2 is the Lapla-

cian operator. In the slightly more general form of the Poisson

equation,∇IS can be any vector guidance field v : R
2 → R

2. The

Poisson equation is defined only for scalar functions. For color

images Equation (2.26) must be solved for each color channel

separately.

If one takes a closer look at the given constraints for each pixel

of the resulting function, it turns out that: Either a constraint

scalar value is given for a pixel, or the Laplacian should equal

a certain value. The problem in Equation (2.26) can then be

reformulated as a linear system of equations of the form Ax = b.

The matrix A looks similar to the one given in (2.24) except that

a color constraint for the i-th pixel can be set by exchanging the

i-th row of A, with a row consisting of only zeros except for the

i-th entry, which is set to 1. The vector b contains the intensity

values of IT for each entry belonging to ∂Ω, and the value of

the Laplace operator applied to IS for the rest. This huge linear

system can then be solved with existing linear solvers [190]. We

will make use of gradient domain compositing in Chapter 4 to

adjust the color of input images.

2.13 exemplar-based texture synthesis

Texturing is a core process for providing details beyond geomet-

ric resolution. There are many different ways to acquire a texture

[137, 176, 250], but exemplar-based texture synthesis provides

one of the most flexible and interesting methods [261]. The idea

behind exemplar-based texture synthesis is to provide the algo-

rithm with a small exemplar patch of a specific texture from

which an arbitrarily large output texture is created, which is not

only visually similar, but does not contain any unnatural arti-

facts or repetitions.

Since the seminal work of Efros et al. [65], a lot of different

approaches have been proposed, which can be divided into three

categories: Pixel-based synthesis, patch-based synthesis, and tex-

ture optimization. Most methods model a texture as a realiza-

tion of a local and stationary process based on Markov Random

Fields [261]. The assumption is that under a proper window size,

the observable portion of the texture always appears similar, and

2.13 exemplar-based texture synthesis 27

each pixel is predictable from a small set of neighboring pixels

and is independent of the rest of the image.

In pixel-based synthesis methods this model is integrated by

synthesizing the image one pixel at a time. Each output pixel

is determined by a neighborhood search process. Using the al-

ready determined pixels around a new pixel that is to be syn-

thesized, the algorithm searches for a similar region in the input

image to replace this pixel [65, 260].

The computationally intensive neighborhood search can be ac-

celerated by nearest neighbor search techniques, like kd-trees or

tree-structured vector quantization [260]. Other effective meth-

ods are based on the notion of coherence. The k-coherence al-

gorithm by Tong et al. [242] precomputes for each neighborhood

around the input pixels the best matching neighborhoods in the

same exemplar. During synthesis it is very unlikely that pixels

from the input will land on random output locations; instead,

they have a tendency to stay together also in the output, which

makes k-coherence algorithms quite effective.

Patch-based synthesis algorithms do not copy single pixels but

rather whole patches from the input to the output image. A ben-

efit in terms of speed and quality can be obtained because fewer

patches than pixels are needed and only the transition areas be-

tween the patches need to be adjusted to create a high-quality

output. To hide the transition, path-based approaches try to par-

tition the overlapping areas by using dynamic programming [64]

or graph cut optimization [134].

The most effective approaches so far are texture optimizations

[108, 135] which combine properties of both pixel-based and

patch-based algorithms. Unlike pixel-based approaches, texture

optimization does not synthesize pixels one by one but consid-

ers them altogether and optimizes the pixels with respect to a

quadratic energy functions which is determined by mismatches

of input/output neighborhoods. We will make use of the theory

behind texture optimization to hallucinate details to our output

image in Chapter 4.

Part II.Error Con
ealment inSeamless ImageSynthesis

29

3
INTRODUCT ION

A computer is fast and accurate, but it also is completely literal.

It doesn’t know enough to correct your simplest mistakes;

it takes everything you enter exactly as you entered it, and not as you

meant it!

— Peter Aitken

3.1 background

The goal of image-based rendering is to create a visually plausi-

ble and convincing sense of presense in a scene using only pho-

tographs or videos. In the early days of digital photography this

sense was often limited due to hardware restrictions of the im-

age resolution. Panorama imaging has become a convenient way

to manually increase the resolution by stitching several images

together [236]. These programs are welcomed extras to most

digital cameras, there are even apps available for mobile phones

[1]. Nowadays, even gigapixel images have become a more and

more common and well-liked amusement [131]. Unfortunately

the generation of such a large image comes with several prob-

lems. Artists like Graham Flint have to use specialized cameras

to capture these high-resolution images [83]. Others, like the

gigapixel project by Kopf et al. [131] rely on a carefully roboter-

controlled camera mount and panorama stitching techniques to

create an image several times larger than the original resolution

of the camera.

A common drawback of all panorama techniques is that they

are, in general, not able to deal with missing information. Insuf-

ficient input images will lead to blur, in the best case, or com-

pletely empty regions in the stitched panorama result, in the

worst case. At the same time the internet allows for photo shar-

ing at a massive scale today. For example, the phrase "Big Ben"

returns more than 242, 000 images on Flickr [274]. Can image

databases be used to fill in missing details in images?

Not only the creation but also the display of large images

poses problems. For very large virtual images, e.g. the gigapixel

panoramas created by the 360 Cities community [47], Google

Earth [98], etc., streaming technologies are a necessity, loading

the needed image data on demand, although with a noticeable

time lack. There is another area where the possibility to dis-

31

32 introduction

play large images is a welcomed feature but where such a lack

would not be tolerable: computer games. Here images are used

to texture the different surfaces in the scene. If one takes a

look back at the history of games it becomes obvious that the

amount of representable realism and texture sizes used to go

almost hand in hand. The drawback of streaming technologies

here is that the eye movement is almost not foreseeable, result-

ing in less caching efficiency as the needed data cannot be loaded

fast enough into the graphics card memory. In this part of the

thesis we propose solutions to both mentioned problems: the

creation of high-resolution image content from incomplete, low-

resolution images, in Chapter 4, and a rendering technique for

sparse texture maps, where only the detail needed is addition-

ally stored, reducing the need for texture streaming, Chapter 5.

3.2 related work

panoramas, gigapixel images and photo browsing

Capturing and creating panoramic images is an idea almost as

old as photography itself. A very nice survey on related tech-

niques can be found in [236]. Most approaches assume that the

camera stays roughly in the same place during acquisition. With

a carefully designed camera setup, Kopf et al. [131] take hun-

dreds of images to produce one Gigapixel image by stitching

the photos together. The approach creates beautiful results that

can be explored interactively, but the setup is complex and re-

quires special hardware. In comparison, our system, presented

in Chapter 4, creates high-resolution images from unordered sets

of input images. Only a few restrictions apply to our input im-

ages, making acquisition easy. Even image databases can be

used.

Building upon the work by Snavely et al. [219, 220], Microsoft

Research recently released their Photosynth Tool [198]. It pro-

vides a special 3D interface that allows the user to easily navigate

a large photo collection of a particular location. While the inter-

face resembles a 3D environment and is quite intuitive to use,

color correction and blending between photos was only added

for convenience and still reveals many artifacts. Our approach

addresses these points to produce a high-quality output where

different photos are merged in a common 2D domain. It works

without any 3D information or camera calibration, but instead

computes dependency relations in order to faithfully transfer de-

tails between different shots.

Recently, another interesting system for exploring large col-

lections of photos in a virtual 3D space has been presented by

Sivic et al. [215]. It allows virtual walkthroughs of a photo collec-

tion by stitching similar scenes into one browsable image graph,

3.2 related work 33

similar to a large 2D image, but transitions are still visible. In

contrast, we address this problem to create seamless transitions

between the input images at various scales, but reject images not

belonging to the same scene.

image stitching

A very nice survey on image stitching can be found in [236]. Lo-

cal approaches blend the colors of overlapping images based on

precomputed weighting masks [235, 248]. The multiresolution

spline by Burt and Adelson [37] adjusts the transition separately

for each band of frequencies, based on a Laplacian pyramid to

prevent ghosting artifacts and sudden transitions between the

images. Instead of blending between the images it can be more

favourable to select only one input image per output pixel in

the overlapping area to prevent artifacts such as ghosting. This

choice is usually based on an optimal seam between the images.

Taking the color difference in the overlapping area into account,

an optimal partition based on Graph Cuts [32] or dynamic pro-

gramming [24] is usually computed. The image stitching algo-

rithm by Levin et al. [143] operates directly in the gradient do-

main to compute an optimal path based on the gradient strength.

Optimal seam methods usually require a good alignment of im-

age features beforehand in order to reveal pleasing results. This,

however, cannot be guaranteed in most image stitching applica-

tions and misaligned edges or misplaced features are the result.

Han et al. [106] create a visually smooth image pyramid from

already stitched imagery at several scales to hide jarring tran-

sitions when zooming into the images, e.g. in applications like

Google Earth [98]. They combine the detail of one image with

the local appearance of another and use clipped Laplacian blend-

ing to minimize blur for the intermediate levels in the pyramid

which need to be created in addition. This way color and struc-

ture are conserved, but the method requires images with similar

content at different levels of detail in order to produce plausible

results.

Structure deformation for image alignment has been heav-

ily researched in medical image registration, which commonly

deals with non-rigid registration errors by first roughly align-

ing the images (if this is not inherently done), matching promi-

nent features and smoothly interpolating these sparse correspon-

dences to compute a global deformation field. This approach of

constraining the deformation and enforcing interior smoothness

was first proposed by Bajcsy and Kovacic [18]. An overview of

the large amount of existing literature for medical image regis-

trations is given in [162]. Matching features and distorting the

image accordingly has also been used in a variety of applications

as texture synthesis or especially image morphing. Wu and Yu’s

34 introduction

texture synthesis algorithm in [272] deforms texture patches by

matching sparse features and interpolating the deformation vec-

tors based on thin-plate splines [172] or Shepard’s method [118].

But no intensity correction is applied.

The work with the closest resemblance to our structural adap-

tation presented in Section 4.3.2 is the approach by Jia et al. [124,

125]. They aim at correcting the mismatch along the partitioning

border between two images by feature matching. The computed

deformation along the seam is then smoothed out into the in-

terior of the source, without taking any further structural infor-

mation into account. Our approach aims at overcoming these

limitations, by not only matching features along the seam, but

also by tracing salient edges into the images, which are used

as additional deformation constraints to create more plausible

transitions.

super-resolution

Super-resolution is a heavily researched area with various in-

stances of algorithms based on exemplar-images or learning-

based methods [249]. One approach is to derive image statistics

from the image itself or a database of images [43, 92, 114, 230,

233, 275]. Other approaches rely on edges, gradients, or com-

binations with learning-based methods [53, 78, 85, 232], recon-

structed 3D geometry [27] or specialized hardware [104]. Sim-

ilar in spirit to our method in Chapter 4 is the method by An-

cuti et al. [12] to upsample a low-quality video based on a few

high-resolution detail photographs. It works well if a region is

covered in detail shots, but shows weaknesses if such informa-

tion is missing. Furthermore, hierarchical dependencies between

images are not being considered, limiting the upsampling capa-

bility of classic super-resolution approaches.

Despite good quality at moderate magnification of the images,

super-resolution approaches are usually far from real-time ca-

pable and are not applicable to high magnification factors as

the results will start to look flat and non-photorealistic. An ad-

ditional drawback is the inherent problem of super-resolution

itself: super-resolution is bound to the constraint that the down-

sampled image must look exactly like the original, which can be

a drawback if the image is noisy or contains quality flaws like

compression artifacts. Instead, our approach, in Chapter 4, only

assures similarity to the original images, therefore giving the al-

gorithm more possibilities to create plausible, new details in the

upsampled image.

exemplar-based texture synthesis

Exemplar-based Texture Synthesis approaches create larger tex-

ture maps from one or more small exemplar patches. One well-

3.2 related work 35

known approach is the image quilting technique by Efros and

Freeman [64], in which a new image is synthesized by stitching

together small patches of existing images. Kwatra et al. [134]

build upon this approach by using a graph cut technique to de-

termine the optimal patch region to be used for synthesis. Con-

strained texture synthesis tries to guide the texture creation pro-

cess [108, 139, 194, 261]. The usual approach is to take neighbor

information of a pixel into account and to minimize some cost

function which varies from approach to approach.

For faster generation, tile-based approaches can be used [49,

259]. While the creation of periodic texture tiles is relatively

simple, the periodicity can be annoyingly apparent for certain

textures. Wang tiling can be used to allay this effect by creating

patches, called Wang Tiles, which can be arranged together to

non-periodically tile the plane.

All these approaches only synthesize textures at a specific

scale, i.e., features are usually not enlarged or shrunk in any

way. In contrast, Ismert et al. [122] add detail to undersampled

regions in an image-based rendering setup if more-detailed ver-

sions of the same texture are available in the same image. Wang

and Mueller [256] present an approach where a low-resolution

image guides the texture creation process for the higher resolu-

tion details. Only recently, Han et al. [107] have presented an

approach that uses patches at different scales for the synthesis

process.

The problem with any of these texture synthesis approaches

is that they are only suitable for textures with relatively similar

repeating structures, although non-periodically arranged.

We will make use of the idea behind exemplar-based texture

synthesis, in Chapter 4, to transfer details from different input

images to our upsampled output image result. If regions are not

covered by any input image, we fill in the missing parts with

plausible details from the other images at the appropriate scale.

texture mapping

Creating or capturing high resolution images is only one part

of texture mapping with high-resolution imagery, as efficient

means to display these images are also needed. A common ap-

proach is to represent images as textures and map them onto

some geometry proxy to render them using the standard graph-

ics pipeline. Texture mapping was introduced in computer graph-

ics in 1974 [41] as a very efficient way to increase visual render-

ing complexity without the need to increase geometric detail. To

overcome the aliasing problems apparent when the texel-to-pixel

ratio exceeds unity, also known as minification, Williams intro-

duced the mipmap representation [268], a pre-calculated image

pyramid at different resolutions of the texture. Advanced varia-

36 introduction

tions, like ripmaps [8] or fipmaps [31], solve this problem with

even higher quality, but at the cost of higher memory require-

ments or slower rendering. Other possibilities are summed area

tables [52] or elliptical weighted average filters [101]. A survey

of classic texture mapping can be found in [113]. Usually this

minification is only addressed for a single texture map. If tex-

tures overlap or texture insets are created, flickering artifacts can

appear and borders might become visible. We will address this

problem in Chapter 5.

While the problem of single texture minification is well solved,

the problem of texture magnification is still a very active area of

research.

texture interpolation

The most common approach in texture interpolation, which is

still used in most computer games due to its simplicity and avail-

ability in standard APIs like OpenGL or DirectX, is to select ei-

ther the nearest-neighbor or to linearly interpolate color values

between neighboring texels. Using nearest-neighbor results in

blocky artifacts, while linear interpolation gives blurry results.

In many applications, such as games, the texture is repre-

sented by a texture atlas. Interpolation during texture lookup

provides a continuous value field everywhere on the surface, ex-

cept at the chart boundaries where visible discontinuities appear.

This problem is addressed in the work by Ray et al. [195] who use

a quad remeshing technique to reparameterize the texture atlas

in order to hide the seams. Therefore their work is related to our

approach presented in Chapter 4 and 5, as we merge different

textures to hide the seams between them.

large textures

The most straight-forward idea for providing detail in textures is

to simply use sufficiently large textures which are dynamically

loaded on demand. But memory as well as bandwidth limita-

tions restrict textures to a maximum size. Tanner et al. [238]

address this problem by introducing clipmaps. In this approach

the texture data is loaded on demand depending on the viewer’s

position. This approach works particularly well for mapping

height fields [120, 157], as needed e.g. in geographic informa-

tion systems (GIS).

In all these approaches only scenes are considered where the

needed data is in direct relation to the current viewpoint. This

makes texture prefetching possible because the needed data does

not change abruptly. However, this is not always the case. In gen-

eral texture mapping applications the rendered scene might be

dynamic, or the viewpoint might change abruptly, e.g. if the user

turns around quickly. Therefore, representations that reduce the

3.2 related work 37

memory amount are necessary to reduce the need for texture

streaming.

vector textures

Texture maps are usually represented as a collection of discrete

image elements and are therefore always limited in spatial fre-

quency. Instead of using samples taken from the underlying

texture function, vector textures represent a continuous function

using resolution-independent primitives. Tumblin and Choud-

hury [245] save sharp boundary conditions at discrete positions

for every texel to prevent some of the strong blurring apparent in

usual texture magnification. Sen [212] uses silhouette maps to

maintain sharp edges in the texture while blurring at smooth

transitions. A similar approach by Tarini and Signoni [239],

called pinchmaps, extends this approach to curved primitives.

A complete support for all primitives of a SVG description in a

vector texture was presented by Qin et al. [193], building on their

own previous work in [192]. Recently, Jeschke et al. [123] showed

how to render surface details using diffusion curves onto arbi-

trary meshes.

The drawback of vector textures is that they can only pre-

serve low frequency components, overall color, and very high

frequency components, the strong edges, while mid-frequencies

and new details are not present in a close-up view. This can give

vector textures a cartoonish and unnatural look. In a sense, this

problem is related to the problem encountered in most super-

resolution approaches.

multiresolution textures

Multiresolution and multiscale textures represent textures by us-

ing a hierarchical representation. They most resemble our work

presented in Chapter 5. In the early days hierarchical texture

representations were mostly used for multiresolution paint pro-

grams [26, 185] where wavelet or bandpass representations are

used in a quadtree structure created on demand.

A first approach to emulate high resolution textures in real-

time rendering was to use detail textures [30]. The idea is to

save a tile of typical high-frequency information in a separate

texture, which is then drawn on top of the usual texture dur-

ing rendering. In modern computer games, the use of virtual

textures has become widespread [174]. Here, a high-resolution

texture is subdivided into equal-sized tiles, which are saved on

the hard disk drive. An indirection texture saves the indices of

the tiles. During rendering the indirection table is used to query

the according texture value from the tiles, which are streamed

onto the GPU on demand. This approach is fairly efficient as

only two texture lookups are needed in the simplest case, plus,

38 introduction

it can be extended to support mipmapping and also sparse repre-

sentations [21]. A minor drawback is the still-limited resolution,

restricted by the size of the indirection table and size of the tiles.

In general, this is enough for many applications, but would not

be enough for some of the examples we are showing in Chapter

5. Furthermore, dynamic updates are difficult to integrate.

Finkelstein et al. [80] use binary trees of quadtrees to encode

multiresolution video. Ofek et al. [180, 181] and Mayer et al. [169]

create a quadtree texture from a series of photographs. But quad-

tree structures might not be the best representation for texture

maps, as it may take up to log(n) texture lookups for a texture

fetch depending on implementation. Also, filtering can become

more difficult as neighboring texels might not be available. In

contrast, our approaches can make use of the built-in hardware

texture filtering functionality of the GPU.

Kraus and Ertl [132] divide an already given high-resolution

image (or 3D or even 4D volume) into a regular grid of fixed-

sized blocks. The information residing in these blocks is resam-

pled into a common texture map, reducing the size of blocks

in regions with low detail information. The grid then serves as

an indirection table into the actual data during rendering. Using

the same texture for all patches may, however, result in problems

when applying mipmapping, plus, indirection tables are ineffi-

cient to update if the texture should change over time. Lefeb-

vre and Hoppe [140] use a compressed adaptive tree structure

which allows for fast random access on current graphics hard-

ware while achieving large reductions in memory requirements.

However, the requirement for large input textures to the algo-

rithms remains as a drawback.

Lefebvre et al. [141] also presented an interactive approach to

add small texture elements, called texture sprites, onto an ar-

bitrary surface. Basically, their structure resembles an octree

where the texture sprites are saved at the leaf nodes. Their im-

plementation is very memory-efficient and allows for various

artistic effects, but is less suited for hierarchical texture represen-

tations.

To overcome the need of explicit parameterization, Benson

and Davis [25] introduced octree textures. Using an octree in-

stead of a quadtree allows for encoding the spatial relationship

directly in the position in the octree. It also overcomes the prob-

lem of wasted texture space usually encountered in classic 2D

texture atlases [60, 136]. The drawback is high access cost, since

for each texture lookup one needs to traverse the octree from the

root to the leaf node.

4
PHOTO ZOOM

We don’t want to go into too much detail here...

— Various authors

4.1 introduction

Applications like Photo Tourism [219] or Microsofts Photosynth

[198], Google Earth with Street View [98] as well as other projects

show that there exists an ever increasing interest in finding new

ways to deal with photo collections, as image acquisition be-

comes easier and cheaper. Our goal in this chapter is to analyze

the difficulties encountered in seamless image compositing of

multiple images. For this purpose we developed an application

that relies on multiple photos to add high-resolution details to

a chosen input photo. The user can improve a holiday snapshot

so that it becomes possible to zoom in and take a closer look

at interesting parts of the image, far beyond the original image

resolution. Starting with an unordered collection of arbitrary im-

ages, our system automatically arranges them in a dependency

graph that describes which photograph contains details of an-

other photograph. The user then chooses a photo, and the sys-

tem seamlessly enhances it up to the desired resolution with

details found in other images.

Resolution enhancement is of particular interest when the im-

ages are shown on larger screens where an insufficient resolu-

tion is most visible. But it also receives much interest in the con-

text of browsable high-resolution content [131]. Modern games

already make extensive use of high-resolution textures, and fu-

ture games will continue this direction. For architectural pur-

poses, virtual walkthroughs, or panorama shots, high-resolution

imagery is often a necessity and renders the view experience

more convincing. Avoiding expensive and time-consuming ac-

quisition setups, therefore, is a crucial benefit.

Our work addresses the following challenges:

• Establishing reliable correspondences between photographs

in unordered photo collections, even for cases where direct

feature matching fails;

• Artifact free blending of (potentially overlapping) images

at different resolution, taken with different cameras, differ-

39

40 photo zoom

3
original
I0,4

I3
0,2I 2

0,2I1
0,2

I1
0,1 I2

0,1

original original
I3

0,3I2
0,3I1

0,3

original
I2
0,0I2

0,0I0

Extended Graph S
4

Blending Masks for

Warped Data

Homographies

I1

I0

I2

I3

S
1

S
2

S
3

r
desired
esolution

Scale hierarchy

S
0

(a) (b) (c) (d)

Figure 11.: Overview of our algorithm [74, 77]. (a) An unstructured set
of images is transformed into (b) a dependency graph with
scale relations. One image is chosen and (c) its children are
adjusted: Homographies are established, blending masks
computed, and an image hierarchy is created according to
scale. (d) An optimization-based detail synthesis step then
successively produces details at synthesis levels Si by rely-
ing on information of scale i until the desired resolution is
met.

ent focal length, white balancing, or color aberrations, or

structural mismatches;

• Detail transfer and enhancement by information exchange

between photos where no specific details are available.

Figure 11 shows an overview of our system that adds high-

resolution details to low resolution content. Starting with a set

of unordered images, Figure 11a, we extract prominent features

and use these to establish parent-child relationships between im-

ages, Figure 11b. A child contains details of a parent image and

we can derive scale factors indicating the resolution gain when

relying on the children’s content, Section 4.2.

Next, a user selects an image to be augmented by details. In

theory, we could simply project the children into the selected im-

age, but this would lead to visible artifacts. Therefore, we adjust

these images to make merging successful, Figure 11c. More pre-

cisely, we remove objects from the child images not visible in the

parent image, adjust the colors and use a blend mask to hide the

transition between the chosen and the detail images, Section 4.3.

Finally, parts not covered by the input images receive details

using our constrainedmultiscale texture synthesis algorithm, Fig-

ure 11d. The synthesis involves a discrete optimization proce-

dure to add new details at various output resolution levels, Sec-

tion 4.4. We evaluate the algorithm on several test scenes in

Section 4.5 and conclude with a brief discussion, Section 4.6.

4.2 dependency graph construction 41

4.2 dependency graph construction

In order to create the high-resolution output, accurate informa-

tion about the image relationships is needed, i.e., whether one

image conveys details of another, if they are overlapping in the

output image domain, or if they are not related at all. This is

done fully automatically, the user only needs to chose the image

he wants to augment with additional information.

Given a collection of photographs, we start by extracting fea-

ture points in each image. We use the SIFT keypoint detec-

tor [158] because of its invariance under affine image transfor-

mations. Especially scale-invariance proves useful for our task.

4.2.1 Parents Finding

We restrict each child to have one parent, but each parent can

have several children. In a situation where an image Ix is con-

tained in an image Iy, which in turn is contained in a third image

Iz, we want to avoid associating Ix directly to Iz. Instead, we do

not want to skip relations and aim at establishing Ix as a child

of Iy and Iy as a child of Iz.

Before selecting a parent for an image Ic in the image collec-

tion, we first create a set of potential parents {Ip}c by comparing

all photos with Ic. We rely on the SIFT feature descriptors to find

correspondences between image pairs Ic and Ip in order to estab-

lish reliable parent-child relationships between images. A match

between features is considered valid if the euclidean distance

in feature space between a feature vector in Ic and its nearest

neighbor in Ip is smaller than 0.49 times the distance to the sec-

ond nearest neighbor. An evaluation on the influence of this

parameter can be found in [158]. If the number of all matched

features between Ic and Ip is below a threshold τm = 10, the im-

ages are considered unrelated.This threshold is rather uncritical,

other works propose to use up to 20 [219], but this is already a

very conservative number, in order to remove false positives, but

can easily create false negatives.

If the two images are related, we try to establish a homog-

raphy HIc→Ip between them warping Ic into the image domain

of Ip using RANSAC [81] and DLT [110]. Other registration

methods could be used, but this one worked particularly well

and proved robust enough for our purpose. We denote I
p
c :=

HIc→IpIc.

Whenever it is possible to establish a homography from Ic to

Ip, we add Ip to the set of potential parents {Ip}c. To find the

most appropriate parent, we project Ic into each possible parent

image Ip ∈ {Ip}c, resulting in the warped image I
p
c . The area

of I
p
c should be maximal in order to avoid skipping relations, as

42 photo zoom

Figure 12.: The hierarchical nature of our dependency graph enables
us to find the correct position for details derived from the
input images at arbitrary scales. This would not be pos-
sible with direct feature matching, as the details could be
arbitrarily small in the original image, even smaller than
a single pixel. Top: Resulting zooms from our algorithm
using six input images taken with different zoom factors.
Bottom: Original image.

indicated earlier. More precisely, we compute the parent index

for Ic using the formula:

parentindex = argmax
p

(A(I
p
c)), (4.1)

where A is the area (number of pixels) of I
p
c in Ip. We impose

that A(I
p
c) < A(Ip), otherwise, the potential parent Ip could also

be a child of Ic. If I
p
c is not fully contained in Ip, we mask out

the pixels outside the valid region.

Having parent information available for each image we cre-

ate a complete dependency graph for the whole image collec-

tion, Figure 11b. This rearrangement into the dependency graph

structure allows us to establish correct homographies to every

ancestor of each node. This would not be possible with direct

feature matching, as current feature descriptors are only scale-

invariant up to a certain amount of very few octaves in practice.

An example for correct detail placement using our dependency

graph is given in Figure 12.

4.2.2 Preparing detail candidates

In the next step, the user is asked to choose the wanted root

image I0, and we extract the corresponding subgraph from the

dependency graph for further processing, Figure 11b. Due to

possibly different resolutions of the input images, we need to

4.3 detail transfer 43

find out the amount of detail that can be added to a parent image

Ip by each of its children images Ic. For this, we determine how

much more resolution the warped image I
p
c offers with respect

to Ip.

Let rc,p =
A(Ic)

A(I
p
c)

be the ratio between the original amount of pix-

els in Ic and the number of pixels occupied in Ip by the warped

image I
p
c . If rc,p ≤ 1, the resolution of Ic is considered insuffi-

cient to add information to Ip. Basically, its pixels are larger than

those in Ip. In this case, we can remove Ic from the dependency

graph and make its children the new children of Ip. Repeating

this process recursively in a top-down manner removes all false

details from the dependency graph.

The established dependency graph and warps will facilitate

the later detail synthesis. Further, such dependency relations

provide much algorithmic flexibility and can also be useful in

other contexts. E.g., scaling and concatenating the homogra-

phies of each node and its ancestors and warping the images

accordingly defines a higher resolution panorama image follow-

ing standard techniques in [236]. By storing the scale ratio s =

⌊rc,0 − rp,0⌋ between each child and its parent on the edges, the

dependency graph becomes similar to an exemplar graph, pre-

sented in [107], but was fully automatically created.

4.3 detail transfer

Our algorithm will improve the quality of the selected root im-

age using its descendents in the dependency graph. Because the

child images may have been taken at different moments in time,

with different cameras and from slightly different locations than

the root image, we need to adjust and modify their content to

better fit in the root image. We remove or adjust regions with

a strong photometric inconsistency, adjust the color, and find a

blending mask to create a good transition between the inserted

element and the original image. The treatment described in this

section is recursively applied to all children in the dependency

graph in a top-down manner.

After these adjustments, it is possible to project all child im-

ages into an upscaled version of the root image and it leads to

artifact-free transitions. This allows us to enhance the upscaled

image with the captured details. In Section 4.4, we will present a

detail synthesis algorithm to improve not only the covered areas,

but the entire root image.

44 photo zoom

4.3.1 Mismatch Removal

Detail images do not need to be taken from exactly the same

viewpoint or at the same time. As a result artifacts such as par-

allax effects, temporal artifacts or objects might appear, or disap-

pear, in the detail images. If no further knowledge is given of the

content, our only option is to conservatively estimate similar re-

gions in the parent and the child image and mask out dissimilar

regions.

To remove the influence from small scale misalignments and

noise, which should not be visible later on, we apply the homog-

raphy matrix HIp→Ic to warp Ip into the image domain of the

child. Next, we blur both images, the parent and child image,

with a Gaussian filter with a standard deviation of σ = 2 pix-

els. We compute the Sum of Squared Differences (SSD) for each

5× 5 window around each pixel and only save the largest value

of each color channel. Thresholding the resulting image reveals

our final mask, marking the regions usable for further process-

ing. Using an empirically estimated threshold of τSSD = 0.35

worked well in our test cases, the images are all scaled to lie in

the range [0, 1]. We tried other methods as well, e.g., the mean-

removed normalized cross correlation, which has been proposed

by Goesele et al. [94] for a similar purpose. But the results were

not always as satisfactory even with an optimized threshold, see

Figure 13 for a comparison.

4.3.2 Structural Adaptation

There are many cases where one actually knows, that no new

objects appear or disappear in the detail images, e.g. if a static

scene was photographed. In these cases it is not necessary to

mask out parts of the child images. Instead we carefully adapt

their content to remove structural misalignments. In order to not

introduce additional artifacts we aim at matching only the most

salient structures in the image and interpolate the rest. These

structures or edges are usually the main disturbances when com-

positing two images [125].

Consider the basic task of stitching together two images IS
and IT, e.g. the child and parent image, which have already been

roughly aligned as described in Section 4.3.1 and overlap in an

area called Ω, Figure 14. The partitioning seam inside Ω is called

∂Ω with ∂ΩS and ∂ΩT depicting the pixels along the border in

IS and IT respectively. Our structural adaptation algorithm [77]

proceeds in six steps:

1. An optimal partitioning is computed between the roughly

aligned images IS and IT.

4.3 detail transfer 45

(a) (b) (c)

(d) (e) (f) (g)

Figure 13.: Object Removal. (a) Parent image, (b) cropped region of in-
terest from parent image, (c) warped child image cropped
to region of interest. Note the strong parallax - the pave-
ment visible in the detail image is occluded by a bush in
the parent image. (d) The normalized cross correlation for
5 × 5 regions around each pixel between the parent and
child image, as proposed in [94], does not provide a good
clue which parts of the image belong to the same object. (e)
The resulting mask after thresholding is unsatisfactory. (f)
The sum of squared differences gives a better indication of
differing regions. (g) The resulting mask after thresholding
excludes the unwanted object pretty well.

2. Features along the partitioning seam ∂Ω are matched and

brought into alignment.

3. The outgoing edges along these features are traced and

brought into alignment.

4. The sparse deformation field derived from the matching

is propagated throughout the area of the source image IS
which is warped accordingly.

5. To take the deformation into account, we compute a new

optimal partitioning.

6. The color values of IS are adjusted subject to a constraint

Poisson equation.

46 photo zoom

IS

Ω

IT
IS

∂Ω
IT

∂IS − ∂Ω ∂IT − ∂Ω

Figure 14.: Optimal partitioning for two overlapping images: (left) The
images IS and IT have been globally aligned and overlap in
the area Ω. (right) The partitioning divides Ω into two
parts. Based on the found seam ∂Ω the images are com-
bined into a common image space. The border around
the image excluding the seam ∂Ω is denoted ∂IS − ∂Ω and
∂IT − ∂Ω respectively.

4.3.2.1 Optimal Partitioning

We employ the Drag-and-Drop Pasting method [126] to find an

optimal partitioning seam in Ω. Starting with an arbitrary path

this iterative technique can find the seam optimizing the follow-

ing energy function:

E(∂Ω, k) = ∑
(x,y)∈∂Ω

((IT(x, y)− IS(x, y))− k)2 , (4.2)

where k is the average color difference on the boundary seam

∂Ω computed as the L2-norm on the rgb-triplets.

For the case where IS is fully surrounded by IT, which is usu-

ally the case for object insertion tasks, we define a foreground

object ΩObj in IS by applying the GrabCut technique of Rother

et al. [201]. This defines a foreground area in IS which may not

be crossed by the optimal seam, Figure 15. If IS only partially

overlaps IT we can force the seam to cross the boundary pixels

of ∂IS − ∂Ω by enforcing IS to belong to the foreground object

except for the border pixels ∂IS− ∂Ω and Ω, this way both cases

can be treated in the same way. This seam provides a reasonable

starting point for the feature tracing and matching applied in

the following.

4.3.2.2 1-D feature detection and matching

In our observation the most prominent artifacts are produced by

mismatching salient edges in both images. Therefore, the first

step is to detect these edges. We start by removing noise in the

image by applying a bilateral filter [241]. Using the Canny edge

detector [39] we find all important edges in the images and thin

them out, to assure there are only two neighboring pixels for

each edge pixel, except at crossings, which is beneficial for the

latter edge matching. The same observation was made by Jia et

4.3 detail transfer 47

IS

IT

Ω

IT

∂Ω

ΩObj

Figure 15.: Optimal partitioning for two images, one enclosing the
other: (left) The source image IS is completely surrounded
by its target IT . (right) A foreground region ΩObj (lilac)
is defined through which the seam may not pass, and the
optimal seam is computed around it (green).

al. [125] and we follow their idea of aligning the salient edges

along the seam. Assuming, without loss of generality, that there

are n edges found along ∂ΩS, m edges along ∂ΩT and n ≥ m, an

optimal edge matching can be found by dynamic programming:

E′ = min ∑
0≤i<m

(pT(i)− pS(ki))
2 , (4.3)

s.t. 0 ≤ k0 < k1 < . . . < km−1 < n ,

where pS(.) and pT(.) are the pixel positions of the salient edges
along ∂ΩS and ∂ΩT, respectively. For each of the matched edge

pixels, a deformation vector d pointing from its pixel position

along ∂ΩT towards the position of its match along ∂ΩS is defined

as a constraint for a deformation field D for IS, Figure 16.

IS IT

∂Ω

d

Figure 16.: Structure misalignments might still persist along the border
of an optimal partitioning. To remove these misalignments
we compute the most salient edge pixels (red and yellow)
along ∂Ω and compute a deformation vector for each of
these. Additional zero vectors (green) are added to prevent
excessive deformations.

4.3.2.3 1.5-D feature matching

Once a matching of the salient edge pixels along ∂Ω has been

computed, we need to propagate these deformations in a mean-

ingful manner to the rest of the pixels. To restrict the deforma-

tion of IS, we set additional zero deformation vectors O = (0, 0)

for those pixels along ∂Ω that are 10% of the seams overall length

48 photo zoom

away from any previously computed deformation vector d. The

10% are chosen empirically but give good results in our test

cases. For the rest of the unassigned pixels along ∂Ω we linearly

interpolate the values of the two neighbouring deformation vec-

tors to the left and to the right.

Matching of the salient edges avoids structural mismatches

along the seam, one can think of this as C0-continuity, but the

edge direction can still change rather abruptly, so there is no real

C1-continuity along the edges. We will therefore trace the edges

further into IS and IT and match these as well.

To trace an edge starting at the edge’s pixel position p, we cre-

ate an edge path P of a preset length l, but even small values

work already well in most cases. Due to the edge-thinning we

can usually walk directly along the edges already found in Sec-

tion 4.3.2.2 by the Canny edge detector [39]. In case of ambigu-

ities we follow the strongest gradient strength. As a convention

we will use PIA→IB to denote the set of edge pixels in IA starting

at p and going in the direction of IB, Figure 17.

IS IT

PIS→IS PIS→IT

PIT→IS

PIT→IT

Figure 17.: Naming convention of the traced edges. This is basically
a close-up of Figure 14. The in- and outgoing edges in IT
are marked in red, the respective edges in IS are marked
in yellow. The deformation on the seam ∂Ω is propagated
along PIT→IS (blue arrows).

For each pixel position along PIT→IS we set dpn = PIS→IS(n)−
PIT→IS(n), if PIT→IS(n) is available, where dpn is the deformation

vector at pixel position PIT→IS(n). The n-th pixel position in

PIT→IS(n) is matched with the n-th pixel position in PIS→IS(n).

4.3.2.4 Deformation propagation

The rest of the deformation field D to deform the source image

IS is filled as smooth as possible. Let {p}edge be the set of edge

pixels with an already defined deformation vector. We solve

the following diffusion equation with Dirichlet boundary condi-

tions:

D∗(x, y) = D(x, y) , if (x, y) ∈ {p}edge (4.4)

∇2D∗(x, y) = 0 , otherwise

where ∇2 is the Laplace operator.

4.3 detail transfer 49

After minimization, each pixel in our image domain is asso-

ciated with a deformation vector in D∗. Performing an inverse

mapping with bilinear interpolation on IS, we obtain the warped

and structurally aligned image. As the image was deformed

during this process, we compute a new optimal partition to as-

sure that we are still given the optimal seam as described in

Section 4.3.2.1. Everything outside this seam is masked out for

further processing.

4.3.3 Color Adjustment

After taking care of the structural misalignments, varying white

balance and exposure settings can cause color aberrations be-

tween parent and child images. In order to fix these, we use a

recursive gradient domain fusion on the elements of the depen-

dency graph.

Starting at the root we process the dependency graph in a top-

down manner and for each child Ic and its parent image Ip we

apply the inverse homography matrix H−1Ic→Ip
again to warp Ip

into the image domain of the child. This allows us to add a one-

pixel border around the previously computed mask of the child

image by sampling colors fromH−1Ic→Ip
Ip. We then find the image

that best matches the gradients of the child image while respect-

ing the sampled boundary color values. This can be expressed

as a Poisson equation with Dirichlet boundary conditions follow-

ing [184], see Section 2.12. The boundary conditions are given

by the one-pixel border derived from H−1Ic→Ip
Ip, while the guid-

ance field v for the Poisson equation is given by the gradient of

Ic. A comparison with and without Poisson blending is given in

Figure 18.

(a) (b)

Figure 18.: Color Adjustment. (a) Without poisson blending, the detail
child patch might differ in color from the low resolution
parent image. (b) After poisson blending the colors are
adjusted.

50 photo zoom

4.3.4 Blending Mask

Copying a child image directly into an upscaled version of the

root image I0 is likely to produce seams, even after poisson

blending, due to the higher frequency bands present in the detail

image. To make the insertion successful, we refine the computed

mask by attributing opacity values to all child-image pixels that

indicate how to blend the content with the output image. An

easy way to extract a blending matte is to compute a distance

map, also called grassfire transform [236]. For every pixel, the

distance to the image center is computed. The larger the dis-

tance, the more transparent the pixel becomes. The downside

of such solutions is that image content is not taken into account

and the transition will be easily noticeable. Instead, we found

that much better transitions are possible when exploiting the im-

age content.

We first establish a gradient map Gc,a , a ∈ {r, g, b} for each

color channel:

Gc,a = ||∇Ic,a||1 = |∇x(Ic,a)|+ |∇y(Ic,a)|, (4.5)

where∇x(Ic,a) and∇y(Ic,a) are the gradients in x and y direction

of Ic in color channel a respectively. Using the L1 norm in Equa-

tion (4.5) leads to faster changes of the blending values along

edges, due to the triangle inequality, resulting in less distracting

transitions than with the common L2 norm. We then establish

a gradient density map G′c,a computing for every pixel (x, y) the

least cost path to a border pixel of its mask, using dynamic pro-

gramming [24], according to

G′c,a(x, y) = min
path
{ ∑
(u,v)∈path

Gc,a(u, v)} (4.6)

We combine the gradient density map of all three color channels

by saving only the maximum costs in G′c. Using the separate

maps G′c,a for each color channel would lead to unwanted color

aberrations. The cost for pixels outside the mask are zero. Con-

sequently, regions with only few color gradient changes will be

assigned a relatively slow growing value from the border of the

mask to the pixel of interest. In regions with strong edges the

cost value will rise faster, as slow blending could produce visi-

ble ghosting artifacts or disturbing blur in these areas, Figure 19.

In addition, pixels closer to the patch center will usually receive

higher weights than those close to the border. The final blend-

ing mask is then computed using a combined thresholding and

scaling:

α(x, y) = min(1.0,
G′c(x, y)

τ
) (4.7)

4.4 constrained multiscale detail synthesis 51

where τ is kept to 0.4 of the maximum value of G′c throughout
our examples, which turned out to be a good tradeoff between

the speed of the transition and preserved area of the image. For

high frequency textures, it is beneficial to multiply α with a Gaus-

sian falloff function to slow down the transition in these areas.

(a) (b)

(c)

(d)

(e)

Figure 19.: Blending example: Combining a high- and low-resolution
image. (a) Blending using a Gaussian falloff mask. (b) Our
edge-aware result. (c) and (d) Close-up of (a) and (b), re-
spectively. (e) Visualization of our final blending mask α.

4.4 constrained multiscale detail synthesis

To add plausible details to the root image I0 we will make fur-

ther use of the derived scale relationship and image adaptation.

In the following, we will describe how to use the scale relation-

ships to derive a multiscale dependency graph. This is crucial

for our detail synthesis algorithm, described in depth in Sec-

tion 4.4.2. The detail synthesis works hierarchically by establish-

ing matches between images of corresponding resolution levels.

Starting with the original resolution of I0, we successively up-

scale this image. After each upsampling, a blending and a detail

52 photo zoom

3
original
I0,4

I3
0,2I 2

0,2I1
0,2

I1
0,1 I2

0,1

original original
I3

0,3I2
0,3I1

0,3

original
I2
0,0I2

0,0I0

3
original
I0,4

original original

I2
0,3I1

0,3

original

I0

Sparse Graph Extended Graph

re
so
lu
ti
o
n
le
v
el

l

re
so
lu
ti
o
n
le
v
el

l

(a) (b)

Figure 20.: Extended Dependency Graph: (a) Once the scale relations
are known, the warped images can be arranged in a sparse
dependency graph. (b) By creating a Gaussian image pyra-
mid out of each image, more exemplars can be added to
each level. All exemplars of the same level are used for the
later texture synthesis steps.

synthesis step is applied, where data is also used from other

images of the corresponding level.

4.4.1 Extended Dependency-Graph

It is easier for the synthesis to work with power-of-two scale

factors. Hence, we determine a resolution level L, representing a

scale factor of 2L. For each detail image Ii, L is maximized such

that the original resolution ratio ri,0 =
A(Ii)
A(I0i)

between I0 and I0i is

still larger than 2L:

argmax
L

(2L ≥ ri,0) , L ∈N0 (4.8)

Because the original input images represent only a sparse re-

finement candidate set, we create a Gaussian image pyramid out

of each SHIi→I0Ii where S is a scaling matrix scaling by a factor

of 2L to preserve the details in Ii before creating the image pyra-

mid. One downsampling operation, reducing width and height

by a factor of two, transforms an image of level l into an image of

level l− 1, Figure 20. Having defined these multi-resolution rep-

resentations, we will denote the warped and accordingly scaled

image Ii at level l as I0,li . Similarly, the blending masks are also

denoted αl
i to reflect the corresponding scale. Adding I0 to each

synthesis level helps to refine regions with different colors than

those represented in the detail images, e.g., in a panorama one

seldomly takes detail shots of the blue sky. Below we describe

how to make use of the previously derived representations in

our multiscale texture optimization framework.

4.4 constrained multiscale detail synthesis 53

4.4.2 Multiscale Texture Synthesis

Our algorithm builds an output image pyramid S0,S1, . . . ,ST in

a coarse-to-fine order, where ST is the final image of the desired

output resolution. The images St are not represented by color

values, at a pixel position (x, y), but rather store coordinate in-

formation in the form St(x, y) = (u, v, i, l), where (u, v) are pixel

coordinates, i is the image id, and l is the scale level. We will use

the notation ∗St to refer to the actual color image of St, which

is saved separately and updated on demand. Unlike traditional

texture synthesis methods, we do not start with a 1× 1 image

or random noise patterns, but rather start by refining the root

image I0.

Each level St is generated by (1) upsampling the image St−1,
(2) optionally blending the detail images I0,ti with the resulting

color image ∗St and (3) locally refining the image by a detail

synthesis algorithm.

4.4.2.1 Upsampling

Instead of upsampling color from the last synthesis step, we up-

sample coordinates. Specifically, we adopt the idea of Lefebvre

et al. [139] and ascend in the hierarchy to a higher-resolution

level, if available. Hence, we introduce new details even before

refining the upsampled image. For St−1(x, y) = (u, v, i, l), the
upsampled patch is defined by:

St(2x+ λx, 2y+ λy) := (2u+ λx, 2v+ λy, i, l + 1) , (4.9)

with

(

λx

λy

)

∈
{(

0

0

)

,

(

0

1

)

,

(

1

0

)

,

(

1

1

)}

If a higher-resolution level is not available, we simply copy the

content of St−1(x, y) to all four corresponding pixels of the next

resolution level.

4.4.2.2 Blending

As described in Section 4.3, we have all the information available

to directly blend entire child images into the synthesized image

at each level. This is especially helpful in the context of multi-

scale panorama images. In this case, we compute a new solution

∗St from the upsampled coordinates of St−1. To add the specific

details from our input images, we blend each child I0,ti with ∗St

using:

∗St = αt
iI
0,t
i + (1− αt

i)(∗St), (4.10)

where αt
i is the previously computed blending mask. The blend-

ing order of the children depends on the resolution level L com-

54 photo zoom

puted in Section 4.4.1. The higher the relative resolution, the

later it is added.

4.4.2.3 Detail Synthesis

In the last section we augmented our upsampled image at spe-

cific, known position with details from the input images. For

the other regions, we will try to find plausible details by texture

synthesis.

For each synthesized pixel (x, y) in St, the detail synthesis step

seeks to find a pixel position m(x, y) in any detail image I0,ti of

level t whose local 5× 5 neighborhood N(m(x, y)) best matches

the 5× 5 neighborhood N(x, y) in St centered at (x, y). A neigh-

borhood N(x, y) around a pixel position (x, y) consists therefore
of 25 rgb-values. Using a larger neighborhood usually only in-

creases computation time in hierarchical texture synthesis, as

was already pointed out by several other authors [108, 139].

Basically, our goal of synthesizing new details can then be seen

as the minimization of an error functional, which is determined

by mismatches of input/output neighborhoods:

E := ∑
(x,y)∈Ωt

||N(x, y) −N(m(x, y))||2 , (4.11)

where Ωt is the image domain of St. E measures the sum of

all neighborhood differences across the current image. Basically,

if neighboring pixels had neighboring matches, this functional

would be minimal. In practice, even if pixels are neighbors in the

output image, the best matches might be very different and we

need to apply an optimization procedure to improve the original

image.

In order to minimize the error functional in Equation (4.11),

we minimize the error for each level using a discrete two-step

EM-like (Expectation/Maximization) solver, similar in spirit to

[108, 135]. A visual illustration of the process is also given in

Figure 21. In the M-step, the set of output pixels at (x, y) re-

mains fixed and a set of n best matching input neighborhoods

{N(m(x, y)k)} is found per pixel position (x, y), k ∈ [1, . . . , n] de-
notes the index of the kth best matching neighborhood. In prac-

tice, we use n = 3, Han et al. [107] use n = 2 which we found

to be a too small number for sufficient results, Tong et al. [242]

originally proposed to use n ≤ 11, but we did not experience

any visual improvement beyond n = 3.

In the E-step, the set of best matching input neighborhoods

{N(m(x, y)k)} remains fixed while we optimize for ∗St(x, y) and,
hence, modify St. We look at all pixels at position (x, y) + ∆ in

a 3 × 3 neighborhood (candidate neighborhood) around (x, y).
We then gather all their best matching neighborhood centers

4.4 constrained multiscale detail synthesis 55

...

N (m((x,y) + (0,-1)))
0

N (m((x,y) + (0,-1)))
1

N (m((x,y) + (0,-1))
2

...

...

N (m((x,y) + (-1,1)))
0

N (m((x,y) + (-1,1)))
1

N (m((x,y) + (- 1,1)))
2

Find best matching candidate neighborhood

......

S
t

(x,y)

best matches in candidate images of scale t

neighborhood

candidates

Figure 21.: Optimization procedure: Color values are optimized by im-
proving coherence of neighboring pixels. For each pixel
from a 3× 3 neighborhood around (x, y), its 5× 5 neighbor-
hood is extracted and the k best matches N(m((x, y) + ∆)k)
are found in the candidate images (gray grids on the
right). The neighborhoods from the shifted center pixel
N(m((x, y) + ∆)k − ∆) (dotted region around red pixels on
the right) are then compared to (x, y)’s original neighbor-
hood N(x, y), and the pixel at position (x, y) is replaced
with its best match.

{m((x, y) + ∆)k}. To chose the new value for St(x, y), we com-

pare all candidate neighborhoods N(m((x, y) + ∆)k − ∆) to the

neighborhood N(x, y) around (x, y), as illustrated in Figure 21.

Let N(m((x, y) + ∆min)
j − ∆min) be the neighborhood that mini-

mizes the difference to N(x, y). We then associate with St(x, y)

the value of m((x, y) + ∆min)
j − ∆min, i.e., position, index and

level.

The E- and M-step are repeated until a minimum is reached,

i.e., the best matching neighborhoods N(m(x, y)) do not change

anymore from one iteration to the next, or a maximum num-

ber of iterations is reached. We use up to four iterations in our

implementation.

To summarize this step, the detail synthesis tries to adjust the

image in such a way that every local neighborhood around each

pixel resembles a neighborhood in one of the input images of

the current level. This optimization does not affect the blended

areas, as for these perfect matches can be found and they will

therefore not be replaced with other values, except at the bound-

aries for a better merging with the rest of the image.

4.4.2.4 Accelerating Neighborhood Matching

For faster computations, we use an approximate nearest-neighbor

search [16] to find the k best-matching neighborhoodsN(m(x, y))
in all I0,ti for each N(x, y). We did not adopt k-coherence [242]

in this step, as this might restrict us to too few good matches

56 photo zoom

and also complicates the integration of the blending step, as the

blending affects only ∗St and St stays unaffected until the detail

synthesis step.

We further project all neighborhoods into a truncated princi-

pal component analysis (PCA) space [127]. The PCA basis for

each level t is constructed by using all neighborhoods from all

admissible candidates I0,ti . We automatically derive the number

of needed eigenvectors by truncating as soon as the eigenvalues

drop to 0.5% of the largest eigenvalue. This usually results in 9

to 15 eigenvectors used for projection and the results are visually

indistinguishable from using all 75 eigenvectors.

user selection of root image

Photographers usually take a lot of similar pictures of a scene

and choose the best one afterwards. We can augment this se-

lected photo with a slight change to our algorithm. We first

establish the dependency graph as usual. Then all root images

except for the one selected are deleted and a homography of

their child nodes to the selected image is computed. Upon suc-

cess, the whole subtree is added as a child to the selected image,

as its established relations remain valid. Otherwise the whole

subtree is removed from further consideration.

4.5 results

We have evaluated our system with several test collections. The

synthesis itself takes about 30 seconds for an image of size 256×
256 on an AMD Athlon 64 X2 Dual Core Processor 4800+, with

only one core used, and 3GB of RAM. It scales linearly with the

number of output pixels and approximately logarithmically with

the number of input pixels, i.e., the exemplars. Four iterations

have been applied during the optimization step of each level in

all examples.

relationship reconstruction

To test the relationship reconstruction presented in Section 4.2,

we created a database of 46 images which we took from 7 dif-

ferent scenes and also used different camera models, a subset

is shown in Figure 22. This way we could establish a ground

Figure 22.: Some images from our ground truth data set to test our re-
lationship reconstruction approach, consisting of 46 images
from 7 different scenes.

4.5 results 57

(a) Target & Source (b) Poisson [184] (c) Jia [125] (d) Our result

Figure 23.: Structural adaptation test: The blossom of the white flower
replaces the red one. (a) The traced edges of the stem are
marked in yellow, the optimized seam in magenta. (b) Af-
ter roughly aligning the images, Poisson blending [184] re-
veals a strong structural misalignment at the flower’s stem.
(c) The technique of Jia et al. [125] is able to match the cor-
responding edges, but results in a rather disturbing struc-
tural transition at the seam. (d) Our edge tracing method
automatically propagates the necessary deformation of the
stem more faithfully into the rest of the image. The accord-
ing deformation of the blossom is unnoticable to the human
observer.

truth dependency graph to which we compared the result of our

algorithm. Our system created correct relationships for 91.3% of

the images, four images were excluded by the system, but none

were falsely assigned. The whole process took about 725 sec-

onds, as every image had to be matched to each other image in

our current implementation.

structural adaptation

We first tested our structural adaptation algorithm by replac-

ing the blossom of a flower with another blossom and use our

method to adjust the stem in order to create a plausible tran-

sition between the two images, Figure 23. In a first step the

images are roughly aligned by hand. The yellow pixels in Fig-

ure 23a show the traced edges, the seam is shown in magenta in

the top left image and is used for partitioning in this experiment.

We compare our method to two other established techniques for

seamless image stitching, namely Poisson Blending by Pérez et

al. [184], Figure 23b, and Image Stitching Using Structure Deforma-

tion by Jia et al. [125], Figure 23c. In the bottom row, we show

58 photo zoom

(a) IS (b) IT (c) Close-up of IT

(d) Poisson [184] (e) Drag & Drop [126] (f) Our result

Figure 24.: Structural adaptation test with different resolution levels:
(a) The source image IS is merged into (b) an image IT with
lower resolution level. (c) Close-up of the target image IT .
(d) Close-up of the result using Poisson blending by Pérez
et al. [184]. Note the mismatches at the pedestal and in
the clouds. (e) Close-up of the result with an optimized
seam using Drag & Drop Pasting [126]. The clouds look
better, but the mismatch at the pedestal is still present. (f)
Close-up of our result which can also handle the structural
inconsistencies.

close-ups of the transition area along the stem. The images in

Figure 23b show the result using only the Poisson Blending tech-

nique of Pérez et al.Although the color discrepancy is alleviated,

the transition between the two stems is clearly visible due to

their differing width. Strong color bleeding artifacts are the re-

sult. The method of Jia et al., Figure 23c, nicely adjusts the stem

along the seam, but the transition area is still annoyingly visible

due to the fact that the sparse deformation constraints are only

computed along the seam and interpolated into the rest of the

image. Using the same deformation vectors along the seam, but

our edge tracing method to match the interior edges, we can cre-

ate a much more natural looking transition without noticeably

deforming the blossom, Figure 23d.

To test how well this approach works with different resolu-

tion levels we used two images of the statue of liberty, one wide-

angle shot and one with a close-up view of the statue, Figure 24.

Poisson blending [184] can adjust the color of the source image,

4.5 results 59

(a) Input patches

(b) Synthesis results (c) Original

Figure 25.: Ground truth test for our detail synthesis: (a) The high re-
solution image, 2048× 2048 pixels, on the left is downsam-
pled to 128 × 128 pixels, and distinctive parts have been
cut out at various zoom levels, which are used as input to
the detail synthesis algorithm. (b) The overall appearance
is well preserved by our detail synthesis algorithm when
upsampling the image again. (c) For comparison, the same
part taken from the original high resolution image.

but structures like the clouds or the basement cannot be handled

properly, Figure 24d. Using Drag & Drop Pasting [126] an opti-

mal seam is created so that the transition in the clouds is less vis-

ible, Figure 24e. The structural misalignments, however, are still

not handled well. Our approach, Figure 24f handles both color

and structural discrepancies sufficiently well: visible seams are

removed while the applied deformation is hardly noticeable.

ground truth synthesis

To test our detail synthesis algorithm without the blending step

we created another ground truth test case. Starting from a high

resolution image of size 2048× 2048 pixels, we cut out significant

parts of the image at various resolution levels and downsampled

the image to 128 × 128 pixels. We then upsampled the image

again using these small patches as input to our detail synthesis

algorithm. All patches were of the size 128× 128 or 256× 256.

Figure 25a shows the input patches used and Figure 25b shows

several zoom shots created by our detail synthesis algorithm. As

a comparison Figure 25c shows the same region from the high

resolution image. The overall appearance is well preserved by

our detail synthesis algorithm even though each pixel has been

enlarged to 256 pixels. Only a slight change in the position of

some of the details is visible, e.g. the small blue dots on the

butterfly wings. In our complete algorithm the blending step

would take care of the correct placement for given details.

multiscale panorama

Figure 26 shows a large-scale panorama created from 9 input

images at different scales. In contrast to previous panorama-

60 photo zoom

(a)

(b)

ours original ours original

(c)

ours original ours original

(d)

Figure 26.: Multiscale Panorama: Using 9 input images at various
zoom levels, partly overlapping and of varying sizes be-
tween 483x525 pixels and 1086× 585 pixels, our algorithm
automatically establishes the dependency graph, scale rela-
tions, and blending masks to create a high-resolution pano-
rama image. We upsampled the original panorama with
a 683 × 512 pixels resolution to 5464 × 4096 pixels. (a)
Thumbnails of all input images used. (b) Automatically
generated panorama by our algorithm. (c) Two examples
of regions incorporating information from the detail images
and the respective part in the original panorama image. No-
tice that the given details have been faithfully included in
the high-resolution panorama. (d) Two examples for en-
hanced details next to their respective parts from the orig-
inal panorama image. Both examples show regions where
no direct correspondence relation with respect to the input
images existed. Our solution adds subresolution detail, in-
visible in the original input image (here, with 64 times more
pixels). In many cases, plausible details are added by our
algorithm, e.g., the solar panels on the roof (left). The tex-
ture synthesis step is especially useful for small scale and
repetitive structures, such as leafs of trees. However, if no
sufficient detail information is available from other parts of
the input images, it is not always possible to reconstruct
semantically meaningful structures, like the houses on the
right.

4.5 results 61

(a) Input patch

(b) Synthesis result

Figure 27.: Multiscale Texture Synthesis: A 64× 64 pixels input exem-
plar (upper left) is upsampled to 2048× 2048 pixels using
our algorithm and exploiting self-similarity in the input im-
age. (a) Various zoom levels of the original input patch. (b)
The same regions but taken from the upsampled patch us-
ing our algorithm.

stitching methods, the resolution is not fixed in advance in our

approach, but we create the needed resolution on demand. The

recursive warping and blending steps assure that details given

by the input images appear at the correct positions and orienta-

tions in the output images, Figure 26c. For parts where no detail

images are available, the synthesis can benefit from the derived

knowledge of scale relations from the other input images. As

shown in Figure 26d, plausible details can be added even for

regions not covered by any of the detail images.

multiscale texture synthesis

Using reflexive edges, i.e., loops, in the dependency graph al-

lows us to produce results similar to a multiscale texture synthe-

sis [107]. In Figure 27 a single input exemplar of size 64 × 64

pixels was upsampled using our algorithm to 2048× 2048 pixels.

Figure 27a shows zoom shots of the original input image, in Fig-

ure 27b our results are presented. Figure 28 shows a snapshot

of the Wheat field under dramatic sky by Vincent Van Gogh whose

resolution of 256 × 256 was virtually increased to 8192 × 8192

using a single exemplar with a single reflexive edge. While the

main focus of our algorithm was not to create a new texture syn-

thesis method, it is nevertheless applicable for this task as well.

online database

Our algorithm is also applicable to image collections from online

databases. The result in Figure 29 used the first 35 hits on Flickr

using the phrase Big Ben. The enlarged image in Figure 29a

was then chosen manually to be augmented with details. Even

62 photo zoom

bilinearnearest neighborour solution

1 2 3

45

6

7

Figure 28.: Multiscale Texture Synthesis: The same 256x256 pixel ex-
emplar (upper left) is added to each level of the extended
dependency graph facilitating an infinite zoom. Each subse-
quent image doubles the resolution, yet the quality remains
high compared to bilinear or NN upsampling (bottom).

though the images have been taken by completely different cam-

eras, angles, viewpoints and at different times, our algorithm

adds plausible details to the root image. The algorithm found a

substitute in the image database for the clock-face and replaced

it. The other images were not used, because they differed too

much.

Even for parts of the image where no detail information was

available, plausible details have been added by our algorithm,

see Figure 30. Our algorithm is no real super-resolution algo-

rithm in the classical sense, as it provides only similarity to the

input image but does not guarantee equivalence when down-

sampling the result. On the downside this can lead to a minor

loss of contrast in the image, as one pixel sized details might

be replaced in the process. On the other hand this feature has

several beneficial aspects. The algorithm has more freedom to

add details to the image because of this loosened constraint and

small artifacts, like the halo or compression artifacts around the

tower are reduced in Figure 30c, also in the downsampled ver-

4.6 discussion 63

(a)

(b) (c)

Figure 29.: Online Database: Our algorithm can derive relationships
between photographs in image databases like Flickr [274].
These relations enable us to add specific details. (a) A sub-
set of the first 35 images for the query Big Ben on Flickr.
The enlarged image on the left was then chosen by the user.
(b) Detail of the original image. (c) Result of our algorithm.
A closeup on the small turret in the bottom right of the root
image is given in Figure 30.

sion, Figure 30d. Classic super-resolution algorithms might even

enhance these artifacts, Figure 30b.

The dependency graph of all examples in this chapter, except

for Figure 23, 24, 27 and 28, have been automatically created by

our algorithm.

4.6 discussion

We have introduced a framework for detail enhancement in pho-

tographs. In this context, we presented a robust method to es-

tablish parent-child and scale relationships in unordered sets of

photographs. Its derived graph structure enables us to find re-

lations between images where simple feature matching would

fail. We explained how to adjust the content of child images

64 photo zoom

(a) Original (b) SR [130] (c) Our result (d) Our result LR

Figure 30.: Comparison to super-resolution in the Big Ben scene. Super-
resolution approaches upsample images by guaranteeing
equivalence to the original image after downsampling
again. Our approach, instead, assures similarity to the
original. This loosened constraint allows the algorithm to
add new, plausible details to the image. (a) Original im-
age. (b) Upsampled image by three octaves using the super-
resolution algorithm by Kim et al. [130]. (c) Upsampled im-
age using our proposed algorithm (d) Our result from (c)
downsampled to the original size again. Note that none of
the input images contained a close-up view of the turret.

to a user-selected image. This allows for a well-behaved de-

tail synthesis and simplyfies fusion. Additionally, we proposed

an optimization-based approach for multiscale texture synthesis

which adds details at various levels to the output image. It al-

lows us to add specific details at specific positions. Combined

with our dependency graph, even sub-pixel content with respect

to the original image can be created. Our method is fully au-

tomatic, enabling novice users to create high-resolution results

without a complicated or expensive setup.

limitations

Despite feature matching and optimization steps, our method

is still sensitive to parallax effects that occur if the images have

been taken from different viewpoints. Splitting the input images

into smaller patches and using voting (similar to [12]) might help

to reduce these effects. It would also allow for a more flexible

dependency graph, as overlaps in the images could be exploited

more finely and the algorithm would rely less on the require-

ment of fitting homographies to entire images. On the other

hand, smaller patches might reduce similarity to the original im-

ages, resulting in reduced overall quality.

4.6 discussion 65

Theoretically the SIFT features [158] we use for correspon-

dence estimation are scale invariant. In practice, this is only true

up to certain zoom factors. We cannot point out exact scaling

differences between our input images. We could robustly esti-

mate the homographies for an approximate scaling factor of up

to 12. However, the factor may vary with the image content and

is usually around two to three in our experience. To allow for

more robust matching, we can make use of intermediate images

taken from the according image pyramid.

The proposed structural adaptation in Section 4.3.2 works best

if only few salient edges are to be matched. Due to the complex-

ity of many natural images, robust automatic feature detection

along the seam is still an open problem, as too many fine scale

structures in the images can lead to erroneous matchings and

false edge tracing.

In our current implementation, we wanted to be independent

of reconstructed 3D geometry. But if enough images are avail-

able, it might turn out useful to incorporate 3D information as

well, as it was done by Goesele et al. [94].

Our algorithm is also affected by strong changes in illumina-

tion of the different images. While the color correction step helps

to resolve global color changes, it is currently not able to suf-

ficiently remove artifacts caused by strong shadows. Working

completely in the gradient domain and removing strong gradi-

ents, not in accordance to the parent image, or using intrinsic

images similar to [155] might resolve this issue.

We currently assume that the detail images actually provide

details. This is not the case if the objects of interest are out of

focus. One might want to add an additional preprocessing step

to remove such images.

future work

Currently, we have applied our algorithm only to relatively small

databases consisting of a few dozen images. An interesting fu-

ture direction might be to incorporate larger databases such as

data from GPS or satellite views containing thousands or more

images [112, 215]. In such a scenario, fast rejection and construc-

tion methods for the dependencies are needed. Using GIST [182]

or scalable recognition and query approaches [86, 179] could

speed up the process.

The time needed for detail synthesis can be quite extensive, as

for each output pixel the best matching neighborhoods are to be

found in each step. Faster optimization procedures like Instant

Texture Synthesis by Numbers by Panareda Busto et al. [183]

might reduce the overall computation time.

66 photo zoom

We would also like to give more artistic freedom to the user,

e.g., marking regions with an interesting lighting condition to

propagate this information to the rest of the image.

Investigating how to derive HDR information for the whole

image if only details are captured with different exposure set-

tings is also an interesting field for future research.

5
Z IPMAPS : ZOOM- INTO-PARTS TEXTURE MAPS

All right everyone, line up alphabetically according to your height.

— Casey Stengel

5.1 introduction

In most interactive graphics applications, the scale at which some

3D object may be rendered during runtime is unknown before-

hand. For small-scale depictions, well-known mipmaps avoid

aliasing artifacts caused by texture minification [268]. On the

other hand, if a textured 3D object ought to be displayed at

a scale larger than the available texture map resolution, detail-

deprived and washed-out renderings due to simple interpola-

tion techniques are the result. We address the latter problem of

texture magnification in this chapter.

In Chapter 4 we investigated a new approach to create high-

resolution images from a set of low-resolution patches. Unfor-

tunately, there are situations in which the creation of such a

high resolution texture is unfeasible, e.g. in real-time rendering

applications. Current commodity graphics hardware support

only limited texture sizes, e.g. 8192× 8192 texels on an Nvidia

GeForce 295 GTX. If larger textures are to be used, new tech-

niques are needed that bypass this limitation. Instead of stream-

ing large textures, which is a common practice [174], there are

many situations in which it is sufficient to have high resolution

1× 1
2× 2

...

n× n

(a) (b) (c) (d)

Figure 31.: Comparison between (a) standard mipmapping [268] – tex-
ture information is only provided up to a specific level;
(b) clipmaps [238] – texture information is loaded on de-
mand; (c) multiresolution textures [169] – a quadtree struc-
ture represents texture information at different levels; (d)
our zipmaps [69] – a sparse representation to texture spe-
cific details at high resolution.

67

68 zipmaps: zoom-into-parts texture maps

only for certain, specific and interesting parts in the texture. A

zoom-into-parts texture map (zipmap), the technique we present

in this chapter, enables rendering detailed close-up views of spe-

cific texture regions. In contrast to recent approaches like Gi-

gapixel images [131] or clipmaps [238], we do not use a com-

plete high-resolution texture map; instead, high-resolution tex-

ture insets are merged into low-resolution textures. In a nutshell,

zipmaps can be thought of as a sparse representation of a larger

mipmap, Figure 31. We show how zipmaps are almost as simple

to use and render as standard texture mapping.

As particular contributions this chapter presents:

• a hierarchical texture mapping scheme, called zipmaps,

which supports enhanced magnification of specific regions

and naturally supports classic filtering techniques for anti-

aliased rendering.

• a fast rendering algorithm for zipmaps, which enables ap-

plying zipmaps to arbitrary meshes in a single rendering

pass.

The remainder of this chapter is organized as follows. We

introduce our zipmap textures in Section 5.2 and show how

they are applied and rendered. Section 5.3 presents resulting

zipmaps in detail before we discuss limitations and conclude in

Section 5.4.

5.2 zipmaps

Zipmap textures can be thought of as a sparse sample represen-

tation of a large mipmap with almost arbitrary resolution. Up

to a specific level n the whole texture pyramid is saved in a base

level mipmap texture, called the root. This way standard minifi-

cation methods can be used to prevent aliasing in cases where

the texels projected into image space are smaller than a single

pixel. To incorporate details for specific regions during magnifi-

cation, additional texture pyramids, called children, are added at

specific positions, if needed in a recursive manner. Hence, each

one is associated with a unique texture matrix Mi which trans-

forms texture coordinates from the root to the i-th child patch

for lookup.

The root also serves as a base layer for texture placement, i.e.,

the parameterization to establish the mesh/texture correspon-

dence. The mesh, and therefore the designer, does not need to

know anything about the placement of the detail texture patches

as this is implicitly saved in the according texture matrices Mi.

Note that the base levels of these additional texture pyramids

do not necessarily need to be at the highest level of the lower re-

solution parent image pyramid, nor do they need to be aligned

5.2 zipmaps 69

with any artificial structure, as it would be the case in quadtree

or octree representations, Figure 31. The affected portions of the

parent patch will be hidden behind the opaque regions of the

detail patches. This enables a more efficient and flexible render-

ing.

For rendering, the root and children are assembled into a col-

lection of ordered texture patches. Essentially, a zipmap texture

is a simple collection of texture patches which are rendered in

a specific order to texture an arbitrary surface. Patches contain-

ing the coarse overall information are rendered first, while child

patches containing details are drawn later, on top of their par-

ents. The ordering can be either set by hand or automatic tech-

niques as presented in Chapter 4 can be employed.

The following is a description of the complete algorithm for

rendering zipmaps onto arbitrary meshes. An overview of the

complete process is also given in Figure 32.

Geometry Texture Matrices Zipmap Patches

Vertex Transform Tex. Coords Texturing

Vertex Shader Fragment Shader

Figure 32.: Overview of the zipmap rendering technique: Applying
zipmaps is almost as simple as plain texture mapping. The
incoming texture coordinates are simply multiplied with
the zipmap texture matrices and can then be used in the
fragment shader directly for texturing.

5.2.1 Basic Rendering Algorithm

Rendering of zipmaps makes strong use of the traditional graph-

ics pipeline for efficiency. Broadly speaking the classic programm-

able graphics pipeline can be divided into two main parts, a

vertex and a fragment shader. The main purpose of the ver-

tex shader is to transform the model vertices and its associated

attributes, like texture coordinates. These are interpolated and

passed to the fragment shader, which computes the final output

70 zipmaps: zoom-into-parts texture maps

color. This simplified description of the pipeline shall be suffi-

cient for our purposes.

In the vertex shader the texture coordinates for the root patch

are queried from the vertex attributes. Multiplication with the

matrices Mi results in the corresponding texture coordinates for

each child patch i. This transforms the texture coordinate from

the root patch’s coordinate system into the child coordinate sys-

tem.

A simple texture lookup in the fragment shader then fetches

the corresponding value for the needed output pixel. We com-

pute the final color value of the rgbα-quadruple C by combining

all texel rgbα-values using Equation (5.1).

C = ∑
i

ωiCi , (5.1)

where

ωi = αi ∏
j>i

(1− αj) , (5.2)

i.e. we simply mix the color value Ci of a patch with the already

computed color according to the alpha channel of the patch. So

in most cases a new patch is simply drawn over the old one, as

most parts of the texture patches are opaque. We will elaborate

on this fact further in Section 5.2.3. In order to prevent drawing

child patches if the calculated texture coordinates are outside the

[0 . . . 1] range we can make use of hardware texture clamping,

see below.

5.2.2 Extended Rendering Algorithm

If a zipmap consists of more patches than the GPU supports in

a single rendering path, we use a slight variant of the aforemen-

tioned strategy. In a first pass, the first m patches are drawn and

written to the framebuffer as described before. m is the maxi-

mum number of possible patches to be rendered in a single pass

due the hardware limitations of available texture units. Using

multiple render targets, we also render the current texture co-

ordinates of the root patch into the red and green channel of

another buffer Btc which is initialized to zero beforehand, and

set the alpha value to one, to mark affected fragments. In the

next pass, we bind the next texture patches to the texture units

plus the buffer Btc containing the texture coordinates. Now in-

stead of rendering the whole textured mesh again, we simply

draw a screen filling quad and calculate the texture coordinates

of the children in the fragment shader by making use of Btc. If

its alpha value is zero, we discard the fragment, keeping the old

color value. Otherwise we multiply every Mi, i > m, with the

5.2 zipmaps 71

(a) (b)

Figure 33.: Error-prone hardware-based texture filtering: (a) Close-up
view with artifacts at patch borders (horizontal line in im-
age middle). These appear even if the actual texel values
are the same for the patch and the background. (b) Set-
ting the alpha value to zero at patch boundaries for every
mipmap level removes the seams.

queried texture coordinate from Btc to calculate the correct tex-

ture coordinate for the i-th patch and color the output fragment

as described in 5.2.1. We can repeat this process until every tex-

ture patch has been processed. Texture instancing, i.e., if the

same detail patch should appear more than once on the surface,

can be achieved by using different texture matrices for the same

patch.

5.2.3 Blending Patches

Current graphics hardware poses another problem whenever

texture patches are drawn on top of each other. If texture values

close to a patch boundary are queried, hardware interpolation

will not always be able to query the correct texture value, which

will create a seamless blending with the background. This prob-

lem persists, even if exactly the same colors are used for both

patches. This is due to the employed hardware interpolation

methods for border conditions which causes visible seams, Fig-

ure 33a. This problem can be solved by setting the alpha-channel

at the border of zipmap patches to zero, Figure 33b. This is

done for every level of the mipmap pyramids during the zipmap

generation process. Another advantage of this approach is that

patches becoming smaller than one pixel in the output image

simply disappear and do not produce small pixel artifacts that

would otherwise be visible. In addition, if seamless merging of

the whole content is needed, we use the approach presented in

Chapter 4 to create the corresponding alpha maps.

72 zipmaps: zoom-into-parts texture maps

5.2.4 Repeating, Clamping and Mirroring

Graphics APIs like OpenGL allow to assign texture coordinates

other than the [0, 1] range to a model’s vertices. This is useful to

create copies of the same texture on the objects surface. In the

classic pipeline the texture coordinates are projected back into

the [0, 1] range right before the texture lookup in the fragment

shader. The above zipmap procedure however requires the pro-

jection already in the vertex shader in order to compute valid

texture coordinates for the child patches. This can be achieved

with a small adaptation in the vertex shader. What is needed is

the correct root’s texture coordinate in the [0, 1] range before mul-

tiplication with any Mi. If the roots texture coordinates are set to

clamp (GL_CLAMP in OpenGL), we clamp them to the [0, 1] range.
For repeating (GL_REPEAT) only the fractional part is needed. For

mirroring (GL_MIRRORED_REPEAT) we need to use the following

code snippet.t = |x| % 2.0;return (t<1.0) ? t : (2.0-t);
�

where x is the roots texture coordinate and t is the roots coordi-

nate transformed to the [0, 1] range.

5.3 results

Zipmaps can be easily rendered in real-time, since for each patch

only a single matrix multiplication per vertex and one texture

lookup per fragment are required. The memory requirements

are in direct accordance to the number and size of the input im-

ages used. No additional information other than the patches and

their texture matrices need to be saved. Since the child patches

are saved in relation to the root patch, the application program-

mer only has to define texture coordinates for the root patch,

just as he would do with a conventional 2D texture, making the

zipmaps very easy to use in practice.

As test data, we have taken input images with a handheld

camera. To automatically align and adjust the images we used

the method described in Chapter 4. Figures 34 to 36 show results

of zipmap rendering.

On the top left of each image, the input patches are shown. On

the right the zipmap texture is applied to different geometries,

and some close-up views from different viewpoints and different

distances are shown. The output screen resolution was always

set to 1024 × 1024 pixels, so magnification is present in most

views. Our zipmap textures can be easily applied to any kind

of geometry. In Figure 34 we use a four patch zipmap to texture

a teapot. In Figure 35 and 36 we apply a zipmap consisting of

5.4 discussion 73

Figure 34.: Zipmap textures can be easily applied to any geometry, just
like conventional textures. Four input images of sizes be-
tween 428× 428 pixels and 512× 512 pixels are used to cre-
ate a virtual resolution of 1.2 gigapixels in specific regions.

four patches and six patches, respectively, to a simple quad for

illustration purposes. Zooming onto single droplets or the knot-

hole is now possible. Figure 35 shows an interesting showcase

example. Due to the large depth conveyed in the scene and the

accompanying strong parallax effects, some small ghosting arti-

facts are visible. Interestingly, even though the water fountain

changes quite a lot during the acquisition no temporal artifacts

are visible because the detail resolution patch is always drawn

on top of the low resolution images.

5.4 discussion

We have introduced the concept of zipmaps, a method for ren-

dering detailed close-up views of textured surfaces. Zipmaps

are an easy to use, flexible and simple representation for mul-

tiscale texture maps, as many in-built functions of the graphics

hardware are exploited. Zipmaps exploit graphics hardware fil-

tering capabilities to produce anti-aliased results. They can be

used with arbitrary images and different kinds of textures; even

normal or displacement maps could be processed.

In comparison, a typical approach in the games industry is

to render detail textures as textured detail geometry. While per-

74 zipmaps: zoom-into-parts texture maps

Figure 35.: Zipmap of a facade with fountain. Time-varying parts of
the scene are merged into a common representation. Four
input images of size 512× 512 pixels are used to create a
virtual resolution of 20 megapixels in the central portion of
the scene.

Figure 36.: A zipmap texture acquired from six photographs of size
512× 512 pixels each and applied to a simple quad to create
a virtual resolution of four gigapixels in the depicted area.

5.4 discussion 75

forming an optimal amount of per-pixel work, this approach has

the drawback of z-fighting if the detailed geometry is too close

to the original. Visible seams appear if the border handling is

not done correctly, or the viewpoint gets too close to the surface.

To prevent these effects the geometry is usually cut into several

non-overlapping pieces, which is time-consuming and requires

a lot of manual work compared to our approach.

limitations

For the results presented in this chapter only a few patches are

used per zipmap, therefore performance is of no concern. With

increasing patch number the computational effort as well as the

memory consumption will increase linearly. One might argue

that zipmaps perform a lot of texture accesses if the number of

zipmap patches is large. While this is true, it is not as crucial as

it might sound at first. If the patch is outside the viewing frus-

tum the according texture coordinate will usually be clamped to

the same value for most or all pixels in the output image. There-

fore access becomes cheaper, because the texture region will be

cached by the graphics hardware. This is more effective than

using a conditional statement to query for a valid texture coor-

dinate.

If the detail patches cover a large area of their parent patches

some memory is wasted. In these cases it might be more ben-

eficial to merge the patches into a single texture map, but then

flexibility is lost.

For future work it would be interesting to investigate the use

of multiple indirection textures that are updated on demand

to reduce the texture access and memory overhead. Animated

zipmap textures would enable us to create other interesting ef-

fects, as our concept allows direct integration of moving patches.

Part III.Error Con
ealment inVideo Matting

77

6
INTRODUCT ION

It was the silhouette.

— John Galliano

In Chapter 4 we introduced a system to upsample and seam-

lessly merge images into a common image domain. However,

the content in these merged images depicted basically the same

scene. Therefore, all objects could be treated as opaque, and the

main challenge was to adjust the images properly to make merg-

ing into a single image domain feasible. If more complex objects

are to be composed, e.g., semi-transparent objects, like animals

or humans with fur or hair, the problem changes. In this case

not only the composition of the source and target is needed, but

the source needs to be extracted from its surrounding image con-

tent. This process is generally called digital matting, or digital

video matting if the foreground is to be extracted for a complete

video [253]. In this part of the thesis we propose a new matting

algorithm for videos containing complex objects.

6.1 background

In digital matting a foreground object along with an opacity es-

timate for each pixel is extracted. This opens up the possibility

to seamlessly insert new elements into the scene, e.g., an actor

can be recorded and later pasted into a different scene. Such

techniques are frequently used in commercial television or film

production [34]. Hence, the alpha matte as well as fore- and

background needs to be estimated for an entire video sequence.

In addition, the extracted alpha mattes may also serve in scene

geometry reconstruction, e.g. in multiview setups, cf. Chapter

2.8.

For controlled environments, like a blue screen studio [218],

or if the background is known [186] the problem of digital mat-

ting is considered to be solved. In this case the extraction may

also be performed on a per-frame basis for complete video se-

quences. But the problem becomes more complicated when

loosening the constraints. If the background is unknown, the

problem of foreground estimation becomes ill-posed. Additional

user-preset constraints on fore- and background are needed, as

there are only three knowns, the rgb image pixel values, and

79

80 introduction

seven unknowns, the fore- and background colors plus the cor-

responding alpha values of the pixels. Since not only a binary

segmentation into fore- and background is needed, complete al-

pha mattes must be estimated. This problem is also called natu-

ral image matting [145]. If we extend the problem to video, robust

techniques are required, to automatically pull a good matte for

several frames. It turns out that few algorithms manage to do

this robustly for more than a dozen frames without additional

help from the user [46] or additional hardware [128, 170, 171]. If

the problem is extended to multiview recordings the number of

frames that have to be processed increase tremendously, empha-

sizing the need for techniques which are simple, efficient and

robust. We will present such an approach in Chapter 7.

6.2 related work

The most simple matting technique is arguably blue screen mat-

ting, also known as chroma keying [218]. Foreground elements

are recorded in front of a solid color background, and a number

of heuristics are used to extract the matte for each frame. While

being fairly effective, the method requires a controlled studio

environment.

More sophisticated methods such as natural image matting

do not impose such strong restrictions on the background. How-

ever, the problem becomes inherently under-constrained and ad-

ditional information in form of a trimap [45, 100, 231], fore- and

background scribbles [103, 145, 252] or tracing along the edges

between fore- and background [255] is required.

Our work is mostly inspired by the spectral matting approach

by Levin et al. [144]. Spectral matting extends the ideas of spec-

tral segmentation [178, 262, 277]. The real-valued matting com-

ponents are obtained via a linear transformation of the smallest

eigenvectors of the matting Laplacian matrix [145]. These mat-

ting components are then combined to form the complete fore-

ground matte.

While object cutout in still images has more or less been solved,

video matting remains a challenging problem. In video matting

the task is to estimate the foreground matte for each frame of

a video sequence with a minimal amount of additional manual

editing. A similar approach to blue screen matting is difference

matting [129] where the mapping of the difference between the

recorded scene and a background shot yields the opacity val-

ues. In rotoscoping a user draws an editable curve, like a B-spline,

around the foreground element at selected keyframes, often with

the aid of snapping tools that are auto-aligned along high gra-

dient areas [6, 28, 93, 175]. These are then interpolated between

the keyframes. However, a lot of manual adjustment is required

6.2 related work 81

to pull a high-quality matte, and the matte is only binary and

usually does not provide any alpha values for blending.

Different directions have been explored recently in the field

of video matting. Graph cut segmentation has been extended

to work directly on the 3D video volume [15, 148, 254] and spa-

tially varying color models have been tracked [278]. The recently

published Video SnapCut approach by Bai et al. [17] combines

a set of local classifiers with a coherent matting approach to

achieve high-quality results with the possibility for local refine-

ments. Still it requires considerable user-interaction for longer

sequences.

A common technique to guide a segmentation result over time

is to use optical flow [17, 28, 46]. Unfortunately optical flow can

introduce small errors which accumulate over time and dimin-

ishes reliability of the estimation, forcing user intervention to

guide the algorithm. Matting techniques presented in the litera-

ture based on flow propagation reported that typically the alpha

matte for up to a dozen frames can be pulled on average with-

out user interaction, [46, 203]. In contrast, our approach, intro-

duced in Chapter 7, reinitializes the foreground estimation on a

per-frame basis, enabling more robust propagation. In the field

of multiview matting, Sarim et al. [203] proposed a method for

trimap propagation and refinement in sparse multiview setups.

As their approach models fore- and background by color statis-

tics it is independent of the baseline between cameras allowing

for very wide baselines up to 180◦. As with any purely color-

based matting algorithm, the technique of Sarim et al. works

very robust (up to several hundred frames) if the background

model differs enough in comparison to the foreground model.

One persistent, common problem is often the slow speed of

matte computation. Only recently the first real-time matting

approaches have been proposed [90, 97]. But both still rely on

a trimap to initialize the algorithms for each frame, leading to

potential problems if the trimap is not propagated sufficiently.

Our approach is not real-time capable in its current version, but

it still allows for interactive matting sessions and provides room

for speed improvements, as we will explain.

A recent comprehensive survey on different matting techniques

can be found in [253].

7
SPECTRAL V IDEO MATT ING

Computers are useless. They can only give you answers.

— Pablo Picasso

7.1 introduction

In this chapter we will concentrate on extracting the alpha mat-

tes from videos so that they can be used for sparse multiview

reconstruction techniques or digital matting. Our goal is to pro-

vide a video matting technique that complies with the following

requirements:

• Complex objects

• Speed

• Robustness

• Simplicity

• Intuitive behavior

By complex objects we mean that a complete alpha matte includ-

ing transparency information is extracted. The approach should

be fast enough to allow for interactive matting sessions. Very few

user interaction should be needed. If user interaction is required,

it should neither require much time nor much knowledge on

how to perform the correction. By intuitive behavior we mean

that the algorithm should support a natural workflow, allowing

the user to edit a video stream by passing over it only once.

Many video matting algorithms work in a forward-backward

manner, i.e., information, like user-interaction, is propagated in

both directions forward and backward in time. While this might

be beneficial to reduce the amount of required user interaction,

it also complicates the interaction. The user needs to jump for-

ward and backward in time randomly accessing and correcting

the video. So the user hardly knows when he is really finished

without checking the whole video again. We believe that a ro-

bust forward scheme is beneficial for a more intuitive behavior

of the matting algorithm.

The rest of this chapter is organized as follows. In Section 7.2

we give an introduction to spectral matting for still images and

83

84 spectral video matting

point out the benefits of adapting this approach for video mat-

ting. In Section 7.3 we present our extended approach for video

matting, including initialization, propagation and optimization

of the alpha mattes for each frame of a video sequence. We

present and discuss results for different test sequences in Sec-

tion 7.4 and 7.5.

7.2 spectral matting

The compositing equation (7.1) describes the digital matting pro-

cess as a linear combination of foreground color F and back-

ground color B in every pixel:

I(x, y) = α(x, y)IF(x, y) + (1− α(x, y))IB(x, y), (7.1)

where I(x, y) is the pixel color at position (x, y) and α(x, y) ∈
[0, 1] is the alpha matte value at position (x, y).
Spectral matting by Levin et al. [144] generalizes this idea to

multiple layers:

I(x, y) =
K

∑
k=1

αk(x, y)IFk(x, y), (7.2)

with ∑
K
k=1 αk(x, y) = 1 and αk(x, y) ∈ [0, 1]. Where K is the num-

ber of layers, IFk and αk are the different matting components

encoding the influence of IFk at each pixel i. Despite its proven

high-quality (see [144] for a comparison to other methods) the

real benefit of spectral matting for video matting is the decom-

position into K alpha matting components αk. All that is needed

to obtain the desired foreground is to specify the components

belonging to this. Suppose αk1 . . . αkn are designated as belong-

ing to the foreground, then the complete matte M is obtained

by simply adding them together M = αk1 + . . .+ αkn . An exam-

ple is given in Figure 37, where the red marked components are

added together for the final foreground estimation.

7.2.1 Benefits of Matting Components

Locally grouping pixels of similar attributes into larger but still

comparatively small agglomerates, also called clusters, matting

components or superpixels, leads in general to more robust re-

sults when used as computational atoms in comparison to sin-

gle pixels [79, 197]. Using matting components overcomes sev-

eral disadvantages of the classic trimap, where all pixels are

marked as foreground, background and unknown, which is one

of the most common techniques to initialize matting algorithms

[14, 45, 46, 231]. The main drawbacks of those algorithms relying

on trimaps for initialization is their inability to correct imprecise

7.2 spectral matting 85

(a) (b)

(c)

Figure 37.: Matting Components: (a) The input image. (b) The es-
timated alpha matte M. (c) The matting components αk.
Components of the foreground are marked in red.

maps. Once a pixel is considered as fore- or background its truth

value is no longer questioned. Therefore precise trimaps are a

necessity for those algorithms.

Another drawback is that the alpha values in the unknown

regions are usually derived from the estimated local color mod-

els of the known regions. If the band of unknown pixels is too

large, the algorithms will fail as the assumption of correct color

models from the surrounding known pixels is no longer true.

Another classic approach in video matting is to use a two-

step algorithm. First a hard segmentation is computed, e.g. by

translating simple user-specified constraints into a min-cut prob-

lem, which can be solved optimally using graph-cuts [148, 201,

254]. The hard segmentation could be transformed into a trimap

by morphological operators such as dilation and erosion [253].

But as the amount of erosion and dilation is based on a user-

specified value or a global constant some fine or fuzzy features

might be missed. This problem becomes even more problematic

if the trimap is propagated over several frames.

86 spectral video matting

7.3 spectral video matting

In the following our approach is presented, which makes use

of the characteristics of spectral matting [144], and extends it to

video matting with minimal user input.

7.3.1 Initialization

In a first stage, the matting components for the complete vi-

deo sequence are extracted using the spectral matting technique

[144] and a user-specified value for K, i.e., the number of esti-

mated clusters, ten worked well for our test scenes. For cutting

out certain foreground objects out of a multitude of possible ob-

jects the user has to decide which components αk should be part

of the foreground. The sum of these αk form the matte M0 for

the first frame. As we chose a small number of clusters for our

test scenes, the foreground clusters can be chosen in a manner of

seconds in most cases. For some simpler scenes even this initial

foreground estimation can be automated by using unsupervised

matting as described in [144], providing the user with an initial

guess of what could be the foreground.

A simple scribble interface could be incorporated for selection,

if more clusters are needed for a complex scene. The user can

draw simple strokes into the first frame and for all scribbled pix-

els the cluster with the largest opacity value at that position is

added to the solution. The best performance is achieved if the

number of clusters is as small as possible, still fulfilling the con-

straint that two distinct objects do not share a cluster, because

otherwise a separation would be impossible. Apart from that,

this step is the only user interaction that is needed for the algo-

rithm to start.

7.3.2 Propagation

Using this initial set of matting components, the foreground is

propagated through the video volume as presented in the fol-

lowing. Given two neighboring frames I(j−1) and Ij plus the

matte M(j−1) for the (j− 1)-th frame, we can compute a relation

between I(j−1) and Ij to satisfy the following equation:

Ij ≈ WI(j−1)→I j ◦ I(j−1) , (7.3)

where WI(j−1)→I j ◦ I(j−1) warps an image I(j−1) towards Ij accord-

ing to the warp field WI(j−1)→I j . The problem of determining

this warp field WI(j−1)→I j is known as optical flow or correspon-

dence estimation. In our case we are not interested in warping

the image itself to the next frame but rather the alpha matte.

7.3 spectral video matting 87

We compute an initial guidance Gj for the foreground matte of

frame Ij by warping M(j−1) using the warp field WI(j−1)→I j :

Gj = WI(j−1)→I j ◦M(j−1) (7.4)

This guidance matte cannot reveal a precise alpha matte, as,

correspondence estimation algorithms do not incorporate trans-

parency into their motion model, in general. But we can still use

it as an initialization to estimate an optimized alpha matte for

frame Ij, Figure 38 second row.

7.3.3 Matte Optimization

To estimate the foreground matte Mj of frame Ij we search for

the combination of precomputed foreground clusters αk which

minimizes the difference between the resulting new alpha matte

Mj and the initial estimate Gj in a least-squares sense. This re-

constructs the lost fine details and removes the error introduced

in the warping procedure. Therefore the task is to minimize the

following error function:

E = ∑
(x,y)∈Ω

||G(x, y)−
K

∑
k=1

bkαk(x, y)||, bk ∈ {0, 1} (7.5)

where bk is the binary solution vector we solve for.

Unfortunately this problem seems to be NP-hard and expo-

nential in the number of clusters. But we can restrict the num-

ber of clusters by removing those from the set which would def-

initely increase the error, i.e., those for which

∑
(x,y)∈Ω

||G(x, y) − αk(x, y)|| > ∑
(x,y)∈Ω

||G(x, y)|| (7.6)

As it would still be unfeasible to exhaustively compute all possi-

ble combinations we use a greedy approach which solves this op-

timization problem well in all our encountered test cases. Start-

ing with an empty initial estimate for Mj, we assume there is no

foreground in the image and all bk are 0. We then add the single

matting component αk to our solution which reduces the error

function the most and set the appropriate bk to 1. The process is

repeated until E converges to a minimum.

As the clusters for the new image have been computed before-

hand and are independent of the solution of the previous frame,

this method works robust even in the case where the optical flow

cannot compute precise warp fields, see Figure 38 for a compar-

ison. Also disocclusion, i.e. newly appearing regions, which can

be a difficult problem, are handled robustly if the disoccluded

parts belong to the same cluster as already visible parts, e.g. an

object turning revealing new visible parts each frame.

88 spectral video matting

Repeating the described process of warping the previous matte

to the current frame and reestimating the foreground for the fol-

lowing frames computes the alpha matte for the whole video

sequence. The computation of the optical flow could also be

computed in the preprocessing stage, but as fast optical flow

implementations exist, this would only waste storage space. To

prove the inherent robustness due to the reinitialization of the

foreground using the matting components, we used a simple

block-matching method [119], being aware that better optical

flows exist, which could be incorporated in future versions.

7.3.4 Keyframe Editing

In some situations, it is possible that certain changes of the shape

of the foreground object cannot be identified automatically. This

situation occurs because optical flow algorithms are only suit-

able for small and smooth motions, in general, and not for strong

changes in the shape of the foreground. Most of the times the re-

estimation using the matting components handles also imprecise

flows, but if the error becomes too large manual adjustment of

the user is necessary. In this case, the user scans the results until

he finds a frame which has an incorrectly estimated foreground.

He then adds a new keyframe by reinitializing the foreground

clusters manually, as done for the first frame. The algorithm

then recomputes the rest of the video with the new foreground

estimation. If the content of a scene changes drastically through-

out the video, it might be helpful to not only reinitialize the

foreground clusters, but also to change the number of cluster.

7.4 results

Our test PC used for the evaluation is equipped with an In-

tel Core2Duo with 2.40GHz, only one core used, with 2GB of

RAM. As test scenes we used two commonly used test sequences

kindly provided by Y.Y. Chuang [46], namely Amira, Figure 37,

and Kim, Figure 38. Both contain complex foreground shapes

and motion, like hair, plus a non-static background, and occlu-

sion and disocclusion is apparent.

In a pre-processing phase the spectral clusters are computed

and saved to disk, which, using the Matlab implementation of

Levin et al. [144], takes approximately 5 minutes for the com-

putation of a 360× 240 frame. For the interactive online phase,

specifying the foreground clusters took less than 10 seconds for

a trained user while editing further keyframes takes even less

time. Therefore the user interaction involved in matting each of

our test scenes took less than one minute for the complete Amira

video, consisting of 66 frames, Figure 37. The Kim sequence, con-

7.5 discussion 89

frame 92 frame 94 frame 96 detail of frame 96

⇒ ⇒

⇒ ⇒

Figure 38.: Propagation error: The potential to reinitialize the warped
alpha matte in our approach improves the final result in
alpha matte estimation for successive frames and prevents
accumulated errors. For the presented sequence (shown
above) the alpha matte is provided for frame 92. Warping
the alpha matte in forward direction yields mattes with an
increasing error (second row). Reinitializing the alpha mat-
tes with our proposed technique shows improved results
without visible accumulated errors (bottom row).

sisting of 102 frames was computed completely automatic with-

out any user interaction at all, Figure 38. The initial alpha matte

was automatically estimated using the best hypothesis from the

unsupervised matting [144].

The computation of the optical flow plus warping of the alpha

matte and optimization for the next matte took less than one sec-

ond per frame or milliseconds if we would use our GPU Optical

Flow from Chapter 11. Generally the spectral matting performs

very well even for complex structures such as hair. Very fast

movements or newly appearing foreground objects usually re-

quire some user interaction, as the optical flow will fail in these

cases. The number of edited frames, along with the computation

times are given in Table 2. In the case a binary alpha matte is

needed, e.g. for 3D reconstruction based on silhouettes, the re-

sult from the spectral video matting can be converted to a binary

matte by a simple thresholding.

7.5 discussion

In this chapter, we have presented a new, easy to use technique

for pulling foreground mattes with complex silhouettes from a

video sequence. Our approach is based on different methods

and combines their individual strengths. By combining spec-

tral matting and optical flow, we obtain high-quality mattes for

different recorded video scenes. We introduce a simple yet effi-

cient way to propagate the alpha matte information to successive

90 spectral video matting

sequence resolution frames keyframes components fps

Amira 360× 240 66 1 10 1.23

Kim 360× 240 102 0 10 1.03

Table 2.: Details for the sequences used in our algorithm.

frames. We optimize the new foreground matte before propa-

gating it to the next frame to prevent accumulated errors. We

have shown that our approach can even pull a high-quality al-

pha matte from a complete video without any user interaction

at all.

Current limitations of our approach are its high memory re-

quirements and long preprocessing time, due to the spectral mat-

ting algorithm, and that we have not yet included more sophis-

ticated user interaction techniques for cases when the spectral

matting fails to estimate good clusters. This can also happen if

the images are cluttered. This is a known drawback of the spec-

tral matting technique [144, 253]. One way to diminish some

of these errors is temporal filtering of the alpha mattes using

the flow fields in order to find the temporal neighbors in suc-

cessive frames. By comparing the result of different numbers

of matting components during guidance map optimization it

may be possible to find an optimal number of clusters automat-

ically. A hierarchical subdivision scheme for local matting com-

ponents would also be an interesting future research direction.

Our matting prototype is currently implemented on the CPU,

but porting the optimization and flow computation to the GPU

is relatively straight-forward and should allow for real-time in-

teraction. Background estimation as done in [46] could further

improve the results.

Part IV.Error Con
ealment inImage-based Rendering

91

8
INTRODUCT ION

It is the nature of all greatness not to be exact.

— Edmund Burke

In the last two parts of this thesis we examined the problem

of error concealment in image compositing tasks and video mat-

ting. In this part we will lift the problem to the third dimension

and focus on the error sources and ways to deal with visible

rendering artifacts in image-based rendering systems and free-

viewpoint video, cf. Section 2.9. After a short introduction into

the topic and related work, we will begin in Chapter 9 with

a more formal analysis on what causes these rendering artifacts.

Based on this analysis we are able to derive new rendering strate-

gies which will be presented in Chapters 10 and 11.

8.1 background

To take advantage of the continuing progress in graphics hard-

ware capabilities for realistic rendering, ever more detailed model

descriptions are needed. Because creating complex models with

conventional modeling and animation tools is a time-consuming

and expensive process, direct modeling techniques from real-

world examples are an attractive alternative. By scanning, or

reconstructing, the 3D geometry of an object or scene and cap-

turing its visual appearance using photos or video, the goal of

direct modeling techniques is to achieve photo-realistic 3D ren-

dering results at interactive frame rates.

Texture mapping was introduced in computer graphics as early

as 1974 as a very effective means to increase visual rendering

complexity without the need to increase geometry details [41].

Later on, projective texture mapping overcame the need for ex-

plicit texture-to-surface parameterization and enabled applying

conventional photographs directly as texture [206]. To texture

3D geometry from all around and to reproduce non-Lambertian

reflectance effects, View-dependent Texture Mapping [59] and

Unstructured Lumigraph Rendering [36] blend multiple pho-

tographs taken from different viewpoints on the object’s surface

or, in the output image domain, respectively. If exact 3D ge-

ometry and sufficiently many, well-calibrated and registered im-

93

94 introduction

ages are available, image-based modeling techniques [142, 270]

achieve accurate and photorealistic 3D rendering results.

Unfortunately, acquiring highly accurate 3D geometry and

calibrated images turns out to be at least as tedious and time-

consuming as model creation using software tools. In response,

a number of different image-based rendering techniques have

been devised that make do with more approximate geometry or

no geometry at all.

Pure image-based techniques that do not use any geometry

proxy have the advantage that instead of reconstructing the scene

explicitly, only correspondences between input images are esti-

mated. From a local perspective there is no difference between

a moving camera and a moving scene, therefore time and space

can be treated equally to allow for space-time interpolation [76,

227, 228, 229]. If combined with sophisticated image interpola-

tion techniques, high-quality results can be achieved [104, 151,

161]. A drawback of these approaches is that they can only inter-

polate between images, i.e., the virtual camera is bound to move

on the manifold that is spanned by the input cameras. An excep-

tion is the work of Einarsson et al. [66] where the only restriction

is that each viewing ray has to intersect this manifold. Another

drawback of interpolation techniques is that they require very

precise correspondence fields between the images. Classic op-

tical flow techniques usually fail if the disparity between the

images is too large. While techniques for long-range correspon-

dence estimation exist [151, 154, 202, 224, 225], they usually infer

very high computational costs.

In this part of the thesis we focus on image-based rendering

techniques using geometry proxies. With a mere planar rectan-

gle as geometry proxy, Light Field Rendering arguably consti-

tutes the most “puristic” geometry-aided image-based render-

ing technique [146]. Here, many images are needed to avoid

blurring or ghosting artifacts [42]. If more appropriate depth

maps are additionally available, Lumigraph rendering can com-

pensate for parallax between images to yield convincing results

from less images [36, 99]. Other image-based rendering app-

roaches implicitly or explicitly recover approximate 3D geome-

try from the input images to which the images are applied as

texture [40, 166, 251]. In general, however, the price for contend-

ing with approximate 3D geometry is that (many) more input

images must be available, otherwise rendering quality degrades

and artifacts quickly prevail, see Figure 39. We will present a

thorough analysis of these artifacts in Chapter 9.

Years of research have shown that determining stereo corre-

spondences for 3D reconstruction is a difficult problem. In gen-

eral, many current methods require the images to be of simi-

lar appearance, as is the case with human binocular vision. If

8.1 background 95

(a) (b)

Figure 39.: Comparison of (a) standard linear interpolation using the
Unstructured Lumigraph weighting scheme [36] and (b)
our Floating Textures approach, Chapter 11, for similar in-
put images and a visual hull geometry proxy. Ghosting
along the collar and blurring of the shirt’s front, noticeable
in linear interpolation, are eliminated on-the-fly by Floating
Textures [72].

the distance between the cameras, also called baseline, increases,

precise reconstruction becomes difficult due to different degrees

of foreshortening, occlusion effects and large disparities, all of

which aggravate the reconstruction. The alternative of smaller

baselines has the disadvantage that computing depth becomes

very sensitive to noise in image measurements, and more cam-

eras are needed again for a full reconstruction of the scene.

Another unsolved challenge is that, while image-based ren-

dering can compensate for coarse 3D geometry if sufficiently

many input images are available, all techniques still require well

calibrated cameras. Thus, time-consuming camera calibration

procedures must precede image-based object acquisition. While

techniques exist to speed up the calibration process [152], they

come at the cost of less precise calibration. But even if utmost

care has been taken during acquisition, minute camera calibra-

tion inaccuracies, tiny 3D scanning holes, and small registration

errors can visibly degrade rendering quality of the model. The

only option to rescue rendering quality then is to try to "fix" the

model, registration, or calibration by hand, or to repeat the ac-

quisition process all over again. What is needed is a multi-image

texturing algorithm that achieves best-possible results from im-

precisely calibrated images and approximate 3D geometry.

96 introduction

In the next chapter we start with an analysis of how these de-

ficiencies influence rendering quality of image-based free-view-

point systems. In Chapter 10 and 11 we present algorithms to

deal with these problems.

8.2 related work

sampling problem

In light field rendering, a novel view is generated by appropri-

ately re-sampling from a large set of images [146, 165]. Given suf-

ficiently many input images, the synthesized novel view can be

of photo-realistic quality. Else, ghosting artifacts or, at best, blur-

ring degrade light field rendering quality. Several researchers

have investigated how many input images, more precisely sam-

ples, are minimally needed to create artifact-free light field ren-

dering results [42, 149, 150]. By employing a prefiltering step the

number of necessary samples can be reduced, but at the cost of

more blurry output images [150, 226, 282]. Alternatively, render-

ing quality can be enhanced by adding back in high frequency

components [226]. Sloan et al. [217] discussed different speed-up

strategies for rendering of light-fields. The main conclusion was

that there is always a trade-off between speed and quality, there-

fore confirming the necessity for efficient post-processes. Liu

et al. [156] estimate scene geometry dynamically using a color

similarity-based plane sweeping algorithm. Another possibility

is to make use of dynamic textures [48]. Here a coarse geometry

is used to capture large scale variations in the scene, while the

residual statistical variability in texture space is captured using

a PCA basis of spatial filters. It can be shown that this is equiv-

alent to the analytical basis. New poses and views can then be

reconstructed by first synthesizing the texture by modulating the

texture basis and then warping it back onto the geometry. How-

ever for a good estimation of the basis many input images are

needed.

Nevertheless, these approaches still introduce at least some

image blur or visible artifacts if the scene is undersampled and

good results can only be obtained by using many images, far

more than the settings we are aiming for with our approaches.

Therefore the challenge is generating a perceptually plausible

rendering with only a sparse setup of cameras.

geometry aided ibr

Instead of relying on sampling density, another approach to in-

crease rendering quality from sparsely sampled image data is

to make use of a geometry proxy representing the scene. In

Lumigraph Rendering by Gortler et al. [99] the 4D Light Field

function is depth corrected by such a proxy. Adopting a new

8.2 related work 97

weighting function for the input cameras the Lumigraph can

be extended to unordered sets of cameras [36]. For object cen-

tered input views a similar approach was previously published

by Pulli et al. [191] combining proximity to the input views, de-

viation from the normal and distance to mesh boundaries in the

weighting scheme, plus Pulli et al. use a depth map per image

instead of a single geometry proxy. In Debevec et al.’s View-

dependent Texture Mapping [59] the geometry proxy is created

by hand and later refined by a stereo approach in an offline ren-

dering tool. Removing the model-based stereo part, real-time

rendering became possible [58] and incorporating different lay-

ers per view allows for more artistic control [196]. Isaksen et

al.[121] show that if scene depth estimation is precise enough

and no occlusion occurs, any single scene element can, in theory,

be reconstructed without ghosting artifacts by applying a wide-

aperture filter combining the influence of more than the classical

four input cameras. To reconstruct human actors Carranza et

al. [40] made use of a parameterized human model that was op-

timized to fit the given silhouette constraints from each camera.

The choice, which input camera should be used for texturing, is

based on the normal of the template model, therefore no view-

dependent effects can be captured and artifacts might appear if

the used input cameras change abruptly.

An interesting approach which not only blends colors on a

geometry proxy but attempts to reconstruct a consistent, view-

dependent geometry of the scene based on billboards and with

the aid of bilateral filtering was presented by Waschbüsch et

al. [258]. German et al. [91] propose a very specialized case for

sports events. To estimate the players on the field, background

subtraction can be applied. Each articulated part of the player

can be represented by a single billboard, as the bone structure is

known. While it is a crude approximation using articulated bill-

boards, it is sufficient in this case as the players are quite small

in the output view. Hornung et al. [117] reconstruct depth maps

per view using larger particles that adopt to the scene geometry

to allow for silhouette aware sampling. Tung et al. [246] combine

3D reconstruction with super-resolution to achieve high-quality

meshes and textures. By discarding any color inconsistent sam-

ples from inter- as well as intra-video frames and reconstructing

the images using a Markov random field formulation they are

able to produce very clean results free of noise or ghosting. But

on the other hand any view-dependent effects are removed as

well and computation time increases.

To deal with small calibration errors (around 1.6 pixels or

10mm) Starck et al. [222] make use of silhouette as well as stereo

data to reconstruct an optimized surface. For the stereo corre-

spondences, they define a larger search range around the epipo-

98 introduction

lar lines to compensate for the calibration errors. However the

rendering is done by classic view-dependent texture mapping

and therefore reveals artifacts again. All of these approaches re-

quire non negligible preprocessing times of several seconds per

output frame up to several minutes and are therefore not appli-

cable to real-time applications.

image-based modeling

Image-based modeling extends the notion of image-based ren-

dering in that high-quality 3D geometry scans of an object are

augmented with a collection of photos to capture the visual ap-

pearance [22, 142, 199, 270].

Acquiring these detailed models is time-consuming and, of

course, is possible only for scenes that hold still during acqui-

sition. In any case, image calibration inaccuracies, subcritical

sampling, and geometry acquisition errors remain potential sour-

ces of rendering artifacts.

occlusion handling

In settings with very sparse camera setups, occlusion and regis-

tration errors result in disturbing rendering artifacts. Carranza

et al. [40] therefore proposed to use a visibility map, computing

visibility for every vertex of the mesh from several camera views

that are slightly displaced in the image plane. Lensch et al. [142]

search for depth discontinuities to discard samples close to them,

as they are prone to errors. Both assume well color calibrated in-

put images, as otherwise sudden changes in the choice of input

cameras from one pixel to the neighboring pixel would become

annoyingly visible.

In the video view interpolation by Zitnick et al. [281] these dis-

continuities are rendered separately using Bayesian image mat-

ting to compute fore- and background colors along with opac-

ities. Extensive pre-processing is needed to achieve interactive

rendering frame rates. Matusik et al. [168] use opacity hulls to

capture also semi-transparency and complex silhouettes. Their

approach shows how difficult a high-quality acquisition of even

static models can be. Such setups are difficult to built, calibrate

and are not always affordable.

warping techniques

Beier et al. [23] proposed to use a line-based warping method to

interpolate between two images, known from its use in Michael

Jackson’s music video "Black & White". While the results are ob-

viously very good, all correspondences were acquired by man-

ual adjustment, which is not only very tedious but prohibitive

to use in any interactive free-viewpoint renderer. A physically-

valid view synthesis by image interpolation is proposed by Seitz

8.2 related work 99

et al. [207, 208]. They determine the fundamental matrix to es-

timate dense-disparity and interpolate between two views of a

static scene. Manning and Dyer [163] extend their approach by

segmenting different motion layers by hand and restricting mo-

tions to rigid-body translations. A similar approach is presented

by Xiao et al. [273], also based on manual segmentation but that

is also able to address non rigid-deformations.

If complete correspondences between image pixels can be es-

tablished, accurate image warping becomes possible [44]. Mark

et al. [164] followed the seminal approach of Chen et al. [44]

but also handled occlusion and discontinuities during rendering.

Porquet et al. [188] use projective texture mapping to reproject ge-

ometric detail onto a coarse geometry. While useful to speed up

rendering performance, their approaches are only applicable to

synthetic scenes. Often, however, current methods for automatic

camera calibration and depth acquisition are too imprecise for

these approaches to work on real-world data.

For very similar images, optical flow techniques have proven

useful [116, 159]. Highly precise approaches exist, which can be

computed at real-time or (almost) interactive rates [35, 187, 263].

They can be employed to create smooth morphs between images,

as was used, e.g., by Vedula et al. [251] for spatio-temporal view

interpolation. In the context of creating virtual walkthroughs the

work of Aliaga et al. [9, 10] created beautiful results, by captur-

ing a very dense set of omnidirectional images, with an average

distance between capturing positions of 4 cm. For image synthe-

sis, they identify corresponding features in the different images,

triangulate them in one reference view, and warp this mesh ac-

cording to the current viewpoint and the interpolated feature

positions.

For wider baselines Stich et al. presented a perception-based

image interpolation technique [227, 228, 229]. They establish

a dense correspondence field by an optimized edge-matching

used for homography estimations of image patches and smooth-

ed by an anisotropic diffusion process. The resulting flow fields

can then be used to interpolate between arbitrary video streams

in space and time. Lipski et al. [154] make use of high reso-

lution images that provide more details to compute dense cor-

respondences based on a combination of sophisticated feature

descriptors and Belief Propagation. They use the interpolation

technique of Stich et al. [228] for the rendering. However high

computation times forbid real-time usage for both approaches

without excessive preprocessing.

With the Light Field Video Camera Wilburn et al. [265, 266]

developed a large camera array to capture dynamic light fields.

Similar in spirit, Einarsson et al. [66] created a complete acqui-

sition system, the so-called light stage 6, for acquiring and re-

100 introduction

lighting human locomotion. Due to the high amount of images

acquired both could incorporate optical flow techniques to cre-

ate virtual camera views in a light field renderer, by direct warp-

ing of the input images. As they do not limit the amount of

input images simultaneously used during rendering, they need

to compute the flows beforehand to make interactive navigation

possible.

Aganj et al. [3] match feature points in the input images or use

already matched feature points from the reconstruction phase

and warp their input images accordingly in a preprocess, so they

adopt the input images to the imprecise mesh. However this ap-

proach does not warp the images according to the viewpoint,

hence the result is always limited in the achievable precision.

Takai et al. [237] deform both, the mesh and the texture coordi-

nates to create a harmonized output image. While the rendering

can again be performed in real-time, the optimization itself, is

done in a preprocess.

image interpolation

Correspondence estimation is only one part of an image-based

renderer. The image interpolation itself is another critical part.

It has been shown in [211], that even if ground truth motion

fields are available image blending cannot yield convincing re-

sults in the case of occlusion. It is therefore important to either

take occlusion separately into account, as we have done in Chap-

ter 11, or to incorporate it directly into the image interpolation

algorithm.

Fitzgibbon et al. [82] use image-based priors, i.e., they en-

force similarity to the input images, to remove any ghosting

artifacts. Drawbacks are very long computation times and the

input images must be relatively similar in order to achieve good

results, so only small disparities can be handled. An acceler-

ation scheme was later proposed by Woodford and Fitzgibbon

[271] but was still far from being interactive. Mahajan et al. [161]

proposed a path-based method for plausible image interpolation

that searches for the optimal path for a pixel transitioning from

one image to the other in the gradient domain. As each output

pixel in the interpolated view is taken from only a single source

image, ghosting or blurring artifacts are avoided, but if wrong

correspondences are estimated unaesthetic deformations might

occur. Linz et al. [151] extend the gradient-based approach of

Mahajan et al. [161] to space-time interpolation with multi-image

interpolation based on Graph-cuts and symmetric optical flow.

Goesele et al. [95] use ambient point clouds, stochastically dis-

tributed points in space along the line of sight for input pixels

with uncertain depth, to hide erroneous geometry and parts that

could not be sufficiently reconstructed. In the unstructured vi-

8.2 related work 101

deo rendering by Ballan et al. [20] the static background of a

scene is directly reconstructed, while the actor in the foreground

is projected onto a billboard and the view switches at a specific

point between the cameras where the transition is least visible.

While this works well for moving objects the general scene setup

is very limited.

texture recovery

Ahmed et al. [7] incorporate BRDF estimation into the free-view-

point video system [40]. Similar to the Floating Textures ap-

proach presented in Chapter 11 they try to optimize the input

images by warping. For every point on the surface they estimate

the camera for which the viewing ray from the surface point

to the camera deviates the least from the normal vector at that

position and use this projected color as reference value. They

then warp the input image so that it most resembles this view.

In addition frame to frame correspondences are computed in a

square domain, similar to geometry images [102], to handle ob-

ject changes over time, e.g. shifting clothes. A similar approach,

but in the spherical domain is used by Starck et al. [221] to

find temporal correspondences for non-model based, non-rigid

surfaces of genus-zero-topology. This was later extended to a

smooth 3D reconstruction technique with a static texture map

[223], in order to save bandwidth in streaming applications.

Tzur et al. [247] provide a photogrammetric texture mapping

approach from casual images which only approximately resem-

ble the geometry, by estimating local camera parameters for dif-

ferent parts of the object instead of global camera parameters for

each input view. This is actually a good example how difficult

texturing of imprecise geometry is. Gal et al. [88] create a single

seamless texture map for approximate objects. Though their ap-

proach produces pleasable texture maps by local warping of the

textures, the result might not resemble the original from all pos-

sible viewpoints and lighting information might not be handled

correctly. As we will show in Chapter 9, static texture recovery

algorithms will never be able to precisely reconstruct the appear-

ance of an object if the underlying geometry is not accurate, as

this demands features to flow on the objects surface, otherwise

results will always be only approximately correct.

There are many approaches, which are able to produce high-

quality renderings in specific setups and given unlimited pre-

processing time, even more techniques for the interested reader

can be found in [160, 240]. However, it seems there are very few

approaches that can achieve good rendering results in general

multiview camera settings and given only approximate geom-

etry with possibly imprecise camera calibration and real-time

rendering requirements.

9
ERROR ANALYS I S

A computer lets you make more mistakes faster than any invention in

human history - with the possible exceptions of handguns and tequila.

— Mitch Ratcliffe

9.1 introduction

Errors or imprecisions in any stage of the image-based recon-

struction pipeline negatively influence the later rendering qual-

ity. Figure 40 shows some of these errors that are likely to oc-

cur during image-based rendering based on multiview projec-

tive texture mapping. Imprecise camera calibration and sloppy

foreground segmentation result in projecting background onto

the foreground object, Figure 40a. Approximate 3D reconstruc-

tion can also cause ghosting artifacts, i.e. features appear more

than once in the output image, Figure 40b. And if visibility is

not taken into account, several pixels in one input image is pro-

jected more than once onto the geometry proxy, Figure 40c. In

this chapter we look at the causes for these artifacts. Based on

this analysis we are able to derive new solution strategies which

are presented in Chapters 10 and 11.

(a) (b) (c)

Figure 40.: Different errors in image-based rendering affecting output
quality, based on (a) imprecise camera calibration or fore-
ground segmentation, (b) approximate 3D reconstruction,
or (c) wrong visibility calculations.

After briefly describing the notations used, we give an overview

of the typical error sources degrading image quality in image-

based rendering systems, Section 9.2. This is followed by a geo-

metric analysis of the ghosting artifacts, or double images, Sec-

tion 9.3, including aliasing, Section 9.3.3, ghosting and blurring,

103

104 error analysis

Section 9.3.4 and the band-limiting approach [42, 150] to prevent

ghosting artifacts by prefiltering, Section 9.3.5.

9.1.1 Notations

We are dealing with a lot of different projections and image do-

mains in this and the following chapters. Hence, it might be

beneficial to have a few words on the notation we are using in

this part of the thesis. An overview of all symbols used is also

given in the appendix A. We denote the name, and also the po-

sition of each camera recording the scene with the upper-case

boldface letter C followed by an index i ∈ {1, . . . , n}, e.g. C1

would be the first input camera, C2 the second and so on. The

subscript v denotes the index of the virtual camera Cv, which

represents the virtual view we want to display to the user. Ii
denotes the image footage, for the camera with index i.

A single scene point in the original scene GO is usually de-

noted as a lower-case boldface character, e.g. p. A superscript

on p denotes the projection into another image domain, e.g. pv

would be the pixel position of p in the output image Iv. To de-

note a scene point p recorded by an input camera Ci and back-

projected onto the geometry proxy GA we use pGA

i or simply

pi for brevity. Hence, a scene point p recorded by a camera

Ci, backprojected onto the approximate geometry GA and from

there projected into another camera Cj would be denoted p
j
i. The

notation Ivi is used to denote the image rendered from a view-

point v by projecting the input image Ii as texture onto GA.

We will use the same superscript and subscript notation also

for other quantities, e.g. the pixelspacing ∆.

9.2 problem description

The plenoptic function P(x, y, z, θ, φ) describes, in a slightly sim-

plified version, radiance, in other words the color we see, as a

function of 3D position in space (x, y, z) and direction (θ, φ) [2].

The notion of image-based rendering now is to approximate the

plenoptic function with a finite number of discrete samples of P

for various (x, y, z, θ, φ) and to efficiently re-create novel views

from this representation by making use of some sort of object

geometry proxy.

Any object surface that we choose to display can be described

as a function G : (x, y, z, θ, φ) → (xw, yw, zw), i.e., by a mapping

of viewing rays (x, y, z, θ, φ) to 3D coordinates p = (xw, yw, zw)
on the object’s surface. Of course, the function G is only defined

for rays hitting the object, but this is not crucial since one can

simply discard the computation for all other viewing rays. With

GO we denote the function of the true surface of the object, and

9.2 problem description 105

with GA we denote a function that only approximates this sur-

face, Figure 41, acquired e.g. by one of the methods described in

Chapter 2.8.

Next, assuming calibrated cameras, a projection mapping Pi

exists which describes how any 3D point p is mapped to its cor-

responding 2D-position pi in the i-th image. From its projected

position pi in image Ii, the 3D point’s color value (r, g, b) in that

image can be read out. Then, in a classic image-based rendering

setup [59, 146, 191], the novel view IvLinear from a virtual camera’s

viewpoint Cv can be synthesized by a weighted linear interpola-

tion scheme

IvLinear(x, y, z, θ, φ) = ∑
i

ωiI
v
i (x, y, z, θ, φ) , (9.1)

with

Ivi (x, y, z, θ, φ) = Ii(Pi(GA(x, y, z, θ, φ))) (9.2)

ωi = δi(GA(x, y, z, θ, φ)) ω̃i(x, y, z, θ, φ) (9.3)

and ∑i ωi = 1 to preserve the overall intensity. δi is a visibility

factor which is one if a point on the approximate surface GA

is visible by camera Ci, and zero otherwise. ω̃i is the weight-

ing function which determines the influence of camera Ci for

every viewing ray, e.g. an angular weighting scheme [59, 191],

but without taking visibility into account.

Note that (9.1) is the attempt to represent the plenoptic func-

tion as a linear combination of reprojected images. Unfortu-

nately, the plenoptic function P is, in general, not representable

as a linear combination of the reprojected images. For several

reasons simple weighted linear interpolation cannot be relied on

to reconstruct the correct values of the plenoptic function in gen-

eral:

1. Typically, GO 6= GA almost everywhere, so the input to

(9.2) is already incorrect in most places, Figure 41a.

2. Due to calibration errors, Pi is not exact, leading to projec-

tion deviations and, subsequently, erroneous color values,

Figure 41b.

3. In any case, only visibility calculations based on the orig-

inal geometry GO can provide correct results. If only ap-

proximate geometry is available, visibility errors are bound

to occur, Figure 41c.

In summary, in the presence of even small geometry inaccura-

cies or camera calibration imprecisions, a simple approach based

on linear blending is generally not able to correctly interpolate

from discrete image samples. While the visibility error results

106 error analysis

(a) Geometry error

p

p1 p2

C1 C2

GA

GO

(b) Projection Error

C1

GA

GO

(c) Visibility Error

C1 C2

p

GA

GO

Figure 41.: Error sources: (a) Geometry inaccuracies cause ghosting
artifacts. If only the approximate geometry GA is avail-
able, Point p on the original surface GO is erroneously pro-
jected to 3D-position p1 from camera C1 and to 3D-position
p2 from camera C2. (b) Small imprecisions in camera cal-
ibration can lead to false pixel projections (orange lines,
compared to correct projections displayed as blue lines).
This leads to texture shifts on the object surface and sub-
sequently to ghosting artifacts. (c) Visibility errors. Given
only approximate geometry GA, point p is classified as be-
ing visible from C1 and not visible from camera C2. Given
correct geometry GO, it is actually the reverse, resulting in
false projections.

in falsely projected color values in the output image, the geome-

try and calibration errors typically result in so-called ghosting or

double images if multiview projective texture mapping is used.

Looking at the geometry error in Figure 41 it also becomes

obvious that any approach trying to reconstruct a single texture

map from sparse input images and approximate geometry can

never create correct results. Because even if one could estab-

lish the correspondence between p1 and p2, one would have to

choose a static position for p on GA, but if the virtual camera is

placed at position C1 then p1 would be correct and if it is placed

at position C2 then p2 would be correct. There simply is no cor-

rect static texture coordinate position for any point on an objects

surface if GO differs from GA.

In the next sections and chapters we will deal separately with

all three mentioned error sources and propose methods to han-

dle these. The sources of error for the projection artifacts, based

on imprecise camera calibration are quite obvious. The same is

9.3 a geometric analysis of ghosting artifacts 107

true for the visibility artifacts, based on false visibility tests, due

to only approximate reconstruction of the scene. For the deriva-

tion of new rendering techniques it is helpful to investigate the

geometry error in more detail. In the next section we begin with

a geometric analysis of the geometry error. We will then go on

and derive techniques for improved, artifact-reduced renderings

in Chapter 10 and 11.

9.3 a geometric analysis of ghosting artifacts

In this section we will analyze the causes of ghosting artifacts,

i.e., double-images resulting from inaccurate geometry recon-

struction. Several authors dealt with the problem of finding

the minimum sampling rate for light field rendering, i.e., how

many input images are needed to provide artifact-free render-

ing for a given scene [42, 150]. This problem is important for

two reasons. First, the memory requirements for image-based

rendering techniques can easily become a bottleneck. Obviously,

the less images we capture the less storage and acquisition time

is needed. And second, if we know the amount of ghosting in

our scene, given our input images and camera parameters, we

can find ways to prevent these visual artifacts. Unfortunately,

the analyses in [42, 150] dealt with a very restricted set of image-

based rendering, namely two-plane parameterized light fields,

i.e., all cameras are in equal distance to each other and are facing

approximately the same direction. We will try to loosen some

of these constraints and derive an analysis suitable for general

sparse multiview setups.

9.3.1 Assumptions

To simplify the analysis in the beginning we will make several

common assumptions in this section:

• Scene: Occlusion-free and all materials are Lambertian;

• Reconstructed geometry: a simple plane;

• Camera: Camera of limited resolution;

• Interpolation method: Linear interpolation of nearby sam-

ples;

As we assume no occlusion in the scene, for now, we can base

our analysis on the reconstruction of a single point in the scene.

If every point can be correctly rendered, so can the scene. For

simplicity of the analysis we will assume a simple plane to rep-

resent the approximately reconstructed geometry. The surface

108 error analysis

of the scene is assumed to be Lambertian, i.e., light falling on it

is scattered in all directions so that the apparent brightness does

not change with the viewpoint.

Using our camera model introduced in Section 2.5, we can

think of every pixel value as the weighted integral of the light

arriving at the image plane of the camera, or in other words,

every pixel is a sample of the convolved plenoptic function at

the camera center over the viewing angle of the pixel area on

the image plane. The support of this filter is simply the angular

resolution of the camera.

9.3.2 Scene Projection

Let us first take a look at how a single scene point p captured by

the input camera Ci is reprojected onto the image plane of a vir-

tual camera Cv. For readability, the illustrations will showcase

a two dimensional scene and one dimensional images, Figure

42. In Figure 42a the scene setup is shown. Camera Ci records

a scene point p on the original surface GO. The virtual camera

Cv records the backprojected contribution of p around pi on the

approximate surface GA. The x-axis in Figure 42b-d represents

the pixel position in the respective images, 42b and 42c for the

input camera Ci, 42d for the virtual view. The midpoint of each

pixel is shown by the blue dotted lines. The y-axis is used to de-

pict the amount of contribution of the exemplar scene point p in

the respective image. As these figures are used for explanatory

purposes no concrete values are given.

Assuming unlimited resolution of the input camera, the contri-

bution of a single scene point p to the recorded image function

of Ci is a δ-peak. Due to limited resolution, p will assign its

contribution to the closest pixel in the image Ii corresponding to

the closest viewing ray of Ci, dotted orange line in Figure 42a

and 42b. During backprojection the shape of this shifted δ-peak

changes to a wedge like structure of width 2∆i due to the lin-

ear interpolation applied, Figure 42c. ∆i is the distance between

neighboring pixel positions on the image plane of Ii with nor-

malized focal length for all cameras. It becomes a perspectively

distorted wedge of width wi when reprojected onto the approxi-

mate surface GA at position pi and into the virtual camera view

at position pv
i , Figure 42d. We call this width wi the support of

a scene point in the output image. The distortion will increase

with increased inclination of the surface with respect to the cam-

era ray. For the further analysis we will neglect this distortion

and assume a constant distance between projected pixels on the

surface, which would equal an orthographic projection of the

cameras. While being a crude approximation for the complete

image, we assume the imposed error to be negligible if only

9.3 a geometric analysis of ghosting artifacts 109

(a) (b)

(c) (d)

p

pi

Ci

Cv

GA GO

co
n
tr
ib
u
ti
o
n

pixel position in Ii

co
n
tr
ib
u
ti
o
n

pixel position in Ii
co
n
tr
ib
u
ti
o
n

pixel position in Iv

∆i wi

Figure 42.: Scene Projection: (a) Scene setup. p is recorded by camera
Ci, backprojected onto the geometry at pi and recorded by
camera Cv. (b) Scene point p will contribute to exactly one
pixel of the image taken by camera Ci corresponding to
the viewing ray with the smallest angular deviation. (c)
During reprojection the influence of p in Ii will change to
a triangular shape due to limited camera resolution and
linear interpolation. (d) Depending on the inclination angle
the wedge becomes projectively distorted in the view of
another camera Cv.

small parts of the image are considered and assuming relatively

small inclination angles.

9.3.3 Aliasing

The first source of error we are looking at is aliasing. At this

stage we assume that no prefiltering of the images was applied

after recording. Aliasing in the output image can appear as

soon as the projected pixel spacing of the input camera becomes

smaller than the pixel spacing of the virtual camera in the virtual

camera view [213]. This is also known as undersampling, if seen

from the output view perspective. Let ∆i be the pixel spacing

in one of the input images Ii and ∆v be the pixel spacing in the

virtual view Iv, we can calculate the spacing ∆v
i for Ii in Iv by

taking into account the angle β between the surface normal and

the camera, Figure 43. Let βi and βv be the angle between the

surface normal and the respective cameras. First we calculate the

sample spacing ∆
GA

i of Ii on the objects approximate surface:

∆
GA

i =
∆i

cos(βi)
(9.4)

110 error analysis

Ii

Iv

∆i

∆v
i

∆v

∆
GA

i

GA

βi

βv

Figure 43.: The relation between the pixel spacings ∆i, ∆v and ∆v
i in the

different views is defined by the angles βi and βv between
the cameras and the surface, as well as the resolution of the
cameras. Here, for orthographic projections.

Hence, the perceived sample spacing ∆v
i of ∆

GA

i in the image

plane of the virtual camera is

∆v
i = ∆

GA

i cos(βv) (9.5)

Substituting Equation (9.4) into (9.5) we get

∆v
i =

∆i

cos(βi)
cos(βv) (9.6)

As we do not know anything about the frequencies contained in

the input images, we must assume that new aliasing artifacts are

introduced as soon as

∆v
i < ∆v (9.7)

Due to the linear interpolation during reprojection the support

wi of a reprojected scene point equals twice the sample spacing

∆v
i . Therefore, we exhibit aliasing if

wi < 2∆v , (9.8)

see Figure 44a. Interestingly classic image-based rendering such

as light field rendering [36, 146], seldomly pays attention to this

property, as they assume every output pixel to be represented

as a single viewing ray instead of a viewing cone defined by the

pixel extends. Most prefiltering techniques are based on linear

interpolation, as e.g. quadralinear interpolation in [146], or on

band-limiting the input images [42, 150, 226], but this is only a

valid interpolation if Equation (9.7) is satisfied. But one can eas-

ily create counterexamples. If the camera is moved further away

from the scene, this will inevitably decrease ∆v
i for a perspective

view. While seldomly mentioned in the image-based rendering

literature, this problem is known for decades in classic rendering

9.3 a geometric analysis of ghosting artifacts 111

co
n
tr
ib
u
ti
o
n

pixel position

(a)

co
n
tr
ib
u
ti
o
n

pixel position

(b)

co
n
tr
ib
u
ti
o
n

pixel position

(c)

Figure 44.: Spatial Support: (a) If the spatial support w of a projected
scene point in the output image (blue triangle) is too small,
the image might exhibit aliasing artifacts. (b) Optimal spa-
tial support. (c) If the spatial support is too large, the image
may appear blurry.

and texture mapping, known as minification. And a typical ap-

proach to conveniently, though approximately, solve it, is to use

mipmaps [268]. Mipmaps can best be thought of as an image

pyramid, where for each succeeding level the width and height

are reduced by a factor of 2 and each pixel in these reduced lev-

els saves an appropriately filtered version of the original image.

During rendering the best matching levels are chosen for the

texture look-ups so that the ratio between pixel and texel size

is approximately one-to-one. Additionally trilinear filtering can

smoothen the transition between different levels.

On the other hand, the image will start to appear blurry as

soon as

wi > 2∆v , (9.9)

for any input camera Ci, as the perceived sampling distance of

the input camera is lower than the sampling distance of the out-

put view, Figure 44c.

9.3.4 Ghosting and Blurring

Ghosting appears whenever a recorded scene point is projected

from two or more cameras to different pixel positions in the out-

put view. But as we are dealing with discrete images there is a

certain error tolerance which we will take a look at in this sec-

tion. Let us assume we are given the input cameras C1 and C2

as well as a scene point p on the original surface GO and their

projections p1 and p2 onto the approximate surface GA by the

input cameras. We can reproject these two into a virtual view Iv
to detect several critical constellations or sources of error. Impor-

tant for these classes of error are the projected sample spacing

∆v
1 and ∆v

2 of I1 and I2, and the position of the pixels center pro-

jections pv
1 and pv

2, i.e., the positions of maximum contribution

intensity in the image plane of the virtual camera Cv. The pro-

jected sample spacing ∆v
1 and ∆v

2 equal half the width w1, w2

112 error analysis

co
n
tr
ib
u
ti
o
n

w1

w2

∆v
1 ∆v

2

∆v

pv
1 pv

2

Figure 45.: Scene point p is projected into Iv at position pv
1 and pv

2 for
two cameras C1 and C2, respectively. The width w1, w2 of
the projected contribution of a single pixel from I1 and I2
equals twice the projected pixel spacing ∆v

1 and ∆v
2 of I1

and I2.

of the projected contribution of a single pixel, Figure 45. An

intuitive definition of ghosting is then:

If the combined contribution of a projected scene point

in the image plane of the virtual camera exhibits more

than one maximum, ghosting is apparent.

If more than one camera is taken into account that sees the

scene point p and have an influence greater zero, the output

image appears sharp, Figure 46a, if

∀i : wi = 2∆v and ∀i, j : ||pv
i − pv

j || ≤ ∆v , (9.10)

i.e., the condition for anti-aliased rendering is well satisfied and

the projected scene points are no further apart than a single pixel

in the output view. The scene point will look blurry, Figure 46b,

as soon as

∃i, j : ||pv
i −pv

j || > ∆v and ||pv
i −pv

j || ≤ min(wi,wj)/2 , (9.11)

with i 6= j. I.e., the projected scene points are further apart than

a single pixel but the distance is smaller than half the minimum

support. And it will exhibit ghosting, Figure 46c, as soon as

∃i, j : ||pv
i −pv

j || > ∆v and ||pv
i −pv

j || > min(wi,wj)/2 , (9.12)

with i 6= j. Hence, artifacts occur if the projected scene points

are further apart than a single pixel but the distance is larger

than half the minimum support.

9.3 a geometric analysis of ghosting artifacts 113

co
n
tr
ib
u
ti
o
n

pixel position

(a)

co
n
tr
ib
u
ti
o
n

pixel position

(b)

co
n
tr
ib
u
ti
o
n

pixel position

(c)

co
n
tr
ib
u
ti
o
n

pixel position

(d)

co
n
tr
ib
u
ti
o
n

pixel position

(e)

co
n
tr
ib
u
ti
o
n

pixel position

(f)

Figure 46.: Rendering quality, here exemplarily shown for two cam-
eras: (a) Almost optimal rendering, no ghosting, no alias-
ing, the projection is sharp. (b) No aliasing, no ghosting,
but the image appears slightly blurry. (c) No aliasing, but
ghosting, i.e., the projected scene point is projected to non-
connected pixels. (d)-(e) The projected scene point appears
sharp, but the image might exhibit aliasing. (f) Worst case,
the image exhibits ghosting artifacts plus possible aliasing.

9.3.5 Band-limiting

To prevent ghosting and aliasing artifacts in two-plane param-

eterized light field rendering band-limiting was introduced, first

mentioned by Chai et al. [42] and Lin et al. [149]. Chai et al. sug-

gested that a sufficient condition for avoiding artifacts altogether

is to limit the disparity ||pv
i − pv

j || of all projected scene elements

to ±1 pixel. If the maximum and minimum scene depth extends,

zmin and zmax, are known, one can place the focal plane at the op-

timal depth at

zc =

[

1

2

(

1

zmax
+

1

zmin

)]−1
, (9.13)

which minimizes disparity. Given the position of the cameras the

maximum disparity can be calculated from the optimal depth

zc and zmin or zmax. If the disparity of some scene elements is

greater than ±1 pixel, artifacts can be removed by setting the

higher frequency part of the spectrum to zero, or, according to

our representation, the applied filter should widen the support

of the projected scene point so that the combined contribution re-

veals only a single maximum. Note that due to the quadralinear

interpolation applied in light field rendering only direct neigh-

bors on the camera plane of the light field need to satisfy this

condition, while in a more general setup all cameras contribut-

ing to the according output pixel need to satisfy it. If this is the

114 error analysis

co
n
tr
ib
u
ti
o
n

pixel position

co
n
tr
ib
u
ti
o
n

pixel position

co
n
tr
ib
u
ti
o
n

pixel position

(a) (b) (c)
Figure 47.: Band-limited Rendering: (a) Perceived disparity is larger

than a single pixel and the support smaller than the re-
quired minimum. The resulting image exhibits ghosting ar-
tifacts if no further error-handling is applied. (b) By widen-
ing the spatial support of the projected scene point via low-
pass filtering the input images, ghosting is removed but
blur introduced. (c) Changing the weighting of each cam-
era during rendering changes the contribution. No ghost-
ing appears as the combined contribution still reveals only
a single maximum.

case, no ghosting occurs even if the weighting of the cameras is

changed during rendering, as this basically shifts the peak on

the image plane, see Figure 47. Nevertheless, depending on the

disparity observed, this approach may remove a lot of details in

the input images, resulting in blurred rendering results.

Applying band-limiting to general image-based rendering with

multiview projective texture mapping is difficult due to the gen-

eralized camera setup and the unknown depth uncertainties oc-

curring from the reconstruction, as well as the unknown fre-

quency limit of the input images. But one can approximate the

band-limiting by simply setting the amount of filtering as a user-

definable parameter. Comparisons of band-limiting to our app-

roaches presented in this thesis are given in Chapters 10 and

11.

10
F ILTERED BLENDING FOR MULT IV IEW

PROJECT IVE TEXTUR ING

The supreme accomplishment is to blur the line

(between work and play).

— Arnold Toynbee

10.1 introduction

Ghosting artifacts are salient and visually disturbing artifacts.

Arguably, human perception is much more susceptible to ghost-

ing than to blur [150]. In fact, we are accustomed to seeing

blurred objects, e.g. due to motion blur or simple out-of-focus

effects. It stands to reason that blur is a more convenient arti-

fact than ghosting. Nevertheless blur is an artifact and should

be avoided as often a possible. The main drawback of band-

limiting discussed in Section 9.3.5 is that the method is based

on prefiltering of the input images, and detail is irrevocably lost.

However, it seems obvious that if the virtual camera is placed at

the same position as one of the input cameras, there is, despite

aliasing issues, no need to use the prefiltered version of the in-

put images, as correct results can be obtained with the unfiltered

image.

In this chapter we will adapt this idea and extend the former

analysis from Chapter 9 and base our anti-ghosting method on

the perceived disparity of a single input camera in relation to the

virtual camera’s position and resolution. This way we are able to

incorporate view-dependent filtering. We investigate the band-

limiting approach as the upper bound on necessary filtering, but

preserve more details in cases where the virtual camera is close

to one of the input cameras.

The rest of this chapter is structured as follows: we start with

a view-dependent ghosting artifact analysis, Section 10.2. From

this we derive our view-dependent filtering approach in Sec-

tion 10.3. Details of the GPU implementation are given in Sec-

tion 10.4. We evaluate our approach in Section 10.5, and discuss

our results in Section 10.6.

115

116 filtered blending for multiview projective texturing

10.2 view-dependent ghosting artifact analysis

Let us assume we are given a planar scene GO, an approximate

scene GA whose normals point in the positive z direction, plus a

geometry offset ∆z between the two. Given an input camera C1

and a virtual camera Cv we can calculate the texture shift in the

xy-plane, Figure 48.

Ci

Cv

βi

βv

~n

GA

GO

∆z

∆xv ∆xi,v

∆xi

Figure 48.: Absolute and relative shift: The geometry offset ∆z results
in an absolute texture shift ∆xi on the approximate surface
GA. This shift depends on viewing angle βi. However,
the observed, or relative, texture shift ∆xi,v does not only
depend on βi but also on βv and therefore on ∆xv and ∆xi.

Given a viewing direction d for a camera Ci, the shift on the

approximate surface GA is given by

∆xi =

(

∆xi

∆yi

)

= ∆z

(

dx
dz
dy
dz

)

(10.1)

This absolute texture shift is interesting for the analysis of

overall quality for one specific camera. If we now add our vir-

tual camera Cv, the perceived disparity between these on GA

that can be observed in the output view is

∆x1,v =

(

∆x1,v

∆y1,v

)

=

(

||∆x1 − ∆xv||
||∆y1 − ∆yv||

)

(10.2)

Reprojecting the relative shift ∆x1,v into our virtual view using

Equation (9.5) to obtain the perceived relative shift ∆xv1,v in the

output image, Equations (9.5) and (10.2) give us an efficient way

of estimating the observed disparity in our output view.

10.3 view-dependent filtering 117

10.3 view-dependent filtering

Our goal here is to decouple our previous definition for blurred

rendering, Equation (9.11), from the relation between the input

cameras in such a way that each input image and the necessary

amount of filtering is only dependent on the relation between

a single input camera and the virtual camera. Therefore we re-

place the static components from Equation (9.11) with our view-

dependent ones. We substitute the perceived projected distance

||pv
i − pv

j || with our view-dependent relative shift ∆xvi,v and re-

move all but one camera from the right-hand side to obtain

||∆xvi,v|| > ∆v/2, and ||∆xvi,v|| ≤ wi/4 (10.3)

We need to add the division by 2 on both right-hand sides, as

another camera could result in a shift in the opposing direction.

This was not needed in (9.11) as we looked at two input views

instead of one input view and the virtual camera. If the per-

ceived disparity ∆xvi,v is smaller than ∆v/2, i.e., half a pixel, and

the spatial support is large enough to prevent aliasing, the result

should look fine and no further filtering is necessary. A classic

example would be if the positions of input camera Ci and output

view Cv almost coincide.

Taking a closer look at Equation (10.3) we see that almost all

variables are fixed, due to our necessary specifications. ∆xvi,v
depends on the geometry error ∆z which we cannot change, oth-

erwise we would have done so in the 3D reconstruction phase.

∆v is connected to the output resolution and we do not want to

change that either. So the only variable left is wi. We already

know that we can increase wi by low-pass filtering of the input

image, plus Equation (10.3) gives us a direct estimate of how to

filter the image.

To get a better insight on how our view-dependent filtering

affects the output image, we can use our notation from Chapter

9 and inspect the contribution of a projected scene point into the

virtual view with varying weights for each of the input cameras,

Figure 49. If the virtual camera is very close to one of the input

cameras almost only the influence of that camera could be used

with optimal filtering to prevent aliasing, but no further blur-

ring, Figure 49a. The influence of the second camera approaches

zero, while its support is spread out almost unnoticeably in the

output image. In the case where the virtual camera is placed

directly between two views, Figure 49b, the view-dependent fil-

tering equals the band-limiting approach from Section 9.3.5.

An interesting case occurs if the camera is not placed at any

of the two extremes, Figure 49c. In this case both cameras have

a noticeable influence on the output view and, according to our

definition from Section 9.3 we obtain ghosting, as the combined

118 filtered blending for multiview projective texturing

co
n
tr
ib
u
ti
o
n

pixel position

(a)

co
n
tr
ib
u
ti
o
n

pixel position

(b)

co
n
tr
ib
u
ti
o
n

pixel position

(c)

Figure 49.: Influence of view-dependent filtering on the contribution
of a single scene point projected by two cameras into the
virtual view: (a) The projected and blended input views
approach the original input view if the virtual camera co-
incides with it. (b) If the virtual view is between cameras,
filtering resembles the band-limiting approach, cf. Figure
47. (c) For arbitrary camera positions filtering is based on
viewing position. The closer the virtual camera is to one
of the input views, the less filtering is necessary and the
higher the influence of the nearby image.

influence of the projected scene point results in two local max-

ima! The reason for this is that the decoupling of the input

cameras in Equation (10.3) is no direct equivalent to Equation

(9.11). Instead of assuring that ||pv
i −pv

j || ≤ min(wi,wj)/2, view-

dependent filtering asserts ||pv
i − pv

j || ≤ max(wi,wj)/2. But

otherwise view-dependent filtering would not be possible at all.

While this renders any view-dependent filtering-based method

theoretically useless, we can still use this approach for improved

rendering. The reason is that the texture of the input images

is not taken into account in this analysis. Many natural images

exhibit a strong correlation between neighboring pixels and this

correlation is even increased due to the filtering. Therefore even

though the images might theoretically exhibit ghosting, it is not

visible in most cases. We will describe the implementation of

our view-dependent filtering approach in the following section.

10.4 gpu implementation

To motivate our implementation, consider the scene setup de-

picted in Figure 50. The correct scene point p, which we would

like to render, lies on the line of sight of the viewing ray passing

through Cv and p0, somewhere within the interval of maximum

depth uncertainty dmax from the approximate geometry, given

by the intersection points p1 and p2 with the offset geometry.

As in any practical setting we do not know whether the correct

geometry offset ∆z is in the positive or negative normal direc-

tion, we need to deal with both possibilities. dmax must be a

user-specified parameter, as most reconstruction techniques do

not have an upper or lower bound on the achieved quality. The

line segment p1p2 projected into the texture space of camera C1

reveals another line segment p1
1p

1
2, which we call the line of dis-

10.4 gpu implementation 119

C1 Cv

dmax

GA

GO

p

p0

p1

p2

p1
1

p1
2

Figure 50.: Scene point estimation: Scene point p observed from view-
point Cv can only be estimated to lie somewhere between
p1 and p2, defined by the maximum depth uncertainty dmax.
Its correct color value observed by camera C1 lies some-
where between the projected texture coordinates p1

1 and p1
2.

parity. Any value on this line could be the correct texture value.

This is in fact similar to an epipolar geometry constraint [110].

We solve this uncertainty problem in a resampling process.

Choosing
p1
1+p1

2
2 as the sampling position and ||p1

1 − p1
2|| + ǫ

as the simulated new sampling distance ∆1, with ǫ → +0, we

anisotropically resample the texture function of I1 along the line

of disparity p1
1p

1
2. This way we avoid most ghosting, since the

correct texture values always contribute to the corresponding

output pixels. As this approach takes the current viewpoint into

account, the closer the virtual camera is to one of the input cam-

eras, the fewer frequencies are cut off from that input image

and the output image will contain much more details than in a

band-limiting approach. If the input camera and virtual camera

coincide, all detail is preserved. This way, we implicitly take the

input camera distribution into account, as the size of our filter

is based on the geometric uncertainty and position of the input

cameras.

The depth uncertainty itself can be established in different

ways. In two-plane parameterized light field rendering, it is usu-

ally the difference along the z-axis from the focal plane, which

is orthogonal to this axis by definition. For synthetic light fields

the value of uncertainty might be known in advance, but is to

be estimated for real world scenes. Then p1 and p2 can be cal-

culated by intersecting every viewing ray with the plane at zmin

and zmax, which are the minimum and maximum z-values in the

scene, respectively.

120 filtered blending for multiview projective texturing

In a more general image-based rendering setup, one could

decide to either create an offset along the normal of the approx-

imate surface with which the viewing ray is intersected, or the

offset is created along the viewing ray. In the first case the calcu-

lated disparity becomes very large at objects silhouettes, as the

normal is almost perpendicular to the viewing ray’s direction.

This leads to strong and distracting blurring artifacts. In addi-

tion the filter-size might abruptly change at triangle boundaries

if the normal changes, which would again lead to unpleasant

visual disturbances. We therefore chose to calculate the offset

along the viewing ray. This results in a small blur for images of

those cameras close to the current viewpoint and larger blur for

those farther away. This works especially well together with an

angular metric that computes the influence of each camera for

each viewing ray.

Since the support of the applied low-pass filter can theoreti-

cally become arbitrarily large, we take two simple steps to alle-

viate the needed effort. First, we make strong use of GPU pro-

cessing power. The whole filtering algorithm is implemented as

a pair of vertex and fragment shaders. Second, we trade off de-

tail for speed by applying a multi-resolution technique. We set

a threshold ν for the filter size µ in texture space. If this thresh-

old is exceeded we use the nth level of the input image-pyramid

computed in a preprocess instead of the image itself, with

n = ⌈log2(
µ

ν
)⌉ (10.4)

In our implementation we set ν = 64 pixels. Note that this

approach has almost no effect on the visual quality of the output,

since a large filter size implicates a small weighting factor for

an input camera and therefore only a small contribution to the

output image, but speeds up the whole rendering process by a

factor of roughly three.

Interestingly, depending on the movement of the virtual cam-

era, the constant change of blur in the output image can evoke

the impression of repeatedly changing speed, even if a move-

ment is in fact constant. We can solve this perceptual problem

by applying a simple motion blur technique using OpenGL’s Ac-

cumulation Buffer [214]. If the viewpoint does not change, the

image quickly converges to the optimally filtered solution.

Our presented algorithm in this section is independent of the

weighting scheme used for the image synthesis step, where the

projected texture values are combined to reveal the final pixel

value. It can be used in conjunction with quadralinear interpo-

lation [146], the unstructured Lumigraph weighting scheme [36]

or angular distance measures [59, 191].

10.5 results 121

(a) Bunny (b) Buddha (c) Dragon

Figure 51.: Images from our test data sets: (a) For the Bunny, an ap-
proximate 3D geometry model is used. For the synthetic
light fields (b) Buddha and (c) Dragon, a planar surface suf-
fices as geometry proxy. See Table 3 for more information
on our test data sets.

Bunny Buddha Dragon

geometry primitives 948 1 1

Total number of images 19 256 256

Pixels per image 5122 2562 2562

Uncertainty offset 0.63% 7.07% 8.13%

Band-limit filter support 12 pixels 12 pixels 10 pixels

Viewport 360◦× 360◦ 90◦ × 90◦ 90◦× 90◦

Output resolution (pixels) 5122 5122 5122

Table 3.: Information concerning our test data sets shown in Figure 51.
The uncertainty offset along the viewing ray in positive and
negative direction is given in relation to the diagonal of the
geometries’ bounding boxes.

10.5 results

We implemented our algorithm on an Nvidia GeForce 8800GTX

graphics card using OpenGL and GLSL. For the Filtered Blend-

ing approach we add, respectively subtract, the estimated or a

priori known depth uncertainty offset along the viewing rays

from the vertices positions. Reprojecting the new positions into

the different input images yields the needed texture coordinates.

For the resampling process during Filtered Blending, we im-

plemented the Mitchell-Netravali cubic B-spline filter as a frag-

ment shader program [173]. We compared different filters, e.g., a

truncated Gaussian and a box filter, and found that the Mitchell-

Netravali filter yields the visually most convincing rendering re-

sults.

Our test data sets include one classical 3D object, the Stan-

ford Bunny, and the two well-known Stanford light fields Buddha

and Dragon. Figure 51 shows example images. Additional data,

like the used depth uncertainty or size of the band-limiting filter,

are listed in Table 3. To evaluate rendering quality, we compare

122 filtered blending for multiview projective texturing

our rendering strategies to direct (quadra-)linear interpolation as

well as to pre-processed band-limited filtering. For band-limited

filtering, the filter support is set to the smallest possible value

to prevent ghosting, which depends on the scene. In projec-

tive texture mapping, we always select the three nearest cameras

for interpolation based on the angular differences of the optical

axes compared to the virtual camera. A simple visibility scheme

based on shadow mapping [267] is used for each output pixel

to exclude the contribution of cameras for which visibility is not

given, based on the approximate geometry.

Our first test scene Bunny consists of 19 images rendered from

randomly selected viewing directions of the original mesh con-

sisting of 65k triangles. Figure 52 depicts the results obtained by

the different rendering approaches using only a geometry proxy

consisting of 948 triangles. For better rendering quality assess-

ment, some of the details are enlarged in row 2 and 4. Com-

paring the two leftmost columns in Figure 52, which correspond

to (a) standard linear blending and (b) band-limited filtering, to

(c) our result on the right, one can note how the ghosting is

smoothed away by Filtered Blending, while discontinuities of

the texture are much better preserved. We achieve 342 fps when

using our Filtered Blending approach.

We also tested our “ghost-busting” approach for light field

rendering using the Buddha and Dragon data sets. Rendering re-

sults are shown in Figure 53. Notice how ghosting is prevented

in our approach, Figure 53c, while ghosting artifacts are obvi-

ous in standard quadralinear interpolation 53a. At the same

time, much finer detail is preserved than if pre-processed band-

limited filtering is used 53b. In conjunction with light field ren-

dering, we achieve around 105 fps with our approach.

More results, including real-world examples, can be found in

Figure 61 on page 138 of Chapter 11 when compared to our

second approach, Floating Textures.

10.6 discussion

In this chapter we have presented an approach to achieve ghost-

ing-reduced rendering results with a viewpoint-optimized low-

pass filtering for subcritically sampled light fields, as well as for

general projective texture mapping with approximate geometry.

In contrast to conventional methods based on prefiltering, our

algorithm efficiently diminishes ghosting and better preserves

texture details because we are able to take the current viewpoint

into account. Real-time rendering performance is achieved on a

standard GPU, and the approach can be easily adapted to vari-

ous different image-based rendering scenarios.

10.6 discussion 123

There are, however, certain limitations. If the input samples

are too sparse and the geometry reconstruction too imprecise,

the image will still look blurry. Small ghosting artifacts might

still be visible, as no view-dependent filtering-based approach

can remove all artifacts in all cases as explained in Section 10.3.

These small artifacts, however, are seldomly visible due to corre-

lation between neighboring pixels in the input images.

In summary, though, Filtered Blending greatly eases the con-

straints of image-based rendering: coarser 3D geometry and

fewer input images are sufficient to still achieve convincing ren-

dering results.

124 filtered blending for multiview projective texturing

(a) Linear Interpolation (b) Band-limited filtering (c) Filtered Blending

Figure 52.: Image-based rendering results for the Stanford Bunny with
approximate geometry for two virtual camera positions,
not coinciding with any input view, row 1 and 3. Row
2 and 4 show close-ups of row 1 and 3, respectively: (a)
Linear interpolation reveals strong ghosting around high-
frequency details. (b) Band-limited reconstruction removes
ghosting, but the result is excessively blurred. (c) Our Fil-
tered Blending approach [71] preserves discontinuities con-
siderably better and reduces artifacts. Notice the much
sharper stripes on parts of the bunny.

10.6 discussion 125

(a) Quadra-linear (b) Band-limited (c) Filtered Blending

Figure 53.: Comparison for the two sub-critically sampled light fields
Buddha (top rows) and Dragon (bottom rows). Row 2 and
4 show close-up views for better visualization: (a) Qua-
dralinear interpolation cannot suppress ghosting artifacts.
(b) Band-limiting the entire light field leads to excessively
blurry results. (c) Our Filtered Blending approach pre-
serves more details while ghosting is effectively eliminated.

11
FLOAT ING TEXTURES

Any man is liable to err, only a fool persists in error.

— Marcus Tullius Cicero

11.1 introduction

In the last chapter we proposed to remove ghosting artifacts by

view-dependent filtering of the input images, as the human vi-

sual system is more accustomed to blur than to ghosting artifacts

[150]. It turns out that it is even less susceptible to minute shift-

ing [257]. Taking a look at Figure 54, the right image is perceived

as more similar to the left image than to the one in the middle.

SSD = 0 SSD = 1014 SSD = 4041

CW-SSIM = 1 CW-SSIM = 0.6475 CW-SSIM = 0.8106

Figure 54.: The human visual system is more susceptible to local errors
than to global ones. Even though the right image, which
is a shifted version of the original on the left, has a four
times higher sum of squared differences error (SSD) than
the blurred one in the middle, we would prefer the shifted
version. This is also confirmed by the complex wavelet
structural similarity index (CW-SSIM) [257], which gives
a better approximation of perceptual image quality. All val-
ues have been computed on the luminance channel.

If we make a statistical comparison it turns out that the sum

of squared differences (SSD) compared to the left image is four

times higher for the right image than for the blurry one in the

middle. The blurred image was created by applying a Gaussian

blur with standard deviation of σ = 2.75 pixels to the original

image, while the right image is shifted by ten pixels w.r.t. the

original. The image size is 256 × 246 pixels. The reason why

we still prefer the shifted one is that the human visual system

127

128 floating textures

co
n
tr
ib
u
ti
o
n

pixel position

(a)

co
n
tr
ib
u
ti
o
n

pixel position

(b)

co
n
tr
ib
u
ti
o
n

pixel position

(c)

Figure 55.: Floating Textures: (a) The perceived disparity of a projected
scene point (blue wedges) is larger than a single pixel result-
ing in ghosting artifacts. (b) Instead of widening the spatial
support, cf. Figure 47 and 49, the idea of our Floating Tex-
tures is to shift the position of the projected scene point
towards its counterpart and vice versa. The new position
(orange wedge) is resulting from a linear interpolation of
the positions according to the camera influences. (c) The
camera influence changes the height and position of the
wedge and therefore the color influence, but all frequencies
in the input images are preserved.

is adapted to extract structural information [257], while a global

error, like a small shift, passes almost unnoticed.

In addition, filtering-based rendering approaches can only han-

dle ghosting in the occlusion-free case. They are not able to

handle visibility errors as described in Chapter 9. Also, camera

calibration errors can only be hidden to a certain extend, depend-

ing on the amount of blurring of the input images. So removing

high-frequencies in the images is not necessarily the best way to

go.

In our explanatory test case from the last chapters we pro-

jected a single scene point viewed from two cameras into our

output view. If one takes a look again at Figure 49, one can

see that up to now we have only dealt with the spatial support

and the influence of the input cameras, i.e., with the width and

height of the projection wedge, respectively. But there is a third

component which we have not dealt with yet, the spatial posi-

tion of the projected scene point. By shifting the projected scene

point in the output view, we are able to bring both contributions

into congruence, removing ghosting and preserving detail in the

images, Figure 55. For extremal views, i.e., if the virtual camera

and one of the input cameras coincide, the correct position is

known. For all other camera positions, we assume that a lin-

ear interpolation of the projected positions provides a sufficient

approximation of the real position. By shifting the projected

positions we can also handle projection errors by imprecise cam-

era calibration. What we have not dealt with yet are visibility

errors, where samples close to occlusion boundaries are falsely

projected due to imprecise geometry or calibration errors.

This chapter presents a method to deal with the mentioned ar-

tifacts. Because our algorithm runs independently on the graph-

11.2 floating textures 129

ics card, it can be used in conjunction with many image-based

modeling and rendering (IBMR) techniques to improve render-

ing outcome.

As particular contributions, this chapter presents:

• a novel texturing algorithm that constitutes a symbiosis be-

tween classical linear interpolation and optical flow-based

warping refinement. It corrects for local texture misalign-

ments and warps the textures accordingly in the rendered

image domain;

• a novel weighting and visibility scheme which significantly

reduces artifacts at occlusion boundaries;

• a general algorithm that can be applied in conjunction with

many IBMR techniques to improve rendering quality;

• an efficient GPU-based implementation of the proposed al-

gorithm which achieves interactive to real-time rendering

frame rates;

• a simple extension for static scenes which reduces the ac-

tual rendering part to a simple texture look-up.

The remainder of this chapter is organized as follows. In Sec-

tion 11.2 we describe our Floating Textures as a way to eliminate

ghosting and calibration artifacts. Section 11.3 extends this ap-

proach to handle also occlusion artifacts. Implementation details

are given in Section 11.4, and experimental evaluation results

for a variety of different test scenes and IBMR techniques are

presented in Section 11.5 before we discuss limitations and con-

clude with Section 11.6.

11.2 floating textures

In the following, we describe our approach to reduce blurring

and ghosting artifacts caused by geometry and calibration inac-

curacies using an adaptive, non-linear approach. In a nutshell,

the notion of Floating Textures is to correct for local texture mis-

alignments by determining the optical flow between projected

textures and warping the textures accordingly in the rendered

image domain. Both steps, optical flow estimation and multi-

texture warping, can be efficiently implemented on graphics

hardware to achieve interactive to real-time performance.

As input, the algorithm requires nothing more but a set of

images, the corresponding, possibly imprecise, calibration data,

and a geometry proxy. For simplicity, we will first assume an

occlusion-free scene and describe how occlusion handling can be

added in Section 11.3. Without occlusion, any novel viewpoint

can, in theory, be rendered from the input images by warping

130 floating textures

C1 C2

p

p1 p2 GA

Cv

IvFloat

Iv1
Iv2

I1 I2

Figure 56.: Rendering with Floating Textures: The input images are
projected from camera positions Ci onto the approximate
geometry GA and onto the desired image plane of view-
point Cv. The resulting intermediate images Ivi exhibit mis-
match which is compensated by warping all Ivi based on
the optical flow to obtain the final image IvFloat.

[207]. To determine the warp fields, we are safe to assume that

corresponding pixels in different images have a set of similar

properties, like color or gradient constancy, so that the following

property holds:

Ij = WIi→I j ◦ Ii , (11.1)

where WIi→I j ◦ Ii warps an image Ii towards Ij according to the

warp field WIi→I j . The problem of determining the warp field

WIi→I j between two images Ii, Ij is known as optical flow esti-

mation [116, 159]. For the case when pixel distances between

corresponding image features are not too large, algorithms to

robustly estimate per-pixel optical flow are available [35].

For our Floating Textures approach, we propose a symbio-

sis of linear interpolation and optical flow-based warping. We

first project the recorded images from cameras Ci onto the ap-

proximate geometry surface GA and render the scene from the

desired viewpoint Cv, creating the intermediate images Ivi , Fig-

ure 56. Note that while corresponding image features do not yet

exactly line up in Ivi they are much closer together than in the

original photos (disparity compensation). This is related to the

suggestion of Sawhney [204], who projected the second image of

an image pair onto a fronto-parallel plane H to the first camera

to reduce the parallax between the images in order to aid optical

flow. We can apply optical flow estimation to the intermediate

images Ivi to robustly determine the pairwise flow fields WIvi→Ivj
.

To compensate for more than two input images, we linearly

combine the flow fields according to Equation (11.2) and (11.3),

11.2 floating textures 131

apply these to all intermediate images Ivi and blend them to ob-

tain the final rendering result IvFloat. To reduce computational

cost, instead of establishing for n input photos (n − 1)n flow

fields, it often suffices to consider only the 3 closest input images

to the current viewpoint, especially in sparse multiview setups.

We use an angular weighting scheme as proposed in [36, 59]

because it has been found to yield better results for coarse geom-

etry than weighting schemes based on normal vectors [40], as

stated earlier. Our Floating Textures are, in fact, independent of

the weighting scheme used as long as the different weights sum

up to 1 for every pixel, which is necessary to ensure that cor-

responding features coincide in the output image, and given a

smooth change of camera influences if the virtual camera moves,

otherwise snapping problems could occur.

The processing steps are summarized in the following func-

tions and visualized in Figure 56:

IvFloat =
n

∑
i=1

ωi(WIvi
◦ Ivi) (11.2)

WIvi
=

n

∑
j=1

ωjWIvi→Ivj
(11.3)

WIvi
is the combined flow field which is used for warping image

Ivi . Equation (11.2) is therefore an extension of Equation (9.1) by

additionally solving for the non-linear part in P.

Note that our Floating Textures deliberately do not satisfy the

epipolar constraint anymore. To make use of epipolar geome-

try constraints one has to presume perfectly calibrated cameras,

which is seldom the case. Instead, by not relying on epipolar ge-

ometry, Floating Textures can handle imprecise camera calibra-

tion as well as approximate geometry, while the minute shifting

of the texture on the surface is visually almost unnoticeable.

11.2.1 Acceleration for Static Scenes

For static scenes it might seem unnecessary to re-compute the

flow fields for every frame. But for a coarse geometry proxy,

one cannot simply assign constant texture coordinates to every

vertex and every input image. Instead, we propose a slight vari-

ation of our Floating Texture generation which can be computed

during preprocessing.

Instead of computing flow fields between input images after

they have been projected into the image domain of the desired

viewpoint, we render the scene from each camera position Ci

and project all other input images into its image domain, i.e, we

render Iij, j ∈ {1, . . . , n}, Figure 57. The flow fields WIi→Iij
are

then established between the image Ii and every Iij, with j 6= i.

132 floating textures

C1 C2

p
GA

Cv

IvFloat

I11
I12

I21
I22

Figure 57.: Rendering with Floating Textures for static scenes: In a
preprocessing step, the images Ij of every camera are pro-
jected onto the approximate surface GA and into every
other input camera Ci, resulting in the intermediate images
Iij. Then the warp fields between these images in every cam-

era view are calculated. For rendering the image IvFloat from
viewpoint Cv, the warp field of each camera is queried for
the texture coordinate offset of every rendered fragment
(black arrows), and the corrected texture value is projected
back onto the object and into the novel view (blue dot in
image plane).

As the views from the cameras do not change over time for static

scenes, image synthesis for a new viewpoint reduces to simple

projective texturing using warped texture coordinates, Figure 57:

IvFloat =
n

∑
i=1

((
n

∑
j=1

(ωjWIi→Iij
)) ◦ Ii)vωi (11.4)

Note that in comparison to the viewpoint-centered warping in

Equation (11.2) rendering quality may be slightly reduced. On

the other hand, the online rendering computations are reduced

to two simple texture lookups per fragment and camera.

11.3 soft visibility

Up to now, we have assumed only occlusion-free situations, which

is seldom the case in real-world scenarios. Simple projection of

imprecisely calibrated photos onto an approximate 3D geome-

try model typically causes unsatisfactory results in the vicinity

of occlusion boundaries, Figure 58a: texture information from

occluding parts of the mesh project incorrectly onto other geom-

etry parts. With respect to Floating Textures, this not only affects

rendering quality but also the reliability of flow field estimation.

A common approach to handle the occlusion problem is to

establish a binary visibility map for each camera. This binary

11.3 soft visibility 133

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 58.: Visibility artifacts: (a) Artifacts occur if occlusion is ignored.
(b) Optical flow estimation goes astray if occluded image
regions are not properly filled. (c) Visualization of a bi-
nary visibility map from three input cameras. (d) Visualiza-
tion of a soft visibility map from three input cameras. The
amount of filtering is exaggerated for display. (e) Weight
map multiplied with the binary visibility map. (f) Weight
map multiplied with the soft visibility map, eliminating al-
most all sudden jumps of camera weights between adja-
cent pixels. (g) Final result after texture projection using a
weight map with binary visibility. (h) Final result after tex-
ture projection using a weight map with soft visibility. Note
that most visible seams and false projections have been ef-
fectively removed.

134 floating textures

visibility map is then multiplied with the weight map, which

encodes the weight for each camera and pixel. The weights are

normalized afterwards so they sum up to one. This efficiently

discards occluded pixels in the input cameras for texture gen-

eration [40, 142]. But the usage of such binary visibility maps

can create occlusion boundary artifacts at pixels where the value

of the visibility map suddenly changes, Figure 58 left column.

These artifacts are especially noticeable if the cameras are badly

color-calibrated.

To counter these effects, we create a soft visibility map δsoft for

the current viewpoint and every input camera using a distance

filter on the binary map:

δsoft(x, y) =















0 if δ(x, y) = 0
occDist(x,y)

r if occDist(x, y) ≤ r

1 else

(11.5)

Here r is a user-defined radius, and occDist(x, y) is the distance

to the next occluded pixel. If δsoft is multiplied with the weight

map, Equation (11.5) makes sure that occluded regions stay oc-

cluded, while hard edges in the final weight map are removed.

Using this soft visibility map the above mentioned occlusion ar-

tifacts effectively disappear, Figure 58h.

To improve optical flow estimation, we fill occluded areas in

the projected input images Ivi with the corresponding color val-

ues from the camera whose weight ω for this pixel is highest.

Otherwise, the erroneously projected part could seriously influ-

ence the result of the Floating Texture output as wrong corre-

spondences could be established, Figure 58b. With hole filling,

the quality of the flow calculation is strongly improved, Fig-

ure 58h.

11.4 gpu implementation

The following is a description of our complete algorithm for dy-

namic scenes. A block diagram is given in Figure 59. The exten-

sion to static scenes is straightforward. We assume that camera

parameters, input images and a geometry proxy are given. The

geometry representation can be of almost arbitrary type, e.g., a

triangle mesh, a voxel representation, or a depth map. Even

though correct occlusion handling with a single depth map is

not always possible due to the 2.5D scene representation.

First, given a novel viewpoint, we query the closest camera po-

sitions. For sparse camera arrangements, we typically choose the

3 closest input images. We render the geometry model from the

cameras’ viewpoints into different depth buffers. These depth

maps are then used to establish for each camera a binary visibil-

ity map for the current viewpoint, similar in spirit to [40]. We

11.4 gpu implementation 135

Figure 59.: Complete overview of our Floating Textures algorithm on
GPU.

use these visibility maps as input to the soft visibility shader.

The calculation of δsoft can be efficiently implemented in a two-

pass fragment shader. Next, a weight map is established by cal-

culating the camera weights per output pixel. We use an angular

weighting scheme similar to [36]. The final camera weights for

each pixel in the output image are obtained by multiplying the

weight map with the visibility map and normalizing it so that

the weights sum up to one.

To create the input images for the flow field calculation, we

render the geometry proxy from the desired viewpoint several

times into multiple render targets, in turn projecting each input

image onto the geometry. If the weight for a specific camera is

zero for a pixel, the color from the input camera with the highest

weight at this position is used instead.

To compute the optical flow between two images we rely on

our GPU-optimized implementation of the optical flow technique

by Brox et al. [35]. We found this algorithm to be not only very

accurate but also quite robust to noise. Optical flow computation

time depends on image resolution as well as on the amount of

texture mismatch. Per rendered frame and three input images,

we need to compute six flow fields. Even though this process-

ing step is computationally expensive and takes approximately

90% of the rendering time, we still achieve between 5 and 24fps

at 1024× 768-pixel rendering resolution on an Nvidia GeForce

8800GTX. While we also experimented with faster optical flow

algorithms, like a multi-scale implementation of the well known

technique by Horn and Schunck [116], we found that results

were not as satisfactory. Tests have shown that the limiting speed

factor is, in fact, not computational load, but the high number of

state changes necessary to compute the flow fields, like shader

program or render target switches.

Once all needed computations have been carried out, we can

combine the results in a final render pass, which warps and

blends the projected images according to the weight map and

flow fields.

136 floating textures

Synthetic data set

Original 65k Triangles

Proxy 948 Triangles

(a)

Visual Hull

6.708 Triangles

(b)

Human Body Model

90.846 Triangles

(c)

SurfCap [223]

263.476 Triangles

(d)

Light Field [146]

1 Quad

(e)

Figure 60.: Geometry proxies corresponding to the different image-
based rendering methods evaluated in our experiments,
Figure 61.

11.5 results

To evaluate the proposed texturing approach, we have tested

Floating Textures in conjunction with a number of different im-

age-based rendering approaches. All tests were carried out us-

ing an OpenGL/GLSL implementation of our algorithm on an

Nvidia GeForce 8800GTX graphics card. Floating Textures frame

rates vary between 5 and 24 fps, depending on the number of in-

put images used and the amount of mismatch between textures

which influences the number of iterations needed for the opti-

cal flow estimation algorithm to converge. The different image-

based rendering approaches with which we evaluated Floating

Textures are (Figure 61, from top to bottom):

1. Synthetic Data Set: 49 input images synthesized from a

textured 3D model, ground truth available;

2. Polyhedral Visual Hull Rendering: shape-from-silhouette

reconstruction [84];

3. Free-Viewpoint Video: a parameter-fitted high-resolution

3D human model [40];

4. SurfCap: high-resolution geometry reconstructed using sil-

houette, feature, and stereo cues [223];

5. Light Field Rendering: a sub-sampled version of the Stan-

ford Buddha light field data set [146].

Figure 60 depicts the corresponding geometry proxies for each

image-based rendering method. For each of these five different

image-based rendering techniques, we compared four different

texturing approaches (Figure 61, from left to right):

1. Band-limited Rendering [150],

2. Our Filtered Blending [71] from Chapter 10

3. Unstructured Lumigraph Rendering [36], and

11.5 results 137

4. Our Floating Textures [72], presented in this chapter.

The viewpoint was chosen so that the angular distance to the

used input views was maximized.

synthetic data set

The ground truth model of the Stanford Bunny consists of 65k

triangles. As input images, we rendered 49 views from random

directions applying a colored checkerboard pattern as texture.

We then reduced the mesh to 948 triangles to use it as coarse

geometry proxy, Figure 60a. Band-limited reconstruction as well

as Filtered Blending introduce considerable blurring along tex-

ture discontinuities. Unstructured Lumigraph Rendering, on the

other hand, leads to ghosting artifacts. Floating Textures, in turn,

is able to compensate for most texture mismatch and generates

a crisp texture.

polyhedral visual hull rendering

We tested different texturing approaches for the exact polyhedral

visual hull reconstruction approach by Franco and Boyer [84],

both in an off-line setup as well as in a real-time "live" system.

Our setup of the "live" system consists of 8 cameras with a re-

solution of 1024x786 pixels that are connected in pairs of two

to four PCs (the camera nodes), arranged in an approximate

quarter-dome. One PC is used to calculate the approximate ge-

ometry of the scene from silhouettes obtained from the camera

nodes. The camera nodes calculate these silhouettes by down-

sampling the input images and performing background subtrac-

tion. The walls of the scene are covered in green cloth to facil-

itate this process. The approximate geometry is sent to a PC

which renders the final image. The rendering algorithm takes

the images from 3 cameras to texture the approximate geometry

so only these three images are sent over the network to conserve

bandwidth. The system allows to capture and render scenes

at approximately 10 fps and 640 × 480-pixel output resolution.

Even though the reconstructed visual hulls are only very approx-

imate geometry models, the Floating Textures method is able to

remove most of the ghosting artifacts prevalent in Unstructured

Lumigraph Rendering, Figure 39 on page 95.

In the offline acquisition setup, we recorded a dancer using

eight cameras arranged in a full circle. Excessive blurring is the

result if Band-limited Rendering or Filtered Blending is applied,

Figure 61. With a linear blending scheme, ghosting and pro-

jection errors degrade rendering quality of the face and at the

shoulders. These artifacts are efficiently removed by Floating

Textures without introducing any additional blur.

138 floating textures

Ground Truth Band-limited
Filtered

Blending

Unstructured

Lumigraph

Floating

Textures

Different texturing approaches

D
iff

e
re

n
t IB

M
R

 a
p
p
ro

a
c
h
e
s

Figure 61.: Comparison of different texturing schemes in conjunction
with a number of IBMR approaches. From left to right:
Ground truth image (where available), Band-limited Recon-
struction [42], our Filtered Blending [71] from Chapter 10,
Unstructured Lumigraph Rendering [36], and our Floating
Textures [72]. The different IBMR methods are (from top
to bottom): Synthetic data set, Polyhedral Visual Hull Ren-
dering [84], Free-Viewpoint Video [40], SurfCap [223], and
Light Field Rendering [146].

11.6 discussion 139

free-viewpoint video

For Free-Viewpoint Video acquisition, eight cameras are regu-

larly spaced around a full circle [40]. Due to the cameras’ far

spacing, Band-limited Rendering and Filtered Blending elimi-

nate all texture details, Figure 61. Since in Free-Viewpoint Video,

a generic 3D model is fit to the video streams by adapting only a

good handful of animation parameters, the model surface corre-

sponds only approximately to the person’s actual 3D geometry,

even though model geometry is very detailed, Figure 60c. This

causes noticeable ghosting artifacts if linear blending schemes

are applied. The Floating Textures approach corrects for the pro-

jective texture mismatch and yields well-defined facial details,

Figure 61 right column.

surfcap

This data set was kindly provided to us from the SurfCap: Sur-

face Motion Capture project [223]. Again, eight cameras are reg-

ularly spaced all around a full circle. In computationally elab-

orate off-line processing, a highly tessellated, smooth geometry

mesh is reconstructed, Figure 60d. Far camera spacing prevents

Band-limited Rendering and Filtered Blending to preserve de-

tails. Even though the mesh consists of 263k+ triangles, ghosting

and occlusion artifacts still degrade rendering quality if Unstruc-

tured Lumigraph Rendering is applied. With Floating Textures,

in contrast, virtually artifact-free rendering results are obtained.

light field rendering

We down-sampled the original Buddha light field data set from

32 × 32 to 8× 8 images. While Band-limited Rendering indis-

criminately blurs away all details, more details are preserved in

Filtered Blending, Figure 61. Unstructured Lumigraph Render-

ing (which corresponds to quadralinear interpolation for light

field rendering) introduces ghosting, as the assumption of dense

sampling is violated. The simple planar proxy is not enough

to focus the light rays. With Floating Textures, in contrast, we

achieve rendering results that are visually almost indistinguish-

able from the ground-truth. By using the Floating Textures ap-

proach in conjunction with light field rendering, comparable ren-

dering results are obtainable from considerably fewer input im-

ages.

11.6 discussion

We have presented a new, general method to improve projective

texturing using multi-view imagery in conjunction with some

3D geometry proxy. Our Floating Textures approach strongly

reduces ghosting and occlusion artifacts and achieves improved

140 floating textures

rendering quality from coarse 3D geometry, few input images,

and approximate calibration. This saves memory, bandwidth,

acquisition time, and money.

While we did not observe any problems during our evalua-

tion experiments, it is obvious that strongly specular surfaces or

badly color-calibrated cameras will cause problems for the opti-

cal flow estimation. Also, if texture mismatch (ghosting) is too

large, e.g. because of very coarse geometry or too few input im-

ages, the optical flow algorithm might not be able to find correct

correspondences. Robustness of Floating Textures will increase

with more sophisticated optical flow techniques. In general, the

results with Floating Textures will never be worse than linear in-

terpolation schemes, if the free parameters are adjusted correctly.

In our Floating Textures method, we deliberately disregard the

epipolar constraint and allow textures to locally float in all direc-

tions. This way, Floating Textures can compensate for imprecise

camera calibration. The small texture shifts on the surface are

visually completely imperceptible.

One source for artifacts remaining in rendering dynamic scenes

is that of temporally incoherent geometry. In the future, we in-

tend to investigate how Floating Textures might be extended to

compensate also for temporal inconsistencies of the geometry

proxy. Finally, for highly reflective or transparent objects, mo-

tion layer decomposition [205] promises to be another interest-

ing research direction since standard optical flows only generate

a single warp field, which cannot represent motion of multiple

layers.

Part V.Con
lusion

141

12
SUMMARY

This is a very good question

and I have a specifically prepared answer for this:

I don’t know.

— Erik Reinhard

We conclude this thesis with a discussion of our contributions

and an elaboration of future research perspectives. We touched

on a variety of different topics of computer graphics in this the-

sis, includig seamless image compositing, multiresolution pa-

norama stitching, high-resolution texturing, video matting and

multiview projective texture mapping. The unifying idea behind

this work was to find ways to conceal some of the common arti-

facts that occur in the classic pipelines of these algorithms.

In Part II we dealt with the problem of error concealment in

the field of seamless image and content synthesis. In Chapter 4

we showed how to create high resolution textures or panoramas

from an unordered collection of photographs. We proposed how

to find robust correspondences between the images and how to

derive a dependency graph depicting the parent-child relation

between the images. Dealing with the difficulties encountered

when merging different images onto a common image domain,

we showed how to deal with color, structure, and resolution dif-

ferences. From this representation we derived a texture synthe-

sis algorithm to add plausible detail information even to regions

not covered by any detail image.

So far we only started to deal with the structural misalign-

ments that can appear if the input images have not been taken

from the same viewpoint. This problem requires knowledge

about the 3D scene. An inherent problem, however, is that a

stronger deformation of the detail images renders the results

less plausible in many cases if the deformation is not perfect.

This is why we opted for visually less disturbing deformations

represented by a homography and a diffusion process. This is

sufficient in many cases and moves the possible error to the tran-

sition area between the low and high resolution patch, where it

can be more effectively hidden.

In Chapter 5 we presented a simple, yet flexible approach

to represent multiresolution textures as a hierarchical arrange-

ment of texture patches. In this context we discussed how to

143

144 summary

adopt the built-in functionality of current graphics hardware in

order to achieve correct filtering and artifact-free rendering re-

sults. This way detail insets can be added at arbitrary positions

and depth of a texture map, without any change to the underly-

ing 3D model or any z-fighting or flickering, allowing for virtual

textures of arbitrary size.

In Part III we proposed a robust matting algorithm for videos.

By transforming the problem from the pixel domain to the spec-

tral cluster domain we were able to robustly estimate high-quality

mattes for a large number of frames and provided an intuitive

and fast to use interface to correct possible errors.

In Part IV we examined common rendering artifacts in free-

viewpoint video renderers based on multiview projective texture

mapping. In the analysis in Chapter 9 we described how to de-

tect if ghosting is apparent. We used this information to derive

our viewpoint-dependent filtering approach in Chapter 10. Ex-

tending this approach we finally got to our main contribution in

that part of the thesis, the Floating Textures described in Chap-

ter 11. As texture mismatches are the most common cause for

ghosting artifacts, we proposed to use a real-time optical flow

estimation to match common features on the objects surface and

warp the projected images accordingly. In order to deal with ar-

tifacts caused by erroneous camera calibration and visibility ar-

tifacts caused by the approximate geometry given, we proposed

a soft visibility scheme. This scheme weighs the influence of

color samples based on their reliability so that the influence of

samples in the vicinity of occluding edges is reduced. Combin-

ing both techniques, we are able to render plausible in-between

views even with a very coarse surface geometry given.

12.1 future work

Several ideas for specific directions of future work have already

been pointed out in the respective discussions of the previous

chapters. By the time this thesis is written, there has already

been some further research based on the methods presented in

this thesis. Aganj et al. [3] proposed an approach which is very

similar to the static version of the Floating Textures in Chapter

11. Instead of optical flow they search for robust features to

match and interpolate the rest of the warp field by thin-plate

splines. Takai et al. [237] deform both, the mesh and the tex-

ture coordinates to create a harmonized mesh and input textures.

Both of them optimize the input images and mesh in a prepro-

cess. In the future we would like to combine Parts II and IV of

this thesis into a single approach. The idea here would be to

use high-resolution images of a human actor taken beforehand

and use them during free-viewpoint rendering to add small de-

12.1 future work 145

tails back into the projected texture. Another direction could be

to use a material classification approach, similar in spirit to Ha-

Cohen et al. [105] and our texture hallucination approach from

Chapter 4. Given a large database of different materials, like

skin, cloth etc. one could try and segment the images into differ-

ent material regions and model new details based on the mate-

rial information provided by the database.

The basic assumption of most techniques in the field of free-

viewpoint rendering is still an almost Lambertian scene, as oth-

erwise correspondences are very hard to establish. These prob-

lems could be resolved by using more sophisticated illumination

and surface models [96], but the requirements with respect to

the input data are usually much more stringent, and the compu-

tational complexity is prohibitive for real-time applications, at

least for the time being.

A hardly investigated research direction is the fusion of al-

gorithmic tasks in multiview video setups with video editing

tools. One interesting direction could be a multiview matting

algorithm whose results influence the 3D reconstruction which

on the other hand affects the correspondence estimation and

vice versa. The computational load for such fused algorithms

would be extremely high and challenging. Fast and robust meth-

ods would be needed, possibly aided by a human-in-the-loop

concept. Especially for high-quality productions, an algorithm

which works 98% of the time but fails at 2%, is almost useless

if no user interaction is provided for to correct errors. Such a

unification could lead to a better understanding of how the com-

mon problems in multiview video reconstruction and editing are

related.

Part VI.Appendix

147

A
NOTAT ION

symbol description

p Point in ND space or general ND vector

(x, y) x, y position in 2D space

I A digital image

I(x, y), I(p) Pixel value of image I at position (x, y) or p

respectively

Ii i-th image in a collection of images, e.g. a video,

or image corresponding to camera i

I
j
i i-th image in a collection of images, or image

corresponding to camera i, warped into the im-

age domain of Ij using either a homography or

a geometry proxy

I
j,l
i Image Ii warped into the image domain of Ij at

resolution level l. l = 0 would be the original

resolution of Ij. l = 1 would be the next higher

level with twice the width and height and so on

Ii,a Color channel a of image Ii

∇ Gradient operator

∇x, ∇y Gradient operator in x-, y-direction, respec-

tively

∇2 Laplacian operator

HIi→I j A homography warping Ii into Ij

N(x, y) Pixel-neighborhood in a synthesized image S

centered at position (x, y)

N(m(x, y)) Pixel-neighborhood of an image in a given im-

age collection that resembles most the pixel-

neighborhood of image S centered at position

(x, y)

N(m(x, y)k) The kth best matching neighborhood of image

S centered at position (x, y) in an image in a

given image collection

149

150 notation

symbol description

W General warp function

WF Forward warp function

WB Backward warp function

WIi→I j Warp function to warp Ii into Ij

◦ Warping operator

Ci The position or identifier of the i-th cam-

era in a collection of cameras

Cv The position or identifier of the virtual

camera

pw, p Point in world coordinates, p is usually

used for brevity

pi World coordinates of pw recorded by

Ci and backprojected onto the geometry

proxy

pi Image coordinates of point pw projected

into image Ii recorded by camera Ci

p
j
i Image coordinate of point pw recorded by

camera Ci and reprojected into image Ij
using a geometry proxy or warping func-

tion

P(x, y, z, θ, φ, t,λ) Plenoptic function

P(x, y, z, θ, φ) Simplified plenoptic function

P Abbreviation for the plenoptic function

Pi Projection matrix according to image Ci

GO Original geometric surface

GA Geometric proxy or approximate surface

∆i Distance between two neighboring pixels

on the image plane of image Ii assuming

a normalized focal length

∆
j
i Distance between two neighboring pixels

of image Ii reprojected into the image

plane of image Ij using a geometry proxy

or warping function and assuming nor-

malized focal length

wi Spatial support of a scene point repro-

jected from image Ii onto the image plane

of the outputview

ωi Weighting factor for a specific viewing ray

in Ii including the visibility factor

p1p2 A line segment starting at p1 and ending

at p2

B
PHOTO CREDITS

I would like to thank the following people for providing their

photographs under the creative commons licenses or public do-

main or provided us with helpful material:

name photo / material

Vicky Brock (brockvicky) Two of the Big Ben images in

Figure 29

Harshil.Shah One of the Big Ben images in

Figure 29

Bruno Girin One of the Big Ben images in

Figure 29

ricoeurian One of the Big Ben images in

Figure 29

Paul Walker (spratmackrel) One of the Big Ben images in

Figure 29

13bobby One of the Big Ben images in

Figure 29

Adalberto.H.Vega One of the Big Ben images in

Figure 29

Ian Mutto One of the Big Ben images in

Figure 29

ReservasdeCoches.com Two of the Big Ben images in

Figure 29

Lloyd Morgan (fakelvis) One of the Big Ben images in

Figure 29

Dan Lewry (danlewry) One of the Big Ben images in

Figure 29

NR Acampamentos One of the Big Ben images in

Figure 29

antony kelly (apdk) One of the Big Ben images in

Figure 29

Paolo Camera Two of the Big Ben images in

Figure 29

August (cornfed1975) One of the Big Ben images in

Figure 29

151

152 photo credits

name photo

Mark Hillary One of the Big Ben images in

Figure 29

Worawit Suphamungmee

(wsuph001)

One of the Big Ben images in

Figure 29

jazpillaga One of the Big Ben images in

Figure 29

Wikimedia Commons Wheat Field with Crows in

Figure 28

Y.Y. Chuang The two test scenes Amira in

Figure 37a and Kim in Fig-

ure 38.

J. Starck The SurfCap test scene and

model shown in Figure 60

and 61

N. Ahmed The Free-Viewpoint Video

test scene and model shown

in Figure 60 and 61

The Stanford University The Light Field data sets Bud-

dha and Dragon and the 3D

model for the Bunny shown

in Figure 51, 52, 53, 60 and 61.

B IBL IOGRAPHY

[1] A. Adams, N. Gelfand, and K. Pulli. Viewfinder alignment.

Computer Graphics Forum, 27(2):597–606, 2008.

[2] E. H. Adelson and J. R. Bergen. The Plenoptic Function

and the Elements of Early Vision. Computational Models of

Visual Processing, pages 3–20, 1991.

[3] E. Aganj, P. Monasse, and R. Keriven. Multi-view textur-

ing of imprecise mesh. In Asian Conference on Computer

Vision, pages 468–476, 2009.

[4] A. Agarwala. Efficient gradient-domain compositing us-

ing quadtrees. ACM Transactions on Graphics, 26(3):1–5,

2007.

[5] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker,

A. Colburn, B. Curless, D. Salesin, and M. Cohen. Interac-

tive Digital Photomontage. ACM Transactions on Graphics,

23(3):294–302, 2004.

[6] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz.

Keyframe-based tracking for rotoscoping and animation.

In ACM Transactions on Graphics, pages 584–591, 2004.

[7] N. Ahmed, C. Theobalt, M. Magnor, and H.-P. Seidel.

Spatio-temporal registration techniques for relightable 3D

video. In International Conference on Image Processing, pages

501–504, 2007.

[8] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time

Rendering. A. K. Peters, Ltd., 3rd edition, 2008. ISBN 987-

1-56881-424-7.

[9] D. G. Aliaga, T. Funkhouser, D. Yanovsky, and I. Carlbom.

Sea of images. In IEEE Visualization, pages 331–338, 2002.

[10] D. G. Aliaga, D. Yanovsky, T. Funkhouser, and I. Carlbom.

Interactive Image-Based Rendering Using Feature Global-

ization. In Symposium on Interactive 3D graphics, pages 163–

170, 2003.

[11] P. Anandan. A computational framework and an algo-

rithm for the measurement of visual motion. International

Journal of Computer Vision, 2(3):283–310, 1989.

153

154 bibliography

[12] C. Ancuti, T. Haber, T. Mertens, and P. Bekaert. Video en-

hancement using reference photographs. The Visual Com-

puter: International Journal of Computer Graphics, 24(7):709–

717, 2008.

[13] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,

and J. Davis. SCAPE: shape completion and animation of

people. ACM Transactions on Graphics, 24(3):408–416, 2005.

[14] N. Apostoloff and A. Fitzgibbon. Bayesian video matting

using learnt image priors. In IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, volume 1,

pages 407–414, 2004.

[15] C.J. Armstrong, Brian L. Price, and William A. Barrett. In-

teractive segmentation of image volumes with live surface.

Computer Graphics, 31(2):212–229, 2007.

[16] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. An optimal algorithm for approximate nearest

neighbor searching in fixed dimensions. In ACM-SIAM

Symposium on Discrete Algorithms, pages 573–582, 1994.

[17] X. Bai, J. Wang, D. Simons, and G. Sapiro. Video snap-

cut: Robust video object cutout using localized classifiers.

ACM Transactions on Graphics, 28(3):1–11, 2009.

[18] R. Bajcsy and S. Kovačič. Multiresolution elastic matching.

Computer Vision, Graphics and Image Processing, 46(1):1–21,

1989.

[19] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M. Black, and

R. Szeliski. A Database and Evaluation Methodology for

Optical Flow. In International Conference on Computer Vision,

pages 1–8, 2007.

[20] L. Ballan, G. J. Brostow, J. Puwein, and M. Pollefeys. Un-

structured video-based rendering: Interactive exploration

of casually captured videos. ACM Transactions on Graphics,

pages 1–11, 2010.

[21] S. Barret. Sparse virtual textures. Talk at Game

Developers Conference, 2008. Available online at

http://www.silverspaceship.com/src/svt/, visited in

Feb. 2011.

[22] A. Baumberg. Blending images for texturing 3D models.

In British Machine Vision Conference, pages 404–413, 2002.

[23] T. Beier and S. Neely. Feature-based Image Metamorpho-

sis. In Conference on Computer graphics and interactive tech-

niques, ACM SIGGRAPH, pages 35–42, 1992.

bibliography 155

[24] R. Bellman. Dynamic programming treatment of the trav-

elling salesman problem. Journal of ACM, 9(1):61–63, 1962.

[25] D. Benson and J. Davis. Octree textures. ACM Transactions

on Graphics, 21(3):785–790, 2002.

[26] D. F. Berman, J. T. Bartell, and D. H. Salesin. Multiresolu-

tion painting and compositing. In Conference on Computer

graphics and interactive techniques, ACM SIGGRAPH, pages

85–90, 1994.

[27] P. Bhat, C. L. Zitnick, N. Snavely, A. Agarwala,

M. Agrawala, B. Curless, M. Cohen, and S. B. Kang. Us-

ing photographs to enhance videos of a static scene. In

Eurographics Symposium on Rendering, pages 327–338, 2007.

[28] A. Blake and M. Isard. Active Contours: The Application of

Techniques from Graphics, Vision, Control Theory and Statistics

to Visual Tracking of Shapes in Motion. Springer-Verlag, 1998.

ISBN 978-3540762171.

[29] D. Blostein and N. Ahuja. Shape from texture: Integrating

texture-element extraction and surface estimation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11:

1233–1251, 1989.

[30] D. Blythe, B. Grantham, M. J. Kilgard, T. McReynolds, and

S. R. Nelson. Advanced graphics programming techniques

using OpenGL. In ACM SIGGRAPH 1999 courses, ACM

SIGGRAPH, 1999.

[31] A. Bornik and A. Ferko. Texture minification using quad-

trees and fipmaps. In Eurographics 2002 Short Presentations,

pages 263–272, 2002.

[32] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate

energy minimization via graph cuts. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 23(11):1222–1239,

2001.

[33] A. Bradley, F. Heide, and W. Heidrich. CALTag: High

precision fiducial markers for camera calibration. In Vision,

Modeling and Visualization, pages 41–48, 2010.

[34] R. Brinkmann. The Art and Science of Digital Compositing:

Techniques for Visual Effects, Animation and Motion Graph-

ics. Morgan Kaufmann, 2nd edition, 2008. ISBN 978-

0123706386.

[35] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warp-

ing. In European Conference on Computer Vision, pages 25–36,

2004.

156 bibliography

[36] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Co-

hen. Unstructured Lumigraph Rendering. In Conference

on Computer graphics and interactive techniques, ACM SIG-

GRAPH, pages 425–432, 2001.

[37] P. J. Burt and E. H. Adelson. A Multiresolution Spline

With Application to Image Mosaics. Computer Graphics, 17

(3):217–236, 1983.

[38] J. Cameron. Avatar, 2009. J. Landau, Twentieth Century

Fox.

[39] J. Canny. A computational approach to edge detection.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 8(6):679–698, 1986.

[40] J. Carranza, C. Theobalt, M. Magnor, and H. P. Seidel.

Free-viewpoint video of human actors. ACM Transaction

on Graphics, 22(3):569–577, 2003.

[41] E.E. Catmull. A Subdivision Algorithm for Computer Display

of Curved Surfaces. PhD thesis, Departement of Computer

Sciences, University of Utah, 1974.

[42] J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong. Plenoptic

Sampling. In Conference on Computer graphics and interactive

techniques, ACM SIGGRAPH, pages 307–318, 2000.

[43] H. Chang, D.-Y. Yeung, and Y.M. Xiong. Super-resolution

through neighbor embedding. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol-

ume 1, pages 275–282, 2004.

[44] S. E. Chen and L. Williams. View Interpolation for Image

Synthesis. In Conference on Computer graphics and interactive

techniques, ACM SIGGRAPH, pages 279–288, 1993.

[45] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski. A

bayesian approach to digital matting. In IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition,

volume 2, pages 264–271, 2001.

[46] Y.-Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin, and

R. Szeliski. Video matting of complex scenes. ACM Trans-

actions on Graphics, 21(3):243–248, 2002.

[47] 360 Cities. 360 cities, 2011. http://www.360cities.net, vis-

ited in Feb. 2011.

[48] D. Cobzaş, K. Yerex, and M. Jägersand. Dynamic textures

for image-based rendering of fine-scale 3D structure and

animation of non-rigid motion. Computer Graphics Forum,

21(3):493–502, 2002.

bibliography 157

[49] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang

tiles for image and texture generation. ACM Transaction on

Graphics, 22(3):287–294, 2003.

[50] R. T. Collins. A space-sweep approach to true multi-image

matching. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 358–363, 1996.

[51] M. Corsini, M. Dellepiane, F. Ponchio, and R. Scopigno.

Image-to-geometry registration: a mutual information

method exploiting illumination-related geometric proper-

ties. Computer Graphics Forum, 28(7):1755–1764, 2009.

[52] F. C. Crow. Summed-area tables for texture mapping.

ACM SIGGRAPH Computer Graphics, 18:207–212, 1984.

[53] S. Dai, M. Han, W. Xu, Y. Wu, and Y. Gong. Soft edge

smoothness prior for alpha channel super resolution. In

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 1–8, 2007.

[54] E. de Aguiar, C. Theobalt, M. Magnor, and H.-P. Seidel.

Reconstructing human shape and motion from multi-view

video. In European Conference on Visual Media Production,

pages 42–49, 2005.

[55] E. de Aguiar, C. Theobalt, C. Stoll, and H.-P. Seidel.

Marker-less deformable mesh tracking for human shape

and motion capture. In IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pages 1–8, 2007.

[56] E. de Aguiar, C. Theobalt, C. Stoll, and H.-P. Seidel. Rapid

animation of laser-scanned humans. In Virtual Reality,

pages 223–226, 2007.

[57] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Sei-

del, and S. Thrun. Performance capture from sparse multi-

view video. ACM Transactions on Graphics, 27(3):1–10, 2008.

[58] P. Debevec, Y. Yu, and G. Boshokov. Efficient

View-Dependent Image-Based Rendering with Projective

Texture-Mapping. In Eurographics Rendering Workshop,

pages 105–116, 1998.

[59] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling

and Rendering Architecture from Photographs: A Hy-

brid Geometry- and Image-Based Approach. In Conference

on Computer graphics and interactive techniques, ACM SIG-

GRAPH, pages 11–20, 1996.

[60] D. DeBry, J. Gibbs, D. D. Petty, and N. Robins. Painting

and rendering textures on unparameterized models. ACM

Transactions on Graphics, 21(3):763–768, 2002.

158 bibliography

[61] B. De Decker and P. Beckaert. Interactive acquisition and

rendering of human actors. In Workshop on Content Genera-

tion and Coding for 3D-Television, pages 1–4, 2006.

[62] J. D. Durou, M. Falcone, and M. Sagona. Numerical meth-

ods for shape-from-shading: A new survey with bench-

marks. Computer Vision and Image Understanding, 109(1):

22–43, 2008.

[63] C. R. Dyer. Volumetric Scene Reconstruction from Mul-

tiple Views. In Foundations of Image Understanding, pages

469–489, 2001.

[64] A. A. Efros and W. T. Freeman. Image quilting for texture

synthesis and transfer. ACM Transactions on Graphics, 20(3):

341–346, 2001.

[65] A. A. Efros and Thomas K. Leung. Texture Synthesis by

Non-parametric Sampling. In IEEE International Conference

on Computer Vision, pages 1033–1038, 1999.

[66] P. Einarsson, C.-F. Chabert, A. Jones, W.-C. Ma, B. Lam-

ond, T. Hawkins, M. Bolas, S. Sylwan, and P. Debevec.

Relighting Human Locomotion with Flowed Reflectance

Fields. In Eurographics Symposium on Rendering, pages 183–

194, 2006.

[67] M. Eisemann and M. Magnor. Filtered Blending and Float-

ing Textures: Ghosting-free Projective Texturing with Mul-

tiple Images, TR 2007-5-3. Technical report, Computer

Graphics Lab, TU Braunschweig, 2007.

[68] M. Eisemann and M. Magnor. ZIPMAPs: Zoom-into-parts

texture maps, TR 2008-11-8. Technical report, Computer

Graphics Lab, TU Braunschweig, 2008.

[69] M. Eisemann and M. Magnor. ZIPMAPS: Zoom-Into-Parts

Texture Maps. In Vision, Modeling, and Visualization, pages

291–297, 2010.

[70] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert,

E. de Aguiar, N. Ahmed, C. Theobalt, and A. Sellent. Float-

ing Textures, TR 2008-10-4. Technical report, Computer

Graphics Lab, TU Braunschweig, 2007.

[71] M. Eisemann, A. Sellent, and M. Magnor. Filtered Blend-

ing: A new, minimal Reconstruction Filter for Ghosting-

Free Projective Texturing with Multiple Images. In Vision,

Modeling, and Visualization, pages 119–126, 2007.

[72] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert,

E. de Aguiar, N. Ahmed, C. Theobalt, and A. Sellent.

bibliography 159

Floating Textures. Computer Graphics Forum, 27(2):409–418,

2008.

[73] M. Eisemann, J. Wolf, and M. Magnor. Spectral Video Mat-

ting. In Vision, Modeling, and Visualization, pages 121–126,

2009.

[74] M. Eisemann, E. Eisemann, H.-P. Seidel, and M. Magnor.

Photo zoom: High resolution from unordered image col-

lections. In Graphics Interface, pages 71–78, 2010.

[75] M. Eisemann, D. Gohlke, andM. Magnor. Structure-Aware

Image Compositing, TR 2010-11-12. Technical report, Com-

puter Graphics Lab, TU Braunschweig, 2010.

[76] M. Eisemann, T. Stich, and M. Magnor. 3-D Cinematogra-

phy with Approximate or No Geometry. In Ronfard and

Taubin [200], pages 259–284. ISBN 978-3642123917.

[77] M. Eisemann, D. Gohlke, and M. Magnor. Edge-

constrained image compositing. In Graphics Interface, 2011.

Accepted for publication.

[78] R. Fattal. Image upsampling via imposed edge statistics.

ACM Transactions on Graphics, 26(3):1–8, 2007.

[79] P. Felzenszwalb and D. Huttenlocher. Efficient Graph-

Based Image Segmentation. International Journal of Com-

puter Vision, 59:167–181, 2004.

[80] A. Finkelstein, C. E. Jacobs, and D. H. Salesin. Multireso-

lution video. In Conference on Computer graphics and interac-

tive techniques, ACM SIGGRAPH, pages 281–290, 1996.

[81] M.A. Fischler and R. Bolles. Random Sample Consensus.

A Paradigm for Model Fitting With Applications to Image

Analysis and Automated Cartography. Communications of

the ACM, 24(6):381–395, 1981.

[82] A. Fitzgibbon, Y. Wexler, and A. Zisserman. Image-based

rendering using image-based priors. International Journal

of Computer Vision, 63(2):141–151, 2005.

[83] Graham Flint. Gigapxl project, 2011.

http://www.gigapxl.org, visited in Feb. 2011.

[84] J.-S. Franco and E. Boyer. Exact polyhedral visual hulls. In

British Machine Vision Conference, pages 329–338, 2003.

[85] W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-

based super-resolution. IEEE Computer Graphics and Appli-

cations, 22(2):56–65, 2002.

160 bibliography

[86] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. To-

wards Internet-scale multi-view stereo. In IEEE Computer

Society Conference on Computer Vision and Pattern Recogni-

tion, pages 1434–1441, 2010.

[87] A. Fusiello, E. Trucco, and A. Verri. A compact algorithm

for rectification of stereo pairs. Machine Vision and Applica-

tions, 12(1):16–22, 2000.

[88] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or.

Seamless montage for texturing models. Computer Graphics

Forum, 29(2):479–486, 2010.

[89] D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and

M. Pollefeys. Real-time plane-sweeping stereo with multi-

ple sweeping directions. In IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, pages 1–8,

2007.

[90] E. S. L. Gastal and M. M. Oliveira. Shared sampling for

real-time alpha matting. Computer Graphics Forum, 29(2):

575–584, 2010.

[91] M. Germann, A. Hornung, R. Keiser, R. Ziegler, S. Wurm-

lin, and M. Gross. Articulated billboards for video-based

rendering. Computer Graphics Forum, 29(2):585–594, 2010.

[92] D. Glasner, S. Bagon, and M. Irani. Super-resolution from

a single image. In IEEE International Conference on Computer

Vision, 2009.

[93] M. Gleicher. Image snapping. In Conference on Computer

graphics and interactive techniques, ACM SIGGRAPH, pages

183–190, 1995.

[94] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M.

Seitz. Multi-view stereo for community photo collections.

In IEEE International Conference on Computer Vision, pages

265–270, 2007.

[95] M. Goesele, J. Ackermann, S. Fuhrmann, C. Haubold,

R. Klowsky, D. Steedly, and R. Szeliski. Ambient point

clouds for view interpolation. ACM Transactions on Graph-

ics, 29(3):1–6, 2010.

[96] D. B. Goldman, B. Curless, A. Hertzmann, and S. M.

Seitz. Shape and Spatially-Varying BRDFs from Photomet-

ric Stereo. In IEEE International Conference on Computer Vi-

sion, pages 341–348, 2005.

[97] M. Gong, L. Wang, R. Yang, and Y.-H. Yang. Real-time

video matting using multichannel poisson equations. In

Graphics Interface, pages 89–96, 2010.

bibliography 161

[98] Google. Google earth, 2011.

http://www.google.com/earth/index.html, visited in

Feb. 2011.

[99] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.

The Lumigraph. In Conference on Computer graphics and

interactive techniques, ACM SIGGRAPH, pages 43–54, 1996.

[100] L. Grady, T. Schiwietz, S. Aharon, and R. Westermann.

Random walks for interactive alpha-matting. In IASTED

International Conference on Visualization, Imaging and Image

Processing, pages 423–429, 2005.

[101] N. Greene and P. S. Heckbert. Creating raster omnimax

images from multiple perspective views using the ellipti-

cal weighted average filter. IEEE Computer Graphics and

Applications, 6:21–27, 1986.

[102] X. Gu, S. Gortler, and H. Hoppe. Geometry images. ACM

Transactions on Graphics, 21(3):355–361, 2002.

[103] Y. Guan, W. Chen, X. Liang, Z. Ding, and Q. Peng. Easy

matting - a stroke based approach for continuous image

matting. Computer Graphics Forum, 25(3):567–576, 2006.

[104] A. Gupta, P. Bhat, M. Dontcheva, B. Curless, O. Deussen,

and M. Cohen. Enhancing and experiencing spacetime re-

solution with videos and stills. In International Conference

on Computational Photography, pages 1–9, 2009.

[105] Y. HaCohen, R. Fattal, and D. Lischinski. Image upsam-

pling via texture hallucination. In International Conference

on Computational Photography, pages 1–8, 2010.

[106] C. Han and H. Hoppe. Optimizing continuity in multiscale

imagery. ACM Transactions on Graphics, 29(5):1–9, 2010.

[107] C. Han, E. Risser, R. Ramamoorthi, and E. Grinspun. Mul-

tiscale texture synthesis. ACM Transactions on Graphics, 27

(3):1–8, 2008.

[108] J. Han, K. Zhou, L.-Y. Wei, M. Gong, H. Bao, X. Zhang, and

B. Guo. Fast example-based surface texture synthesis via

discrete optimization. The Visual Computer: International

Journal of Computer Graphics, 22(9):918–925, 2006.

[109] M.J. Hannah. Computer matching of areas in stereo images.

PhD thesis, Stanford University, 1974.

[110] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2nd edition,

2006. ISBN 978-0521540513.

162 bibliography

[111] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P.

Seidel. A statistical model of human pose and body shape.

Computer Graphics Forum, 2(28):337–346, 2009.

[112] J. Hays and A. A. Efros. Scene completion using millions

of photographs. In ACM Transaction on Graphics, pages 1–8,

2007.

[113] P.S. Heckbert. Survey of texture mapping. In Graphics

Interface / Vision Interface, pages 207–212, 1986.

[114] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.

Salesin. Image analogies. ACM Transactions on Graphics, 20

(3):327–340, 2001.

[115] A. Hilton, J.-Y. Guillemaut, J. Kilner, O. Grau, and

G. Thomas. Free-Viewpoint Video for TV Sport Produc-

tion. In Ronfard and Taubin [200], pages 77–106. ISBN

978-3642123917.

[116] B.K.P. Horn and B.G. Schunck. Determining Optical Flow.

Artificial Intelligence, 16:185–203, 1981.

[117] A. Hornung and L. Kobbelt. Interactive pixel-accurate free

viewpoint rendering from images with silhouette aware

sampling. Computer Graphics Forum, 28(8):2090–2103, 2009.

[118] J. Hoschek and D. Lasser. Fundamentals of computer aided

geometric design. A. K. Peters, Ltd., 1993. ISBN 1-56881-007-

5.

[119] Y. Huang and X. Zhuang. Motion-partitioned adaptive

block matching for video compression. In International

Conference on Image Processing, pages 554–562, 1995.

[120] T. Hüttner. High resolution textures. In IEEE Visualization,

pages 13–17, 1998.

[121] A. Isaksen, L. McMillan, and S. J. Gortler. Dynamically

Reparameterized Light Fields. ACM Transactions on Graph-

ics, 19(3):297–306, 2000.

[122] R. M. Ismert, K. Bala, and D. P. Greenberg. Detail synthesis

for image-based texturing. In Symposium on Interactive 3D

graphics, pages 171–175, 2003.

[123] S. Jeschke, D. Cline, and P. Wonka. Rendering surface de-

tails with diffusion curves. ACM Transaction on Graphics,

28(5):1–8, 2009.

[124] J. Jia and C. Tang. Eliminating Structure and Intensity Mis-

alignment in Image Stitching. In IEEE International Confer-

ence on Computer Vision, pages 1651–1658, 2005.

bibliography 163

[125] J. Jia and C.-K. Tang. Image stitching using structure defor-

mation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30(4):617–631, 2008.

[126] J. Jia, J. Sun, C. Tang, and H. Shum. Drag-and-Drop Past-

ing. ACM Transactions on Graphics, 25(5):631–637, 2006.

[127] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag,

2nd edition, 2002. ISBN 978-0387954424.

[128] N. Joshi, W. Matusik, and S. Avidan. Natural video mat-

ting using camera arrays. ACM Transactions on Graphics, 25

(3):779–786, 2006.

[129] D. Kelly. Digital Compositing in Depth. The Coriolis Group,

2000. ISBN 978-1576104316.

[130] K. I. Kim and Y. Kwon. Example-based learning for single-

image super-resolution. In Symposium of the German Asso-

ciation for Pattern Recognition, pages 456–463, 2008.

[131] J. Kopf, M. Uyttendaele, O. Deussen, and M. F. Cohen.

Capturing and viewing gigapixel images. ACM Transac-

tions on Graphics, 26(3):1–10, 2007.

[132] M. Kraus and T. Ertl. Adaptive texture maps. In ACM SIG-

GRAPH/EUROGRAPHICSConference on Graphics Hardware,

pages 7–15, 2002.

[133] K. N. Kutulakos and S. M. Seitz. A Theory of Shape by

Space Carving. International Journal on Compututer Vision,

38(3):199–218, 2000.

[134] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.

Graphcut textures: image and video synthesis using graph

cuts. ACM Transactions on Graphics, 22(3):277–286, 2003.

[135] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture op-

timization for example-based synthesis. ACM Transactions

on Graphics, 24(3):795–802, 2005.

[136] J. Lacoste, T. Boubekeur, B. Jobard, and C. Schlick. Ap-

pearance preserving octree-textures. In GRAPHITE, pages

87–93, 2007.

[137] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis,

D.S. Ebert, J.P. Lewis, K. Perlin, and M. Zwicker. State of

the art in procedural noise functions. In Eurographics 2010

- State of the Art Reports, 2010.

[138] A. Laurentini. The visual hull concept for silhouette-based

image understanding. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 16(2):150–162, 1994.

164 bibliography

[139] S. Lefebvre and H. Hoppe. Parallel controllable texture

synthesis. ACM Transactions on Graphics, 24(3):777–786,

2005.

[140] S. Lefebvre and H. Hoppe. Compressed random-access

trees for spatially coherent data. In Rendering Techniques,

pages 339–349, 2007.

[141] S. Lefebvre, S. Hornus, and F. Neyret. Texture sprites: Tex-

ture elements splatted on surfaces. In Symposium on Inter-

active 3D Graphics, pages 163–170, 2005.

[142] H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and

H.-P. Seidel. Image-based reconstruction of spatial appear-

ance and geometric detail. ACM Transactions on Graphics,

22(2):234–257, 2003.

[143] A. Levin, A. Zomet, S. Peleg, and Y. Weiss. Seamless Image

Stitching in the Gradient Domain. In European Conference

on Computer Vision, volume 4, pages 377–389, 2003.

[144] A. Levin, A. Rav-Acha, and D. Lischinski. Spectral matting.

In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 1–8, 2007.

[145] A. Levin, D. Lischinski, and Y. Weiss. A closed-form solu-

tion to natural image matting. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 30(2):228–242, 2008.

[146] M. Levoy and P. Hanrahan. Light Field Rendering. In Con-

ference on Computer graphics and interactive techniques, ACM

SIGGRAPH, pages 31–42, 1996.

[147] M. Li, M. Magnor, and H.-P. Seidel. Hardware-accelerated

rendering of photo hulls. Computer Graphics Forum, 23(3):

635–642, 2004.

[148] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste.

In ACM Transactions on Graphics, pages 595–600, 2005.

[149] Z. Lin and H.-Y. Shum. On the Number of Samples

Needed in Light Field Rendering with constant-depth as-

sumption. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 579–588, 2000.

[150] Z. Lin and H.-Y. Shum. A Geometric Analysis of Light

Field Rendering. International Journal of Computer Vision,

58(2):121–138, 2004.

[151] C. Linz, C. Lipski, and M. Magnor. Multi-image Interpola-

tion based on Graph-Cuts and Symmetric Optic Flow. In

Vision, Modeling and Visualization, pages 115–122, 2010.

bibliography 165

[152] C. Lipski, D. Bose, M. Eisemann, K. Berger, and M. Mag-

nor. Sparse bundle adjustment speedup strategies. In Inter-

national Conference on Computer Graphics, Visualization and

Computer Vision (WSCG), pages 85–88, 2010.

[153] C. Lipski, C. Linz, K. Berger, A. Sellent, and M. Magnor.

Virtual video camera: Image-based viewpoint navigation

through space and time. Computer Graphics Forum, 29(8):

2555–2568, 2010.

[154] C. Lipski, C. Linz, T. Neumann, andM. Magnor. High reso-

lution image correspondences for video post-production.

In Conference on Visual Media Production, pages 33–39, 2010.

[155] X. Liu, L. Wan, Y. Qu, T.-T. Wong, S. Lin, C.-S. Leung, and

P.-A. Heng. Intrinsic colorization. ACM Transactions on

Graphics, 27(5):1–9, 2008.

[156] Y. Liu, G. Chen, N. Max, C. Hofsetz, and P. McGuiness.

Undersampled Light Field Rendering by a Plane Sweep.

Computer Graphics Forum, 25(2):225–236, 2006.

[157] F. Losasso. Geometry clipmaps: terrain rendering using

nested regular grids. ACM Transactions on Graphics, 23(3):

769–776, 2004.

[158] D. G. Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of Computer Vision,

60(2):91–110, 2004.

[159] B.D. Lucas and T. Kanade. An iterative image registration

technique with an application to stereo vision. In Inter-

national Joint Conference on Artificial Intelligence, pages 674–

679, 1981.

[160] M. Magnor, M. Pollefeys, G. Cheung, W. Matusik, and

C. Theobalt. Video-based rendering. In ACM SIGGRAPH

2005 Courses, ACM SIGGRAPH, 2005.

[161] D. Mahajan, F.-C. Huang, W. Matusik, R. Ramamoorthi,

and P. Belhumeur. Moving Gradients: A Path-Based

Method for Plausible Image Interpolation. ACM Transac-

tions on Graphics, 28(3):1–10, 2009.

[162] J. Maintz and M. Viergever. A survey of medical image

registration. Medical Image Analysis, 2(1):1–36, 1998.

[163] R. A. Manning and C. R. Dyer. Interpolating view and

scene motion by dynamic view morphing. In IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition, volume 1, pages 388–394, 1999.

166 bibliography

[164] W. Mark, L. McMillan, and G. Bishop. Post-Rendering 3D

Warping. In Symposium on Interactive 3D Graphics, pages

7–16, 1997.

[165] W. Matusik and H. Pfister. 3D TV: A scalable system for

real-time acquisition, transmission, and autostereoscopic

display of dynamic scenes. ACM Transactions on Graphics,

23(3):814–824, 2004.

[166] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMil-

lan. Image-based visual hulls. In Conference on Computer

graphics and interactive techniques, ACM SIGGRAPH, pages

369–374, 2000.

[167] W. Matusik, C. Buehler, and L. McMillan. Polyhedral vi-

sual hulls for real-time rendering. In Eurographics Workshop

on Rendering, pages 115–125, 2001.

[168] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler,

and L. McMillan. Image-based 3D photography using

opacity hulls. ACM Transactions on Graphics, 21(3):427–437,

2002.

[169] H. Mayer, A. Bornik, J. Bauer, K. Karner, and F. Leberl.

Multiresolution texture for photorealistic rendering. In

IEEE Spring Conference on Computer Graphics, pages 174–

183, 2001.

[170] M. McGuire, W. Matusik, H. Pfister, J. F. Hughes, and

Frédo Durand. Defocus video matting. ACM Transactions

on Graphics, 24(3):567–576, 2005.

[171] M. McGuire, W. Matusik, and W. Yerazunis. Practical,

Real-time Studio Matting using Dual Imagers. In Euro-

graphics Symposium on Rendering, pages 235–244, 2006.

[172] J. Meinguet. Multivariate interpolation at arbitrary points

made simple. Journal of Applied Mathematics and Physics, 5:

439–468, 1979.

[173] D. P. Mitchell and A. N. Netravali. Reconstruction Filters

in Computer-Graphics. In Conference on Computer graphics

and interactive techniques, ACM SIGGRAPH, pages 221–228,

1988.

[174] M. Mittring and Crytek GmbH. Advanced virtual tex-

ture topics. In ACM SIGGRAPH 2008 courses, ACM SIG-

GRAPH, pages 23–51, 2008.

[175] E. N. Mortensen and W. A. Barrett. Intelligent scissors

for image composition. In Conference on Computer graphics

bibliography 167

and interactive techniques, ACM SIGGRAPH, pages 191–198,

1995.

[176] G. Müller, J. Meseth, M. Sattler, R. Sarlette, and R. Klein.

Acquisition, synthesis and rendering of bidirectional tex-

ture functions. In Eurographics 2004, State of the Art Reports,

pages 69–94, 2004.

[177] T. Naemura, J. Tago, and H. Harashima. Real-time video-

based modeling and rendering of 3D scenes. Computer

Graphics and Applications, 22(2):66–73, 2002.

[178] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clus-

tering: Analysis and an algorithm. In Advances in Neural

Information Processing Systems, pages 849–856, 2001.

[179] D. Nister and H. Stewenius. Scalable recognition with a

vocabulary tree. In IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 2161–2168,

2006.

[180] E. Ofek, E. Shilat, A. Rappoport, and M. Werman. Mul-

tiresolution textures from image sequences. IEEE Computer

Graphics and Applications, 17(2):18–29, 1997.

[181] E. Ofek, E. Shilat, and M. Werman. Highlight and

reflection-independent multiresolution textures from im-

age sequences. IEEE Computer Graphics and Applications,

17:18–29, 1997.

[182] A. Oliva and A. Torralba. Modeling the shape of the scene:

A holistic representation of the spatial envelope. Interna-

tional Journal of Computer Vision, 42(3):145–175, 2001.

[183] P. Panareda Busto, C. Eisenacher, S. Lefebvre, and M. Stam-

minger. Instant Texture Synthesis by Numbers. Vision,

Modeling and Visualization 2010, pages 81–85, 2010.

[184] P. Pérez, M. Gangnet, and A. Blake. Poisson Image Editing.

ACM Transactions on Graphics, 22(3):313–318, 2003.

[185] K. Perlin and L. Velho. Live paint: painting with procedu-

ral multiscale textures. In Conference on Computer graphics

and interactive techniques, ACM SIGGRAPH, pages 153–160,

1995.

[186] M. Piccardi. Background subtraction techniques: a review.

In IEEE International Conference on Systems, Man and Cyber-

netics, volume 4, pages 3099–3104, 2004.

[187] T. Pock, M. Urschler, C. Zach, R. Beichel, and H. Bischof.

A Duality Based Algorithm for TV-L1-Optical-Flow Image

168 bibliography

Registration. In International Conference on Medical Image

Computing and Computer Assisted Intervention, pages 511–

518, 2007.

[188] D. Porquet, J.-M. Dischler, and D. Ghazanfarpour. Real-

Time High-Quality View-Dependent Texture Mapping us-

ing Per-Pixel Visibility. In GRAPHITE, pages 213–220,

2005.

[189] T. Porter and T. Duff. Compositing digital images. Com-

puter Graphics, 18(3):253–259, 1984.

[190] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery. Numerical Recipes: The Art of Scientific Computing.

Cambridge University Press, 3rd edition, 2007. ISBN 978-

0521880688.

[191] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro,

and W. Stuetzle. View-Based Rendering: Visualizing Real

Objects from Scanned Range and Color Data. In Eurograph-

ics Workshop on Rendering, pages 23–34, 1997.

[192] Z. Qin, M. D. McCool, and C. S. Kaplan. Real-time texture-

mapped vector glyphs. In Symposium on Interactive 3D

graphics and games, pages 125–132, 2006.

[193] Z. Qin, M. D. McCool, and C. Kaplan. Precise vector tex-

tures for real-time 3D rendering. In Symposium on Interac-

tive 3D graphics and games, pages 199–206, 2008.

[194] G. Ramanarayanan and K. Bala. Constrained texture syn-

thesis via energy minimization. IEEE Transactions on Visu-

alization and Computer Graphics, 13(1):167–178, 2007.

[195] N. Ray, V. Nivoliers, S. Lefebvre, and B. Lévy. Invisible

seams. Computer Graphics Forum, 29(4):1489–1496, 2010.

[196] A. Reche-Martinez and G. Drettakis. View-Dependent Lay-

ered Projective Texture Maps. In Pacific Conference on Com-

puter Graphics and Applications, pages 492–500, 2003.

[197] X. Ren and J. Malik. Learning a classification model for

segmentation. In IEEE International Conference on Computer

Vision, pages 10–17, 2003.

[198] Microsoft Research. Microsoft Photosynth, 2011.

http://photosynth.net, visited in Feb. 2011.

[199] C. Rocchini, P. Cignomi, C. Montani, and R. Scopigno.

Multiple textures stitching and blending on 3D objects. In

Eurographics Workshop on Rendering, pages 119–130, 1999.

bibliography 169

[200] R. Ronfard and G. Taubin, editors. Image and Geometry

Processing for 3-D Cinematography. Springer-Verlag, 2010.

ISBN 978-3642123917.

[201] C. Rother, V. Kolmogorov, and A. Blake. "GrabCut" - Inter-

active Foreground Extraction using Iterated Graph Cuts.

ACM Transactions on Graphics, 23(3):309–314, 2004.

[202] P. Sand and S. Teller. Particle Video: Long-Range Motion

Estimation using Point Trajectories. In IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition,

pages 2195–2202, 2006.

[203] M. Sarim, A. Hilton, J.-Y. Guillemaut, H. Kim, and T. Takai.

Multiple view wide-baseline trimap propagation for natu-

ral video matting. In Conference on Visual Media Production,

pages 82–91, 2010.

[204] H. S. Sawhney. Simplifying motion and structure analysis

using planar parallax and image warping. In International

Conference on Pattern Recognition, pages 403 – 408, 1994.

[205] T. Schoenemann and D. Cremers. High resolution motion

layer decomposition using dual-space graph cuts. In IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition, pages 1 –7, 2008.

[206] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and

P. Haeberli. Fast Shadows and Lighting Effects using Tex-

ture Mapping. Computer Graphics, 26(2):249–252, 1992.

[207] S. Seitz and C. Dyer. Physically-valid view synthesis by

image interplation. In IEEE Workshop on Representation of

Visual Scenes, pages 18–26, 1995.

[208] S. Seitz and C. Dyer. ViewMorphing. In Conference on Com-

puter graphics and interactive techniques, ACM SIGGRAPH,

pages 21–30, 1996.

[209] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruc-

tion by voxel coloring. International Journal of Computer

Vision, 35(2):151–173, 1999.

[210] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and

R. Szeliski. A comparison and evaluation of multi-view

stereo reconstruction algorithms. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, vol-

ume 1, pages 519–528, 2006.

[211] A. Sellent, M. Eisemann, B. Goldlücke, D. Cremers, and

M. Magnor. Motion field estimation from alternate expo-

sure images. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, PP(PrePrints), 2010.

170 bibliography

[212] P. Sen. Silhouette maps for improved texture magnifica-

tion. In ACM SIGGRAPH/EUROGRAPHICS Conference on

Graphics Hardware, pages 65–73, 2004.

[213] Peter Shirley. Fundamentals of Computer Graphics 2nd Edi-

tion. Transatlantic Publishers, 2005. ISBN 978-1568812694.

[214] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL(R)

Programming Guide : The Official Guide to Learning

OpenGL(R), Version 1.4. Addison-Wesley Professional, 2003.

ISBN 978-0321173485.

[215] J. Sivic, B. Kaneva, A. Torralba, S. Avidan, and W. T. Free-

man. Creating and exploring a large photorealistic virtual

space. In IEEE Workshop on Internet Vision, pages 1391–

1407, 2008.

[216] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer.

A survey of methods for volumetric scene reconstruction

from photographs. In International WS on Volume Graphics,

pages 81–100, 2001.

[217] P.-P. J. Sloan, M. F. Cohen, and S. J. Gortler. Time Criti-

cal Lumigraph Rendering. In Symposium on Interactive 3D

Graphics, pages 17–24, 1997.

[218] A. R. Smith and J. F. Blinn. Blue screen matting. In Con-

ference on Computer graphics and interactive techniques, ACM

SIGGRAPH, pages 259–268, 1996.

[219] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:

Exploring photo collections in 3D. ACM Transactions on

Graphics, 25(3):835–846, 2006.

[220] N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski. Finding

paths through the world’s photos. ACM Transactions on

Graphics, 27(3):11–21, 2008.

[221] J. Starck and A. Hilton. Spherical matching for temporal

correspondence of non-rigid surfaces. In IEEE International

Conference on Computer Vision, pages 1387–1394, 2005.

[222] J. Starck and A. Hilton. Virtual view synthesis of people

from multiple view video sequences. Graphical Models, 67

(6):600–620, 2005.

[223] J. Starck and A. Hilton. Surface capture for performance

based animation. IEEE Computer Graphics and Applications,

27(3):21–31, 2007.

[224] F. Steinbrücker, T. Pock, and D. Cremers. Advanced data

terms for variational optic flow estimation. In Vision, Mod-

eling, and Visualization, pages 155–164, 2009.

bibliography 171

[225] F. Steinbruecker, T. Pock, and D. Cremers. Large displace-

ment optical flow computation without warping. In IEEE

International Conference on Computer Vision, pages 1609–

1614, 2009.

[226] J. Stewart, J. Yu, S. J. Gortler, and L. McMillan. A New

Reconstruction Filter for Undersampled Light Fields. In

Eurographics Workshop on Rendering, pages 150–156, 2003.

[227] T. Stich. Space-Time Interpolation Techniques. PhD the-

sis, Computer Graphics Lab, TU Braunschweig, Germany,

2009.

[228] T. Stich, C. Linz, G. Albuquerque, and M. Magnor. View

and Time Interpolation in Image Space. Computer Graphics

Forum, 27(7):1781–1787, 2008.

[229] T. Stich, C. Linz, C. Wallraven, D. Cunningham, and

M. Magnor. Perception-motivated Interpolation of Image

Sequences. In Symposium on Applied Perception in Graphics

and Visualization, pages 97–106, 2008.

[230] J. Sun, N.-N. Zheng, H. Tao, and H.-Y. Shum. Image hal-

lucination with primal sketch priors. In IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition,

pages 729–736, 2003.

[231] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson matting.

ACM Transaction on Graphics, 23(3):315–321, 2004.

[232] J. Sun, Z.B. Xu, and H.Y. Shum. Image super-resolution us-

ing gradient profile prior. In IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, pages 1–8,

2008.

[233] J. Sun, J. Zhu, and M. F. Tappen. Context-constrained hal-

lucination for image super-resolution. In IEEE Computer

Society Conference on Computer Vision and Pattern Recogni-

tion, pages 231 –238, 2010.

[234] Kalyan Sunkavalli, Micah K. Johnson, Wojciech Matusik,

and Hanspeter Pfister. Multi-scale image harmonization.

ACM Transactions on Graphics, 29(3):1–10, 2010.

[235] R. Szeliski. Video mosaics for virtual environments. IEEE

Computer Graphics and Applications, 16(2):22 –30, 1996.

[236] R. Szeliski. Image alignment and stitching: a tutorial. Foun-

dations and Trends in Computer Graphics and Vision, 2(1):1–

104, 2006.

172 bibliography

[237] T. Takai, A. Hilton, and T. Matsuyama. Harmonized Tex-

ture Mapping. In International Symposium on 3D Data Pro-

cessing, Visualization and Transmission, pages 1–8, 2010.

[238] C. C. Tanner, C. J. Migdal, and M. T. Jones. The clipmap:

a virtual mipmap. In Conference on Computer graphics

and interactive techniques, ACM SIGGRAPH, pages 151–158,

1998.

[239] M. Tarini and P. Cignoni. Pinchmaps: Textures with cus-

tomizable discontinuities. Computer Graphics Forum, 24(3):

557–568, 2005.

[240] Christian Theobalt, Stephan Wuermlin, Edilson de Aguiar,

and Christoph Niederberger. New Trends in 3D Video.

Eurographics Tutorial, 2007.

[241] C. Tomasi and R. Manduchi. Bilateral filtering for gray

and color images. In International Conference on Computer

Vision, pages 839–846, 1998.

[242] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.-Y.

Shum. Synthesis of bidirectional texture functions on arbi-

trary surfaces. ACMTransactions on Graphics, 21(3):665–672,

2002.

[243] B. Triggs, P. F. McLauchlan, R. Hartley, and A. W. Fitzgib-

bon. Bundle adjustment - a modern synthesis. In Inter-

national Workshop on Vision Algorithms: Theory and Practice,

pages 298–372, 2000.

[244] R.Y. Tsai. An efficient and accurate camera calibration tech-

nique for 3D machine vision. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pages

364–374, 1986.

[245] J. Tumblin and P. Choudhury. Bixels: Picture samples

with sharp embedded boundaries. In Rendering Techniques,

pages 255–264, 2004.

[246] T. Tung, S. Nobuhara, and T. Matsuyama. Simultaneous

super-resolution and 3D video using graph-cuts. In IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition, pages 1–8, 2008.

[247] Y. Tzur and A. Tal. FlexiStickers - Photogrammetric Tex-

ture Mapping using Casual Images. ACM Transactions on

Graphics, 28(3):1–10, 2009.

[248] M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating

Ghosting and Exposure Artifacts in Image Mosaics. In

bibliography 173

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 509–516, 2001.

[249] J. D. van Ouwerkerk. Image super-resolution survey. Image

Vision Computing, 24(10):1039–1052, 2006.

[250] M. Vasilescu, Alex O., and D. Terzopoulos. TensorTextures:

multilinear image-based rendering. ACM Transactions on

Graphics, 23(3):336–342, 2004.

[251] S. Vedula, S. Baker, and T. Kanade. Image based spatio-

temporal modeling and view interpolation of dynamic

events. ACM Transactions on Graphics, 24(2):240–261, 2005.

[252] J. Wang and M. F. Cohen. An iterative optimization ap-

proach for unified image segmentation and matting. In

IEEE International Conference on Computer Vision, pages 936–

943, 2005.

[253] J. Wang and M. F. Cohen. Image and video matting: a

survey. Foundations and Trends in Computer Graphics and

Vision, 3(2):97–175, 2007.

[254] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, andM. F. Co-

hen. Interactive video cutout. ACM Transactions on Graph-

ics, 24(3):585–594, 2005.

[255] J. Wang, M. Agrawala, and M. F. Cohen. Soft scissors: an

interactive tool for realtime high quality matting. ACM

Transactions on Graphics, 26(3):1–9, 2007.

[256] L. Wang and K. Mueller. Generating sub-resolution detail

in images and volumes using constrained texture synthe-

sis. In IEEE Conference on Visualization, pages 75–82, 2004.

[257] Z. Wang and E. P. Simoncelli. Translation insensitive im-

age similarity in complex wavelet domain. In IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing,

volume 2, pages 573–576, 2005.

[258] M. Waschbüsch, S. Würmlin, and M. H. Gross. 3D Video

Billboard Clouds. Computer Graphics Forum, 26(3):561–569,

2007.

[259] L.-Y. Wei. Tile-based texture mapping on graphics hard-

ware. In SIGGRAPH 2004 Sketches, pages 67–74, 2004.

[260] L. Y. Wei and M. Levoy. Fast texture synthesis using tree-

structured vector quantization. In Conference on Computer

graphics and interactive techniques, ACM SIGGRAPH, pages

479–488, 2000.

174 bibliography

[261] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State of

the art in example-based texture synthesis. In Eurographics

2009, State of the Art Report, pages 1–25, 2009.

[262] Y. Weiss. Segmentation using eigenvectors: A unifying

view. In International Conference on Computer Vision, pages

975–982, 1999.

[263] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers,

and H. Bischof. Anisotropic Huber-L1 optical flow. In

British Machine Vision Conference, pages 1–11, 2009.

[264] O. Whyte, J. Sivic, and A. Zisserman. Get Out of my Pic-

ture! Internet-based Inpainting. In British Machine Vision

Conference, pages 1–11, 2009.

[265] B. Wilburn, M. Smulski, H.-H. K. Lee, and M. Horowitz.

The Light Field Video Camera. In Media Processors, pages

1–8, 2002.

[266] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez,

A. Barth, A. Adams, M. Horowitz, and M. Levoy. High

performance imaging using large camera arrays. ACM

Transactions on Graphics, 24(3):765–776, 2005.

[267] L. Williams. Casting curved shadows on curved surfaces.

In Computer Graphics, volume 12, pages 270–274, 1978.

[268] L. Williams. Pyramidal parametrics. ACM SIGGRAPH

Computer Graphics, 17(3):1–11, 1983.

[269] G. Wolberg. Digital Image Warping. IEEE Computer Society

Press, 1990. ISBN 978-0818689444.

[270] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless,

T. Duchamp, D. H. Salesin, and W. Stuetzle. Surface light

fields for 3D photography. In Conference on Computer graph-

ics and interactive techniques, ACM SIGGRAPH, pages 287–

296, 2000.

[271] O. Woodford and A. W. Fitzgibbon. Fast image-based ren-

dering using hierarchical image-based priors. In British

Machine Vision Conference, volume 1, pages 260–269, 2005.

[272] Q. Wu and Y. Yu. Feature Matching and Deformation for

Texture Synthesis. ACM Transactions on Graphics, 23(3):364–

367, 2004.

[273] J. Xiao, C. Rao, and M. Shah. View Interpolation for Dy-

namic Scenes. In European Conference on Computer Graphics,

pages 153–162, 2002.

bibliography 175

[274] Yahoo. Flickr, 2011. http://www.flickr.com, visited in

Feb. 2011.

[275] J.C. Yang, J. Wright, T.S. Huang, and Y. Ma. Image super-

resolution as sparse representation of raw image patches.

In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 1–8, 2008.

[276] R. Yang and M. Pollefeys. Multi-resolution real-time stereo

on commodity graphics hardware. In IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition,

volume 1, pages 211–220, 2003.

[277] S. X. Yu and J. Shi. Multiclass spectral clustering. In

IEEE International Conference on Computer Vision, volume 2,

pages 313–320, 2003.

[278] T. Yu, C. Zhang, M. Cohen, Y. Rui, and Y. Wu. Monocular

video foreground/background segmentation by tracking

spatial-color gaussian mixture models. In IEEE Workshop

on Motion and Video Computing, pages 5–12, 2007.

[279] C. Zach, T. Pock, and H. Bischof. A duality based approach

for realtime TV-L1 optical flow. In DAGM conference on

Pattern recognition, pages 214–223, 2007.

[280] Z. Zhang. A flexible new technique for camera calibra-

tion. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 22(11):1330–1334, 2000.

[281] C. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and

R. Szeliski. High-quality video view interpolation using

a layered representation. ACM Transactions on Graphics, 23

(3):600–608, 2004.

[282] M. Zwicker, W. Matusik, F. Durand, and H. Pfister. An-

tialiasing for Automultiscopic 3D Displays. In Eurographics

Symposium on Rendering, pages 107–114, 2006.

CURR ICULUM VITÆ - LEBENSLAUF

curriculum vitæ

1980 born in Cologne, Germany

1999 Highschool degree, main subjects mathematics and biology

Georg-Büchner Gymnasium, Cologne, Germany

2000 - 2006 Diploma in Computer Science

Universität Koblenz-Landau, Germany

since 2006 Ph.D. Student Computer Science, Institut für Computergraphik

TU Braunschweig, Germany

lebenslauf

1980 geboren in Köln

1999 Allgemeine Hochschulreife

Georg-Büchner Gymnasium, Köln

2000 - 2006 Diplom Informatik

Universität Koblenz-Landau

seit 2006 Wissenschaftlicher Mitarbeiter, Institut für Computergraphik

TU Braunschweig

177

PUBL ICAT IONS

journal articles

• A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel,

M. Magnor, and D. Keim. Automated Analytical Methods

to Support Visual Exploration of High-Dimensional Data.

IEEE Transactions on Visualization and Computer Graphics, ac-

cepted for publication.

• A. Sellent, M. Eisemann, B. Goldlücke, D. Cremers, and M.

Magnor. Motion Field Estimation from Alternate Exposure

Images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, accepted for publication.

• A. Sellent, M. Eisemann, M. Magnor. Robust FeatureMatch-

ing in General Multi-Image Setups. Journal of WSCG, 19(1–

3):1–8, 2011.

• D. J. Lehmann, G. Albuquerque, M. Eisemann, A. Tatu,

H. Schumann, M. Magnor, and H. Theisel. Visualisierung

und Analyse multidimensionaler Datensätze. Informatik-

Spektrum, 33(5):589–600, 2010.

• M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. de

Aguiar, N. Ahmed, C. Theobalt, and A. Sellent. Floating

Textures. Computer Graphics Forum, 27(2):409–418, 2008. Re-

ceived the Best Student Paper Award at Eurographics 2008

• M. Eisemann, T. Grosch, S. Müller, and M. Magnor. Fast

Ray/Axis-Aligned Bounding Box Overlap Tests using Ray

Slopes. Journal of Graphic Tools, 12(4):35–46, 2007.

refereed conference papers

• M. Eisemann, D. Gohlke, M. Magnor. Edge-Constrained

Image Compositing. In Graphics Interface, 2011, accepted

for publication.

• M. Eisemann, G. Albuquerque, M. Magnor. Data Driven

Color Mapping. In EuroVA, 2011, accepted for publication.

• M. Eisemann, E. Eisemann, H.-P. Seidel, M. Magnor. Photo

Zoom: High Resolution fromUnordered Image Collections.

In Graphics Interface, pages 71–78, 2010.

179

180 bibliography

• P. Bauszat, M. Eisemann, and M. Magnor. The Minimal

Bounding Volume Hierarchy. In Vision, Modeling and Visu-

alization, pages 227–234, 2010.

• M. Eisemann and M. Magnor. ZIPMAPS: Zoom-Into-Parts

Texture Maps. In Vision, Modeling and Visualization, pages

291–297, 2010.

• G. Albuquerque, M. Eisemann, D. J. Lehmann, H. Theisel,

and M. Magnor. Improving the Visual Analysis of High-

dimensional Datasets Using Quality Measures. In IEEE

Symposium on Visual Analytics Science and Technology, pages

19–26, 2010.

• C. Lipski, D. Bose, M. Eisemann, K. Berger, and M. Magnor.

Sparse Bundle Adjustment Speedup Strategies. In WSCG

Communication Papers Proceedings, pages 85–88, 2010.

• G. Albuquerque, M. Eisemann, D. J. Lehmann, H. Theisel,

and M. Magnor. Quality-Based Visualization Matrices. In

Vision, Modeling and Visualization, pages 341–349, 2009.

• M. Eisemann, J. Wolf, and M. Magnor. Spectral Video Mat-

ting. In Vision, Modeling and Visualization, pages 121–126,

2009.

• A. Sellent, M. Eisemann, B. Goldlücke, T. Pock, D. Cre-

mers, and M. Magnor. Variational Optical Flow from Alter-

nate Exposure Images. In Vision, Modeling and Visualization,

pages 135–143, 2009.

• A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind,

H. Theisel, M. Magnor, and D. Keim. Combining auto-

mated analysis and visualization techniques for effective

exploration of high-dimensional data. In IEEE Symposium

on Visual Analytics Science and Technology, pages 59–66, 2009.

• A. Sellent, M. Eisemann, andM. Magnor. Motion Field and

Occlusion Time Estimation via Alternate Exposure Flow.

In IEEE International Conference on Computational Photogra-

phy, pages 1–8, 2009.

• M. Eisemann, C. Woizischke, and M. Magnor. Ray Trac-

ing with the Single-Slab Hierarchy. In Vision, Modeling and

Visualization, pages 373–381, 2008.

• M. Eisemann, A. Sellent, and M. Magnor. Filtered Blend-

ing: A new, minimal Reconstruction Filter for Ghosting-

Free Projective Texturing with Multiple Images. In Vision,

Modeling and Visualization, pages 119–126, 2007.

bibliography 181

• M. Eisemann, T. Grosch, M. Magnor, and S. Müller. Auto-

matic Creation of Object Hierarchies for Ray Tracing Dy-

namic Scenes. In WSCG Short Communications Proceedings,

pages 57–64, 2007.

book chapters

• M. Eisemann, T. Stich, M. Magnor. 3-D Cinematography

with Approximate or No Geometry. In Image and Geome-

try Processing for 3-D Cinematography Rémi Ronfard, Gabriel

Taubin, eds., Springer-Verlag, Berlin, Heidelberg, Germany,

pages 259–284, 2010, ISBN 978-3642123917.

books

• M. Eisemann. Ray Tracing mittels dynamischer Bounding Vol-

ume Hierarchien: Eine Einführung und neue Methoden für dy-

namische Szenen. VDM Verlag, 2008, ISBN 978-3836499101.

technical reports

• M. Eisemann, D. Gohlke, and M. Magnor. Structure-Aware

Image Compositing. Technical Report 2010-11-12, Com-

puter Graphics Lab, TU Braunschweig, 2010.

• M. Eisemann and M. Magnor. ZIPMAPs: Zoom-into-parts

texture maps. Technical Report 2008-11-8, Computer Graph-

ics Lab, TU Braunschweig, 2008.

• A. Sellent, M. Eisemann, and M. Magnor. Calculating Mo-

tion Fields from Images with Two Different Exposure Times.

Technical Report 2008-5-6, TU Braunschweig, 2008.

• M. Eisemann, B. De Decker, M. Magnor, P. Bekaert, E. de

Aguiar, N. Ahmed, C. Theobalt, and A. Sellent. Floating

Textures. Technical Report 2008-10-4, Computer Graphics

Lab, TU Braunschweig, 2008.

• M. Eisemann and M. Magnor. Filtered Blending and Float-

ing Textures: Ghosting-free Projective Texturing with Mul-

tiple Images. Technical Report 2007-5-3, Computer Graph-

ics Lab, TU Braunschweig, 2007.

• M. Eisemann, T. Grosch, M. Magnor, and S. Müller. Au-

tomatic Creation of Object Hierarchies for Ray Tracing Dy-

namic Scenes. Technical Report 2006-6-1, Computer Graph-

ics Lab, TU Braunschweig, 2006.

182 bibliography

refereed posters

• M. Eisemann, E. Eisemann, H.-P. Seidel, and M. Magnor.

Photo Zoom: High Resolution from Unordered Image Col-

lections. Poster at Siggraph, 2010.

• M. Eisemann, T. Grosch, M. Magnor, and S. Müller. Auto-

matic Creation of Object Hierarchies for Ray Tracing Dy-

namic Scenes. Poster at Eurographics Symposium on Ren-

dering, 2006.

