
Visually Pleasing Real-time Global Illumination

Rendering for Fully-dynamic Scenes

Zhao Dong

Max-Planck-Institut Informatik

Saarbrücken, Germany

Dissertation zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.–Ing.)

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Eingereicht am 03. März 2011 in Saarbrücken.

http://www.eg.org
http://diglib.eg.org

ii

Betreuender Hochschullehrer — Supervisor

Prof. Dr. Hans-Peter Seidel MPI Informatik

Saarbrücken, Germany

Gutachter — Reviewers

Prof. Dr. Hans-Peter Seidel MPI Informatik Saarbrücken, Germany

Prof. Dr. Jan Kautz University College London London, UK

Prof. Dr. Thorsten Grosch University of Magdeburg Magdeburg, Germany

Dekan — Dean

Prof. Dr. Holger Hermanns Universität des Saarlandes

Saarbrücken, Germany

Datum des Kolloquiums — Date of Defense

03. March 2011 in Saarbrücken

Prüfungsausschuss — Board of Examiners

Head of Colloquium Prof. Dr. Joachim Weickert Universität des Saarlandes

Saarbrücken, Germany

Examiner Prof. Dr. Hans-Peter Seidel MPI Informatik

Saarbrücken, Germany

Examiner Prof. Dr. Thorsten Grosch University of Magdeburg

Magdeburg, Germany

Protocol Dr. Carsten Stoll MPI Informatik

Saarbrücken, Germany

Zhao Dong

Max-Planck-Institut Informatik

Campus E1 4 (Room 117)

66123 Saarbrücken, Germany

dong@mpi-inf.mpg.de

iii

Dedicated to the wonderful land and people of Deutschland.
Thank you for five amazing years!

iv

v

Abstract

Global illumination (GI) rendering plays a crucial role in the photo-realistic ren-

dering of virtual scenes. With the rapid development of graphics hardware, GI has

become increasingly attractive even for real-time applications nowadays. How-

ever, the computation of physically-correct global illumination is time-consuming

and cannot achieve real-time, or even interactive performance. Although the real-

time GI is possible using a solution based on precomputation, such a solution

cannot deal with fully-dynamic scenes. This dissertation focuses on solving these

problems by introducing visually pleasing real-time global illumination rendering

for fully-dynamic scenes.

To this end, we develop a set of novel algorithms and techniques for rendering

global illumination effects using the graphics hardware. All these algorithms not

only result in real-time or interactive performance, but also generate comparable

quality to the previous works in off-line rendering. First, we present a novel im-

plicit visibility technique to circumvent expensive visibility queries in hierarchical

radiosity by evaluating the visibility implicitly. Thereafter, we focus on rendering

visually plausible soft shadows, which is the most important GI effect caused by

the visibility determination. Based on the pre-filtering shadow mapping theory, we

successively propose two real-time soft shadow mapping methods: “convolution

soft shadow mapping” (CSSM) and “variance soft shadow mapping” (VSSM).

Furthermore, we successfully apply our CSSM method in computing the shadow

effects for indirect lighting. Finally, to explore the GI rendering in participating

media, we investigate a novel technique to interactively render volume caustics in

the single-scattering participating media.

vi

Kurzfassung

Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung

virtueller Szenen von entscheidender Bedeutung. Dank der rapiden Entwicklung

der Grafik-Hardware wird die globale Beleuchtung heutzutage sogar für Echtzei-

tanwendungen immer attraktiver. Trotz allem ist die Berechnung physikalisch ko-

rrekter globaler Beleuchtung zeitintensiv und interaktive Laufzeiten können mit

“standard Hardware” noch nicht erzielt werden. Obwohl das Rendering auf der

Grundlage von Vorberechnungen in Echtzeit möglich ist, kann ein solcher Ansatz

nicht auf voll-dynamische Szenen angewendet werden.

Diese Dissertation zielt darauf ab, das Problem der globalen Beleuchtungs-

berechnung durch Einführung von neuen Techniken für voll-dynamische Szenen

in Echtzeit zu lösen. Dazu stellen wir eine Reihe neuer Algorithmen vor,

die die Effekte der globaler Beleuchtung auf der Grafik-Hardware berechnen.

All diese Algorithmen erzielen nicht nur Echtzeit bzw. interaktive Laufzeit-

en sondern liefern auch eine Qualität, die mit bisherigen off-line Method-

en vergleichbar ist. Zunächst präentieren wir eine neue Technik zur Berech-

nung impliziter Sichtbarkeit, die aufwändige Sichbarkeitstests in hierarchischen

Radiosity-Datenstrukturen vermeidet. Anschliessend stellen wir eine Methode

vor, die weiche Schatten, ein wichtiger Effekt für die globale Beleuchtung, in

Echtzeit berechnet. Auf der Grundlage der Theorie über vorgefilterten Schatten-

wurf, zeigen wir nacheinander zwei Echtzeitmethoden zur Berechnung weicher

Schattenwürfe: “Convolution Soft Shadow Mapping” (CSSM) und “Variance Soft

Shadow Mapping” (VSSM). Darüber hinaus wenden wir unsere CSSM-Methode

auch erfolgreich auf den Schatteneffekt in der indirekten Beleuchtung an. Ab-

schliessend präsentieren wir eine neue Methode zum interaktiven Rendern von

Volumen-Kaustiken in einfach streuenden, halbtransparenten Medien.

vii

Summary

Global illumination (GI) rendering plays a crucial role in the photorealistic ren-

dering of virtual scenes. It has long been applied in the special effect production

in the film industry. With the rapid development of the graphics hardware, GI

has become increasingly attractive for real-time applications, like video games,

nowadays. However, the computation of the fully physically-correct global illu-

mination is usually time-consuming and cannot achieve real-time, or even inter-

active performance. Although the real-time GI is possible using a solution based

on precomputation, such a solution cannot deal with fully-dynamic scenes. This

dissertation focuses on solving these problems by introducing the visually pleas-

ing real-time GI rendering for fully-dynamic scenes. The visually pleasing GI

rendering is motivated not only by improving the performance, but also by fulfill-

ing the visual perception of human beings. Some research works already prove

that in lots of scenarios, the fully physically-correct GI is not necessary for the

human perception. Since the final goal of our renderings is to provide images for

perception, we can derive some reasonable approximations from the fundamental

theory of GI to achieve the visually pleasing real-time GI renderings.

To this end, we develop a set of novel algorithms and techniques for rendering

visually pleasing GI effects using graphics hardware. All these algorithms not

only result in real-time or interactive performance, but also generate comparable

quality to the previous off-line rendering. First, we present a novel implicit visibil-

ity technique to circumvent expensive visibility queries in hierarchical radiosity

by evaluating the visibility implicitly. Thereafter, we focus on rendering visu-

ally plausible soft shadows, which is the most important GI effect caused by the

visibility determination. Based on the pre-filtering shadow mapping theory, we

successively propose two real-time soft shadow mapping methods: “convolution

soft shadow mapping” (CSSM) and “variance soft shadow mapping” (VSSM).

Furthermore, we successfully apply our CSSM method in computing the shadow

effects for indirect lighting. Finally, to explore the GI rendering in participating

media, we investigate a novel technique to interactively render volume caustics in

the single-scattering participating media. In brief, in Part.II and Part.III, we focus

on how to approximately solve the visibility determination in GI which is usually

the bottleneck of the whole GI algorithm. In Part.IV, we step further to deal with

the GI effect: volume caustics in participating media. Before starting the detailed

introductions of all these algorithms, in Part.I, we also lay out the general theoret-

ical background materials that are needed to understand our novel algorithms and

techniques.

Implicit Visibility Visibility determination usually dominates the performance

of the GI algorithm. We start with circumventing the visibility queries in radiosity

viii

methods. Usually, ray casting is utilized to explicitly determine the visibility be-

tween two elements in the scene. However, its performance is slow and prevents

the algorithm to reach interactive or real-time performance. Compared with the

explicit way, we propose to implicitly evaluate the visibility between individual

scene elements in Chapter 4. Our method is inspired by the principles of hier-

archical radiosity and tackles the visibility problem by implicitly evaluating the

mutual visibility while constructing a hierarchical link structure between scene

elements. Our novel method is able to reproduce a large variety of GI effects for

moderately sized scenes at interactive rates, such as indirect lighting, soft shadows

under environment map lighting, as well as area light sources.

Pre-filtering Soft Shadow Maps and their Applications Soft shadow is one of

the most important global illumination effects and computing a soft shadow has

long been an important topic in the rendering research. We successively present

two kinds of visually plausible soft shadow mapping methods which are based on

the pre-filtering shadow map theory and implemented in the percentage closer soft

shadow (PCSS) [Fernando05a] framework. The first one is the so-called “con-

volution soft shadow mapping” (CSSM) which is based on the convolution in

Fourier space to approximate the traditional shadow test function. The key con-

tribution of CSSM is the convolution pre-filtering theory which can be applied

in both the average blocker depth step and the soft shadow computation step of

PCSS framework. One major limitation of CSSM is: achieving high-quality soft

shadows increases the number of Fourier basis terms to be at least four, so that

large amounts of texture memory are required to store Fourier basis terms, mak-

ing it less practical. To overcome this problem, we present a second method called

“variance soft shadow mapping” (VSSM). VSSM is based on a one-tailed version

of Chebyshev’s inequality and requires a much lower amount of texture mem-

ory. Both CSSM and VSSM can achieve visually plausible soft shadow rendering

at the real-time performance. Especially for VSSM, more than 100 fps can be

achieved for very complex scenes.

Moreover, motivated by the concept of clustered visibility, we extend the

CSSM method to compute the shadow effects of indirect lighting. Since the per-

ception of the indirect shadows is not sensitive, a reasonable approximated shadow

result is usually sufficient. We propose a highly efficient method to compute in-

direct illumination by clustering virtual point lights (VPLs), which represent the

indirect illumination, into virtual area lights (VALs). A single visibility value is

shared for all VPLs in a cluster, which we compute with the CSSM method to

avoid banding artifacts. Our method achieves both visually plausible quality and

real-time frame rates for large and dynamic scenes.

Interactive Volume Caustics Furthermore, we investigate the GI effect: vol-

ume caustics rendering in the single-scattering participating media. Our method

ix

is based on the observation that line rendering of illumination rays into the screen

buffer establishes a direct light path between the viewer and the light source. This

connection is introduced via a single scattering event for every pixel affected by

the line primitive. Based on this connection, the radiance contributions of these

light paths to each of the pixels can be computed and accumulated independently

using the graphics hardware. Our method achieves high-quality results at real-

time or interactive frame rates for large and dynamic scenes containing the homo-

geneous or inhomogeneous participating media.

Finally, we conclude the thesis and point out the future works in Chapter.9.

x

xi

Zusammenfassung

Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung

virtueller Szenen von entscheidender Bedeutung. Es findet seit langem Anwen-

dung bei der Erzeugung von Spezialeffekten in der Filmindustrie. Dank des rapi-

den Fortschritts in der Grafik-Hardwareentwicklung wurde die globale Beleuch-

tung heutzutage sogar für Echtzeitanwendungen, wie z.B. Computer Spiele, at-

traktiv. Trotz allem ist die Berechnung gänzlich physikalisch korrekter globaler

Beleuchtung zeitintensiv, und es können weder Echtzeit noch interaktive Laufzeit-

en erzielt werden. Obwohl das Rendering auf der Grundlage von Vorberech-

nungen in Echtzeit möglich ist, kann ein solcher Ansatz nicht mit dynamischen

Szenen umgehen.

Diese Dissertation zielt darauf ab, diese Probleme mittels der Einführung von

“visuell ansprechendem Rendering” globaler Beleuchtung für voll-dynamische

Szenen in Echtzeit zu lösen. Dabei ist neben der Geschwindigkeitsverbesserung

auch die menschliche visuelle Wahrnehmung von Wichtigkeit. Einige wis-

senschaftliche Arbeiten beweisen bereits, dass in vielen Szenarien, die

physikalisch korrekte globale Beleuchtung für die menschliche Wahrnehmung

nicht notwendig ist. Da es die Aufgabe unseres Renderns ist, realistische Bilder

zur Betrachtung von Menschen zu erzeugen, können wir einige akzeptable

Näherungen aus der Theorie der globalen Beleuchtung herleiten, um visuell

ansprechendes Rendering globaler Beleuchtung zu erzielen.

Dazu entwickeln wir eine Reihe neuer Algorithmen und Techniken zum Ren-

dern visuell ansprechender Effekte der globaler Beleuchtung auf der Grafik Hard-

ware. Unsere Algorithmen erzielen nicht nur Echtzeit oder interaktive Laufzeit,

sondern liefern auch eine Qualität, die mit bisherigen off-line Methoden ver-

gleichbar ist. Zuerst stellen wir eine neue Technik zur Berechnung der Sicht-

barkeit vor, um aufwändige Sichbarkeitsabfragen in hierarchischen Radiosity-

Datenstrukturen zu umgehen, indem wir die Sichtbarkeit implizit auswerten. An-

schliessend betrachten wir das Rendern visuell realistischer weicher Schatten,

welches ein wichtiger Effekt für die globale Beleuchtung darstellt und durch die

Auswertung der Sichtbarkeit hervorgerufen wird. Auf der Grundlage der Theorie

über vorgefilterten Schattenwurf stellen wir nacheinander zwei EchtzeitMethod-

en zur Berechnung weicher Schattenwürfe vor: “Convolution Soft Shadow Map-

ping” (CSSM) und “Variance Soft Shadow Mapping” (VSSM). Darüber hin-

aus wenden wir unsere CSSM-Methode erfolgreich an, um den Schatteneffekt

auch für die indirekte Beleuchtung zu berechnen. Abschliessend erforschen wir

eine neue Technik zum interaktiven Rendern von Volumen-Kaustiken in einfach

streuenden, teildurchlässigen Medien, um das Rendern globaler Beleuchtung in

halbtransparenten Medien zu untersuchen. Kurz gefasst, in Teil. II und Teil. III

konzentrieren wir uns darauf, wie man die Sichtbarkeit bei globaler Beleuchtung

xii

näherungsweise bestimmen kann, was im Normalfall der Engpass des gesamten

Algorithmus zur globalen Beleuchtung ist. In Teil. IV fahren wir mit der Behand-

lung des Effekts der Volumen-Kaustiken in teiltransparenten Medien fort.

Implizite Sichtbarkeit Die Bestimmung der Sichtbarkeit ist ein massgeblich-

er Faktor für die Geschwindigkeit des Algorithmus zur Berechnung der glob-

alen Beleuchtung. Wir beginnen damit, die Sichtbarkeitstests mittels Schnittpunk-

tberechnungen von Strahlen zu umgehen. Normalerweise wird ein Strahl verwen-

det, um explizit die Sichtbarkeit zwischen zwei Elementen einer Szene zu bestim-

men. Allerdings mindert dieses Vorgehen die Geschwindigkeit des Algorithmus

und behindert somit das Erreichen interaktiver Laufzeit oder Echtzeit. Im Vergle-

ich zum expliziten Ansatz, beschreiben wir in Kapitel. 4 wie die Sichtbarkeit zwis-

chen einzelnen Szene-Elementen implizit berechnet werden kann. Unsere Meth-

ode wurde inspiriert von dem Prinzip des hierarchischen Radiosity und widmet

sich dem Sichtbarkeitsproblem durch implizite Auswertung mit Hilfe einer hier-

archischen Verbindungsstruktur zwischen Szenen-Elementen. Unsere neue Meth-

ode ermöglicht es, viele Effekte der globaler Beleuchtung für mittelgrosse Szenen

mit interaktiven Bildwiederholraten wiederzugeben; wie z.B. indirekte Beleuch-

tung und weiche Schatten sowohl unter Umgebungsbeleuchtung als auch unter

Flächenlichtquellen.

Vorfiltern von weichen Schattenwürfen und deren Anwendung Weiche

Schatten sind einer der wichtigsten Effekte der globalen Beleuchtung und standen

lange Zeit im Fokus der Rendering-Forschung. Basierend auf der Theorie zum

vorgefilterten Schattenwurf (implementiert im “Percentage Closer Soft Shad-

ow” (PCSS) [Fernando05a] system), demonstrieren wir zwei Methoden zum vi-

suell realistischen Rendern von weichem Schattenwurf. Die erste Methode ist

das sogenannte “Convolution Soft Shadow Mapping” (CSSM), welches auf Fal-

tung im Fourier-Raum basiert und womit die Schattenfunktion näherungsweise

berechnet werden kann. Der Hauptbeitrag, den CSSM leistet, ist dass die The-

orie vorgefilterter Schatten sowohl im Schritt zur Bestimmung der durschnit-

tlichen Blockadetiefe als auch im Schritt zur Berechnung der weichen Schatten im

wächst-system angewendet werden kann. Eine grundlegende Beschränkung von

CSSM ist Folgendes: hochqualitative weiche Schatten erfordern mehrere Fourier-

Basisterme (mehr als 4), sodass grosse Mengen an Texturspeicher benötigt wer-

den. Dadurch ist diese Methode wenig praktikabel. Um dies zu umgehen, stellen

wir eine zweite Methode, das sogenannte “Variance Soft Shadow Mapping”

(VSSM), vor. VSSM basiert auf einer Version der Chebyshev-Ungleichung und

benötigt viel weniger Texturspeicher. Sowohl CSSM als auch VSSM können in

Echtzeit visuell realistische weiche Schatten rendern. Insbesondere kann VSSM

selbst bei komplexen Szenen Bilder mit mehr als 100 Bildern pro Sekunde auf

aktueller Hardware berechnen.

xiii

Darüberhinaus, motiviert durch das Verfahren der “geclusterten Sichtbarkeit”,

erweitern wir die CSSM-Methode, um auch den Schatteneffekt der indirekten

Beleuchtung zu berechnen. Da die visuelle Wahrnehmung indirekter Schatten

nicht sehr genau ist, genügt im Normalfall ein hinreichend angenäherter Schat-

ten. Wir führen eine hocheffiziente Methode ein, um die indirekte Beleuch-

tung zu berechnen. Dies geschieht durch Gruppierung virtueller Punktlichtquellen

(Cluster) und Approximation durch virtuelle Flächenlichtquellen, die die indirek-

te Beleuchtung darstellen. Jeder Cluster von virtuellen Punktlichtquellen erhält

einen gemeinsamen Sichtbarkeitswert, der durch die CSSM-Methode berech-

net wird, um Artefakte zu vermeiden. Unser Ansatz erzielt sowohl visuell

ansprechende Qualität als auch Wiederholraten in Echtzeit für große und dynamis-

che Szenen.

Interactive Volumen-Kaustiken Desweiteren untersuchen wir den folgen-

den Effekt globaler Beleuchtung: Rendern von Volumen-Kaustiken in einfach-

streuenden, teiltransparenten Medien. Unsere Methode basiert auf der Beobach-

tung, dass das Rendern von Beleuchtungstrahlen als Linien im Bildschirmpuffer

einen direkten Lichtpfad zwischen dem Betrachter und der Lichtquelle erzeugt.

Diese Verbindung wird für jeden Pixel erstellt, der von der Linie geschnitten

wird, und zwar durch eine einzige Streuung. Basierend auf dieser Verbindung

kann der Strahlungsdichteanteil dieser Lichtpfade unter Verwendung der Grafik-

Hardware zu jedem der Pixel berechnet und unabhängig aufsummiert werden.

Unser Verfahren erzielt hochqualitative Resultate bei interaktiven oder Echtzeit-

Wiederholraten für große und dynamische Szenen mit homogenen oder inhomo-

genen teiltransparenten Medien.

Im letzten Kapitel. 9 folgt eine Zusammenfassung dieser Dissertation und ein

Ausblick auf zuküftige Forschung und Verbesserungen unserer hier vorgestellten

Verfahren.

xiv

xv

Acknowledgements

This thesis would not have been possible without the help and support of many

individuals. First of all, I would like to thank my supervisor Prof. Dr. Hans-Peter

Seidel. I am extremely thankful to Prof. Seidel who gave me the opportunity

to work in the truly remarkable research environment in the Computer Graphics

group at the MPI and supported me throughout my thesis work. It was a privilege

to work in one of the best Computer Graphics groups in the world.

I owe special thanks to Prof. Dr. Jan Kautz and Prof. Dr. Thorsten Grosch for

being reviewers of my thesis. Both have guided me and shared their experiences

with me during my Ph.D. studies. Over the past few years we have all along

closely cooperated with each other.

I want to especially thank Prof. Dr. Christian Theobalt, who was my mentor in

my first two years of Ph.D.. His support and kindness greatly helped me to find out

my own interested research field. I also want to especially thank Dr. John Snyder

who invited me to do an internship at the computer graphics group of Microsoft

Research, Redmond. John is a wonderful researcher and mentor, who provided

me so many advices and guidance for both my research and career. Also gracious

thanks to the computer graphics group at Microsoft Research, especially Dr. Jim

Blinn for inviting me as an intern.

Gracious thanks for my research collaborators: Tobias Ritschel, Sungkil Lee,

Kaleigh Smith, Robert Strzodka, Thomas Annen and Elmar Eissemann. Their

wonderful insights and support helped me a lot during the tough research process.

They are not only my collaborators, but also my good friends. Also Robert Herzog

and Michael Schwarz always supported me for discussions in depth when I got

confused, and I appreciate their help very much.

I also own special thanks for my two officemates: Prof. Dr. Ivo Ihrke and

Jens Kerber for their great support for me. I was really fortunate to have so many

great times and memorable moments with them. I own special thanks to Naveed

Ahmed for all his support in various ways during these years, and he truly is one

of my best friends. Also gracious thanks for my Chinese colleagues: Kuangyu

Shi and Tongbo Chen who supported and helped me so much during my Ph.D.

studies.

Since I came from abroad to Germany, I usually have lots of administrative

processing stuffs to bother Ms. Sabine Budde and Ms. Conny Liegl, who are the

secretary of AG4. They are always kind and generous to support me with their

professional works, and gracious thanks for their wonderful works.

Furthermore, I own thanks to all my colleagues of the computer graphics group

at MPI. It is these colleagues who make MPI such a wonderful research place. I

cannot name all of them, but I would like to especially thank the following people

(alphabetical order in last name): Edioson de Aguiar, Tunc Ozan Aydin, Andreas

xvi

Baak, Lionel Baboud, Martin Bokeloh, Karol Myszkowski, Carsten Stoll, Martin

Sunkel, Art Tevs.

I would like to further thank my previous supervisors Prof. Qunsheng Peng

and Prof. Wei Chen from the State Key Lab of CAD&CG of Zhejiang University,

who really convinced me that graphics is a wonderful topic to do research in, and

hence I decided to pursue a Ph.D. in this field.

Finally I would like to thank my wife Yi Chai and my parents for their support

and sacrifices throughout the years of this thesis.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Main Contributions and Organization of the Thesis 3

1.3.1 Part I - Background and Basic Definitions 4

1.3.2 Part II - Interactive Global Illumination Using Implicit

Visibility . 4

1.3.3 Part III - Convolution Soft Shadow Maps and Its Applica-

tions . 5

1.3.4 Part IV - Interactive Global Illumination in Participating

Media . 6

I Background and Related Works 9

2 Background Knowledge 11

2.1 Radiometry . 11

2.1.1 Basic Terms . 12

2.1.2 Bidirectional Reflectance Distribution Function 13

2.1.3 Reflection and Refraction 15

2.1.4 Fresnel . 16

2.2 Rendering equation . 17

2.3 Rendering Techniques . 19

2.3.1 Ray Tracing methods . 19

2.3.2 Radiosity methods . 20

2.3.3 Precomputed Radiance Transfer 20

2.3.4 Ambient Occlusion . 21

2.3.5 Accurate vs. Approximate 21

2.4 Visually Pleasing Soft Shadow Mapping 22

2.4.1 The Basic Theory of Shadow Mapping 23

2.4.2 Percentage Closer Soft Shadow Mapping 25

2.5 Participating Media Rendering 29

xviii CONTENTS

2.5.1 Transport Equation in Single Scattering Media 30

2.6 Caustics . 31

2.7 Image Displaying Solutions . 32

2.7.1 Programmable Hardware Accelerated Rendering Pipeline 33

2.7.2 Deferred Shading . 36

3 Related Works 39

3.1 General Global Illumination Rendering Techniques 39

3.1.1 Ray-Tracing . 39

3.1.2 Radiosity . 41

3.1.3 Precomputed Radiance Transfer 41

3.1.4 Ambient Occlusion . 42

3.1.5 Other Global Illumination Methods 43

3.2 Real-time Soft Shadow Generation 44

3.2.1 Hard Shadow Mapping with Pre-Filtering 44

3.2.2 Soft Shadow Volume . 46

3.2.3 Soft Shadow Mapping with Backprojection 47

3.2.4 Soft Shadow Mapping with Pre-Filtering 47

3.3 Visibility in Global Illumination 48

3.4 Caustics and Participating Media 49

3.4.1 Surface Caustics . 49

3.4.2 Participating Media . 50

3.4.3 Volume Caustics . 50

3.4.4 Lines as Rendering Primitives 51

3.5 Successive and Active Future Work 52

II Interactive Global Illumination Using Implicit Visibility 53

4 Interactive Global Illumination Using Implicit Visibility 55

4.1 Introduction . 55

4.2 Global Illumination using Implicit Visibility 56

4.2.1 Conceptual Overview . 58

4.3 Hierarchical Implicit Visibility 59

4.3.1 Geometric Hierarchy Preprocessing 59

4.3.2 Creating the Hierarchical Link Structure 61

4.3.3 Illumination Computation 64

4.3.4 Light Sources . 65

4.4 Results . 65

4.4.1 Discussion . 66

4.5 Summary . 68

CONTENTS xix

III Pre-filtering Soft Shadow Maps and their Applications 71

5 Real-time All-frequency Shadows In Dynamic Scenes 73

5.1 Introduction . 73

5.2 Plausible Soft Shadows Using Convolution 74

5.2.1 Convolution Soft Shadows 76

5.2.2 Estimating Average Blocker Depth 76

5.2.3 CSM Order Reduction 78

5.3 Illumination with Soft Shadows 79

5.3.1 Rendering Prefiltered Soft Shadows 79

5.3.2 Generation of Area Lights for Environment Maps 81

5.4 Limitations and Discussion . 82

5.5 Results . 83

5.6 Summary . 85

6 Real-time Indirect Illumination with Clustered Visibility 91

6.1 Introduction . 91

6.2 Overview . 92

6.3 Instant Radiosity with Clustered Visibility 92

6.3.1 Convolution Soft Shadow Maps 94

6.3.2 CSSM with parabolic projection 94

6.4 Clustering . 95

6.4.1 Clustering criterion . 95

6.4.2 Temporal coherence . 97

6.5 GPU-Based Rendering from Clustered Visibility 98

6.6 Results and discussion . 101

6.6.1 Discussion . 102

6.7 Summary . 103

7 Variance Soft Shadow Maps 107

7.1 Introduction . 107

7.1.1 Soft Shadowing with PCSS 107

7.1.2 Our Method . 109

7.2 Overview . 109

7.3 Variance Soft Shadow Mapping 110

7.3.1 Review of Variance Shadow Maps 110

7.3.2 Estimating Average Blocker Depth 111

7.4 Non-Planarity Problem and its Solution 112

7.4.1 Motivation for Kernel Subdivision 112

7.4.2 Uniform Kernel Subdivision Scheme 113

7.4.3 Adaptive Kernel Subdivision Scheme 114

7.5 Implementations and Discussion 116

xx CONTENTS

7.5.1 Min-Max Hierarchical Shadow Map 116

7.5.2 Number of Sub-Kernels 116

7.5.3 Combining Different Subdivision Schemes 117

7.5.4 SAT Precision and Contact shadow 117

7.5.5 Threshold Selection . 118

7.6 Results . 118

7.6.1 Limitations . 120

7.7 Summary . 121

IV Interactive Global Illumination in Participating Media 123

8 Interactive Volume Caustics in Single-Scattering Media 125

8.1 Introduction . 125

8.2 Overview . 126

8.3 Line-Based Volume Caustics . 128

8.4 Implementation . 131

8.4.1 Generating Line Primitives 131

8.4.2 Light Ray Blending . 132

8.4.3 Visibility and Remaining Illumination Components 133

8.4.4 Inhomogeneous Media 133

8.5 Results and Discussion . 134

8.5.1 Ground Truth Comparison 134

8.5.2 Performance Analysis 135

8.5.3 Influence of User Parameters 137

8.5.4 Limitations . 139

8.6 Summary . 140

9 Conclusions and Future Work 141

9.1 Summary . 141

9.1.1 Implicit Visibility . 142

9.1.2 Pre-filtering Soft Shadow Maps and their applications . . 142

9.1.3 Volume Caustics . 143

9.2 Conclusions and Future Works 143

Bibliography 145

A List of Publications 167

B Curriculum Vitae – Lebenslauf 169

Chapter 1

Introduction

1.1 Motivation

Computer graphics involves creating, or rendering, images of arbitrary virtual en-

vironments. A long sought research goal in computer graphics is to render images

of these environments as realistically as possible to finally achieve images indis-

tinguishable from photographs. Such an image synthesis process is usually called

the photorealistic rendering. The probably most involved part in the photoreal-

istic rendering is the global illumination (GI). GI is a general name for a group

of algorithms used in 3D computer graphics that are meant to add more realistic

lighting to 3D scenes. The general definition of the GI effects includes realistic

soft shadow, indirect lighting (interreflection), caustics and so on. All these GI

effects deliver important cues in the perception of 3D virtual scenes, which are

important for lots of applications, such as material and architectural design, film

special effects production, etc. While the fundamental theory behind the creation

of the GI effects is well-studied and often considered as solved, its computing

efficiency is not. Improving the rendering performance is therefore the main mo-

tivation of current research in the GI.

In the rendering field of computer graphics, lots of algorithms have been

developed to simulate the GI effects accurately or approximately, such as ray

tracing, radiosity, ambient occlusion [Zhukov98], precomputed radiance transfer

(PRT) [Sloan02] and so on. Over the past several years, these methods have been

widely applied in lots of fields. For example, in the field of film special effects

production, the high-quality GI renderings create stunning visual effects, as can

be seen in the movies like Shrek or Avatar. Yet the computation time of synthe-

sizing such high-quality, realistic images is still very long and one single movie

frame usually takes several hours to render. Although some methods, like PRT,

can achieve real-time or interactive GI rendering relying on precomputation, they

2 Chapter 1: Introduction

usually restrict the input scene to be static or contains only rigid transformation.

With the rapid development of the graphics hardware, GI has become increas-

ingly attractive even for the real-time applications, e.g. video games, nowadays.

However, the real-time rendering performance is the basic requirement for the

game rendering. The computation of fully physically-correct global illumination

is usually time-consuming and cannot achieve real-time or even interactive perfor-

mance. Another requirement for the game rendering is no restriction for the input

geometry. The deformable animation or other dynamic models are very common

in the game scenes. Therefore, the precomputation-based GI rendering method

cannot be fully applied in such a scenario.

Recently, the perception researches in computer graphics reveal that in lots of

scenarios the fully physically-correct GI rendering is not necessary based on the

accuracy of human perceptions. [Ramasubramanian99, Myszkowski01, Yu09].

This motivates the research works to derive reasonable approximations from the

fundamental theory of GI to achieve visually pleasing real-time GI renderings.

For example, although the ambient occlusion [Zhukov98] is a crude approxima-

tion to full GI, it has the nice property of offering a better perception of the 3d

shape of the displayed objects. Therefore, the ambient occlusion technique has

been widely applied in real-world applications.

Motivated by aforementioned reasons, in this dissertation, we introduce a set

of novel algorithms and techniques using the graphics hardware to achieve visu-

ally pleasing real-time rendering for GI effects. All these algorithms can achieve

results in real-time or interactive performance and their rendering quality is com-

parable to the traditional offline rendering. Furthermore, all of our methods do not

impose any restrictions for the input scenes and can be easily applied in the real

scenarios.

1.2 Problem Statement

Creating real-time visually pleasing GI rendering has several important require-

ments:

• The rendering quality should be visually plausible and comparable to the

ground truth reference generated by the offline rendering. The minor differ-

ences between the generated image and the reference image is acceptable,

but the visually noticeable artifacts should be avoided.

• The rendering performance should achieve real-time or at least interactive

rates for arbitrary cases. The algorithm itself should contain performance

potential for the future improved graphics hardware.

1.3 Main Contributions and Organization of the Thesis 3

• There should not be any kinds of scene-related precomputation involved, so

that there is no restriction imposed on the input scenes.

Considering the GI effects: realistic soft shadow, indirect lighting (interreflec-

tion), caustics and so on, our research works focus on designing the reasonable

approximate GI solutions, which fulfill the above requirements, for all the effects

to achieve visually pleasing real-time rendering.

The visibility determination is always the bottleneck for the GI rendering.

Therefore, we will treat how to reasonably approximate the visibility test and

improve its performance as our major target in the research. In radiosity methods,

ray casting is usually applied to explicitly compute the visibility between scene

elements, which is in low efficiency. To solve this problem, in Chapter. 4 we in-

troduce the implicit visibility scheme to attack this bottleneck, which achieves the

GI renderings at the near-real-time frame rates for fully dynamic scenes.

Realistic soft shadow is probably the most important and difficult effect for

the GI rendering. However, it is also limited by the performance in visibility de-

termination. Soft shadow is a long-standing hard problem in rendering. Actually,

for any existing soft shadow algorithm, a compromise between the quality and

performance always exists. In Chapter. 5 and Chapter. 7 of this dissertation, we

propose two different soft shadow mapping methods to deal with the generation

of the visually plausible real-time soft shadows. Further, we extend our method

in Chapter. 6 to render the soft shadows of indirect lighting in real-time and also

receive promising results.

Recently, the GI effects in the participating medium start to gather more and

more attentions. However, the interactions of light in a participating medium, like

scattering, will increase the computation burden of the GI simulation and make it

more difficult. Volume caustics are intricate illumination patterns formed by the

light first interacting with a specular surface and subsequently being scattered in-

side a participating medium. Previous techniques [Jensen98] for generating vol-

ume caustics are time-consuming and are considered impossible to achieve in

real-time before. In Chapter. 8, we introduce a novel volume caustics rendering

method for the single-scattering participating media. Our method achieve high-

quality results at real-time/interactive frame rates for complex dynamic scenes

containing homogeneous/inhomogeneous participating media.

1.3 Main Contributions and Organization of the

Thesis

This thesis is divided into 4 parts and contains 9 chapters. Apart from Part. I,

which deals with the necessary theoretical and technical background and covers

4 Chapter 1: Introduction

the preliminaries, each subsequent part focuses on one specific GI effect. The

algorithmic solutions described in part. II, III,and IV have been published before

in a variety of peer-reviewed conference and journal articles [Dong07, Annen08a,

Dong09, Yang10, Hu10]. We will conclude this thesis and discuss some future

works in Chapter. 9. The major contributions of the thesis are briefly summarized

in the following sections:

1.3.1 Part I - Background and Basic Definitions

This part covers the theoretical preliminaries required for the understanding of the

rest of the thesis. In Chapter. 2, the foundation of our works is laid. We will intro-

duce the general theoretical background materials that are needed to understand

our new algorithms and techniques. In Chapter. 3, we briefly summarize and dis-

cuss the most related work in the GI rendering field. Later, we introduce several

recent research works that follow our works in this thesis.

Figure 1.1: Interactive global illumination effects for fully dynamic scenes.

The bin discretization is 6× 12× 12 and the indirect lighting is one-bounce.

The performance for teapot scene (3878 vertices) is 6.43fps and for dragon

scene (2670 vertices) is 7.53fps.

1.3.2 Part II - Interactive Global Illumination Using Implicit

Visibility

In order to improve the speed of visibility determination for radiosity-like meth-

ods, in Chapter 4 we propose to implicitly evaluate the visibility between indi-

vidual scene elements. Our method is inspired by the principles of hierarchical

radiosity [Hanrahan91] and tackles the visibility problem by implicitly evaluating

mutual visibility while constructing a hierarchical link structure between scene

elements. Both the construction of the hierarchy and the computation of the final

lighting solution can be efficiently mapped onto the CPU and the GPU. By means

of the same efficient and easy-to-implement framework, we are able to reproduce

1.3 Main Contributions and Organization of the Thesis 5

a large variety of the GI effects for moderately sized scenes, such as the indi-

rect lighting, soft shadows under environment map lighting as well as area light

sources (as shown in Fig. 1.1).

1.3.3 Part III - Convolution Soft Shadow Maps and Its Appli-

cations

Based on the convolution theory of the pre-filtered shadow test [Annen07], we

develop a fast, approximate pre-filtering soft shadow mapping method which is

the so-called convolution soft shadow maps (CSSM) in Chapter. 5. CSSM is

implemented in the soft shadow framework of percentage closer soft shadow

(PCSS) [Fernando05a] and achieves several hundred frames per second for a sin-

gle area light source. This allows for approximating environment illumination

with a sparse collection of area light sources and yields real-time frame rates.

Furthermore, we present this technique for rendering fully dynamic scenes under

arbitrary environment illumination, which does not require any precomputation.

The rendering results are shown in Fig. 1.2.

Figure 1.2: A fully dynamic animation of a dancing robot under environment

map lighting rendered at 29.4 fps without any precomputation. Incident ra-

diance is approximated by 30 area light sources (256×256 shadow map res-

olution each).

Visibility computation is also the bottleneck when rendering the indirect illu-

mination. However, recent perception researches [Yu09] have demonstrated that

the accurate visibility is unnecessary for the indirect illumination. To exploit this

insight, we cluster a large number of virtual point lights (VPLs), which represent

the indirect illumination when using the instant radiosity [Keller97], into a small

number of virtual area lights (VALs). This allows us to approximate the soft

shadow of the indirect lighting using our CSSM algorithm. Such an approximate

and fractional from-area visibility is faster to compute and avoids banding when

compared to the exact binary from-point visibility. In Chapter. 6, our experimen-

tal results demonstrate that the perceptual error of this approximation is negligible

and the real-time frame rates for large and dynamic scenes can be achieved. The

example rendering results are shown in Fig. 1.3.

6 Chapter 1: Introduction

Figure 1.3: One-bounce diffuse global illumination rendered at 800×800 pix-

els for a scene with dynamic geometry (17 k faces) and dynamic lighting at

19.7 fps. Our method uses soft shadows from 30 area lights to efficiently com-

pute the indirect visibility.

CSSM usually demands of large amounts of texture memory for storing

Fourier basis terms. This limitation prevents CSSM to be practically implemented

in the real-world interactive applications, like video games. In order to reduce the

memory cost and further improve the rendering speed, in Chapter. 7, we develop

Variance Soft Shadow Maps (VSSM) which extends the variance Shadow Maps

(VSM) [Donnelly06a] for the soft shadow generation. VSSM is also based on the

soft shadow framework of PCSS. To accelerate the average blocker depth evalu-

ation, we derive a novel formulation to efficiently compute the average blocker

depth based on pre-filtering. Furthermore, we avoid incorrectly lit pixels com-

monly encountered in VSM-based methods by appropriately subdividing the filter

kernel. As shown in Fig. 1.4, VSSM can render high-quality soft shadows very

efficiently (usually over 100 fps) for complex scene settings.

Figure 1.4: Different rendering results generated by our variance soft shadow

mapping method without any precomputation. From left to right, the render-

ing performances and the faces numbers of different input scenes are: 131 fps

(76k), 148 fps (141k), 110 fps (120k), 25 fps (9700k).

1.3.4 Part IV - Interactive Global Illumination in Participating

Media

Motivated by the interactive applications, in Chapter. 8, we propose a novel vol-

ume caustics rendering method for the single-scattering participating media. Our

1.3 Main Contributions and Organization of the Thesis 7

method is based on the observation that the line rendering of illumination rays into

the screen buffer establishes a direct light path between the viewer and the light

source. This connection is introduced via a single scattering event for every pixel

affected by the line primitive. Since the GPU is a parallel processor, the radiance

contributions of these light paths to each of the pixels can be computed and accu-

mulated independently. The implementation of our method is straightforward and

we show that it can be seamlessly integrated with existing methods for rendering

participating media. As shown in Fig. 1.5, Our method achieves high-quality re-

Figure 1.5: Different rendering results generated by our screen-based inter-

active volume caustics method. Both, specular and refractive volume caustics

in homogeneous and inhomogeneous participating media are handled by our

technique. From left to right, the rendering performances of different input

scenes are: 31 fps, 28 fps, 11 fps, 12.5 fps.

sults at real-time/interactive frame rates for complex dynamic scenes containing

homogeneous/inhomogeneous participating media.

8 Chapter 1: Introduction

Part I

Background and Related Works

Chapter 2

Background Knowledge

In this chapter, we will first begin with the review of the basic quantities and

equations which form the foundation of computer graphics rendering. Thereafter,

we will explain the soft shadow mapping techniques, especially the percentage-

closer soft shadows (PCSS) [Fernando05a] which provides the basic rendering

framework for our soft shadow mapping algorithms. Considering the performance

of the implementation, the general GPU-based rendering pipeline and deferred

shading will be further introduced, which has been exploited for all of our methods

to improve rendering speed.

2.1 Radiometry

The Global Illumination (GI) effects are all formed by the interaction between the

light and physical properties of input scene. Therefore, it is important for us to

understand the nature of light and some of the underlying physical properties so

as to understand how the light transportation is computed in computer graphics.

From the point of physics, the light is a kind of electromagnetic radiation

and it can be interpreted either as an electromagnetic wave (wave optics) or as

a flow of photons carrying energy (particle optics). In computer graphics, we

adopt geometrical optics which models the light as independent rays which travel

in space. Therefore, the interaction between the light and input scene can be

modeled as a geometrical problem. For a more detailed description of optics,

please refer to [Born64].

In this section, we will firstly explain the basic radiometric terms, then how to

solve the general light transport problems.

12 Chapter 2: Background Knowledge

2.1.1 Basic Terms

In following table, the symbols and corresponding units of basic radiometric terms

are shown.

Radiometric term Symbol Unit

Radiant energy Q J

Radiant flux Φ W

Radiant intensity I W
/

sr

Irradiance (incident) E W
/

m2

Radiosity (outgoing) B W
/

m2

Radiance L W
/

m2sr

Let us firstly introduce the basic unit of radiometry: radiant energy. Usually it is

denoted as Q and its unit is joule [J = W · s]. The radiant energy represents the

sum of all the energy that are carried by n photons over all wavelengths λ .

Radiant flux Φ is defined to be the radiant energy Q flowing through a surface

per unit time dt:

Φ =
dQ

dt
(2.1)

It is also often called flux and its unit is Watt [W]. Based on Φ, if considering

the per differential area dA we can get the quantity definition of irradiance E and

radiosity B:

E = B =
dΦ

dA
(2.2)

Note, although the quantity of irradiance E and radiosity B might be the same,

the directions of their energy transport are inverse. Irradiance E(x) represents the

flux arriving at a surface point x, and Radiosity B(x) represents the flux leaving

from surface point x.

Compared with irradiance E and radiosity B, intensity I is defined as the ratio

of flux with respect to solid angle ω instead of surface area A:

I =
dΦ

dω
(2.3)

Here, we should introduce the definition of solid angle ω . Considering a surface

point x and an arbitrary surface of projected size A = A · cosθ on x’s hemisphere

(as shown in Fig. 2.1.1), the definition of solid angle is ω = A
r2 and its unit is

steradian[sr]. Here, θ is the angle between the directional line Θ from x to surface

A and the local normal nx of A.

The last, but the most important radiometric term in computer graphics is ra-

diance. It is defined as the radiant flux per unit solid angle per unit projected area

2.1 Radiometry 13

Figure 2.1: The definition of solid angle.

which is leaving from or arriving at a surface point x:

L(x) =
d2φ

dAdω
=

d2φ

cosθdAdω
(2.4)

The unit of radiance is [W
/

m2sr]. Radiance can be interpreted as the number

of photons arriving per time at a small area from a certain direction. Hence, we

usually write radiance L(x) for point x and direction Θ as L(x→Θ). Radiance has

the important property of being constant along a ray in empty space, therefore ti

is commonly used by most rendering algorithms, such as ray tracing, GPU-based

rasterization rendering, etc.

All the above mentioned quantities also generally vary with the wavelength

of light. For example, the spectral radiance Lλ = dL
/

dλ and its unit corre-

spondingly changes to [W
/

m3sr]. In computer graphics, the spectral quantities

are generally defined based on the basis functions decomposed form the spec-

trum. In most cases, the RGB color space and its decomposed R, G, or B channels

are used. For example, the LR, LG and LB are the spectral radiance values which

correspond to R, G and B channels separately.

2.1.2 Bidirectional Reflectance Distribution Function

The bidirectional reflectance distribution function (BRDF) is used to describe how

the incident light reflect into a continuum of directions after hitting the surface

point. It is defined as the ratio of the differential reflected radiance Lr leaving

current point x in direction Θr and the differential incident irradiance Ei arriving

from direction Θi:

fr(xs,Θi→ Θr) =
dLr(xs→ Θr)

dEi(xs←Θi)
=

dLr(xs→Θr)

Li(xs←Θi)cosθidωΘi

(2.5)

14 Chapter 2: Background Knowledge

The geometry of BRDF is show in Fig. 2.1.2. Each direction Θ is itself pa-

Figure 2.2: The geometry of BRDF. x′, y′ and nx constitute the local coordi-

nate system of surface position xs.

rameterized by zenith angle θ and azimuth angle φ in polar coordinates. The

incident direction Θi = (θi,φi) and reflected direction Θr = (θr,φr) vary over the

unit hemisphere and x is the 2D position on the surface. The unit of BRDF is

[1
/

sr].

Considering the 2D position xs, incident direction Θi and reflected direction

Θr, the BRDF function fr(xs,Θi → Θr) = fr(xs,θi,φi,θr,φr) as a whole is 6-

dimensional. If the BRDF varies for different surface position xs, it is often

called spatially varying BRDF. Otherwise, the current material and its BRDF

are shift-invariant or homogeneous, and the current BRDF degenerates into 4-

dimentional function fr(θi,φi,θr,φr). If for current position xs the reflection

changes when the incident direction is rotated around nx, the BRDF of current

material is anisotropic. Otherwise, the BRDF is isotropic, and becomes a 5-

dimensional function fr(xs,θi,θr,φr−φi).
BRDF describes the reflectance properties of surface material. Physically-

correct BRDF models usually contain three important properties [Beckmann63]:

(1) Positivity:

fr(xs,Θi→ Θr)≤ 0 (2.6)

. Obviously, the BRDF value should not be negative. (2) Helmholtz reciprocity:

fr(xs,Θi→ Θr) = fr(xs,Θr→ Θi) (2.7)

It means that the BRDF must be symmetric in Θi and Θr (3) Energy conserving:

∫

Ω+
fr(xs,Θi→Θr)cosθrdωΘr

≤ 1 ∀ Θi ∈Ω+ (2.8)

2.1 Radiometry 15

it describes the fact that real materials do not reflect more energy than what they

receive. When integrating the reflected energy over the upper hemisphere at xs the

total amount of energy must be less or equal to the amount of incident energy.

Here, we would like to firstly introduce three most basic and popular BRDF

models used in our rendering projects: diffuse, glossy and specular.

(a) diffuse BRDF (b) glossy BRDF (c) specular BRDF

Figure 2.3: Three most basic and popular BRDF models are illustrated. The

yellow arrow represents the incident ray L, the red arrow is the local normal

nx of point x, and the grey arrow represents the reflected ray R.

Diffuse BRDF reflects incident energy evenly into all directions (Fig. 2.3

(a)). Therefore the reflected energy is the same in arbitrary direction, and there

will be no highlight and view dependency for diffuse BRDF. The surface with

this kind of material is usually called diffuse or lambertian surface. Specular

BRDF reflects incident energy in single direction and works just like a mirror

(Fig. 2.3 (c)). The reflected energy can only be observed in specular reflected

direction, so specular BRDF contains the highlight effect and view dependency.

The behavior of Glossy BRDF locates between diffuse and specular BRDF, and

it reflect the incident energy into a range of directions (Fig.2.3 (b)). Glossy

BRDF also has the highlight effect and the view dependency. These three basic

BRDF models are usually the components of other advanced BRDF models, such

as Blinn-Phong model [Blinn77], Lafortune model [Lafortune97], Ashikhmin-

Shirley model [Ashikhmin00] and so on. Since the rendering of surface material

is not the focus of this thesis, we only briefly introduce the BRDF concept and

the basic BRDF models here. We refer the reader to the recent SIGGRAPH 2005

course [Lensch05] for a comprehensive and detailed introduction about the real-

istic materials in computer graphics.

2.1.3 Reflection and Refraction

When an incident light ray L is traveling through a medium with an index of

refraction η1 to arrive at a perfectly-smooth planar interface with an index of

refraction η2, the energy of this ray splits into two parts (as shown in Fig. 2.1.3).

16 Chapter 2: Background Knowledge

The first part (R) is reflected off the surface and the other part (T) is refracted and

transmitted into the other medium. The reflected angle θ1 and refracted angle θ2

between reflected/refracted rays and the surface normal nx can be computed based

on Snell’s law [Born64]:

η1 sinθ1 = η2 sinθ2 (2.9)

Usually the incident ray L is known. To compute the reflected ray R and the

Figure 2.4: The geometry for the reflected and refracted rays at interface

surface.

refracted ray T , we can derive the following formulas based on the Snell’s

law [Glassner95] and the geometry for ray reflection and refraction (Fig. 2.1.3).

R = 2(nx ·L)nx−L (2.10)

T =−
η1

η2
(L− (nx ·L)nx)−





√

1−

(

η1

η2

)2

(1− (nx ·L)2)



nx (2.11)

The value of the index of refraction can be found in most of the optics text-

books [Born64]. For example, the air is usually considered to be close to vacuum

and has η ≈ 1.0. The glass often has η ≈ 1.5−1.7.

2.1.4 Fresnel

We have already showed the formulas to compute the directions of reflected and

refracted ray. Now we need to know how the energy of the incident ray splits

between the two different rays.

Considering the distribution of incident energy at surface point x, physically

there are three parts: absorbed by current material, reflected part and refracted

part. We define the ratio of each of these three parts to incident energy to be:

2.2 Rendering equation 17

absorptance α(x), reflectance ρ(x) and transmittance τ(x). In physically correct

rendering, the sum of α(x) + ρ(x) + τ(x) should be 1.0. In usual case, the ab-

sorption is ignored (α(x) = 0) and we just need to consider reflectance ρ(x) and

transmittance τ(x).

Fresnel’s equations are used to describe the reflectance and transmittance of

electromagnetic waves at an interface. That is, they give the reflectance and trans-

mittance for waves parallel and perpendicular to the plane of incidence [Born64]:

ρ||(x) =
η2 cosθ1−η1 cosθ2

η2 cosθ1 +η1 cosθ2
(2.12)

ρ⊥(x) =
η1 cosθ1−η2 cosθ2

η1 cosθ1 +η2 cosθ2
(2.13)

Here ρ||(x) is for the reflected light with its wave parallel to the plane of inci-

dence and ρ⊥(x) is for reflected light with its wave perpendicular to the plane of

incidence. If the incident light contains an equal mixture of parallel wave and

perpendicular wave, which is the usual natural light around us, the reflectance can

be computed by:

ρ(x) =
1

2

(

ρ||(x)
2 +ρ⊥(x)2

)

(2.14)

the corresponding transmittance is τ(x) = 1.0−ρ(x).

The effect of the Fresnel equations can be easily observed in reality, e.g. if

you look straight down from above at a pool of water, you will not see very much

reflected light on the surface of the pool, and can see down through the surface to

the bottom of the pool. At a glancing angle (looking with your eye level with the

water, from the edge of the water surface), you will see much more specularity

and reflections on the water surface, and might not be able to see what’s under the

water. In such a case, the amount of reflectance you see on a surface depends on

the viewing angle.

2.2 Rendering equation

Based on aforementioned basic concepts and terms, we now know how light re-

ceived by a surface is reflected. When rendering a scene without participating me-

dia, the kernel problem is how to describe the complete light transportation from

the light source to final view point. In 1986 Jim Kajiya [Kajiya86] and David Im-

mel [Immel86] simultaneously introduced the Rendering Equation to computer

graphics. The rendering equation is an integral equation describing the radiance

equilibrium leaving a surface point x to reach view point v as the sum of emitted

18 Chapter 2: Background Knowledge

and reflected radiance at that point:

Lv(x→Θo) = Le(x→ Θo)+
∫

Ω+
x

fr(x,Θ
′
i↔Θ′o) ·L(x← Θi) · (nx ·Θi)dωΘi

(2.15)

In this equation, Le is the emitted light, fr is the BRDF, nx is the normal at x, Θi

and Θo are the global incident light and viewing directions, and Θ′i and Θ′o are light

and view in local coordinates. This rendering equation describes, that the radiance

leaving point x towards direction Θo (to view point v) equals the radiance emitted

from the x in direction Θo, in case x is an emitter itself, plus all the reflected

radiance which can be computed by integrating all the incident radiance L(x←Θi)
(over the hemisphere Ω+

x of x) scaled by the BRDF fr(x,Θ
′
i↔Θ′o) and the cosine

weighting term nx ·Θi.

If we simplify eq.2.15 as following:

Lv = Le +TLin (2.16)

Here, Lin represents the incident radiance L(x←Θi) and T represents the integral

operator in eq.2.15. Note, Lin can be from direct lighting of light source or indirect

lighting bounced from scene elements. Considering the complete light transport

in scene, eq.2.16 can be recursively expanded into:

Lv = Le +TLe +T 2Le + . . . =
∞

∑
i=0

T iLe (2.17)

This expansion is called Neumann series and sums all the light contributions

through 0,1,2, . . . times reflection. Such a kind of multiple-bounces light trans-

portation is so-called global illumination.

The rendering equation forms the basis for computing the light transport in a

scene model without participating media. We notice that eq.2.15 performs inte-

gration over differential solid angle dωΘi
. In real rendering problems, we usually

parameterize the equation over differential surface instead for convenience:

Lv(x→Θo) = Le(x→ Θo)+
∫

x′∈Ω+

fr(x,x
′↔Θ′o) ·L(x← x′) ·G(x,x′)dAx′

(2.18)

Compared with eq.2.15, here x′ is the surface element in the hemisphere of x. The

previous cosine weighting term is replaced by G(x,x′). It is the geometric term

which is responsible for the geometric arrangement of both differential surfaces

taking the distance between each other, the orientation of each surface, as well as

mutual visibility between them into account:

G(x,x′) =
cosθx′ cosθx

||x− x′||
V (x,x′) (2.19)

2.3 Rendering Techniques 19

The visibility function V (x,x′) represents whether there exists occlusion between

x and x′ and in other words, whether x and x′ can see each other. V (x,x′) is a

piecewise binary function defined as follows:

V (x,x′) =

{

1

0

i f

else

x and x′ is mutually visible
(2.20)

The visibility term in the rendering equation illustrates how the shadow is orig-

inated from. Shadow is usually the most important visual clue for the percep-

tion of rendering. However, the evaluation of visibility function is usually time-

consuming, e.g. relying on ray casting, so how to improve the shadow generation

has all along been an important topic in rendering research.

2.3 Rendering Techniques

All existing rendering techniques are trying to accurately or approximately solve

the rendering equation. In this section, we will briefly introduce two existing accu-

rate rendering methods: ray tracing and radiosity, and two approximate rendering

methods: precomputed radiance transfer and ambient occlusion.

2.3.1 Ray Tracing methods

Ray tracing methods generate a final image by tracing light rays from each pixel

on the image plane into a given scene. During the light transportation, the intersec-

tions between the rays and scene elements will be computed. At each intersection

point, the exit radiance from light-surface interaction is computed based on the

rendering equation. Actually, the ray tracing start inversely from the screen pixel,

and therefore the whole process is implemented in recursive manner. That’s why

ray tracing is usually so-called inverse rendering method and also ray tracing is

an image-space algorithm.

The common bottleneck of ray tracing methods is the intersection computa-

tion. The hierarchical data structures [Glassner91], such as kd-tree, bounding

volume hierarchy (BVH), etc, are usually adopted to organize the input scene and

hence accelerate the intersection query. To handle global illumination effects,

such as soft shadow from area light source, diffuse/glossy inter-reflection, etc, the

Monte Carlo algorithm is applied. It is because we need to randomly decide the

a bunch of reflection/refraction ray directions so as to approach the correct result

of rendering equation. Although conceptually ray tracing can accurately solve the

rendering equation, the time-consuming for large amount of ray sampling usually

limits the performance of ray tracing in reality. We will discuss more state-of-the-

art ray tracing methods in Chapter. 3.

20 Chapter 2: Background Knowledge

2.3.2 Radiosity methods

Radiosity [Goral84, Cohen93] is an application of the finite element method to ac-

curately solve the rendering equation for scenes. It subdivide the input scene ge-

ometry into patches and treat the patches as either emitters or receivers. As stated

before, the rendering equation describes that the illumination process is in equi-

librium. Therefore, with the consideration of visibility, the energy exchange be-

tween emitter patches and receiver patches can continue until the solution reaches

its convergence. The visibility determination in radiosity is usually relying on a

simplified ray tracing method: ray casting [Roth82], which has the same perfor-

mance limitation as ray tracing. Such an energy exchange process turns out to

be equivalent to solving a system of linear equations. The final result is usually

stored at each vertex of the scene, hence radiosity can be regarded as a kind of

object-space algorithm.

Early radiosity methods only account for diffuse receivers but can be ex-

tended to support glossy receivers [Immel86, Cohen93]. The subdivision scheme

for radiosity methods are usually tricky. Basic radiosity has trouble resolving

sudden changes in visibility (e.g., hard-edged shadows) because coarse, regu-

lar discretization of input scene (into piecewise constant elements) corresponds

to a low-pass box filter of the spatial domain. The discontinuity meshing

method [Lischinski92] uses knowledge of visibility events to generate a more

intelligent discretization. We will also discuss more about radiosity methods in

the following Chapter. 3. Note, radiosity solve the rendering equation and get

the result for each vertex. To finally display the rendering result, we still require

another displaying algorithm to achieve it.

2.3.3 Precomputed Radiance Transfer

Precomputed Radiance Transfer (PRT) [Sloan02] is aiming at rendering a scene

in real-time with complex light interactions being precomputed to save time. The

light transport at scene point from incident radiance to output radiance is a linear

transformation. In essence, PRT can compute the illumination of a scene point as

a linear combination of incident lighting. Prior of that, in precomputation stage

a set of efficient basis functions must be used to approximately encode this data,

such as Spherical harmonics [Sloan02] or wavelets [Ng03]. Finally, the rendering

equation can be solved by computing the linear combination of the coefficients in

basis function space.

PRT can real-time handle environment and area lighting and glossy as well

as diffuse objects. Further, its rendering quality is very good. However, since

the projections into basis function usually only approximate original signal, the

rendering result of PRT is usually an approximate solution of rendering equation.

2.3 Rendering Techniques 21

The biggest problem of PRT comes from the precomputation. The precomputation

limits the input scenes which PRT method can handle are static or only contains

rigid transformations. If the scene start to deform, the whole precomputed info

will be invalid. However, the fully-dynamic scene is very common in usual ren-

dering applications, such as computer game, film special effects post-production,

etc. To overcome this limitation and develop global illumination rendering for

fully-dynamic scene is also another strong motivation of our research works in

this thesis. More PRT related works will be discussed in Chapter. 3.

2.3.4 Ambient Occlusion

Ambient occlusion [Zhukov98] captures a subset of global illumination effects,

by computing for each point of the surface the amount of incoming light from all

directions and considering potential occlusion by neighboring geometry. Ambient

occlusion is most often calculated by casting rays in every direction from the

current surface point. Essentially, the result of ambient occlusion is just a ratio

number which equals to the number of potential occluded rays divided by the

number of overall out-shooting rays. Obviously, it is a very crude approximation

to full solution of rendering equation.

Ambient occlusion is related to accessibility shading [Miller94], which deter-

mines appearance based on how easy it is for a surface to be touched by various

elements (e.g., dirt, light, etc.). It always works under the environmental light-

ing (sky lighting) condition. Although it is a crude approximation, the ambient

occlusion shading model has the nice property of offering a better perception of

the 3d shape of the displayed objects. This was shown in [Langer00] where the

authors report the results of perceptual experiments showing that depth discrimi-

nation under diffuse uniform sky lighting is superior to that predicted by a direct

lighting model. Further, the computation cost of ambient occlusion is cheap com-

pared with the full solution of complete global illumination. Due to its relative

simplicity and efficiency, the ambient occlusion has been very popularized in film

production animation and become a standard tool for computer graphics lighting

in motion pictures.

2.3.5 Accurate vs. Approximate

To achieve complete solution of rendering equation for global illumination ef-

fects are very time-consuming and expensive. For the accurate rendering tech-

niques, such ray tracing and radiosity, the huge amount of data samplings usually

slow the performance of rendering and make the real-time target very difficult.

However, from the perception side, the final target of our rendering is to gener-

ate an image which can fulfill the perception of human being. One interesting

22 Chapter 2: Background Knowledge

question is: whether the complete solution of rendering equation is necessary to

convince people the global illumination effect is correct? Lots of recent research

works [Ramasubramanian99, Myszkowski01]have proved that in lots of scenar-

ios, the fully physically-correct global illumination is not necessary to convince

human’s perception. Usually the visually pleasing approximate global illumina-

tion rendering results would be enough. That’s also why ambient occlusion be-

comes so successful in real application.

We have three targets in our global illumination effects rendering research

works: (1) visually pleasing rendering quality (2) real-time rendering performance

(2) handling fully-dynamic input scenes without any precomputation. Motivated

by perception-guided global illumination rendering, we position the rendering

results for our research are close to (not fully) physically-correct but visually

very pleasing. The visibility computation is usually the bottleneck of global il-

lumination. Therefore, in Chapter. 4 we introduce a kind of implicit visibility

method to accelerate the visibility computation of hierarchical radiosity method

and achieve interactive performance for fully-dynamic scenes. As stated before,

global illumination effects include realistic soft shadow, indirect lighting (inter-

reflection), caustics and so on. Among of them, the soft shadow caused by vis-

ibility determination plays very crucial role for the human perception of the 3D

world [Hasenfratz03a]. In Chapter. 5,6,7, we sequentially introduce several vi-

sually pleasing soft shadow algorithms and their applications in global illumi-

nation rendering. Since all of our soft shadow algorithms are based on shadow

mapping [Williams78], in following section we will introduce the background of

shadow mapping and also the theory of percentage-closer soft shadow mapping.

2.4 Visually Pleasing Soft Shadow Mapping

The simplest scene setting for shadow casting will include one light source, one

occluder and one receiver. As mentioned before, shadow casting is crucial for the

human perception of the 3D world [Wanger92]: (1) Shadows help to understand

relative object position and size in a scene. (2) Shadows can also help us under-

standing the geometry of a complex receiver. (3) Finally, shadows provide useful

visual cues that help in understanding the geometry of a complex occluder. Based

on the hard shadow of the complex occluder (Fig. 2.5 (a)), you can easily feel all

the three above points about how shadow affects our perception of the scene.

There are two major techniques for generating shadow: object-based shadow

volume [Crow77] and image-based shadow map [Williams78]. Both techniques

can be accelerated using the evolving graphics hardware. Since all the soft shadow

methods in this thesis are based on shadow mapping theory, we will not go further

into shadow volume methods. For more details about shadow volume methods,

2.4 Visually Pleasing Soft Shadow Mapping 23

(a) Hard shadow (b) Soft-edged shadow

Figure 2.5: The illustration of hard shadow and soft-edged shadow.

we refer the reader to Woo et al. [Woo90], Hasenfratz et al. [Hasenfratz03b], and

to a recent course [Eisemann09] for a detailed overview. In following subsection,

we will firstly illustrate the basic theory of shadow mapping

2.4.1 The Basic Theory of Shadow Mapping

Shadow mapping is a kind of image-based shadow algorithm. The basic shadow

mapping is usually used to generate the hard shadow. As shown in the Fig. 2.6,

a simple scene consists of a point light source, an occluder plane and a receiver

plane. The vertical bar on the right in Fig. 2.6 utilize the color to represent the

depth values in scene. ZNear and ZFar separately represents the minimal and

maximum value of all the depth values which are normalized into [0, 1]. We

will firstly create a 2d texture buffer which is so-called shadow map or depth

map to record the smallest depth values from the light source point, as shown in

Fig. 2.6. Then during rendering, we will compare the depth value of each point to

its corresponding minimal depth value stored in shadow map, and the comparison

results will determine the shadow value of current point. As shown in Fig. 2.6,

point a1 is lit and point a2 is in shadow.

The implementation of shadow mapping usually contains two steps: (1) Ren-

der the shadow map (depth map) and (2) Render the scene using the shadow map.

The first step renders the whole scene from the light’s point of view. From this

step, the shadow map is extracted and saved in the video memory of GPU in 2d

texture format. The second step is to draw the scene from the usual camera view-

24 Chapter 2: Background Knowledge

Point LightPoint Light

ZNear

Shadow Map

Occluder

��

Occluder

a a

ZFar

�

Receiver

a1 a2

Figure 2.6: The illustration of shadow mapping theory.

point, applying the shadow map. This process has three major components, the

first is to find the corresponding coordinates of the object as seen from the light,

the second is the depth test which compares that the depth value of current point

against the depth map, and finally, once accomplished, the scene point must be

drawn either in shadow or in lit. For the details of shadow mapping implementa-

tion, we refer the reader to check the code samples at [NVIDIA05].

One of the key disadvantages of shadow mapping is spatial aliasing, which

is due to that the sampling rate (resolution) of shadow map does not match the

resolution of current screen pixels [Aila04]. A simple way to overcome this

limitation is to increase the shadow map size, but due to memory, computa-

tional or hardware constraints, it is not always possible. Commonly used tech-

niques for real-time shadow mapping have been developed to circumvent this

limitation. These include Cascaded Shadow Maps [NVIDIA08], Trapezoidal

Shadow Maps [Martin04], Light Space Perspective Shadow Maps [Wimmer04]

or Parallel-Split Shadow Maps [Zhang06]. Also notable is that generated shad-

ows, even if aliasing free, have hard edges, which is not always desirable. In

order to emulate real world soft shadows, several solutions have been developed,

either by doing several lookups on the shadow map or creating pre-filterable non-

standard shadow maps to emulate the soft-edged shadows (Fig. 2.5 (b)). No-

table examples of these are Percentage Closer Filtering [Reeves87], Variance

Shadow Maps [Donnelly06a], Convolution Shadow Maps [Annen07] or Expo-

nential Shadow Maps [Annen08b].

2.4 Visually Pleasing Soft Shadow Mapping 25

2.4.2 Percentage Closer Soft Shadow Mapping

(a) Soft shadow under single area light (b) Soft shadow under environmental lighting

Figure 2.7: The illustration of soft shadows.

In this section, we will introduce the Percentage Closer Soft Shadow Map-

ping method (PCSS) [Fernando05a] which introduce a kind of visually-pleasing

soft shadow rendering framework. Our soft shadow rendering methods in Chap-

ter. 5,6,7 are all based on this framework. Let’s firstly introduce the basic concept

of soft shadow. As shown in Fig. 2.7 (a), the soft shadow from single area light

usually consists of three different parts: (1) if the current scene point is fully oc-

cluded and can not see any part of the light source, then it is fully dark and is in

umbra. (2) if the current scene point is partially occluded and can see part of the

light source, then it is in penumbra. (3) if the current scene point is not occluded

at all and can see the whole light source, it is in lit. Soft shadow plays very impor-

tant roles in the photo-realistic rendering, and lots of algorithms [Hasenfratz03b]

have been propose to deal with it.

Before introducing the PCSS method, let’s firstly check what is the percent-

age closer filtering (PCF) for hard shadow mapping [Reeves87]. As shown in

Fig. 2.8, compared with standard shadow mapping, the PCF method sample the

shadow map and do the depth comparison multiple times. The final shadow value

for current point x is essentially a linear combination of the results from all the

shadow comparisons. How many shadow comparisons will be done for each scene

point? Usually a fix-sized filter kernel will be assigned for each scene point, and

the number of texels in the filter kernel determines the number of shadow map

sampling and depth comparison. Based on PCF, we can generate visually pleas-

ing soft-edged shadow. However, soft-edged shadow is not soft shadow, since

26 Chapter 2: Background Knowledge

Filter Kernel
1

33%

=

Point Light

Shadow Map

Unfiltered Filtered

> 0

0 >

33%

Occluder

Receiver

x

Figure 2.8: The illustration of percentage closer filtering shadow mapping.

the size of filter kernel is isotropic for every scene point. An interesting obser-

vation here is the normal texture filtering techniques, such as mipmap, summed

area table (SAT) [Crow84], etc, cannot be directly applied for PCF. The reason is

the depth comparison has to been conducted before the filtering step. Therefore,

only the brute-force point sampling is applied in normal PCF shadow mapping

and slows its performance for large filter kernel. It is also the motivation of pre-

filtering shadow mapping methods [Donnelly06a, Annen07, Annen08b]. Our vi-

sually pleasing soft shadow mapping methods are all based on pre-filtering theory

of shadow mapping, and we will discuss it more in later chapters.

Although PCSS method [Fernando05a] is based on percentage-closer filtering,

its target is rendering visually pleasing soft shadow, not soft-edged shadow. The

major difference between soft shadow and soft-edged shadow is the penumbra. As

stated before, the sizes of the filter kernel for different scene points are the same

when generating soft-edged shadow. The penumbra in soft-edged shadow appears

isotropic in different parts of the scene (Fig. 2.5 (b)). Compared with it, soft

shadow provides valuable cues about the relationships between objects, becoming

sharper as objects contact each other and more blurry (softer) the further they

are apart (Fig. 2.7 (a)). Therefore, the penumbra in soft shadow should appear

anisotropic and the filter kernel for different scene points are usually different.

The PCSS method mainly contains two steps, and we show the first step in

Fig. 2.9. The simple scene consists of one area light with size S, one occluder

object and one receiver. In this step, the average blocker depth db for the current

point x is computed by averaging all depth values of blocker texels within an

2.4 Visually Pleasing Soft Shadow Mapping 27

θ

Area Light S

Shadow Map

Initial filter kernel

wi

Zn

SSM

Blocker texels
Average

blocker depth Occluder

Receiver

x

d

Avg

db

SSM

Figure 2.9: The computation of average blocker depth in PCSS.

initial filter kernel wi. The blocker texel is the texel the depth value of which is

smaller than x’s depth. Usually we will initialize the position of shadow map in

object space to be Zn, which is the near plane of the camera setting. The size

of wi can be computed by d−Zn

d
·S

/

SSM. Here, S is the size of area light, and the

d−Zn

d
·S part can be easily derived based on similar triangles. The denominator SSM

represents the size of current shadow map in object space. It can be computed as

2 ·Zn tan ·θ and the θ is the half of the camera’s FOV angle for generating shadow

map. Divided by SSM,the kernel size wi will be normalized into [0, 1] so that it

can be applied in texture coordinate space. Apparently, for different scene points,

the average blocker depths db will be different.

In the second step as shown in Fig. 2.10, based on average blocker depth db, we

can compute the size of filter kernel wb of PCF for x. The computation is similar

as previous formula of wi: wb = d−db

d
·S

/

SSM Note, currently we need to shift the

position of shadow map in object space from Zn to db. Hence, the formula of SSM

is 2 · db · tanθ . Then we can do the normal PCF with wb for current scene point

to compute its soft shadow value. Since the wb is different for different point, the

penumbra will appear anisotropic and reflect valuable cues about the relationships

between scene objects.

One assumption in the derivation of PCSS is that the occluders/receivers are

all planar and in parallel. Although it is an approximation of scene, the PCSS

28 Chapter 2: Background Knowledge

Area Light S

Shadow Map

Shifting
Filter kernel

wb

db

θ

Occluder

Receiver

Shiftingwb

x

d

SSM

Figure 2.10: The PCF-based soft shadow computation in PCSS.

method usually achieves visually plausible quality and real-time performance for

small light source. Moreover, the implementation of PCSS method only incurs

shader modification and is easy to be integrated into existing rendering system. As

a result, it has become quite popular. However, when dealing with medium/large

area lights, the performance of PCSS method becomes slow since it depends on

brute-force PCF point sampling. The algorithmic pipeline of the PCSS method

can be regarded as a general soft shadow mapping framework based on the pla-

narity assumption. In Chapter. 5 and 7, we will introduce two pre-filtering soft

shadow mapping methods which are based on the PCSS framework. Our meth-

ods can tackle the performance problem of PCSS based on pre-filtering to achieve

both visually plausible quality and high speed.

Considering the rendering artifacts, the planar assumption of PCSS is some

kind of “single blocker depth assumption” which essentially flattens blockers.

When the light size become bigger, this assumption is more likely to be vio-

lated and more specifically, umbra tends to be underestimated. From another side,

PCSS only generates one shadow map from the center of light source. When us-

ing a single depth map to deal with occluders which contain a high depth range,

the single silhouette artifacts [Assarsson03] can be introduced. We will discuss

the artifacts more in later chapters.

2.5 Participating Media Rendering 29

2.5 Participating Media Rendering

Participating media is common in realistic world, like fog, smoke, etc. Rendering

participating media is important for lots of applications, ranging from entertain-

ment and virtual reality to simulation systems (flying simulators) and safety anal-

yses (driving conditions). As stated before, the rendering equation (eq.2.15) only

computes the global illumination effect when there is no participating media in the

scene and it does not count the energy transportation in the media. In this section,

we will briefly introduce the basic theory for participating media rendering.

(a) Emission (b) Absorption (c) In-scattering (d) Out-scattering

Figure 2.11: Interaction of light in a participating medium.

As radiation travels through a participating medium it undergoes three kinds of

phenomena: emission, absorption, scattering (Fig. 2.11). Emission is a process by

which a particle in current media converts from a higher energy state into a lower

one through a photon, resulting in the production of radiant energy. Absorption

consists of the transformation of radiant energy into other energy forms. For a dif-

ferential distance dx, the relative reduction of radiance is given by κa(x)dx, κa(x)
being the coefficient of absorption of the medium at point x. Scattering means

a change in the radiant propagation direction. It is generally divided into out-

scattering and in-scattering depends on the radiant energy is reduced or increased.

Out-scattering reduces the radiance in the particular direction along dx by

the factor κs(x)dx, κs(x) being the scattering coefficient. Mathematically the re-

duction of radiance during the transportation in media is expressed as dL(x) =
−κt(x)L(x)dx, where κt = κa + κs is the extinction coefficient. The solution of

this differential equation is Beer’s law [Ingle88]:

L(x) = L(x0)e
−

∫ x
x0

κt(u)du
= L(x0)τ(x0,x) (2.21)

τ(x0,x) is so-called transmittance from x0 to x. The scattering albedo is defined

as Ω(x) = κs

κt
and represents the ratio of scattering in the whole extinction. Note

that Beer’s law simply models the reduction of radiance due to out-scattering and

absorption. In the contrary, the in-scattering enhance the radiance along the prop-

agation direction. Similar as radiance extinction, to calculate the increase of the

radiance, both emission and in-scattering have to be taken into account.

30 Chapter 2: Background Knowledge

The spatial distribution of the scattered radiance at a spacial point x is modeled

by the phase function p(x,ωo,ωi). The phase function has the physical interpre-

tation of being the scattered intensity in direction ωo, divided by the intensity

that would be scattered in that direction if the scattering were isotropic (i.e. in-

dependent of the direction). Phase functions in Computer Graphics are usually

symmetric around the incident direction ωi, so they can be parameterized by the

angle θ between the incoming and outgoing direction. Different phase functions

have been proposed to model different media. The simplest phase function is the

isotropic one (constant) and represents the counterpart of the diffuse BRDF for

participating media. Mie phase functions are generally used for scattering where

the size of the media particles is comparable to the wavelength of light. It is ap-

plied to many meteorological optics phenomena like the scattering by particles

responsible for the polluted sky, haze and clouds. Mie phase functions are gen-

erally complex and heavily depend on the particles’ size and conductivity. There

are several approximations to Mie phase functions and one of them is Henyey-

Greenstein (HG) phase function:

p(θ) =
1

4π
·

1−g2

[1+g2−2gcosθ]
3/2

(2.22)

The HG phase function, by the variation of one parameter, 1≤ g≤ 1, ranges from

backscattering through isotropic scattering to forward scattering.

2.5.1 Transport Equation in Single Scattering Media

Point Source
S

Scene Object

Viewer

p
x

(a) Multiple scattering

Point Source
S

Lin(S→x)

Scene Object

Viewer

p
xLsx(x→v) Lr(p→v)

dpv

(b) Single scattering

Figure 2.12: Schematic representations for the single and multiple scattering

cases.

After introducing the background and basic concept of participating media, we

will move further to the transport equation in this section, which is the rendering

2.6 Caustics 31

solution for participating media. The complete discussion of transport equation

is long and tedious, and we would refer the reader to [Cerezo05] for detailed for-

mulas and explanations. The scattering dominates the cost of participating media

rendering. In lots of real medias, the scattering radiance usually scatters several

times before finally arriving at view point. It is so-called multiple scattering case,

as shown in Fig. 2.12 (a). The multiple scattering effect is very complex and

time-consuming for rendering since lots of random direction samplings will be

involved. When the participating medium is optically thin (i.e. the transmittance

through the entire medium is nearly one) or has low albedo, then the source radi-

ance can be simplified to ignore multiple scattering within the medium. We can

assume scattering radiance only scatters one time before arriving at view point,

and it is so-called single scattering case (Fig. 2.12 (b)). Here, we will only illus-

trate the transport equation in single-scattering case.

As shown in Fig. 2.12 (b), the scene setting contains a point light source S,

a scene object and a participating media region. To compute the final radiance

L(p→ v) arriving at view point v from point p, two parts of radiant energies

should be considered:

L(p→ v) = Lr(p→ v)τ(p,v)+Ls(p→ v) (2.23)

The first part is the standard reflected radiance Lr(p→ v) attenuated by transmit-

tance τ(p,v). Lr(p→ v) can be computed using rendering equation (Eq.2.15).

The second part is the in-scattering radiance Ls(p→ v) which enhance the ra-

diance at every point x during the transport path −→pv. For arbitrary point x, the

in-scattering radiance Lsxis:

Lsx(x→ v) = Lin(S→ x)Ω(x)p(x,x→ v,S→ x)τ(x,v) (2.24)

The Ω(x) is the scattering albedo, which tells us how much energy is scattered

compared to be absorbed. The p(x,x→ v,S→ x) is the phase function at point

x and τ(x,v) is the transmittance from x to v. Since the in-scattering radiance

comes from all the points on the path−→pv with distance dpv, the overall in-scattering

Ls(p→ v) is:

Ls(p→ v) =
∫

dpv

Lin(S→ x)Ω(x)p(x,x→ v,S→ x)τ(x,v)dx (2.25)

2.6 Caustics

The bright patterns of light focused via reflective or refractive objects onto diffuse

(matte) surfaces are called surface caustics. Surface caustics provides some of

32 Chapter 2: Background Knowledge

the most spectacular patterns of light in nature. An example is the caustic formed

as light shines through a glass of wine onto a table. In Fig. 2.13 (a) and (c), we

show the examples of surface caustics through refraction and reflection. Surface

(a) (b) (c) (d)

Figure 2.13: Illustration of surface and volume caustics under reflection and

refraction.

caustics can be rendered by ray tracing the possible paths of the light beam through

the glass, accounting for the refraction and reflection. Photon mapping [Jensen96]

is one implementation of this.

Considering ray transport in participating media, light first interacting with a

specular surface and subsequently being scattered inside a participating medium

to generate some kind of intricate illumination patterns. This kind of beautiful

illumination patterns in participating media are so-callled volume caustics. In

Fig. 2.13 (b) and (d), we show the volume caustics effects through refraction and

reflection. Volume caustics can also be simulated by volumetric photon map-

ping [Jensen98], but it is computationally expensive and impossible for interactive

applications. In Chapter. 8, we will introduce a novel interactive volume caustics

rendering method for single scattering participating media.

2.7 Image Displaying Solutions

Most of the aforementioned rendering techniques solve the rendering equation

(e.g. radiosity) in object space, and still needs an additional rendering step to con-

vert the solutions in 3D object space into the final 2D image. There are usually two

major image display solutions: one is ray tracing and the other is rasterization.

Ray tracing itself is a kind of image-based rendering technique. It starts the

rendering process inversely to trace the ray from the camera through each pixel

on the view plane into the scene. During the transportation, each ray will in-

tersects with the scene geometry. At each intersection point, the stored solution

of rendering equation will be queried and displayed in current pixel. E.g., in a

diffuse-only radiosity algorithm, the last step is usually relying on ray tracing to

2.7 Image Displaying Solutions 33

firstly look up the stored radiosities at the vertices of the intersected patch, then

compute the bilinearly-filtered result and finally convert it to exit radiance. As

intersecting all polygons in a scene is time-consuming, researchers have designed

various forms of hierarchical acceleration structures to improve the performance

of intersection test. However, most of these structure is no suited for dynamic

objects and requires a rebuild process whenever objects change their position or

shape. Therefore, the performance of image displaying using ray tracing is the

major issue and prevents its wide applications in interactive/real-time scenarios.

Rasterization [Catmull74] is based on sorting technique called the z-buffer and

operates in a different way than ray tracing. Rasterization iterates over all the

primitives and renders them into a so-called framebuffer based on the current cam-

era settings. First a view matrix is applied to every vertex in the scene to transform

all objects into camera space. Then the projection matrix transformation projects

all polygons from 3D camera space into 2D screen-space. A scan-line algorithm

then processes each polygon and computes its coverage on raster grid (pixels).

For each pixel, its radiance value and depth value are computed by linearly in-

terpolating the lighting results and depth values from the vertices. The radiance

value is stored in the framebuffer and the depth value is stored in a new buffer

so-called zbuffer. Before the final display, each pixel will compare its depth value

with what has already stored at this pixel position in zbuffer to determine its spa-

cial relationship with the old content. Only when it is in front of the old content,

its radiance value will be finally displayed. Otherwise, the current pixel will be

discarded. All the aforementioned global illumination rendering techniques can

utilize rasterization as the displaying solution. The rasterization pipeline has be-

come the standard rendering pipeline in current graphics hardware. Therefore,

it is currently the most efficient solution for displaying. Furthermore, with the

evolvement of recent graphics hardware, the rendering pipeline has become fully

programmable and very friendly for algorithm development. All of our methods

in this thesis are developed based on programmable graphics hardware and we

will introduce it in next section.

2.7.1 Programmable Hardware Accelerated Rendering

Pipeline

In August 1999 the first graphics processing unit (GPU) was introduced to the

consumer level hardware market. It integrates the entire graphics pipeline in one

graphics chip and supports user programmability for some stages. After this, the

programmable function pipeline has been widely supported in graphics hardware

to replace the previous fixed function pipeline. Currently the newest GPU has

become very flexible and friendly in programmability.

34 Chapter 2: Background Knowledge

Input Assembler
Vertex Buffer

Index Buffer

Texture

Texture

Vertex Shader

Geometry Shader

Texture

Depth/Stencil

Render Target

Stream Output

Pixel Shader

Rasterizer/
Interpolator

Output Merger

Figure 2.14: The rendering pipeline in Direct3D 10.

GPU is usually accessed via a graphics API, such OpenGL [Segal99] or Di-

rect3D [Mic00]. In all of our projects we make use of Direct3D only but OpenGL

could be used also since both APIs provide the same functionality. The newest

version of Direct3D is Direct3D 11 which is released in October 2009. However,

all the projects in this thesis have been developed using Direct3D 10, and we did

not get involved any new features in Direct3D 11. Therefore, the following intro-

duction will be based on Direct 10 [Blythe06]. The graphics rendering pipeline

defined in Direct3D 10 is shown in Fig. 2.14. Overall, the first three stages in-

put assembler (IA), vertex shader (VS) and geometry shader (GS) process the

input scene geometry, so can be classified into geometry processing. The follow-

ing rasterization stage will convert the 3D geometry into 2D screen pixels. The

pixel shader (PS) and output merger (OM) stages then will do the pixel process-

2.7 Image Displaying Solutions 35

ing and generate the final framebuffer result. Here, a shader is defined to be a

set of software instructions which is used primarily to calculate rendering effects

on graphics hardware with a high degree of flexibility. Vertex shader, geometry

shader and pixel shader are all such kind of pipeline stages which contain software

instructions to achieve full programmability.

Geometry Processing Input vertex and index buffers are streamed into input

assembler. It read primitive data (points, lines and/or triangles) from user-filled

buffers and assemble the data into primitives that will be used by the other pipeline

stages. The IA stage can assemble vertices into several different primitive types

(such as line lists, triangle strips, or primitives with adjacency).

Then all the vertices are sent to vertex shader where all vertex related oper-

ations can be programmed to take place. Vertex shader that performs transform

and lighting (T&L), operations and a post T&L stage. T&L includes for example

model/view transformations, texture coordinates assignment, and lighting. This

unit was the first to allow the user to replace fixed functionality by customized

shader programs. It further supports vertex texture access. After T&L, vertex

shader will pursue some more functionalities including perspective correction,

viewport mapping, and clipping.

Geometry shader is a new feature in Direct3D 10 and it allows manipulation

of meshes on a per-primitive basis. Instead of running a computation on each

vertex individually, there is the option to operate on a per-primitive basis. With

this, the input vertices can be passed in as a single vertex, a line segment (two

vertices), or as a triangle (three vertices). The attractive feature of GS is to create

new primitives on the fly. The GS in Direct3D 10 can read in a single primitive

(with optional edge-adjacent primitives) and emit zero, one, or multiple primitives

based on that. Using GS with this feature, fins can be extruded from the original

mesh, which will be useful for effects like Motion Blur. It is possible to emit a

different type of geometry than the input source. For instance, it is possible to

read in individual vertices, and generate multiple triangles based on those without

CPU intervention. The Stream Output (SO) mechanism allows the GS to circulate

its results back to the Input Assembler or a texture buffer such that it can be re-

processed. For example the new scene geometry can be created in the first pass

(Bezier patches and/or skinning) and then shadow-volume extrusion can be done

on a second pass.

Rasterization After all geometry operations are complete, the processed data is

streamed into the rasterization unit. Here, all polygons are scan-converted into 2D

raster grids (pixels). During the conversion, firstly the triangle is setup to generate

all the pixels which cover the projection area of current triangle. Then each gen-

erated pixel will compute its properties such as color, the perspective correction

coordinate, and texture coordinates by linear interpolation of the corresponding

36 Chapter 2: Background Knowledge

properties from the three vertices in current triangle. The generated pixels then

continue their journey to the next processing stage.

Pixel Processing All pixels generated during rasterization are subject to certain

pixel operations which can be summarized as a pixel shader. The pixel shader

is fully programmable and allows for customized (dependent) texturing, per-pixel

lighting, and many other shading features. Though pixels leaving the pixel shader

are properly shaded they are not yet sorted according to their spatial depth. Also,

pixels can be transparent in which case their coverage must be accumulated when

overlapping. This is why pixels are subject to further raster operations in output

merger after shading. Raster operations include visibility tests, proper blending

with color entries already resident in memory, as well as anti-aliasing and stencil

tests. After the pixel processing, the result pixels will be written into framebuffer

and sent to hardware for final display.

General Purpose Graphics Processing Unit GPU is designed specifically for

graphics rendering. It can process independent vertices and fragments, but can

process many of them in parallel. This is especially effective when the program-

mer wants to process many vertices or fragments in the same way. In this sense,

GPU is stream processor that can operate in parallel by running a single kernel on

many records in a stream at once. It is also called single instruction multiple data

(SIMD) processor. With the evolvement of GPU, nowadays it further increases

the flexibility to add new operations and allows for more general purpose pro-

gramming to facilitate the GPU as powerful multi-core general purpose graphics

processing unit (GPGPU) rather than a graphics accelerator. GPGPU is the future

development trend of GPU. Recently, several general parallel programming archi-

tectures, such as CUDA [NVI08], OpenCL [Khronos08] etc, have been proposed

and they will also enhance future GPU accelerated rendering development.

2.7.2 Deferred Shading

The standard rendering in GPU starts from the input geometry object, and pass

through the whole pipeline to generate final result. Usually we call such a render-

ing process as forward rendering. In forward rendering, the shading computation

in pixel shader will be executed for all the pixels from rasterization. However,

only the most front pixels will be remained for final result. Hence, the shading

computations for the discarded pixels are wasteful. Motivated by this, deferred

shading technique has been proposed. Deferred shading postpones shading cal-

culations for a pixel until the visibility of that pixel is completely determined. In

other words, it implies that only pixels that really contribute to the resultant image

are shaded.

The usual implementation of deferred shading contains two passes. In the first

2.7 Image Displaying Solutions 37

(a) Position (b) Normal (c) Diffuse Materials (d) Final Rendering

Figure 2.15: Deferred shading with G-buffers.

pass, the scene geometry properties, such as position, normal, material, etc, are

rendered into intermediate buffer storage to be combined later. These buffers are

usually called geometry buffers (g-buffers), as shown in Fig. 2.15. When gener-

ating the g-buffers in modern GPU, we can relying on the multiple render targets

(MRT) technique to avoid redundant vertex transformations. In the second pass,

a simple full-screen quad is rendered to invoke the shading computation in pixel

shader. All the g-buffers can be read by pixel shader and compute the final shad-

ing.

Deferred shading can achieve high performance by saving unnecessary shad-

ing computation. It also achieve the simpler management of complex lighting

resources, ease of managing other complex shader resources and the simplifica-

tion of the software rendering pipeline. Therefore, deferred shading currently has

been widely applied in video games. Most of our GPU-based implementations

are based on deferred shading. Because of the use of MRT with a floating point

format when generating g-buffers, the memory bandwidth of deferred shading is

higher than forward rendering. It is somehow tricky about how to efficiently gen-

erate g-buffers with less band width. We would refer the interested readers to this

tutorial [Policarpo05] for more details.

38 Chapter 2: Background Knowledge

Chapter 3

Related Works

In this chapter we briefly summarize and discuss the most related work, which is

split into different sections covering general global illumination rendering tech-

niques, real-time soft shadow generation, visibility in indirect lighting, and caus-

tics and participating media. And at the end we introduce several recent research

works that are based on the work in this thesis.

3.1 General Global Illumination Rendering

Techniques

In the Section. 2.3 of Chapter. 2, we introduce several rendering techniques which

accurately or approximately solve the rendering equation to achieve global illu-

mination rendering effects. In this section, we will review and discuss the state-

of-the-art representative works of these rendering techniques.

3.1.1 Ray-Tracing

The fist important ray tracing method is Whitted tracing [Whitted80]. When a

ray hits a surface, Whitted tracing could generate up to three new types of rays:

reflection, refraction, and shadow. The reflected ray continues on in the mirror-

reflection direction from a shiny surface and the refracted ray travels through

transparent material to enter or exit a material (as shown in Fig. 2.1.3). To fur-

ther avoid tracing all rays in a scene, a shadow ray is used to test if a surface is

visible to a light. If the surface at this point faces a light, a ray is traced between

this intersection point and the light. If any opaque object is found in between the

surface and the light, the surface is in shadow and so the light does not contribute

to its shade. During the Whitted tracing process, a single ray per pixel is used to

40 Chapter 3: Related Works

sample the real world by casting it through center of the pixel and evaluating what

it hits. Hence Whitted tracing is only a single sample approximation for the value

of each screen pixel, and while computationally simple, it may suffer from inac-

curacy. From the point of rendering effects, Whitted tracing intrinsically assumes

that the light source is point or spot light (hard shadow) and the reflective material

is diffuse or specular (perfect reflection).

In real cases, the area or environmental light sources are common and the sur-

face materials are mostly glossy. To overcome the limitations of Whitted tracing,

distributed ray tracing (DRT) [Cook84] is proposed. DRT exploits randomly dis-

tributed oversampling and Monte Carlo integration to solve the rendering equation

(Eq.2.15). The randomly distributed oversampling is a process where instead of

sampling a single value, multiple samples are taken and averaged together. The

location of where the sample is taken is varied slightly so that the resulting average

is an approximation of a finite area covered by the samples. The DRT can achieve

all the sophisticated global illumination effects, such as glossy reflection, translu-

cency, soft shadows and so on. The slight disadvantage of DRT is that the result

image might be noisy if not enough samples are used, but otherwise it produces

physically correct results. Most of the ground truth comparison results generated

in our research works are based on DRT.

Other variants of the original ray tracing approach include path tracing and

photon mapping [Lafortune93, Jensen96]. As stated before, all ray tracing al-

gorithms have in common that rays or photons need to be intersected with the

geometry to find the closest hit points. To accelerate the intersection query, the hi-

erarchical data structures, such as kd-tree, bounding volume hierarchy (BVH), etc,

are usually adopted to organize the input scene. However, creation and update of

these hierarchical data structures for fully dynamic scene a rather costly operation

and has long prevented ray-tracing approaches from being interactive. Recently,

algorithms have been proposed for interactive global illumination using ray trac-

ing [Wald02, Wald03]. However, a cluster of 24 PCs was required to achieve

interactivity. With the rapid development of GPU, nowadays Whitted tracing is

able to achieve real-time performance for dynamic scene [Purcell02, Roger07].

DRT also can rely on the GPU for acceleration. Recently a new real-time ray trac-

ing engine so-called OptiX [Parker10] has been proposed by NVIDIAr, which

is based on using the CUDA GPU computing architecture. Although OptiX ac-

celerates DRT a lot, it is still far from the real-time performance when the amount

of random samplings increases. Another interesting research direction is to ac-

celerate the kd-tree creation and update in GPU [Zhou08a]. We would refer the

reader for a recent state-of-the-art report for real-time ray tracing for dynamic

scene [Wald09].

3.1 General Global Illumination Rendering Techniques 41

3.1.2 Radiosity

Radiosity[Goral84, Cohen93] is a finite element method to compute a global illu-

mination solution, where links between mutually visible finite elements are cre-

ated and radiosity is propagated along those links until a steady state is reached.

This computation is generally not real-time, even with improvements such as hier-

archical radiosity [Hanrahan91]. There exist approaches to handle and make use

of temporal coherence in dynamic scenes; a global illumination solution is incre-

mentally updated by shooting negative light to compensate for changes in lighting

or geometry [Chen90, George90, Puech90]. However, updating the link structure

is difficult, since visibility needs to be taken into account.

The introduction of programmable graphics hardware has fostered research

in GPU-accelerated radiosity. To overcome the visibility problem, Cohen et

al. [Cohen85] introduce the hemicube for the visibility computation, and Nielsen

et al. [Nielsen02] accelerate the hemicube method with the help of hardware tex-

ture mapping. Floating point textures to store the result of the radiosity com-

putation are first utilized by Carr et al. [Carr03]. Progressive refinement radios-

ity [Cohen88] maps well to a graphics hardware implementation because it re-

quires no explicit storage of the radiosity matrix and it allows the model to be

displayed interactively as the solution progresses. The progressive refinement

radiosity can be completely implemented in GPU [Coombe04]. However, the al-

gorithm was restricted to planar quadrilaterals. In [Wallner09], a GPU radiosity

solver for triangular meshes which was based on [Coombe04] has been proposed.

As stated before, the subdivision schemes for input geometry scene in radios-

ity methods have strong impact for the rendering quality. It is usually difficult to

design a perfect subdivision scheme to very complex scene. Therefore, radiosity

is difficult to be directly applied for real applications. Another kernel problem of

radiosity is the performance of visibility determination. Neither the ray casting

and hemicube are efficient for checking visibility. That’s also our motivation to

develop implicit visibility in Chapter. 4.

3.1.3 Precomputed Radiance Transfer

Precomputed Radiance Transfer (PRT) permits real-time rendering of limited

global illumination effects on static objects, such as soft shadows and dif-

fuse/glossy interreflections [Sloan02, Ng03, Liu04]. The global illumination so-

lution is simply parameterized by the incident lighting, which is assumed to be

represented by means of basis functions, such as spherical harmonics [Sloan02]

or wavelets [Ng03]. By this means, real-time rendering of the static scenes be-

comes feasible. PRT exploits the limitation to static objects by precomputing all

the visibility queries and baking them into the parameterized solution. It has been

42 Chapter 3: Related Works

shown, that for static scenes the resulting shading can be computed and rendered

in real-time on current GPUs. However, dynamic or deformable objects are in-

herently difficult for PRT techniques, since the visibility cannot be precomputed

anymore.

Shadow computation for dynamic scenes can be accelerated by simplifying

the geometry. Ren et al. [Ren06] and Sloan et al. [Sloan07] approximate dynamic

objects using a sphere hierarchy, whereas Kautz et al. [Kautz04] use a two-level

mesh hierarchy. These methods only support deformation on low-polygonal mod-

els, and assume that object topology remains static. Further, only low-frequency

rendering effects are reproduced in these methods. Similarly, limited dynamic

scenes with moving rigid objects can be handled[Zhou05, Sun06], but without

taking indirect illumination into account. Recent work [Liu07, Iwasaki07] ex-

tends these ideas to render interreflections of dynamic rigid objects. Handling the

deformable models remains a challenge.

Material or lighting design usually require the input geometry to be static

or contain only rigid transformation. Recently several research works [Sun07,

Ben-Artzi08] have conducted BRDF editing with GI effects based on PRT. PRT

also can be applied in lighting design [Kristensen05a]. However, for computer

game or other interactive applications, PRT can only be applied for the GI light-

ing of static environment not for deformable characters. Motivated by overcoming

the limitation of PRT, our research works develop global illumination rendering

for fully-dynamic scene. More introductions about PRT can be found in recent

course [Kautz05].

3.1.4 Ambient Occlusion

Ambient occlusion (AO) [Zhukov98] captures a subset of global illumination ef-

fects, by computing for each point of the surface the amount of incoming light

from all directions and considering potential occlusion by neighboring geometry.

The accurate AO usually relies on ray casting to compute the occlusion for all the

direction, so its performance can not achieve interactive for fully dynamic scene.

In [Pharr04], the ambient occlusion value for a scene is precomputed and stored

in textures or as a vertex component on a per vertex base. This kind of off-line

precomputation limits this technique only for static scenes.

In order to avoid the precomputation of ambient occlusion terms, Bun-

nell [Bunnell05] propose to transform meshes into surface discs (surfels) of differ-

ent sizes, covering the original surfaces. Rather than computing visibility informa-

tion between points on the mesh, they approximate the shadowing between these

discs to determine ambient occlusion. However, highly tessellated objects are

needed to get high quality shadows as visibility is estimated per-vertex only. This

algorithm is further extended to work on a per fragment basis [Hoberock07]. Kon-

3.1 General Global Illumination Rendering Techniques 43

tkanen and Laine [Kontkanen05] present a technique for computing inter-object

ambient occlusion. For each occluding object, they define an ambient occlusion

field in the surrounding space which encodes an approximation of the occlusion

caused by the object. This information is then used for defining shadow casting

between objects in real-time. This method works very well for scene objects with

rigid transformation, but is limited when arbitrary deformations are mandatory.

In [Kontkanen06], an AO method for the character animation is proposed. The

animation parameters can be used to control the AO values parametrically on the

surface. This technique works very efficient at producing shadows on legs and

arms, but cannot account for the neighboring geometry.

The Screen-Space Ambient Occlusion (SSAO) [Mittring07, Bavoil09] tech-

niques can handle full dynamic scene in real-time by treating the Z-Buffer as a

geometric guess of the scene and tracing rays on a per-pixel basis to evaluate

the AO value. This technique represents the state-of-the-art in real-time AO, but

has a strong limitation: being performed entirely in screen space, it ignores any

object located outside the field of view C yet these objects may have a signif-

icant influence on the ambient occlusion residing on visible objects. A recent

paper [Ritschel09b] uses SSAO-like techniques to approximate indirect lighting

along with a directional model of visibility. While the results are visually pleasing,

the technique shares the same problem as SSAO. To overcome the limitation of

SSAO, another recent AO method [Reinbothe09] relies on the surface voxeliza-

tion of input scene to combine object and image space techniques in a deferred

shading context.

3.1.5 Other Global Illumination Methods

Except the aforementioned four kinds of classical global illumination rendering

techniques, there are still some other interesting GPU-based GI methods which is

related with our research works and worthy to mention in this section.

The instant radiosity technique by Keller [Keller97] traces photons and re-

gards photons stored at hit points in the scene as secondary light sources. These

secondary light sources can be treated as virtual point light (VPL). Summing

up the contributions of all VPLs yields the final result. Interactive frame rates

can be achieved with this technique but banding artifacts are likely to appear.

The main bottleneck is the need to compute shadowing for each VPL at every

step, preventing real-time simulation for complex scenes. If ignore the visibility

for the VPL, one-bounce indirect illumination can be rendered at real-time rates

in GPU [Dachsbacher05, Dachsbacher06]. However, this allows light to bleed

through surfaces, creating unrealistic results. Several bounces of indirect illumi-

nation [Nijasure05] can be taken into account by iteratively collecting incident

lighting. However, real-time rates can only be achieved with very coarse lighting

44 Chapter 3: Related Works

approximations.

The Environmental lighting is important for realistic rendering, and it is

usually represented as Environment Map and stored as cubemap texture in

GPU. Agarwal et al. [Agarwal03] propose an efficient point sampling strategy

for environment maps, in the context of ray tracing. This was later acceler-

ated [Ostromoukhov04], and extended to full importance sampling [Clarberg05].

However, all of these techniques are limited to point samples. Similar to Arbree et

al. [Arbree05], we employ an environment sampling strategy based on extended

light sources in Chapter. 5. We approximate an environment with a collection of

square light sources, whereas Arbree et al. use disk-shaped sources.

3.2 Real-time Soft Shadow Generation

A complete review of existing shadow algorithms is beyond the scope of

this article and we refer the reader to Woo et al. [Woo90], Hasenfratz et

al. [Hasenfratz03b], and to a recent course [Eisemann09] for a detailed overview.

In this section, the most related pre-filtering hard shadow mapping techniques and

soft shadow methods will be introduced.

3.2.1 Hard Shadow Mapping with Pre-Filtering

Edge anti-aliasing is a classical problem for hard shadow mapping [Williams78].

Unfortunately, standard filtering cannot be applied directly to the shadow

map, because the shadow test has to be carried out before the filtering takes

place [Reeves87]. A straight-forward step for anti-aliasing is directly applying

the graphics hardware’s filtering function to filter shadow mapping results. Un-

fortunately, because the shadow test has to be carried out before the filtering takes

place [Reeves87], standard filtering functions cannot be directly applied to depth

map. To overcome the brute-force point samplings, several pre-filtering shadow

mapping methods [Donnelly06a, Annen07, Annen08b, Salvi08] have been pro-

posed recently to solve this problem. The general idea is to transform the standard

shadow test function into a linear basis space. At each frame, the depth values in

the depth map can then be pre-filtered (coefficients in the basis). Hence, one can

rely on readily available filtering functions, such as mip-mapping or summed-area

tables [Crow84] to sample the pre-filtered coefficients. In final shadow rendering

step, shadow test function can be approximately reconstructed to achieve shadow

in constant-time.

Before going into the details of different pre-filtering shadow mapping meth-

ods, let’s introduce the basic theory behind the pre-filtering. As shown in Fig.3.1,

considering the 3D scene points x1 and x2, their 2D projection position in shadow

3.2 Real-time Soft Shadow Generation 45

Point Light

Shadow Map

x

p

d(x)

z(p)

Occluder

Receiver

x2

x1

d(x)

Figure 3.1: The theory of pre-filtering shadow mapping.

map will be the same at p. Based on the shadow map theory, we know the dis-

tance value recorded in the map is the closest one which is from the light source

to point x1. We can represent the recorded depth values in shadow map as a func-

tion related with the 2D projection position: z(p). How about the distance from

the light source to any point behind x1, like x2? It can also be represented as a

function related with the 3D scene position: d(x). Based on such a formulation,

the shadow comparison operation can be represented as the following Heaviside

step function:

f (d(x),z(p)) = f (d,z) =

{

1

0

d ≤ z

d > z
(3.1)

The plot of this Heaviside function is also shown in Fig.3.1. Essentially, all the

pre-filtering shadow mapping methods are trying to reconstruct this Heaviside

function to achieve shadow comparison.

The variance shadow map (VSM) [Donnelly06a] is a probabilistic approach

that supports shadow pre-filtering. When generating the depth map, z and z2 val-

ues are stored and used as the mean and variance respectively during rendering

to estimate the probability whether a point is in shadow or not. The shadow test

is based on one-tailed version of Chebyshev’s inequality which only bounds one

side of the Heaviside step function. If there exists depth values which are bigger

than current pixels depth inside filter kernel, the variance-based inequality evalu-

ation only provides a “big” upper bound and hence incurs incorrect lit in shadow.

This is an intrinsic problem for VSM which is so-called “non-planarity” lit. The

reconstructed function of VSM is shown in Fig.3.2(a). It is easy to see when the

variance σ2 becomes bigger, the reconstructed results of VSM will become worse.

This will produce noticeable high frequency light leaking artifacts for scenes with

46 Chapter 3: Related Works

high depth complexity. Lauritzen et al. [Lauritzen08] successfully suppress light

leaking by partitioning the shadow map depth range into multiple layers. How-

ever, the incorrectly-lit due to “non-planarity” problem still exists since there is

no correct definition for the left side of shadow test function.

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

p
m

a
x

σ2 = 0.01
σ2 = 0.05
σ2 = 0.1
σ2 = 0.3

(a) VSM Func

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

S
h

a
d

o
w

F
u

n
c

CSM 16 terms
CSM 4 terms

(b) CSM Func

−1 −0.5 0 0.5 1

0

0.5

1

(d−z)

e
−

c
(d

−
z
)

e
−10.0(d−z)

e
−20.0(d−z)

e
−80.0(d−z)

(c) ESM Func

Figure 3.2: Different pre-filtering shadow functions.

Convolution shadow maps (CSM) [Annen07] transforms depth values into

Fourier space. Depending on the truncation order, depth value z is converted

into several Fourier basis terms. In the final rendering, pre-filtered Fourier ba-

sis terms are fetched from textures to reconstruct a smoother shadow in order to

approximate the Heaviside step shadow function. The reconstructed function of

VSM is shown in Fig.3.2(b). Since Fourier reconstruction function is “double-

bounded”, the “non-planarity” problem does not exist for CSM. Yet the shadow

quality depends on the truncation order and high order will incur impractical mem-

ory requirements for storing basis textures. When using few basis terms, ringing

artifacts and incorrect contact shadow can be observed.

Exponential shadow maps (ESM) [Annen08b] [Salvi08] use the exponen-

tial function to approximate the Heaviside shadow test function, as shown

in Fig.3.2(c). Since the exponential function is also single-bounded, it uti-

lizes the standard percentage closer filtering (PCF) for “non-planarity” re-

gions [Annen08b], which are detected relying on min-max pyramid texture. For

hard shadows, PCF is good for repairing it since usually the percentage of “non-

planarity” parts in the whole rendering scene is low. Yet for soft shadow, such a

percentage becomes higher with the increasing light size. Hence brute-force PCF

for many “non-planarity” parts will be prohibitively time-consuming.

3.2.2 Soft Shadow Volume

Based on shadow volumes [Crow77], Chin and Feiner [Chin92] construct sepa-

rate BSP trees for the scene, for the umbra volume and for the outer penumbra

volume. Shadow receivers are then classified into three regions: fully lit, umbra,

3.2 Real-time Soft Shadow Generation 47

and penumbra. An analytic shadow term is computed by traversing the BSP tree

of the scene and clipping away the occluded parts of the polygonal light source.

Tanaka and Takahashi [Tanaka97] propose culling methods for efficiently deter-

mining the set of objects that can affect the shadowing of a given point. Assarsson

and Akenine-Möller [Assarsson03] describe an approximate soft shadow volume

algorithm, which offers realtime performance in simple scenes. Two gross ap-

proximations are made: assumption that the silhouette of an object is constant

from all receiver points, and a heuristic occluder fusion method. Hence, it is less

suitable for scenes with rich geometry. Laine et al. [Laine05b] and Lehtinen et

al. [Lehtinen06] remove these limitations in the context of ray tracing. Laine and

Aila [Laine05a] transpose the processing order of ray tracing. Instead of search-

ing for a triangle that blocks the current ray, they find all rays that are blocked by

the current triangle. This leads to different scalability characteristics and mem-

ory requirements compared to ray tracing. All the soft shadow volume method

are based on geometric information, so that they are sensitive to scene complex-

ity. Therefore, it is inappropriate to utilize soft shadow volume methods for real

complex scenes, like tree, foliage, etc.

3.2.3 Soft Shadow Mapping with Backprojection

In recent work [Atty06, Guennebaud06], researchers have transferred ideas from

classical discontinuity meshing [Stewart94, Drettakis94] to the shadow mapping

domain. Such techniques treat the shadow map as a piecewise constant approx-

imation of the blocker geometry and each shadow map texel is considered as a

rectangular micro-patch parallel to the light source. The shadow value is com-

puted as the fraction of coverage of blocker geometry projected back onto the area

light. Although these backprojection-based methods stem from physically correct

theory, crude approximations of blocker geometry may yield either incorrect oc-

cluder fusion or light leaking. The work by Guennebaud et al. [Guennebaud07]

and bitmask soft shadows [Schwarz07] remove most of these problems, but in-

crease the algorithmic complexity or computation time. More recently, Yang et

al. [Yang09] accelerate backprojection soft shadow mapping by introducing a hi-

erarchical technique, which results in better performance for large penumbra but

is still complex for real applications.

3.2.4 Soft Shadow Mapping with Pre-Filtering

We have already discussed percentage closer soft shadow mapping

(PCSS) [Fernando05a] method in details in Section. 2.4.2 of Chapter. 2.

One key insight of PCSS is that both average blocker depth computation and soft

shadow test are based on brute-force point sampling of the depth map. When the

48 Chapter 3: Related Works

area light size becomes large, many sampling points (e.g., 30× 30) are required

to avoid banding artifacts. Motivated by this, it is natural to push aforementioned

pre-filtering hard shadow mapping methods further to support PCSS soft shadow.

Based on PCSS, SAT-based variance shadow map (SAVSM) [Lauritzen07] is

proposed to improve the speed relying on VSM [Donnelly06a]. Although the soft

shadow test step is sped up using pre-filtering, there is no obvious way to correctly

pre-filter average blocker depth values based on the VSM theory. The average

blocker depth evaluation step is still performed by brute-force point sampling of

the depth map. Furthermore, despite the correct estimation of the average blocker

depth in SAVSM, it may still show “non-planarity” lit problems.

Soler and Sillion [Soler98] propose an image-based shadow algorithm based

on convolution. Convolutions can be computed efficiently, even for large penum-

brae. Soler and Sillion do not employ a depth buffer and therefore require an ex-

plicit notion of blockers and receivers, and cannot directly support self-shadowing.

Our research works in Chapter. 5 apply a similar convolution in the context of

shadow mapping, which naturally allows for self-shadowing. In Chapter. 5, we

propose convolution soft shadow map (CSSM) based on CSM [Annen07]. CSSM

is also implemented in PCSS soft shadow framework. Relying on double-bounded

Fourier reconstruction, CSSM can pre-filter not only shadow test but also average

blocker depth computation. Yet the number of Fourier bases for reconstruction is

usually high (≥ 4), which results in high amount of texture memory, and limits

its practicability. To overcome this, in Chapter. 7 we further propose variance

soft shadow mapping methods which not only successfully applies pre-filtering

for average block depth evaluation based on a novel depth computation formula,

but also successfully handles the “non-planarity” lit problem.

3.3 Visibility in Global Illumination

Visibility determination usually dominates the performance of global illumination

algorithm. Dachsbacher et al. [Dachsbacher07] develops a real-time global illumi-

nation method that handles visibility by transferring anti-radiance for scenes with

limited dynamics. While this bears many similarities to our implicit visibility al-

gorithm in Chapter. 4, our implicit visibility handling is slightly more flexible, as

we impose no restrictions on the dynamics of the scene, but is also slightly more

expensive.

Instant Radiosity [Keller97] can achieve interactive frame-rates for large

scenes by using a crude point-based representation of geometry when comput-

ing the shadow map for each VPL [Ritschel08b]. Such an imperfect shadow map

method is very efficient and visually plausible. However, the point hierarchy re-

quires pre-processing which limits its applications for some scene setting with

3.4 Caustics and Participating Media 49

topology changes. Their following works [Ritschel09a] introduce the hierarchical

organization of point samples to amend holes in shadow map, and further improve

the quality of indirect lighting.

Several global illumination methods use the idea of clustered visibility. The

lightcuts method [Walter05] imposes a hierarchy over groups of virtual point

lights; only a single visibility test is performed for each group. Generating

clusters of lights with only a single shadow map for each cluster was used by

Hasan et al. [Hašan07] for GPU-friendly illumination from many lights. This

idea was further extended to visibility cuts [Akerlund07] and GPU implementa-

tions [Ritschel08a][Cheslack-Postava08]. Kristensen et al. [Kristensen05b] group

VPLs into light clouds for real-time relighting of static scenes. In all these ap-

proaches, a single binary visibility test for a sender cluster is used. We extend this

idea by taking the extent of the sender (cluster of VPLs) into account through the

use of a soft shadowing method.

Our algorithm in Chapter. 6 is inspired by the idea of clustering an environ-

ment map into a set of area lights for real-time natural illumination [Annen08a].

We extend this idea to deal with indirect lighting using a real-time GPU-based

clustering technique.

3.4 Caustics and Participating Media

Caustics are phenomena caused by the focusing and de-focusing of light rays upon

interaction with specular surfaces. Both, specularly reflective and specularly re-

fractive objects give rise to complex volumetric light distributions. The interaction

of these light distributions with opaque surfaces results in surface caustics while

the effect of their interaction with participating media is known as volume caus-

tics. The rendering literature on the subject can be grouped accordingly.

3.4.1 Surface Caustics

Surface caustics are generated by rays that refocus on diffuse surfaces after re-

fraction or reflection on a specular surface. In computer graphics, photon map-

ping [Jensen01] is the gold standard technique to successfully simulate this kind

of phenomenon. Relying on the fast processing speed of modern GPUs, several

methods were developed to approximate reflection [Estalella06, Umenhoffer07,

Yu05] and refraction [Oliveira07, Davis07, Wyman05] effects in real-time. While

the aforementioned techniques were developed for rendering reflected and re-

fracted viewing rays, they are equally well applicable for fast photon path cal-

culations on graphics hardware.

50 Chapter 3: Related Works

The first GPU photon map implementation was described by Purcell et

al. [Purcell03]. Recently, several methods for approximating the effect of

surface caustics on the GPU have been proposed [Shah07, Hu07, Wyman06,

Szirmay-Kalos05]. As in normal photon mapping, these methods follow spec-

ularly reflected and refracted photons from the light source and store their hit

positions into a so called photon buffer. A second pass then re-organizes this in-

formation and splats it into a caustic map, which is then projected onto the scene

similar to shadow mapping. In [Wyman08b, Wyman09], the speed and quality

of this basic technique is improved using a hierarchical data structure to discard

non-contributing and redundant photons. Yu et al. [Yu07] present a real-time caus-

tics rendering method based on image space computations, modeling the effect of

specular objects as a distorted generalized linear camera model.

3.4.2 Participating Media

Participating media introduce global shading effects for viewing rays. Instead of

shading single surface points based on an approximation of the incident radiance,

line integrals over viewing rays have to be computed. Computing the incident ra-

diance is significantly complicated by the effect of multiple scattering [Kajiya84].

Volumetric photon mapping [Jensen98] decouples radiance transport from the

light source into the medium and the integration step to determine the radiance of

the viewing ray. The final gathering step along a ray can be computed directly per

ray [Jarosz08] or in screen space [Boudet05]. A complete description of off-line

methods for rendering participating media is, however, beyond the scope of this

paper; for a good overview we refer the interested reader to [Cerezo05].

Typical applications of real-time rendering in the presence of participat-

ing media are the visualization of clouds [Dobashi00, Harris01] and smoke

[Ren08, Zhou08b]. Approximating the shafts of light, that are a typical effect

of single scattering, can be achieved by blending layered materials [Dobashi02]

or by warping volumes [Iwasaki02]. Sun et al. propose an analytical airlight

model for real-time single-scattering in homogeneously scattering media [Sun05].

This work was extended to real-time rendering of volumetric shadow regions by

Wyman and Ramsey [Wyman08a]. Our work uses this technique to render the

shadow regions surrounding volumetric caustics.

3.4.3 Volume Caustics

Volume Caustics can be computed using the volumetric photon mapping tech-

nique [Jensen98], an extension to standard photon mapping [Jensen01], by tracing

and storing photons throughout the volume covering the participating medium.

Volume caustics are typically seen in under water scenarios where shafts of

3.4 Caustics and Participating Media 51

light are visible due to focusing of light rays by the water surface. Rendering

of these effects was demonstrated by Nishita et al. [Nishita94] and by Ernst et

al. [Ernst05] using a triangle-based caustics volume reconstruction method that is

very geometry-intensive.

The eikonal rendering technique proposed by Ihrke et al. [Ihrke07] uses a vol-

umetric object description to render most of the effects of refraction and partici-

pating media in real time. However, if the lighting conditions or scene geometry

change, several seconds are required for the re-computation of the incident radi-

ance distribution. Sun et al. [Sun08] modify the previous technique by combining

it with a photon mapping algorithm. They achieve fully dynamic rendering of

refraction, absorption and single-scattering effects in participating media at inter-

active frame rates. Volumetric object representations, however, induce a discrete

representation of refractive objects and tend to blur surface and caustic details.

3.4.4 Lines as Rendering Primitives

Lines are often used as rendering primitives in visualization of vector field

data [Zöckler96, Mallo05]. They are rarely employed as general primitives, even

though their use has been advocated by some authors [Wong05] and efficient ap-

plications in natural scene rendering have been described [Deussen02].

Recently, the interactive global illumination literature has produced some

applications of lines as fast intermediate rendering primitives. Krüger et

al. [Krüger06] demonstrate a screen-based surface and volume caustic rendering

technique. The authors directly splat energy to screen pixels using refracted lines

as querying primitives. The focus is on surface caustic rendering even though

some results are shown for volume caustics as well. Another, connected tech-

nique by Sun et al. [Sun08] also uses lines between specular object and receiver

as rendering primitives. Here, however, the lines are rasterized into an intermedi-

ate illumination volume, similar to [Ihrke07], which enables a correct evaluation

using a second ray marching step.

Our work in Chapter. 8 can be seen as a combination of the previous two tech-

niques. We combine the strength of the screen-based approach, which is very

high resolution, high performance rendering at low memory foot-prints, with the

physical accuracy of the photon-based approach, which in its original implemen-

tations is either too slow for real-time applications [Jensen98] or yields blurry

results [Ihrke07, Sun08] due to high memory consumption and thus limited reso-

lution.

Contemporary to our work, [Papadopoulos09] presents real-time caustics and

godrays for underwater scenes using an implementation which is similar to the

method of Krüger et al. [Krüger06]. In contrast to our work, no comparison to

ground truth is shown and only a homogeneous medium is supported.

52 Chapter 3: Related Works

3.5 Successive and Active Future Work

Our methods described in this thesis has been adopted in different fields of ren-

dering in the area of real-time global illumination rendering. In this section we

will list a few known subsequent publications that are closely related to our work.

In [Meyer09], a non-recursive and efficient data-parallel algorithm to create

links and a patch hierarchy for implicit visibility method in Chapter. 4 is proposed.

It is running entirely on the GPU using CUDA for implementation. Hence, this

method is fast enough to create links and a compact patch hierarchy from scratch

for every frame. Including the simulation of light transport, we can render dy-

namic scenes with indirect light at interactive frame rates.

Inspired by the theory of CSSM in Chapter. 5, Jason and Bavoil [Jansen10]

introduce a novel algorithm called Fourier Opacity Mapping (FOM) for render-

ing artefact-free pre-filtered volumetric shadows in cases where spatial opacity

variations are smooth (e.g. smoke, gas and low-opacity hair). This method is

robust enough and has been adopted in the shipping video games, such as Bat-

man, Arkham Asylum, etc, for shadowing smoke particle systems. Another re-

cent paper [Davidovič10] adopts our visibility clustering strategy in Chapter. 6

for computing visibility in off-line detailed glossy illumination.

Our concept about Lines as Rendering Primitives in Chapter. 8 for volume

caustics is also adopted by [Sun10]. This method is an efficient off-line technique

to render single scattering in large scenes with reflective and refractive objects

and homogeneous participating media. Compared with our interactive volumetric

caustics rendering method, it is more physically correct but also takes much more

time for rendering.

Part II

Interactive Global Illumination

Using Implicit Visibility

Chapter 4

Interactive Global Illumination

Using Implicit Visibility

4.1 Introduction

In order to render a scene photo-realistically many local and global illumination

(GI) effects have to be faithfully reproduced. Today, real-time rendering of lo-

cal illumination effects is state-of-the-art and used in many computer games and

interactive environments. Unfortunately, scenes rendered in this way often have

an artificial look as they lack more sophisticated appearance details such as in-

terreflections. The GI computation adds this additional bit of realism by taking

into account not only light that comes directly from the light source but also in-

directly through reflection from other surfaces. However, the simulation of the

GI effects is very complex and up to now it has been illusive to render full global

illumination solutions in real-time on a single PC. The problem’s complexity orig-

inates from the fact that during lighting simulation every scene element interacts

with many others. Furthermore, visibility between scene elements has to be pre-

computed, as light can only travel between mutually visible points in the scene.

This expensive-to-compute information is used in all traditional rendering algo-

rithms [Cohen93, Lafortune93, Jensen96, Veach97].

In this chapter, we propose a novel algorithm to render the GI effects at in-

teractive frame rates on a single PC. The core of our method is a hierarchical

radiosity-like link structure describing the light transport between individual scene

elements. To overcome the computational bottleneck of having to compute vis-

ibility information explicitly at each frame, we propose the concept of implicit

visibility. By this means, we are able to quickly derive visibility between scene

elements implicitly from the hierarchical link structure while it is being built. We

propose methods to efficiently construct this link structure and show that the final

56 Chapter 4: Interactive Global Illumination Using Implicit Visibility

Figure 4.1: Teapot with indirect lighting (3878 vertices).

global illumination solution can be quickly computed on the GPU (Figure 4.1).

Our method can reproduce interreflections under environment map lighting as

well as area light sources at interactive frame rates — even for dynamic scenes

with deformable objects. Interactivity is achieved by sparsely sampling visibility,

which makes our method most suited for diffuse or low-glossy scenes under large

area lighting.

This chapter is organized as follows: Section. 4.2 describes how we refor-

mulate and solve the rendering equation to accommodate the concept of implicit

visibility. Section. 4.3 describes in detail the construction and administration of

our hierarchical link structure, and explains how to efficiently map these concepts

onto the GPU. We demonstrate the high visual quality of our results in Section. 5.5

and conclude in Section. 4.5 with an outlook to future work.

4.2 Global Illumination using Implicit Visibility

In the following, we derive the theoretical fundamentals of fast interactive global

illumination based on implicit visibility. We firstly review the rendering equation

[Kajiya86], which has been introduced in the Section. 2.2 of Chapter. 2. Then, we

rewrite the rendering equation in such a way that a global illumination solution can

be computed in a way similar to early non-diffuse radiosity methods [Immel86].

In contrast to radiosity methods, however, we compute visibility implicitly while

4.2 Global Illumination using Implicit Visibility 57

building the link structure. The rendering equation can be written as follows:

Lv(x→Θo) = Le(x→Θo)+ (4.1)
∫

Ω+
x

fr(x,Θ
′
i↔ Θ′o) ·L(x←Θi) · (nx ·Θi)dωΘi

,

where x is a point in the scene, Le is the emitted light, fr is the BRDF, nx is the

normal at x, Θi and Θo are the global light and viewing directions, and Θ′i and Θ′o
are light and view in local coordinates.

Similar to [Immel86] we discretize the sphere into Nbin small spherical bins,

each of which has a solid angle Θbini
. This allows us to rewrite the rendering

equation as:

L(x→Θo) = Le(x→ Θo)+
Nbin

∑
i=1

Ki(x,Θo), (4.2)

with

Ki(x,Θo) =
∫

Ωbini

fr(x,Θi↔ Θo) ·L(x← Θi.) · (nx ·Θi)dωΘi

We now rewrite the Ki as an integral over all surface elements y inside Ωbini
instead

of solid angles:

Ki(x,Θo) =
∫

y∈Ωbini

fr(x,Θi↔Θo) ·L(x← Θi)·

V (x,y)(nx ·Θi) ·
(ny·(−Θi))

r2 dAy,
(4.3)

where V is the binary visibility between two points.

It is now possible to make several simplifying assumptions to speed up the

computation. First, we assume that for each element inside a bin the outgoing

radiance is constant across its extent. Furthermore, we assume that the size of

each element is very small, such that the cosine between the integration direction

and the normal is essentially constant. Finally, we assume that surface elements

are either completely visible or completely occluded. This allows us to rewrite

Equation (4.3) as:

Ki(x,ωo)≈
#y∈Ωbini

∑
j=1

fr(x,Θi, j↔Θo) ·L(x← ωi, j)·

V (x,y j)(nx ·Θi, j)
(ny j
·−(Θi, j))

r2 Ay j
,

(4.4)

where Θi, j is the direction to the surface y j. Note that, we only evaluate the binary

visibility once (between x and the surface element’s center) and turn the original

integral into a sum over surface elements.

58 Chapter 4: Interactive Global Illumination Using Implicit Visibility

We make the final assumption that a surface element always covers the extent

of a spherical bin Ωbini
completely. This means that only the closest element needs

to be considered and Equation (4.4) becomes:

Ki(Θo,x)≈ fr(x,Θi,s↔ Θo) ·L(x←Θi,s) ·

(nx ·Θi,s) ·
(nys ·(−Θi,s))

r2 ·Ays
,

(4.5)

where ys is the closest surface element.

We use this formulation to render a global illumination solution by means of

a radiosity-like algorithm. The discretization into bins allows us to borrow the

idea of shadow mapping. We create a (hierarchical) link structure between scene

elements, where we store links in the discretized bins at each element, as opposed

to a simple list of links used for standard radiosity algorithms. When creating the

link structure, each bin will only store the shortest link, i.e., the link connecting to

the closest surface element. Using this scheme, the visibility information will be

implicitly retrieved from the link structure. This can be seen as a variant of omni-

directional shadow mapping [Brabec02]; for each point x we discretize visibility

for its upper hemisphere (Figure 4.2e).

4.2.1 Conceptual Overview

Conceptually, our algorithm is very similar to standard radiosity. We create links

between scene elements and light sources, and transfer energy between them until

the solution is converged (or a certain number of iterations has been reached).

In contrast to standard radiosity, we do not store a simple list of links at each

scene element, but structure the links by storing them in bins. A non-hierarchical

version of our algorithm would simply try to connect all scene elements with each

other. Whenever a link is about to be created, its respective bin is queried and

checked if there already exists a link and if that link is shorter or longer than the

new link. In case the new link is shorter, it replaces the old one; if not, the old one

remains. After all links have been created, normal shooting or gathering iterations

can be run to transfer energy. Similar to Immel et al. [Immel86], this allows for

diffuse as well as glossy direct and indirect illumination.

Of course, this basic algorithm is inefficient as a non-hierarchical link struc-

ture grows quadratically in the number of scene elements. In the following, we

therefore develop a hierarchical version of this algorithm, which enables us to

obtain near-real-time frame rates for dynamic scenes on a single PC.

4.3 Hierarchical Implicit Visibility 59

Figure 4.2: (a) Color-coded surface segments representing the coarsest ap-

proximation level of the geometric hierarchy. (b) Four surface elements of

the finest level of the hierarchy and the corresponding element on the next

coarser level (c). (d) Each surface element features (visibility/radiance) links

to many other surface elements. (e) The sphere of directions for each element

is discretized into cube-map bins, each one of them storing the shortest link

to another disc.

4.3 Hierarchical Implicit Visibility

Our method is visualized in Fig. 4.2 and pseudo-code can be found in Algo-

rithm. 4.3. In a preprocessing step, we create a geometric hierarchy for each

object. This geometric hierarchy is only computed once and is then re-used at

run-time to construct the hierarchical link structure, which is the data structure

for computing the actual global illumination solution. At run-time, we first up-

date the data associated with the surface elements (positions, etc.), as they might

have changed from the last frame. We then construct the hierarchical link structure

using implicit visibility as indicated before. After construction, the hierarchical

link structure needs to be refined in a second pass to propagate the implicit visibil-

ity information to all levels. The propagation of energy is very similar to standard

radiosity. We will detail our method in the following.

4.3.1 Geometric Hierarchy Preprocessing

In order to facilitate illumination computations, we represent our objects using

a hierarchy of surface elements. A surface element is an oriented disk with a

position, normal and area. The surface elements at the finest scale are based on

the vertices of the input model(s) (Figure 4.2b). We chose discs centered around

vertices as they can be easily computed for any type of mesh. The position and

normal information of each surface element is known from the input model. Simi-

lar to [Bunnell05], its area is computed as one-third of the total area of all triangles

sharing this vertex.

To speed up the run-time process, we precompute a geometric hierarchy of

60 Chapter 4: Interactive Global Illumination Using Implicit Visibility

Algorithm 1 – Main Algorithm

1: CreateSurfels(): Create surface elements based on the input geometry infor-

mation (vertex, face, etc).

2: CreateGeometricHierarchy(): Create hierarchical geometric structure for

each object.

3: for each frame do

4: UpdateElements(): Update the geometry information for initial geometric

hierarchy.

5: CreateHierarchicalLinks(): Create hierarchical links between elements.

6: RefineHierarchicalLinks(): Refine links (top-down, remove unnecessary

links).

7: PushdownLinks(): Push all links to leaf node.

8: for each light bounce do

9: ComputeIlluminateLeafNodes(): Gather incident energy from links and

compute illumination results in leaf nodes.

10: PullupEnergy(): Pull up the indirect lighting energy from leaf nodes.

11: end for

12: end for

the surface elements, which is then re-used at run-time. Similar to other ra-

diosity methods, we want to cluster the surface elements in a way such they

are adjacent and oriented similarly. Different methods exist to achieve this

goal [Garland01, Smits94]. However, our models are allowed to deform at run-

time preventing an optimal precomputed solution. We adopt the simple technique

by Bunnel [Bunnell05] and use UV texture space segments (typically provided by

the artist to enable texturing) as the coarsest cluster unit (see Figure 4.2a for an

example).

For each UV segment, we create one hierarchical quad-tree representing a

spatial disc hierarchy for all vertices in the segment. The root node of the tree is a

surface element approximating the whole UV segment, the leaf nodes are the discs

corresponding to single vertices. Each surface element in the tree can have up to

four smaller child surface elements on the next lower level (Figure 4.2b and c).

For each surface-element in the hierarchy, we store its position (average position

of all its child surface elements), the overall surface area, as well as the average

normal direction. The hierarchical structure is only computed once. However, the

average position as well as normal is re-computed every frame in order to support

dynamic models. The area of most elements varies very little during animation,

therefore, the area does not have to be recalculated for each frame. Please note,

that the terms node, surface element and disc are used interchangeably.

4.3 Hierarchical Implicit Visibility 61

4.3.2 Creating the Hierarchical Link Structure

For each frame, we recompute a hierarchical link structure, which is used to per-

form light propagation but also implicitly determines visibility. This subsection

details how this structure is created and refined (corresponds to steps 4–7 in Al-

gorithm. 4.3).

Update Elements of Geometric Hierarchy

Our method allows objects to move around and even deform. Therefore, the stored

geometric information needs to be updated accordingly while preserving the hi-

erarchy. At each frame, we therefore update position and normal of each surface

element. The data of each parent node is updated based on its children. Note

that the hierarchy itself remains untouched. This process is similar to updating a

bounding volume hierarchy in ray-tracing [Wald07].

Initial Hierarchical Link Structure

After the geometric information has been updated, we can proceed and build the

hierarchical link structure. As stated before, we base the link creation on the

precomputed geometric hierarchies. We start by linking all top level nodes of the

geometric hierarchies. Whenever a link between two nodes (called A and B in the

following) is about to be created, we perform the following checks:

• If the solid angle of B as seen from A’s position is bigger than the solid

angle of the link’s respective bin, then the B-node should be subdivided,

i.e., we try to link A to B’s children (going down the geometric hierarchy).

The same check is performed for A as seen from B.

• If there is already a link that has a shorter distance, which is determined by

checking the link stored in the respective bin, no link will be created.

In all other cases, we create a link between the two surface elements A and B and

store it in the respective bins of A and B.

As can be seen, there are two main metrics to determine whether two nodes can

be connected. First, the solid angle determines whether the two surface elements

are too big to be connected and should be subdivided. If the surface elements are

bigger than a bin, it might happen that bins don’t get filled with links, even though

there is an element in that direction. This would prevent the implicit visibility to

be evaluated correctly. Therefore, we go further down in the hierarchy. Second,

the length of the link is used to determine if the other surface element is visible at

all.

62 Chapter 4: Interactive Global Illumination Using Implicit Visibility

Discretization We chose the cube-map parameterization to discretize the sphere

of directions. In other words, a bin corresponds to a texel in the cube-map. The

main advantage of a cube-map lies in the efficient mapping of a direction to a bin.

Refining the Hierarchical Link Structure

During the creation of the hierarchical link structure, it is possible that a surface el-

ement and its child nodes contain different links in the same bin/direction because

the order in which links are created is arbitrary. This is illustrated in Figure 4.3.

The link creation process first happens to connect surface elements A and B. Then,

in the next step, A and C are connected but since they are closer together, the links

are created further down in the hierarchy (A and C are subdivided). The original

link between A and B remains however, as the new shorter link is created further

down in the hierarchy and does not remove the original link.

The purpose of refining the hierarchical links is to delete those incorrect (and

redundant) links. To this end, we traverse the tree(s) in a breadth-first manner.

During traversal, we compare the links in the bins of all parent-nodes and the

links in the bins of the currently visited node. If, for a given bin, the current node

contains a shorter link than a parent node, the parent-node’s link is removed and

pushed to the siblings of the current node (if they don’t contain shorter links). If

(b)

A

B

C

(a)

A

B

C

Figure 4.3: Linking problem: In (a), the elements A and B are connected with

a single link. In the next step, the algorithm tries to connect A and C. Since

they are close by, both A and C get subdivided and links are created further

down in the hierarchy. Now there are inconsistent links at different levels

in the hierarchy: A is still linked to B, even though there are shorter links

further down in the hierarchy between A and C.

4.3 Hierarchical Implicit Visibility 63

Figure 4.4: Refining hierarchical links: Different colors refer to different

bins, and the length of each arrow represents the link’s length. We traverse

the tree breadth-first, and compare the links of parent and child nodes. If

there is a shorter link in a node further down in the hierarchy, we remove the

parent-node’s link and push it to the siblings of the node. If there is a longer

link, it is removed.

the parent node contains a shorter link, the child-node’s link is simply removed.

This refinement removes any incorrect links. Note that the refinement of links can

be done in a single traversal of the tree by keeping track of which bins have links

further up in the hierarchy.

Push-Down of Links

Our goal is to implement the illumination computation on the GPU. Unfortunately,

GPUs only support very limited scatter operations, i.e., data cannot be written to

arbitrary positions but usually only to the current raster position. The push part

of the push-pull used by hierarchical radiosity algorithms [Cohen93] requires a

scatter operation, as data is written to all the child nodes of a parent node.

We avoid this scatter operation and enable an efficient GPU implementation by

pushing down links from all the interior nodes of our hierarchy to the leaf nodes.

More specifically, the previously bidirectional links between two nodes are split

into two unidirectional links through which energy is received at each node. All

the receiving ends of the links are then pushed down the hierarchy to the leaf

nodes. This step can be combined with the link refinement from the previous

subsection.

64 Chapter 4: Interactive Global Illumination Using Implicit Visibility

4.3.3 Illumination Computation

Global illumination is computed in a similar manner to hierarchical radiosity. En-

ergy is transferred between nodes along links. We chose a gathering approach, i.e.,

at each node, we gather all the energy from all incident links. The incident light

is then convolved with the BRDF and converted to outgoing radiance. In case of

diffuse BRDFs, the outgoing radiance is constant for all outgoing directions and

we just store a single RGB triple. In case of glossy reflections, we augment our

bin structure and store the outgoing radiance per direction in it.

As we have pushed down all receiver links to leaf nodes, outgoing illumination

is only computed at leaf nodes (no other nodes can receive energy). Nonetheless,

just like in hierarchical radiosity, we need to pull up the outgoing energy to the

parent nodes, which is achieved by traversing the tree bottom-up and accumulating

energies. These two steps need to be iterated to account for indirect illumination.

This procedure can be easily implemented on the CPU, but it unlocks its full

potential only when implemented on the GPU.

GPU implementation

We store our surface elements, i.e., positions and normals, in two floating point

textures. The hierarchical tree is stored in a texture in a pointer-less manner based

on node indices. E.g., a full quadtree with 21 nodes and three hierarchy levels has

indices 1–16 for the leaf nodes, indices 17–20 for the second level, and index 21

as the root node. Hence, the index of a node is sufficient to compute the indices

of child and parent nodes. A third texture is used to store all the links. In order

to allow for fast construction of this texture, we simply flatten the 6×N×N bin

structure of each node and store its content in the 2D domain (we actually store

this data split over several textures). A fourth texture contains the outgoing (and

unshot) energy for each node.

Computing the illumination is rather straightforward given these textures. For

each leaf node, we loop over all its links and gather and sum the unshot energy

from them. It is then converted into outgoing radiance by multiplying with the

albedo of the node. After the energy has been gathered at all leaf nodes, we need

to perform the traditional push-up operation. The pointer-less tree representation

allows us to do this very efficiently by traversing bottom-up through all nodes of

the tree. For each node, we accumulate the outgoing radiance weighted by the area

ratio. These two steps can be repeated to account for several bounces of indirect

illumination.

For final display, we convert the texture containing outgoing radiance into a

vertex texture, which is used to set the color at the vertices of the model.

Speedup The direct lighting computation can be sped up, as there are generally

4.4 Results 65

few links to the light sources. Instead of going through all bins, we create a special

texture that contains for each node: the number of light links and the actual links

(indices to nodes). Now, we only need to go through those links to gather energy.

4.3.4 Light Sources

We support area light sources as well as environmental lighting. Area light sources

are geometry like any other object, with the notable difference that their initial

outgoing radiance is set to be non-zero.

Environmental lighting could be handle the same way, but allows for a simple

optimization. Instead of creating geometry for the environment, we initially omit

it completely and create our hierarchy with objects only. We now use the obser-

vation that any empty bin (in the leaf nodes) can see the lighting environment and

therefore receives light from it. Our optimized direct lighting step (see above)

checks for this, and gathers light from the environment for any empty bin.

4.4 Results

Our method enables interactive rendering of fully dynamic scenes with direct and

indirect illumination. Figure 4.1 shows an example where a teapot reflects the

colored pattern of a ground plane. Also note the soft shadow cast by the environ-

mental lighting. This runs at interactive speeds (around 7 FPS) on an NVIDIA

8800. Deformable objects, as shown in Figure 4.5, can also be handled easily.

Figure 4.6 demonstrates that our method can handle shadows and indirect

lighting effects between objects. Note in (b) how there is a green sheen on the

grey chess piece.

Figure 4.9 compares a reference image (a) computed with path tracing to a

result of our method (b). Despite all the approximations we make, as detailed

in Section 4.2, the differences are minor. Our method produces slightly softer

shadows, which is less noticeable for a directional discretization of 6×16×16.

The differences become more prominent for coarser discretizations and artifacts

appear.

Figure 4.7 shows a teapot illuminated with an area source. Overall, the shading

compares well to the reference image. However, discretization artifacts become

obvious in the shadow area. These artifacts can be reduced by either increasing

the number of bins or by using larger area lights.

Figure 4.8 shows a monster on a ground plane with direct, one-bounce indi-

rect, and two-bounce indirect lighting. Three levels of directional discretization

are compared. One-bounce lighting is sufficient for a pleasing result. A coarse

66 Chapter 4: Interactive Global Illumination Using Implicit Visibility

Figure 4.5: Flying dragon (deformable model, 2670 vertices).

directional discretization produces slight artifacts, but the speed gains are consid-

erable. Table 4.1 details the time spent on the different steps of our algorithm for

this particular scene. The initial creation of the geometric hierarchy takes about

72ms but is only done once in a preprocess.

Figure 4.10 compares a reference image (a) computed with path tracing to our

method (b). The differences are minor. However, our method renders with several

frames per second. We also demonstrate that there is virtually no difference be-

tween our hierarchical (b) and a brute-force non-hierarchical version (c). Coarsely

tessellated objects can cause light leakage, see (d) where the teapot only has 792

vertices (992 triangles).

Our GPU implementation also supports glossy direct illumination, which we

demonstrate in Figure 4.11. In order to maintain interactive frame rates, we limit

indirect illumination to diffuse interreflections in our GPU implementation (even

though the proposed method itself can handle glossy interreflections). Our results

compare favorably to the reference solution (Figure 4.11a).

We have found that our algorithm has roughly a complexity of O(N logN),
with N being the number of vertices, which is similar to other hierarchical radios-

ity methods.

4.4.1 Discussion

Despite the high-frame rate and the faithful reproduction of global illumination

effects as documented by the ground truth comparisons, the proposed approxima-

4.4 Results 67

Figure 4.6: Shadow and indirect lighting effects between objects (with (a)

5165 vertices and (b) 4782 vertices).

Discretization 6×8×8 6×12×12 6×16×16

Update Elements 12ms (6%) 12ms (8%) 12ms (11%)

Create Hierarchy 23ms (21%) 43ms (29%) 78ms (38%)

Refine & Push 30ms (29%) 35ms (24%) 60ms (30%)

Illumination 35ms (35%) 40ms (28%) 48ms (24%)

Total 112ms 148ms 218ms

Table 4.1: Timings for the monster (3378 vertices, 1-bounce illumination, see

Fig. 4.8).

tions and discretization may lead to visual artifacts. If only a coarse cube-map

discretization of the directional hemisphere is used, block artifacts may be visible

in the light simulation (e.g., Figure 4.7 and 4.8). However, using 6×12×12 bins,

we achieve a good compromise between speed and visual quality.

Additional inaccuracies may occur due to the uneven distribution of solid an-

gles across bins. Furthermore, although the fixed world-space alignment of the bin

cube-maps across all geometric hierarchy levels enables fast computation, differ-

ences in directional sampling for different surface element orientations may lead

to inaccuracies and temporal aliasing when objects undergo deformations (see ac-

companying video).

Moreover, rendering quality depends on the initial triangulation of the models

as we base our lighting simulation on the models’ vertices. Starkly uneven trian-

gulation may therefore require re-meshing to prevent artifacts. If a model is not

tessellated finely enough, light leakage might occur, as not every bin can be filled

with a link for accurate occlusions. However, for 6×16×16 or fewer bins and

68 Chapter 4: Interactive Global Illumination Using Implicit Visibility

Figure 4.7: Discretization artifacts may become visible under area lighting.

However, increasing the number of bins reduces artifacts.

models of about 5000 vertices, we have rarely encountered it.

Currently, we also trade rendering performance for accuracy and precompute

the geometric hierarchy once, ignoring the fact that an adaptation of the hierarchy

according to the deformation may be beneficial.

Despite these trade-offs and approximations, which are necessary to obtain

high performance, the good visual quality of our results shows that interactive full

global illumination on a single PC is feasible.

4.5 Summary

We presented a new global illumination method that builds on and extends the

traditional hierarchical radiosity approach by implicitly computing visibility. This

new concept circumvents time-consuming explicit visibility queries, the main per-

formance bottleneck in traditional approaches. Our method allows for rendering

of full global illumination solutions for moderately complex and arbitrarily de-

forming dynamic scenes at near-real-time frame rates on a single PC. It faithfully

reproduces a variety of complex lighting effects including diffuse and glossy inter-

reflections, and handles scenes featuring environment map and area light sources.

As part of future work, we plan to investigate explicit temporal coherence

strategies to further improve animation quality. Decoupling the tessellation of the

mesh from shading computation is another interesting line of research.

4.5 Summary 69

Figure 4.8: A monster rendered under environmental lighting with direct

illumination, one-bounce, and two-bounce indirect illumination and varying

discretizations (3378 vertices).

Figure 4.9: Frog with one-bounce indirect lighting and varying bin discretiza-

tion (3495 vertices).

70 Chapter 4: Interactive Global Illumination Using Implicit Visibility

Figure 4.10: Environment lighting: (a) Ground truth using path tracing. (b)

Non-hierarchical CPU implementation of our method. (c) GPU version of

our algorithm. (d) Light leaking if mesh tessellation is too coarse (teapot:

(a)-(c) 2582 vertices, (d) 792 vertices).

Figure 4.11: Glossy sphere (2278 vertices).

Part III

Pre-filtering Soft Shadow Maps and

their Applications

Chapter 5

Real-time All-frequency Shadows In

Dynamic Scenes

5.1 Introduction

Real-time, photo-realistic rendering of computer-generated scenes requires a high

computational effort. One of the main bottlenecks is visibility determination be-

tween light sources and receiving surfaces, especially under complex lighting such

as area light sources or environment maps.

Recent methods for rendering soft shadows from area lights operate in real-

time, but either tend to be too intricate and expensive for rendering multiple light

sources [Guennebaud06, Guennebaud07, Schwarz07], or break down for detailed

geometry [Assarsson03]. Furthermore, these methods usually do not support envi-

ronment map lighting. Other algorithms based on precomputation [Sloan02] are

good at reproducing shadows from environment maps in static scenes, but have

difficulties with fully dynamic objects, despite recent progress [Ren06].

The goal of our works in this chapter is to enable real-time, all-frequency

shadows in completely dynamic scenes and to support area light sources as well

as environment lighting. The key contribution is a very fast method for render-

ing plausible soft shadows which is so-called convolution soft shadow mapping

(CSSM). CSSM requires only a constant-time memory lookup, thereby enabling

us to render soft shadows at hundreds of frames per second for a single area

source. Environment-lit scenes can be rendered from a collection of approxi-

mating area light sources. Even though shadows are only approximate, the results

are virtually indistinguishable from reference renderings, but are produced at real-

time frame rates.

74 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

5.2 Plausible Soft Shadows Using Convolution

Rendering soft shadows for area light sources is challenging. Our goal is to render

several area light sources in real-time without having to sacrifice visual quality.

We argue that computing penumbrae at full physical accuracy is intractable in this

case. Instead, reducing shadow accuracy slightly enables us to achieve very high

frame rates while keeping the visual error at a minimum.

We build on convolution-based methods which simulate penumbrae by fil-

tering shadows depending on the configuration of blocker, receiver, and light

source [Soler98, Fernando05b]. These methods are approximate in general, but

produce an exact solution if the light source, blocker, and receiver are planar and

parallel [Soler98]. Fortunately, deviating from this geometric configuration still

produces plausible results.

The advantage of computing shadows using convolution is two-fold: it

is compatible with image-based representations, in particular shadow map-

ping [Williams78] and thus scales well to scenes with a high polygon count.

Second, convolutions can be computed efficiently using the Fourier trans-

form [Soler98], or even in constant time if the shadows have been prefiltered using

mipmaps or summed area tables [Lauritzen07].

However, applying convolution to shadow maps in order to produce soft shad-

owing is not trivial. The size of the convolution kernel needs to be estimated

based on the blocker distance [Soler98], but when multiple blockers at different

depths are involved there is no single correct blocker distance. To get a reason-

able approximation of blocker depth, we adopt the soft shadow framework of

percentage closer soft shadows (PCSS) and firstly compute the average depth of

the blockers over the support of the filter. This framework was introduced by

Fernando [Fernando05b] and we have already introduced it in details in the Sec-

tion. 2.4.2 of Chapter. 2. Unfortunately, estimating this average blocker depth is

expensive since it (seemingly) requires averaging depths from the shadow map

in a brute force fashion. The strength of our technique is that it allows for both

efficient filtering of the shadows as well as efficient computation of the average

blocker depth. Both of these operations can be expressed with the same mathe-

matical framework, and will be described in Section. 5.2.1.

The main visual consequence of the average blocker depth approximation is

that the penumbra width may not be estimated exactly (it is correct for the parallel-

planar configuration described above though). We show that this approximation

does not produce offensive artifacts, and even closely approximates the ground

truth solution. Figure 5.1 presents an overview of our soft shadow method and

will be detailed in the following section.

5.2 Plausible Soft Shadows Using Convolution 75

(a) Intersection with SM (b) Average z computation

(c) Move SM to average z (d) Filter shadow test

Figure 5.1: An overview of the CSSM method. First, an initial filter size

is determined according to the cone defined by the intersection of the area

light source, the shadow map plane, and the current receiver point (a). This

filter size (green) is used to fetch the zavg value from the prefiltered average

z-textures. We then virtually place the shadow map plane at the zavg and

determine the final filter width (red) for soft shadow computation as shown

in (c). In the last step, the incoming visibility value is looked up from the

CSM texture (d).

76 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

5.2.1 Convolution Soft Shadows

As indicated above, soft shadows can be rendered efficiently through shadow map

filtering and we therefore build on Convolution Shadow Maps (CSM) [Annen07].

As will be shown, CSM can be extended to also compute the average blocker

depth, which is required to estimate penumbra widths. We also introduce ex-

tensions that allow us to safely reduce the approximation order to further push

rendering performance.

Review In order to keep the discussion self-contained, we briefly review CSM.

Let x∈R
3 be the world-space position of a screen-space pixel and the point p∈R

2

represents the corresponding 2D position of a shadow map pixel. The shadow map

itself encodes the function z(p), which represents the depth of the blocker that is

closest to the light source for each p, and d(x) is the distance from x to the light

source.

We define the shadow function s(), which encodes the shadow test, as:

s(x) = f (d(x),z(p)) :=

{

1 if d(x)≤ z(p)

0 if d(x) > z(p).
(5.1)

If the function f () is expanded into a separable series:

f (d(x),z(p)) =
∞

∑
i=1

ai(d(x))Bi(z(p)), (5.2)

we can spatially convolve the result of the shadow test through prefiltering:

s f (x) =
[

w∗ f
(

d(x),z
)]

(p)

≈
N

∑
i=1

ai

(

d(x)
)[

w∗Bi

]

(p), (5.3)

where the basis images Bi are prefiltered with the kernel w, which in prac-

tice is achieved through mipmapping each Bi(p) or computing summed area ta-

bles [Crow84]. At run-time, one only needs to weight the prefiltered basis images

by ai(d(x)) and sum them up.

5.2.2 Estimating Average Blocker Depth

The above prefiltering of the shadow test results allows us to apply convolutions to

soften shadow boundaries. However, for real soft shadows the size of the convolu-

tion kernel needs to vary based on the geometric relation of blockers and receivers

[Soler98]. We follow Fernando [Fernando05b] and use the average depth value

5.2 Plausible Soft Shadows Using Convolution 77

zavg of all blockers that are above the current point x to adjust the size of the

kernel.

Estimating the average blocker depth appears to be a very expensive operation.

The obvious solution of sampling a large number of shadow map texels in order

to compute the average depth value zavg is very costly, and achieving good frame

rates for large convolution kernels is not only difficult [Fernando05b] but also

counterproductive for constant time filtering methods [Donnelly06b, Annen07,

Lauritzen07].

The key insight into making this step efficient is that this selective averaging

can be expressed as a convolution and can therefore be rendered efficiently. To

see this, let us first compute a simple local average of the z-values in the shadow

map:

zavg(x) =
[

wavg ∗ z
]

(p). (5.4)

Here, wavg is a (normalized) averaging kernel. However, we only want to aver-

age values that are smaller than d(x). Let us therefore define a “complementary”

shadow test f̄ :

f̄ (d(x),z(p)) =

{

1 if d(x) > z(p)

0 if d(x)≤ z(p),
(5.5)

which returns 1 if the shadow map z-value z(p) is smaller than the current depth

d(x), and 0 otherwise. We can now use this function to “select” the appropriate z

samples by weighting them:

zavg(x) =

[

wavg ∗
[

f̄
(

d(x),z
)

× z
]

]

(p)
[

wavg ∗ f̄
(

d(x),z
)]

(p)
. (5.6)

The denominator normalizes the sum such that it remains an average and is

simply equal to the complementary filtered shadow lookup: 1− s f (x). For the

numerator we can approximate the product of the complementary shadow test and

z using the same expansion as used in regular CSM:

f̄
(

d(x),z
)

z =
N

∑
i=1

āi

(

d(x)
)

B̄i

(

z(p)
)

z(p). (5.7)

Here, coefficients āi are coefficients and B̄i basis images for f̄ . We can now

approximate the average as:

zavg(x) =
1

1− s f (x)

N

∑
i=1

āi

(

d(x)
)

[

wavg ∗
[

B̄i(z)z
]

]

(p). (5.8)

We will therefore compute new basis images
[

B̄i

(

z(p)
)

z(p)
]

alongside the

regular CSM basis images. We refer to this new approach for computing the

78 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

CSM 16 terms

CSM 4 terms

(a) CSM 4 and 16

terms

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

CSM CSM−Z

(b) CSM vs CSM-Z

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

regular

streched

(c) Shift and Scale

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

(d) Final Clamp

Figure 5.2: Fourier series expansion. (a) depicts the difference between a 16-

and 4-term reconstruction. (b) CSM and CSM-Z are exactly opposite to each

other. Ringing suppression is possible with appropriate scaling and shifting

(c), followed by clamping the function to [0,1] (d).

average blocker depth as CSM-Z. See the appendix for a full derivation of the

convolution formula for zavg.

Initializing Average Depth Computation When we want to estimate or ap-

proximate the penumbra size for a given camera sample we have to do this by

finding the area over the shadow map over which we will perform the zavg compu-

tation. A first idea is to intersect the frustum formed by the camera sample x in 3D

and the virtual area light source geometry with the shadow map plane (as depicted

in Figure 5.1(a)). Unfortunately, there is no clear definition of such a plane, as the

shadow map itself only represents a height field and does not have a certain plane

location. We have found the near plane to work well for all our results. Please

check the corresponding detailed introductions in the Section. 2.4.2 of Chapter. 2.

However, an iterative procedure is possible where one re-adjusts the location after

an initial zavg has been found.

5.2.3 CSM Order Reduction

Annen et al. [Annen07] propose to expand f using a Fourier series. Unfortu-

nately, this series is prone to ringing artifacts and the shadows at contact points

may appear too bright unless a high order approximation is used as shown in Fig-

ure 5.2(a). We propose two changes that allow us to reduce the order significantly.

First, we notice that with appropriate scaling, shifting, and subsequent clamping,

ringing can be avoided completely. Figure 5.2 illustrates this. Scaling and shifting

f (d,z) such that ringing only occurs above 1 and below 0 is shown in (c). When-

ever the function f (d,z) is reconstructed we clamp its result to [0,1], avoiding any

visible artifacts (d).

A second problem with a low order series is that the slope of the reconstructed

shadow test is not very steep when (d− z) ≈ 0, as can be seen in Figure 5.2(d),

and yields shadows that are too bright near contact points. A simple solution is

to apply a non-linear transformation G(v) = vp to the filtered shadow value s f (x)

5.3 Illumination with Soft Shadows 79

with p≥ 1. This tends to darken the shadows and thus hides light leaking. If p = 1,

nothing changes. On the downside, darkening also removes smooth transitions

from penumbra regions, so we want to only apply it where necessary. When

d(x)− zavg(p) is small, we know that x is near a contact point where leaking will

likely occur. Fortunately, this is also where penumbrae should be hard anyway.

We therefore compute an adaptive exponent p based on this difference:

p = 1 + A exp
(

−B
(

d(x)− zavg(p)
))

. (5.9)

A controls the strength of the darkening, and B determines the maximal distance

of zavg from the receiver point for which darkening is applied to. Figure 5.3 shows

this effect for a varying parameter B.

Figure 5.3: An illustration of the impact of sharpening parameters A and B. A

is fixed to 30.0, whereas B is set to 5.0, 10.0, and 20.0 showing how B changes

the spatial extend of the sharpening.

5.3 Illumination with Soft Shadows

5.3.1 Rendering Prefiltered Soft Shadows

Generating soft shadows with our new algorithm is similar to rendering anti-

aliased shadows [Annen07]. First, the scene is rasterized from the center of the

area light source and the z-values are written to the shadow map. Based on the

current depth map two sets of images are produced: the Fourier series basis and

its complementary basis images multiplied by the shadow map z-values.

After we have generated both data structures, we can run the prefilter process.

Note that when the convolution formula from Eq. 5.8 is evaluated using a Fourier

series, it also requires prefiltering the shadow map due to the constant factor when

multiplying f̄ () by z(p) (see appendix). In our implementation, we support image

pyramids (mipmaps) and summed-area-tables. Other linear filtering operations

are applicable as well. When filtering is complete, we start shading the scene

80 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

Figure 5.4: Convolution soft shadows pipeline. Stage 1 reconstructs a pre-

filtered zavg. The zavg is passed to the 2nd stage for normalization. Thereafter,

the final filter size is computed as described in 5.1(c), and the visibility is

evaluated by a regular CSM reconstruction.

from the camera view and employ convolution soft shadows for high-performance

visibility queries. An overview of the different steps is given in Figure 5.4.

For each camera pixel we first determine an initial filter kernel width as pre-

viously shown in Figure 5.1(a) to estimate the level of filtering necessary for the

pixel’s 3D position and feed this to stages one and two. Stage one reconstructs the

average blocker depth based on the prefiltered CSM-Z textures and the prefiltered

shadow map, which is then passed to the second stage for normalization. After

normalization, the final filter kernel width fw is adjusted according to the spatial

relationship between the area light source and the current receiver. In particular,

the triangle equality tells us the filter width: fw = ∆
d
·

(d−zavg)
zavg

· zn, where ∆ is the

area light source width, d is the distance from x to the light source, and zn is the

light’s near plane. The filter width fw is then mapped to the shadow map space

by dividing it by 2 · zn · tan(f ovy
2). A final lookup into the CSM textures yields the

approximate visibility we wish to compute for the current pixel.

All three stages together require only six RGBA and one depth texture access

(for a reconstruction order M = 4).

5.3 Illumination with Soft Shadows 81

...

a) b) c) d) e)

j)f) g) h) i)

Figure 5.5: Fitting area lights to a cube map face. We first fit a 1× 1 area

light to the brightest pixel (a). In turn, we try to enlarge the area light at

each side until a stopping criteria is reached (b)-(e). We remove the energy

for this area light (but leave some amount to blend it with the area around it)

(f), and continue with fitting more area lights (g)-(i), until we have area lights

covering the whole face.

5.3.2 Generation of Area Lights for Environment Maps

We propose the following greedy algorithm for decomposing an environment map

into a number of area light sources. We assume the environment map to be given

as a cube map and proceed by decomposing each cube map face separately.

The process works directly in the 2D domain of the cube map face. We first

find the pixel with the largest amount of energy and create a preliminary 1× 1

area light for it. We then iterate over all four sides of the area light and try to

enlarge each side by one pixel. The area light is enlarged if the ratio between

the amount of energy Edelta that would be added to the light by enlarging it and

the amount of energy Etotal that the enlarged area light would emit is larger than

a given threshold t. We repeat this enlargement process until none of the four

sides can be enlarged, or the area light covers the complete cube map face. After

the enlargement process has stopped, we remove the energy of this portion of the

cube map face but leave a residual amount of energy to enable better fits in later

iterations and create the final area light for it. The residual amount equals the

average amount of energy adjusted to the size of the area. We then continue with

fitting more area lights until we have covered the whole cube map face. Figure

5.5 illustrates the process. Note that our method may produce overlapping area

lights. The parameter t determines the total number of light sources fitted to each

cube map face. Examples are shown in Fig. 5.6.

82 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

(a) t = 0.015, 30 ALs (b) t = 0.025, 44 ALs (c) t = 0.035, 62 ALs

(d) t = 0.015, 32 ALs (e) t = 0.025, 45 ALs (f) t = 0.035, 60 ALs

Figure 5.6: A close-up of the area light decomposition for two different envi-

ronment maps. The threshold values t are given.

5.4 Limitations and Discussion

Failure Cases Our technique shares the same failure cases as PCF-based soft

shadowing [Fernando05b]. We assume that all blockers have the same depth

within the convolution kernel (essentially flattening blockers), similar to Soler

and Sillion’s method [Soler98]. This assumption is more likely to be violated

for larger area lights. Nevertheless, shadows look qualitatively similar to the ref-

erence rendering, as shown in see Figure 5.7. The use of a single shadow map

results in incorrect shadows for certain geometries. This problem is commonly

referred to as ”single silhouette artifacts”, which we share with many other tech-

niques [Assarsson03, Guennebaud06].

Average Z Computation Computing the average z-value as described is prone

5.5 Results 83

to inaccuracies due to the approximations introduced by CSM-Z and CSM. These

possible inaccuracies may lead to visible artifacts due to the division by 1−s f (x).
Care must be taken to use the very same expansion for CSM-Z and CSM in order

to avoid such artifacts.

Ringing Suppression Our proposed ringing suppression using scaling and

shifting followed by clamping does indeed reduce ringing and improves shadow

darkness near contact points, but also sharpens shadows slightly as can be seen in

Figure 5.9. However, this process is necessary to keep frame rates high as it allows

the use of fewer terms in the expansion and the differences are barely noticeable.

See the comparisons in the results section, all of which are rendered using ringing

suppression.

Mipmaps vs. Summed Area Tables The quality that our method can achieve

depends on the prefiltering process. Mipmaps are computationally inexpensive,

but their quality is inferior compared to SATs as they re-introduce aliasing again

at higher mipmap levels. However, SATs require more storage due to the need to

use floating point textures [Hensley05] especially when using many area lights.

In the case of multiple area lights, as used for environment mapping, artifacts are

masked and mipmapping is a viable option. Figure 5.8 compares both solutions.

Textured Light Sources Our method cannot handle textured light sources di-

rectly as the prefiltering step cannot be extended to include textures. Instead,

we decompose complex luminaires such as environment maps into uniform area

lights.

Rectangular Area Lights Rectangular lights are supported, which is especially

easy when using SATs. They can also be used in conjunction with mipmapping if

the GPU supports anisotropic filtering. The aspect ratio of the area lights is limited

by the maximum anisotropy the GPU allows. The increased cost of anisotropic

filtering might warrant the use of several square area lights instead. The fitting

process described in the last section can be modified to fit square area lights in-

stead of rectangular ones. In fact, this is what we have used for our results.

BRDFs We do not support integrating the BRDF across the light source domain,

similar to most other fast soft shadowing techniques. However, for environment

map rendering we do evaluate the BRDF in the direction of the center of each area

light and weight the contribution accordingly.

5.5 Results

In this section we report on the quality and performance of our method. Our

technique was implemented in DirectX 10 and all results were rendered on a Dual-

Core AMD Opteron with 2.2GHz using an NVIDIA GeForce 8800 GTX graphics

card. Our performance timings are listed in Table 5.1.

84 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

Area Lights

SM Type 1 10 20 40

MM: 1282 258 fps 48 fps 28 fps 18 fps

MM: 2562 228 fps 44 fps 25 fps 15 fps

MM: 5122 189 fps 38 fps 20 fps 13 fps

MM: 1K2 110 fps 24 fps 5 fps -

SAT: 1282 128 fps 15 fps 8.8 fps -

SAT: 2562 110 fps 13 fps 7.5 fps -

SAT: 5122 89 fps 11 fps 6.0 fps -

SAT: 1K2 52 fps 3 fps 1.5 fps -

Table 5.1: Frame rates for the Buddha scene with 70k faces from Figure 5.10,

rendered using reconstruction order M = 4. For many lights and high resolu-

tion shadow maps, our method may require more than the available texture

memory (reported as missing entries).

The first result shown in Figure 5.7 compares the shadow quality of several

different algorithms to a reference rendering. We analyze two situations in partic-

ular, large penumbrae and close-contact shadows (see close-ups). Shadows ren-

dered with our new technique are very close to the reference, bitmask soft shad-

ows perform slightly better at contact shadows and backprojection methods tend

to overdarken shadows when the depth complexity increases. Percentage closer

soft shadows produce banding artifacts in larger penumbra regions due to an in-

sufficient number of samples.

The overall performance of our technique and its image quality depend on the

choice of prefiltering, the number of area lights, and the individual light’s shadow

map size. The next results illustrate the impact of these individual factors.

We begin with a side-by-side comparison between mipmap- and SAT-based

soft shadows in Figure 5.8. Mipmaps produce less accurate results compared

to summed-area-tables for rendering single lights due to aliasing artifacts. For

complex lighting environments, however, shadows from many light sources are

averaged, which makes mipmapping artifacts less noticeable (Fig. 5.10 and 5.11).

Figure 5.9 illustrates the influence of the reconstruction order and sharpening.

We render a foot bone model of high depth complexity and demonstrate the ef-

fect of the sharpening function G(). While contact shadows (toe close-up) are

darkened and slightly sharper than the results rendered with M = 16, their larger

penumbra areas are not influenced, which maintains the overall soft shadow qual-

ity.

Figure 5.10 shows the influence of the number of light sources used for ap-

proximating the environment map. Below the renderings we show the fitted area

light sources and a difference plot. Rendering with 30 lights (Fig. 5.10(d)) already

5.6 Summary 85

(a) Ground Truth (Ray-Traced) (b) Our Method – SAT 4 Terms

(60 fps)

(c) Our Method – SAT 16

Terms (23 fps)

(d) Percentage Closer Soft

Shadows (18 fps)

(e) Backprojection (41 fps) (f) Bitmask Soft Shadows (19

fps)

Figure 5.7: Shadow quality comparison of several methods (SM was set to

512× 512, scene consists of 212K faces): ray-tracing (a), our method us-

ing SATs – 4 terms (b) and 16 terms (c), percentage closer soft shadows

[Fernando05b] (d), backprojection [Guennebaud06] (e), and bitmask soft

shadows [Schwarz07] (f).

looks quite similar to the reference but some differences are noticeable. With 45

area lights, the differences to the reference are significantly reduced and the re-

sult is visually almost indistinguishable. This example illustrates that mipmap-

ping produces adequate results, while offering a more than threefold speedup

compared to summed-area tables (see Figure 5.11). The reference images in

Figure 5.10 and 5.11 have been generated with 1000 environment map sam-

ples [Ostromoukhov04] using ray tracing. Figure 5.11 also compares brute force

GPU-based shadow rendering with 500 samples, which achieves a much slower

frame rate compared to our method.

Concerning memory consumption, mipmaps (SATs) with M = 4 require two

8bit (32bit) RGBA textures for storing the CSM and two 16bit (32bit) RGBA

textures for storing the CSM-Z basis values.

5.6 Summary

We have presented an efficient soft shadow algorithm that enables rendering of

all-frequency shadows in real-time. It is based on convolution, which does not re-

86 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

Figure 5.8: The difference in filter quality when using a summed-area-table

(left) and a mipmap (right). Successive down sampling with a 2×2 box-filter

introduces aliasing at higher mipmap levels.

quire explicit multiple samples and can therefore be carried out in constant time.

It is fast enough to render many area light sources simultaneously. We have shown

that environment map lighting for dynamic objects can be incorporated by decom-

posing the lighting into a collection of area lights, which are then rendered using

our fast soft shadowing technique. The efficiency of our algorithm is in part due

to some sacrifices in terms of accuracy. However, our new soft shadow method

achieves plausible results, even though they are not entirely physically correct. As

future work, we intend to explore the use of area lights for indirect illumination,

which could be an important step toward interactive global illumination for fully

dynamic scenes.

Appendix

Our zavg computation uses the Fourier series [Annen07] to approximate f̄ () and yields the

following:

f̄ (d(x),z(p))≈
1

2
+2

M

∑
k=1

1

ck

sin
[

ck(d(x)− z(p))
]

, (5.10)

5.6 Summary 87

Figure 5.9: Influence of reconstruction order M and sharpening. The close-

ups show that shadow darkening is restricted to contact points whereas larger

penumbra areas remain unaffected and smooth.

with ck = π(2k−1). Then the convolution from Eq. 8 becomes:

zavg(x)≈
1

1− s f (x)

[

wavg ∗
(1

2
+

M

∑
k=1

2

ck

sin [ck(d(x)− z)]
)

z
]

(p)

≈
1

1− s f (x)

[

wavg ∗
z

2
+

2

ck

M

∑
k=1

sin
(

ckd(x)
)(

wavg ∗ zcos(ckz)
)

−

2

ck

M

∑
k=1

cos
(

ckd(x)
)(

wavg ∗ zsin(ckz)
)]

(p). (5.11)

This means there is an additional basis image containing z/2 values (basically correspond-

ing to a shadow map, see Figure 5.4), which needs to be filtered.

88 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

R
N

L
 E

n
v
m

a
p

(a) RT SMs (b) 60 ALs, t = 0.035 (9.8 fps)

(c) 45 ALs, t = 0.025 (14.1 fps) (d) 30 ALs, t = 0.015 (18.4 fps)

Figure 5.10: Comparison between ray-tracing 1000 point lights (a), our tech-

nique with mipmaps using 60 (b), 45 (c), and 30 (d) area light sources. Each

image shows the environment map with the the fitted light sources in green.

SM resolution was set to 256×256.

5.6 Summary 89

(a) Ray-Tracing (b) SAT 30 ALs, 7.5 fps

(c) Mipmap 30 ALs, 25.4 fps (d) GPU SMs, 1.4 fps

Figure 5.11: In this figure we compare our rendering results with 30 ALs

(St.Peters Basilica EM) against ray-tracing 1000 point lights and standard

GPU-based shadow mapping. (a) ray-tracing, (b) our technique with SATs

(c), our technique with mipmaps, and (d) GPU-based shadow mapping which

achieves similar quality (500 shadow maps). SM resolution was set to 256×
256.

90 Chapter 5: Real-time All-frequency Shadows In Dynamic Scenes

Chapter 6

Real-time Indirect Illumination with

Clustered Visibility

6.1 Introduction

Realizing that visibility is often the bottleneck in the GI methods, fast visibility

determination of the indirect illumination has raised considerable interests. Instant

Radiosity [Keller97] is one option to speed up visibility without imposing many

restrictions on the scene. Here, indirect light is approximated with a number of

virtual point lights (VPLs). Visibility between these VPLs and the rest of the

scene can be efficiently computed using shadow maps and recent graphics hard-

ware (GPUs). However, currently it is not feasible to generate shadow maps for

every VPL as required by non-trivial scenes (e.g. in a computer game) at real-time

frame-rates. We propose a solution to tackle this problem by introducing virtual

area lights (VALs). Instead of using a traditional VPL-based instant radiosity al-

gorithm, we cluster the VPLs into a small number of VALs. Visibility between

these few VALs and the scene is computed with a very fast soft shadowing tech-

nique instead of using hard shadows for a large number of VPLs.

Our contributions in this chapter include:

• A temporally coherent GPU-based method to cluster a large number of

VPLs into a small number of VALs.

• A fast method to render soft shadows from VALs.

• A method to combine illumination from VPLs and visibility from VALs that

allows one-bounce global illumination for moderately complex and fully

dynamic scenes at interactive to real-time frame rates.

92 Chapter 6: Real-time Indirect Illumination with Clustered Visibility

This chapter is organized as follows: we describe our approach in Section 6.2.

The Instant Radiosity method and its extension to clustered visibility is described

in Section 6.3. Details about the clustering algorithm are given in Section 6.4,

followed by our GPU implementation in Section 8.4. We show our results in

Section 6.6 before we conclude in Section 8.6.

6.2 Overview

Our goal is to efficiently compute illumination from a large number of vir-

tual points lights (VPLs). Such VPLs are used to simulate global illumina-

tion [Keller97] and can be efficiently generated using reflective shadow maps

[Dachsbacher05]. To compute visibility for every VPL, shadow mapping

[Williams78] is popular but has two limitations: the entire scene geometry has

to be processed (transformed, clipped, etc.) for every VPL and the total number

of depth map pixels is limited. In recent work, visibility was therefore ignored

[Dachsbacher05, Dachsbacher06], approximated [Ritschel08b] or sped up by ex-

ploiting temporal coherence [Laine07].

To enable real-time global illumination, we propose to approximate visibility

by clustering the VPLs. Although this significantly reduces the number of re-

quired shadow maps, simply drawing a hard shadow for each cluster would result

in banding artifacts in penumbra regions. We therefore exploit recent advantages

in the computation of real-time soft shadows, i.e. each group of VPLs is treated

as one VAL which produces a soft shadow. For the final rendering, we still use

all VPLs to illuminate the receiver point, however, visibility is computed from a

few VALs only. Fig. 6.1 shows an overview of our algorithm. Note that we use

the VPLs only for indirect illumination in this work. Other possible uses of VPLs,

such as for environment map lighting, are not considered here.

6.3 Instant Radiosity with Clustered Visibility

To compute the global illumination at a point x, instant radiosity approximates the

reflected radiance L(x,ωo) in direction ωo with a set of N VPLs, each carrying a

radiant flux Φi as

L(x,ωo) =
N

∑
i=1

Li(x,ωo)V (pi,x),

where

Li(x,ωo) = fr(x,ωi,ωo)
Φi

π cos(θi)cos(θx)

d2
i (x)

,

6.3 Instant Radiosity with Clustered Visibility 93

x

1

VPL Generation VAL Clustering Soft Shadow Maps Rendering

2 3 4

Figure 6.1: Overview of our algorithm: First, a set of N VPLs is generated

to represent the indirect light. In the second step, VALs are generated by

grouping the VPLs into M clusters. Next, one (soft) shadow map is rendered

for each VAL. The final step is the rendering: The receiver point x is illumi-

nated by all VPLs. Instead of computing a visibility value for each VPL, only

M (fractional) visibility values are computed and shared within each clus-

ter. To avoid banding, each cluster generates a soft shadow, so the penumbra

region is composed of soft shadows.

di(x) is the distance between VPL i and receiver, θi and θx are the angles between

VPL i and receiver normal and the transmission direction. V is the binary visibility

term between x and the VPL position pi. fr(x,ωi,ωo) is the BRDF at position x

from direction ωi to VPL i in direction ωo. Φi

π is the radiant intensity of VPL i,

assuming a Lambertian sender.

Next, the general visibility V (which is more suitable for raytracing [Wald03])

is replaced with visibility V̄i from VPLs only (which is more suitable for GPUs

using shadow maps):

L(x,ωo) =
N

∑
i=1

Li(x,ωo)V̄i(x).

To accelerate the visibility computation we group the N VPLs into a much

lower number of M clusters (VALs) and compute the (now fractional) visibility

only for individual VALs:

L(x,ωo)≈
N

∑
i=1

Li(x,ωo)ṼC (i)(x).

Here we use a mapping function C : [1 . . .N]→ [1 . . .M] which maps the VPL

i to the corresponding virtual area light C (i). Details on the creation of C are

found in Section. 6.4. Instead of computing the visibility V̄i(x) between VPL i

and x, an approximation ṼC (i)(x) between the VAL C (i) and x is used. This clus-

tering of visibility is based on the insight that indirect light typically contains few

high frequencies and estimates can be used without much perceptual difference

94 Chapter 6: Real-time Indirect Illumination with Clustered Visibility

[Ritschel08b]. Please note that each receiver point is still illuminated from all N

VPLs, only the number of visibility computations is reduced to M.

6.3.1 Convolution Soft Shadow Maps

To approximate the visibility of one of the M virtual area lights, any soft shadow

algorithm can be used (see [Hasenfratz03a] for a recent survey). Due to its

high rendering speed, we selected our convolution soft shadows map (CSSM)

[Annen08a] for efficient implementation. In Chapter. 5, both the theory and the

implementations of CSSM are introduced in details.

6.3.2 CSSM with parabolic projection

In Chapter. 5, we demonstrate that environment map lighting can be efficiently

rendered by approximating the map with a number of area lights and then using

CSSMs to render each of the area lights. We generalize this approach to dynamic

local area lights for indirect illumination. Given the M clusters of N VPLs, we

place an area light at each cluster center.

Since a diffuse surface reflects towards the whole upper hemisphere, both the

perspective and the orthographic projection are not sufficient to compute visibility

of an area light representing a cluster of VPLs. Instead, we use a shadow map with

a parabolic projection, where the sender is oriented around the surface normal

[Brabec02]. Parabolic convolution soft shadow maps can be realized as follows.

First, an initial filter size is estimated from the solid angle of the current sender

VAL. While a VPL does not define an area, a VAL allows for such a computation.

Then, the average z value zavg is determined in the same way as for a perspective

CSSM. The penumbra size p is then estimated from zavg as shown in Fig. 6.2:

p · cos(β) = (d− zavg)
∆

zavg
,

where d is the distance between sender midpoint and receiver point x, ∆ is the size

of the sender and β is the slope of the receiver surface, viewed from the sender

midpoint. Given the penumbra size, the size of the filter kernel in the shadow map

is adjusted to the angle α of the penumbra, viewed from the center of the area

light:

α = arctan(
p · cos(β)

d
).

Since texture coordinates range from 0 to 1, the size of the filter kernel w can be

estimated as α/π, the fraction between α and the semi-circle π . Fig. 6.3 shows

examples of different soft shadows computed with this approach.

6.4 Clustering 95

∆

d
avgz

βcos⋅pα

β

x

Figure 6.2: Determining the filter size for a paraboloid map.

Discussion

Since parabolic maps use a non-linear projection, it is not correct to approximate

the projection of the sender with a squared filter region, which is effectively what

CSSMs do. We found the resulting visible error to be small, even for difficult

cases as shown in Fig. 6.4. For indirect illumination these errors are acceptable,

since many indirect shadows overlap, hiding these artifacts in most cases.

6.4 Clustering

To accelerate the visibility computation for indirect illumination, we group VPLs

with similar normals and similar positions into clusters (VALs), i.e., we compute

the mapping C . We use a variant of the k-means clustering [Carr03] because it is

fast and yields good results. After clustering, the position and normal of each VAL

are computed by averaging the positions and normals of the contained VPLs. For

rendering soft shadows, we additionally compute the area for each VAL (details

are described in Section. 8.4).

6.4.1 Clustering criterion

Clustering a set of points with k-means consists of two steps. In a first step, start-

ing from arbitrary cluster centers, each point is assigned to the cluster with the

96 Chapter 6: Real-time Indirect Illumination with Clustered Visibility

Figure 6.3: Soft shadows generated with the parabolic CSSM method, ren-

dered with more than 200 fps. The left image shows a small area light, a

larger emitter is used in the right image.

minimum distance to its center . In a second step, each cluster center is recom-

puted as the average of all point positions assigned to this cluster. These two steps

are repeated until convergence.

In our case VPLs must be assigned to VAL clusters. For grouping VPLs into

appropriate clusters, position and normal of the VPL are taken into account. The

distance d between a VPL and a cluster center is therefore computed as:

d = wx∆x+wα∆α.

where ∆x is the euclidean distance between a VPL and the cluster center and

∆α is the angle between the VPL normal and the cluster normal. Each term gets a

user-defined weight wx and wα . In this way, we create clusters which group nearby

VPLs with similar normals. Fig. 6.5 shows how the different weights affect the

clustering. In our examples we use the weights wx = 0.7, wα = 0.3.

Including the normals in clustering is important because artifacts in the VAL

plane can appear for clusters with different normals. Since the illumination is

computed from all VPLs inside the cluster, the illumination may be non-zero at

90 degrees from the cluster normal (see Fig. 6.6). Because there is no visibility

information in the negative halfspace of the VAL, full visibility must be assumed

here. If there is a blocker crossing the VAL halfspace, a discontinuity appears,

because the blocker is ignored in the negative halfspace of the VAL.

Moreover, the cluster center can be located inside the geometry (see Fig. 6.6).

To avoid completely occluded VALs, geometry located near the cluster center has

6.4 Clustering 97

Figure 6.4: Parabolic CSSM limitations: For very large senders, ringing

artifacts can appear (left). Penumbra regions are curved when viewed from

a grazing angle of a large sender (right). We also inherit problems at contact

shadows (left) and MIP discretization (right) from CSMs. Since the indirect

illumination consists of many soft shadows, these artifacts are hidden.

to be ignored, which can result in the loss of some existing shadows. Due to all

these problems, groups of VPLs with similar normals should be preferred which

is achieved by giving them a high weight in the clustering.

6.4.2 Temporal coherence

To avoid flickering, the clustering between two successive frames should be sim-

ilar. To achieve this, a simple strategy would be to use the clustering from the

previous frame as a starting value for the k-means clustering of the current frame.

In most cases, there are only small changes in light and geometry, so most VPL

positions are similar and this quickly converges to a temporally coherent solution.

However, we observed that clusters can be lost, because their center position

is in a bad location and all VPLs are assigned to a different cluster center. Fig. 6.7

(left) shows such a case, here a spot light moves from the wall to the ceiling:

Because normals are taken into account, all VPLs on the ceiling tend to be grouped

into only a few clusters on the ceiling. Several other cluster centers are still located

on the wall. Due to the different normals, the distance of any VPL to these centers

is bigger than the distance to one of the few clusters on the ceiling. This means

that several clusters remain empty. When moving the light source, more and more

cluster centers stay at an old position, without any VPL assigned to it, and the

total number of used clusters decreases over time. If the light moves back to and

98 Chapter 6: Real-time Indirect Illumination with Clustered Visibility

Figure 6.5: Using k-means clustering simply based on the euclidean distance

between the points results in clusters with varying VPL normals, often lo-

cated at edges (left). When including the angle between the normals in the

distance function, planar groups of VPLs can be formed (right).

old position, an empty cluster might be reactivated, otherwise it will never be used

again.

To overcome this problem, we do not reuse the clusters from the last frame, but

restart k-means from an identical, initial cluster assignment at each frame. Since

our VPLs are generated from a sequence of Quasi-Monte-Carlo random numbers

(see Section. 8.4), all VPLs are placed to similar positions in each frame in case

of small movements of light source or geometry. This means that if we use initial

clusters based on the the same VPLs every frame, the k-means algorithm will

converge to a similar result, as shown in Fig. 6.7 (right). Although this increases

the total number of k-means iterations, the total rendering time is nearly unaffected

(see Section. 6.6). The accompanying video shows that our clustering strategy

leads to virtual area lights that smoothly float over the surface. The clustering

always stays temporally coherent, even in case of animated scenes.

6.5 GPU-Based Rendering from Clustered

Visibility

We use a deferred shading renderer, in order to ensure that the expensive indirect

illumination is only computed once for every pixel. Geometry is rendered into

screen-sized textures for storing position, normal, material and direct illumination,

which are then used during the computation of indirect illumination.

6.5 GPU-Based Rendering from Clustered Visibility 99

2
x

1
x

Figure 6.6: Using VALs with varying VPL normals introduces two prob-

lems (in this example, three VPLs are grouped into one VAL cluster): First,

the cluster center is located inside the geometry, so nearby geometry must

be ignored to avoid incorrect self-shadowing. When introducing such a bias,

real occluders like the teapot may be clipped away and the shadow at point

x1 disappears. Secondly, discontinuities in the shadow can appear because

the illumination is computed from all VPLs: In the example, point x2 is in

the positive half-space of the blue VPLs and the VAL shadow map correctly

detects a shadow above x2. But there is no occlusion information in the neg-

ative half-space of the VAL, so everything below x2 is assumed to be visible.

Consequently, the region below x2 is incorrectly illuminated by the two blue

VPLs.

VPL Generation We render a reflective shadow map (RSM) from the light’s

point of view [Dachsbacher05] (a cube map is used for point lights and a single

texture for projective lights) and sample it using a low-discrepancy sampling pat-

tern (Halton sequence) to convert it into N VPLs (Section. 6.3). To this end the

RSM is fetched at N Halton-distributed locations using point sampling and the

resulting position, normal and color is stored into three N-texel output textures.

Clustering Cluster information is stored in four M-texel textures for position,

normal, irradiance and a count of how many VPLs map to a cluster. For each

frame, information from the VPL at index k·N/M is used as the initial guess for

VAL k (i.e., as cluster k’s center). As mentioned earlier, this ensures temporal

coherence.

In every k-means iteration, we use scattering [Scheuermann07] and blending

100 Chapter 6: Real-time Indirect Illumination with Clustered Visibility

Figure 6.7: A spotlight is moving (arrow) from the wall (frame t, lower half)

to the ceiling (frame t + N, upper half). Using k-means clustering with the

information from frame t, the number of clusters decreases when moving the

spot towards the ceiling, as shown on the left. Since normals are taken into

account, the distance of any VPL to such a center is too big, so all VPLs are

grouped into a few large clusters on the ceiling. To overcome this problem,

k-means is restarted using the same initial VPL to cluster assignments each

frame. As shown on the right, the number of clusters stays constant.

to update clusters. To this end, for each of the N VPLs a point is drawn using the

VPL textures (position, normal, radiance) as input and the four VAL information

textures (position, normal, irradiance, count) as output. In a vertex shader, every

such point traverses all M clusters, computes the distance, finds the one with the

minimum distance and scatters its information to the pixel position of that cluster.

We use additive blending and write 1s to the count texture. After every iteration,

we draw another full-screen quad, that divides position, normal and radiance by

the count resulting in the proper average cluster information.

Note, that in this process, we do not store which VPL maps to which VAL. We

create this mapping C in a final pass and store it as a N-texel texture of pointers

into the VAL texture. To this end, we loop over all VPLs, compare them to every

VAL and output the pointer to the VAL with minimal distance.

For soft shadow computation we need to know the area of each VAL. We

define it as the 2D bounding rectangle of the two-dimensional projection s, t of

6.6 Results and discussion 101

the VPL position onto the plane perpendicular to the average normal of the cluster

it maps to.

In summary, we compute an M-texel texture that stores cluster position, nor-

mal and area complemented by an N-texel texture that stores the mapping from

each VPL to a VAL, i.e., representing C .

Paraboloid CSSM Instancing is used to draw the scene into a texture array of

depth maps with a single pass (the resolution of one paraboloid map is set to

256× 256). From this depth map texture array we generate an array of Fourier

basis textures (4 term, 8 bit) and Fourier basis-z textures (4 term, 16 bit half float)

(cf. Section. 6.3.1). Finally, a MIP map is built for both the basis and the basis-z

texture array.

Indirect Lighting Indirect lighting is computed using interleaved sampling

[Segovia06]. We use blocks of 8× 8 = 64 pixels with 1024 VPLs that result

in 1024/64 = 16 VPLs per pixel. While we use VALs for visibility, we still use the

full number of VPLs for lighting. So when shading from VPL i we use the VAL

at index C (i) for visibility, looking up C in the mapping texture.

We use a geometry aware blur to remove the remaining Monte Carlo noise

without blurring over edges. As noted by Laine et al. [Laine07], using α = 10%

of the scene’s extend and β = 0.8 seems to work reasonably well for our results.

6.6 Results and discussion

In the following, we present results rendered at real-time rates with our technique

on a 3 GHz CPU with an NVIDIA GeForce 8800 GTX. All scene components

can be fully dynamic (geometry, materials, and lights), as no precomputation is

required.

Fig. 6.8 shows a global illumination solution computed with clustered visibil-

ity. To illustrate our approach, we included some individual soft shadow images,

generated from selected VAL. To verify the correctness of our approach, we suc-

cessively increase the number of VALs and compare our result with the ground

truth solution from instant radiosity and path tracing. As shown in Fig. 6.9, the re-

sulting images are similar, even if visibility is computed from a very small number

of VALs.

The performance for our test scenes is summarized in Tbl. 7.1. The rendering

time of each individual part of our algorithm is described in Tbl. 6.2. As shown

in Fig. 6.10, we can display global illumination in an animated game scenario

at interactive fame-rates. Our approach allows for extremely dynamic geome-

try, such as the iso-surface in Fig. 6.11. Note, that all pre-computed visibility

102 Chapter 6: Real-time Indirect Illumination with Clustered Visibility

Figure 6.8: Soft shadows generated for indirect illumination. In this scene a

spotlight illuminates the corner of the box, so most of the light is indirect. The

images on the left show individual soft shadows from some selected VALs.

The complete clustering (M = 30 VALs) is shown in the center image. The

full global illumination solution is shown on the right.

Scene Faces VPLs VALs fps

Cornell Box 18 1024 30 20.4

Cornell Horse 17 k 1024 30 19.7

Sponza 98 k 1024 30 13.4

Metaballs 5 k 1024 30 20.7

Table 6.1: Frame-rates (800×800 pixels).

methods, and even imperfect shadow maps[Ritschel08b], which are restricted to

area-preserving deformations, would fail for this scene.

We support soft and crisp indirect visibility at the same time, as shown in

Fig. 6.12.

6.6.1 Discussion

While the use of VALs provides an efficient means to compute indirect illumi-

nation, there are some limitations. We currently use reflective shadow maps to

generate VPLs [Dachsbacher05], restricting us to point and spot lights. The effi-

ciency of the VALs hinges on using rather low-resolution CSSMs, which in turn

means that we cannot resolve very thin indirect shadows. Furthermore, we in-

herit other CSSM limitations, such as difficulties to resolve contact shadows (see

[Annen08a]). Extending image space shadow bias removal [Ritschel09b] to soft

shadows is future work. If an insufficient number of VALs is used, individual

shadows from each VAL might be visible, as can be seen in Fig. 6.9. Using a

sufficient number of VALs prevents any artifacts. Our method also depends on

the geometric complexity of the scene, since the scene needs to be rendered once

6.7 Summary 103

Figure 6.9: When increasing the number of VALs, the indirect illumination

converges to the correct result. The images show (in reading order) 2 to 30

VALs that are used for the indirect visibility. The next two images show an

IR solution with a hard shadow for each VPL and a path tracing solution.

The difference between our solution (M=30) and the standard IR solution is

shown on the bottom right. Note that already a very small number of VALs

creates a convincing indirect illumination. An 8×8 G-Buffer was used to

reduce the number of VPLs per pixel.

for each VAL. However, it might be possible to reduce this dependency with im-

perfect shadow maps[Ritschel08b].

In contrast to normal instant radiosity, we are less prone to temporal aliasing,

since we can start the clustering process with a sufficient number of VPLs yielding

good VAL approximations. Furthermore, there is only one major parameter: the

number of VALs, which makes our technique more applicable.

6.7 Summary

We demonstrated that indirect visibility can be approximated with a small number

of area lights in combination with a soft shadowing method. Due to the fast com-

putation time of the soft shadow algorithm we can display approximated indirect

illumination at interactive to real time speed without large differences in image

quality.

As future work, we will investigate if geometric simplifications can be in-

cluded on top of the visibility approximations, e.g. if a combination of imperfect

shadow maps [Ritschel08b] and coherent soft shadows is possible. Furthermore,

104 Chapter 6: Real-time Indirect Illumination with Clustered Visibility

Step Time (ms) Percentage

Deferred rendering 0.4 0.8%

VPL generation 0.1 0.2%

VAL clustering 0.5 1.0%

CSSM 4.2 8.1%

Indirect illumination 35.0 69.0%

Geometry-aware blur 10.7 21.0%

Table 6.2: Performance breakdown for Cornell Horse.

Figure 6.10: A complex dynamic scene (100 k faces) with multiple animated

dragons in Sponza (14 fps). Note, how the light bouncing from the back wall

dominates (arrow). Please also see the supplemental video.

we would like to adapt the number of VAL clusters to the illumination complexity,

in order to keep the number of clusters at the minimum required number for good

visual quality. The extension from one bounce to multiple bounces of light would

be an interesting avenue of further research as well as the inclusion of highly

glossy materials. Finally, the combination between natural illumination from an

environment map and indirect bounces of light should be investigated.

6.7 Summary 105

Figure 6.11: Our method rendering global illumination (20.7 fps) for a scene

with dynamic topology (5.1 k faces).

Figure 6.12: A wide spot casting a soft shadow.

106 Chapter 6: Real-time Indirect Illumination with Clustered Visibility

Chapter 7

Variance Soft Shadow Maps

7.1 Introduction

Shadow rendering is a basic and important feature for many applications. How-

ever, applications like video games require shadow rendering to be very efficient

— ideally less than 10ms per frame. Shadow mapping [Williams78] is a purely

image-based shadow method which scales well with scene complexity. Hence

it fulfills the strict requirement of game engines and has become the de facto

standard for shadow rendering in computer games. While the original shadow

mapping method only deals with hard shadows, a variant called percentage closer

soft shadow (PCSS) [Fernando05a] is sometimes used for rendering soft shadow.

PCSS achieves visually plausible quality and real-time performance for small light

source. Moreover, its implementation only incurs shader modification and is easy

to be integrated into existing rendering system. As introduced in the Section. 2.4.2

of Chapter. 2, the PCSS method mainly contains two steps: (1) computing the av-

erage blocker depth, and (2) evaluating the final soft shadows. The algorithmic

pipeline of the PCSS method can be regarded as a general soft shadow mapping

framework based on the planarity assumption.

7.1.1 Soft Shadowing with PCSS

Following the PCSS pipeline, several pre-filtering soft shadow mapping meth-

ods [Lauritzen07, Annen08a] have been recently introduced. Convolution soft

shadow map (CSSM) in Chapter. 5 is built on pre-filterable shadow reconstruc-

tion functions using the Fourier basis. The reconstruction functions with dif-

ferent number of basis terms are shown in Figure 7.1(b). It is easy to see that

the reconstruction curve of CSSM covers the whole range of (d − z) values.

Such a double-bounded pre-filtering function can be applied for both average

108 Chapter 7: Variance Soft Shadow Maps

blocker depth computation and soft shadow test, and fits very well into the PCSS

framework. Yet, large amounts of texture memory are required to store Fourier

basis terms, making it less practical. Compared to CSSM, Variance Shadow

Maps (VSM) [Donnelly06a] support pre-filtering based on a one-tailed version

of Chebyshev’s inequality and requires a much lower amount of texture mem-

ory. Unfortunately, there is no obvious way to correctly pre-filter average blocker

depth values based on the VSM theory. In [Lauritzen07], the average blocker

depth evaluation step is therefore performed by brute-force point sampling of the

depth map. The shadow reconstruction curve of VSM are shown in Figure 7.1(a).

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

p
m

a
x

σ2 = 0.01
σ2 = 0.05
σ2 = 0.1
σ2 = 0.3

(a) VSM Func

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

S
h
a
d
o
w

F
u
n
c

CSM 16 terms
CSM 4 terms

(b) CSM Func

Figure 7.1: Comparison between different pre-filtering shadow functions.

The blue line represents the heaviside step function for the shadow test. d

represents the depth value of current point and z represents the depth value

sampled from shadow map with a filter kernel.

It is easy to see that this curve only bounds one side of shadow comparison func-

tion and is undefined when (d − z) ≤ 0. Therefore, we call it single-bounded

pre-filtering shadow function. Existing techniques [Donnelly06a] simply assume

the shadow value is equal to 1 in this case. When the average depth value zAvg

of a filter kernel is bigger than or equal to the depth value d of the current point,

this point will be assumed to be fully lit. When handling hard shadow or when

the filter kernel is very small, this assumption is reasonable. However, when han-

dling large kernel for soft shadow, this lit-assumption for the whole kernel can

introduce incorrect result (lit pixels instead of partially shadowed). We refer to

this as the “non-planarity” problem for single-bounded pre-filtering shadow func-

tions [Salvi08]. Such incorrectly-lit artifacts are more serious when the kernel

size increases.

7.2 Overview 109

7.1.2 Our Method

Motivated by aforementioned problems, Variance Soft Shadow Map (VSSM) is

introduced to enable real-time, high-quality soft shadow rendering with low-

memory cost. Our key contributions in this chapter are:

1. Derivation a novel formula for estimating average blocker depth, which is

based on VSM theory.

2. An efficient and practical filter kernel subdivision scheme that handles the

“non-planarity” lit problem for single-bounded VSM shadow functions.

The subdivision scheme can be either in uniform way or in adaptive way

which is based on linear quad-tree traversal on the GPU. Such a divide-and-

rule strategy succeeds in efficiently removing incorrect-lit.

7.2 Overview

An overview of the VSSM algorithmic steps are given in Algorithm 7.2 and we

refer to the line numbers as (Lxx) in the text. First, we generate a normal shadow

map and two textures based on it (L2-L4): a summed-area table (SAT) and a min-

max hierarchical shadow map (HSM). Then for each visible scene point P, we do

the following: Firstly, the initial filter kernel wi (blocker search area) is computed

(L7) by intersecting the shadow map plane with the frustum formed by P and the

light source. We then sample the average depth value zAvg in wi from the SAT

texture and the min-max depth range in wi from min-max HSM. Comparing the

depth value d of P with the min-max depth range, we can quickly find the fully-

lit and fully-blocked (lit/umbra) scene points and ignore them for following soft

shadow computation (L10). Then for the scene points that are left and which are

potentially penumbra, our VSSM method checks whether wi is a “non-planarity”

kernel or not. The condition here is whether zAvg≥ d. If wi is not a “non-planarity”

kernel, the average blocker depth will be estimated directly using a new formula

(L15), which will be introduced in section 7.3. If wi is a “non-planarity” kernel,

wi needs to be subdivided either uniformly or adaptively to compute the average

blocker depth (L12-L13). The kernel subdivision scheme will be explained in

detail in section 7.4. After getting the average blocker depth, the actual penumbra

kernel wp can be computed (L16). Note, the computation for kernel size in this

step is similar to L7, and just the shadow map plane is substituted by the average

blocker depth plane. Finally, the variance-based soft shadow value of penumbra

kernel wp can be evaluated either directly or using the kernel subdivision scheme.

110 Chapter 7: Variance Soft Shadow Maps

Algorithm 2 Overview of VSSM algorithm

1 Render scene from light center:

2 Render normal variance depth map

3 Generate summed-area table (SAT) for the depth map.

4 Render the min-max hierarchical shadow map (HSM)

5 for the depth map

6 Render scene from view point. For each visible point P:

7 Compute the initial kernel wi (blocker search area)

8 Check if P is lit or umbra using the HSM

9 if (P is lit or umbra)

10 return the shadow value accordingly

11 if (wi is “non-planarity” kernel)

12 Subdivide filter kernel

13 Estimate average blocker depth using novel formula

14 else

15 Estimate average blocker depth using novel formula

16 Compute penumbra kernel wp based on average blocker depth

17 if (wp is “non-planarity” kernel)

18 Subdivide filter kernel and evaluate soft shadow value

19 else

20 Evaluate soft shadow value directly

21 Render the final image using the visibility factors

7.3 Variance Soft Shadow Mapping

In this section, we introduce the theory about how to efficiently estimate average

blocker depth for VSSM.

7.3.1 Review of Variance Shadow Maps

Variance shadow maps are based on the one-tailored version of Chebyshev’s in-

equality. Let x be a random variable drawn from a distribution with mean µ and

variance σ2, then for t > µ:

P(x≥ t)≤ pmax(t)≡
σ2

σ2 +(t−µ)2
(7.1)

Considering t represents the current point’s depth d, and x represents the sampled

depth z from the shadow map, the quantity P(x ≥ t) in Eq. 7.1 represents the

fraction of texels over a filter kernel that will fail the depth comparison, which is

exactly the same as the result of PCF sampling. Since µ = E(x) = x and σ2 =
E(x2)−E(x)2, E(x) and E(x2) can be generated on-the-fly to pre-filter the shadow

test.

7.3 Variance Soft Shadow Mapping 111

Note, only in the particular case of a single planar occluder at depth d1, casting

a shadow onto a planar surface at depth d2, the upper bound of Eq. 7.1 will be

equal to the shadow test result. In most other cases, Eq. 7.1 will not provide an

exact value, but a close approximation (Fig. 7.1).

7.3.2 Estimating Average Blocker Depth

In order to fit VSM into the PCSS framework, the difficult problem is how to

efficiently estimate the average blocker (first step in PCSS, see Sec. 7.1).

Considering a filter kernel w and the current point’s depth t, the pre-filtered

depth value z and its square z2 can be sampled from the VSM. Based on linear

filtering, the sampled z is actually the average depth value zAvg in w. The depth

values for all the texels in w can be separated into two categories: (1) the depth

values which are ≥ t and the average of this kind of depth values is defined as

zunocc, (2) the depth values which are < t and the corresponding average value is

defined as zocc. Let’s assume there are N samples in total in filter kernel w. N1 of

them are ≥ t and N2 of them are < t. The following equation holds:

N1

N
zunocc +

N2

N
zocc = zAvg (7.2)

It is easy to see N1
N

and N2
N

correspond to shadow test results P(x ≥ t) and P(x <
t) = 1.0−P(x≥ t). Therefore, Eq. 7.2 can be written as:

P(x≥ t)zunocc +(1.0−P(x≥ t))zocc = zAvg (7.3)

Therefore, the average blocker depth value zocc is:

zocc = (zAvg−P(x≥ t)zunocc)
/

(1.0−P(x≥ t)) (7.4)

zAvg is known and P(x ≥ t) can be evaluated based on Chebyshev’s inequality.

The only unknown variable left is the average non-blocker depth value zunocc.

Observing that in the aforementioned two-plane scene setting, P(x≥ t) is accurate

and in this case, zunocc = t. We therefore assume zunocc = t and use it for general

cases as well. This assumption generates high-quality soft shadows in all our

experiments.

While it may now seem straightforward to compute the average blocker depth

value, the new formula relies on the VSM shadow value P(x ≥ t). As mentioned

already, the shadow reconstruction function of VSM is just “single-bounded”. If

zAvg ≥ t, this will break the prerequisite of Chebyshev’s inequality and the “non-

planarity” lit problem can occur (Fig. 7.2(a)). In order to evaluate the average

blocker depth correctly, we need to correct P(x ≥ t), which we propose to do

using subdivision. In the following section, we will explain the kernel subdivision

scheme which deals with the “non-planarity” problem (Fig. 7.2(b)).

112 Chapter 7: Variance Soft Shadow Maps

(a) Without kernel subdiv. (b) With Kernel subdivision

Figure 7.2: Comparison between without kernel subdivision and with kernel

subdivision.

7.4 Non-Planarity Problem and its Solution

In this section, we introduce the uniform and the adaptive filter kernel subdivision

schemes to handle the “non-planarity” problem.

7.4.1 Motivation for Kernel Subdivision

For an arbitrary filter kernel w of a scene point P, the “non-planarity” problem

occurs if zAvg ≥ t. Here, t represents the current point’s depth d. Standard VSM

will assume that the shadow value equals to 1 in this case. When w is small, it is

reasonable since the depth values of most texels in w are likely to be bigger than t.

However, when the size of w increases, only part of the texels in w contain bigger

depth value than d. Therefore, the errors due to the lit assumption for the whole

w becomes obvious.

Following the concept of divide-and-rule, we propose to subdivide the kernel

w into a set of sub-kernels {wci, i ∈ [1 . . .n]}. Depending on whether zAvg ≥ d

in wci, all the sub-kernels can be categorized into two parts. For the normal

sub-kernels fulfilling zAvg < t, the Chebyshev’s inequality still holds and we can

compute the average blocker depth and soft shadow based on it. For the “non-

planarity” sub-kernels fulfilling zAvg ≥ t, there are two options: (1) assuming each

of them to be lit or (2) using normal PCF sampling to do the shadow test. Op-

tion (1) is similar to the previous VSM strategy. However, since the sub-kernel

wci is much smaller than initial kernel w, the “non-planarity” lit problem can be

effectively suppressed. Option (2) is a good alternative, since few cheap PCF sam-

plings (2×2) can generate rather accurate results for wci. In our implementation,

option (2) is chosen.

7.4 Non-Planarity Problem and its Solution 113

(a) Uniform kernel subdivision (b) Adaptive kernel subdivision

Figure 7.3: Illustration of 4× 4 uniform and adaptive subdivision for filter

kernel.

7.4.2 Uniform Kernel Subdivision Scheme

Since the corner points of the initial kernel w are known, it is straightforward to

subdivide it into equal-sized sub-kernels. As illustrated in Fig. 7.3(a), the whole

quad represents the initial kernel w and each sub-quad inside of it represents a

sub-kernel wci. We loop over each wci and check whether it is a “non-planarity”

kernel or not. In Fig. 7.3, the blue sub-quad represents “non-planarity” kernels

and the green one represents the normal kernels. Here we conceptually separate

all the sub-kernels into two groups: the normal sub-kernel group wc jand the “non-

planarity” sub-kernel group wck. In following, we will illustrate how to estimate

average blocker depth using the uniform kernel subdivision scheme.

Let’s first consider the normal sub-kernel group: To compute P(x ≥ t) using

Eq. 7.1 for the whole group, the mean value µ and the variance σ2 needs to be

determined. More specifically, the E(x) and E(x2) from all the sub-kernels in this

group need to be computed. We define the size of wc j to be Tc j, and arrive at the

following formulas to compute µ and σ2 for the normal sub-kernel group:

µ = ∑
j
(E(x)c j ·Tc j)/∑

j
Tc j

σ2 = ∑
j
(E(x2)c j ·Tc j)/∑

j
Tc j−µ2 (7.5)

During the loop, E(x)c j and E(x2)c j can be sampled from the SAT texture for each

wc j. Then, E(x)c j ·Tc j, the sum of all texels’ depth in wc j, is accumulated. The

same accumulation happens for E(x2)c j ·Tc j. Finally, the depth and depth square

sums are divided by the accumulated sub-kernel size (Eq. 7.5) to get µ and σ2.

Hence, the VSM shadow reconstruction function can be evaluated. The average

blocker depth d1 in the normal kernel group can be evaluated using Eq. 7.4.

114 Chapter 7: Variance Soft Shadow Maps

(a) Kernel Hierarchy

Null

(b) Linear quad-tree traversal

Figure 7.4: Linear quad-tree traversal on 2D filter domain.

For the “non-planarity” sub-kernel group, we apply standard PCF sampling

for each wck: m points are sampled in wck and the sum of all the blocker depth

samples are computed. Since the size of wck is small, usually m = 2×2 is enough.

In following steps, both the sum of all the blocker depth and the sum of all the

blocker sub-kernel size are accumulated. Similar as before, we can get the average

blocker depth d2 of the “non-planarity” sub-kernel group.

After getting d1 and d2, the average blocker depth d over the whole kernel w

can be computed by combining d1 and d2 weighted by the corresponding blocker

kernel size separately. Note there is a reasonable acceleration strategy: the vari-

ance σ2 represents the depth value variation in each wci. Hence, when the zAvg in

wci is bigger than current depth d, and if the σ2 is also less than a small Threshold,

such a wci can probably be treated as fully-lit.

7.4.3 Adaptive Kernel Subdivision Scheme

To achieve better subdivision granularity control, we propose an adaptive kernel

subdivision scheme, as shown in Fig. 7.3(b). Compared to the uniform scheme,

adaptive kernel subdivision processes sub-kernels in hierarchical way. Its perfor-

mance is a balance between the hierarchical culling gain and traversal cost. Usu-

ally when the number of sub-kernels is large (≥ 64), adaptive subdivision achieves

better performance.

Since our filter kernel is always a 2D square, we can construct a quad-tree in

the 2D domain (Fig. 7.4(a)). For the filter kernel w, the root node of the quad-tree

represents w itself and each tree node represents a sub-kernel {wci, i ∈ [1 . . .n]}.
Be aware the different wci are not equal-sized anymore and they could exist in

different levels of tree hierarchy. In Algorithm 7.4.3, we show the steps for com-

puting the final soft shadow value based on adaptive kernel subdivision scheme.

Standard quad-tree traversal depends on recursive operations, which is not

easily implemented on a stackless GPU. We borrow the idea from [Bunnell05]

7.4 Non-Planarity Problem and its Solution 115

Algorithm 3 Adaptive kernel subdivision algorithm

1 Define VSMEx = 0, VSMEx2 = 0, VSMArea = 0

2 PCFArea = 0,PCFBArea = 0,LitArea = 0

3 Start from the root node of kernel w, TreeNode = root

5 While(TreeNode != Null):

6 TreeNode wci is current node

7 Compute texcoords UV and kernel size Tci

8 Sample the E(x)ci and E(x2)ci from SAT

9 Compute the variance σ2

10 If (E(x)ci ≥ d And σ2 < Threshold)

11 TreeNode = TreeNode.Next

12 LitArea = LitArea+Tci

13 Else

14 If (E(x)ci < d)

15 VSMEx = VSMEx+E(x)ci×Tci

16 VSMEx2 = VSMEx2+E(x2)ci×Tci

17 VSMArea = VSMArea+Tci

18 TreeNode = TreeNode.Next

19 Else

20 If (TreeNode is not a leaf)

21 TreeNode = TreeNode.Child

22 Else

23 Sample m points inside the kernel wci of TreeNode.

24 PCFArea = PCFArea+Tci

25 PCFBArea = PCFBArea+Tci× m̄/m

26 //m̄ is the number of occluding samples

27 TreeNode = TreeNode.Next

28 End While

29 Compute shadow reconstr. value L from VSMEx and VSMEx2

30 Compute visibility L1 based on PCFArea and PCFBArea

31 Final visibility is computed using L, 1.0 and L1,

32 weighted by VSMArea, LitArea and PCFArea separately

and successfully apply the GPU-based linear quad-tree traversal for our 2D filter

kernel domain. To achieve the linear traversal, each quad-tree node needs to define

two pointers (as shown in Fig. 7.4(b)): ‘Child’ pointer (red), which points to the

first child node, and the ‘Next’ pointer (green), which points to the next tree node

on the linear traversal path. After carefully setting up the ‘Next’ pointer for each

tree node [Bunnell05], we avoid the usual recursive operation and enables a linear

forward traversal on the GPU.

Note, computing soft shadow value needs to consider the fully-lit sub-kernels.

116 Chapter 7: Variance Soft Shadow Maps

In Algorithm 7.4.3, we define a variable LitArea to record the size of all the fully-

lit sub-kernels. In L10-L12, when both E(x)ci≥ d and σ2 < Threshold, the current

wci is fully-lit, and its all child nodes can be ignored. So we accumulate the

LitArea and move to the next treenode. If E(x)ci < d, wci is a normal sub-kernel.

As before, we accumulate the sum of E(x)ci (L15), the sum of E(x2)ci (L16) and

the sum of sub-kernel size Tci(L17). After accumulation, we then move on to

the next treenode (L18). Excluding from above two cases, the last case is when

E(x)ci ≥ d and σ2 ≥ Threshold. In this situation, we should consider whether the

current treenode is a leaf or not. If the current treenode is a non-leaf node, go

down the tree hierarchy to its child node (L21). Otherwise, if the current treenode

is a leaf node, we resort to use PCF for the visibility computation (L23-L26) as

before. When it is done, we move to the next treenode. After the whole traversal

is finished, the final visibility can be evaluated (L29-L32). Note, here all the three

sub-kernel regions: VSMArea, LitArea and PCFArea are required to compute the

final result.

7.5 Implementations and Discussion

7.5.1 Min-Max Hierarchical Shadow Map

When generating the min-max hierarchical shadow map (HSM), there are two

options: Mip-map and N-buffers [Décoret05]. Mip-maps can be generated very

efficiently and also require little texture memory. However, the introduced error

tends to be obvious when sampling from high mip-map level. In contrast, N-

buffers can ensure accurate min-max sampling results for arbitrary filter kernel

sizes with more memory and generation time. For the scene setting of Fig. 1.4(b),

generating a 1024× 1024 HSM, takes 3ms with N-buffers and only 1ms with

mip-maps. In our experiments, the HSM using mip-maps already works very

well, even for complex scenes. Hence we choose mip-maps for HSM generation.

7.5.2 Number of Sub-Kernels

Applying uniform kernel subdivision to evaluate both average occluder depth and

soft shadows, the number of sub-kernels in these two steps can be represented

as m×m and n× n respectively. If the number is too low, the “non-planarity”

sub-kernel will have relatively larger size, so that a low number of PCF samplings

(2×2) will not be enough to avoid perceptible artifacts (Fig. 7.5(a)). In Fig. 7.5(b),

we increase m to 5 and the artifacts are successfully removed. In fact, we find

that m = 5 works well in most of our experiments. Furthermore, average blocker

7.5 Implementations and Discussion 117

depth evaluation is less sensitive to precision compared with shadow computation.

Hence, n is usually larger than m.

Our adaptive subdivision is based on a full quad-tree of 2D sub-kernels. If the

height of the quad-tree is H, there are maximally 4H leaf nodes corresponding to

4H sub-kernels. If taking H = 3, our experimental results show that the quality of

adaptive subdivision is basically the same as for uniform subdivision (Fig. 7.5(b)

and (c)).

(a) m = 3,n = 8 (102

fps)

(b) m = 5,n = 8 (98

fps)

(c) H = 3 (94 fps) (d) m = 5,H = 3 (117

fps)

Figure 7.5: Comparison between different subdivision cases. m and n rep-

resent the number of sub-kernels when using uniform kernel subdivision. H

represent the height of quad-tree when using adaptive kernel subdivision.

7.5.3 Combining Different Subdivision Schemes

The performance of adaptive subdivision is a balance between the hierarchical

culling gain and traversal cost. When the number of sub-kernels is small (like

m = 5), the traversal cost could hinder the performance. A better strategy is to use

uniform subdivision for evaluating average occluder depth (m = 5) and adaptive

subdivision for the soft shadow (H = 3) separately. As shown in Fig. 7.5(d), such

a combination gives the same quality but provides the best performance.

7.5.4 SAT Precision and Contact shadow

We adopt summed-area tables (SAT) to pre-filter the shadow map. However, it is

well known that SAT suffers from numerical precision loss for large filter kernel.

Following [Lauritzen07], the 32-bit integer format is used for SAT generation

to achieve stable shadow quality. However, in contact shadow areas, where the

blocker and receiver are placed very closely, the precision of integer SAT is still

not enough and can introduce small errors (Fig. 7.6(a)) for the average blocker

depth zAvg. We observe that in contact shadow areas, the difference between zAvg

and d is very small [Annen08a], and hence the corresponding penumbra size is

118 Chapter 7: Variance Soft Shadow Maps

also very small and applying several PCF samplings for shadow is usually suffi-

cient. In our experiments, the contact shadow sub-kernels are detected by check-

ing the difference between zAvg and d. If the difference is smaller than a threshold

value ε , a 3× 3 jittered bilinear PCF sampling [Bavoid08] is applied for evalu-

ating soft shadow. In our experiments, ε = 0.01 · r and r is the bounding sphere

radius of input scene. The experimental results demonstrate such a strategy can

avoid precision artifacts and generate convincing contact shadows (Fig. 7.6(b)).

(a) Contact Noise (b) Noise Fixed

Figure 7.6: Fixing contact shadow noise.

7.5.5 Threshold Selection

In Algorithm 7.4.3, there is a Threshold value which is used to identify nearly-

planar regions that can be safely marked as fully lit. In all of our tests, Threshold =
0.0001 · r works well and r is the bounding sphere radius of input scene.

7.6 Results

Our experiments were run on a PC with a quad-core 2.83GHz Intel Q9550 CPU,

an NVIDIA GeForce GTX 285, and 4GB of physical memory. Except for compar-

ison in Fig. 7.5, all the result images are using mixed kernel subdivision scheme:

5×5 uniform subdivision for estimating average blocker depth, and H = 3 adap-

tive subdivision for computing soft shadow. The screen resolution for rendering

is always 1024×768.

Table 7.1 provides the performance breakdown for different scenes: Balls (55k

faces) in Fig. 7.5, Sponza (72k faces) in Fig. 1.4 (a) and Soldier (9700k faces

with 100 instances) in Fig. 1.4 (d). Each row contains timings for: generate G-

buffer data (GBuf), render shadow map (SM), generate mip-map HSM (HSM),

7.6 Results 119

Scene GBuf SM HSM SAT Shadow Total

Balls 2.0 0.1 0.1 2.5 3 7.7

Sponza 2.5 0.6 0.3 4.4 2.0 9.8

Soldier 13.8 10.6 0.3 4.3 3.8 32.8

Table 7.1: Performance (milliseconds) breakdown for different scenes

(SM:1024×1024).

generate summed-area table (SAT), and soft shadow pass (Shadow). The final

column (Total) is the sum of each step’s timing. From the data, we can see that

SAT usually takes a significant ratio of the running time. The running time of

soft shadow pass also depends on how many screen pixels locate in penumbra.

In the soldier scene, penumbras appear in many areas, so the soft shadow pass

takes more time. Also since the geometric burden in the soldier scene is very

high, the GBuf and SM become the bottleneck of rendering. Table 7.2 provides

the performance breakdown for the Plant (142k faces) in Fig. 7.7 using different

SM resolution. With increasing resolution, the SAT becomes the bottleneck and

also increases the sampling cost in the soft shadow pass.

SMRes GBuf SM HSM SAT Shadow Total

512 1.7 0.17 0.18 2.1 2.5 6.65

1024 2.0 0.25 0.3 4.8 3.5 10.85

2048 2.0 0.5 1.0 17.9 4.4 25.8

Table 7.2: Performance (milliseconds) breakdown using different SM reso-

lution for plant scene (141k faces).

The result images shown in Fig. 7.7 compare the shadow quality of several

different algorithms including a ray-traced reference image. We analyze two situ-

ations in particular, large penumbrae and multiple blockers shadows (close-ups in

red squares). Overall Shadows rendered with VSSM are very close to the refer-

ence. For the large penumbrae, the results of all methods are close to the reference

and just a little bit of banding can be noticed in PCSS case. In the case of multi-

ple blockers, the difference between our method and the reference becomes more

obvious. It is because VSSM is based on planar assumption of PCSS and will av-

erage the blocker depth so that the umbra is underestimated. The rendering result

of PCSS exhibits the same effect as VSSM. Backprojection method can achieves

more physically correct result, but its performance is slow for real-time applica-

tions. We further compare VSSM with SAVSM [Lauritzen07], see Fig. 7.8. All

the three close-up regions contain multiple depth layers. Hence, for SAVSM the

“non-planarity” lit case happens. The side-by-side comparisons clearly show that

our kernel subdivision scheme successfully removes incorrectly lit areas at very

reasonable performance cost.

120 Chapter 7: Variance Soft Shadow Maps

(a) Ground Truth (Ray-Traced) (b) VSSM (148 fps)

(c) PCSS (10 fps) (d) Backprojection (19 fps)

Figure 7.7: Shadow quality comparison of several methods (SM size 512×
512, scene has 212K faces): ray-tracing (a), our VSSM method using mixed

subdivision scheme (b), percentage closer soft shadows [Fernando05a] (c),

backprojection [Guennebaud07] (d).

7.6.1 Limitations

Our VSSM method shares the same failure cases as PCSS. The PCSS method

assumes that all blockers have the same depth within the filter kernel. Such a

“single blocker depth assumption” essentially flattens blockers. When the light

size becomes bigger, this assumption is more likely to be violated and umbrae tend

to be underestimated. Furthermore, PCSS only generates one depth map from the

center of the light source. When using a single depth map to deal with blockers of

a high depth range, single silhouette artifacts [Assarsson03] may appear. Actually,

all the existing PCSS-based soft shadow methods [Annen08a] [Lauritzen07] share

these problems. Nevertheless, in most cases, the soft shadow generated by VSSM

is visually plausible and looks very similar to the ray-traced reference.

7.7 Summary 121

(a) VSSM (148 fps) (b) SAVSM (183 fps)

Figure 7.8: Shadow quality comparison of between VSSM (a) and SAT-based

variance shadow map (SAVSM) [Lauritzen07] (b).

7.7 Summary

In this chapter, we have presented variance soft shadow mapping (VSSM) for

rendering plausible soft shadow. VSSM is based on the theoretical framework of

percentage-closer soft shadows. In order to estimate the average blocker depth for

each scene point, a novel formula is derived for its efficient computation based on

the VSM theory. We solve the classical “non-planarity” lit problem by subdividing

the filtering kernel, which removes artifacts. As future work, we would like to

apply our kernel subdivision method to exponential shadow mapping [Annen08b],

which is also a single-bounded pre-filterable shadow mapping method.

122 Chapter 7: Variance Soft Shadow Maps

Part IV

Interactive Global Illumination in

Participating Media

Chapter 8

Interactive Volume Caustics in

Single-Scattering Media

8.1 Introduction

The GI effects increase the realism of computer generated scenes significantly.

Caustics caused by specular or refractive objects are stunning visual effects, even

more so in participating media, where volumetric caustics can be observed, see

Fig. 1.5.

However, most existing methods for computing volumetric caustics are com-

putationally expensive, preventing interactive applications from including this ap-

pealing effect. In this paper we propose a novel interactive volume caustics ren-

dering method for single-scattering participating media. We derive a simplified

physics-based model enabling the efficient rendering of volumetric caustics in

participating media exhibiting variations in scattering and absorption coefficients

as well as the, potentially anisotropic, scattering phase function. We describe a

practical GPU-based implementation and evaluate the technique in detail.

Our method avoids all pre-computations, enabling the interactive simulation

of light interaction with fully dynamic refractive and reflective objects while main-

taining good temporal coherence in animated renderings. Since large and complex

scenes can be handled efficiently by our technique, the rendering of volumetric

caustics in interactive applications like computer games is becoming an option.

Additionally, our method is applicable for fast preview generation of a more com-

plex lighting simulation like volumetric photon mapping [Jensen98], as required

e.g. for feature films and in commercial rendering packages.

In brief, we present the following contributions in this chapter:

• We derive a theoretically grounded simplified image formation model for

126 Chapter 8: Interactive Volume Caustics in Single-Scattering Media

volume caustics in single-scattering media, and,

• Based on a reformulation of the proposed model, we develop a screen-based

interactive rendering technique that uses line primitives [Krüger06, Sun08]

to efficiently splat radiance contributions to image pixels.

The remainder of this chapter is organized as follows: First, Section 8.2 gives a

short overview of our method. We then derive a simplified image formation model

for volume caustics in single-scattering media, Section 8.3, the implementation of

which on graphics hardware is covered in Section 8.4. Section 8.5 presents exper-

imental results and comparison against existing techniques. We then conclude the

paper in Section 8.6 and discuss avenues for future research.

8.2 Overview

Image formation for volumetric caustics is an involved process. We thus start with

an overview of our algorithm, Fig. 8.1. The radiance estimate for an image pixel

in the presence of a participating medium and specular objects can be split into

three separate components:

• radiance scattered into the viewing direction by the participating medium

for incident rays not having interacted with specular objects (A),

• radiance scattered into the viewing direction from incident rays that expe-

rienced specular reflection or refraction events prior to the scattering event

(B), and

• surface radiance, possibly illuminated by a caustic (C).

Since superposition of light is linear, the final image (D) can be computed

by summing the three components. For steps (A) and (C) we employ previously

developed algorithms. Our focus in this paper is on the efficient computation of

component (B).

On a coarse level, our technique employs the following steps: First, we render

the airlight and volumetric shadow contributions (A) using the anisotropic version

of Sun et al.’s model [Sun05] computed with the algorithm of Wyman and Ram-

sey [Wyman08a]. Second, the image with the volume caustics (B) is generated

by computing the light paths from the light source that are reflected or refracted

at a specular object. We draw these paths as lines and directly compute radi-

ance contributions for each of the affected pixels which are summed up over all

line segments representing light rays. The algorithm can be seen as a radiance

splatting operation that emulates GPU ray marching. This rendering pass is our

8.2 Overview 127

Figure 8.1: The final image (D) is composed of an airlight image with a

shadow volume (A), a volume caustic image (B) and the illumination of the

surface (C).

128 Chapter 8: Interactive Volume Caustics in Single-Scattering Media

Lin incoming radiance in caustic volume

Lls light source radiance

σs(x) scattering cross-section

σa(x) absorption cross-section

κ(x) extinction coefficient κ = σa +σs

Ω0(x) albedo of participating medium Ω0(x) = σs

κ

τ(a,b) transmittance from a to b: exp(−
∫ b

a κ(x)dx)
p scattering phase function

dab distance between points a and b

T Fresnel transmittance (or reflectance)

Figure 8.2: A summary of the notation used in this paper.

main contribution and it is described in detail in the following sections. Third,

we generate an image of the surface illumination and the surface caustics (C) us-

ing Wyman’s hierarchical caustic map (HCM) algorithm [Wyman08b]. The final

image is then the sum of these three images.

8.3 Line-Based Volume Caustics

Our goal in this section is to derive a physically accurate model for volume caus-

tics in single scattering media. We concentrate on the radiance contributed to the

image by single scattering in the caustic volume, i.e. step (B) in Fig. 8.1.

In the presence of a participating medium the ray integral for a viewer at posi-

tion v looking into direction ω is given by

L(v,ω) =
∫

Ray

τ(v,x)σs(x)
∫

Ω

p(x,ω,ω ′)Lin(x,ω ′)dω ′dx, (8.1)

where τ denotes transmittance, σs the scattering cross section, and p the scattering

phase function (see also Fig. 8.3). Eq. 8.1 requires the computation of the incident

radiance distribution Lin at every point x along a viewing ray.

Since radiance, in the absence of ray attenuation, is an optical invariant along

the ray even when passing refractive objects [Veach98], Lin can be determined

efficiently by texture look-ups for a light source texture or by simply setting radi-

ance values. Eq. 8.1 can be discretized in a straight-forward manner as

L(v,ω)≈∑
i

τ(v,xi)σs(xi)∑
j

p(xi,ω,ω ′ j)Lin(xi,ω
′
j)∆ω∆x, (8.2)

where ∆x is the constant step size of the ray marching integral and ∆ω is the size

of the discretized solid angle. Radiance is summed over spatial positions along

8.3 Line-Based Volume Caustics 129

p0

p1

p2
p

s

xl

v

specular object

Shadow Volume

Caustic Volume

Surface Caustic

Figure 8.3: A volume caustic can be generated by computing all rays inter-

secting a specular object. The caustic can be rendered by drawing lines from

exit points p1 to surface points p2 for all light paths interacting with the ob-

ject.

the viewing ray xi in all directions ω ′ j. Since we are rendering line segments to

connect light paths between viewing rays and light source, see Fig. 8.3, the double

sum in Eq. 8.2 can be converted into a single sum over these line segments:

L(v,ω)≈∑
l

τ(v,xl)σs(xl)p(xl,ω,ω ′l)Lin(xl,ω
′
l)∆ω∆xl. (8.3)

Each line segment intersecting the viewing ray introduces a light path between

s and v. The connection is made at point xl where the line segment passing in

direction ω ′l = p2−p1 intersects the viewing ray in direction ω . The radiance

reaching point xl from s is equal to the original radiance at the light source attenu-

ated by absorption and out-scatter along the ray. Thus we have an additional factor

of τ(s,xl) that includes the Fresnel factors T for specular reflection or refraction,

e.g. Lin = Llsτ(s,p0)T0τ(p0,p1)T1τ(p1,xl) in the case of two-bounce refraction.

Note that the conversion of Eq. 8.2 into Eq. 8.3 introduces the implicit assumption

that the radiance distribution Lin in the caustic volume is zero for light rays not

being represented by line segments, i.e. all light leaving the light source at s is

reaching xl via a light ray that can be represented by a line segment.

We assume the discretized solid angle ∆ω to be constant. This is the case

if the area of the light source is small with respect to the distance dsxl
since the

size of the solid angle under which the light source appears at xl is approximately

130 Chapter 8: Interactive Volume Caustics in Single-Scattering Media

Lin
Lin

xx

Filtering

r

∆x

∆x

∆xl

Figure 8.4: We simulate regular interval spatial integration along the view-

ing ray. For this, the irregular radiance samples (with a variable step size

of ∆xl) caused by line rendering (left diagram) are converted via filtering into

a regular representation with fixed step size ∆x (right). Note that this fixed

step size representation is implicit. In practice, we directly accumulate the

filtered values to compute the pixel integral. The small figure above the ar-

row shows that the Gaussian filters with support r are centered at the regular

sample points to be emulated. The lower figure indicates how the irregular

samples obtained from line rendering (red) contribute to a simulated regular

sample point (green). All irregular samples within the support of the filter

function contribute to the corresponding regular sample point.

constant for comparatively minor path length differences between s and xl for

different incident directions.

Note that using lines as rendering primitives, we cannot ensure an even sam-

pling of the radiance function Lin along the viewing ray. We cannot predict the

intersection points xl without rendering all line segments and storing the intersec-

tion points with all viewing rays. This would require an intermediate storage of

the irradiance as in [Ihrke07, Sun08]. Thus, we cannot compute an appropriate

variable spatial step size ∆xl , Fig. 8.4 (left).

Therefore, in our algorithm, we simulate a constant step size ∆xl = const. = ∆x

for the ray marching integral, where ∆x is a user parameter emulating a fixed step

size as found in explicit ray marching algorithms. We re-sample the radiance func-

tion Lin on-the-fly while rendering the line segments. Using a filtering operation,

we re-distribute the radiance function to the closest regular step points, see Fig. 8.4

(right). We employ a normalized Gaussian filter [Jensen01], the support of which

can be modified as a user parameter r. We thus have derived a simplified image

formation model based on physical assumptions. Our model intrinsically supports

anisotropic scattering phase functions as well as inhomogeneously scattering par-

ticipating media via spatially varying scattering phase functions, absorption, and

8.4 Implementation 131

Figure 8.5: Algorithmic steps of our algorithm.

scattering coefficents. Note that the case of homogeneous media is typically more

efficient in terms of implementation since the evaluation of τ(xi,v) does require

the sampling of a line integral in the case of inhomogeneous media.

To summarize, our simplifying assumptions are

• The image formation is dominated by the effect of single scattering, and

• The distance between light source and volume caustic points is large com-

pared to the size of the light source.

In the following section we describe how this simplified model can be efficiently

implemented on the GPU.

8.4 Implementation

In this section we discuss the implementation of our simplified image formation

model. During the discussion we refer to Fig. 8.5 which shows an outline of our

algorithm. We will refer to illuminating rays, such as p1,p2 in Fig. 8.3, as light

rays whereas rays from the camera are called viewing rays. Our algorithm pro-

ceeds in two main stages. The first stage is the computation of three-dimensional

light ray segments. The second stage then draws all those segments to the screen

buffer and blends the radiance contributions according to Eq. 8.3 while emulat-

ing a proper ray marching implementation via filtered re-distribution of radiance

values to neighboring regular step points, Fig. 8.4.

8.4.1 Generating Line Primitives

In this stage we compute segments of light rays after their interaction with a spec-

ular object and before hitting a diffuse surface. These line segments, if passing

132 Chapter 8: Interactive Volume Caustics in Single-Scattering Media

through a participating medium, will generate an indirect light path between light

and viewing rays by means of a scattering interaction.

In practice, we simulate one- or two-bounce reflection or refraction, respec-

tively. For this purpose we generate a depth map of the scene excluding specular

objects as seen by the light source (step 1, bottom). Additionally, we generate

front- and back-facing depth and normal maps of the specular objects (step 1, up-

per rows). The specular object depth and normal buffers are then used to compute

the light rays that are reflected or refracted from the object [Hu07]. This step re-

sults in a position p1 on the back-face of the object as well as a light ray direction

after specular interaction. An additional intersection of these rays with the scene

depth map results in p2. If no intersection is found, we intersect the ray with a

large bounding sphere surrounding the scene. In this way, missing geometry in

the depth map does not invalidate the computed light rays.

This procedure results in the two points p1 and p2, Fig. 8.3, and thus deter-

mines the light ray segment in camera space. Fig. 8.5, step 2, visualizes this

volume caustic buffer. The image below the buffers shows a 3D rendering of the

end-point positions as seen from the camera. In our implementation we store p1

and p2 into the same texel position of two different textures. In a subsequent pass

we render point primitives to achieve a read back of p1 and p2 from the textures

into the geometry shader stage. This way, a line primitive can be constructed. Ini-

tially, the coordinate values of the end points are in light space; we transform them

into camera space in this stage. After the geometry shader, the newly created line

primitive will be automatically rasterized before entering the pixel shader stage.

8.4.2 Light Ray Blending

In step 3, we modulate all light rays with a light source texture. Note that a

rendering of all lines with a radiance value picked directly from the texture would

result in over-exposed images as shown in the image at the bottom of step 3.

To properly compute the correct radiance contributions we employ a fragment

shader implementing Eq. 8.3. This step requires the use of the front- and back-

facing object buffers from step 1, the volume caustic buffer, step 2, and the mod-

ulation texture from step 3. They all share the same resolution and corresponding

pixels in the buffers describe different properties of the light ray s,p2. The frag-

ment shader first computes the point of intersection xl between the viewing ray

and the light ray. Next, to properly emulate the regularly discretized ray marching

integral, Fig. 8.4 , we compute the regular step points along the ray that are within

the filter support.

This results in a set {xi|i = 1 . . .N} of regularly spaced points in the vicinity

of xl . N is typically in the range of 2−4. For each point in this set we determine

the light path described by the vertices (v,xi,p1,p0,s) and compute per segment

8.4 Implementation 133

attenuation and Fresnel transmission factors. Combining the attenuation factors

and the light source radiance from the modulation texture, step 3, weighted by the

kernel value, we obtain the incident radiance value Lin at xi. The ray direction

remains ω ′l = p2− p1. This way, we can directly evaluate parts of the sum in

Eq. 8.3 and add the appropriate radiance contribution to the pixel value.

8.4.3 Visibility and Remaining Illumination Components

In step 4 we compute visibility of the light rays as seen from the camera. This

step requires a scene depth map in camera coordinates. The depth map includes

the specular objects. We simply cull light ray fragments if they are behind objects.

This step obviously introduces artifacts; refractive objects appear opaque and do

not transmit light from volume caustics. This limitation is inherent in our screen-

based approach. Since we do not store the irradiance distribution in the caustic

volume we cannot perform volume rendering along refracted viewing rays.

Finally, we add the images containing the airlight and volumetric shadows,

Fig. 8.1 (A), and the surface illumination, Fig. 8.1 (C). Note that in order to

compute the radiance contribution due to the surface properly, the transmittances

τ(s,p) and τ(v,p) have to be computed and multiplied to the surface radiance in

absence of a participating medium.

8.4.4 Inhomogeneous Media

The previous description applies to the case of homogeneous media. The case of

inhomogeneous media differs only slightly. Instead of computing transmittance

values τ(a,b) analytically, we now have to perform sampling and numerical in-

tegration in order to retrieve the inhomogeneous information. It might seem that

this excludes the simulation of inhomogeneous media at interactive frame rates.

Note, however, that sampling is only required to compute the transmittance.

The accumulation of varying albedo and phase function is not affected by the qual-

ity of the numerical integration since it is computed implicitly by summing line

segment contributions. Thus, in practice, we can choose a very low sampling rate

for the numerical integration. Although this assumes no high-frequency changes

inside the medium, the poor approximation will only be visible in the shadow

cast by the inhomogeneous medium and in slight low-frequency intensity varia-

tions within the caustic. The latter effect is usually masked by the inhomogeneous

appearance and the brightness of the caustic regions, see Fig 8.10.

134 Chapter 8: Interactive Volume Caustics in Single-Scattering Media

8.5 Results and Discussion

In this section we report on the quality and performance of our method. Our

technique was implemented in OpenGL and all results were rendered on a Intel

Core2 Quad Processor Q9550 with 2.83GHz using an NVIDIA GeForce 280 GTX

graphics card. Except where explicitly noted, all the rendering results in the paper

are generated using a volume caustics buffer resolution of 1024× 1024 pixels.

Similarly, the size of the screen buffer is usually 1024× 1024, except in the test

exploring the performance impact of the screen buffer size. We use a volume

shadow buffer resolution [Wyman09] of 256×256 pixels; the size of the surface

caustics buffer [Wyman08b] is 1024×1024.

8.5.1 Ground Truth Comparison

To verify the accuracy of our method, we compare volume caustics rendered with

our model to both ground truth images generated with Mental Ray and images

generated using the previous techniques by [Krüger06] and [Papadopoulos09].

Since the latter two techniques are very similar, and [Krüger06] does not contain

explicit formulas we implement attenuation along the ray as in [Papadopoulos09]

but refer to the technique itself as [Krüger06]. The results of this comparison are

shown in Fig. 8.6. Since [Krüger06] does not support anisotropic and inhomoge-

neous media, the test scene is isotropic and homogeneous.

As can be seen from the figure, our results closely match the images rendered

with photon mapping (5 min. computation time). Our technique , in compari-

son, runs at more than 25 fps. For the simple case of isotropic and homogeneous

scenes, the technique of Krüger et al. [Krüger06] is also able to generate a similar

image with slight advantages in rendering speed. The performance penalty asso-

ciated with our more general and physically accurate model is about 5% for the

volume caustics stage compared to Krüger et al. [Krüger06]. The overall perfor-

mance drop in the full algorithm is not noticable. Note, that it is necessary to scale

the output of [Krüger06] linearly to match the ground truth rendering and that the

scale factor is scene dependent and cannot be easily estimated. Our method, on

the other hand, runs with fixed parameter settings of ∆x = 0.2.

The differences between our results and the ground truth rendering can mainly

be attributed to the approximate computation of the light path segments in our al-

gorithm. Note, however, that future improvements of GPU ray tracing directly

increase the accuracy of our method since the computation of the light rays is

an independent module. A second difference is that photon mapping can deter-

mine light contributions seen through refractive objects, which is impossible for

our algorithm as discussed previously. A third effect is a slight multiple scatter-

ing component in the ground truth image whereas our result shows only single

8.5 Results and Discussion 135

scattering according to our model. Finally, differences can appear since we only

follow the most important light paths (eg. two refractions inside the object).

A comparison between ground truth and our algorithm for the anisotropic case

is shown in Fig. 8.7. While there are differences in the images, mainly concerning

brightness and sharpness of the caustics, the overall characteristic of the medium

is captured by our technique. The smoother look of the ground truth result can be

attributed to multiple scattering effects.

Figure 8.6: Comparison of volumetric photon mapping as implemented in

MentalRay (left), our method (middle), Krüger et al. [2006] linearly scaled

with a manually determined value to match ground truth (right, scale factors

are 0.06 and 0.02 for the top and bottom results). The ground truth results

are generated with Mental Ray, using 2 million photons and take around 5

minutes to compute. All results generated by our method use a 1024× 1024

volume caustics buffer and can be rendered with more than 25 fps.

8.5.2 Performance Analysis

To assess the performance characteristics of our technique we experimented with

three test scenes shown in Fig. 8.8. The scenes are increasingly complex in terms

of volume caustic computation. The ring scene demonstrates one-bounce reflec-

tion, the Buddha scene is rendered with two-bounce refraction, and the gemstone

136 Chapter 8: Interactive Volume Caustics in Single-Scattering Media

Figure 8.7: Comparison of volume photon mapping in anisotropic partici-

pating media (top row) with results of our method (bottom row). The phase

function uses the Henyey-Greenstein model as implemented by MentalRay.

The anisotropy parameters are g = 0.7 (left), g = 0.0 (middle), and g =−0.7
(right) for forward, isotropic and backward scattering, respectively.

scene includes both effects. The timing data in Table 8.1 shows the rendering

Rendering Stage

Scene AL SC VC Comp. FPS

Ring 4.5 ms 15 ms 10 ms 4 ms 28

Buddha 5 ms 13 ms 9 ms 4 ms 31

Gemstone 5 ms 28 ms 21 ms 4 ms 17

Table 8.1: Timing data of different rendering stages in Fig. 8.8. AL = airlight

and volume shadows , Fig. 8.1 (A), SC = surface caustics (B), VC = volume

caustics (C), Comp. = composition (D), FPS - overall performance.

time for each rendering stage. We can see that only rendering the volumetric

caustics runs at over 80 fps on average when using a caustics buffer resolution of

1024×1024. For the gemstone scene, we compute the volume caustics generated

by both two-bounce refraction and one-bounce reflection. The total number of

caustic buffers doubles in this case. From the timing data in the table, we see that

8.5 Results and Discussion 137

the time required for the surface and volume caustics stages is also approximately

doubled compared to the scenes with a single caustic buffer. This suggests that

our method scales linearly with the number of light rays involved in the caustics

computation. Since HCM [Wyman08b] contains an additional overhead due to hi-

erarchical processing compared to the volume caustics stage, for usual scene set-

tings with a low number of pixels affected by volume caustics the surface caustics

stage dominates rendering time. As a second test, we evaluated the dependence of

Screen Buffer Resolution

CB Res. 2562 5122 10242

2562 193 173 171

5122 163 140 115

10242 93 74 62

Table 8.2: Timing data for different caustic buffer (CB Res.) and screen

buffer resolutions. Numbers are for the Buddha scene and are given in

frames per second.

our algorithm on screen size and caustic buffer resolution. Table 8.2 shows that an

increasing caustics buffer size has more severe consequences than increasing the

screen resolution. Of course, this finding depends on the number of pixels cov-

ered by lines. The other two test scenes show similar performance characteristics.

Note however, that the timings are for the volume caustics rendering step only.

Since this part of our algorithm only consumes about 30% of the overall compu-

tation time, the performance gains for lower resolution buffers are less dramatic

in a realistic scenario.

8.5.3 Influence of User Parameters

Several parameters affect the image quality and rendering performance of our

method. The first is the volume caustics buffer resolution. All results shown in

this paper use 1024× 1024 as the resolution for the volume caustics buffer. In

Fig. 8.9 (left) we show results with different volume caustics buffer resolutions

but keep the surface caustics buffer resolution at 1024× 1024 pixels. A higher

resolution results in better image quality, however, the volume caustics quality is

still reasonable even though details appear slightly blurred in the low resolution

case. Another user parameter is the size of the filter kernel r. We typically choose

the support of the filter equal to the step size ∆x. In Fig. 8.9 (right) we show

results for drastically different settings. If the support of the filter is chosen too

low, noise is being generated in the images. Finally, the number of light sources

influences the performance of our method. Each light source requires separate

138 Chapter 8: Interactive Volume Caustics in Single-Scattering Media

Figure 8.8: Different combinations of illumination methods for our test

scenes. From left to right, the following type of illumination is included: Di-

rect illumination, airlight and volume shadows, surface caustics, and volume

caustics. The ring scene (top row) is rendered with one-bounce reflection, the

Buddha scene (middle row) illustrates two-bounce refraction and the gem-

stone scene (bottom row) includes both one-bounce reflection and two-bounce

refraction.

(a) 2562, 39 fps (b) 10242, 29 fps (c) r = 0.1 ·∆x (d) r = ∆x

Figure 8.9: Left: Different volume caustics buffer resolution. Right: Differ-

ent filter size.

caustic buffers. As we have seen in Table 8.1, the performance drops approxi-

mately linearly with the number of caustic buffers. We also observe this behavior

8.5 Results and Discussion 139

in the case of multiple light sources; tests with one to four light sources resulted

in the following numbers: 37 fps(1), 21.5 fps(2), 9.25 fps(3), 2.9 fps(4). An addi-

(a) 2 steps, 41 fps (b) 5 steps, 27 fps (c) 10 steps, 18

fps

(d) 20 steps, 10.5

fps

(e) 30 steps, 8 fps

Figure 8.10: Inhomogeneous smoke rendering using different number of dis-

crete integral steps. Note that a low number of step points only affects the

brightness of the volume caustic and the accuracy of the shadow. 10 integra-

tion steps already suffice to obtain a visually appealing result with only minor

differences to the final solution.

tional strength of our method is the temporal coherence: animated and deforming

objects can be displayed correctly without flickering. We can deal with arbitrary

deformations without any pre-computation. Since images capture this feature of

our method inadequately we recommend to watch the accompanying video.

8.5.4 Limitations

Our screen-based volume caustic technique achieves high performance for highly

complex scene settings. However, because of its screen-based nature, the com-

putation cost increases linearly with the effective number of screen pixels that re-

quire volume caustics computations. As an example, in the ocean scene, Fig. 1.5,

almost all screen pixels (1024× 1024) are involved in volume caustics computa-

tions. This is the reason for the low frame rate compared to the other examples.

Another issue is the effective resolution of the caustics buffer. Consider a large

field of view for a spot light source illuminating a comparatively small specular

object. Since the object occupies very few pixels in the caustic buffer, the ren-

dering quality will suffer in this case. Another, related case is the rendering of

extreme close-ups of the volume caustics. Individual lines might become visible

in this case. The problem is increased for objects with very high refractive indices

since light rays diverge more strongly under these circumstances.

140 Chapter 8: Interactive Volume Caustics in Single-Scattering Media

8.6 Summary

We have presented a real-time method for rendering volume caustics in single

scattering participating media. Our technique generates physically plausible re-

sults and enables the rendering of completely dynamic scenes with good temporal

coherence. Anisotropic and inhomogeneous media are naturally supported by our

algorithm and interactive performance can be achieved in the latter case. Our

method simulates the most important light paths for volumetric caustics and in-

troduces a theoretically founded approximation for single scattering media. Since

it efficiently renders large and dynamic scenes we believe that it can be applied in

computer games and as a preview for more sophisticated lighting simulations.

An interesting direction for future work are hierarchical representations of the

caustic buffer. Currently we use separate buffers for surface and volume caustics.

However, the two buffers share common information and speed-ups can poten-

tially be gained by combining them into a single buffer. A hierarchical approach

similar in spirit to [Wyman08b] could potentially increase the performance sig-

nificantly. Another research direction is the approximation of multiple scattering

effects in participating media. Since line primitives are performing very well in

the case of single scattering media an interesting question is whether this power

can be harnessed for multiple scattering approximations.

Chapter 9

Conclusions and Future Work

The driving motivation of this thesis is to generate photorealistic global illumina-

tion rendering of arbitrary scenes. To achieve this goal, some reasonable approx-

imations have to be developed to find a visually plausible compromise between

quality and performance. This thesis focuses on real-time visually pleasing global

illumination rendering for fully-dynamic scenes using graphics hardware.

We have identified several problems which need to be solved. First, the ex-

plicit visibility check in radiosity-like methods is expensive, and we present an

implicit visibility scheme to tackle this problem efficiently. Then, the most im-

portant GI effect: realistic soft shadow is difficult to be achieved with real-time

performance because of its visibility determination. We successively propose the

convolution soft shadow map (CSSM) and variance soft shadow map (VSSM)

methods to render visually plausible soft shadows with real-time frame rates. Fur-

ther, we apply the CSSM method to approximately solve the visibility problem of

real-time indirect lighting. Finally, the volume caustics in participating media is a

kind of non-trivial and time-consuming GI effect. Our novel volume caustics ren-

dering method achieves high-quality results at real-time/interactive frame rates for

complex dynamic scenes containing homogeneous/inhomogeneous participating

media.

9.1 Summary

We will quickly summarize our algorithms, what kind of approximations they are

involved with and how they constitute advancements over existing techniques.

142 Chapter 9: Conclusions and Future Work

9.1.1 Implicit Visibility

We present a new global illumination method that builds on and extends the tra-

ditional hierarchical radiosity [Hanrahan91] approach. Compared with explicitly

evaluating visibility using ray casting, our method tackles the visibility problem

by implicitly evaluating mutual visibility while constructing a hierarchical link

structure between scene elements. This new concept circumvents time-consuming

explicit visibility queries, which is the main performance bottleneck in traditional

approaches. Our method allows for rendering of full global illumination solutions

for moderately complex and arbitrarily deforming dynamic scenes at near-real-

time frame rates on a single PC. It faithfully reproduces a variety of complex

lighting effects including diffuse and glossy interreflections, and handles scenes

featuring environment map and area light sources.

9.1.2 Pre-filtering Soft Shadow Maps and their applications

We successively propose CSSM and VSSM for rendering visually plausible

soft shadows in real-time. Both methods are based on the pre-filtering the-

ory of shadow mapping and implemented in the percentage closer soft shadow

(PCSS) [Fernando05a] framework.

CSSM is based on the convolution theory [Annen07] and can achieve several

hundred frames per second for a single area light source if using hardware sup-

ported mipmapping for filtering. Therefore, it is fast enough to render many area

light sources simultaneously. We have shown that environment map lighting for

dynamic objects can be incorporated by decomposing the lighting into a collection

of area lights, which are then rendered using the CSSM technique. Furthermore,

we apply the CSSM technique in computing indirect lighting. We demonstrate

that indirect visibility can be approximated with a small number of area lights in

combination with our CSSM technique. Due to the fast computation time of the

CSSM, we can display visually plausible approximated indirect illumination at

real-time performance.

In order to reduce memory consumption and improve the performance of

CSSM, we propose the VSSM method which is based on a one-tailed version of

Chebyshev’s inequality [Donnelly06a]. We introduce new formulation for achiev-

ing efficient computation of (average) blocker distances based on pre-filtering,

a common bottleneck in PCSS-based methods [Lauritzen07]. Furthermore, we

avoid incorrectly lit pixels by appropriately subdividing the filter kernel. We

demonstrate that VSSM renders high quality soft shadows efficiently (usually over

100 fps) for complex scene settings. Its speed is at least one order of magnitude

faster than PCSS [Fernando05a] for large penumbra. Such a great performance of

VSSM makes it possible to be applied in game development.

9.2 Conclusions and Future Works 143

9.1.3 Volume Caustics

We have presented a real-time method for rendering volume caustics in single

scattering participating media. Our method is based on the observation that line

rendering of illumination rays into the screen buffer establishes a direct light path

between the viewer and the light source. The radiance contributions of these light

paths to each of the pixels can be computed and accumulated independently in

GPU. Our technique generates physically plausible results and enables the ren-

dering of completely dynamic scenes with good temporal coherence. Anisotropic

and inhomogeneous media are naturally supported by our algorithm and interac-

tive performance can be achieved in the latter case. Our method simulates the

most important light paths for volumetric caustics and introduces a theoretically

founded approximation for single scattering media. Since it efficiently renders

large and dynamic scenes we believe that it can be applied in video games and as

a preview for more sophisticated lighting simulations [Jensen98]. Furthermore,

our “line rendering of illumination rays” concept can also be applied in ray trac-

ing, and a recent research paper [Sun10] demonstrates its reasonability.

9.2 Conclusions and Future Works

We introduce a set of novel algorithms and techniques using graphics hardware to

achieve real-time visually pleasing rendering for GI effects, even with participat-

ing media. The rendering results are are visually comparable to offline rendering

but are achieved at high frame rates. This significant speed-up is achieved by in-

troducing reasonable approximations in the theory of GI rendering. Our approxi-

mations save lots of computation cost but ensure the rendering quality is visually

plausible. Furthermore, all of our methods impose no limitations for the input

scenes, so that it could be applied in real interactive applications.

All of our current algorithms are tested on reasonably large-scale scenes.

However, in real film or game applications, the input scene is usually in extremely

complex and the data amount is in billions of triangles [Pantaleoni10]. In such

a scenario, some out-of-core stream-based geometry processing algorithm will

get involved with the design of global illumination rendering. Our next step in

real-time GI rendering would be investigating the real-time visually plausible GI

for such kind of super-scale fully-dynamic scenes. Future graphics hardware will

unify CPU and GPU into a many-core platform, like Larrabee [Seiler08], and

hence the programmability of our graphics pipeline will become extremely flex-

ible. In a next step, we will probably develop new real-time GI rendering algo-

rithms based on such a many-core platform.

144 Chapter 9: Conclusions and Future Work

Bibliography

[Agarwal03] SAMEER AGARWAL, RAVI RAMAMOORTHI, SERGE

BELONGIE, AND HENRIK WANN JENSEN. Structured

Importance Sampling of Environment Maps. ACM Trans.

Graph., 22(3):605–612, 2003. 44

[Aila04] TIMO AILA AND SAMULI LAINE. Alias-Free Shadow

Maps. In Proc. of EGSR, pages 161–166, 2004. 24

[Akerlund07] OSKAR AKERLUND, MATTIAS UNGER, AND RUI

WANG. Precomputed Visibility Cuts for Interactive Re-

lighting with Dynamic BRDFs. In Proc. of Pacific Graph-

ics, pages 161–170, 2007. 49

[Annen07] THOMAS ANNEN, TOM MERTENS, PHILIPPE

BEKAERT, HANS-PETER SEIDEL, AND JAN KAUTZ.

Convolution Shadow Maps. In Proc. of EGSR, vol-

ume 18, pages 51–60, 2007. 5, 24, 26, 44, 46, 48, 76, 77,

78, 79, 86, 142

[Annen08a] THOMAS ANNEN, ZHAO DONG, TOM MERTENS,

PHILIPPE BEKAERT, HANS-PETER SEIDEL, AND JAN

KAUTZ. Real-time, all-frequency shadows in dynamic

scenes. ACM Trans. Graph. (Proc. of SIGGRAPH 2008),

27(3):1–8, 2008. 4, 49, 94, 102, 107, 117, 120

[Annen08b] THOMAS ANNEN, TOM MERTENS, HANS-PETER SEI-

DEL, EDDY FLERACKERS, AND JAN KAUTZ. Exponen-

tial shadow maps. In GI ’08: Proceedings of Graphics

Interface 2008, pages 155–161, 2008. 24, 26, 44, 46, 121

[Arbree05] ADAM ARBREE, BRUCE WALTER, AND KAVITA BALA.

Pre-Processing Environment Maps for Dynamic Hard-

ware Shadows. Technical report, Dept. of Computer Sci-

ence, Cornell University, 2005. 44

146 BIBLIOGRAPHY

[Ashikhmin00] M. ASHIKHMIN AND P. SHIRLEY. An Anisotropic

Phong BRDF Model. Journal of Graphics Tools, 5(2):25–

32, 2000. 15

[Assarsson03] U. ASSARSSON AND T. AKENINE-MÖLLER. A

Geometry-Based Soft Shadow Volume Algorithm Using

Graphics Hardware. ACM Trans. Graph., 22(3):511–520,

July 2003. 28, 47, 73, 82, 120

[Atty06] LIONEL ATTY, NICOLAS HOLZSCHUCH, MARC

LAPIERRE, JEAN-MARC HASENFRATZ, CHUCK

HANSEN, AND FRANÇOIS SILLION. Soft shadow maps:

Efficient sampling of light source visibility. Computer

Graphics Forum, 25(4), 2006. 47

[Bavoid08] LOUIS BAVOID. Advanced soft shadow mapping tech-

niques. In GDC 2008, 2008. 118

[Bavoil09] LOUIS BAVOIL AND MIGUEL SAINZ. Image-Space

Horizon-Based Ambient Occlusion . In ShaderX 7:

Advanced Rendering Techniques. Charles River Media,

2009. 43

[Beckmann63] P. BECKMANN AND A. SPIZZICHINO. The Scettering of

Electromagnetic Waves from Rough Surfaces. McMillan,

1963. 14

[Ben-Artzi08] ANER BEN-ARTZI, KEVIN EGAN, FRÉDO DURAND,

AND RAVI RAMAMOORTHI. A precomputed polynomial

representation for interactive BRDF editing with global

illumination. ACM Trans. Graph., 27:13:1–13:13, 2008.

42

[Blinn77] J. BLINN. Models of Light Reflection For Computer Syn-

thesized Pictures. In Proc. of ACM SIGGRAPH, pages

192–198, 1977. 15

[Blythe06] DAVID BLYTHE. The Direct3D 10 system. ACM Trans.

Graph., 25:724–734, 2006. 34

[Born64] M. BORN AND E. WOLF. Principles of Optics. Perga-

mon Press, 2nd edition, 1964. 11, 16, 17

BIBLIOGRAPHY 147

[Boudet05] ANTOINE BOUDET, PAUL PITOT, DAVID PRATMARTY,

AND MATHIAS PAULIN. Photon Splatting for Participat-

ing Media. In Proc. of GRAPHITE, pages 375–384, 2005.

50

[Brabec02] STEFAN BRABEC, THOMAS ANNEN, AND HANS-

PETER SEIDEL. Shadow Mapping for Hemispherical and

Omnidirectional Light Sources. In Proc. of CGI, pages

397–408, 2002. 58, 94

[Bunnell05] M. BUNNELL. Dynamic Ambient Occlusion and Indirect

Lighting. In Matt Pharr, editor, GPU Gems 2, chapter 2,

pages 223–233. Addison Wesley, March 2005. 42, 59, 60,

114, 115

[Carr03] N. CARR, J. HALL, AND J. HART. GPU Algorithms for

Radiosity and Subsurface Scattering. In Proc. of Graphics

Hardware, pages 51–59, July 2003. 41, 95

[Catmull74] EDWIN E. CATMULL. A Subdivision Algorithm for Com-

puter Display of Curved Surfaces. PhD thesis, Dept. of

CS, U. of Utah, December 1974. 33

[Cerezo05] EVA CEREZO, FREDERIC PEREZ-CAZORLA, XAVIER

PUEYO, FRANCISCO SERON, AND FRANÇOIS SILLION.

A Survey on Participating Media Rendering Techniques.

the Visual Computer, pages 303–328, 2005. 31, 50

[Chen90] S. CHEN. Incremental Radiosity: An Extension of

Progressive Radiosity to an Interactive Image Synthesis

System. Computer Graphics (Proc. of SIGGRAPH’90),

24(4):135–144, August 1990. 41

[Cheslack-Postava08] EWEN CHESLACK-POSTAVA, RUI WANG, OSKAR AK-

ERLUND, AND FABIO PELLACINI. Fast, Realistic Light-

ing and Material Design using Nonlinear Cut Approxi-

mation. ACM Trans. Graph. (Proc. of SIGGRAPH ASIA

2008), 27(5), 2008. 49

[Chin92] NORMAN CHIN AND STEVEN FEINER. Fast object-

precision shadow generation for area light sources using

BSP trees. In Proc. of ACM SI3D, pages 21–30, 1992. 46

148 BIBLIOGRAPHY

[Clarberg05] PETRIK CLARBERG, WOJCIECH JAROSZ, TOMAS

AKENINE-MÖLLER, AND HENRIK WANN JENSEN.

Wavelet Importance Sampling: Efficiently Evaluating

Products of Complex Functions. ACM Trans. Graph.,

24(3):1166–1175, 2005. 44

[Cohen85] MICHAEL F. COHEN AND DONALD P. GREENBERG.

The hemi-cube: a radiosity solution for complex environ-

ments. In Proc. of ACM SIGGRAPH, pages 31–40, 1985.

41

[Cohen88] MICHAEL F. COHEN, SHENCHANG ERIC CHEN,

JOHN R. WALLACE, AND DONALD P. GREENBERG. A

progressive refinement approach to fast radiosity image

generation. In Proc. of ACM SIGGRAPH, pages 75–84,

1988. 41

[Cohen93] M. COHEN AND J. WALLACE. Radiosity and Realis-

tic Image Synthesis. Academic Press Professional, Cam-

bridge, MA, 1993. 20, 41, 55, 63

[Cook84] R. L. COOK, T. PORTER, AND L. CARPENTER. Dis-

tributed Ray Tracing. In Proc. of ACM SIGGRAPH, pages

137–145, Minneapolis, Minnesota, July 1984. 40

[Coombe04] G. COOMBE, M. HARRIS, AND A. LASTRA. Radiosity

on Graphics Hardware. In Proc. of Graphics Interface,

pages 161–168, 2004. 41

[Crow77] F. CROW. Shadow Algorithms for Computer Graphics.

In Proc. of ACM SIGGRAPH, pages 242–248, July 1977.

22, 46

[Crow84] FRANKLIN C. CROW. Summed-area tables for texture

mapping. In Proc. of SIGGRAPH ’84, pages 207–212,

1984. 26, 44, 76

[Dachsbacher05] C. DACHSBACHER AND M. STAMMINGER. Reflective

Shadow Maps. In Proc. of ACM I3D, pages 203–213,

2005. 43, 92, 99, 102

[Dachsbacher06] C. DACHSBACHER AND M. STAMMINGER. Splatting In-

direct Illumination. In Proc. of ACM I3D, pages 93–100,

2006. 43, 92

BIBLIOGRAPHY 149

[Dachsbacher07] C. DACHSBACHER, M. STAMMINGER, G. DRETTAKIS,

AND F. DURAND. Implicit Visibility and Antiradiance

for Interactive Global Illumination. ACM Trans. Graph.,

26(3), August 2007. 48

[Davidovič10] TOMÁŠ DAVIDOVIČ, JAROSLAV KŘIVÁNEK, MILOŠ

HAŠAN, PHILIPP SLUSALLEK, AND KAVITA BALA.

Combining global and local virtual lights for detailed

glossy illumination. ACM Trans. Graph., 29:143:1–

143:8, 2010. 52

[Davis07] SCOTT T DAVIS AND CHRIS WYMAN. Interactive Re-

fractions with Total Internal Reflection. In Proc. of

Graphics Interface, pages 185–190, 2007. 49

[Décoret05] XAVIER DÉCORET. N-Buffers for efficient depth map

query. Computer Graphics Forum, 24(3), 2005. 116

[Deussen02] O. DEUSSEN, C. COLDITZ, M. STAMMINGER, AND

G. DRETTAKIS. Interactive Visualization of Complex

Plant Ecosystems. In Proc. of IEEE Visualization, pages

219–226, 2002. 51

[Dobashi00] YOSHINORI DOBASHI, KAZUFUMI KANEDA, HIDEO

YAMASHITA, TSUYOSHI OKITA, AND TOMOYUKI

NISHITA. A Simple, Efficient Method for Realistic An-

imation of Clouds. In Proc. of ACM SIGGRAPH, pages

19–28, 2000. 50

[Dobashi02] YOSHINORI DOBASHI, TSUYOSHI YAMAMOTO, AND

TOMOYUKI NISHITA. Interactive Rendering of Atmo-

spheric Scattering Effects using Graphics Hardware. In

Proc. of Graphics Hardware, pages 99–107, 2002. 50

[Dong07] ZHAO DONG, JAN KAUTZ, CHRISTIAN THEOBALT,

AND HANS-PETER SEIDEL. Interactive Global Illumina-

tion Using Implicit Visibility. In Proc. of Pacific Graph-

ics, pages 77–86, 2007. 4

[Dong09] ZHAO DONG, THORSTEN GROSCH, TOBIAS

RITSCHEL, JAN KAUTZ, AND HANS-PETER SEI-

DEL. Real-time Indirect Illumination with Clustered

Visibility. In Proc. of Vision, Modeling, and Visualization

Workshop, 2009. 4

150 BIBLIOGRAPHY

[Donnelly06a] WILLIAM DONNELLY AND ANDREW LAURITZEN.

Variance shadow maps. In Proc. of ACM I3D ’06, pages

161–165, 2006. 6, 24, 26, 44, 45, 48, 108, 142

[Donnelly06b] WILLIAM DONNELLY AND ANDREW LAURITZEN.

Variance Shadow Maps. In Proc. of ACM I3D, pages 161–

165, 2006. 77

[Drettakis94] GEORGE DRETTAKIS AND EUGENE FIUME. A Fast

Shadow Algorithm for Area Light Sources Using Back-

projection. In SIGGRAPH ’94, pages 223–230, 1994. 47

[Eisemann09] ELMAR EISEMANN, ULF ASSARSSON, MICHAEL

SCHWARZ, AND MICHAEL WIMMER. Casting Shadows

in Real Time. In ACM SIGGRAPH Asia 2009 Courses,

2009. 23, 44

[Ernst05] MANFRED ERNST, TOMAS AKENINE-MÖLLER, AND

HENRIK WANN JENSEN. Interactive Rendering of Caus-

tics using Interpolated Warped Volumes. In Proc. of

Graphics Interface, pages 87–96, 2005. 51

[Estalella06] PAU ESTALELLA, IGNACIO MARTIN, GEORGE DRET-

TAKIS, AND DANI TOST. A GPU-driven Algorithm for

Accurate Interactive Reflections on Curved Objects. In

Proc. of EGSR, pages 313–318, June 2006. 49

[Fernando05a] RANDIMA FERNANDO. Percentage-closer soft shadows.

In ACM SIGGRAPH 2005 Sketches, page 35, 2005. viii,

xii, 5, 11, 25, 26, 47, 107, 120, 142

[Fernando05b] RANDIMA FERNANDO. Percentage-Closer Soft Shad-

ows. In ACM SIGGRAPH 2005 Sketches, page 35, 2005.

74, 76, 77, 82, 85

[Garland01] M. GARLAND, A. WILLMOTT, , AND P. HECKBERT.

Hierarchical Face Clustering on Polygonal Surfaces. In

Proc. of ACM I3D, pages 49–58, 2001. 60

[George90] D. GEORGE, F. SILLION, AND D. GREENBERG. Ra-

diosity Redistribution for Dynamic Environments. IEEE

CG&A, 10(4):26–34, 1990. 41

BIBLIOGRAPHY 151

[Glassner91] A. GLASSNER. An introduction to ray tracing. Academic

Press, 1991. 19

[Glassner95] A. GLASSNER. Principles of Digital Image Synthesis.

Morgan Kaufmann, 1995. 16

[Goral84] CINDY M. GORAL, KENNETH E. TORRANCE, DON-

ALD P. GREENBERG, AND BENNETT BATTAILE. Mod-

eling the interaction of light between diffuse surfaces.

SIGGRAPH Comput. Graph., 18:213–222, January 1984.

20, 41

[Guennebaud06] G. GUENNEBAUD, L. BARTHE, AND M. PAULIN. Real-

time Soft Shadow Mapping by Backprojection. In Proc.

of EGSR, pages 227–234, 2006. 47, 73, 82, 85

[Guennebaud07] GAEL GUENNEBAUD, LOIC BARTHE, AND MATHIAS

PAULIN. High-quality adaptive soft shadow mapping.

Computer Graphics Forum, 26(3), 2007. 47, 73, 120

[Hanrahan91] P. HANRAHAN, D. SALZMAN, AND L. AUPPERLE. A

Rapid Hierarchical Radiosity Algorithm. Proc. of ACM

SIGGRAPH, 25(4):197–206, 1991. 4, 41, 142

[Harris01] MARK J. HARRIS AND ANSELMO LASTRA. Real-Time

Cloud Rendering. Computer Graphics Forum, 20(3):76–

84, 2001. 50

[Hasenfratz03a] J.-M. HASENFRATZ, M. LAPIERRE, N. HOLZSCHUCH,

AND F. SILLION. A Survey of Real-Time Soft Shadows

Algorithms. Computer Graphics Forum, 22(4):753–774,

dec 2003. 22, 94

[Hasenfratz03b] JEAN-MARC HASENFRATZ, MARC LAPIERRE, NICO-

LAS HOLZSCHUCH, AND FRANÇOIS SILLION. A sur-

vey of Real-Time Soft Shadows Algorithms. Computer

Graphics Forum, 22(4):753–774, 2003. 23, 25, 44

[Hašan07] MILOŠ HAŠAN, FABIO PELLACINI, AND KAVITA

BALA. Matrix Row-Column Sampling for the Many-

Light Problem. ACM Trans. Graph. (Proc. SIGGRAPH),

26(3):26, 2007. 49

152 BIBLIOGRAPHY

[Hensley05] JUSTIN HENSLEY, THORSTEN SCHEUERMANN, MON-

TEK SINGH, AND ANSELMO LASTRA. Interactive

Summed-Area Table Generation for Glossy Environmen-

tal Reflections. In ACM SIGGRAPH 2005 Sketches,

page 34, 2005. 83

[Hoberock07] JARED HOBEROCK AND YUNTAO JIA. High-quality

Ambient Occlusion . In GPU Gems 3, chapter 12, pages

239–274. Addison Wesley, 2007. 42

[Hu07] WEI HU AND KAIHUAI QIN. Interactive Approxi-

mate Rendering of Reflections, Refractions, and Caus-

tics. IEEE Transactions on Visualization and Computer

Graphics, 13(1):46–57, 2007. 50, 132

[Hu10] WEI HU, ZHAO DONG, IVO IHRKE, THORSTEN

GROSCH, GUODONG YUAN, AND HANS-PETER SEI-

DEL. Interactive Volume Caustics in Single-Scattering

Media. In Proc. of ACM I3D, pages 109–117. ACM,

2010. 4

[Ihrke07] IVO IHRKE, GERNOT ZIEGLER, ART TEVS, CHRIS-

TIAN THEOBALT, MARCUS MAGNOR, AND HANS-

PETER SEIDEL. Eikonal Rendering: Efficient Light

Transport in Refractive Objects. ACM Trans. Graph.,

26(3):article 59, 2007. 51, 130

[Immel86] D. IMMEL, M. COHEN, AND D. GREENBERG. A Ra-

diosity Method for Non-Diffuse Environments. In Proc.

of ACM SIGGRAPH, pages 133–142, 1986. 17, 20, 56,

57, 58

[Ingle88] JAMES D. INGLE AND STANLEY R. CROUCH. Spectro-

chemical Analysis . Prentice Hall, 1988. 29

[Iwasaki02] K. IWASAKI, Y. DOBASHI, AND T. NISHITA. Efficient

Rendering of Optical Effects within Water using Graphics

Hardware. Computer Graphics Forum, 21(4):701–711,

2002. 50

[Iwasaki07] K. IWASAKI, Y. DOBASHI, F. YOSHIMOTO, AND

T. NISHITA. Precomputed Radiance Transfer for Dy-

namic Scenes Taking into Account Light Interreflection.

In Proc. of EGSR, pages 35–44, June 2007. 42

BIBLIOGRAPHY 153

[Jansen10] JON JANSEN AND LOUIS BAVOIL. Fourier opacity map-

ping. In Proceedings of the 2010 ACM SIGGRAPH sym-

posium on Interactive 3D Graphics and Games, pages

165–172, 2010. 52

[Jarosz08] WOJCIECH JAROSZ, MATTHIAS ZWICKER, AND HEN-

RIK WANN JENSEN. The Beam Radiance Estimate for

Volumetric Photon Mapping. In Eurographics, pages

557–566, 2008. 50

[Jensen96] H. W. JENSEN. Global Illumination using Photon Maps.

In Proc. EG Rendering Workshop, pages 21–30, June

1996. 32, 40, 55

[Jensen98] HENRIK WANN JENSEN AND PER H. CHRISTENSEN.

Efficient Simulation of Light Transport in Scences with

Participating Media using Photon Maps. In Proc. of SIG-

GRAPH, pages 311–320. ACM, 1998. 3, 32, 50, 51, 125,

143

[Jensen01] HENRIK WANN JENSEN. Realistic Image Synthesis Us-

ing Photon Mapping. AK Peters, 2001. 49, 50, 130

[Kajiya84] JAMES T. KAJIYA AND BRIAN P VON HERZEN.

Ray Tracing Volume Densities. Proc. of SIGGRAPH,

18(3):165–174, 1984. 50

[Kajiya86] J. KAJIYA. The Rendering Equation. In Proc. of ACM

SIGGRAPH, pages 143–150, August 1986. 17, 56

[Kautz04] J. KAUTZ, J. LEHTINEN, AND T. AILA. Hemispherical

Rasterization for Self-Shadowing of Dynamic Objects. In

Proc. of EGSR, pages 179–184, June 2004. 42

[Kautz05] JAN KAUTZ, JAAKKO LEHTINEN, AND SLOAN PETER-

PIKE. Precomputed Radiance Transfer: Theory and Prac-

tice. In SIGGRAPH Course Notes, 2005. 42

[Keller97] A. KELLER. Instant Radiosity. In Proc. of ACM SIG-

GRAPH, pages 49–56, August 1997. 5, 43, 48, 91, 92

[Khronos08] GROUP KHRONOS. OpenCL specification.

http://www.khronos.org/registry/cl/specs/, 2008. 36

154 BIBLIOGRAPHY

[Kontkanen05] J. KONTKANEN AND S. LAINE. Ambient Occlusion

Fields. In Proc. of ACM I3D, pages 41–48, 2005. 43

[Kontkanen06] JANNE KONTKANEN AND TIMO AILA. Ambient Occlu-

sion for Animated Characters. In Proc. of EGSR, June

2006. 43

[Kristensen05a] ANDERS WANG KRISTENSEN, TOMAS AKENINE-

MÖLLER, AND HENRIK WANN JENSEN. Precomputed

local radiance transfer for real-time lighting design. ACM

Trans. Graph., 24:1208–1215, 2005. 42

[Kristensen05b] ANDERS WANG KRISTENSEN, TOMAS AKENINE-

MÖLLER, AND HENRIK WANN JENSEN. Precomputed

Local Radiance Transfer for Real-time Lighting Design.

In ACM Trans. Graph. (Proc. of ACM SIGGRAPH), pages

1208–1215, 2005. 49

[Krüger06] JENS KRÜGER, KAI BÜRGER, AND RÜDIGER WEST-

ERMANN. Interactive Screen-Space Accurate Photon

Tracing on GPUs. In Proc. of EGSR, pages 319–329, June

2006. 51, 126, 134

[Lafortune93] E. LAFORTUNE AND Y. WILLEMS. Bidirectional Path

Tracing. In Proc. of Compugraphics, pages 95–104, 1993.

40, 55

[Lafortune97] E. LAFORTUNE, S.-C. FOO, K. TORRANCE, AND

D. GREENBERG. Non-Linear Approximation of Re-

flectance Functions. In Proc. of ACM SIGGRAPH, pages

117–126, 1997. 15

[Laine05a] SAMULI LAINE AND TIMO AILA. Hierarchical Penum-

bra Casting. Computer Graphics Forum, 24(3):313–322,

2005. 47

[Laine05b] SAMULI LAINE, TIMO AILA, ULF ASSARSSON,

JAAKKO LEHTINEN, AND TOMAS AKENINE-MÖLLER.

Soft Shadow Volumes for Ray Tracing. ACM Trans.

Graph., 24(3):1156–1165, 2005. 47

[Laine07] SAMULI LAINE, HANNU SARANSAARI, JANNE KON-

TKANEN, JAAKKO LEHTINEN, AND TIMO AILA. Incre-

mental Instant Radiosity for Real-Time Indirect Illumina-

tion. In Proc. of EGSR, pages 277–286, 2007. 92, 101

BIBLIOGRAPHY 155

[Langer00] M.S. LANGER AND H.H. BLTHOFF. Depth discrimi-

nation from shading under diffuse lighting. Perception,

29:649–660, 2000. 21

[Lauritzen07] ANDREW LAURITZEN. Summed-Area Variance Shadow

Maps. In Hubert Nguyen, editor, GPU Gems 3. Addison-

Wesley Professional, 2007. 48, 74, 77, 107, 108, 117,

119, 120, 121, 142

[Lauritzen08] ANDREW LAURITZEN AND MICHAEL MCCOOL. Lay-

ered variance shadow maps. In Proc. of GI, pages 139–

146, 2008. 46

[Lehtinen06] JAAKKO LEHTINEN, SAMULI LAINE, AND TIMO AILA.

An Improved Physically-Based Soft Shadow Volume Al-

gorithm. Computer Graphics Forum, 25(3):303–312,

2006. 47

[Lensch05] HENDRIK P. A. LENSCH, MICHAEL GOESELE, YUNG-

YU CHUANG, TIM HAWKINS, STEVE MARSCHNER,

WOJCIECH MATUSIK, AND GERO MUELLER. Realis-

tic materials in computer graphics. In ACM SIGGRAPH

2005 Courses, SIGGRAPH ’05, 2005. 15

[Lischinski92] DANI LISCHINSKI, FILIPPO TAMPIERI, AND DON-

ALD P. GREENBERG. Discontinuity Meshing for Accu-

rate Radiosity. IEEE Comput. Graph. Appl., 12:25–39,

November 1992. 20

[Liu04] X. LIU, P.-P. SLOAN, H.-Y. SHUM, AND J. SNY-

DER. All-Frequency Precomputed Radiance Transfer for

Glossy Objects. In Proc. of EGSR, pages 337–344, 2004.

41

[Liu07] X. LIU, M.-H. PAN, R. WANG, AND H.-J. BAO. Effi-

cient Rendering of Interreflections for Dynamic Scenes.

In Proc. of Eurographics 2007, 2007. 42

[Mallo05] O. MALLO, R. PEIKERT, C. SIGG, AND F. SADLO. Illu-

minated Lines Revisited. In Proc. of IEEE Visualization,

pages 19–26, 2005. 51

156 BIBLIOGRAPHY

[Martin04] TOBIAS MARTIN AND TIOW SENG TAN. Anti-aliasing

and Continuity with Trapezoidal Shadow Maps. In Ren-

dering Techniques 2004 (Proc. of EGSR), pages 153–160,

2004. 24

[Meyer09] QUIRIN MEYER, CHRISTIAN EISENACHER, MARC

STAMMINGER, AND CARSTEN DACHSBACHER. Data-

Parallel Hierarchical Link Creation for Radiosity. In Prof.

of EGPGV09, pages 65–69, 2009. 52

[Mic00] Microsoft Corporation. DirectX 8.0 SDK, November

2000. Available from http://www.microsoft.com/directx.

34

[Miller94] G. MILLER. Efficient Algorithms for Local and Global

Accessibility Shading. In Proc. of ACM SIGGRAPH,

pages 319–326, July 1994. 21

[Mittring07] MARTIN MITTRING. Finding next gen: Cryengine 2. In

SIGGRAPH Course Notes, 2007. 43

[Myszkowski01] KAROL MYSZKOWSKI, TAKEHIRO TAWARA, HI-

ROYUKI AKAMINE, AND HANS-PETER SEIDEL.

Perception-guided global illumination solution for ani-

mation rendering. In Proc. of ACM SIGGRAPH, pages

221–230, 2001. 2, 22

[Ng03] R. NG, R. RAMAMOORTHI, AND P. HANRAHAN. All-

Frequency Shadows Using Non-linear Wavelet Lighting

Approximation. ACM Trans. Graph., 22(3):376–381,

July 2003. 20, 41

[Nielsen02] KASPER HØY NIELSEN AND NIELS JØRGEN CHRIS-

TENSEN. Fast texture-based form factor calculations for

radiosity using graphics hardware. J. Graph. Tools, 6:1–

12, 2002. 41

[Nijasure05] M. NIJASURE, S. PATTANAIK, AND V. GOEL. Real-

Time Global Illumination on GPUs. Journal of Graphics

Tools, 10(2):55–71, 2005. 43

[Nishita94] TOMOYUKI NISHITA AND EIHACHIRO NAKAMAE.

Method of Displaying Optical Effects within Water us-

ing Accumulation Buffer. In Proc. of SIGGRAPH, vol-

ume 28, pages 373–379, 1994. 51

BIBLIOGRAPHY 157

[NVI08] NVIDIA Corporation. NVIDIA CUDA specification,

2008. Available from http://www.nvidia.com/CUDA/. 36

[NVIDIA05] NVIDIA. Hardware Shadow Mapping, 2005.

http://http.download.nvidia.com/developer/SDK/. 24

[NVIDIA08] NVIDIA. Cascaded shadow maps, 2008.

http://developer.download.nvidia.com/SDK/. 24

[Oliveira07] MANUEL M. OLIVEIRA AND MAICON BRAUWERS.

Real-time Refraction through Deformable Objects. In

Proc. of ACM I3D, pages 89–96, 2007. 49

[Ostromoukhov04] VICTOR OSTROMOUKHOV, CHARLES DONOHUE, AND

PIERRE-MARC JODOIN. Fast Hierarchical Importance

Sampling with Blue Noise Properties. ACM Trans.

Graph., 23(3):488–495, 2004. 44, 85

[Pantaleoni10] JACOPO PANTALEONI, LUCA FASCIONE, MARTIN

HILL, AND TIMO AILA. PantaRay: fast ray-traced oc-

clusion caching of massive scenes. ACM Trans. Graph.,

29:37:1–37:10, 2010. 143

[Papadopoulos09] CHARILAOS PAPADOPOULOS AND GEORGIOS PA-

PAIOANNOU. Realistic Real-time Underwater Caustics

and Godrays. In Proc. of GraphiCon ’09, pages 89–95,

2009. 51, 134

[Parker10] STEVEN G. PARKER, JAMES BIGLER, ANDREAS DIET-

RICH, HEIKO FRIEDRICH, JARED HOBEROCK, DAVID

LUEBKE, DAVID MCALLISTER, MORGAN MCGUIRE,

KEITH MORLEY, AUSTIN ROBISON, AND MARTIN

STICH. OptiX: a general purpose ray tracing engine.

ACM Trans. Graph., 29:66:1–66:13, 2010. 40

[Pharr04] MATT PHARR AND SIMON GREEN. Ambient Occlusion

. In GPU Gems, chapter 17, pages 279–292. Addison

Wesley, 2004. 42

[Policarpo05] FABIO POLICARPO AND FRANCISCO FONSECA. De-

ferred Shading Tutorial. In SBGAMES, 2005. 37

158 BIBLIOGRAPHY

[Puech90] C. PUECH, F. SILLION, AND C. VEDEL. Improving In-

teraction with Radiosity-based Lighting Simulation Pro-

grams. In Proc. of ACM I3D, pages 51–57, March 1990.

41

[Purcell02] TIMOTHY J. PURCELL, IAN BUCK, WILLIAM R.

MARK, AND PAT HANRAHAN. Ray Tracing on Pro-

grammable Graphics Hardware. ACM Trans. Graph.,

21(3):703–712, 2002. 40

[Purcell03] T. PURCELL, C. DONNER, M. CAMMARANO,

H. JENSEN, AND P. HANRAHAN. Photon Mapping

on Programmable Graphics Hardware. In Proc. of

Graphics Hardware, pages 41–50, 2003. 50

[Ramasubramanian99] MAHESH RAMASUBRAMANIAN, SUMANTA N. PAT-

TANAIK, AND DONALD P. GREENBERG. A Perceptually

Based Physical Error Metric for Realistic Image Synthe-

sis. In Proc. of ACM SIGGRAPH, pages 73–82, 1999. 2,

22

[Reeves87] W. REEVES, D. SALESIN, AND R. COOK. Rendering

Antialiased Shadows with Depth Maps. In Proc. of ACM

SIGGRAPH, pages 283–291, July 1987. 24, 25, 44

[Reinbothe09] CHRISTOPH REINBOTHE, TAMY BOUBEKEUR, AND

MARC ALEXA. Hybrid Ambient Occlusion. EURO-

GRAPHICS 2009 Areas Papers, 2009. 43

[Ren06] ZHONG REN, RUI WANG, JOHN SNYDER, KUN ZHOU,

XINGUO LIU, BO SUN, PETER-PIKE SLOAN, HUJUN

BAO, QUNSHENG PENG, AND BAINING GUO. Real-

Time Soft Shadows in Dynamic Scenes using Spher-

ical Harmonic Exponentiation. ACM Trans. Graph.,

25(3):977–986, 2006. 42, 73

[Ren08] ZHONG REN, KUN ZHOU, STEPHEN LIN, AND

BAINING GUO. Gradient-based Interpolation and

Sampling for Real-time Rendering of Inhomogeneous,

Single-scattering Media. Computer Graphics Forum,

27(7):1945–1953, 2008. 50

BIBLIOGRAPHY 159

[Ritschel08a] TOBIAS RITSCHEL, THORSTEN GROSCH, JAN KAUTZ,

AND HANS-PETER SEIDEL. Interactive Global Illumina-

tion Based on Coherent Surface Shadow Maps. In Proc.

of Graphics Interface, pages 185–192, 2008. 49

[Ritschel08b] TOBIAS RITSCHEL, THORSTEN GROSCH, MIN H. KIM,

HANS-PETER SEIDEL, CARSTEN DACHSBACHER, AND

JAN KAUTZ. Imperfect Shadow Maps for Efficient Com-

putation of Indirect Illumination. ACM Trans. Graph.

(Proc. of SIGGRAPH ASIA 2008), 27(5), 2008. 48, 92,

94, 102, 103

[Ritschel09a] TOBIAS RITSCHEL, THOMAS ENGELHARDT,

THORSTEN GROSCH, HANS-PETER SEIDEL, JAN

KAUTZ, AND CARSTEN DACHSBACHER. Micro-

Rendering for Scalable, Parallel Final Gathering. ACM

Trans. Graph. (Proc. of SIGGRAPH Asia 2009), 28(5),

2009. 49

[Ritschel09b] TOBIAS RITSCHEL, THORSTEN GROSCH, AND HANS-

PETER SEIDEL. Approximating dynamic global illumi-

nation in image space. In Proc. of ACM I3D, pages 75–82,

2009. 43, 102

[Roger07] DAVID ROGER, ULF ASSARSSON, AND NICOLAS

HOLZSCHUCH. Whitted Ray-Tracing for Dynamic

Scenes using a Ray-Space Hierarchy on the GPU. In Ren-

dering Techniques 2007 (Proc. of EGSR), pages 99–110,

2007. 40

[Roth82] SCOTT D. ROTH. Ray Casting for Modeling Solids.

Journal of Computer Graphics and Image Processing,

18(2):109–144, February 1982. 20

[Salvi08] MARCO SALVI. Rendering filtered shadows with expo-

nential shadow maps. In ShaderX 6.0 - Advanced Ren-

dering Techniques. Charles River Media, 2008. 44, 46,

108

[Scheuermann07] THORSTEN SCHEUERMANN AND JUSTIN HENSLEY.

Efficient histogram generation using scattering on GPUs.

In Proc. of ACM I3D, pages 33–37, 2007. 99

160 BIBLIOGRAPHY

[Schwarz07] MICHAEL SCHWARZ AND MARC STAMMINGER. Bit-

mask soft shadows. Computer Graphics Forum,

26(3):515–524, 2007. 47, 73, 85

[Segal99] M. SEGAL AND K. AKELEY. The OpenGL Graphics

System: A Specification (Version 1.2.1), 1999. 34

[Segovia06] BENJAMIN SEGOVIA, JEAN-CLAUDE IEHL, RICHARD

MITANCHEY, AND BERNARD PÉROCHE. Non-

interleaved Deferred Shading of Interleaved Sample Pat-

terns. In Proc. of Graphics Hardware, pages 53–60, 2006.

101

[Seiler08] LARRY SEILER, DOUG CARMEAN, ERIC SPRAN-

GLE, TOM FORSYTH, MICHAEL ABRASH, PRADEEP

DUBEY, STEPHEN JUNKINS, ADAM LAKE, JEREMY

SUGERMAN, ROBERT CAVIN, ROGER ESPASA,

ED GROCHOWSKI, TONI JUAN, AND PAT HANRAHAN.

Larrabee: a many-core x86 architecture for visual

computing. ACM Trans. Graph., 27:18:1–18:15, 2008.

143

[Shah07] MUSAWIR A. SHAH, JAAKKO KONTTINEN, AND

SUMANTA PATTANAIK. Caustics Mapping: An

Image-Space Technique for Real-Time Caustics. IEEE

Transactions on Visualization and Computer Graphics,

13(2):272–280, 2007. 50

[Sloan02] PETER-PIKE SLOAN, JAN KAUTZ, AND JOHN SNYDER.

Precomputed radiance transfer for real-time rendering in

dynamic, low-frequency lighting environments. ACM

Trans. Graph., 21:527–536, 2002. 1, 20, 41, 73

[Sloan07] PETER-PIKE SLOAN, NAGA K. GOVINDARAJU,

DEREK NOWROUZEZAHRAI, AND JOHN SNYDER.

Image-Based Proxy Accumulation for Real-Time Soft

Global Illumination. In Proc. of Pacific Graphics, pages

97–105, 2007. 42

[Smits94] B. SMITS, J. ARVO, AND D. GREENBERG. A Clustering

Algorithm for Radiosity in Complex Environments. In

Proc. of SIGGRAPH, pages 435–442, 1994. 60

BIBLIOGRAPHY 161

[Soler98] C. SOLER AND F. SILLION. Fast Calculation of Soft

Shadow Textures Using Convolution. In Proc. of ACM

SIGGRAPH, pages 321–332, July 1998. 48, 74, 76, 82

[Stewart94] A. JAMES STEWART AND SHERIF GHALI. Fast Com-

putation of Shadow Boundaries Using Spatial Coherence

and Backprojections. In Proc. of SIGGRAPH ’94, pages

231–238, 1994. 47

[Sun05] BO SUN, RAVI RAMAMOORTHI, SRINIVASA G.

NARASIMHAN, AND SHREE K. NAYAR. A Practical An-

alytic Single Scattering Model for Real-time Rendering.

ACM Trans. Graph., 24(3):1040–1049, 2005. 50, 126

[Sun06] W. SUN AND A. MUKHERJEE. Generalized Wavelet

Product Integral for Rendering Dynamic Glossy Objects.

ACM Trans. Graph., 25(3):955–966, 2006. 42

[Sun07] XIN SUN, KUN ZHOU, YANYUN CHEN, STEPHEN LIN,

JIAOYING SHI, AND BAINING GUO. Interactive relight-

ing with dynamic BRDFs. ACM Trans. Graph., 26(3),

2007. 42

[Sun08] XIN SUN, KUN ZHOU, ERIC STOLLNITZ, JIAOYING

SHI, AND BAINING GUO. Interactive Relighting of Dy-

namic Refractive Objects. ACM Trans. Graph., 27(3):ar-

ticle 35, 2008. 51, 126, 130

[Sun10] XIN SUN, KUN ZHOU, STEPHEN LIN, AND BAINING

GUO. Line space gathering for single scattering in large

scenes. ACM Trans. Graph., 29:54:1–54:8, 2010. 52, 143

[Szirmay-Kalos05] LÁSZLÓ SZIRMAY-KALOS, BARNABÁS ASZÓDI,

ISTVÁN LAZÁNYI, AND MÁTYÁS PREMECZ. Approxi-

mate Ray-Tracing on the GPU with Distance Impostors.

Computer Graphics Forum, 24(3):695–704, 2005. 50

[Tanaka97] TOSHIMITSU TANAKA AND TOKIICHIRO TAKAHASHI.

Fast Analytic Shading and Shadowing for Area Light

Sources. Comput. Graph. Forum, 16(3):231–240, 1997.

47

[Umenhoffer07] T. UMENHOFFER, G. PATOW, AND L. SZIRMAY-

KALOS. GPU Gems 3, chapter Robust Multiple Specular

162 BIBLIOGRAPHY

Reflections and Refractions, pages 387–407. Addison-

Wesley, 2007. 49

[Veach97] E. VEACH AND L. GUIBAS. Metropolis Light Transport.

In Proc. of ACM SIGGRAPH, pages 65–76, August 1997.

55

[Veach98] ERIC VEACH. Robust Monte Carlo Methods for Light

Transport Simulation. PhD thesis, Stanford University,

Department of Computer Science, 1998. 128

[Wald02] I. WALD, T. KOLLIG, C. BENTHIN, A. KELLER, AND

P. SLUSALLEK. Interactive Global Illumination. In Proc.

of EG Workshop on Rendering, pages 9–20, 2002. 40

[Wald03] I. WALD, C. BENTHIN, AND P. SLUSALLEK. Inter-

active Global Illumination in Complex and Highly Oc-

cluded Environments. In Proc. of EGSR, pages 74–81,

2003. 40, 93

[Wald07] I. WALD, S. BOULOS, AND P. SHIRLEY. Ray Tracing

Deformable Scenes using Dynamic Bounding Volume Hi-

erarchies. ACM Trans. Graph., 26(1), 2007. 61

[Wald09] INGO WALD, WILLIAM R MARK, JOHANNES

GÜNTHER, SOLOMON BOULOS, THIAGO IZE,

WARREN HUNT, STEVEN G PARKER, AND PETER

SHIRLEY. State of the Art in Ray Tracing Animated

Scenes. Computer Graphics Forum, 28(6):1691–1722,

2009. 40

[Wallner09] GÜNTER WALLNER. An extended GPU radiosity solver.

The Visual Computer, 25(5-7):529–537, 2009. 41

[Walter05] BRUCE WALTER, SEBASTIAN FERNANDEZ, ADAM

ARBREE, KAVITA BALA, MICHAEL DONIKIAN, AND

DONALD P. GREENBERG. Lightcuts: A Scalable Ap-

proach to Illumination. ACM Trans. Graph. (Proc. SIG-

GRAPH), 24(3):1098–1107, 2005. 49

[Wanger92] LEONARD WANGER. The effect of shadow quality on the

perception of spatial relationships in computer generated

imagery. In Proc. of ACM SI3D, pages 39–42, 1992. 22

BIBLIOGRAPHY 163

[Whitted80] T. WHITTED. An improved illumination model for

shaded display. Communications of ACM, 23(6):343–

349, 1980. 39

[Williams78] L. WILLIAMS. Casting Curved Shadows on Curved Sur-

faces. In Proc. of ACM SIGGRAPH, pages 270–274, Au-

gust 1978. 22, 44, 74, 92, 107

[Wimmer04] MICHAEL WIMMER, DANIEL SCHERZER, AND

WERNER PURGATHOFER. Light Space Perspective

Shadow Maps. In Rendering Techniques 2004 (Pro-

ceedings Eurographics Symposium on Rendering), pages

143–151, 2004. 24

[Wong05] KEEN-HON WONG, XIN OUYANG, CHI-WAN LIM,

TIOW-SENG TAN, AND JÜRG NIEVERGELT. Rendering

Anti-Aliased Line Segments. In Proc. of CGI, pages 198–

205, 2005. 51

[Woo90] ANDREW WOO, PIERRE POULIN, AND ALAIN

FOURNIER. A Survey of Shadow Algorithms. IEEE

Computer Graphics & Applications, 10(6):13–32, 1990.

23, 44

[Wyman05] CHRIS WYMAN. An Approximate Image-Space Ap-

proach for Interactive Refraction. ACM Trans. Graph.,

24(3):1050–1053, 2005. 49

[Wyman06] CHRIS WYMAN AND SCOTT DAVIS. Interactive Image-

Space Techniques for Approximating Caustics. In Proc.

of ACM I3D, pages 153–160, 2006. 50

[Wyman08a] C. WYMAN AND S. RAMSEY. Interactive Volumetric

Shadows in Participating Media with Single-Scattering.

In Proc. of IEEE Symposium on Interactive Ray Tracing,

pages 87–92, 2008. 50, 126

[Wyman08b] CHRIS WYMAN. Hierarchical Caustic Maps. In Proc. of

ACM I3D, pages 163–171, 2008. 50, 128, 134, 137, 140

[Wyman09] CHRIS WYMAN AND GREG NICHOLS. Adaptive Caus-

tic Maps Using Deferred Shading. Computer Graphics

Forum, 28(2):309–318, 2009. 50, 134

164 BIBLIOGRAPHY

[Yang09] BAOGUANG YANG, JIEQING FENG, GAEL GUEN-

NEBAUD, AND XINGUO LIU. Packet-based Hierarchal

Soft Shadow Mapping. Computer Graphics Forum, 2009.

47

[Yang10] BAOGUANG YANG, ZHAO DONG, JIEQING FENG,

HANS-PETER SEIDEL, AND JAN KAUTZ. Variance Soft

Shadow Mapping. Computer Graphics Forum (Proc. of

Pacific Graphics 2010), 29(7):2127–2134, 2010. 4

[Yu05] JINGYI YU, JASON YANG, AND LEONARD MCMIL-

LAN. Real-time Reflection Mapping with Parallax. In

Proc. of ACM I3D, pages 133–138, 2005. 49

[Yu07] XUAN YU, FENG LI, AND JINGYI YU. Image-Space

Caustics and Curvatures. In Proc. of Pacific Graphics,

pages 181–188, 2007. 50

[Yu09] INSU YU, ANDREW COX, MIN H. KIM, TOBIAS

RITSCHEL, THORSTEN GROSCH, CARSTEN DACHS-

BACHER, AND JAN KAUTZ. Perceptual influence of ap-

proximate visibility in indirect illumination. ACM Trans.

Appl. Percept., 6(4):1–14, 2009. 2, 5

[Zhang06] FAN ZHANG, HANQIU SUN, LEILEI XU, AND LEE KIT

LUN. Parallel-split shadow maps for large-scale virtual

environments. In Proceedings of the 2006 ACM inter-

national conference on Virtual reality continuum and its

applications, pages 311–318, 2006. 24

[Zhou05] K. ZHOU, Y. HU, S. LIN, B. GUO, AND H.-Y. SHUM.

Precomputed Shadow Fields for Dynamic Scenes. ACM

Trans. Graph., 24(3):1196–1201, 2005. 42

[Zhou08a] KUN ZHOU, QIMING HOU, RUI WANG, AND BAINING

GUO. Real-time KD-tree construction on graphics hard-

ware. ACM Trans. Graph., 27:126:1–126:11, 2008. 40

[Zhou08b] KUN ZHOU, ZHONG REN, STEPHEN LIN, HUJUN BAO,

BAINING GUO, AND HEUNG-YEUNG SHUM. Real-

time Smoke Rendering using Compensated Ray March-

ing. ACM Trans. Graph., 27(3):article 36, 2008. 50

BIBLIOGRAPHY 165

[Zhukov98] S. ZHUKOV, A. IONES, AND G. KRONIN. An Ambi-

ent Light Illumination Model. In Proc. of EG Rendering

Workshop, pages 45–56, 1998. 1, 2, 21, 42

[Zöckler96] M. ZÖCKLER, D. STALLING, AND H.-C. HEGE. In-

teractive Visualization of 3D-Vector Fields Using Illumi-

nated Stream Lines. In Proc. of IEEE Visualization, pages

107–113, 1996. 51

166 BIBLIOGRAPHY

Appendix A

List of Publications

[A] Baoguang Yang, Zhao Dong, Jieqing Feng, Hans-Peter Seidel, Jan Kautz,:

Variance Soft Shadow Mapping. Computer Graphics Forum (Pacific Graph-

ics 2010) (The first two authors contributed equally.)

[B] Chunxia xiao, Meng Liu, Yongwei Nie, Zhao Dong: Fast Exact Nearest

Patch Matching for Patch-based Image Editing and Processing. To appear

in IEEE Transactions on Computer Graphics and Visualization.

[C] Wei Hu, Zhao Dong, Ivo Ihrke, Throsten Grosch, Hans-Peter Seidel: Inter-

active Volume Caustics in Single-Scattering Media. In Proc. of ACM I3D

2010, Washington DC, USA.(The first two authors contributed equally.)

[D] Zhao Dong, Baoguang Yang: Variance Soft Shadow Mapping. In Proc. of

ACM I3D 2010, Poster, Washington DC, USA.

[E] Zhao Dong, Throsten Grosch, Tobias Ritschel, Jan Kautz, Hans-Peter Sei-

del: Real-time Indirect Illumination with Clustered Visibility. In Proc. of

Vision, Modeling, and Visualization Workshop 2009 (VMV 2009), Braun-

schweig, Germany.

[F] Thomas Annen, Zhao Dong, Tom mertens, Philippe Bekaert, Hans-Peter

Seidel, Jan Kautz: Real-Time, All-Frequency Shadows in Dynamic Scenes.

In ACM Transactions on Graphics (SIGGRAPH 2008), los angeles, USA.

[G] Xinguo Liu, Zhao Dong, Qunsheng Peng, Hujun Bao: Caustics Spot Light

for Rendering Caustics. In the Visual Computer (Best ranked paper ac-

cepted by CGI 2008).

168 Chapter A: List of Publications

[H] Zhao Dong, Jan Kautz, Chrisitan Theobalt, Hans-Peter Seidel: Interactive

Global Illumination Using Implicit Visibility. In Proc. of Pacific Graphics

2007 (oral paper), Hawaii, USA.

[I] Mingli Song, Zhao Dong, Chrisitan Theobalt, Huiqiong Wang, Zicheng

Liu, Hans-Peter Seidel: A General Framework for Efficient 2D and 3D Fa-

cial Expression Analogy. In IEEE Transactions on Multimedia, Volume: 9,

Issue: 7.

[J] Zhao Dong, Wei Chen, Hujun Bao, Hongxin Zhang, Qunsheng Peng: Real-

time Voxelization for Complex Polygonal Models. In Proc. of Pacific Graph-

ics 2004 (oral paper), Seoul, Korea.

[K] Zhao Dong, Wei Chen, Long Zhang, Qunsheng Peng: Balancing CPU and

GPU: Real-time Visualization of Large Scale 3D Scene. In Proc. of GCC

2004, VVS workshop (Visualization and Visual Steering), Lecture Notes in

Computer Science, Springer Verlag.

Appendix B

Curriculum Vitae – Lebenslauf

Curriculum Vitae

October, 1980 Born in Loudi, Hunan Province, China

September 1991 - June 1994 Middle School, Liangang Middle School, Loudi, China

September 1994 - June 1997 High School, Liangang High School, Loudi, China

September 1997 - June 2001 B.S. in Computer Science and Polymer Engineering,

Zhejiang University, China

September 2002 - April 2005 M.Sc. in Computer Science, Zhejiang University, China

October 2004 - January 2005 Research Intern, Microsoft Research Asia, Beijing, China.

September 2005 - Ph.D. Student at the Max-Planck-Institut für Informatik,

Saarbrücken, Germany

September 2008 - December 2008 Research Intern, Microsoft Research Redmond,

Redmond, USA.

Lebenslauf

Oktober, 1980 Geboren in Loudi, Hunan Province, China

September 1991 - Juni 1994 Mittelschule, Liangang Middle School, Loudi, China

September 1994 - Juni 1997 Gymnasium, Liangang High School, Loudi, China

September 1997 - Juni 2001 B.S. in Informatik und Polymer Engineering,

Zhejiang University, China

September 2002 - April 2005 M.Sc. in Informatik, Zhejiang University, China

Oktober 2004 - Januar 2005 Forschungspraktikum, Microsoft Research Asia, Beijing, China.

September 2005 - Promotion am Max-Planck-Institut für Informatik,

Saarbrücken, Deutschland

September 2008 - Dezember 2008 Forschungspraktikum, Microsoft Research Redmond,

Redmond, USA.

	Introduction
	Motivation
	Problem Statement
	Main Contributions and Organization of the Thesis
	Part I - Background and Basic Definitions
	Part II - Interactive Global Illumination Using Implicit Visibility
	Part III - Convolution Soft Shadow Maps and Its Applications
	Part IV - Interactive Global Illumination in Participating Media

	I Background and Related Works
	Background Knowledge
	Radiometry
	Basic Terms
	Bidirectional Reflectance Distribution Function
	Reflection and Refraction
	Fresnel

	Rendering equation
	Rendering Techniques
	Ray Tracing methods
	Radiosity methods
	Precomputed Radiance Transfer
	Ambient Occlusion
	Accurate vs. Approximate

	Visually Pleasing Soft Shadow Mapping
	The Basic Theory of Shadow Mapping
	Percentage Closer Soft Shadow Mapping

	Participating Media Rendering
	Transport Equation in Single Scattering Media

	Caustics
	Image Displaying Solutions
	Programmable Hardware Accelerated Rendering Pipeline
	Deferred Shading

	Related Works
	General Global Illumination Rendering Techniques
	Ray-Tracing
	Radiosity
	Precomputed Radiance Transfer
	Ambient Occlusion
	Other Global Illumination Methods

	Real-time Soft Shadow Generation
	Hard Shadow Mapping with Pre-Filtering
	Soft Shadow Volume
	Soft Shadow Mapping with Backprojection
	Soft Shadow Mapping with Pre-Filtering

	Visibility in Global Illumination
	Caustics and Participating Media
	Surface Caustics
	Participating Media
	Volume Caustics
	Lines as Rendering Primitives

	Successive and Active Future Work

	II Interactive Global Illumination Using Implicit Visibility
	Interactive Global Illumination Using Implicit Visibility
	Introduction
	Global Illumination using Implicit Visibility
	Conceptual Overview

	Hierarchical Implicit Visibility
	Geometric Hierarchy Preprocessing
	Creating the Hierarchical Link Structure
	Illumination Computation
	Light Sources

	Results
	Discussion

	Summary

	III Pre-filtering Soft Shadow Maps and their Applications
	Real-time All-frequency Shadows In Dynamic Scenes
	Introduction
	Plausible Soft Shadows Using Convolution
	Convolution Soft Shadows
	Estimating Average Blocker Depth
	CSM Order Reduction

	Illumination with Soft Shadows
	Rendering Prefiltered Soft Shadows
	Generation of Area Lights for Environment Maps

	Limitations and Discussion
	Results
	Summary

	Real-time Indirect Illumination with Clustered Visibility
	Introduction
	Overview
	Instant Radiosity with Clustered Visibility
	Convolution Soft Shadow Maps
	CSSM with parabolic projection

	Clustering
	Clustering criterion
	Temporal coherence

	GPU-Based Rendering from Clustered Visibility
	Results and discussion
	Discussion

	Summary

	Variance Soft Shadow Maps
	Introduction
	Soft Shadowing with PCSS
	Our Method

	Overview
	Variance Soft Shadow Mapping
	Review of Variance Shadow Maps
	Estimating Average Blocker Depth

	Non-Planarity Problem and its Solution
	Motivation for Kernel Subdivision
	Uniform Kernel Subdivision Scheme
	Adaptive Kernel Subdivision Scheme

	Implementations and Discussion
	Min-Max Hierarchical Shadow Map
	Number of Sub-Kernels
	Combining Different Subdivision Schemes
	SAT Precision and Contact shadow
	Threshold Selection

	Results
	Limitations

	Summary

	IV Interactive Global Illumination in Participating Media
	Interactive Volume Caustics in Single-Scattering Media
	Introduction
	Overview
	Line-Based Volume Caustics
	Implementation
	Generating Line Primitives
	Light Ray Blending
	Visibility and Remaining Illumination Components
	Inhomogeneous Media

	Results and Discussion
	Ground Truth Comparison
	Performance Analysis
	Influence of User Parameters
	Limitations

	Summary

	Conclusions and Future Work
	Summary
	Implicit Visibility
	Pre-filtering Soft Shadow Maps and their applications
	Volume Caustics

	Conclusions and Future Works

	Bibliography
	List of Publications
	Curriculum Vitae � Lebenslauf

