
Symmetry in 3D Shapes -
Analysis and Applications to Model Synthesis

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften der
Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

Vorgelegt durch:
Martin Bokeloh
Max-Planck-Institut Informatik
Campus E1 4
66123 Saarbrücken
Germany
am 4. August 2011

http://www.eg.org
http://diglib.eg.org

Betreuender Hochschullehrer - Supervisor
Prof. Dr. Hans-Peter Seidel, MPI Informatik, Saarbrücken, Germany

Gutachter - Reviewer
Prof. Dr. Hans-Peter Seidel, MPI Informatik, Saarbrücken, Germany
Dr. Michael Wand, Universität des Saarlandes & MPI Informatik, Saarbrücken, Germany
Prof. Dr. Vladlen Koltun, Stanford University, Stanford, United States

Dekan - Dean
Prof. Dr. Holger Hermanns, Universität des Saarlandes, Saarbrücken, Germany

Kolloquium - Examination

Datum - Date
29. November 2011

Vorsitzender - Chair
Prof. Dr. Philipp Slusallek, Universität des Saarlandes, Saarbrücken, Germany

Prüfer - Examiners
Prof. Dr. Hans-Peter Seidel, MPI Informatik, Saarbrücken, Germany
Dr. Michael Wand, Universität des Saarlandes & MPI Informatik, Saarbrücken, Germany

Protokoll - Reporter
Dr. Nils Hasler, MPI Informatik, Saarbrücken, Germany

Abstract

Symmetry is an essential property of a shapes’ appearance and presents a source
of information for structure-aware deformation and model synthesis. This thesis
proposes feature-based methods to detect symmetry and regularity in 3D shapes
and demonstrates the utilization of symmetry information for content generation.
First, we will introduce two novel feature detection techniques that extract salient
keypoints and feature lines for a 3D shape respectively. Further, we will propose
a randomized, feature-based approach to detect symmetries and decompose the
shape into recurring building blocks. Then, we will present the concept of docking
sites that allows us to derive a set of shape operations from an exemplar and will
produce similar shapes. This is a key insight of this thesis and opens up a new
perspective on inverse procedural modeling. Finally, we will present an interactive,
structure-aware deformation technique based entirely on regular patterns.

Kurzzusammenfassung

Symmetrie ist eine essentielle Eigenschaft für das Aussehen eines Objekts und
bietet eine Informationsquelle für strukturerhaltende Deformation und Modellsyn-
these. Diese Arbeit beschäftigt sich mit merkmalsbasierter Symmetrieerkennung
in 3D-Objekten und der Synthese von 3D-Modellen mittels Symmetrieinforma-
tionen. Zunächst stellen wir zwei neue Verfahren zur Merkmalserkennung vor,
die hervorstechende Punkte bzw. Linien in 3D-Objekten erkennen. Darauf auf-
bauend beschreiben wir einen randomisierten, merkmalsbasierten Ansatz zur Sym-
metrieerkennung, der ein Objekt in sich wiederholende Bausteine zerlegt. Des
Weiteren führen wir ein Konzept zur Modifikation von Objekten ein, welches An-
dockstellen in Geometrie berechnet und zur Generierung von ähnlichen Objekten
eingesetzt werden kann. Dieses Konzept eröffnet völlig neue Möglichkeiten für die
Ermittlung von prozeduralen Regeln aus Beispielen. Zum Schluss präsentieren wir
eine interaktive Technik zur strukturerhaltenden Deformation, welche komplett auf
regulären Strukturen basiert.

Summary

Symmetry is an essential property of a shapes’ appearance and presents a source
of information for structure-aware deformation and model synthesis. This thesis
proposes feature-based methods to detect symmetry and regularity in 3D shapes
and demonstrates the utilization of symmetry information for content generation.
First, we will introduce two novel feature detection techniques that extract salient
keypoints and feature lines for a 3D shape respectively. Further, we will propose
a randomized, feature-based approach to detect symmetries and decompose the
shape into recurring building blocks. Then, we will present the concept of docking
sites that allows us to derive a set of shape operations from an exemplar and will
produce similar shapes. This is a key insight of this thesis and opens up a new
perspective on inverse procedural modeling. Finally, we will present an interactive,
structure-aware deformation technique based entirely on regular patterns.

Slippage Features: Keypoint detection aims at finding reliable feature points
invariant to global transformations and noise. In Chapter 3, we introduce a gener-
alized concept of geometric features that detects locally, uniquely identifiable key-
points as centroids of an area that is locally maximal constrained with respect to
the auto-alignment problem e.g. registration of geometry with itself. We extend the
concept to multiple scales and extract features using multi-scale mean shift cluster-
ing. By construction, the local neighborhood of a keypoint is well constrained for
alignment via iterative closest points (ICP). Consequently, we use ICP residuals
as similarity measure which yields robust feature comparison. We obtain reliable
keypoints in larger quantities than state-of-the-art methods and demonstrate the ap-
plicability of our method in the context of global alignment of rigid or deformable
objects, and symmetry detection.

Symmetry Detection Using Feature Lines: We describe a new method for de-
tecting structural redundancy in geometric data sets in Chapter 4. Our algorithm
computes rigid symmetries, i.e., subsets of a surface model that recur several times
within the model differing only by translation, rotation or mirroring. We base our
method on matching locally coherent constellations of feature lines on the object
surfaces. This feature representation reduces the required amount of data by ap-
proximately two orders of magnitude but still carries enough information necessary
to find even small symmetries. In comparison to previous work, our method is able

to detect a large number of symmetric parts without restrictions to regular patterns
or nested hierarchies, which has not been achieved before for huge datasets. We
apply the algorithm to a number of real world 3D scanner data sets, demonstrating
high recognition rates for general patterns of symmetry.

Inverse Procedural Modeling: In Chapter 5, we present an inverse procedural
modeling approach that creates shapes similar to an input exemplar. We consider
local similarity, i.e., each local neighborhood of the newly created object must
match some local neighborhood of the exemplar. We show that we can find ex-
plicit shape modification rules that guarantee strict local similarity by looking at
the structure of the partial symmetries of the object. We systematically collect
such editing operations and analyze their dependency to build a shape grammar.
All of this information is derived directly from the model, without user interaction.
In comparison to previous work that is limited to synthesizing shapes, we present
the first approach that is able to automatically extract rules than span a class of
3D objects. Overall, we are the first to provide a general theoretical and practical
framework for inverse procedural modeling of 3D objects.

Pattern-Aware Shape Deformation: We introduce a new structure-aware shape
deformation technique in Chapter 6. The key idea is to detect continuous and dis-
crete regular patterns and ensure that these patterns are preserved during free-form
deformation. We propose a variational deformation model that preserves these
structures, and a discrete algorithm for structure adaptation that adaptively inserts
or removes repeated elements in regular patterns to minimize distortion. As a tool
for such structural adaptation, we introduce sliding dockers, which represent re-
peatable elements that fit together seamlessly for arbitrary repetition counts. Ad-
ditionally, we provide an efficient numerical framework that allows deformation
with structural adaption at interactive rates. Our approach is the first interactive
structure-aware free-form deformation technique that can alter the shape by chang-
ing regular patterns during deformation in order to relax stretch. Further, we in-
troduce a formal model for structure-aware regularization that is entirely based on
1-parameter partial symmetry groups.

Zusammenfassung

Symmetrie ist eine essentielle Eigenschaft für das Aussehen eines Objekts und
bietet eine Informationsquelle für strukturerhaltende Deformation und Modellsyn-
these. Diese Arbeit beschäftigt sich mit merkmalsbasierter Symmetrieerkennung
in 3D-Objekten und der Synthese von 3D-Modellen mittels Symmetrieinforma-
tionen. Zunächst stellen wir zwei neue Verfahren zur Merkmalserkennung vor,
die hervorstechende Punkte bzw. Linien in 3D-Objekten erkennen. Darauf auf-
bauend beschreiben wir einen randomisierten, merkmalsbasierten Ansatz zur Sym-
metrieerkennung, der ein Objekt in sich wiederholende Bausteine zerlegt. Des
Weiteren führen wir ein Konzept zur Modifikation von Objekten ein, welches An-
dockstellen in Geometrie berechnet und zur Generierung von ähnlichen Objekten
eingesetzt werden kann. Dieses Konzept eröffnet völlig neue Möglichkeiten für die
Ermittlung von prozeduralen Regeln aus Beispielen. Zum Schluss präsentieren wir
eine interaktive Technik zur strukturerhaltenden Deformation, welche komplett auf
regulären Strukturen basiert.

Slippage Features: Merkmalserkennung zielt darauf ab, stabile Merkmale zu
berechnen, welche invariant gegenüber globalen Transformationen und Rauschen
sind. In Kapitel 3 stellen wir eine Methode zur Merkmalserkennung vor, die
auf Selbstregistrierung lokaler Geometrie beruht. Wir definieren ein Merkmal als
Schwerpunkt einer Region, deren Registrierung mit sich selbst wohlbestimmt ist
und im lokalen Vergleich besser bestimmt ist als die Registrierungen der Nachbar-
regionen. Wir erweitern das Konzept auf mehrere Skalen und verwenden Mean-
Shift-Clustering zur Merkmalsextraktion. Aufgrund der Definition eignen sich die
Merkmalspunkte zur lokalen Registrierung auf andere Merkmale. Deshalb ver-
wenden wir die Residuen der Registrierung als Distanzmaß und erhalten somit
robuste Merkmalsvergleiche. Wir erhalten stabilere Merkmalskorrespondenzen im
Vergleich mit verwandten Arbeiten und zeigen den Nutzen unserer Methode am
Beispiel der globalen Registrierung von Starrkörpern oder deformierbaren Objek-
ten sowie zur Symmetrieerkennung.

Symmetry Detection Using Feature Lines: Wir stellen einen neuen Ansatz
zur Symmetrieerkennung in Kapitel 4 vor. Unser Algorithmus berechnet Symme-
trien, die durch eine Starrkörpertransformation beschrieben werden können, und
zerlegt dadurch ein Objekt in sich wiederholende Bausteine. Unsere Methode

basiert auf Registrierung von örtlich kohärenten Ansammlungen von Merkmal-
slinien. Diese Merkmalsrepräsentation reduziert den Aufwand dramatisch, bein-
haltet jedoch trotzdem genug Information, um sogar kleine Symmetrien zu finden.
Im Vergleich zu anderen Methoden können wir viele partielle Symmetrien finden,
ohne uns auf hierarchische oder reguläre Symmetrien zu beschränken. Auf großen
Datensätzen war dies mit bisher existierenden Methoden nicht möglich. Wir er-
reichen hohe Erkennungsraten auf gemessenen 3D-Punktwolken.

Inverse Procedural Modeling: In Kapitel 5 präsentieren wir einen Ansatz zur
Ermittlung von prozeduralen Regeln aus Eingabeobjekten. Unser Ziel ist die Syn-
these von 3D-Objekten, die lokale Ähnlichkeit zu einem Eingabeexemplar be-
sitzen; jede lokale Umgebung des erzeugten Objekts muss im Eingabeexemplar
vorhanden sein. Wir zeigen, dass es Modifikationsoperationen gibt, die lokale Ähn-
lichkeit garantieren und durch Betrachtung der partiellen Symmetrien auffindbar
sind. Unsere Methode extrahiert systematisch Modifikationsoperationen, analysiert
deren Abhängigkeiten und erzeugt eine kontextfreie Grammatik, die ähnliche Ob-
jekte erzeugen kann. All dies kann direkt aus der Symmetriestruktur berechnet
werden und benötigt keine Nutzerinteraktion. Unsere Methode erlaubt nicht nur
die Synthese von ähnlichen Modellen wie in vorangegangenen Arbeiten, sondern
ermöglicht außerdem direktes Ableiten von prozeduralen Regeln, die eine Klasse
von ähnlichen 3D-Objekten erzeugen können. Wir bieten ein generelles theoretis-
ches und praktisches Gerüst zur Ermittlung von prozeduralen Regeln zur Erzeu-
gung von ähnlichen 3D-Objekten.

Pattern-Aware Shape Deformation: In Kapitel 6 stellen wir eine neue Tech-
nik zur strukturerhaltenden Deformation von 3D-Oberflächen vor. Die zentrale
Idee ist, kontinuierliche und diskrete Muster zu erkennen und sicherzustellen, dass
diese Muster während der Deformation erhalten bleiben. Wir schlagen ein Vari-
ationsmodell für Deformation vor, welches diese Muster erhält. Des Weiteren
präsentieren wir eine Methode zur Minimierung von Verzerrungen, die adaptiv
Elemente aus diskreten Mustern entfernt oder einfügt, um somit den Verzerrungen
entgegenzuwirken. Hierfür zeigen wir außerdem, wie geeignete Muster gefunden
und verändert werden können, die sich übergangslos verändern lassen. Zusätzlich
stellen wir ein effizientes, numerisches Grundgerüst vor, das gleichzeitige Defor-
mation und Strukturanpassung bei interaktiver Nutzung ermöglicht. Unser Ansatz
ist der erste interaktive Ansatz zur strukturerhaltenden Deformation, der in der
Lage ist, diskrete reguläre Muster strukturell zu verändern, um Verzerrungen zu
minimieren. Des Weiteren ist dies das erste strukturerhaltende Deformationsmod-
ell, das gänzlich auf diskreten 1-Parameter Symmetriegruppen aufgebaut ist.

Contents

1 Introduction 1
1.1 Definition of Symmetry . 3

1.1.1 Transformations . 3
1.1.2 Symmetry Types . 5

1.2 Rigid Symmetry as Base Model 6
1.3 Overview and Contributions . 8

2 Background 11
2.1 Related Work . 11

2.1.1 Feature Detection . 11
2.1.2 Symmetry Analysis . 13
2.1.3 Texture and Geometry Synthesis 14
2.1.4 Shape Grammars and Inverse Procedural Modeling 15
2.1.5 Shape Deformation . 16

2.2 Slippage Analysis . 17
2.3 RanSaC . 18

Part I Feature-based Symmetry Analysis 19

3 Feature Points for Correspondence Analysis 23
3.1 Slippage Keypoints . 25

3.1.1 Multi-scale Analysis . 26
3.2 Descriptors and Feature Matching 28

3.2.1 Signature-based Pruning 28
3.2.2 Local Feature Alignment 29

3.3 Applications . 30
3.3.1 Global Rigid Registration 31
3.3.2 Deformable Registration 31
3.3.3 Detection of Symmetric Features 32

3.4 Results . 32
3.4.1 Feature Stability . 32
3.4.2 Global Registration . 37

i

3.4.3 Deformable Registration 37
3.4.4 Computational Costs . 37
3.4.5 Detection of Symmetric Features 37

3.5 Further Applications . 37
3.5.1 Graph-based Symmetry Detection 38
3.5.2 Isometric Registration 38

3.6 Summary and Future Work . 41

4 Symmetry Detection Using Feature Lines 43
4.1 Algorithm Overview . 46
4.2 Feature Extraction . 47

4.2.1 MLS Line Features . 48
4.2.2 Building a Feature Graph and Bases 50

4.3 Line-Feature Matching . 50
4.3.1 Base Matching . 50
4.3.2 Iterative Closest Lines (ICL) 51
4.3.3 RanSaC Search . 52

4.4 Geometric Validation . 53
4.4.1 Basic Region Growing 54
4.4.2 Grid Based Growing . 54
4.4.3 Handling Holes . 55

4.5 Candidate Loop and Outer Loop 55
4.5.1 Candidate Loop . 55
4.5.2 Refinement . 56

4.6 Applications . 57
4.7 Implementation and Results . 57

4.7.1 Synthetic Example . 58
4.7.2 Scanner Data . 58
4.7.3 Reconstruction . 60
4.7.4 Performance . 63
4.7.5 Parameters . 63

4.8 Summary and Future Work . 63

Part II Symmetry for Model Synthesis 65

5 Inverse Procedural Modeling 69
5.1 Formal Model . 71

5.1.1 Similarity and Symmetry 72
5.1.2 Dockers, Docking Sites and Shape Operations 74
5.1.3 Elementary Docking Sites 77
5.1.4 Extracting Shape Grammars 78

5.2 Implementation . 84
5.2.1 Symmetry Detection . 85

5.2.2 Applications . 87
5.3 Results . 88

5.3.1 Example scenes and setup 88
5.3.2 Grid-based editing . 88
5.3.3 Manual and random modeling 89
5.3.4 Point clouds . 89
5.3.5 Analysis . 89
5.3.6 Limitations . 91

5.4 Summary and Future Work . 92

6 Pattern-Aware Shape Deformation 95
6.1 Overview . 96
6.2 Pattern-Based Structure Model 97

6.2.1 Partial Regular Patterns 98
6.2.2 Computational Framework 99

6.3 Deformation Model . 99
6.3.1 Representation . 100
6.3.2 Elastic Deformation . 100
6.3.3 Structure Aware Deformation 101

6.4 Sliding Dockers . 105
6.4.1 Defining Sliding Dockers 105
6.4.2 Finding Sliding Dockers 106
6.4.3 Using Sliding Dockers 108

6.5 Implementation and Results . 109
6.6 Discussion . 115

7 Conclusions 117

Bibliography 121

Complete List of the Authors Publications 133

List of Figures

1.1 Symmetry in nature, science, art, and architecture 2
1.2 Rigid transformations . 3
1.3 Symmetry types . 5

2.1 Slippable surfaces with respect to rigid motions. 18

3.1 Slippage features pipeline . 25
3.2 Scale invariant slippage analysis 26
3.3 Approximate feature alignment 30
3.4 Results for global rigid registration 31
3.5 Results for deformable registration 33
3.6 Comparison DoG . 34
3.7 Comparison DoG . 35
3.8 Feature stability . 35
3.9 Symmetry browser . 36
3.10 Graph-based symmetry detection results - Horsemen 39
3.11 Graph-based symmetry detection results - Clayhouse 39
3.12 Isometric matching . 40
3.13 Isometric symmetry . 40

4.1 Points vs. Lines . 44
4.2 Line feature example . 45
4.3 Pipeline overview . 46
4.4 Symmetry result ’Happy Budda’ 48
4.5 Visualization of bases . 49
4.6 ICL of disjoint point sets . 51
4.7 Symmetry-enhanced reconstruction 57
4.8 Result on synthetic data set . 58
4.9 Result ’Willhelm-Busch Museum’ 60
4.10 Result ’Old Town Hall’ . 60
4.11 Result ’New Town Hall’ . 61
4.12 Result ’Dresden Zwinger’ . 62
4.13 Comparison ’Dresden Zwinger’ 62

v

5.1 Docking site examples . 70
5.2 r-similarity and r-symmetry . 72
5.3 Effect of parameter r . 73
5.4 Schematic docking site example 74
5.5 Elementary docking sites . 79
5.6 Computation of elementary docking sites 80
5.7 Context free shape grammar . 81
5.8 2-grid . 83
5.9 Grammar visualization . 84
5.10 Random variations "pipe tree" 85
5.11 Interactive editor . 86
5.12 Discretized r-symmetry . 87
5.13 Results 1d grid . 89
5.14 Results 2d grid . 90
5.15 Random variations . 90
5.16 Results for point clouds . 91
5.17 Manual editing of a bus station. 92
5.18 Variations of a space station . 93

6.1 Sliding dockers overview. 96
6.2 Meshless basis functions. 101
6.3 Constraint manifolds . 102
6.4 Global constraints. 104
6.5 Boundary conditions for sliding dockers 105
6.6 Motion space. 107
6.7 Sliding docker extraction. 108
6.8 Deformation energy. 110
6.9 Results (bench, ballustrade, airbridge) 111
6.10 Results (canvas chair, castle) . 112
6.11 Edit example (canvas chair) . 113
6.12 Results (oiltank) . 113
6.13 Results (houses of parliament, platform) 114

List of Tables

3.1 Timings for feature detection on a representative scan of several
data sets. 32

4.1 Statistics . 64

vii

1 Introduction

Everything starts somewhere, although many physicists disagree.

Terry Pratchett

Progress in computer science and a strong interest in digital representations of
reality have led to a plenitude of technologies for acquisition, modeling, and vi-
sualization of digital content. Today’s rendering techniques range from real-time
visualization of 3D worlds on mobile phones to high-quality renderings for feature
films that are almost indistinguishable from reality. However, all these techniques
require digital content such as 3D models, textures, material properties, and mo-
tion data. For each individual technique, the content needs to be adapted for the
particular purpose. A building, for example, is represented completely differently
in navigation systems than in a feature film. With an ever increasing ability to ren-
der more complex scenes and specialized content requirement, modern computer
graphics faces an uphill task how to create all this content.

There are two major ways to create digital content: Firstly, acquisition of real-
world objects and secondly, manual modeling by an artist. Both ways have their
own advantages and disadvantages. Acquisition is naturally restricted to existing
objects. Some objects might be hard or impossible to acquire, for example pre-
cise acquisition of trees is still a challenging problem. Manual modeling requires
technical and artistic skill. However, both methods usually consume a lot of time
and resources. Consequently, there is a desire to reuse and modify existing digital
objects in order to satisfy the increasing demand. In particular in the last decade
countless 3D objects, textures, and materials have been created by talented artists.
Can we reuse and recombine digital objects from existing databases in such a way
that it is significantly faster than traditional modeling but of comparable aesthetical
quality?

A direction to approach this is to gather and interpret structural information
of existing data and try to “learn” what an object is. Of course, understanding an
object as we humans do is far out of the scope of this thesis and will most likely

1

2 Introduction

a) Maple leaf b) Snowflake c) Vitruvian Man d) Town hall Hannover

Figure 1.1: In everyday life, we observe many different forms of symmetry. Nature
itself tends to favor symmetric structures such as in a Maple leaf1 or, at a much
smaller scale, in the crystal structure of a snowflake2. Leonardo da Vinci’s drawing
The Vitruvian Man illustrates symmetrical properties of an idealized human male
and symbolizes a strong connection between symmetry and esthetic. Especially in
classical architecture symmetry played a dominant role for several centuries; the
new town hall of Hannover3 shows a relatively modern example from the early 20th
century.

be a research topic for future generations. But we can try to get some insight about
objects from low level cues and utilize these for content creation. A fundamental
source of information comes from the ability to establish correspondences between
similar objects or parts of objects. This allows us to build equivalence classes of
objects, helps to identify semantic components, and can give us valuable informa-
tion about complex objects and their structure.

In this thesis, we focus entirely on 3D shapes and their geometric properties.
This means, we have to identify correspondences between shapes or part of shapes.
In particular, we are interested in correspondences within objects. If we are able
to find a part twice within an object, we gain important information such as seg-
mentation cues (the part may be a meaningful segment of the object) and structure
information. Inspired by mathematics, the term symmetry has been shaped and is
widely used in computer graphics to describe correspondences within an object.
Symmetry has slightly different meanings in mathematics, psychology, chemistry,
biology, physics, and others. In everyday speech, symmetry often refers to reflec-
tional symmetry, for example, of a human face. However, the general term includes
many other forms of symmetry that we can observe in everyday life as illustrated
in Figure 1.1: The veins of the Maple leaf bear similar structures, the snowflake
shows a rotational symmetry, the famous drawing Vitruvian Man by Leonardo da
Vinci illustrates reflectional symmetry of humans, and the New Town Hall of Han-
nover contains many different forms of translational and reflectional symmetries.
We will give a formal definition of symmetry in the next section.

1http://de.wikipedia.org/wiki/Ahorne (July 28. 2011)
2http://www.flickr.com/photos/39998519@N00/3211427354/ (July 28. 2011)
3http://de.wikipedia.org/wiki/Neues_Rathaus_(Hannover) (July 28. 2011)

1.1 Definition of Symmetry 3

a) Reflection b) Rotation c) Translation d) Rigid transformation

Figure 1.2: Probably the most intuitive class of symmetries is rigid symmetry. The
jeep is mostly reflectionally symmetric at the reflection plane in a). The wheel is
rotationally symmetric b), translational symmetric to the rear wheel c), and is also
symmetric to the extra wheel in the back under a rigid transformation d).

1.1 Definition of Symmetry

Let S ∈ R3 be a 3D surface, P a part of the surface P ⊆ S, T be a general
transformation R3 → R3, and dist(S1, S2) be a distance function that measures a
distance of surface S1 to S2.

We call P symmetric under transformation T if dist(T (P),S) = 0.

In other words, the transformed part T (P) maps onto another part of the surface
S. Due to finite numerical precision of computers we slightly change the defini-
tion and bound the distance between P) and S by dist(T (P),S) ≤ ε with ε > 0
that compensates for numerical noise (see also approximate symmetries in Section
1.1.2). This definition captures a large variety of symmetries and we will use spe-
cific instances for different applications. Intuitively, we consider symmetry as a
simplification that describes a shape more compactly and simpler in some sense,
and in this thesis we will stick to this thought and opt for simplicity. As a conse-
quence, we have to restrict the class of allowed transformations because a highly
complex transformation would contradict our assumption that symmetry gives sim-
pler explanations of a shape. For example, it might be possible to deform a Maple
leaf (Figure 1.1 a) into the shape of the new town hall (Figure 1.1 d). However,
the conclusion “the new town hall is a Maple leaf” does not make much sense. In
the following, we will discuss several classes of transformations and provide an
overview of different types of symmetries that have been used in related work.

1.1.1 Transformations

• Reflections - A well known form of symmetry is reflectional symmetry or
mirror symmetry in Euclidean space. Reflections can be parameterized by
a reflection plane (nx = d) where n is a normal vector on the unit sphere.
Expressing the plane in spherical coordinates, we obtain 3 parameters θ, φ, d
with n = (sin(φ)sin(θ), cos(φ)sin(θ), cos(θ))>.

• Rotations - Rotational symmetries appear frequently in man-made objects

4 Introduction

(e.g., in decorated aluminum wheels). They can be characterized by a rota-
tion axis and a rotation angle. In total, we need 5 parameters θ, φ, tx, ty, dα
to specify a rotation (two angles θ and φ to define the rotation axis direction
in spherical coordinates, two translational parameters tx and ty to move the
rotation axis orthogonal to the axis direction and a parameter dα to specify
the rotation angle).

• Translation - Translational symmetries occur e.g. in buildings when a win-
dow is translationally symmetric to a neighboring window. Translations in
Euclidean space are defined by a translation vector (tx, ty, tz)

>.

• Rigid transformations - A prominent example of symmetry, often referred
to as rigid symmetry, is based on rigid transformation that include rotations,
translations, and reflections. This particular type of symmetry is important
for many applications because it is a very good model of manufactured ob-
jects. Industrial products usually contain building blocks of the same type
that are identical up to a certain tolerance. For example, a car engine has a
number of geometrically identical cylinders and pistons. Rigid symmetries
model this by changing only the position and orientation of a part, which
can also be done in the real world. Here, reflection is a special case that
is sometimes excluded from the definition since it is physically impossible
for objects like pistons to be mirrored; however, sometimes mirrored ob-
jects are manufactured. Rigid transformations without reflections are called
proper rigid transformations and they are parameterized by 6 scalar val-
ues α, β, γ, tx, ty, tz with tx, ty, tz as translational part and α, β, γ as ro-
tational part. Several notations exist on how the rotation should be inter-
preted. Sometimes the rotation parameters are interpreted as Euler angles:
R = Rx(α)Ry(β)Rz(γ) where Rx represents a rotation around the x-axis
(Ry, Rz respectively for y, z axis). Here, the order in which the rotations
are applied is crucial and varies in the literature. Another way of interpreta-
tion is the Rodrigues’notation where (α, β, γ)> represents the unnormalized
rotation axis and the norm

∥∥(α, β, γ)>
∥∥
2

corresponds to the rotation angle
[Rodrigues, 1816]. Reflections require a binary parameter. An example of
different rigid symmetries is shown in Figure 1.2.

• Similarity transformations - Two objects are considered similar, in mathe-
matical sense, when there exists a similarity transformation that transforms
an object into another. A similarity transformation consists of a rigid trans-
formation, including reflections, and a uniform scaling parameter. This type
of symmetry is useful for some manufactured objects with building blocks
of different scales.

• Affine transformations - Affine mappings are linear transformations and an
additional translation: T (x)→ Ax+ t with A ∈ R3 ×R3 and t ∈ R3. Very
few attempts have been made to detect affine symmetries.

1.1 Definition of Symmetry 5

a) Partial b) Continuous c) Regular patterns d) Intrinsic

Figure 1.3: Variations of symmetry: a) Only a part of the building is symmet-
ric under the shown translation whereas b), c), and d) are globally symmetric.
b) Continuous symmetries have a continuous set of symmetry transformations. c)
Symmetry transformations form a group in regular symmetries. d) Intrinsic sym-
metries consider only the intrinsic structure of a shape and not its embedding in
3D space.

• Others - One can use more complex types of transformations to express
symmetries. There exist various techniques that deform a shape with many
degrees of freedom. Here, especially the physically motivated techniques
might be of great interest since some types of symmetries are created by
physical deformation, for example, a crate full of tightly packed rubber
ducks. Simulation of this behavior has been investigated in detail, however,
due to the usually large number of parameters it is not yet clear how to solve
the inverse problem in the context of symmetry detection where neither the
physical parameters are known nor any predefined objects.

1.1.2 Symmetry Types

Besides different classes of transformations, there are various types of symmetry.
Here, we give a brief overview of the notations used in the computer graphics
literature.

• Global - If a complete shape is symmetric under a transformation, we call
it globally symmetric or a global symmetry of the shape. According to our
definition of symmetry this means P = S . In contrast to global symmetries
we call a shape partially symmetric if P 6= S. Global symmetries are easier
to detect than partial symmetries because of their global influence and clearly
defined domain. Partial symmetries in addition require determining the part
that is symmetric.

• Approximate - Symmetries are called approximate or imperfect if the dis-
tance between two symmetric surfaces becomes relatively large due to dif-
ferent small scale features in the surface (ε� 0). For example, consider Fig-
ure 1.1 d: Intuitively, we would describe the building as globally symmetric
with respect to a vertical reflection plane. However, a closer examination

6 Introduction

reveals several asymmetric parts (missing chimney on the right side, asym-
metric configuration of the hands in the central clock, etc.). On a smaller
scale, we would see differences in the stone surface like small cracks, veg-
etation, and erosion. Nevertheless, we would still think of this building as
globally symmetric. Symmetries can be approximate in terms of numerical
noise, acquisition noise, or even in the sense of geometric noise where the
fine-scale geometry differs, as in [Mitra et al., 2006b].

• Continuous - A continuous symmetry refers to a symmetry with a continuous
set of transformations under which a part P is symmetric. For example, the
wine glass in Figure 1.3 b) is continuously symmetric with respect to a set
of transformations {T ∈ Rotz(p)|p ∈ [0, 2π)} where Rotz(p) defines a
rotation matrix with rotation angle p and rotation axis (0, 0, 1)>. For rigid
transformations, this type of symmetry has been investigated by Gelfand and
Guibas [2004]. In this thesis we will use the so called slippage analysis
that computes continuous symmetries in several contexts. A more detailed
introduction to slippage analysis will follow in Chapter 2.

• Regular patterns - Different symmetries might be linked by a regular struc-
ture in the transformations. For example, if a part P is symmetric under
two transformations T1 and T2 with T2 = T 2

1 , we call this a regular pattern.
These types of regularities appear quite often in 3D shapes and, in compar-
ison with normal partial symmetries, they are easier to detect due to their
inherent structure. We will define regular patterns more precisely in Chapter
6.

• Intrinsic - All transformations described so far interpret shapes from an ex-
trinsic point of view; a shape lives in Euclidean space and all computations
are done in 3D domain. However, shapes can also be interpreted as 2d man-
ifolds embedded in Euclidean space. An intrinsic symmetry refers to a part
P of a 2d manifold that can be mapped onto another part of the surface by
an isometric deformation that preserves intrinsic distances. The armadillo in
Figure 1.3 d) contains an (approximately) intrinsic symmetry, in this case a
global reflection.

1.2 Rigid Symmetry as Base Model

Symmetries in general are hard to detect. Especially for symmetries that have un-
dergone a complex deformation the process of finding this deformation and the
instance area simultaneously leads to huge computational costs. Rigid symmetries
are much more restricted but represent an excellent compromise between complex-
ity and applicability. The reason for this is twofold: First, a rigid transformation
is defined by only 6 parameters which spans a manageable search space. Second,
many man-made objects are build of parts that have exact specifications and these

1.2 Rigid Symmetry as Base Model 7

parts are often used multiple times (physical copies). This means that rigid sym-
metry is an accurate, physically-based model because it resembles the process of
how these objects were constructed: Nearly identical parts are assembled into a
new object by moving and rotating these parts in 3D space. Some effects are not
captured in this definition like varying microscopic geometric details in parts or
material deformations caused by the assembly process. Nevertheless, the model is
accurate enough for our purpose.

Rigid symmetries are also a good way to explain a shape in the sense that we
can derive which parts the shape was constructed from. From a programmer’s per-
spective, a clear, well-defined structure of the problem is essential to formulate
an algorithm that solves it. In our setting, an algorithm has to provide potential
explanations (symmetries) and requires a formal validation criterion to accept or
reject explanations. But what is a good explanation? Intuitively, we prefer sim-
ple explanations because they are easier to find and it becomes harder to create a
false hypothesis with sufficient support in the data. The basic principle of simplic-
ity is often referred to as Occam’s razor and has been applied in many different
fields of science. Occam’s razor states: “Of two equivalent theories or explana-
tions, all other things being equal, the simpler one is to be preferred.” Transfered
to symmetries this means that if we can express the same symmetry using a sim-
pler transformation we choose the simpler one. In our context, we can also see
simplicity as compression: A good explanation is more compact than the original
shape. This does not necessarily restrict us to rigid symmetries, but demands a
certain benefit for complex transformations.

Considering the compression aspect, we can also rate explanations and com-
pare different explanations with respect to their gain in compression. This inter-
pretation immediately leads to a clear, well-defined validation criterion that can be
applied in computer programs. Please note that the goal of compression does not
directly imply to be useful for content creation or shape understanding. However, it
is a valuable indicator in practice and we will consider simplicity under this aspect.

In symmetry detection, and especially in the area of symmetry-aware decompo-
sition of shapes into building blocks, we have to deal with a range of ambiguities.
These can manifest themselves as variability of transformations where different
transformations map the same part onto the same target part. In other words, the
mapping between these two parts is ambiguous since we can find multiple sets
of correspondences between them. We want to avoid such situations because it
indicates that we did not really understand the symmetry structure of the shape.
Simplicity, as described above, does not necessarily resolve ambiguities since two
explanations can be equally simple. Here, we integrate the ideas of David Deutsch
into our thoughts. He stated that "good explanations are hard to vary"4 while bad
explanations can easily be modified to meet the observed phenomena. With com-
plex deformations we can easily produce similar mappings that can appear to be

4Talk by David Deutsch: “A new way to explain explanation”, July 2009, Oxford, UK,
http://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation.html

8 Introduction

symmetries. However, we cannot be certain that even one of them represents “real”
symmetry due the ambiguous mappings. In general, we aim for solutions which are
hard to vary. Consequently, a symmetry detection algorithm should reject all am-
biguous symmetries or at least deal with the possibility that a symmetry is wrong
or undesired. Rigid symmetries have such ambiguities mostly in the presence of
slippable surfaces. But in contrast to more complex transformation classes, slip-
pable surfaces have been investigated in detail by Gelfand and Guibas [2004] and
can be integrated in the detection process.

In summary, rigid symmetries are an excellent choice for our purpose because
they are defined by a small set of parameters, they can be interpreted as a physical
model of the real world, and their ambiguities are well understood. More complex
types of symmetries are possible, however, they should fulfill the discussed criteria
of simplicity and hard variability, and ideally resemble a physical process. In this
thesis, we will focus on rigid symmetries.

1.3 Overview and Contributions

This thesis is organized in two parts. In the first part, we investigate the potential
use of geometric features for correspondence estimation and symmetry analysis.
The second part builds upon the gained knowledge of the first part and derives
potential modification operations for shapes based on partial symmetry. Please note
that some figures and textual parts where taken from the individual publications
mentioned in the following paragraphs.
Part I: Feature-based methods reduce the object to a set of features that is typically
much smaller than the original object and perform the analysis on this reduced set.
These methods have the advantage that they focus the attention on “interesting”
regions of the objects and thereby perform faster than dense-sampling approaches.
This requires that the desired correspondences or symmetries also exist in the fea-
ture representation. Here, we usually have a trade off between computational effi-
ciency and recognition performance. We consider features as locally unique parts
of the shape that are extraordinary in some respect. Features can be ,e.g., points,
lines, regions. A popular choice is to use feature points because they are conceptu-
ally easy to use in correspondence problems: We only need to set feature points in
correspondence. In Chapter 3, we present a new feature point detection technique
for point cloud data [Bokeloh et al., 2008]. The key idea of this method is to iden-
tify areas that are strongly constrained with respect to the auto alignment problem.
We perform this analysis on multiple scales and use local maxima as feature points.
We demonstrate the applicability of the method on several example applications in-
cluding symmetry detection [Berner et al., 2008] and isometric registration [Tevs
et al., 2009].

While points as feature are conceptually easy and perform well in global cor-
respondence problems, their potential is limited in case of partial symmetry de-
tection. The reason for this is rooted in the enormous loss of information during

1.3 Overview and Contributions 9

the feature detection stage. When a surface is reduced to a set of feature points
(intuitively, we can think of them as corners), we will most likely lose important
information ,e.g., surface parts between these points. Linear or planar structures
are completely lost in this representation. In case of noisy scanner data with oc-
clusions, we may lose further feature points that might be essential to detect the
underlying symmetry. A much better feature representation can be achieved by
using lines as features. In Chapter 4, we present a symmetry detection method
that uses feature lines to find and refine potential symmetry transformations and to
perform rapid geometric matching to score these transformations [Bokeloh et al.,
2009]. This technique works on huge datasets, detects a large number of symme-
tries, and is able to decompose the shape into building blocks.
Part II: In the second part, we utilize symmetry information (that we gain with the
methods described in the first part) to modify existing objects and synthesize new
objects. Symmetry information offers more than partial correspondences or the
knowledge that two things are similar. Symmetry also reveals context information:
Suppose we discover object A two times in a scene and in the vicinity of the first
instance we find an object B, however, not in the second instance. This means,
we have observed B as an optional part in the context of A. Intuitively, it might
be possible to copy object B to other places where we find object A. The key
insight of this thesis is that the boundary between a symmetric region and a non-
symmetric region can be used as a docking site where we can replace the existing
non-symmetric geometry with its counterpart. In Chapter 5, we propose a method
that systematically extracts these docking sites from a given shape and combines all
docking sites and their associated shape operations into a shape grammar [Bokeloh
et al., 2010]. Using this shape grammar, we can produce shape variations where
we can provide strong guarantees for each resulting shape.

Many man-made shapes have dominant regular structures that are crucial for
the overall appearance. Modifying these types of shapes, e.g., resizing, is either
a time consuming task that requires sophisticated artistic and technical skills or
results in unsatisfactory results (for example, with standard elastic deformation).
In Chapter 6, we propose a method that automatically detects regular patterns and
provides an interactive deformation technique that implicitly maintains regularities
in order to preserve the shapes’ appearance. In addition, we extend the concept
of docking sites in order to change the repetition count of regular patterns without
enforcing global cuts through the shape [Bokeloh et al., 2011].

In the following chapter, we give a short overview of related work and describe
a couple of basic techniques that we will often use in this thesis. Then, we discuss
the four main contributions:

• We introduce a generalized concept of geometric features that detects locally
uniquely identifiable keypoints as centroids of area with locally minimal slip-
page (Chapter 3).

• We present a novel symmetry detection method that decomposes a shape
into recurring parts and propose a technique for rapid geometric matching

10 Introduction

(Chapter 4). Our method is currently state-of-the-art for building block de-
composition of large-scale scanner data.

• We reveal a connection between partial symmetry and inverse procedural
modeling that allows to synthesize similar shapes with strong guarantees
(Chapter 5). In contrast to preexisting techniques, our method is able to
derive a set of explicit, procedural shape operations directly from the input
shape and combine this set of shape operations into a shape grammar without
prior knowledge about the shape or the procedural rules.

• We propose a new content-aware deformation technique that uses regular
patterns as underlying regularization principle and introduce the concept of
sliding dockers in order to change the shapes’ structure during deformation
(Chapter 6).

2 Background

Do you realize if it weren’t for Edison we’d be watching TV by
candlelight?

Al Boliska

In this chapter, we will give a brief overview of related methods and describe basic
techniques that we will use frequently within this thesis.

2.1 Related Work

2.1.1 Feature Detection

A feature is a part of some input data, e.g., corners or edges, that is locally unique in
the sense that it is uniquely identifiable within a local neighborhood. In computer
vision, feature detection has been investigated in the context of image matching
and object recognition [Moravec, 1981; Harris and Stephens, 1988; Lowe, 1999,
2004]. In geometry, feature detection has first been examined for rigid registration
of 3D shapes. Gelfand et al. [2005] base their technique on curvature on multiple
scales and filter descriptors by preferring features that are more unique on each of
the pieces to be registered. A drawback of their feature detection approach is that
keypoints might not be well constrained along curves of constant mean curvature,
so that random variations in feature positions might result. In addition, a local mea-
sure of curvature alone has only limited discriminative power. In contrast, Huber
and Hebert choose a dense sampling approach: They compute a surface descriptor
(spin-images) for every vertex on a uniformly sampled subset of the input meshes
and use a RanSaC technique to find corresponding vertices with similar descriptors
[Huber and Hebert, 2001]. The number of necessary samples can be reduced by
referring points with specific surface properties like high curvature [Yamany and
Farag, 2002] or bitangent points [Wyngaerd and Gool, 2002].

11

12 Background

The method proposed by Li and Guskov [2005] adapts the concept of SIFT-
Features [Lowe, 2004] to geometric data: They build a multi-scale representation
of the input data and extract local extrema in the difference levels as features points.
Huang et al. proposed a method for reassembling fractured objects using global ge-
ometric registration [Huang et al., 2006b]. They compute a set of surface signatures
for every data point and apply a flooding based clustering algorithm to extract re-
gions of similar signature. The centroids of the resulting surface patches are used
as features, and the main axis determine the rotational alignment. The technique
is performed on multiple scales to create a large number of potential features and
descriptors. For feature matching, a series of filtering heuristics is used to exclude
obvious mismatches, including ICP-based alignment as final step. Global verifica-
tion of the alignment is done with statistical forward search. The drawback of the
approach is that the region growing based feature extraction is likely to produce a
large number of both false positive and false negative matches, as the connectivity
of the surface patches can easily change, leading to non-matching features. In their
target application, this is not an issue, as only a small number of final matches are
necessary and the forward search based global verification is able to compensate
for this drawback easily.

Other types of features have been investigated for 3D shapes: Gumhold et al.
[2001] and Pauly et al. [2003] extract crease lines from point cloud data via PCA
analysis of local neighborhoods. Slippage analysis can be used to segment a shape
into regions with equivalent slippage directions [Gelfand and Guibas, 2004] and
thereby form region features. Similarly, Schnabel et al. [2007] extract shape prim-
itives from point cloud data using a RanSaC approach.

Recently proposed methods try to learn geometric features: Sunkel et al. [2011]
learn geometric properties and spatial configurations of a set of user-marked fea-
tures using a Markov chain model in order to detect semantically similar instances
with varying geometry. Kalogerakis et al. [2010] learn an objective function from a
collection of labeled examples and use this function for segmentation and labeling
of 3D meshes.
Geometry descriptors: Descriptors, also referred to as signatures, describe the
local geometric properties of a feature. They characterize a feature and are used
to find potentially corresponding features. Ideally, a descriptor is invariant under
rotation so that a global rotation applied to an object does not change the descriptor
of a feature. This invariance is important for global registration techniques where
no assumptions are made on position or orientation of objects. There are a large
number of techniques to describe geometry with a small digest of data. Many of
these matching techniques have been designed for efficient object retrieval from
large data bases. Thus, in order to perform a large number of comparisons effi-
ciently, these methods typically employ mappings of geometric objects to small
vectors of characteristic numbers: Kazhdan et al. [2003b] employ power spectra of
a spherical harmonics description of the geometry to compute a rotationally invari-
ant geometry descriptor. Novotni and Klein [2003] extend this approach to Zernike
polynomials to reduce the invariant space that maps to the same descriptor. Gatzke

2.1 Related Work 13

et al. [2005] consider maps of local curvature values. Another standard technique
are spin images [Johnson and Hebert, 1999; Huber and Hebert, 2001] that com-
pute an average trace of geometry intersecting a plane rotating around the surface
normal. A related approach based on spherical harmonics has been proposed by
Frome et al. [2004]. Mitra et al. [2006a] propose a matching technique based on
min-hashing that also allows for partial object matching.

In Chapter 3, we introduce a generalized concept of keypoint detection. Our
method considers features as centroids of surface area with minimal slippage. Fur-
ther, we describe a feature line extraction method for 3D shapes in Chapter 4.

2.1.2 Symmetry Analysis

Early attempts in symmetry detection focused on symmetries in small point sets
[Atallah, 1985; Wolter et al., 1985; Alt et al., 1988]. These methods were rather re-
stricted and not practical for imperfect symmetries in larger 3D data sets. A class of
approaches that enable wider applicability ,e.g., approximate symmetries, is known
as transformation voting. The basic idea is to create candidate transformations from
potentially corresponding sample points and insert these candidate transformations
into the transformation space. Dominant symmetries will most likely form a large
clusters in this space. Transformation voting techniques for symmetry detection in
geometry have been introduced by Mitra et al. [2006b], and Podolak et al. [2006],
as well as Loy and Eklundh [2006] for image features. While the two latter are
restricted to reflections, translational and rotational symmetries, respectively, the
technique of Mitra et al. considers the full range of similarity transformations. The
symmetry detection technique of Mitra et al. has subsequently been extended to
automatic object symmetrization [Mitra et al., 2007]. Pauly et al. [2008] proposed
an extension to find regular patterns: If the objects show regular patterns of sym-
metries, such as regularly spaced rows of windows in a building, one can explicitly
look for these patterns in transformation space to obtain much more stable results.
However, this approach can only identify such patterns; symmetric parts in isolated
instances or as members of different patterns are not identified as belonging to the
same class of objects.

Gal and Cohen-Or [2006] propose a variant of transformation voting that uses
geometric hashing [Lamdan and Wolfson, 1988] of salient features. The authors
give examples of detecting a small number of symmetric parts within an object.
Simari et al. [2006] detect planar reflective symmetries by computing an auto-
alignment of parts of a shape with itself using iteratively reweighted least-squares.
This yields a nested symmetry decomposition. Such approaches are limited to
cases where large and small scale symmetry patterns correlate. Martinet et al.
[2006] propose a technique that uses a transformation to generalized moment func-
tions in order to compute global symmetries of 3D shapes. Kazhdan et al. [2003a]
analyze objects for central symmetry and use this as a descriptor for shape retrieval.
Schnabel et al. [2008] use graphs of fitted geometry primitives to perform object
recognition. Lipman et al. [2010] introduce symmetry factored embedding as a

14 Background

new tool for shape analysis. A very interesting application of symmetry detection
is shape completion: Thrun and Wegbreit [2005] compute symmetries of partially
scanned objects to complement the partially shape. In a recent work, Zheng et al.
[2010] extended this idea to reconstruction of 3D urban scenes by exploiting regu-
lar patterns.

Recently, many works focus on detection of intrinsic symmetries. Different
techniques were proposed to find intrinsic reflective symmetries [Ovsjanikov et al.,
2008; Xu et al., 2009a; Raviv et al., 2007, 2009; Kim et al., 2010; Raviv et al.,
2010]. Mitra et al. [2010] proposed a method for intrinsic regularity detection:
They use multidimensional scaling to embed the shape in 2d domain where 2d
grids appear as Euclidian grids. Ben-Chen et al. [2010] investigated on detection of
intrinsic continuous symmetries also known as Killing vector fields (KVF), named
after Wilhelm Killing. They formulate KVFs as a variational problem and thereby
allow to find approximate KVFs. In a recent work, Berner et al. [2011] introduced
a new concept of subspace symmetries. They assume that symmetric elements can
be characterized by a low dimensional shape space and thus generalize the notion
of symmetry to general deformations.

We will present a new symmetry detection method based on feature lines in
Chapter 4 that exploits local coherence in symmetries. Our approach is not re-
stricted to hierarchical symmetries or regular patterns which is crucial for trans-
formation voting techniques as [Mitra et al., 2006b; Pauly et al., 2008] in order to
process large data sets.

2.1.3 Texture and Geometry Synthesis

Non-parametric texture synthesis deals with creation of textures from exemplar
images, for example photographs. This thesis, especially part II, is motivated by
non-parametric texture synthesis [Efros and Leung, 1999; Hertzmann et al., 2001;
Kwatra et al., 2003], which optimizes for similarity of local, overlapping neigh-
borhoods to corresponding regions in the exemplar image. Being formulated as an
optimization problem, this leads to a hard Markov random field (MRF) inference
problem. Texture synthesis has also been applied to 2D vector graphics [Barla
et al., 2006; Ijiri et al., 2008] and the notion of local r-similarity of neighborhoods
(see Chapter 5) has been generalized to 3D geometry by [Rustamov, 2008].

Texture synthesis can be applied to synthesize 3D geometry by discretizing a
base surface and synthesizing details on top of it [Lai et al., 2005; Nguyen et al.,
2005; Chen and Meng, 2009; Zhou et al., 2006; Zelinka and Garland, 2006]. This
requires that the coarse scale base geometry is given as user input. Alternatively,
one can discretize the ambient space itself, synthesizing occupancy in space. Tech-
niques include voxel models [Bhat et al., 2004] and implicit functions [Sharf et al.,
2004; Lagae et al., 2005]. However, it is difficult to find good solutions based on
heuristic MRF optimization; creating closed and well defined geometry is more
challenging than synthesizing plausible 2D images. None of the known methods
have so far demonstrated results where large scale models with complex structure,

2.1 Related Work 15

such as complete buildings, are synthesized from scratch. Merrell [2007] pro-
pose a related algorithm that expects building blocks aligned with a regular grid
as input. These are then placed automatically with consistency across grid faces,
again involving a discrete MRF labeling problem. The technique can handle arbi-
trary boundary conditions but, unlike our approach, building blocks are required
as input rather than output and the regular grid structures limits the design space
significantly. This has been addressed in [Merrell and Manocha, 2008], where cells
are formed by intersecting planes through faces of the exemplar model, implicitly
creating the grid structure. However, the approach is limited to very low complex-
ity input exemplars (examples in the paper have up to 39 input faces). Cabral et al.
[2009] examine a related idea: User specified building blocks and a connectivity
graph are the input and the system then optimizes vertex positions and textures to
form a closed model. It requires the building blocks and their interconnection rules
as input.

2.1.4 Shape Grammars and Inverse Procedural Modeling

Grammar-based modeling of geometry and texture is one of the most successful
procedural modeling paradigms. Applications include plant modeling [Prusinkiewicz
and Lindenmayer, 1990] and modeling of cities [Parish and Müller, 2001] and
buildings [Wonka et al., 2003; Müller et al., 2006]. Talton et al. [2011] present
an approach to control procedural modeling by performing maximum a posteriori
estimation in order to generate objects that meet complex boundary constraints.

Inverse procedural modeling is referring to the reverse process, where rules
(such as shape grammars) have to be derived from example geometry. This goes
beyond geometry synthesis in the sense that it not just creates similar models from
exemplars but also describes the structure of the space of such models. An early
approach is the work of Hart and Flynn [1997] who derive fractal branching rules
for L-systems from 2D example graphics by geometric hashing, however, being
limited to simple L-systems with a few rules only. As described above, Pauly
et al. [2008] proposed a method for detection of regular patterns from example
geometry. In [Mitra and Pauly, 2008], this technique is used for creating variants
from example models by changing the replication frequency or editing symmet-
ric pieces simultaneously. [Yeh and Mĕch, 2009] analyze 2D vector graphics to
detect complex 1D patterns along curves with secondary structure. Very recently,
[S̆t’ava et al., 2010] extend this idea to detect hierarchies of patterns, yielding an L-
system describing the example geometry, similar to the context free representation
that will present in Chapter 5. Our scenario is more complicated as it deals with 3D
surfaces that need to be assembled in a consistent way, without holes in the surface.
In contrast, 2D vector graphics can just be composited arbitrarily. A lot of work
has been presented that uses procedural rules to fit geometry to image input rather
than geometry [Aliaga et al., 2007; Müller et al., 2007; Neubert et al., 2007; Tan
et al., 2007; Xiao et al., 2009], which is a very hard inverse problem. These tech-
niques use predefined classes of rules (such as hierarchical regular subdivisions of

16 Background

facades [Müller et al., 2007]) or a significant amount of user input to facilitate im-
age interpretation but do not attempt to create shape grammars automatically from
scratch.

A number of approaches have been developed for recombining shapes out of
parts. A number of approaches that utilize manual part composition have been
described [Funkhouser et al., 2004; Pauly et al., 2005; Kraevoy et al., 2007], as
well as automatic methods for detecting structural regularity [Pauly et al., 2008].
The recent method of Wang et al. [Wang et al., 2011] infers a scene graph structure
for an unannotated 3D mesh to allow for both continuous and discrete parameter
variations.

Merrell et al. [2010] propose a procedural technique to generate building lay-
outs using a Bayesian network trained on examples. Recent methods try to suggest
arrangements or components to the user [Chaudhuri and Koltun, 2010; Merrell
et al., 2011; Chaudhuri et al., 2011; Fisher et al., 2011].

In Chapter 5, we present a novel approach to inverse procedural modeling of
3D shapes. Given an input exemplar, we derive explicit shape modification rules
that guarantee to produce shapes similar to the exemplar. In contrast to previous
exemplar-based methods, our approach is fully automatic and not restricted to a
specific structure of the input.

2.1.5 Shape Deformation

Free-form deformation has a long tradition in computer graphics. Early techniques
use smooth basis functions to interpolate between control points [Sederberg and
Parry, 1986; Coquillart, 1990]. Recent work constructs basis functions specific to
a set of control points or a control cage [Ju et al., 2005; Joshi et al., 2007; Lipman
et al., 2008; Ben-Chen et al., 2009]. Many of the techniques are based on vari-
ational calculus: Local regularizers are traded off against the user’s constraints.
The regularizers aim to maintain local similarity to the input. Elastic deforma-
tion models [Terzopoulos et al., 1987], which minimize the non-rigidity of the
deformation, are particularly popular [Botsch and Sorkine, 2008]. Variants of reg-
ularizers include volume preservation [von Funck et al., 2006], plastic deformation
[Mezger et al., 2008], similarity transforms [Liu et al., 2008], and thin-plate splines
[Allen et al., 2003]. We use elastic deformation as a “base regularizer” to diffuse
stretch and to preserve geometry for which no structural information could be in-
ferred. Our implementation adopts the technique of Sorkine and Alexa [Sorkine
and Alexa, 2007] that preserves co-rotated distance vectors in a least-squares sense.
We extend this to a volumetric subspace formulation [Zhou et al., 2005; Huang
et al., 2006a; Sumner et al., 2007; Adams et al., 2008]. This allows interactive han-
dling of large meshes and provides robustness against unfavorable mesh topology
so that we can handle arbitrary “triangle soup.”

Local regularizers do not recognize higher-level structural properties in the
shape. Consequently, these techniques still expose a large number of degrees of
freedom to the user, who has to manually ensure that important structural proper-

2.2 Slippage Analysis 17

ties are maintained. This is acceptable for many organic shapes such as creatures,
but highly structured objects with regularities at multiple levels of detail, such as
many man-made objects, are difficult to handle. Kraevoy et al. [Kraevoy et al.,
2008] use an elastic-type model that adapts to the vulnerability of the local con-
tent. In addition, three global stretch axes are fixed, which avoids bending artifacts
but also limits the applicability of the technique to axis-aligned stretching.

Xu et al. [Xu et al., 2009b] introduce slippage analysis for free-form shape
deformation, using it to construct a joint-aware deformation model. We also use
slippage analysis, but employ it to discover continuous symmetries that are used to
maintain the pattern structure of the input.

The influential iWires system [Gal et al., 2009] maintains global structural
properties of the shape by building constraints that preserve similarity of sym-
metric parts [Mitra et al., 2006b; Podolak et al., 2006; Simari et al., 2006], as well
as parallelity and orthogonality of salient feature lines. Huang et al. [Huang et al.,
2009] use similar ideas for 2D vector graphics, and Zheng et al. [Zheng et al., 2011]
propagate editing operations based on similarity of components. Using such global
knowledge greatly facilitates shape editing, but a key limitation remains: The de-
formation function is still a continuous, bijective map between input and output.
This does not allow the insertion or removal of elements, which can be desirable in
response to significant stretch.

In Chapter 6, we present a pattern-aware deformation approach that overcomes
many limitations of previous structure-aware methods. Our method is based on
regular patterns and tries to preserve their structure in the deformation process
,i.e., we are not restricted to three fixed scale axes such as in [Kraevoy et al., 2008].
Further, we use discrete regular patterns to relax stretch by inserting and deleting
elements which has not been shown before.

2.2 Slippage Analysis

Slippage analysis poses the problem whether a rigid matching of a piece of surface
with itself is well constrained. Conceptually, a point-to-plane ICP error function,
dependent on 3 rotation and 3 translation variables, is setup for a configuration
where the surface is perfectly aligned with itself. Then, the Hessian matrix of this
objective function reveals directions in which the problem is not well constraint:
The eigenvectors of the zero eigenvalues of this matrix correspond to transforma-
tions that map the surface onto itself in an infinitesimally sense (instantaneous mo-
tion). For example, for a cylinder mapping to itself, there are one rotational and one
translational degree of freedom, resulting in two eigenvectors with zero eigenvalue
(see Figure 2.1). The cylinder can be rotated around its rotational symmetry axis
and shifted along this axis without changing its shape locally. In general, non-zero
eigenvalues are a necessary condition for the auto-alignment problem being well
defined. For non-perfect data sets, such as scanned point clouds, we cannot expect
zero eigenvalues but small eigenvalues indicate an underconstraint auto-alignment.

18 Background

(a) linear extrusion (1DOF) (b) lathe object (1DOF) (c) helical motion (1DOF)

(d) cylinder (2DOF) (e) planes (3DOF) (f) spheres (3DOF)

Figure 2.1: Slippable surfaces with respect to rigid motions.

As shown in [Gelfand and Guibas, 2004], the hessian matrix of the alignment prob-
lem is given by:

C =
n∑
i=1

(
cic
>
i cin

>
i

nic
>
i nin

>
i

)
(2.1)

where ci = (pi × ni) and C ∈ R6 × R6. pi refers to the i-th surface point of a
surface discretization and ni refers to its normal. Please note that as slippage is
derived from a point-to-plane matching, normal information is necessary to setup
the Hessian matrix.

2.3 RanSaC

RANdom SAmple Consensus (short RanSaC) is an excellent tool for model fit-
ting to noisy data with a large number of outliers and we will use and adapt this
paradigm to symmetry detection in the following chapters. Here, we will describe
the basic principle of RanSaC with the example of line fitting to a set of points
as presented in the original paper [Fischler and Bolles, 1981]. RanSaC generates
many hypotheses (here: lines) by randomly sampling the data, assigns a score to
each hypothesis and keeps the hypothesis with the highest score. A key concept in
RanSaC is how hypotheses are created: In the line fitting example, a line can be
parameterized by two points. Therefore, a candidate line can be easily generated
by selecting two random data points. If a line is present in the data and supported
by a sufficiently large number of points, the probability is high that a candidate line
is generated that is close to the optimal line. Scoring is usually done by counting
all points within a certain distance to the model (outlier distance).

Part I
Feature-based Symmetry Analysis

Symmetry analysis and other correspondence problems in geometry suffer from a
relatively large search space. For rigid symmetries this means we have a 6D search
space which already confronts us with a computational problem considering that
verifying a single transformation already has linear worst case complexity. Besides
the computational cost of a brute force search it is also not necessary to investigate
the full search space; in many cases only a fraction of the space holds meaningful
rigid symmetries.

Feature-based methods present a simple but elegant way to reduce the search
space while maintaining important structural information. Ideally, all symmetries
can be observed in the feature representation. The key idea is to represent a shape as
a compact set of features and guess potential symmetry transformations by setting
features into correspondence. This way the search space is reduced to transforma-
tions that already have some initial proof which justifies a precise investigation.
Further, the feature representation can be used for quick verification.

In Chapter 3, we will present a novel feature detection technique for point
features and show applications to registration problems and symmetry detection.
Furthermore, we will introduce a new symmetry technique for rigid symmetries
based on line features in Chapter 4.

3 Feature Points for
Correspondence Analysis

You know those balls that they put on car antennas so you can find
them in the parking lot? Those should be on every car!

Homer J. Simpson

Feature detection techniques aim at finding locally extraordinary surface elements
that are invariant to global transformations and noise in the surface. This invari-
ance is important for global registration problems where relative transformations
between shapes are unknown. If we are able to identify the same features on differ-
ent shapes, we can derive a transformation between both shapes. A feature point,
often referred to as keypoint, is usually defined by its local neighborhood; typ-
ically an Euclidian or an instrinic sphere. The task of a keypoint detector is to
find spheres that encapsulate locally unique geometry; here, it is most important
that this "uniqueness" is robust against global transformations and noise. Since
this is not an easy task in general, detection methods usually derive noise-resistant,
rotationally-invariant properties of the local geometry instead of using the geom-
etry directly. Additionally, a keypoint detector should also reduce the amount of
information in a shape while still returning a characteristic subset.

An important problem for feature-based techniques is the ability to reliably de-
tect a sufficient number of keypoints: For traditional applications such as perform-
ing rigid registration of piecewise scanned point clouds [Huang et al., 2006b; Mitra
et al., 2006a; Gelfand et al., 2005; Li and Guskov, 2005; Li et al., 2006; Huber and
Hebert, 2001], a small number of correctly established correspondences is suffi-
cient, as a rigid motion is uniquely determined by specifying point-to-point corre-
spondences between two triples of non-collinear points. However, some applica-
tion areas of geometry processing that recently gained importance require many
more correspondences: For example, deformable alignment of surfaces [Wand
et al., 2007; Brown and Rusinkiewicz, 2007] has many more degrees of freedom so
that a larger number of correspondences, covering all parts of the object, is neces-
sary to make the alignment problem globally well-defined. In our experience, this

23

24 Feature Points for Correspondence Analysis

can be a serious issue for traditional keypoint detection techniques. In the context
of partial symmetry detection, we require a set of keypoints for each recurring part
located at the same positions in each instance. Again, for such an application, a
much larger number of reliable keypoints is necessary. Most established feature de-
tection techniques detect keypoints at points of maximum curvature [Lowe, 2004;
Gelfand et al., 2005; Li and Guskov, 2005; Yamany and Farag, 2002; Wyngaerd
and Gool, 2002]. For the aforementioned application areas, this notion is often not
general enough so that an insufficient number of keypoints is extracted for many
input models.

We want to to generalize the notion of keypoints to include as many locally
uniquely localizable regions as possible without compromising stability and reli-
ability of detection. The basic idea of our technique is that a feature must have
the property that within a local neighborhood the position of the keypoint must
be uniquely defined so that the notion of feature correspondences is locally well
defined. In addition, for many applications it is also useful to have a well-defined
rotational alignment in order to establish correspondences with corresponding co-
ordinate frames rather than just point-to-point correspondences. This means that
the rotational degrees of freedom should also be well defined for the feature within
its local neighborhood.

In order to determine such points we examine the local geometry at each sur-
face point contained within a ball of fixed radius. The radius determines the scale
at which the feature detection takes place. In order to detect regions with well
defined translation and rotation, we employ the slippage analysis of Gelfand and
Guibas [2004] to compute a measure of how well constraint an auto-alignment
problem of the feature regions is. Keypoints are then defined as local maxima of
this constraintness measure. We extract these maxima using a meanshift cluster-
ing algorithm and verify the stability by filtering out points where the maxima are
not pronounced enough to allow a stable detection. This criterion for determining
keypoints is more general than just looking for local maxima in curvature of the
geometry itself; a piece of geometry containing a complex geometric pattern might
be strongly constrained in its auto-alignment although it might appear flat in aver-
age, not providing a local extremum in curvature. As the local well-constraintness
of the alignment in translation (and, depending on the application, also rotation) is
a necessary criterion for a geometrically defined feature, our approach also defines
a natural and very general class of features. In order to eliminate the free radius pa-
rameter of the detection radius, we generalize our technique to multi-scale feature
detection and detect maxima in scale space, adopting the conceptual framework of
SIFT keypoint detection [Lowe, 2004].

The novel notion of general keypoint detection based on a slippage analysis is
the key idea and main contribution of this chapter. We complement our technique
by adding a similarly general descriptor technique: In order to compute descriptors
for the obtained features, we employ a two stage filtering approach: First, we com-
pute local curvature histograms of the feature area [Gatzke et al., 2005] to obtain a
filtering criterion to rapidly reject unlikely matches. Afterwards, for the smaller set

3.1 Slippage Keypoints 25

Figure 3.1: Overview of slippage feature extraction: First, we perform multi-scale
slippage analysis on the input model. Then, we extract local maxima of slippage
by mean-shift-clustering.

of remaining matches, we employ a local iterated closest points (ICP) alignment
to compute a more precise matching score [Huang et al., 2006b]. In order to make
this alignment computation fast and reliable, we employ a cross-correlation tech-
nique based on the fast Fourier transform (FFT) in order to compute a good initial
rotational alignment.

We demonstrate the benefits of our technique by examining example appli-
cations in both rigid and non-rigid alignment, and also examine the potential for
symmetry detection based on generalized keypoints. In addition, we provide a
thorough empirical analysis of stability and matching precision of the proposed
technique in comparison to related work.

3.1 Slippage Keypoints

In order to apply slippage analysis for our purpose, we first discretize the surface
into a cloud of points. In addition, we also have to compute surface normals. If our
input is given as a triangle mesh, we start by computing a dense point cloud by a
uniform random sampling of the surface. Next, for both triangle and point cloud
input, we continue with a Poisson-disc resampling step that results in a uniform,
well distributed sampling of the surface [Wand and Straßer, 2002]. The position of
the resampled points is projected back on a quadratic moving least squares surface
fit of the original data points to optimize the representation accuracy. After this
computation, a uniform surface sampling is obtained with known sampling spac-
ing. In case of triangle meshes, we retain the original triangle normals as initial
normals. For point clouds, we compute normal information by a PCA analysis
[Hoppe et al., 1992]. We weight the contributions of neighboring points with a
Gaussian windowing function with a standard deviation of 1.5 times the median
point spacing.

Subsequently, we go through each point of our surface discretization and com-
pute the local slippage analysis of a spherical neighborhood of points of a fixed ra-
dius 2σ. For correctly band limiting the computation, we add a Gaussian weighting
window with standard deviation σ to each term of each surface point in Equation
(2.1), i.e. the neighborhood radius is chosen to truncate this Gaussian window as
soon as the weighting function becomes negligibly small. Before slippage compu-

26 Feature Points for Correspondence Analysis

b) d)

a) c)

Figure 3.2: The normal smoothing problem (the small graphs show the slippage
values schematically): Fine scale geometry variation can lead to low slippage val-
ues due to varying normals (a); at coarser scales, this is undesirable. Smoothing
the normals resolves this issue (c). For large scale features (b), the normal smooth-
ing will still preserve the detected feature (d).

tation, we normalize the extents of the region considered to a unit bounding box
centered at the origin. This makes sure that rotational and translational degrees of
freedom are always measured with the same relative weighting. From the eigen-
value decomposition, we consider only the smallest eigenvalue λ6 as a measure for
constraintness. In order to make the measure invariant under the amount of local
area gathered, we additionally divide by the largest eigenvalue λ1 which is guar-
anteed to be non-zero (any non-empty surface is at least translationally constraint
in one normal direction). A low value of this ratio indicates slippable motion in at
least one direction; a high value indicates a more constraint rigid motion. Please
note that using the smallest eigenvalue of the Hessian (2.1) means that we will
exclude keypoints that are not rotationally well constrained, such as rotationally
symmetric bumps. It is straightforward to setup a similar slippage analysis prob-
lem that ignores rotational degrees of freedom altogether in order to extract trans-
lationally invariant keypoints only. For clarity of exposition, we restrict ourselves
to the case of rotationally well-constraint keypoints in this work. For the rest of
our pipeline, we stick to this scenario and exclude features that are rotationally am-
biguous. Filtering out points that are slippable under infinitesimal rotations is thus
the first step, as this violates a necessary condition for unique matching.

3.1.1 Multi-scale Analysis

Next, we consider the problem of estimating slippage values for multiple scales.
At this point, we are facing the problem of coupling the normal variation to the
geometric level of detail: In a multi-scale analysis, our objective is to examine
geometric features in multiple frequency bands. For a coarse scale analysis, small
scale features should not be taken into account. However, the slippage analysis

3.1 Slippage Keypoints 27

is formulated as constraining rigid motion by aligning planes defined by points
and normals. Therefore, small scale variations in the normals can make the auto-
alignment strongly constrained although this is not warranted at the frequency level
considered. The problem is illustrated in Figure 3.2: The plane in Figure (a) is
non-slippable due to normal variations at a much smaller scale. In order to couple
the normals to the scale of considerations, we have to band-limit the frequency of
normal variation accordingly (Figure 3.2c). We do this by filtering the normals
with a Gaussian low-pass filter of support proportional to the size of the region
considered. Small scale variations will be removed, while large scale geometric
features will still be retained (3.2 b,d). In experiments, it turns out that the best
results are obtained from a rather aggressive filtering strategy, where only relatively
low frequency normal variations are retained at each scale (we use σsmooth =
1.25σ). Please note that we do not need to filter the geometry in a similar way, as
point positions with small scale noise will still produce realisticly slippable results
as long as the normals are smoothed correctly. Another way to formulate this
fact is that normals and geometric positions are measured in different units, where
normals are not affected by scaling while positions are.

Repeated subsampling, normal filtering and slippage evaluation will yield a se-
quence of scales with support σi = σ0F

i (F > 1). In the following, we denote θi,s
the slippage indicator resulting from the local slippage analysis computed at point
xi with support σi. In the scale-space domain we now search for local maxima. A
natural technique for extracting this information in a robust way in the presence of
noise, is mean shift clustering [Comaniciu and Meer, 2002]. This technique first
convolves the data points with a low-pass filter kernel and then performs gradient
ascend to find maxima. All points ascending to the same maximum are comprised
in the same cluster, and the location of the maximum becomes our representative
key point. In our case, we employ a standard Gaussian windowing function as
mean shift kernel and set the support radius to a fixed value of 2 times the me-
dian sampling spacing. In scale direction, we use a Gaussian window of standard
deviation 0.5, where 1.0 corresponds to one scale level F . As we are only inter-
ested in the location of the maxima, we can optimize the computation: We first
compute candidate points at discrete positions that are local maxima on each scale
after filtering in the spatial domain only. Afterwards, we start a gradient ascend
in scale-space to find final maxima at continuous spatial position and continuous
scale values. Doublets and diverging points are removed at that stage. In a final
step, we evaluate how well determined the extracted maxima are. We estimate the
second order derivatives by finite differencing and delete points with small curva-
ture (below a threshold Hmin) in the slippage value, as these points will not be
detected reliably under the influence of noise and small scale random variations of
geometry.

28 Feature Points for Correspondence Analysis

3.2 Descriptors and Feature Matching

Having determined a set of keypoints, we need to compare the local geometric
neighborhood in order to determine candidate correspondences. In our case, the
local neighborhood always corresponds to the geometry contained within a fixed
distance of 10-15 × the median point distance. In order to match the generality
of the keypoint detector, our feature comparison function is based on a direct geo-
metric comparison. We proceed in three steps: Signature based pruning, rotational
alignment, and geometric alignment.

3.2.1 Signature-based Pruning

As a quick test to reduce the number of matching candidates, and thus reduce the
number of the later, more expensive alignment steps, we compute local feature
signatures. The main idea is to compute histograms of surface attributes over con-
centric rings around the keypoint. By construction, such a signature is rotationally
invariant. As attribute value, we will use mean curvature; it is straightforward to
generalize this technique in order to use additional attributes such as surface color,
if available.

Let us assume, that we have an attribute ai defined for every point xi of the data
set that is invariant under rotation and translation, such as mean curvature. Then,
a pair of corresponding features should have roughly the same distributions of this
attribute in their environments. Given a feature point f , we denote a ring histogram
Hr as a histogram of the attributes ai weighted with a spatial function ωr:

Hr(f) = {Hrb(f)|b ∈ {1, . . . , Nb}} (3.1)

Hrb(f) =
∑
i∈I

Bb(ai)ωr(‖xi − f‖)

A ring histogram contains Nb bins. Bb is a function which returns 1, if the given
attribute ai falls into bin b (0 otherwise). We can assume, that the Euclidean dis-
tance between f and xi is roughly equal for corresponding features. We take this
into account by computing multiple histograms with different spatial support:

ωr(x) = max(0, λh |r − x|) (3.2)

For stability reasons, we smooth the histograms with a triangle filter. The signa-
tures are invariant under rigid transformations, easy to compute and robust to spa-
tial noise. Here, we use the mean curvature as attribute: For every point in the data
set, we precompute an approximation of the curvature by fitting a quadratic patch
onto the neighboring data points. We use the computed normal to define a local
tangent coordinate system and compute a weighted least-squares fit of a bivari-
ate quadratic polynomial. From the resulting coefficients, we compute the mean
curvature analytically. In order to compare two signatures, we just compare the
Euclidian distance of the scalar vectors formed by the corresponding histograms

3.2 Descriptors and Feature Matching 29

and reject the match if a certain threshold is exceeded. Implicitly, this criterion
will put larger emphasize on the outer rings as the histogram entries will consist
of larger numbers due to the larger number of neighboring points counted. This is
desirable, because more area is covered by these rings.

3.2.2 Local Feature Alignment

Having rejected most incompatible correspondences by comparing the signature
vectors we can still expect to retain a small number of false positive matches, as
the histogram criterion is not injective. Therefore we proceed by a geometric reg-
istration of the features and compare the residual of the match.
Rotational alignment: The first problem we are facing is a correct rotational align-
ment of the features. So far, only the translation is known due to the keypoints,
which is not sufficient to guarantee the convergence of the later ICP alignment
step. Huang et al. address this problem by computing a principal component anal-
ysis from a feature cluster and used the resulting eigenvectors for alignment [Huang
et al., 2006b]. Another approach is to use the principal frame defined be the normal
and the directions of maximal and minimal curvature [Li et al., 2006; Mitra et al.,
2006b], and drop features with ambiguous principal frames. Both techniques have
the drawback that they might return no well-defined result in rotationally symmet-
ric situations, even though the auto-alignment problem is still well defined. In order
to improve upon this, we employ a spectral cross-correlation technique: We assign
a orthogonal local frame Fi = (ui, vi, ni) to a feature fi, where ni is the feature
normal and ui, vi are arbitrary orthogonal tangents. Then we transform the local
environment into this frame and consider the surface as 2D height field. When two
features match then there exists at least one rotation angle αt that maximizes the
scalar product

arg max
αt

〈H1, Rαt(H2)〉 (3.3)

where H1 and H2 are height fields and Rαt(H) is a transformation which rotates
the height field H by α around the normal. Since we have only a sparse set of
surface points, we need to produce a dense representation for comparison. For this
purpose, we use the splat-pull-push method proposed by [Gortler et al., 1996] to
create a regularly sampled array of height values. After resampling, we perform
a polar coordinate transformation of the values, i.e. we resample the values into
an additional array that is indexed by angle and distance to the origin. For each
ring of constant distance, the cross correlation function defined above corresponds
over the angle of rotation to the 1D convolution of the two signal vectors. As
we are looking for the maximum of this value over all rings, we sum up the 1D
convolution functions. Each such convolution can be computed efficiently in the
Fourier domain [Castro and Morandi, 1987]: For each feature, we precompute
a fast Fourier transform of its height field values of constant distance, obtained
from the polar coordinates transform. Then, a point-wise multiplication of the

30 Feature Points for Correspondence Analysis

Figure 3.3: Approximate alignment of two features from different views of the
buddha data set: We transform the parametric images (height fields) of the feature
environments into the polar domain, use the phase correlation technique to find a
good initial transformation (red coordinate frame) and perform local ICP to refine
the transformation (yellow).

Fourier coefficients yields the convolution. Each rotational alignment can now be
performed inO(n) time, where n is the number of entries of the transformed height
field. Each feature needs O(nlogn) precomputation. This is much more efficient
than performing an O(n2) brute force test for each of the potentially quadratic
number of candidate feature matches. For subpixel accuracy, we compute a local
quadratic fit and refine the peak of the rotational correlation function. Having found
one or more peaks, we compute the transformation between the two features with
respect to the estimated angle. For most comparison purpose it is sufficient to
take the biggest peak only. Some features however have multiple peaks due to
similar structures. We reject all peaks that are less than 0.8 times the maximum
peak. In case we still find multiple rotational matching candidates, we dismiss the
keypoint altogether, as it can be considered to be not rotationally well constrained.
Alternatively, it is also possible to keep and test multiple alignments, if rotationally
uniqueness is not required for the target application.

Geometric alignment (ICP): With the estimated approximate transformations, we
perform local point-to-plane ICP alignment [Chen and Medioni, 1992] and take the
minimum alignment residual (average of the point to plane distances) as feature
distance. If the ICP alignment does not converge, we reject the correspondence
pair. Figure 3.3 shows an approximate alignment result with two corresponding
features on the buddha data set.

3.3 Applications

In order to evaluate the practical performance of the proposed feature detection
scheme, we have implemented three prototypical example applications: Global
rigid registration, global deformable registration, and a simple feature based sym-
metry browser.

3.3 Applications 31

Figure 3.4: Results of the registration technique for the case of global rigid align-
ment. Each individual view has a different color. The results where obtained from
corresponding slippage features only without performing a final ICP step.

3.3.1 Global Rigid Registration

For global rigid registration, we first compute keypoints and matching features
as described above. After that, we use a global validation algorithm to extract a
consistent set. We employ the spectral graph matching technique of Leordeanu
and Hebert [Leordeanu and Hebert, 2005]. The algorithm considers pairs of corre-
spondences and assigns a plausibility score to these pairs based on the difference in
Euclidian distance on source and target shape. This yields a compatibility matrix.
The diagonal elements of this matrix refer to compatibility of a correspondence
with itself; we insert normalized residuals from the ICP matching stage in order to
evaluate the plausibility of the correspondence itself. Normalization and mapping
of distance discrepancies are handled exactly as described in the original paper
[Leordeanu and Hebert, 2005]. Next, the eigenvector with the largest eigenvalue
is computed using a power iteration. Large entries in this vector represents cor-
respondences that are compatible to a large set of other correspondences, while
outlier correspondences receive low scores. A final quantization step (again fol-
lowing closely the original paper), sets the eigenvector entries to zero and one,
deleting incompatible matches for which the Euclidian distance differs by more
than a fixed threshold. Lastly, we compute a global rigid alignment from the vali-
dated correspondences using standard SVD-based matrix decomposition. We show
the alignment results without a final ICP alignment in order accurately depict the
obtained registration accuracy from feature matching only.

3.3.2 Deformable Registration

Our deformable matching application uses exactly the same algorithm as the rigid
case, just substituting Euclidian distances by geodesic distances along the surface,
as we expect the deformation to be at least approximately isometric [Anguelov
et al., 2004]. Geodesic distances are computed in two steps: First, we form a

32 Feature Points for Correspondence Analysis

Data points scales Smoothing Slippage Meanshift Total
human 89147 10 20 80 31 131
bunny 40256 10 10 30 9 49
buddha 85000 6 10 26 18 54
thai-elephants 592084 4 40 80 127 247

Table 3.1: Timings for feature detection on a representative scan of several data
sets.

graph that connects each surface point to its 20 nearest neighbors. Second, we
run a standard Dijkstra algorithm to compute the distance from each keypoint to
all other surface points, which yields approximate geodesic distances between all
keypoints.

3.3.3 Detection of Symmetric Features

To illustrate the distinctiveness of feature matches, we have implemented a simple
symmetry browser: The user may select on feature on the object and the applica-
tion returns all features that have been found on the same object with a matching
local neighborhood. Due to the rotational alignment, that we obtain by local ICP as
described above, we also have a rigid transformation associated to each matching
feature pair. This is not a complete symmetry detection method but more a perfor-
mance test with respect to symmetry detection. In Section 3.5.1 we will describe a
more sophisticated symmetry technique based on slippage features.

3.4 Results

3.4.1 Feature Stability

In real world scenarios we have to deal with noise in the data. We investigate
this in the following test. Comparable to [Li and Guskov, 2005], we add uniform
noise to the point positions in the normal direction with amplitude 0.5% of the
maximum side length of the bounding box and perturb the normals between−0.05
and 0.05. We compare the features found in the noisy data set with the original
ones by counting the number of corresponding features. Two features correspond,
when their Euclidian distance is less than σ/2 and their scale differ less than 1.

Figure 3.8 shows the result of this comparison for the well known Stanford
bunny and happy Buddha datasets. On the coarser scales one can see that most
features can establish a correct correspondence. The peak in the last scale level
can be explained by the multi-scale mean shift procedure: All features detected
in the coarsest scale shift in the lower ones because the density still increases. If
we would compute the a further scale level, these features would appear on their
proper scale, but the truncation of the scale level makes all larger scale features
occur at the final scale.

3.4 Results 33

Figure 3.5: Result of the registration technique with deformable surfaces. In order
to protect the identities of the scanned people, we pixelized the face regions.

34 Feature Points for Correspondence Analysis

a) DoG features b) Slippage features

c) DoG features d) Slippage features

Figure 3.6: Comparison between SIFT-like geometric features (DoG) (a,c) and
slippage features (b,d).

3.4 Results 35

Figure 3.7: Comparision between SIFT-like geometric features (top) and slippage
features (bottom) on a test example. Original example data (left), two noisy copies
with noise (middle,right).

0 1 2 3 4 5 6 7 8
0

200

400

600

800

1000

level

#f
ea
tu
re
s

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

level

#f
ea
tu
re
s

a) Buddha b) Bunny

Figure 3.8: Feature stability for the datasets happy buddha (a) and bunny (b). All
features (blue), features with correct correspondences (red).

36 Feature Points for Correspondence Analysis

Figure 3.9: Symmetry browser example: Features which are symmetric to a man-
ually selected feature are shown in the same color (pale brown is unassigned).

As we use the same technique for the stability analysis, our results are directly
comparable to the curves in [Li and Guskov, 2005]. We obtain a similar stability
of our generalized features, which shows that the generalization does not harm the
stability of the results.

We also compare the feature matching results to those form [Li and Guskov,
2005]. For this, we have reimplemented the technique closely following the de-
scription in the paper. Figure 3.7 shows the results of our technique and the SIFT-
like approach. Notice how the slippage features appear robustly at the ends of the
notch while the other approach is unable to establish stable features, especially
under noise (we used a simple thresholding to remove noisy features on both tech-
niques, with thresholds decreasing from left to right). This behavior is expected,
as a maximum curvature criterion of the SIFT-like features is not well suited for
lines of constant curvature. This effect can frequently be observed in a real data
example, such as the well-known Thai Statue data set depicted in Figure 3.6 c),d).
Please note that a more stable feature detection is not restricted to the marks on
the elephants trunk but we also obtain more and more reliable matches at the orna-
mental structures. This improved performance is critical for deformable matching
(Figure 3.6 a),b)): Using a threshold that yields stable and reliable keypoints, the
SIFT-like features are not able to detect keypoints on all extremities of the model.
If we decrease the threshold such that correspondences are detected everywhere,
the positions of the keypoints become more random and unstable so that identifying
corresponding points becomes much more complicated.

3.5 Further Applications 37

3.4.2 Global Registration

We tested our registration pipeline for rigid alignment on the datasets bunny and
happy buddha. The most time consuming step is the computation of the slippage
features. Timings can be seen in table 3.1 for a single view. For rigid registration
we do not need to perform the full feature matching pipeline: We have skipped
the ICP-based local alignment and used only the histogram based signatures to
establish a set of initial correspondences. False positive matches are handled by
the global validation algorithm. The results are shown in Figure 3.4. Please note
that we obtain fairly accurate global registration results without an ICP alignment
of the parts; this shows that keypoints are retrieved accurately at corresponding
positions.

3.4.3 Deformable Registration

We applied our technique to a set of scanned humans. Each individual was scanned
in several poses. We established a set of correspondences between two randomly
selected poses. The results are shown in Figure 3.5. Unfortunately, the usage
agreement of the data set requires not to show faces of the scanned individuals,
so that we have to blur out the corresponding parts of the images. Nevertheless,
we obtain a similarly consistent registration in the facial area. Notice that every
extremity receives at least one correspondence, which is difficult to obtain with
feature detectors that look for maximums in surface curvature. These global cor-
respondences could be used as guidance for local, dense deformable registration
algorithms such as [Wand et al., 2007; Brown and Rusinkiewicz, 2007].

3.4.4 Computational Costs

The runtime of our keypoint detection technique is comparable to that of the SIFT-
like features in [Li and Guskov, 2005], depending on the number of scales and
points. Figure 3.1 shows the timings for the individual stages of the algorithm.

3.4.5 Detection of Symmetric Features

We tested our simple symmetry browser scheme with the elefants of the thai statue
data set. We selected a few features and detected successfully several symmetric
parts. Figure 3.9 shows the results. Notice that even in complicated parts like the
toes and the beak symmetries could be found.

3.5 Further Applications

In this section, we describe two matching techniques based on slippage features
in order to demonstrate the applicability of slippage features: A symmetry detec-
tion method [Berner et al., 2008] and isometric registration technique [Tevs et al.,

38 Feature Points for Correspondence Analysis

2009]. The author of this thesis was only partially involved with the implementa-
tions and contributed some conceptual ideas to the projects. Therefore, we only
give a small overview of the methods and show their results without going into
detail.

3.5.1 Graph-based Symmetry Detection

When a shape contains rigid symmetries, we assume that these symmetries are
also present in the slippage features. Ideally, a symmetric part will create identical
keypoints and descriptors across multiple instances. Based on this assumption, we
can formulate a symmetry detection algorithm using the feature representation: We
build a graph of features and use graph matching to find symmetric subgraphs.

We start by computing a set of slippage features as described above. Then,
set up a graph by connecting every feature with its closest k neighbors (typically
k = 20). With this graph as input, we start a RanSaC-based graph matching algo-
rithm: First, we randomly select a graph edge and find all potentially corresponding
edges with similar edge length and feature descriptors. Then, we compute an ini-
tial alignment between the selected edge and all corresponding edges (using the
reference frames defined by the first feature point of the edge, its normal, and the
edge direction) and refine this transformation using ICP in a local neighborhood
around the feature points. If the ICP algorithm does not converge or produces a
high residual, we consider this pair of edges as not symmetric and reject the sec-
ond edge. After this pruning step, we have a set of subgraphs (consisting of a single
edge). Now, we try to expand all subgraphs with more features that are consistent
in every subgraph. This strategy maximizes the number of instances which yield
the simplest possible building block. We repeat this process several times to gather
multiple symmetries.

So far, we only have a sparse set of feature points that resemble the resulting
symmetries. In a final step, we extract the actual point data that is symmetric. We
perform region growing on the points, starting with the points closest to feature
positions. Region growing stops in two situations, either if the geometry does not
match under the symmetry transformation or if the point is already occupied by
another instance. For a robust geometry test we utilize moving a least-squares pro-
jection technique to smooth the geometry and compare the distance from surface
to surface and the surface normals. Additionally, we perform ICP on the current
set of points associated to an instance to improve the alignment between instances.
Results of the method are shown in Figure 3.10 and 3.11.

The graph matching technique itself is not restricted to point cloud data and
can be easily adapted to other types of data (e.g. triangle meshes and images).

3.5.2 Isometric Registration

We assume that surfaces are 2d manifolds that were deformed by an (approxi-
mately) isometric transformation. Given two such surfaces, we want to establish

3.5 Further Applications 39

a) Features

b) Symmetries

c) Point-to-plane error (blue = lowest, red = highest)

Figure 3.10: Result from [Berner et al., 2008]: Scan of a historical artifact of
horsemen engraved in stone. The horseman was detected two times. The third
horseman was not detected due to deformations.

a) Features b) Symmetries c) Point-to-plane error

Figure 3.11: Result from [Berner et al., 2008]: Scan of a handcrafted clay house.
Most salient symmetries were detected in this example. Only small windows and
reflective symmetries were not recognized.

40 Feature Points for Correspondence Analysis

a) b) c) d)

Figure 3.12: Results with isometric matching [Tevs et al., 2009] of various
datasets: a) is the reconstruction of clay figure resembling a dragon that has un-
dergone approximately isometric deformation. b),c), and d) are unstructured point
clouds with heavy topological noise and missing data.

a) b) c) d) e)

Figure 3.13: Isometric symmetries using isometric matching [Tevs et al., 2009].
In the synthetic example "star" we obtain identity deformation a) as best solution
and a set of symmetric solution b),c),d) (only a few a shown here). In many cases
we find the reflective solution as in the horse data set d).

3.6 Summary and Future Work 41

dense correspondences from one surface to the other. There are several challenges
that we want to address here: Scanned surfaces contain noise, holes, occlusions,
and do not provide reliable topological information. Depending on the type of
scanner and the chosen viewpoint, there might be only a part of the surface that
corresponds to the other. Consequently, this type of problem requires a partial
matching algorithm that is robust to topological and geometrical noise.

First, we compute slippage features as described above and compute geodetic
distances between features (we use a approximation of geodetic distances based on
a k-nearest-neighbor topology on the point cloud). The input for the next step are
two sets of feature points from surface S1 and S2, and two sets of geodetic dis-
tances between features (one for each surface). Then, we perform a RanSaC-like
randomized sampling algorithm: We start with a random feature from surface S1,
choose a corresponding feature from S2 based on the feature descriptor and add this
correspondence to a set of valid correspondences C. Now we try to successively
add random correspondences to C under the condition that at least n geodetic dis-
tances to correspondences from C must match in both surfaces (n = min(|C|, k)).
By requiring only a subset of valid features to agree with a new correspondence,
we bypass the problem of topological noise and allow correspondences in the valid
set that might be in conflict with some correspondences but have sufficient support
from others. Instead of uniform sampling we bias the selection of new correspon-
dences towards correspondences that are more likely to be valid based on the as-
sumption that all correspondences of C are correct. We stop when we cannot add
new correspondences to the set and repeat the algorithm multiple times. In each
iteration, we keep only the largest set of correspondences C. In Figure 3.12 we
show some of the results.

Naturally, the method also returns mirrored solutions since the main verifica-
tion criterion is based on geodetic distances which are invariant under reflection.
Here, we do not apply the standard RanSaC approach that rejects all correspon-
dence sets and keeps only the best. With a slight modification of the method, we
also keep a set of different solutions with sufficiently large score as shown in Figure
3.13.

3.6 Summary and Future Work

In this chapter, we presented a method for reliable detection of keypoints based on
slippage analysis. Our key concept is to find spherical regions that are locally maxi-
mal constrained with respect to the auto-alignment of the encapsulated geometry. A
strong benefit of this strategy is that the local neighborhood of a keypoint can usu-
ally be robustly registered against the neighborhood of a corresponding keypoint.
In many situations, we observed that the proposed method is able to detect more
stable keypoints than traditional techniques. Overall, we obtain a conceptually
clean framework to detect the very general class of feature correspondences char-
acterized by well-defined translational and rotational geometry matching, avoiding

42 Feature Points for Correspondence Analysis

any further assumptions such as local maxima in surface curvature.
In future work, we would like to investigate the potential use of the other eigen-

values from the slippage analysis. To some extend, we already did this by consid-
ering regions with one slippage motion which we will present in the following
chapter. However, it might be rewarding to study the combination of all eigenval-
ues in order to generalize the concept even more.

The ability to compute alignments between single feature points could be uti-
lizes for a large range of techniques. For example, a promising idea would be to
combine slippable features with the generalized Hough transform [Ballard, 1981]
for object recognition in 3D point clouds.

4 Symmetry Detection
Using Feature Lines

If you want to find the needle, burn down the haystack.

unkown author

In the previous chapter, we have presented a feature detection technique for key-
points in unstructured point cloud data and described applications to rigid and non-
rigid registration techniques and symmetry detection. In the context of global shape
registration, keypoint-based methods are an excellent choice and have been used in
several ways in geometry processing [Li and Guskov, 2005; Gelfand et al., 2005;
Tevs et al., 2009] and in computer vision [Lowe, 2004; Snavely et al., 2006]. How-
ever, the keypoint-based approach for symmetry detection [Berner et al., 2008]
demonstrates that keypoints might not be the optimal choice for this type of appli-
cation.

We will illustrate the shortcomings of keypoints with the example of two win-
dows shown in Figure 4.1. In the ideal case we obtain keypoints at the window
corners, identically in both windows, that allow us to establish correspondences
between the windows. But even in this idealized case we observe that a large area
is empty in the feature representation and we need to test the point cloud data di-
rectly to verify that both windows are the same. In reality, a keypoint detector does
not deliver a perfect result. Some (important) keypoints will be missed while a set
of keypoints appear that relate so small surface variations, noise, and holes in the
data (illustrated in Figure 4.1 b) which makes symmetry detection much harder in
this represetation. The fundamental problem behind keypoints is that they cannot
capture the complete surface structure since they are restricted to points; linear or
planar structures are not represented. If we think of lines as features, such as de-
picted in Figure 4.1 c), we get a much more intuitive representation. Conceptually,
keypoints like corners are implicitly represented by two crossing lines and even
planar structures are present in the representation. Othake and coworkers showed,
that a surface can be reconstructed from ridge- and valley-lines with normal in-
formation [Ohtake et al., 2004]. Furthermore, it is not necessary to extract every

43

44 Symmetry Detection Using Feature Lines

a) b) c)

Figure 4.1: Illustrative comparison between keypoints and features lines: Ideally,
we would like to find the corners of the two windows as shown in a). However, due
to noise and holes in the data and subtle differences of the two windows we usually
miss some keypoints while a large number of noise keypoints appear b), that do not
belong to a real geometric feature. In contrast to kepoints we can also considering
lines as features c). Among other advantages, line features benefit from a high
probability to be found due to their large spatial extend.

feature line completely without interruptions to recognize similarity between the
two windows because lines can also be extrapolated locally. This property imme-
diately yields a certain robustness against noise and missing data since we only
need to find parts of a feature line. Consequently, we propose to use feature lines
instead of keypoints.

In this chapter, we present a novel symmetry detection method for rigid sym-
metries based on line features. As input, we expect an unstructured point cloud that
resembles a surface and our goal is decompose this surface into parts and a set of
rigid transformations that map these parts onto the surface. Intuitively, we want to
obtain a set of building blocks, each with a list of transformations, that reassemble
the original geometry up to a certain tolerance. The most successful techniques for
detecting such types of symmetry are based on transformation voting, where trans-
formations between candidate pairs of potentially corresponding points are inserted
into a Hough-Transform space to vote for dominant transformations [Mitra et al.,
2006b; Loy and Eklundh, 2006; Podolak et al., 2006; Mitra et al., 2007; Pauly et al.,
2008]. This approach is very elegant and gives good results in many cases. The
main limitation is however that all transformations end up in the same voting space
with spatial correlation information lost so that the problem of isolating the rele-
vant symmetries becomes harder when the number of different symmetries grows
[Pauly et al., 2008]. As a consequence, these techniques have so far only been
applicable for coarse, large scale symmetries [Mitra et al., 2006b; Podolak et al.,
2006], in special cases were the model can be decomposed hierarchically [Mitra
et al., 2006b], or if the symmetries form regular patterns in transformation space
[Pauly et al., 2008].

The goal of this work is to detect a large number of symmetries without such

45

Figure 4.2: Line features for the “old town hall” data set. Without knowing the
input object, we can easily see that it is a building of some sort using only line
features as source of information. Furthermore, we also can guess the buildings
structure and symmetry properties. We use this representation to detect rigid sym-
metries efficiently.

prerequisites. The key observation for an improvement in recognition capabilities
is that we can expect some spatial coherence: The instantiated part, which is found
several times in the model under a symmetry transformation, will typically itself
form a localized, coherent spatial object: Nearby points are likely to show the same
symmetry pattern. This information is lost in transformation space.

In order to exploit this information, we choose a feature-based approach: First,
we extract line features from the input surface and form a spatial neighborhood
graph of such features. Next, we examine the graph for recurring patterns using
a randomized matching algorithm. Thereby, we directly utilize spatial coherence
of symmetric parts. Finally, the results from matching local clusters of features
are transferred and validated on the original geometry. The core idea is closely
related to the graph-based matching technique [Berner et al., 2008] described in the
previous section but differs in the matching strategy as well as in the feature type.
The new strategy yields both a substantial improvement in recognition rates as well
as a significant improvement in running times. As an example application for our
technique, we apply the algorithm to symmetry-based automatic reconstructing of
scanning data [Gal et al., 2007; Pauly et al., 2008].

We make two main contributions: First, we propose a novel symmetry de-
tection algorithm that can find rigid symmetries in general configurations. The
algorithm works efficiently on large data sets, up to two orders of magnitude more
complex than previous state-of-the art results. Second, we develop a framework
for rapid geometry matching based on sparse sets of feature lines.

This chapter is based on the paper [Bokeloh et al., 2009]. The author of this
thesis contributed the main conceptual ideas and most of the implementation. How-

46 Symmetry Detection Using Feature Lines

Figure 4.3: Overview: We extract line features from the input model. Inside the
inner loop, we search for symmetric constellations of line features and pass the
best candidate to the validation stage, where we verify it taking all data points into
account. We repeat this process several times inside the candidate loop and return
the best candidate (one symmetric part with its instances). This set is then refined,
in order to find more instances. An outer loop repeats the process to find several
symmetries.

ever, the implementation of Section 4.4 (Geometric Validation) and Section 4.6
(Reconstruction) was done by Alexander Berner and should not be seen as part of
this thesis. In order to provide the reader an accurate and complete picture of the
method, we will describe the whole approach.

4.1 Algorithm Overview

Our algorithm consists of three main stages (see Figure 4.3): Feature detection
(Section 4.2), line-feature matching (Section 4.3) and geometric validation (Sec-
tion 4.4). The last two steps are used iteratively in an outer loop (Section 4.5).
Finally, the symmetry information is then used for scan reconstruction and other
applications (Section 4.6).

The first stage extracts line features and identifies suitable pairs of these fea-
tures to define local coordinate systems that we call “bases”. The second stage
then tries to find subsets of such bases so that line features in their local neigh-
borhood match. In order to verify the matching, the algorithm uses an “iterative-
closest-line (ICL)” algorithm that aligns and compares sets of line features. The
rationale behind this design is that a comparison of a sparse set of line features is
substantially more efficient than comparing actual geometry, while still achieving
a very high matching accuracy. Probably even more important, matching of line
features is more resistant to holes and outliers in the data than conventional geom-
etry alignment techniques such as ICP [Chen and Medioni, 1992; Besl and Mckay,
1992] (see Figure 4.6).

In the next stage of the algorithm, geometric validation, we transfer our find-
ings to actual geometry, i.e. the input point cloud. As the line feature representa-
tion is sparse, this step is necessary in order to correctly assign geometric regions
to found instances. It computes disjoint instances of geometry that are replicated
by the symmetry transformations. Line feature matching and geometric validation
are repeated in a “candidate (RanSaC) loop”, outputting the best match only, to

4.2 Feature Extraction 47

avoid spurious matching results. Once we know the actual instances of symmetric
geometry, we refine our results in a second matching pass to increase the number
of recognized instances: We detect additional bases belonging to the instances by
checking for overlap with the points computed in the geometric validation stage. In
addition, we also try to extrapolate known transformations to discover possibly un-
detected parts in a transformation prediction step. Afterwards, geometric validation
is performed again. This yields a single symmetric part with all its final, typically
larger, set of instances. Finally, the outer loop of the algorithm iterates this whole
procedure several times in order to find several different classes of symmetry in the
model.

4.2 Feature Extraction

The task of the feature extraction step is to discretize the continuous matching prob-
lem, which allows us to perform a discrete matching of feature pattern rather than
continuous matching techniques. The crucial point at this stage is to retain the im-
portant information about object shape when reducing the object from a continuous
surface to a finite set of features. As we are looking for rigid mappings, the local
feature geometry must determine a rigid mapping. This means, the associated ge-
ometry must “lock-in”; in other words, the auto-alignment problem of registering
this geometry with itself must be constrained in all 6 degrees of freedom.

This problem can be addressed by slippage analysis of the local geometry
[Gelfand and Guibas, 2004]. Slippage analysis determines whether the problem
of aligning a piece of geometry with itself is well posed: It sets up an ICP ob-
jective function (the sum of all point-to-plane surface distances of surface points
with themselves), with 6 degrees of freedom (3 translational and 3 rotational). The
eigenvalues of the Hessian of the objective function determine whether the ge-
ometry is slippable: Any surface is necessarily constrained in at least 3 degrees
of freedom when being matched to itself. The eigenvectors of the Hessian with
eigenvalues (numerically close to) zero, here called slippage vectors, describe the
associated degrees of freedom. The slippage vectors may mix translational and
rotational degrees of freedom (see [Gelfand and Guibas, 2004] for details).

In order to improve the recognition performance, we need to generalize the
notion of a feature. The main idea of our feature detection strategy is to not rely
on a single feature to define correspondences but employ groups of more than one
feature. If we have feature regions that are completely unslippable, a single such
region yields a rigid constraint. For a slippable region with one degree of freedom
(one dimensional null space of the Hessian), we need two regions and have to
demand from their slippability vectors (eigenvectors of the Hessian with eigenvalue
zero) to span different subspaces. Accordingly, we can also look for feature regions
with two or three slippable degrees of freedom. Depending on the dimension of the
intersection of their nullspaces, we might need at least two or three such regions to
fix a rigid mapping.

48 Symmetry Detection Using Feature Lines

Figure 4.4: Line features for the Happy Buddha model (middle) and two detected
symmetries (right).

Here, we only consider the case of pairs of feature regions that are still slippable
in one dimension, with a non-zero translational component. This corresponds to
regions with arbitrary cross section extruded along (locally) straight or circular
lines. As such regions will have a one-dimensional symmetry direction, we refer
to them as line features. In practice, 1D slippable feature lines contain most of the
salient information and thus provide a both compact and efficient representation.
They work particularly well for man-made objects such as architectural models
(Figure 4.2), but we also obtain descriptive results for many natural objects such
as faces or sculptures (Figure 4.4). Our goal is now to extract such 1D-slippable
regions from the input geometry. As being slippable in one direction, these regions
will have a linear structure.

4.2.1 MLS Line Features

Conceptually, we base our line feature detection on a moving least squares scheme:
We define a projection operator that moves points orthogonal to the local 1D slip-
page direction and the surface normal, trying to maximize curvature along this line.
Performing such projections repeatedly will yield a point-sampled feature line rep-
resentation.

As input we expect a point cloud S̃ = {x1...xn} sampled from a smooth man-
ifold S ⊆ R3 where each point xi is equipped with a normal vector ni. We now
define the projection operator: In order to project a point p, we first compute a lo-
cal slippage analysis of p (we use a Gaussian window function centered at p with
standard deviation εfeat). Slippage analysis gives us a set of unit-norm eigenvec-
tors v1, ...,v6 that represents slippable motions and the corresponding eigenvalues
λ1 ≤ . . . ≤ λ6. We are only interested in the first eigenvector v1 that represents
the most slippable rigid motion. From v1 we extract the translation part s, which

4.2 Feature Extraction 49

a) Example bases b) Bases of ’Old Town Hall’

Figure 4.5: A base consists of a pair of feature lines with different slippable mo-
tions. We can easily fix a coordinate frame to each base a) and thus compute
transformations between bases. For the front side of the ’Old Town Hall’ of Han-
nover a visualization of all bases is shown in b). A base is rendered as two arrows
pointing from the base implicit corner (the point with minimal distance to both fea-
ture lines) to the feature lines defining the base. For the special case of two straight
feature lines we show the base in orange color.

becomes our estimate of the tangential direction of the line. We now find a local
maximum of the mean curvature along the direction s×n. We use a simple gradi-
ent descent algorithm that stops were the gradient vanishes. To compute the mean
curvature of a given surface patch we fit a local quadratic patch in a least-squares
sense, again using the same Gaussian window function, and compute the eigenval-
ues of the quadratic component. We also recompute the slippage analysis at the
final feature point and store the first eigenvector.

The Gaussian windowing function in the MLS scheme limits the frequency
resolution of the line detection. Therefore, we only need to consider a sparse sam-
pling of the feature lines: We compute a Poisson disc sampling of the point cloud
with radius εfeat and project only this subset. For sample points where the local
geometry is slippable in more than one direction (we used λ1/λ2 > 0.5 in every
example), we stop the projection immediately and reject the point. We also reject
points that move by more than εfeat (they will be handled by neighboring samples)
and points with less than 40 neighboring points in the Gaussian window.

Our algorithm outputs a sparse, point-based representation of feature lines,
along with the local tangential direction and curvature of the feature line, which
are computed from the translational and rotational component of the slippage vec-
tor v1, respectively.

50 Symmetry Detection Using Feature Lines

4.2.2 Building a Feature Graph and Bases

The next step of our algorithm is to build a graph of the detected line segments. The
goal of this step is to connect “interesting” combinations of feature lines that are
spatially close. For this, we connect every line segment to its k-nearest neighbors
(We use k = 100). However, we limit the number of connections for segments rep-
resenting the same line. For every connection, we check whether we have already
connected to a line that describes the same circular arc and allow only one such
connection per arc. As a result, we connect several lines of different type, even
when they are farer away, while line segments describing the same feature lines are
only connected locally to form a connected component.

Next, we perform a coarse segmentation of the line segments into longer pieces
in order to identify longer and thus more relevant feature lines. For this, we walk
along the graph of lines and group lines that lie on the same circular arc. We call
these groups line cluster, representing a longer piece of a line feature of constant
curvature.

From these line clusters, we now form bases, which represent local coordinate
frames that will be used as matching candidates in later steps of the algorithm.
Bases can be interpreted as corners implicitly defined by two nearby lines. Again,
we walk along the graph and find all edges that connect between two line clusters
for which their union is sufficiently non-slippable and store the pair of feature lines
as basis. The same combination of two clusters is used only once (not once per in-
dividual line segment). However, we store two bases for each pair of clusters, with
first and second coordinate axes exchanged. This allows us to handle mirroring. In
order to reduce the number of spurious bases, we require that the two line clusters
consist of a minimum number of line segments (typically, at least 4-8).

4.3 Line-Feature Matching

Having obtained a set of feature lines, our symmetry detection algorithm tries to
find local constellations of these feature lines in different parts of the model that
are similar. We use two steps: First, we identify a set of base matching candidates
to estimate initial transformations. Second, we examine the line features in the
neighborhood in order to verify the match. These two steps are iterated in a RanSaC
like matching loop in order to find the best matches (this is the inner loop in Figure
4.3).

4.3.1 Base Matching

In order to find matching bases, we pick a random base out of the previously ex-
tracted set. Please note that large symmetries with many instances are automati-
cally preferred in the random pick as they contain more bases. The base consists of
two line clusters with different direction of slippability, therefore defining a local
coordinate frame. Next, we find all other bases that could be potential matches,

4.3 Line-Feature Matching 51

a) Part 1 b) Part 2 c) Initial pose d) Aligned result

Figure 4.6: ICL example: Aligning two disjoint subsets of a 3D scan. We compute
line features for both parts and run ICL on the example configuration shown in
c). The registered result has a maximum alignment error of 0.6% of the maximum
bounding box side length.

regarding only local information about the bases. For this, we build a simple fea-
ture descriptor: For each base, we store the curvature of the two lines involved
and the average mean curvature of the surface points of the underlying geometry.
We use a matching threshold for these values of 0.1/εfeat. In case both lines are
straight lines with no curvature, we also include the angle at which the two lines
meet in order make the criterion more discriminative. For each of these candidates
with matching descriptors, we now compare the lines in its neighborhood by an
alignment algorithm. Before going into details of the procedure, we first discuss
the alignment algorithm:

4.3.2 Iterative Closest Lines (ICL)

Our iterative closest line (ICL) algorithm is a straightforward generalization of
the point-to-plane ICP algorithm [Rusinkiewicz and Levoy, 2001] to aligning line
segments. The idea of sampling well constrained regions is also similar in spirit to
the adaptive ICP technique in [Gelfand et al., 2003]. We assume that we are given a
point-sampled representation of curved lines: We have a set {xi} of sample points
on the lines, each equipped with a unit tangent t(xi), a unit normal n(xi) that
describes the normal of the surface the line lives in. By construction, these two are
orthogonal. From this, we also compute the normal b(xi) = t(xi)× n(xi) to the
feature curve in its tangent plane. Our goal is now to align two different sets of
curved lines {x(0)

i }, i = 1..n and {x(1)
j }, j = 1..m. Similar to the ICP algorithm,

52 Symmetry Detection Using Feature Lines

we first compute the closest point from the set {x(1)
j } to each point from {x(0)

i }.
We denote the index of the closest neighbor by N(i). If the closest neighbor is too
far away, we simply discard it in the current iteration. Given the correspondences,
we minimize the following energy function:

E(R, t) =
n∑
i=1

ω
(
dist(x

(0)
i ,x

(1)
N(i))

)
·
[
dist(x

(0)
i ,x

(1)
N(i))

]2
(4.1)

with

dist(x,y) =

∥∥∥∥∥∥
 | | 0

n(xi) b(xi) 0
| | 0

 (x− (Ry + t))

∥∥∥∥∥∥ (4.2)

where ω is a one-dimensional Gaussian window function, R is an unknown or-
thogonal matrix and t an unknown translation. The first matrix in Equation 4.2 is a
projection matrix that removes the tangential component from the distance vector
connecting two line segments, thus only measuring the point-to-line distance. For
the optimization, we use the standard approach of locally linearizing the manifold
of orthogonal matrices and solving iteratively [Mitra et al., 2004].

In order to improve accuracy and robustness we also discard correspondences
with different tangent vectors with respect to the current rotation. Additionally, we
also take line feature properties into account like line curvature, surface curvature,
and surface normal to filter out invalid correspondences.

4.3.3 RanSaC Search

As the set of feature line segments is much smaller than the number of original
surface points, the ICL-alignment technique described above is significantly faster
than a full alignment of the geometry. Therefore, we can afford to perform a large
number of alignment tests in order to find matching candidates. We use this to
perform a RanSaC-like randomized matching algorithm: We perform a number of
iterations, searching for potential model symmetries. The output of each iteration
is a list of candidate symmetries, which we score. In the end (after typically 100
trials), we keep only the best symmetries found.

Each iteration starts with computing a random base B0, and a set of poten-
tially matching bases B1...Bn for which the descriptors match. Next, we compute
a pairwise matching score comparing the neighborhood of B0 to all other bases
Bi separately. Matching the neighborhood lines of two bases proceeds in several
steps: First, we align only the lines that form the bases B0 and Bi themselves,
which can be computed analytically. At this point, the feature line representation
has the advantage that matching pairs of lines already gives a stable initial guess,
unlike feature point matching [Huang et al., 2006b; Berner et al., 2008]. Then ICL
is used to refine the match. After aligning the lines of the bases B0 and Bi, we
walk on the graph of adjacent line segments in a region growing algorithm. We
start by putting all line segments adjacent to those in B0 on a priority queue sorted

4.4 Geometric Validation 53

by distance. We then subsequently retrieve the next closest line segment from the
queue and compute the weights of the point-to-line distances (Equation (4.1)) for
the transformed lines. If the resulting weight ω (which now serves as matching
score for this segment) is smaller than a fixed threshold (typically: 0.02), we dis-
card the segment. Otherwise, we add the weight to the overall matching score of
Bi and put its neighbors on the queue. The algorithm stops if the queue is empty
or a maximum distance is reached (typically: 10% of the model size), to limit the
costs.

After region growing, we perform a second ICL alignment step with all lines
that were close to other lines (i.e., had high enough matching scores), refining the
initial alignment. Next, the growing algorithm is performed again and might find
further lines that became matches after the refined alignment. With this new match-
ing set, a final alignment is computed and stored along with the match. If the overall
matching score ofBi is too small in the end (< 50), the whole base-pair (B0, Bi) is
dismissed. Otherwise, we test if the base Bi is close to a base previously matched
toB0 (by computing the maximum point-to-line distance of the corresponding line
segments). Here, close means in the range of sample spacing - we typically employ
a threshold of 0.5εfeat. If such double matches are detected, we pick from the set
of all colliding matches the one that achieved the largest matching score. This step
avoids “ghosting artifacts” when matching objects with several parallel lines (for
example window frames). Finally, if all these tests have been passed, we included
the match {B0, Bi} into the set of found matches M(B0).

The previously described algorithm finds in each run a set of matches of bases
along with rigid transformations that describe potential symmetries in the object
(pending geometric verification on the full point set, described in the next section).
The quality of the matches differs strongly, depending on which base B0 had been
chosen as starting base. Therefore, we execute the algorithm several times (typ-
ically 100×) and output only the best match found to the next stage, geometric
validation, which is more costly. The score this decision is based on is computed
as:

score = matching_scoreav ·#instances2 (4.3)

matching_scoreav refers to the previously determined sum of weights of the
matched lines, averaged over all valid instances out of {B1...Bn}. It grows if more
matching lines are found per instance. The number of instances is the number of
valid base matches found. By squaring, the number of instances gets a stronger
weight; we prefer slightly smaller instances if this allows us to find many more of
them. The rationale behind this is that finding one more instance makes a symmetry
more plausible than just adding one more line segment.

4.4 Geometric Validation

So far, we have done all computations on the line features of the surface S only.
This usually gives a good indication of actually corresponding geometry but we

54 Symmetry Detection Using Feature Lines

now need to verify this on the full geometry, i.e., the original point set. At this
stage, we will also form concrete, disjoint pieces of geometry that form the in-
stances of a symmetry. As input to this stage, we are given a set of bases {B0, ..., Bk}
and their associated (ICL-refined) transformations {T1, ..., Tk} between B0 and
{B1, ..., Bk}. The output of the algorithm is a single point cloud, which we call
urshape, that fits parts of the original geometry S when being transformed by any
of the transformations {I, T1, ..., Tk}. The transformed instances are disjoint and
the urshape is maximal, i.e., cannot be extended without exceeding a given error
threshold.

4.4.1 Basic Region Growing

We perform region growing, starting at the bases, and collect all points that match
in other instances. In order to start growing, we first choose one point of the basis
B0 as a reference point. Next, we transform the reference point into all other
instances. In each instance, including B0, we compute the sample point from the
sample manifold S that is closest to the respective transformed reference point. We
will then use these points as starting points for region growing and stop if points are
already occupied by another instance or the transformed geometry does not match.
The region growing will proceed by Euclidian distance to the starting points, which
yields nice, Voronoi-type boundaries. We initiate growing by inserting the starting
points into a priority queue. The queue is sorted by Euclidean distance to the
corresponding reference points in each instance. Afterwards, we iteratively extract
points of minimum distance from the queue, transform it into all instances, and test
for geometry mismatch and collisions with different instances. Only if neither is
the case, growing will continue.

For the test of geometric mismatch, we cut out a small sphere S(i)
comp of fixed

radius rcomp and compare the resulting geometry in each instance. Because a test
of normal differences and position of a single point is very instable for a noisy
and irregular sampled point set we fit in each instance a plane to the data points in
S
(i)
comp. We then compare the distance to the center of the sphere and the normal

deviation between all pairs of instances (we use a threshold of 25◦). If the geometry
matches in most instances (we allow 20% of the checked instances to be outliers in
order to make the algorithm more robust against structured noise, which is present
in all our example data sets), the point is tagged as occupied by this instance,
transformed back into the urshape by (T)−1i and added to the urshape. Points that
have already been occupied are not added to the urshape. In the other case, we add
all neighbors within S(i)

comp to the priority queue to continue growing.

4.4.2 Grid Based Growing

The basic region growing algorithm with its test of every point is too expensive for
huge models. We improve the performance by looking at surface pieces at once
rather than isolated points. We impose a regular grid onto the urshape and treat all

4.5 Candidate Loop and Outer Loop 55

points within one grid cell simultaneously. In particular, the decision to include or
not include a piece of geometry is now made per voxel cell, rather than per point.
When the basic algorithm compares a piece of geometry, we set the radius rcomp
to 2× the grid cell diagonals. Please note that the voxel grid is imposed on the
urshape only and not on the whole model; the geometry in the voxel is transformed
to the instances for comparison. This avoids aliasing problems in the that would
occur if we were comparing pairs of voxels.

4.4.3 Handling Holes

One application of symmetry detection in 3D scanner data is filling up acquisi-
tion holes and equalizing sampling density. Therefore, we need to be robust to
acquisition holes. Our solution is to check the number of points within the spheres
S
(i)
comp. If too few points are found (typically: less than 6), no reliable plane fit is

possible and we treat the voxel as a “hole”. We use a relaxed threshold for outlier
mismatches due to holes (up to 30% in terrestrial scanner datasets), allowing for
matching partial data more robustly.

4.5 Candidate Loop and Outer Loop

So far our algorithm is able to detect a single urshape and a set of transformations
that transform this urshape into places where symmetric geometry exists, giving
a single symmetry pattern. We now employ an outer loop to iteratively detect
many such patterns. We execute the whole algorithm described so far multiple
times, tagging all points and nearby bases and line segments as “visited” in each
validation (growing) step. Additionally, we increase the recognition performance
of a single pass by a refinement pass.

4.5.1 Candidate Loop

We can make this basic strategy more reliable by again employing a RanSaC-like
randomized sampling approach: Instead of removing and thus finalizing symmetric
geometry after finding one new set of matches, we first compute a larger number of
matches (typically 5 matches), including geometric validation (the refinement step
described in the preceding paragraph is actually done after the candidate loop, on
its result, to safe some computation time; see Figure 4.3). From the candidate set,
we pick only the best match. The score for this decision is computed as number
of (voxel-quantized) sample points in the urshape multiplied by the number of
instances squared (similar to Equation (4.3), again preferring many instances over
few instances with many points. The outer RanSaC loop stops when a fixed number
of outer loop iterations has passed. We do not accept symmetries covering fewer
than a minimum number of data points (less than 1,000) to avoid spurious matches.
This prevents outputting “garbage” solutions after all detectable symmetries have
been found. An interesting side effect of this strategy is that the algorithm will

56 Symmetry Detection Using Feature Lines

output the “most important” symmetries first, which are symmetries with many
instances covering a lot of area.

4.5.2 Refinement

A drawback of the algorithm as presented so far is that it can only detect a class of
instances that all contain the same basis (in the sense of a pair of lines with the same
curvature, placed roughly at the same spatial location). In order to improve the
recognition performance for difficult data sets, we now include adjacent bases into
the search (this is the “second pass” in Figure 4.3): After geometric validation, we
know the concrete area covered by the instances. Therefore, we can check which
other bases are also covered by the geometry and try to match them as well. We
compute all bases covered by an instance and project them back into the urshape.
In the urshape, we cluster similar bases, i.e., consisting of approximately the same
lines. For each cluster, we maintain a counter to vote for bases that are contained
in many symmetric instances. Having a weighted list of other bases contained
in the same instance, we now execute the line matching algorithm of Section 4.3
again, starting at these alternative basis. Instead of region growing, we directly
fix the area to be checked by the line segments that fall onto the urshape when
being back-projected. In order to limit the computational costs, we do not check
all alternative bases (which can be thousands), but rather sample a small number of
bases (typically 5) randomly, with probability proportional to the number of votes
for each basis. After this step, we execute region growing again, now including all
newly found instances.

We can improve the recognition rates further using a prediction heuristic, in-
spired by [Pauly et al., 2008]: We consider the relative transformations between
instances that are spatially close and recursively check whether we can find a
matching line constellation if we apply this transformation again to an instance
at the boundary of the detected area (a candidate transformation at a boundary will
transform a base such that it does not come close to an already known base).

In order to evaluate the utility of the different passes, we have looked at the
percentage of instances detected in each step, relative to the overall number found.
For the ’Old Town Hall’ data set, for example, the basic algorithm itself already
detects all of the finally detected instances in about 75% of the symmetric parts. In
the remaining cases, looking at nearby bases accounted for 40%, in one case 80%
of the matches. Prediction detected 25%-40% in the cases where basic matching
was not successful. For other datasets, we obtain comparable results; prediction is
of course most useful in architectural data sets with regular pattern. However, the
technique is not limited to fixed grids in transformation space but also works for
partially regular data. Even without any successful prediction, we are able to find
most detectable instances in the majority of the cases.

4.6 Applications 57

Figure 4.7: Reconstruction examples for the data sets old town hall and Zwinger
(rightmost).

4.6 Applications

As an application of our symmetry detection algorithm, we consider an automatic
reconstruction-by-symmetry algorithm, in the spirit of [Thrun and Wegbreit, 2005;
Pauly et al., 2005; Gal et al., 2007; Pauly et al., 2008]. Many real-world range
scans suffer from strongly irregular sampling, noise and acquisition holes. We will
automatically detect similar parts and compute a high density average to improve
the sampling quality in regions where such redundant information is available.

Our reconstruction technique first computes an improved urshape and then
transforms the improved version back into the instances, replacing the distorted
geometry. We start the urshape improvement by copying all points of all instances
into the urshape, taking all points into account that fall into one of the urshape
voxel cell under the instancing transformation. From this set, we remove outlier
points. Outliers are points that show up in less than 30% of the instances. For this
co-occurance test, we use a small sphere around the sample point, according to the
scanner sample spacing, and check whether the instance provides such a support-
ing point within that radius. The remaining non-outlier points are then smoothed
using a quadratic MLS approximation.

4.7 Implementation and Results

We have implemented the proposed symmetry detection and reconstruction system
in C++. Timings have been obtained on a standard PC with Core2 Duo at 2.4Ghz,
using a single threaded implementation. In order to visualize the results, we assign
a unique color to each symmetry. If two instances of the same type share a border,

58 Symmetry Detection Using Feature Lines

a) Noisy data b) Result (no noise) c) Result (with noise)

Figure 4.8: Test with synthetic data: We engraved the Eurographics logo (EG)
into a plate, cut out some holes and applied our recognition pipeline. In the case
without noise we obtain a perfect result including the reflective symmetry. Please
note that only a small non-reflective part is left out that distinguishes the G from its
reflected counterpart. If we add Gaussian noise to the data we miss 5 instances with
large holes but still retrieve all remaining instances including a set of instances
with smaller holes c) .

we indicate this by drawing a black/white colored line in between. In the following,
we discuss the results for several test data sets.

4.7.1 Synthetic Example

As a synthetic example for completely irregular patterns of symmetry, we have en-
graved the Eurographics logo into a flat plane, rotated and shifted randomly. For
some of the instances, we have cut out holes of different size. Our algorithm is able
to detect all of the logos automatically (Figure 4.8); it discovers the reflective sym-
metry of the logo, leaving non-symmetric parts in the letter G out, and detects all
instances of these in the scene. If we add Gaussian noise with a standard deviation
of 5% of the maximum heightfield height, some of the instances with big holes are
not retrieved anymore but we still obtain good results for most of the symmetric
parts.

4.7.2 Scanner Data

We also apply the proposed algorithm to raw 3D scanner data. Our first example
is a scan of a museum (Figure 4.9). We are able to recognize most of the apparent
symmetries, including most of the possible instances (such as the windows in the
front). In particular, we detect instances as belonging to the same class that are
not part of a simple regular pattern (see for example the jutty in the middle of the
building). A remaining limitation of our approach is the fixed allocation of geom-
etry to a single instance. Therefore, some choices of forming instance preclude
detecting some other symmetries (for example: The small window above the jutty,

4.7 Implementation and Results 59

which is not combined with a larger window below, unlike most other of these
small windows). This effect is responsible for most of the missed out symmetries
in this example. Please note that we do not obtain any false positives. This shows
that the multi-stage filtering strategy of our algorithm is successful in that respect.

Our second test case is a scan of the ’Old Town Hall’ in Hannover (Figure
4.10). With nearly 8 million points this is the largest data set we tested. In order
to bound the computation time, we use a fixed number of 25 outer loop RanSaC
iterations, which yields 19 successfully detected (i.e., large enough) instance sets.
In this case, we detect many symmetries with a large number of instances. How-
ever, we also obtain some symmetries covering a large area with a small number
of instances (for example the facade to the left). These regions mostly consist of
small windows with few horizontal lines which makes a detection of the small scale
instancing structure harder, so that the initial set (before refinement) is not likely to
contain many instances. Therefore, the large symmetry often wins the outer loop
RanSaC decision by its area. Again, this problem could be resolved by relaxing the
restriction of simple, non nested and non-overlapping instances, which we leave for
future work.

The ’New Town Hall’ in Hannover (Figure 4.11) is another very large test case
for our method. In total, we detect 29 different symmetries including two symme-
tries with relatively small instance size. For example, the small windows colored
in pale red in Figure 4.11 b) have a width of approximately 1 % relative to the
bounding box diagonal of the data set. Nevertheless, we successfully detect all 18
instances (9 windows plus reflectional symmetry) without any knowledge about
the nested structure. In 4.11 b) we can further observe that the method recognizes
the statues as different and does not include them into the symmetries (in the upper
part there are three architrave blocks but only two status; in the lower part there are
4 statues that differ). The window segments in 4.11 c) are of comparable size to
the red windows of 4.11 b) but with slighty lower sampling density. The method
extract 12 out of 16 instances in both towers. The symmetry with the most in-
stances is a reflectively symmetric column of windows without a balkony (bright
brown) and was recognized 48 times in the whole building. A problem that arises
from the region growing technique is that we miss lots of symmetries due to our
decomposition strategy. Consider for example the global reflective symmetry of
the ’New Town Hall’: In the feature matching stage we find this transformation
frequently but then reject the global symmetry and prefer instances that appear
multiple times. Since we remove all line features belonging to an instance, we also
remove potential candidate transformations. A solution of this problem would be to
divide the process into two parts: Symmetry detection, where we build a map of all
symmetries for every data point and decomposition using the complete symmetry
information.

The last example is the Zwinger data set also used in [Berner et al., 2008]. In
comparison to Berner et al.’s approach, we obtain significantly better recognition
results (detecting all windows including the reflective symmetry of each window
instead of only two instances without reflective symmetry). In Figure 4.13 a com-

60 Symmetry Detection Using Feature Lines

Figure 4.9: Result ’Willhelm-Busch Museum’ (courtesy of the Institute for Cartog-
raphy and Geoinformatics Hannover).

Figure 4.10: ’Old Town Hall’ Hannover (courtesy of the Institute for Cartography
and Geoinformatics Hannover).

parison between line features a) and keypoints b) is shown for visual comparison.

To examine the limits of our algorithm, we have applied it to the Happy Bud-
dha data set. This yields only two small reflective symmetries (Figure 4.4). Line
detection and matching works in principle for such data sets, but the main problem
in this case is that the data set does not contain larger rigidly symmetric parts.

4.7.3 Reconstruction

We apply our reconstruction approach to the front of the old town hall and to the
Zwinger data set (Figure 4.7). With our symmetry reconstruction technique we
obtain a significantly improved quality. Surprisingly, the quality is better than
one would expect from just averaging a small number of instances (just leading
to square-root error decay). The reason for this is that we do not only average out
noise, but also increase the sampling density; in these examples, an insufficient
sampling density lead to more geometric uncertainty than the noise in the distance
measurements. In addition, we can also fill holes such as the window frames, which
are typically acquired from at one side only.

4.7 Implementation and Results 61

a) Front side

b) Zoom (front side) c) Zoom (back side)

d) Side views e) Back side

Figure 4.11: Symmetries found in the dataset ’New Town Hall’ (courtesy of the
Institute for Cartography and Geoinformatics Hannover).

62 Symmetry Detection Using Feature Lines

Figure 4.12: Detected symmetries in a 3D scan ’Dresden Zwinger’ (data set cour-
tesy of M. Wacker).

a) Feature lines b) Keypoints c) Results of keypoint-
based method

Figure 4.13: Comparison between feature lines and keypoints. The keypoint-based
method [Berner et al., 2008] detects only two out of three windows, fractioned into
two parts.

4.8 Summary and Future Work 63

4.7.4 Performance

Statistics and timings for the example scenes are shown in Table 4.1. Our largest
data set, the old town hall, took about 50 minutes to process, with a little less than
half of the time spend in feature detection. In comparison to [Pauly et al., 2008], we
are able to handle scenes that are substantially larger than the data sets examined
in their paper. In terms of running time, we have comparable requirements, taking
the size of the model into account.

4.7.5 Parameters

Our algorithm depends on a number of parameters. Most of these parameters are
constants for all data sets, using the “typical” values given in the text above. There
are a few parameters that have to be set manually for each data set. The basic
parameter is a resolution parameter εres, from which most others are derived: This
parameter has to be set to the sample spacing or the noise level of the input data
(whatever is larger). Currently, we estimate this manually and use a constant for
the whole scene. Given this quantity, we set εfeat as well as the voxel size for
region growing to 5εres and set the standard deviation of the weighting windows in
ICL to εres. For very noisy data sets, enlarging this value might slightly improve
the results; for the noisy logo test scene (only there), we use 1.5εres. We also use
εres as threshold for the maximum distance of lines in clustering the line segments.
There is one more spatial parameter proportional to εres: The distance threshold in
region growing, which determines the allowed geometric variation in instances. A
value of 2εres usually gives good results, but there is a delicate trade-off between
too small instances and missing small features. We think that improving upon this
might require a global optimization technique for laying out the instance shape, for
example using a graph cut in the urshape domain. A last set of parameters is the
number of RanSaC loops. We always use 100 iterations of the inner loop and 5
for the candidate loop; more can only improve the results, at higher costs. Here,
we also find room for improvement: In many cases we obtain multiple correct
candidates but keep only the best during the candidate loop. Reusing previously
sampled candidates will lower the computational costs and might even improve the
recognition performance. The number of outer loops limits the number of detected
instances. We use an exhaustive number of iterations (i.e., the algorithm stops
finding new instances before terminating) in all examples except for the largest
one, as discussed above.

4.8 Summary and Future Work

We have presented a new algorithm for symmetry detection. The main idea is
to look for symmetric constellations of feature lines on 3D surfaces in order to
find similar parts. In comparison to previous transformation voting algorithms,
we avoid the problem of cluttering the transformation space and therefore get a

64 Symmetry Detection Using Feature Lines

Points Feature Clustering Symmetry
Detection + Graph Detection

Plate 880.673 25s 1.1s 1m 59s
Plate (noise) 880.673 1m 12s 3.3s 3m 14s
Old Town Hall 7.735.576 23m 12s 25.8s 32m 40s
New Town Hall 4.598.444 ———— 81m (total) ————
Museum 2.200.652 4m 44s 5.2s 13m 36s
Zwinger 278.512 32s 2.3s 3m 25s

Table 4.1: Statistics of the datasets.

good recognition performance without additional assumptions on the structure of
the symmetries. In comparison to previous attempts of using feature points for
symmetry detection, feature lines yield a significant improvement in recognition
results. As a side effect, the reduction to feature lines reduces the amount of data to
be examined substantially, allowing for handling substantially larger models than
previous algorithms.

A limitation of our algorithm is that the symmetry decomposition only works
if instances are all exactly similar. A direction for future work would be to build
morphable statistical models of symmetric parts to better represent subtle variations
beyond the accuracy of the region growing algorithm. In addition, one could also
examine more general strategies in matching graphs of surface features, beyond
rigid mappings.

Another limitation is the strict decomposition strategy that does not allow nested
or overlapping symmetries. According to our experience with the different stages
of the algorithm, we know that the amount of correct symmetry transformations
from the line matching stage is far higher than the actual output and reveals much
more symmetry information. In future work, one could develop a method that
uses all available symmetry information retrieved by line matching in order to im-
prove the recognition performance. Furthermore, we want to generalize our de-
composition strategy to overlapping and nested symmetries and thus capture the
objects’structure in a better way.

Part II
Symmetry for Model Synthesis

In Part I of this thesis we have presented feature-based methods for correspon-
dence estimation and symmetry detection. The ability to retrieve this structural
information of shapes allows us to understand shapes at a very low level and leads
to new way to represent and alter shapes. For example, we can use the presented
symmetry decomposition technique to propagate changes of surface attributes to
all symmetric instances as shown in Chapter 4.

Now, we want to take a closer look at symmetry structures of 3D shapes and
the information that they capture. A shape can contain all sorts of recurring ele-
ments, regularities, and global symmetries. Surprisingly, the least useful kind of
symmetries in our context are global symmetries while partial symmetries can re-
veal potential shape modification operations. Especially boundaries of a partial
symmetry (that is where the geometry starts to differ) are most interesting in the
our context: At this border we might be able to replace geometry with its non-
symmetric counterpart. This is a key insight that we gained during this thesis and
that we will describe in the following chapters.

In Chapter 5 we present an approach to extract a shape grammar fully auto-
matic from a shape by analyzing its partial symmetries. Then, we will present an
interactive deformation technique in Chapter 6 that uses regular patterns in order
to preserve visually important structures during deformation.

5 Inverse
Procedural Modeling

Building one space station for everyone was and is insane: we should
have built a dozen.

Larry Niven

Man-made shapes are heavily structured objects and follow a variety of design
laws considering esthetical, statical, and other aspects. This structure is crucial for
a shape’s appearance. If we want to synthesize shapes automatically, we have to
take structural properties into account in order to create high-quality results. Pro-
cedural modeling techniques explicitly define structure with a set of rules. While
the results can be remarkably good, it requires deep knowledge about the desired
design principles and sophisticated skills in programming these rules. We seek to
provide a more natural way to construct new shapes: Given an example shape, our
goal is to derive a shape grammar that produces shapes similar to the exemplar.
The basic principle of example based modeling presents an intuitive interface for
artists since they only need to create shapes.

Existing example-based methods have strong limitations that restrict their use
to specific scenarios only. Methods that are based on non-parametric texture syn-
thesis consider geometry synthesis in the sense of geometric texturing: given a
smooth surface and some example geometry, the method tries to add more detail
to the smooth shape where the geometric details appears similar to those of the ex-
emplar [Bhat et al., 2004; Sharf et al., 2004; Lai et al., 2005; Nguyen et al., 2005;
Zhou et al., 2006; Zelinka and Garland, 2006; Chen and Meng, 2009]. We, how-
ever, would like to generate shapes without the need of specifying a coarse target
space. A fundamental problem of synthesizing 3D surfaces is rooted in the nature
of surfaces: they are 2d elements embedded in 3D space. This means that it is not
sufficient to transfer the idea of texture synthesis to geometry because the domain
is not known in that the MRF optimization should happen. In 2d texture synthesis
the goal is to find a color value for each pixel with the objective of consistent neigh-
borhoods. Correspondingly, in geometric texture synthesis most methods define a

69

70 Inverse Procedural Modeling

(a) input model (b) symmetric area (c) docking sites (d) result

(e) input model (f) symmetric area (g) delete (h) insert

Figure 5.1: (a) We compute shape modification operations by examining the par-
tial symmetry structure of a 3D model. (b) Symmetric regions are marked in red.
(c) A set of symmetric curves that cuts the model into two pieces yields a dock-
ing site that corresponds to (d) a replacement operation. (f) Symmetric regions
for a different transformation T (red region maps to blue region under T) yields
deletion(g) and insertion (h).

smooth 2d surface embedded in 3D space and synthesize geometric details for each
surface element with geometric consistent neighborhoods. If we want to create new
shapes from scratch, we need to optimize both: geometric consistency of neighbor-
ing elements and the domain in which the shape lives. Some methods bypass this
problem by considering 3D texture synthesis on a regular grid [Bhat et al., 2004;
Merrell, 2007; Merrell and Manocha, 2008] with the drawback of being limited to
a specific grid structure. So far, no method based on texture synthesis has been
proposed that is able to create 3D shapes from scratch with results comparable to
those presented in this chapter.

In our approach, we use the idea of consistent neighborhoods in non-parametric
texture synthesis [Efros and Leung, 1999]. However, we formulate a more restric-
tive criterion for our output models: we demand that any point on the resulting
shape matches some point on the exemplar within a local neighborhood of radius
r (we call this criterion r-similarity). As we will see in the results, the strict en-
forcement of r-similarity yields plausible results even for highly structured shapes.
The reason for this can be explained by the interplay of r-similarity and the exem-
plars structure: r-similarity restricts the potential number of neighboring elements
to a subset that preserves geometric structures locally. Further, r-similarity induces
that every part of the new shape has been observed in the exemplar, also including
shape boundaries. Consequently, we cannot create "open" surfaces without these
observed boundaries and forces us to assemble globally consistent shapes. This
combination of local and global consistency leads to a restricted set of possible

5.1 Formal Model 71

shapes that preserve many structural properties of the exemplar.

In contrast to texture synthesis, our approach constructs a set of explicit, pro-
cedural rules that encode how to build such objects efficiently, leading to an in-
verse procedural modeling system [Aliaga et al., 2007; S̆t’ava et al., 2010]. The
key observation of this work is that the partial symmetries of an object reveal a
set of shape operations that alter the object while guaranteeing strict r-similarity:
Assume we fix a transformation T and look at the regions of an object (Figure
5.1a) that are symmetric under this transformation (Figure 5.1b). We might find
non-symmetric regions that are separated from the rest of the model by some sym-
metric area. We call these regions dockers and a curve through a symmetric region
that cuts out a docker a docking site (Figure 5.1c). As the docking site geometry
matches, we can exchange the corresponding dockers while maintaining similarity
to the input exemplar. In general, we obtain operations that insert, delete, or replace
pieces of S (Figure 5.1d,g,h). We examine the dependency of such operations and
encode the result in a shape grammar that encodes a set of r-similar objects. We
consider three variants: general rewriting systems, context-free grammars, and sup-
plemental grid structured production rules. We implement the described analysis
framework in a numerically robust way, handling general triangle meshes as well
as point cloud data from 3D scanners, and demonstrate prototypical tools for shape
modeling by example.

Our technique is the first that is able to compute shape grammars for general 3D
surfaces from example geometry without any user interaction (the similarity radius
r is the only parameter). We provide a theoretical framework that establishes an
interesting link between partial symmetry of an object S and a space of objects
similar to S. It provides strict formal guarantees: All computed models are strictly
r-similar to the exemplar. In particular, any topologically consistent, closed input
manifold will yield output models with these properties. However, in order to
provide such strict guarantees, our formal framework requires models that have
perfect partial symmetries, which is a main limitation of the presented approach.
This could easily be generalized to different notions of symmetry and similarity.

5.1 Formal Model

In this section, we present our theoretical framework, proceeding in the following
steps: First, we define the basic notions of symmetry and similarity (Subsection
5.1.1). Then, we describe how to compute docking sites, dockers, and how to
construct the associated shape operations (Subsection 5.1.2). Afterwards, we bring
these elements into a canonical form in Subsection 5.1.3. Finally, we discuss how
to combine the obtained rules into a shape grammar (Subsection 5.1.4).

72 Inverse Procedural Modeling

(a) r-similarity (b) r-symmetry

Figure 5.2: (a) r-similarity: every point of S2 is locally similar to a point of
S1, within a radius of r. (b) r-symmetry is defined analogously: under a fixed
transformation T, symmetric points must be similar within a radius of r.

5.1.1 Similarity and Symmetry

Input and neighborhoods

We assume that we are given an input exemplar S ⊂ R3. For simplicity, we assume
a finite, piecewise smooth surface. For every x ∈ S, we define the r-neighborhood
NSr (x) = Nr(x) := {y ∈ S | dist(x,y) ≤ r}, where dist is a metric on S. In the
following, we use the intrinsic distance within S to correctly handle close pieces
that are topologically disconnected.

Transformations

In the following, symmetry and similarity are defined with respect to a group of
admissible transformations T + consisting of continuous, injective functions T :
S → R3. We denote the transformation of a set A as T(A) := {T(x) | x ∈ A}.
Here, we restrict ourselves to the group of rigid motions. However, most of our
framework could be easily generalized to different notions of symmetry and simi-
larity, induced for example by invertible affine mappings or by intrinsic isometries.

We can now define our notion of local similarity of objects: An object is similar
to an exemplar if each local neighborhood of the object can be found somewhere in
the exemplar (Figure 5.2a). We formalize this concept in the notion of r-similarity.

r-similarity

Given two surfaces S1 and S2, S2 is r-similar to S1 if and only if for all y ∈ S2
there exist a point x ∈ S1 and a mapping T ∈ T + such that:

(1) T(x) = y and T(NS1r (x)) ⊆ S2.

(2) For all x̃ ∈ NS1r (x) : x ∼= T(x̃)

where “∼=” means that the local topology is preserved with respect to the surfaces
S1 and S2 where the points are contained in (formally: there exist infinitesimal
neighborhoods that are homeomorphic). Condition (1) ensures that we find a geo-
metrically matching neighborhood in S1 for every point of S2. Condition (2) makes

5.1 Formal Model 73

Figure 5.3: Effect of parameter r: Smaller values of r lead to a larger number of
possible shape operations that allows us to insert single piano keys (middle row).
A larger value of r enforces a correct piano key pattern, where we can only add or
delete an entire octave (bottom row). The original model is shown in red (top row).

sure that the topology matches as well. In particular, we cannot map a manifold
interior point to a boundary point, or an interior point to a T-junction, and vice
versa.

Please note that the definition of r-similarity is not symmetric. We always
place the r-neighborhood on the exemplar surface S1, never on the surface that
T maps to. This is important for generalizations to non-rigid mappings where
T might contains scaling that alters the size of the neighborhood. Analogous to
r-similarity, we define the notion of r-symmetry, where we map neighborhoods
within a single surface. We start by defining infinitesimal symmetry:

Symmetry under a transformation T

We denote the set of all points of S that are symmetric with respect to a transfor-
mation T as:

ξ(T) := {x ∈ S | T(x) ∈ S and x ∼= T(x)} ,

Two points of S are symmetric under a transformation T if T maps between them
and their infinitesimal local neighborhood is topologically equivalent. Accord-
ingly, the non-symmetric points with respect to T are denoted by ξ(T) := S\ξ(T).

r-symmetry under a transformation T

The set of all points that are r-symmetric under a transformation T is given by:

ξr(T) := {x ∈ S | all x̃ ∈ Nr(x) are symmetric under T}

This means, a point is r-symmetric iff its whole r-neighborhood is symmetric
under the same transformation (Figure 5.2b). In other words, we obtain the r-
symmetric points by an erosion operation of radius r on the set of points that map

74 Inverse Procedural Modeling

(a) no docking site (b) proper docking site (c) delete

(d) insert (e) replace

Figure 5.4: Definition of a docking site. (a) The first part of the definition is
met, but the docking site does not divide the model into two disconnected pieces.
Therefore, no valid operation results. (b) A valid docking site, meeting all three
criteria. (c),(d) Dockers can be exchanged while keeping the model r-similar to
S . If primary and secondary dockers are contained in each other, this results in
inserting or deleting symmetric pieces. (e) Otherwise, geometry is just replaced;
please note that this example shows a different geometry.

from S back to S under T. We will use this observation in Section 5.2 to devise a
simple and efficient algorithm for computing the r-similarity structure of an object.
The algorithm will actually work on a discrete set of candidate transformations T,
constructed by matching surface features, for which it computes the symmetric
area. For now, we will just assume that we know ξr(T) for all transformations T
that might be of interest and discuss the details of symmetry detection later.

5.1.2 Dockers, Docking Sites and Shape Operations

Our goal is now to determine shape operations that modify an exemplar shape
while maintaining r-similarity to the original. The key insight of this chapter is
that the symmetry structure of an object reveals a rich set of such operations as
well as their interdependence. For now, we will consider one fixed transformation
T and examine the r-symmetry structure of S with respect to T. How to combine
the result from different transformations within a shape grammar will be discussed
later in Subsection 5.1.4.

ξr(T) can be regarded as a binary function on the exemplar S that marks sym-
metric regions on the surface (Figure 5.1b shows an example visualizing ξr(T)
as red area). Obviously, any subset X ⊆ ξr(T) of a symmetric region can be
exchanged with its corresponding geometry T(X) without changing the geome-
try at all. However, if we find a piece of non-symmetric geometry that is divided
from the rest of the model by symmetric area, we can use the symmetric region as

5.1 Formal Model 75

a docking site to replace some geometry with different geometry while maintain-
ing r-similarity to the exemplar. We formalize this observation in the following
definition:

Docking sites and dockers

A set of surface curves α ⊆ S is called a docking site with respect to a transfor-
mation T, if the following three properties hold (see Figure 5.4a,b):

• α is r-symmetric under T: α ⊆ ξr(T).

• α partitions the model into two topologically disconnected pieces Dα and
Rα. This means, any continuous path in S between the two pieces must
intersect α. The pieceDα contains geometry that is not symmetric under T:
Dα 6⊆ ξr(T). We call Dα a docker for docking site α

• T(α) also partitions the model into two topologically disconnected pieces
DT(α) andRT(α). We call T(α) the secondary docking site and DT(α) the
secondary docker of α.

For clarity we will sometimes refer to the original, non-transformed docking
sites (and dockers) as primary docking sites (and primary dockers), as opposed to
secondary docking sites. By convention, the docking site α, the docker Dα and
the remaining geometry Rα are defined to be disjoint. The same applies to the
secondaries. It is important to note that the curves that form the docking sites are
in general not restricted to a single connected component. Figure 5.4b shows such
an example. In addition, for input manifolds without boundary, the docking sites
always have to be a collection of closed curves (if this was not the case, the docking
sites could not partition the model into disconnected pieces). If the input exemplar
S contains boundaries, the docking sites can potentially contain open curves.

Figure 5.4b shows an example of a partitioning of the model into the pieces
Dα, DT(α), Rα, and RT(α). Obviously, this is only possible if α and T(α)
cut the model into disconnected pieces (Figure 5.4a). Figure 5.4c,d show how we
can use docking sites and dockers to modify geometry: The docking site itself is
situated within symmetric geometry. Therefore, we can cut the model through the
docking sites and replace the docker with the secondary docker, or vice versa. By
construction, the boundary is r-similar so that the pieces fit together. Formally,
every shape operation is performed by the same rule, a replacement of dockers.

Replacement shape operations

Let α be a docking site with respect to transformation T. A shape operation,
opα,T is given by

opα,T : S → RT(α) ∪T(Dα) ∪T(α).

76 Inverse Procedural Modeling

It replaces the secondary docker with the transformed primary docker (Figure
5.4c and Figure 5.4e, middle row). Correspondingly, there is also a secondary
shape operation opT(α),T−1

opT(α),T−1 : S → Rα ∪T−1(DT(α)) ∪α,

which replaces the secondary docker with the primary docker, transformed ac-
cordingly (see Figure 5.4d and Figure 5.4e, lower row).

Obviously, a secondary operation for a docking site α and transformation T
is identical to the primary replacement operation for the docking site T(α) and
transformation T−1. Please note that our notation for the shape operations already
makes use of this observation. The consequence in practice is that we can re-
strict ourselves to collecting only primary operations; we will obtain the secondary
operations automatically by considering the corresponding symmetries under the
inverse transformation.

Classification

We can distinguish further between different effects of the primary operations by
looking at the topological relation of primary and secondary dockers. We obtain
three cases that lead to different types of operations, as illustrated in Figure 5.4c-e:

• Insert: DT(α) ⊂ Dα. The secondary docker is a subset of the primary
docker (Figure 5.4c).

• Delete: Dα ⊂ DT(α). The primary docker is a subset of the secondary
docker (Figure 5.4d).

• Replace: All other cases (Figure 5.4e).

Replace operations just substitute parts of the geometry with an alternative
piece of geometry. Insert and delete operations are special cases of replacements
that replace a piece of geometry with two or zero copies of itself so that they effec-
tively grow or shrink the object. These operations (and combinations of them) are
useful for “smart resizing” of 3D objects; we will make use of this later in the appli-
cations section. Please note that the replace shape operation is still possible if the
dockers overlap partially, i.e. Dα ∩ DT(α) 6= ∅. However, the operations become
dependent (which also frequently occurs for operations derived from two different
transformations). Resolving dependencies is discussed in Subsection 5.1.4.

Collision avoidance

An important aspect we neglect so far is that of collisions. We have to make sure
that T(Dα) and RT(α) do not collide, i.e., have a non-zero distance everywhere,
except from the docking site where they meet. If this is not the case but the a newly
inserted piece collides with already existing geometry, the operation might not be

5.1 Formal Model 77

valid and we do not perform the shape operation. We can now formulate the main
result of this subsection:

Maintaining r-similarity

Given an input surface S ⊂ R3 and an r-docking site α under transformation T.
If the shape operation opα,T is not colliding, it will create a result that is r-similar
to S.

This is easy to see if we take a closer look at the individual components: The
remaining geometry A := RT(α) ∪ T(α) and the inserted docker B := T(Dα)
that are assembled by the shape operations are parts of S . Therefore they are
trivially r-similar to S everywhere, except from the region that has a distance of
less than r to the cutting curve T(α). For the points in a band of distance r to
both sides of the cutting line T(α), we know that the geometry is r-symmetric.
This means that the geometry in this area is identical for both pieces A and B.
Therefore, any point in this band is r-similar as well: for points fromA, we can find
an r-neighborhood in piece A under an identity transformation; for pieces from
B, we find an r-neighborhood in Dα ⊆ S under transformation T−1. Because
we avoid collisions, we also cannot change the local geometry indirectly through
intersections of distant pieces.

5.1.3 Elementary Docking Sites

So far, we have shown how to extract shape operations from the symmetry struc-
ture of an exemplar surface. However, there are a few technical problems left:
First, we can get an infinite number of equivalent operations by moving the dock-
ing site within the symmetric region (Figure 5.5a). We thus need to normalize
the construction so that we get a canonical representation for a shape operation.
Even after doing this, the number of shape operations for a single transformation
T might still be exponential in the number of non-symmetric “docker” regions,
because the docking site can select an arbitrary subset of such regions that are lo-
cated within a common symmetric region (Figure 5.5b). This obviously prevents
us from compactly encoding the set of all discovered shape operations. Elementary
docking sites (Figure 5.5c) address both problems:

Elementary docking sites

An elementary docking site is a docking site for which the closure of its docker is
minimal with respect to set inclusion. Shape operations derived from elementary
docking sites are called elementary shape operations.

Intuitively, we obtain an elementary docking site by shrinking the docker en-
closed by the docking site as much as possible, enclosing only the non-symmetric
region, at the boundary between r-symmetric and non-r-symmetric area (with re-
spect to a certain transformation T). In addition, we are not allowed to enclose

78 Inverse Procedural Modeling

more non-r-symmetric regions than necessary to divide the model into two pieces,
because otherwise, the docker would not be minimal. We now discuss how to com-
pute elementary docking sites. For this, and all of the following, we will always
assume that we have a finite number of non-symmetric regions, i.e., ξr(T) consists
of a finite number of connected sets, each with continuous boundary curves. For
practical models such as triangle meshes, this assumption is always met. The idea
for the algorithm is rather simple: For any valid docker, we need to make sure that a
docker is separated completely from the remaining geometry by the docking sites,
which can be solved by simple region growing. However, we need to simultane-
ously assure that the same is true for the corresponding secondary dockers, which
therefore requires alternated region growing in the primary and secondary domain.

Algorithm: Computing elementary docking sites

Input: We are given an input model S, a transformation T, and the symmetry
structure ξr(T).
Algorithm: We start by computing the boundary curves ∂ξr(T) of the non-symmetric
regions using region growing, as well as the secondary boundaries T(∂ξr(T)),
which must exist due to symmetry. This partitions the model into a set of primary
and secondary non-symmetric regions, which will be combined to valid and ele-
mentary primary and secondary dockers next. We build a graph that encodes the
dependencies of these regions: We connect primary and secondary non-symmetric
regions if they share a boundary curve where the primary boundary maps to the
secondary under T. The important observation is that this does not need to be
symmetric. For example, the secondary can map to two boundaries while the pri-
maries only map to one each, as shown in Figure 5.6. In order to obtain a valid
combination we compute the connected components in this dependency graph. All
primary regions within a connected component form one primary docker, and all
secondary regions the secondary docker. Their boundaries to the symmetric area
are the docking sites. These pieces are elementary because no smaller set can cut
the model into two pieces on both primary and secondary side. Figure 5.6 shows
how we subsequently add dependent pieces to extract a valid pair of primary/sec-
ondary dockers.

One can easily show that elementary dockers for the same transformation T are
always disjoint. Because of this, it is easy to see that any general shape operation
with respect to a fixed transformation T can always be achieved by a combina-
tion of elementary shape operations. This means, for n different non-symmetric
regions, we only need to store O(n) elementary shape operations, rather than in
the worst case 2n − 1 non-elementary ones.

5.1.4 Extracting Shape Grammars

So far, we have found a number of operations that allow us to change the input
shape S while keeping it r-similar to the original. However, we can only change

5.1 Formal Model 79

(a) equivalent sites (b) combinatorial explosion (c) elementary sites

Figure 5.5: General vs. elementary docking sites: (a) The docking sites α1 and α′1
are equivalent. (b) By combining multiple non-symmetric regions, we can obtain
an exponential number of non-equivalent docking sites. (c) Elementary docking
sites form a canonical set for composing more complex operations.

the original input once: the changes might alter the situation such that the orig-
inal operations are not applicable anymore. In order to enable the execution of
multiple, consecutive shape operations, we therefore need to to determine their
interdependency, and if necessary adapt the executed operation accordingly. In
the following, we will describe three different models that build sets of rules that
combine multiple shape operations. We start with a straightforward construction
that yields a general Chomsky type-0 grammar (general rewriting system) based
on shape matching. This model is the most expressive, but its structure is the least
computationally accessible. Therefore, in the next step, we compute a context-
free subset of this grammar, which is easier to handle in applications. Lastly, we
add non-context free grid-based replication rules with multiple degrees of freedom,
which are very useful for analyzing real-world objects [Müller et al., 2007].

A Basic Shape Matching Grammar

Assume that we are given a set of shape operations for an exemplar S and we want
to execute multiple of these operations subsequently while maintaining r-similarity
to S. The important observation at this point is that we can apply a shape operation
in any place where we find a suitable docking site. “Suitable” means that the
new docking site is related to the original one by an admissible transformation
T ∈ T +. In that case, we can just transform the docker of the shape operation
by T to match the new docking site. As the admissible transformations form a
group by definition, the compound transformation will automatically be admissible
as well and the transformed operation still guarantees r-similarity. This directly
yields a shape matching grammar: Before each operation, we have to search the
model for matching docking sites (using rigid shape matching, in our case) and
then obtain a selection of applicable operations. Obviously, this approach is costly
to compute and incompatible with standard procedural modeling tools. In addition,
the structure of the language might be very complex. As a general rewriting system
(Chomsky-0 grammar), most properties of the language are uncomputable and thus
inaccessible for controlling the modeling process. Therefore, we have to extract a

80 Inverse Procedural Modeling

(a) symm. borders (b) no docker yet (c) dep. secondary (d) final output

Figure 5.6: Computing elementary docking sites: (a) Transformation T and cor-
responding boundaries of r-symmetry. (b) The red piece is non-symmetric. (c) It
is not a docker (yet) because its secondary boundary does not split the model. (d)
Adding the missing dependent piece yields valid primary/secondary dockers.

more manageable subset. This is the subject of the next subsection:

Context Free Grammars

In a context free grammar, we do not perform shape matching but use non-terminal
symbols to identify a space where further geometry can be plugged in. The geome-
try itself is encoded as terminal symbols. A set of production rules describes which
terminal and non-terminal pieces can be plugged into the space designated by each
non-terminal piece, leading to a hierarchical structure of insertions of pieces. In
our framework, docking sites represent non-terminal symbols because alternative
geometry can be plugged into the regions they enclose (Figure 5.7). Dockers are
the pieces being plugged in, which in turn might contain further sub-docking-sites.
Therefore, the geometry of a docker, minus that enclosed by sub-docking-sites,
corresponds to terminal symbols, and the contained docking sites are hierarchi-
cally dependent non-terminals. We will reflect this fact in our notation and use
non-terminals and docking sites interchangeably, as well as dockers and terminal
symbols.

Using context-free production rules means that we need to be able to tell a pri-
ori whether a certain piece of geometry that is tagged with a non-terminal node
will allow for the insertion of certain alternative pieces or not. We cannot retract
from this decision later on because we do not perform any online shape matching.
Any conflicts between rules that try to alter the same piece of geometry must be al-
ready resolved during the construction of the formal language. Obviously, potential
conflicts are only created by designating docking sites. Identifying a docker and
storing its terminal geometry cannot create conflicts, no matter how these dockers
overlap on the exemplar. However, if we put a docking site on a piece of geometry,
we must make sure that the docker area it encloses does not intersect with further
docking sites, because the geometry within these bounds is subject to change. More
precisely, if we create the production rule for a single docker, the docking sites (i.e.,
the non-terminals) within this rule must not overlap. We use the following formal

5.1 Formal Model 81

a) b)

Figure 5.7: Overlapping docking sites cannot be used at the same time. Resolving
these conflicts and extracting a hierarchy of docking sites and dockers yields a
context free grammar.

classification: Two docking sites α1 and α2 are conflicting iff α1 ∩α2 6= ∅, i.e., if
the docking sites intersect. α2 is hierarchically dependent on α1 iff Dα2 ⊂ Dα1 ,
i.e., the dockers are contained in each other. Obviously, hierarchically dependent
docking sites are not conflicting in the sense of this definition, but we still cannot
combine the rules arbitrarily but need to make sure that the docker they are based
on does already exist. This idea leads to a hierarchical construction algorithm. The
main idea is to first identify hierarchical dependence of docking sites. Then we
iteratively consider each docker and handle all docking sites it directly contains.
If these docking sites are conflicting, we remove some of them until all conflicts
are resolved. As there are multiple alternative ways to achieve this, we in general
obtain several production rules for this docker. We now look at this more in detail:
Constructing a context-free shape grammar: We first build a tree that encodes
the hierarchical dependence of the docking sites. A node α is contained in the sub-
tree of a node β if and only if α is completely contained inDβ. This always yields
a unique tree because the inclusion relation is tree structured by definition. After
that, we look at each node in the tree from bottom up, starting at the leaf nodes.
The docker of each leaf node yields a terminal node in our grammar that contains
only fixed geometry and no further non-terminals. The docking site of each leave
nodes is represented as a non-terminal node and we create the corresponding pro-
duction rules that encode two alternatives each: inserting either the primary or the
secondary docker. Now we go up one level in the hierarchy and build more com-
plex rules: Let α be an inner node, and C(α) be the set of all docking sites that are
direct children of this node. These children form areas where we can insert hierar-
chically dependent pieces (which in turn might contain further docking sites, i.e.,
further non-terminals). However, the docking sites in C(α) will in general overlap,
creating conflicts. Therefore, we create multiple alternative rules that each resolve
the conflicts in a different way: We consider the graph of overlapping docking sites,
where the docking sites in C(α) are the vertices and an edge is inserted if the two
sites are conflicting. In this graph, we compute the set of all maximal independent
sets. This yields the set of all sets of docking sites that do not overlap each other.
In order not to miss options, we also need to unfold the hierarchy of overlapping

82 Inverse Procedural Modeling

nodes and include these in the independent set computation. Each of the obtained
independent sets {β1, . . . ,βk} is free of collisions and is therefore converted into
one production rule for the non-terminal α0:

α→ β1, . . . ,βk︸ ︷︷ ︸
non-terminals

,
(
Dα \ (Dβ1

. . .Dβk
)
)︸ ︷︷ ︸

terminal remainder geometry

The production rule encodes that the non-terminal α can be replaced by a set of
non-conflicting docking sites and the remaining geometry not covered by these
sites. For each independent set, one such separate rule is created. Once we have
performed the operation for the primary docker of α, we repeat the same procedure
for the secondary docker, which also fits into α.
Complexity problem: The strategy has a problem in practice: the number of max-
imal independent sets in a graph has an exponential worst-case lower bound of
Ω(3n/3) sets for n nodes. Correspondingly, the algorithm might become imprac-
tical for complex inputs. Therefore, we use a bounded complexity approximation
in practice: Instead of enumerating all independent sets, we sample the solution
space randomly. We iteratively choose a random node and remove all colliding
nodes until no more nodes are left. We make sure to start at a different node each
time and limit the number of trials to a fixed constant (in our examples: 10). Thus
the maximum number of computed production rules is fixed as well. In addition,
we only unfold at most one hierarchy level; if such a node still collides, we dismiss
all hierarchically contained docking sites as well. This approximation does not
yield the largest possible context free sub-language but it is very fast and produces
good results in practice.
Improvements: In order to make the grammar more expressive, we perform shape
matching between docking sites before constructing the grammar and identify all
docking sites of the same shape. This means that not just the primary and sec-
ondary docker can be inserted into the corresponding non-terminal symbol but all
dockers with similar docking site. In addition, we also try to avoid docking sites
that are created by continuous symmetries, such as a window that can slide across
a flat wall. We remove such rules by detecting slippable docking sites using the
technique of [Gelfand and Guibas, 2004]. We use this optional filter in all of our
examples.

Regular Grids

Many real-world objects contain grid structures, such as a grid of n1×n2 windows
in the facade of a building. In the following, we will call such structures k-grids,
were k is the number of discrete degrees of freedom. A context free grammar
cannot represent k-grids for k ≥ 2 (unless we fix the repetition counts a priori,
which is not useful in our application). Thus, we add a separate grid replication
rule to our shape grammar that models this case.
1-grids: In our framework, 1-grids are identified by “insert” and “delete” shape
operations: By definition, these operations are always dual to each other, and they

5.1 Formal Model 83

(a) configuration for a grid patterns (b) no valid grid

Figure 5.8: (a) Two colliding insert/delete operations divide the model into regions
of nine different types. The corners are used once, the central piece is repeated on
a 2-grid, and the rest is linearly repeated. (b) Counterexample: This arrangement
of docking sites does not form a tileable grid cell.

mutually undo the effect of each other. In addition, the insert operation can be
repeated an arbitrary number of times (up to collisions) because the inserted part
by construction contains a docking site for another insertion.

2-grids: Grids with more than one degree of freedom show up as collisions of
docking sites of multiple 1-grids. We first consider the case k = 2 for two insert
type shape operations opα1,T1

, opα2,T2
. If the docking sites α1 and α2 intersect,

the corresponding primary and secondary dockers intersect as well, due to symme-
try. We classify the pieces by up to nine possible cases (Figure 5.8a). We choose an
index of 1 for the remainder geometry, 2 for within the docking site but outside the
secondary docker and 3 for inside the primary and the secondary docker. Accord-
ingly, we label the pieces by r1,1 up to r3,3, taking both operations into account.
Please note that several disconnected pieces of each type might exist because the
exemplar S can be of arbitrary topology and some types of pieces might be missing
altogether. Pieces of different type have a different purpose: types r1,1, r1,3, r3,1,
and r3,3 form the “corner stones” that are instantiated exactly once. The pieces
r1,2, r2,1, r2,3, r3,2 are replicated in one direction each, forming the boundary of
the grid. Finally, the r2,2 pieces are replicated in two directions.

Identifying tileable grids: Not all pairs of conflicting 1-grids create feasible 2-
grids because the inner regions r2,2 can have non-tileable boundaries. This can
happen because a pair of symmetric primary/secondary docking sites is cut into
pieces by a different pair of docking sites. Although the pairs of curves are sym-
metric, the intersections do not need to be symmetric (Figure 5.8b). In order to
obtain a valid tileable grid, we must demand two additional properties: First, the
boundary curves of all regions ri,j must be symmetric under the transformations
T1,T2. Second, the transformations T1,T2 must commute to obtain a well de-
fined grid [Pauly et al., 2008]. If these two conditions are met, and we additionally
assume that the inserted pieces do not collide with each other, it is easy to see

84 Inverse Procedural Modeling

Figure 5.9: Visualization of the grammar computed for the "pipe tree" example
(Figure 5.10). Each pad carries a docker, with the color indicating matching dock-
ing sites, shown as curves in the same color. Black curves indicate the sites at
which the dockers are inserted into the parent docking site. The white docker is the
root of the grammar. Below, an example assembly is given for illustration.

that any instance of the grid is r-similar to the input surface. Our implementation
currently checks all these conditions explicitly.
General case: The grid construction generalizes to the case of grids with k degrees
of freedom: All simplices consisting of 2k points need to match each other under
the corresponding transformations, and all transformations need to commute. We
can incorporate grids into the shape grammar by applying the grid detection algo-
rithm to conflicting docking sites of the hierarchically extracted dockers.

5.2 Implementation

It is possible to perform all the computations described in the previous section di-
rectly on triangle meshes. However, this easily leads to robustness problems in
practice due to sliver triangles. We avoid these issues by using an approximate rep-
resentation: We store the symmetry information ξr(T) only up to a fixed sampling
resolution εs, in a voxel grid with uniform spacing εs. Each voxel that intersects
with a piece of surface is labeled either symmetric or non-symmetric. We store
this information compactly using a spatial octree. Although we employ a sampled
representation to store symmetry information, the actual test for comparing geom-
etry is still exact: We store the plane equations and boundary line equations of all
triangles in each voxel and match them when comparing two pieces of geometry.
We explicitly test for and exclude zero-area triangles where two edges are collinear
up to numerical precision (which are unfortunately found frequently in real-world
models). All computations of docking sites and dockers described in Section 5.1
are performed directly on the voxel grid representation. Intrinsic distances and
neighborhoods are measured as graph distance in the graph of neighboring voxels,

5.2 Implementation 85

Figure 5.10: Random variations of the "pipe tree" (original model shown in red)
created by randomly applying rules from the shape grammar.

connected by a 26-neighborhood. Once we have identified the voxels that consti-
tute docking sites and dockers, we use the boundaries of the voxels to cut out the
docking site curves and dockers out of the original triangle mesh.
Discussion: The only approximation in this strategy is in the extend of the sym-
metric region, which might be underestimated by at most εs. We argue that this
is a reasonable strategy: First, the algorithm will converge to an exact solution
with shrinking εs, and thanks to the hierarchical representation, it is no problem to
use an εs much smaller than r in practice. Furthermore, the similarity parameter
r is usually only a vague guess by the user so that it does not seem necessary to
approximate it with very high accuracy. In our examples, we always set εs to r/4.

5.2.1 Symmetry Detection

Our technique requires detecting symmetries in the input model as a first step. We
use a variant of the algorithm described in Chapter 4, adapted to our voxel-based
representation: Whenever a rigid motion maps the input surface S onto itself, we
have found a partial symmetry. However, not all such symmetries are useful for
modeling. For example, a planar area within an object can be partially mapped
onto itself by a continuous set of infinitely many transformations. However, enu-
merating a large number of these will not be particularly useful for modeling. We
therefore limit our algorithm to find “useful” symmetries by aligning salient feature
lines.

In case of scanner data, we apply the algorithm for finding feature lines as

86 Inverse Procedural Modeling

Figure 5.11: Editing with context free grammars: possible edits for four different
docking sites of the same model. The selected docking site and the docker to be
replaced appear in yellow, other docking sites in light red. The rows of images
above and below the model preview editing options. In these images, the red part
is the new docker that will replace the yellow one. The blue parts are default
geometry inserted to close the model; the user can exchange these next. Please note
that many of the red dockers look similar but offer different sub-docking sites. In a
context free grammar, these choices are encoded in different production rules if the
alternative docking sites overlap. The accompanying video shows an interactive
demonstration.

5.2 Implementation 87

a) discretized symmetry b) discretized r-symmetry

Figure 5.12: Discretized r-symmetry: for a given transformation T we test every
voxel for symmetry; if the content of a voxel is symmetric, we mark it accordingly
(every voxel shown in red is symmetric under T and maps to the voxels shown in
blue). We obtain r-symmetry by applying erosion on the symmetric voxels using a
fast-marching scheme.

described in the last chapter. For triangle meshes with perfect symmetries we can
directly extract feature lines from the triangle structure: we use a triangle edge
as feature if it is either a border or if the two neighboring triangles have different
plane equations. Additionally, we test triangles for intersection and create a feature
line at the intersection. In order to be independent of the triangulation, we merge
adjacent feature lines with equivalent properties and line directions.

Next, we determine the area that is symmetric under each candidate transfor-
mation by computing the intersection of the regular voxel grid representation with a
transformed version of itself. In each cell, we compare the original exact geometry,
as described previously. This gives us a voxel-quantized approximation of ξ(T).
This strategy also works naturally with point cloud data since the original algorithm
was designed for it. To obtain the r-symmetric set ξr(T), we use a fast-marching
algorithm to perform an erosion operation on the voxel grid (see Figure 5.12). In
the case of raw point-cloud data from 3D scanners, we add an additional process-
ing step that removes isolated non-symmetric voxels within symmetric voxels in
order to be robust to outliers.

5.2.2 Applications

We have implemented three example modeling tools within a prototypical inverse
procedural modeling application.
Creating random shape variations: It is often useful to be able to create a large
number of variations of a base geometry automatically, for example for creating

88 Inverse Procedural Modeling

background props in a game level or movie scene. We create random instance by
executing random production rules from the computed shape grammar. For each
rule, we check for collisions and revert to just using the original geometry of the
docking sites if 10 random rules failed to work. The same strategy is also used
to guarantee termination: Usually, the number of non-terminals grows faster than
the likelihood of inserting terminal geometry. Therefore, we stop with original
geometry after a certain number of overall replacements.
Semi-automatic modeling: We have also implemented an interactive editor to
modify an existing shape according to user input (Figure 5.11). We start with the
original model and display all docking sites as surface curves. The user can then
“hover” over the model, docking sites are highlighted and the user can choose from
the known production rules in order to change the model. Changes can be made at
all levels of the hierarchy. The editor always displays a complete, r-similar model:
When a new docker is inserted, its hierarchically dependent docking sites will be
filled with the geometry that was originally contained in the docker, shown in a
different color to indicate the default behavior.
Grid-based resizing: In addition to the context free rules used above, we also
detect grid rules in the model. We let the user choose 1-grid or 2-grid rules and
specify the number of repetitions.

5.3 Results

The results presented in this section are obtained from a single threaded C++ im-
plementation of our framework running on a 2.6Ghz Core2 Duo computer with
8GB of RAM.

5.3.1 Example scenes and setup

We have chosen a number of example scenes of varying characteristics. The orig-
inals are always marked in red. Our examples include triangle meshes with exact
symmetries. In addition, we use two point cloud data sets: The new town hall of
Hannover (courtesy of C. Brenner, IKG Hannover) has been used previously [Pauly
et al., 2008; Bokeloh et al., 2009] as benchmark data set for symmetry detection.
We have manually extracted the facade and coarsely deleted some scanner artifacts.
Additional noise or outlier removal turned out not to be necessary. The second is a
scan of the “Zwinger” palace in Dresden, used without additional preprocessing.

5.3.2 Grid-based editing

We have applied our method to models that contain grid structures. Examples for
1-grids are shown in Figure 5.13 and 2-grids in Figure 5.14. The spiral stairs scene
(b) has complex micro-geometry below the handrail, which shows the numerical
robustness of our implementation. The triangle mesh of the parking structure ex-
ample (Figure 5.14d) contains many of non-manifold intersections, sliver triangles

5.3 Results 89

a) b)

Figure 5.13: Two models with 1-grid structure: the sofas in a) contain a pure
translational 1-grid, the spiral stairs in b) yields a helical 1-grid. Please note that
the technique is robust to fine scale and highly detailed geometry of the handrail of
the spiral stairs.

and doublet triangles that cover the same area, which is typical for models that have
been designed primarily for rendering. Nevertheless, we obtain stable symmetry
results.

5.3.3 Manual and random modeling

We have performed random example generation (Figure 5.10, Figure 5.15, and
Figure 5.16) as well as manual modeling (Figure 5.3, Figure 5.17, and Figure 5.18).
The random examples have been picked as typical examples out of a small number
of random trials, all of which yielded reasonable geometry. An example grammar
as computed by our algorithm is shown in Figure 5.9. The result is not as canonical
as a manual, human designed grammar but simple enough to be useful in interactive
manual modeling. With manual interaction, more control is possible. The editor
(see Figure 5.11) is easy to use and greatly facilitates shape editing; the models
shown in Figure 5.3, Figure 5.17, and Figure 5.18 were assembled in less than a
minutes each.

5.3.4 Point clouds

Figure 5.16 show results for scanned facade examples. For the front of the “New
Town Hall”, our algorithm has extracted 20 non-terminals corresponding to 40
dockers, all of which are of 1-grid type, due to the regular structure of the model.
We use these rules to randomly insert and delete windows and the different tower
elements of the facade, which lead to plausible results in all cases. Similar results
are obtained for the “Zwinger” scan (courtesy of M. Wacker, HTW Dresden).

5.3.5 Analysis

Our input scenes have a complexity ranging from 1,040 (house, Figure 5.14 c)
to 500,000 (parking structure, Figure 5.14d) triangles. The new town hall facade
consists of 1.2 million points. The computation times for our shape analysis are
rather moderate, even for the large examples: For the facade, symmetry detection
took 72 seconds, the computation of the docking sites and dockers 18 seconds,

90 Inverse Procedural Modeling

a) b) c)

d)

Figure 5.14: Models with 2-grid structure: The castle b) is a special (easier)
case with an empty middle piece r2,2. The parking structure d) from the Dosch
Design shape collection is the most complex triangle mesh that we tested with
about 500.000 triangles.

a) b)

Figure 5.15: Random variations of triangle meshes: both results were created by
randomly applying rules from the extracted shape grammar.

5.3 Results 91

a) b)

Figure 5.16: Random variations of point clouds: a) "Zwinger" (courtesy of M.
Wacker, HTW Dresden), b) "new town hall" facade (courtesy of C. Brenner, IKG
Hannover).

and building the grammar 125 seconds. For the parking structure, the complete
processing took 10 minutes, 2 minutes of which were spent on finding symmetries
and extracting docking sites. This example is more time consuming because more
symmetries can be found within an “exact” data set. Interactive editing and random
example generation is performed in real-time, with response times (far) below one
second for all examples shown in this chapter. The effect of choosing parameter
r is illustrated in Figure 5.3: small values of r (middle row) produce piano keys
with arbitrary grids, while a bigger value (bottom row) enforces the well-known
2/3 combinations of groups of keys. Our observation is that other than for such
subtleties, the choice of r is not critical; all other examples use a fixed r that is set
to 1.6% of the maximum bounding box side length of the object.

5.3.6 Limitations

Our current approach is limited to more or less exact symmetry and similarity, al-
though some measurement noise or small inaccuracies are acceptable. However,
we cannot handle any natural objects such as plants, animals, or people. Our cur-
rent implementation is in addition limited to rigid similarity. With respect to shape
grammars, our current applications are currently only using context free and grid-
based rules, while context-sensitive modeling is still subject to future work. The
rules that we extract do not cover the whole space of r-similar objects but only a
subset; however, we can explicitly construct the members of this subset. In com-
parison to related texture-synthesis-based modeling approaches, we are not per-
forming variational optimization. Therefore, we cannot “fit” models to arbitrary
boundary conditions. In principle, the building blocks extracted by our algorithm
could be used within a discrete MRF labeling algorithm to solve boundary value
problems, however facing similar optimization problems as in texture synthesis.
It is important to stress that texture/geometry synthesis always requires solving
complex optimization problems, while our approach can still be used without.

92 Inverse Procedural Modeling

Figure 5.17: Manual editing of a bus station.

5.4 Summary and Future Work

We have presented a theoretical framework for inverse procedural modeling of
3D objects and a practical implementation of a semi-automatic modeling system
based on this framework. The main conceptual idea is to create a shape grammar
that describes a large set of objects that are locally similar to a training exemplar
under rigid motions. The key observation is that a grammar describing a large
class of shape operations that maintain r-similarity can be directly derived from
r-symmetry. The main algorithmic idea is the construction of docking sites and
dockers: Whenever we can find a curve through a symmetric area that partitions
the object into two pieces, we can derive a replacement operation that maintains r-
similarity. A topological classification yields different types of operations (insert,
delete, replace) and a hierarchical inspection of these operations then results in a
context free grammar as well as grid-like replication rules. We believe that our
proposal is only a first step into the mostly unexplored area of inverse procedural
modeling, i.e., how to infer rules of how objects are build and structured solely
from example instances. There are a number of open problems in our work that we
have to leave for future work: In particular, it would be interesting to generalize our
framework to other notions of similarity like affine mappings with scaling (fractal
patterns) or isometric mappings (bending invariant modeling). While most of our
theoretical framework covers these cases, a practical evaluation still needs to be
performed. In addition to this, it is still an open question how to define a shape
grammar that includes all r-similar objects; for general input models our current
construction covers only a subset. In a similar direction, it would also be interesting
to evaluate in how far general, non-context free shape grammars can be used for
shape modeling.

5.4 Summary and Future Work 93

Figure 5.18: Variations of a space station (original model shown in red frame,
top-left).

94 Inverse Procedural Modeling

6 Pattern-Aware
Shape Deformation

Please excuse the crudity of this model, I didn’t have time to build it
to scale or to paint it.

Emmett L. Brown

Building new 3D models from scratch is a tedious and time consuming task and
requires artistic abilities as well as technical skills. Modification of existing 3D
models presents an easier alternative to create content. Consequently, a large vari-
ety of techniques have been developed to alter shapes in such a way that they meet
user defined constraints. Many techniques of this kind interpret shape deformation
as a physical process and try to simulate this behavior [Terzopoulos et al., 1987;
von Funck et al., 2006; Mezger et al., 2008; Botsch and Sorkine, 2008]. Other
techniques opt for different properties e.g. smoothness [Sederberg and Parry, 1986;
Coquillart, 1990]. Some techniques take multiple examples as input and construct
a shape-space of the given class of objects [Blanz and Vetter, 1999; Allen et al.,
2003; Hasler et al., 2009]. However, all these techniques ignore structural proper-
ties of a shape like symmetries or regularities, both important for the appearance
of a shape.

Recent research has begun to investigate structure-aware shape editing tools
that aim to automate the detailed manipulation required to preserve the structural
relationships in a shape as it undergoes manipulation [Kraevoy et al., 2008; Gal
et al., 2009; Huang et al., 2009; Wang et al., 2011; Zheng et al., 2011]. Such al-
gorithms analyze the input shape to extract structural features and use the learned
structure to assist interactive 3D modeling. They can improve the efficiency of con-
tent creation professionals and also assist inexperienced users in adapting existing
content to their needs.

In this chapter, we present a structure-aware shape editing technique that de-
tects discrete and continuous patterns in the shape and preserves these patterns un-
der free-form deformation. A key distinguishing feature of our approach is that it
can change the structure of the object by adding or removing local elements along

95

96 Pattern-Aware Shape Deformation

(a) input object (b) elastic deformation

(c) maintaining continuous patterns (d) discrete patterns, adapted repetition counts

Figure 6.1: Overview of our approach. Given an input shape (a) and a free-form
deformation applied by the user (b), our deformation model preserves continuous
patterns in the shape (c) and adapts the repetition counts of discrete patterns to
minimize distortion (d).

regular patterns. This structural adaptation is integrated into a global free-form
deformation framework that minimizes the overall stretch of the object.

In our approach, the user specifies a small set of constraints and the system
computes a new shape that meets these constraints while preserving structural
properties of the original model, as shown in Figure 1. As invariants, we extract
1-parameter groups of partial symmetries. In other words, we detect geometry
that is replicated in regular patterns. This includes continuous symmetries such as
straight lines as well as repeated discrete elements such as windows in a building.
We formulate non-local rigidity constraints to maintain these symmetry properties
in the output, and allow for adapting the number of discrete repetitions in order to
reduce distortions.

In order to add and remove elements along discrete patterns with minimal dis-
tortion, we introduce sliding dockers. A sliding docker is an element in a local,
repeated structure that interfaces with the rest of the model in such way that the
structure can be independently replicated with minimal distortion. We develop an
algorithm that automatically finds collections of sliding dockers in input geometry
and replicates them in a way that minimizes distortions in the overall object.

6.1 Overview

Our technique is designed to preserve regular patterns in the input shape. We detect
such patterns in a preprocessing step, described in Section 6.2. We then apply
a continuous deformation model that tries to maintain the detected structure, as
described in Section 6.3. In order to reduce distortions, we automatically insert
or delete repeated elements using sliding dockers, developed in Section 6.4. In
this section we give a brief overview of each component of our approach. These
components are illustrated in Figure 6.1.

6.2 Pattern-Based Structure Model 97

Input: Our technique accepts a general triangle mesh S ⊆ R3 as input (Fig-
ure 6.1a), with no restrictions in geometry or topology (in other words, “triangle
soup”). In addition, the user can select an arbitrary number of handles Hi ⊆ S
and can move and rotate them to new positions (this is an interactive process, with
real-time feedback by the system). In the following, we will use l(S) to denote the
maximum side length of an axis aligned bounding box of S; this value is used to
scale relative parameters automatically.
Deformation model: The basis of our technique is a standard elastic shape defor-
mation model [Terzopoulos et al., 1987; Sorkine and Alexa, 2007]. It computes
a deformation field f that minimizes the deviation from the user’s constraints and
tries to keep the object as rigid as possible. In other words, the model diffuses
stretch (stress tensors) as uniformly as possible across the object surface under the
given constraints (Figure 6.1b). We use this behavior as a “base regularizer” with
low weight, aiming at just dissipating the stretch induced by the constraints.
Shape analysis: We perform a shape analysis step in preprocessing, in order to
identify regular patterns in the input geometry. We model regular patterns as one-
parameter partial group structures in the symmetry structure of the object: We find
parts P ⊆ S that show up multiple times, replicated by a series of transforma-
tions Tx, where x ranges over a continuous or integral range I ⊂ R, leading to
continuous and discrete patterns.
Sliding dockers: For discrete patterns, we find sliding dockers, which are building
blocks that can be replicated when the object is locally stretched. Sliding dockers
are cut out of the input surface in a way that the boundaries fit seamlessly when
multiple pieces are attached to each other regularly. In addition, the boundaries
of this repeated region are slippable, such that any repetition count yields closed
geometry.
Continuous, structure-aware deformation: Using the structural knowledge gained
in preprocessing, we add constraints to our deformation model that aim at preserv-
ing the patterns in the shape. These constraints are given a higher weight than the
elastic regularizer, thus dominating the deformation results (Figure 6.1c).
Discrete relaxation: We measure the stretch in the continuously deformed model
and automatically insert or delete sliding dockers to relax the stretch in the model.
Such automatic structure adaptation allows a broader range of deformations to be
applied without violating the natural appearance of the object (Figure 6.1d).
The following sections describe each of these components in turn.

6.2 Pattern-Based Structure Model

Our approach begins with a preprocessing phase, which analyses the input geom-
etry to detect structural regularity in the form of partial regular patterns. These
patterns will be kept invariant in the later editing process. Regular patterns are
defined with respect to a group of admissible transformations:
Transformations: Let G be a group of bijective, continuous mappings R3 → R3.

98 Pattern-Aware Shape Deformation

We will restrict our consideration to rigid motions (rotations and translations).
Replications: For a rigid motion T ∈ G, where T is not a rotation by 180◦, we
can define continuous powers of T: for x ∈ R let Tx := exp(x logT). Then, for a
set A ⊆ R, we will use the the notation TA := {Tx|x ∈ A} in order to denote the
set of powers of T. Furthermore, for P ⊂ R3, we write TA(P) := ∪x∈ATx(P)
to denote replications of P . In particular, TR(P) denotes the continuous kinematic
surface that replicates P continuously.

6.2.1 Partial Regular Patterns

Our goal is to preserve the symmetry structure of the input S under deformations
while admitting insertions and deletions of parts. However, this intuitive notion
is not easy to formalize. A first attempt would be to look at the global symmetry
groups of S:
Symmetry groups: The set of all operations T ∈ G that maps S to itself, i.e.,
T(S) = S forms a subgroup of G. It characterizes the global symmetries of S.

There are now two major obstacles: First, the structure of the symmetry group
can be involved. Because of potentially non-commutative transformations, it is in
the general case difficult to find a canonical representation [Miller, 1972]. The sec-
ond problem is that the restriction to global symmetries is not satisfactory: Many
objects have partial symmetries that do not form global symmetry groups but are
still perceptually important (such as a row of windows in a building). We therefore
restrict ourselves to a simple, tractable model: We only look at partial 1-parameter
groups (for short: patterns) and characterize the overall shape by their interaction.
These structures only capture commutative 1-parameter subgroups of more com-
plex symmetry groups and, in addition, permit partial coverage:
Partial 1-parameter symmetry groups (“patterns”): Consider P ⊆ S and T ∈
G, and let I ⊂ R be a real interval. If we have TI(P) ⊆ S , we have found
a continuous partial 1-parameter symmetry group of S . If I ⊆ Z is an integer
interval with at least three elements, we have found a discrete partial 1-parameter
symmetry group. For brevity, we will call these structures continuous and discrete
(regular) patterns, respectively.
Normalization: The definition above usually gives rise to an infinite number of
patterns. We therefore normalize the representation. For discrete symmetries, we
choose maximal sets P that yield the same transformation set. In the continuous
case, moving a piece P along a continuous rigid motion Tx yields a kinematic sur-
face [Gelfand and Guibas, 2004]. We can describe the pattern by just the maximal
surface P that is slippable under a constant instantaneous velocity logT. Using
this representation, the interval I vanishes and we will omit it in the following
when denoting continuous symmetries.
Regular Patterns of S: Using these conventions, we obtain a finite set of discrete
regular patterns RD = {(P1,T1, I1) , ..., (PN ,TN , IN)} and another finite set of
continuous regular patterns RC = {(P1,T1) , ..., (PM ,TM)}.

6.3 Deformation Model 99

We now discuss how to detect these structures automatically in an input triangle
mesh.

6.2.2 Computational Framework

Discrete Patterns: We compute the discrete patterns by a symmetry analysis sim-
ilar to to our techniques in Chapter 4 and Chapter 5: We detect sharp creases in the
input mesh and combine pairs of adjacent, non-collinear creases to form “bases”
. Two base pairs are potentially corresponding if they have matching length and
enclose the same angle. Very small feature lines (below 2.5% l(S)) are removed
for efficiency reasons. We now use a RanSaC procedure to compute regular pat-
terns: Random pairs of potentially corresponding bases are chosen and the relative
transformation T is computed. We search for all potentially corresponding bases
that are located at positions Tx for some x ∈ R. This gives us initial pattern
candidates. The next step is to extract generator transformations T that generate
the 1-parameter groups Ti, i ∈ I ⊂ Z: We look at all pairwise transformations
between candidate bases. For each pair, we compute the number of bases that
lie on the grid TZ induced by the two bases. We output the choice of generator
that yields the largest integer interval I of matching bases and exclude these from
further processing. We iterate until no more valid patterns are found.

Continuous patterns: Continuous symmetries with respect to rigid motions are
detected by slippage analysis, following the algorithm of [Gelfand and Guibas,
2004]. For a point x ∈ S, the algorithm considers a small local neighborhood
N(x) and determines how the distance between T(N(x)) and S changes for in-
finitesimally small motions T ∈ G. Technically, we have to consider the Hessian
of the surface distance function under rigid motions. An eigenanalysis then yields
(near-) zero eigenvalues for slippable motions. These are the transformations of
continuous symmetries. There are six different types of slippable surfaces, with
1-3 degrees of freedom (see Figure 2.1). Parts P that have the same continuous
symmetry properties are extracted by simple region growing (see [Gelfand and
Guibas, 2004] for implementation details).

6.3 Deformation Model

In this section, we describe the global continuous deformation model that serves as
the basis for our deformation framework. First, we describe the representation of
the deformation function (Section 6.3.1). Second, we review the standard elastic
deformation model, which serves as our base regularizer (Section 6.3.2). Third,
we introduce additional structure-aware constraints in order to preserve regular
patterns (Section 6.3.3).

100 Pattern-Aware Shape Deformation

6.3.1 Representation

In order to compute a deformation, we embed the surface S into a volume V ⊂ R3,
S ⊂ V , and deform this volume using a deformation field f : V → R3. This ap-
proach has the benefit of making the deformation independent of the representation
of S so that arbitrary types of input geometry and general surface topology can be
handled easily. Following [Huang et al., 2006a; Sumner et al., 2007], we use a sub-
space method to discretize f , i.e., we use a low-dimensional basis for representing
the deformation: We create a number of nodes x1, ...,xk ⊂ R3 and center radial
basis functions bi around them to define the deformation field:

f(x) =
K∑
i=1

uibi(x) (6.1)

Here, ui ∈ R3 are the deformed target positions of the nodes xi. As basis func-
tions, we employ moving-least-squares (MLS) meshless basis functions of linear
precision, based on a finite support Wendland kernel, as proposed in [Adams et al.,
2008]. These functions are able to represent smooth deformation fields with a
small number of nodes. In particular, affine motions such as rotations are inter-
polated exactly. We place the nodes by discretizing V to a regular grid of user
specified spacing h (Figure 6.2). We set the support of the basis function to 2h to
make sure that at least two basis functions overlap each surface point in x-, y-, and
z-direction. The volume V itself is created by offsetting S by h in all directions
(i.e., a Minkowski sum of a sphere of radius h and S). This guarantees that the
basis functions and their derivatives are well defined on S.
Remark: In the following, we use two basic numerical discretization constants.
The first, h, determines the resolution of the deformation field, which is typically
in the range of 5% l(S). In addition, we also use smaller constant ε (in the range
of 1% l(S)) for discretizing other functions, such as symmetry information and to
form neighborhoods for slippage analysis.

f is determined by a variational approach: We set up an energy function E(f)
that is minimized by an optimal f :

E = Ec + λrEr + λcEc + λdEd (6.2)

Ec describes user constraints and Er is the base-regularizer that creates elastic
behavior. These two terms correspond to a standard elastic shape deformation ap-
proach. We then add two additional terms to preserve the pattern structure: Ec
preserves continuous patterns such as straight lines, and Ed preserves discrete pat-
terns. The λ∗ control the influence of the different regularizers relative to the user
constraints. We typically use λr = 0.01 and λc = λd = 1.

6.3.2 Elastic Deformation

The first energy term Ec accounts for user constraints. We use the standard “han-
dle” model [Bendels et al., 2003; Botsch and Kobbelt, 2004] where parts Hi ⊆ S

6.3 Deformation Model 101

Figure 6.2: We discretize the deformation field f using meshless basis functions
on a volumetric grid.

of the input surface can be translated and rotated in space:

Ec(f) =
∑
Hi∈H

∫
Hi

(
f(x)− (R

(H)
i x + t

(H)
i)

)2
dx (6.3)

The second term Ee is the elastic deformation energy. We employ a standard for-
mulation based on a Poisson system [Sorkine et al., 2004] with co-rotated local
frames [Müller et al., 2002; Sorkine and Alexa, 2007], adapted to the volumetric
settings [Zhou et al., 2005]: We connect all pairs of nodes with overlapping shape
functions and preserve their distance vectors:

Er(f) =

K∑
i=1

∑
j∈N(i)

ωi,j

(
ui − uj −

1

2
(Ri + Rj) (xi − xj)

)2

(6.4)

Here, N(i) denotes accordingly the set of indices of nodes adjacent to node xi.
The ωi,j are the weights of their coupling, which we set according to the Wendland
kernel of the MLS basis (see [Zhou et al., 2005] for a more sophisticated scheme).
The variables Ri are rotation matrices at each node xi that are optimized along
with the node displacements.
Numerical solution: In order to solve for a minimum of the energy, we determine
the derivative with respect to the ui, which is a linear, Laplacian-type system, and
set it to zero. Next, we update the rotation Ri by estimation from their neighbors.
This procedure is iterated until convergence. Details can be found in [Sorkine and
Alexa, 2007]. Because of the special structure of this system, only the right-hand
side changes during the iterations. Therefore, it is possible to prefactor the matrix
so that the inversion can be solved by sparse matrix-vector products, leading to a
substantial speed-up. As suggested in [Sorkine and Alexa, 2007], we employ the
TAUCS library for sparse Cholesky factorization [Toledo, 2003].

6.3.3 Structure Aware Deformation

We now augment our deformation model so that it better preserves the structure of
the deformed geometry. We first employ a general anisotropic deformation model
in order to favor a local preservation of pattern structures. Secondly, we add global
constraints that preserve continuous and discrete patterns.

102 Pattern-Aware Shape Deformation

Figure 6.3: Constraint manifolds are constructed to preserve continuous pattern
structures.

Local Constraints

Locally, we would like geometry to deform in a way that preserves continuous
symmetries. If we look at this from the local perspective of the elastic regularizer,
this means that we would like the deformation to happen along slippable motions
rather than orthogonal to them, because this will only change the parametrization,
but not the geometric shape. Accordingly, we augment Equation 6.4 by using an
anisotropic error quadric in order to weight deformations. We replace the isotropic
error term (ui − uj − 1

2(Ri + Rj) (xi − xj))
2 =: (deli,j)

2 by:

(
del
i,j

)> 1

2
(Qs(xi) + Qs(xj))

(
del
i,j

)
(6.5)

where Qs(x) is computed by a translational slippage analysis:

Qs(x) =

∫
Nh(x)

n(y) · n(y)>dy + 0.01 · I. (6.6)

Here, n(x) is a unit surface normal at x ∈ S, and Nh(x) is the Euclidean h-
neighborhood of x in S. Intuitively, this can be explained as an average of planar
constraints: At each point, the outer products create quadrics that penalize devi-
ations in normal direction only; tangential motions have zero cost. For complex
geometry, the costs in different directions are averaged. Thus, a straight line will
penalize anything but motions in its tangential direction and irregular geometry
will resist any deformation. As we still need a base regularizer that diffuses stretch,
even along perfectly straight lines, we add 1% of the identity matrix.

Global Constraints

Our local constraints consider only translational patterns. In addition, the effect of
the local model weakens with distance: Extended objects such as straight lines or
flat planes can still show significant global bending. Increasing the weights could

6.3 Deformation Model 103

in principal solve this problem but would lead to an impractically ill-conditioned
numerical system. Therefore, we introduce explicit global constraints to maintain
general patterns globally.

We address the continuous patterns first. The discrete case is discussed after-
wards and requires only a few minor modifications. Continuous symmetries are
obtained by slippage analysis [Gelfand and Guibas, 2004]. Let P be a part of con-
stant slippage. It can have up to three slippable motions that are described by d
matrices T1, ...,Td. For each point y ∈ P we then consider the kinematic curve
or surface

M(y) = TR
1 · · ·TR

d (y), (6.7)

which is the constraint manifold for point y (see Figure 6.3, left). We describe
the tangent space of M(y) by a local quadratic energy: In the surface case, let
t1(y), t2(y) denote two orthonormal tangent vectors of M(y). We then form a
local error quadric by

QM(y) = I− t1(y)t1(y)> + t2(y)t2(y)>. (6.8)

It has zero eigenvalue in tangential directions and one in the orthogonal direction.
For the 1-slippable case, the same construction is made with one vector, and a
single zero eigenvector. Given k slippable parts P1, ...,Pk and corresponding sets
of motions, we then build the following global constraint energy that preserves
continuous symmetries:

Ec ∼
k∑
i=1

∫
Pi

dist(y,M(y))2dy (6.9)

We measure the squared distance only in direction orthogonal to the tangent space
of the constraint manifold, i.e., the distance is computed as (y−oy)>QM(y)(y−
oy), where oy is the closest point to y inM(y). Figure 6.3 (right) illustrates the
scheme.

The constraint manifoldsM(y) are not fixed during editing. Maintaining ex-
actly the same constraint manifolds as the original input would prohibit many de-
sirable changes to the shape. Therefore, we dynamically recompute them. We
have chosen to make the translation flexible and keep the rotation fixed for con-
tinuous patterns. This leads to a behavior that is often more intuitive to the user,
as dominant pattern directions retain their orientation during deformation. Trans-
lation invariance is obtained by expressing the constraints in terms of difference
vectors in the actual numerical formulation, described below.
Numerical implementation: We identify the region Pi of each slippable part and
sample them uniformly with points q(i)

j , j = 1...ni of spacing h using Poisson disc
sampling. We then connect the points with their centroid c(i) and form distance
vectors between the centroid and all other sample points, which yields a star geom-
etry (see Figure 6.4). The original, constant distance vectors are d(i)

j = q
(i)
j − c(i).

104 Pattern-Aware Shape Deformation

Figure 6.4: Global constraints are implemented as Poisson constraints (maintain-
ing difference vectors) on a star geometry. By changing the target vectors, the
constraints can be updated dynamically without changing the matrix factorization.

The distance vectors in the deformed model are given by f(d
(i)
j) := f(q

(i)
j) −

f(c(i)). We then minimize the differences in a least squares sense:

Ec =
k∑
i=1

ni∑
j=1

[
f(d

(i)
j)− d

(i)
j

]>
QM(q

(i)
j)
[
f(d

(i)
j)− d

(i)
j

]
(6.10)

Weighting by the error quadric QM(q
(i)
j) constrains the deviation to the tangent

space of the constraint manifolds. Again, only constants in Equation 6.10 change,
so that only the right-hand side of the linear system needs to be updated. This
permits prefactorization, which is crucial for achieving real-time performance.

Discrete patterns: In the discrete case, we use almost exactly the same constraints.
We obtain 1-dimensional constraint manifolds asM(y) = TR(y), where T is the
constant, finite transformation that links two elements in the discrete pattern. In
addition to that, we have to make one important difference in the discrete case: For
continuous patterns, moving surface points along their constraint manifold usually
does not change the geometry substantially. In the discrete case, however, tangen-
tial drift is clearly noticeable because we have complex, non-slippable geometry
that is replicated in discrete entities. We therefore modify the constraints to en-
force a constant step size: We use quadrics QM(y) = I of full rank and use an
equidistant stepping TZ(P) to constraint difference vectors between correspond-
ing parts.

In order to retain full flexibility of the edited shape, we recompute T in each
step by least-squares fitting to the deformed geometry. For this, we fit an affine map
to all correspondence vectors simultaneously that connect any pair of neighboring
pattern elements f(Ti(P)), f(Ti+1(P)) and project to rigid motions by a polar
decomposition.

6.4 Sliding Dockers 105

Figure 6.5: A sliding docker has two different kinds of boundaries: A boundary
orthogonal to the motion direction that cuts through a symmetric area (red) and a
sliding boundary within motion direction that cuts through continuously symmet-
ric area (yellow). Because of its symmetric properties, the transformed discrete
boundary is entirely located in a region that is symmetric under the inverse trans-
formation (blue).

6.4 Sliding Dockers

In this section, we describe how our framework adapts the repetition count of dis-
crete patterns in order to reduce stretch. In Sections 6.4.1 and 6.4.2 we examine
the discrete patterns more closely and try to decompose their geometry into sliding
dockers that allow changing the repetition count seamlessly. In Section 6.4.3 we
describe how sliding dockers are integrated into the deformation framework.

The interactive deformation proceeds in two steps. First, we let the user de-
form the object. In areas covered by discrete patterns, the anisotropic deformation
weights (Equation 6.6) are changed such that deformation along motion field ∂xTx

incurs minimal penalties. In this step, the pattern area acts as a placeholder, allo-
cating space for sliding dockers along the pattern’s motion direction. In the second
step, we compute the stretch within the placeholder, round it, and insert an adapted
number of instances. Then the deformation is recomputed for the new composition
of the object. The two deformation steps are always performed in sequence and
only the adapted shape is presented to the user.

6.4.1 Defining Sliding Dockers

Our first task is to identify pieces of geometry that can be replicated. Let TI(P) ⊂
S be a discrete pattern, as computed in Subsection 6.2.2. We now need to determine
whether it contains elements that can be replicated while continuously interfacing

106 Pattern-Aware Shape Deformation

with each other and with existing geometry.
As shown in Figure 6.5, such elements have to meet two types of boundary

conditions. First, boundaries orthogonal to the motion field have to match each
other; we therefore require symmetry of this geometry with respect to T. Second,
in direction tangential to the motion, we require slippability with respect to T;
by changing the repetition count, the boundaries of the pattern and the rest of the
geometry will slide with respect to each other, and slippability will ensure that we
always have matching geometry.

We perform symmetry analysis to find all geometry within S that is symmetric
with respect to T. We denote this geometry by SD(T):

SD(T) := {x ∈ S|T(x) ∈ S} (6.11)

It is easy to see that the image of SD(T) under T is SD(T−1); in other words, this
is the area the symmetry transform maps to. By slippage analysis, we obtain the
subset of S that is slippable with respect to T. We denote this set by SC(T).

Consider a piece of geometry D ⊂ S . We say that D is a sliding docker with
respect to T if the following two conditions hold. First, the boundary ∂D must be
located entirely in either SD(T), SD(T−1), or SC(T). Second, for every point
x ∈ ∂D in SD(T), the corresponding point T(x) ∈ SD(T−1) must be included
in the boundary ∂D, and vice versa. In other words, we cut out a sliding docker
by cutting through symmetric geometry and slippable area along the motion of the
pattern; when cutting through the symmetric area, we need to use matching cut
lines within SD(T) and SD(T−1) so that the pieces fit together seamlessly later
(see Figure 6.5).

We can easily extend this definition to a whole array of sliding dockers. In
order to find n matching dockers simultaneously, we require that the two bound-
ary conditions are met by n replicated pieces along the motion direction, namely
{D,T(D),T2(D), ...,Tn−1(D)}. We call such an ensemble a sliding docker group.

6.4.2 Finding Sliding Dockers

In order to find sliding dockers, we first need to compute the symmetry informa-
tion. We use the same computational framework as in the previous chapter: Trans-
formation candidates are estimated by matching feature lines, and we obtain the
slippable motions from slippage analysis (Section 6.2.2).
Motion space transform: In order to simplify further computations, we perform a
transformation into motion space (Figure 6.6). In this space, one axis corresponds
to the motion Tx, while the other two axes y, z are Euclidean. In order to set up
the motion space transform, we first determine whether T is a rotation or a pure
translation. For a pure translation, we obtain motion coordinates by building a new
coordinate frame where the first axis is pointing in the direction of the translation.
For rotations, we compute the rotation axis, which gives us a transformation into
cylindrical coordinates around this axis. (We omit the case of helical motions for

6.4 Sliding Dockers 107

Figure 6.6: Transformation into motion space. Similar to a decomposition into
polar coordinates, we represent points by a 1D motion coordinate along T and 2D
coordinates orthogonal to it.

simplicity.) As notational convention, we will denote the motion coordinate as the
x-axis of the motion space.

Next, we build a voxel grid in motion space to represent the symmetry infor-
mation (see Figure 6.7 for an illustration). The side length in the motion dimension
and Euclidean dimensions is chosen such that the spacing in world coordinates is
not larger than the discretization constant ε. Furthermore, we denote by lT the
(integer) number of voxels that represent one application of the motion T.

For each discrete regular pattern (P,T, I) ∈ RD , we transform the scene into
the motion space of T (this is sped up by collecting all patterns that have the same
motion space). We now retrieve the geometry in every non-empty voxel (i, j, k)
and match the content against voxels (i + lT, j, k), corresponding to the trans-
formed geometry. Matching voxels are tagged as symmetric. Next, we compute
the slippability of each voxel and check for each T-slippable voxel (i, j, k) whether
all voxels (i, j, k), (i + 1, j, k), ..., (i + lT, j, k) are T-slippable as well. If so, we
mark the voxel as fully slippable. This means that the geometry at this voxel v, as
well as all geometry along the motion T[0,1](v) is slippable, which is what we need
to cut out a sliding docker. We perform this analysis for all non-empty voxels, as
well as for empty voxels that are direct neighbors of occupied ones. Empty voxels
must map to other empty voxels in order to be fully slippable.
Extracting sliding dockers: After this precomputation, finding a sliding docker is
simple. We start at a symmetric voxel and grow in the (y, z)-plane of the motion
space until we either hit a non-symmetric voxel, or a fully slippable voxel. If
we hit a single non-symmetric voxel, we dismiss the whole attempt. If we only
end at fully slippable voxels (including the empty fully slippable ones), we have
found a sliding docker: We can just cut out an extrusion of the visited region in x-
direction in motion space. By transforming back into world coordinates, we obtain
the final sliding docker. When performing this computation, we always try to find a
maximal sliding docker group by checking for symmetry and full slippability with
respect to T,T2, ... simultaneously (this corresponds to testing voxels in multiples
of lT apart in the x-direction).

The whole computation is attempted for each base of a detected pattern. This

108 Pattern-Aware Shape Deformation

Figure 6.7: Sliding dockers are extracted by region growing in motion space. Start-
ing from a pattern base, we grow orthogonal to the motion direction, using only
symmetric voxels. We proceed until either hitting only fully slippable voxels (suc-
cess) or an unsymmetric voxel (failure).

yields a large number of sliding dockers, most of which overlap. In order to re-
move overlapping pieces, we use a simple greedy algorithm: We take the largest
sliding docker group (i.e., the one with the highest repetition count) and delete all
overlapping sliding docker groups. This is iterated until no more sliding docker
groups are found.

6.4.3 Using Sliding Dockers

We can now integrate the sliding dockers into our deformation framework. First,
we have to set up the first of the two deformation steps. We mark all areas that are
covered by a sliding docker group. At each such point, we deactivate all regular-
izers except from the elastic deformation energy. Let t(y) be a normalized vector
parallel to the tangent ∂xTx(y) of the motion field. We then set the error quadric
of the elastic deformation model (Equations 6.5,6.6) to I − tt> + 0.01 · I. This
makes the geometry easily stretchable in the pattern direction. For the rest of the
model, we use all energy terms as previously described, including global and local
pattern preserving constraints.

We then solve the resulting system. In the result, we measure the stretch of
the pattern region by integrating along lines of the motion direction: We connect
corresponding points in neighboring instances of the pattern elements and compute
the average length. Dividing the value for the deformed and undeformed state gives
us a stretch factor F . We multiply this factor by the number of original repetitions
and round it to the nearest integer to determine the number of elements to insert.

For inserting elements, we again use the motion space. We scale the elements
by the inverse stretch factor in the x-direction of the motion space, concatenate

6.5 Implementation and Results 109

the pieces, and backtransform into world coordinates. We then replace the original
pattern with the adapted one.

Next, we need to make sure that the elastic deformation model undoes the
stretch: If we add more elements, this means that we squeeze smaller replicas
into the original space. The energy of Equation 6.4 would then try to preserve
this configuration in an as-rigid-as-possible manner. Therefore, we augment the
distance vectors: Instead of the distances of the squeezed elements, we employ the
original distance vectors. For basis functions that overlap regions that are stretched
by different factors, we compute a weighted average according to the respective
kernel function of that node.

As error quadrics, we use full rank identity matrices, aiming at preserving the
original shape of the inserted pattern elements. A small detail helps at this point
to improve the quality of the results: At the boundary between prestreched and un-
streched geometry, the elastic deformation model tends to produce artifacts. There-
fore, we set different error quadrics for pairs of nodes that connect across normal
geometry and sliding docker areas. We use a quadric I− tt> in order to make the
boundary slidable, not diffusing the errors introduced by the stress discontinuity.

Assembling a new shape by inserting stretched patterns creates shapes that
are only C0-continuous at the boundaries. The elastic deformation model will
aim at undoing the deformation, but the subspace model cannot represent high
frequency details so that a visible artifact at the boundary remains. In order to
avoid this problem, we need to make sure that the new base shape that we create
is actually smooth and the deformation is low frequency. Therefore, we use a
windowing function g(x) in the direction of the motion. We transition from the
constant stretch factor of 1 to a different stretch s using a smooth step function. We
employ a cosine step function (1− 0.5s cosx) to transition from stretch 1 to a new
constant stretch of s, and a similar cosine step leads back to 1. This function can
be integrated analytically (to obtain the positions, rather than their derivatives) and
inverted so that we can compute the inner stretch s that makes all instances fit into
the placeholder. We fix the support of the smooth steps to always cover a support
of at least 2h each, thereby creating a low-frequency distortion that remains within
the Nyquist limit of the deformation model.

6.5 Implementation and Results

We have implemented the described shape editing system in C++ and evaluated it
on a standard PC with an Intel Core-2 Quad CPU with 2.6GHz cores and 8GB of
RAM. Our implementation is single-threaded. As benchmark data, we have col-
lected a number of models from well-known commercial 3D model libraries. We
use models from the Digimation Archive (www.digimation.com) and from Dosch
Design (www.doschdesign.com). We also include an example from [Kraevoy et al.,
2008]. For models with large triangles, we perform one or more 1:4 subdivision
steps to obtain a sufficiently densely sampled mesh such that even elastic deforma-

110 Pattern-Aware Shape Deformation

(a) original object (b) no elasticity (c) no local constraints

(d) no global constraints (e) full energy

Figure 6.8: The effect of individual energy terms in the variational deformation
framework. Leaving out any single energy term leads to artifacts. Local constraints
are important to distribute stretch into regions that are less affected; in (c) stretch is
distributed uniformly which leads to artifacts e.g. in the tank caps. Without global
constraints bending artifacts appear near the ladder (d).

tion with bending can be represented.
Figures 6.1, 6.9, 6.10, 6.12 and 6.13 show a number of example models that

have been edited using our approach. Please refer to the accompanying video for
a demonstration of interactive editing. The deformation results produced by the
technique are quite plausible; for many of the examples, it would be challenging to
identify the original model without the highlighting. Some minor artifacts can be
seen due to small-scale irregularities in the input geometry (see discussion in the
next section), which cause some patterns to only be detected in chunks that are not
constrained simultaneously, leading to a small amount of global deformation.

The blue examples use only the elastic energy term (Equation 6.2), with dis-
crete relaxation still enabled. On the one hand, these examples demonstrate that the
pattern-aware continuous deformation model is crucial for maintaining the struc-
ture of the original model. On the other hand, the severe deformations shown in
these examples serve as a stress test for sliding dockers. Despite strong bend-
ing, our approach reliably adapts the repetition count of the patterns without any
seams, discontinuities, gaps, or similar artifacts. In some models, the triangula-
tion becomes visible; this could be resolved by a more elaborate adaptive mesh
subdivision scheme.
Limitations of the implementation: Our implementation uses only translational
patterns. Continuous rotational pattern are preserved implicitly by the local con-
straints, but global constraints would probably improve the results. Furthermore,
discrete constraints are only imposed on single sliding docker groups and do not
connect multiple groups that form the same pattern.
Parameters: Our algorithm is not very sensitive to parameter settings, and we

6.5 Implementation and Results 111

bench

ballustrade

airbridge

Figure 6.9: Results of our pattern-aware shape editing method. The original input
is shown in orange and editing results are shown in grey and blue. The repetition
counts of discrete patterns were automatically adapted by the framework in both
grey and blue results. For the blue models, pattern preservation constraints were
disabled and only the elastic energy was used, in order to allow for more severe
deformation.

112 Pattern-Aware Shape Deformation

canvas chair

castle

Figure 6.10: Results for more complex shapes. Both the chair and the castle
contain multiple patterns with linear independent directions. See also Figure 6.11
for an illustration of stretch distribution.

6.5 Implementation and Results 113

stretched horizontally original stretched vertically

Figure 6.11: Stretch distribution in the canvas chair example: Horizontal stretch
in the upper part is mostly distributed on two patterns between the user constraints.
Here, a single pattern would not be able to express horizontal stretch, however, the
combination of both yield plausible results. Similarly, another combination of the
same patterns compensates vertical stretch in the shown configuration.

extended ladder bending artifact

Figure 6.12: Different variations for oiltank data set. Please note how stretch
is distributed mostly within the cylindrical parts of the tank. Both caps and the
ladder are relatively unaffected. However, some minor artifacts can appear due to
the least-squares optimization scheme and some undetected patterns (visible in the
slight bending of the ladder).

114 Pattern-Aware Shape Deformation

houses of parliament

platform

Figure 6.13: Results for large objects. The object “houses of parliament” is the
most complex example that we tested and contains a large number of regular pat-
terns. Our method can successfully exploit these patterns to reduce stretch. Be-
cause of the limited resolution of the deformation field, nearby patterns can pro-
duce locking constraints and result in distortions shown in the detail view.

6.6 Discussion 115

mostly use default parameters everywhere. Only one parameter has a strong effect
on the quality of the results: For inaccurate models, we need to set the error thresh-
old for matching “symmetric” line features. For objects with gross irregularities
in the intended patterns, care must be taken not to set excessively large thresholds
such that unrelated elements are matched. Two additional parameters are adapted
manually for efficiency reasons. For complex models (such as the “houses of par-
liament”), we lower the minimum size of relevant features (default: 2.5% l(S)) in
order to detect finer-grained patterns. Furthermore, we increase the resolution of
the subspace deformation model when necessary (the “houses of parliament” use
2.5% l(S) instead of 5% l(S), which leads to a reduced interactive frame-rate).
Timings: As shown in the video, editing can be done interactively for all presented
models. The structure analysis in preprocessing takes up to a few minutes for each
model, and prefactorization of the linear systems adds another ten seconds.
Effect of individual energy terms: In Figure 6.8, we show that all ingredients
of the variational framework are necessary to obtain good results. Deactivating
the elastic energy means that no stretch is diffused and no reasonable editing is
possible. The local constraints are helpful as they provide a better base regularizer
for object parts where no patterns are found. The global constraints are necessary
to keep objects straight; without them, global bending cannot be prevented.
Comparison to related work: Figure 6.12 shows the “oil tank” model used by
Kraevoy et al. [Kraevoy et al., 2008]. Our technique achieves comparable results,
while detecting the stretch axes fully automatically (we do not need to align the
model with the global coordinate axes). Since we only penalize structural devia-
tions in a least-squares sense, we obtain a minimal amount of residual bending (see
the close-up; in particular, the ladder yields two separate sliding docker groups).
The “castle” example in Figure 6.10 demonstrates that our approach is more gen-
eral: The castle can be stretched in different, non-orthogonal directions, which
are determined fully automatically by our pattern-aware structure model. This is
not possible with the previous approach (see also the video and the “canvas chair”
example). In comparison to the original docking site method presented in the pre-
vious chapter, our new approach can adapt the discrete structure of the model in
real-time in response to continuous free-form deformation, instead of being driven
by manually specified rigid shape operations. Furthermore, sliding dockers are
found in examples where the analysis technique of our previous method fails to
detect global cuts, such as the arches in Figure 6.1.

6.6 Discussion

We have presented a structure-aware deformation technique that uses the elemen-
tary assumption of preserving regular patterns, which we model as 1-parameter
partial symmetry groups. We have developed a variational optimization technique
that preserves such structures in a least squares sense, while distributing the re-
maining stretch uniformly. In addition, we introduced sliding dockers that allow

116 Pattern-Aware Shape Deformation

the technique to fully automatically insert or delete repeated elements in discrete
patterns in order to minimize distortions due to free-form deformation. Further-
more, we have presented a numerical framework that uses a subspace formulation
with prefactored linear systems to implement the presented approach efficiently
and robustly in a real-time system.

One limitation of the current approach is the handling of small-scale irregu-
larities in the input 3D model. Objects that appear perfectly regular often have
geometric inconsistencies because the artist did not accurately align parts of the
original model; errors of 10% are not uncommon. While we can compensate for
this by introducing a small numerical threshold in the pattern detection algorithm,
irregularities in the input can cause the shape analysis stage to overlook visually
salient patterns. For the “houses of parliament” model, we had to manually adjust
the original geometry in one place to repair a single discrete pattern. Making the
analysis stage more robust to approximate regularity is a natural avenue for future
work, possibly using a feature graph matching approach as in Chapter 4. A fur-
ther limitation, and another interesting avenue for future work, is that all sliding
docker groups currently need to be mutually disjoint. Handling overlapping and
hierarchical patterns could extend the applicability of our method to more complex
structures.

Another limitation of the presented approach is that it only handles rigid sym-
metries. Many interesting structural regularities are not easily captured by rigid
patterns. In future work, we would like to investigate structure models that utilize
more invariant notions of similarity, possibly incorporating scaling and intrinsic
isometries. Finally, the presented work focuses on 1-parameter patterns. Future
work could pursue a more comprehensive representation of the algebraic structure
of partial symmetries for free-form shape deformation. This direction can mean-
ingfully advance the capabilities of interactive shape editing tools.

7 Conclusions

Dunkel war’s, der Mond schien helle,
Als ein Wagen mit Blitzesschnelle
Langsam um die Ecke fuhr...

unkown author

In this chapter, we give a summary of the main contributions of the thesis and
discuss limitations, insights, and potential directions for future work. The thesis is
concluded by a few personal remarks of the author.

Part I

In the first part of the thesis, we presented two novel feature detection methods for
unstructured point cloud data in the context of correspondence analysis and sym-
metry detection. The first feature detector considers points as features that have a
local neighborhood with minimal slippage. As a result, we obtain feature points
that are particularly well-suited for local alignment since we optimize for maxi-
mally constrained neighborhoods with respect to the auto-alignment problem i.e.
registration of a local neighborhood with itself. We showed that our method pro-
duces stable keypoints comparable to and in some scenarios even better than state-
of-the-art methods. In contrast to previous methods, we usually obtain a larger set
of stable keypoints. Further, we demonstrated the applicability of our method to
global registration for rigid and deformable objects as well as symmetry detection.
For symmetry detection, however, the results leave room for improvement: The
combination of heavy loss of information in the feature representation and a rather
strict strategy for finding building blocks lead to recognition problems in noisy
scanner data.

We improved upon the previous attempt to detect symmetries significantly by
two fundamental changes: First, we considered lines as features instead of key-
points and second, an improved decomposition strategy. The proposed technique

117

118 Conclusions

to extract line features is significantly faster than the presented keypoint extraction
method while the resulting line features carry highly descriptive information of the
underlying surface. Keypoints can be seen as implicitly encoded in the line fea-
ture representation by two neighboring line feature with different directions. These
implicit keypoints can be used to generate candidate transformations between two
pairs of feature lines and thereby bootstrap the randomized search strategy in a
promising direction.

Further, we realized that partial symmetry detection is substantially different
from building block decomposition. For a robust decomposition technique, we
have to consider partial symmetry before we decompose the shape into parts; the
keypoint-based symmetry detection technique [Berner et al., 2008] tries to combine
both into one step, symmetry detection and decomposition, which results in rejec-
tion of many symmetric instances. Due to noise, we will always lose some features
and hallucinate other features, that are not present in the data. Consequently, we
cannot demand a consistent set of features across all instances of a building block
and the algorithm has to adapt to that. In the improved algorithm, we first de-
tect a set of partial symmetries without considering their interrelationship; we only
gather pairwise evidence in the line feature representation individually for each
potential instance. Here, the line feature representation provides a fast verification
test (the set of line features is usually two orders of magnitude smaller than the
original point data while still being highly discriminative). In the following step,
we extract the most common building blocks directly from the original point data.
This way we avoid to miss instances where some features are absent.

The presented approach is a major contribution of this thesis. It allows sym-
metry detection and building block decomposition on large datasets that contain
many different symmetries without restrictions to special cases. Techniques that
are based on transformation voting have serious difficulties here because the trans-
formation space clutters and it becomes hard and at some point impossible to iden-
tify meaningful symmetries. In comparison to related work, our method can handle
much larger data sets (up to two orders of magnitude more complex) as they occur
in city scanning and is able to detect a large number of building blocks in quan-
tities that have not been demonstrated before by existing methods. Our method
works efficiently due to the line feature representation that allows rapid, reliable
geometric matching.

A limitation of our approach is that we depend on feature lines. On some
models we might not find a suitable set of features. This is a limitation that trans-
formation voting approaches do not have. However, in the data we observed so far
this was not an issue.

Based on the line feature representation, a large number of meaningful sym-
metry candidates are generated that are rejected in a later stage of the algorithm
due to our decomposition strategy. Again, we are limited by performing symmetry
detection and shape decomposition together in one step. Decoupling the detection
of partial symmetry from the decomposition process might result in a much more
robust and effective way to retrieve building blocks. This is related to the method

119

presented in Chapter 5 where we compute partial symmetries and find shape opera-
tions defined by global cuts through symmetric area. Cutting a shape with all dock-
ing sites simultaneously could lead to a set of canonical building blocks, however,
only for perfect symmetries. The main challenges of building block decomposi-
tion for general scanner data are caused by noise, outliers, and holes in the data.
Therefore, finding canonical building blocks in scanner data is still an interesting
problem for future work.

Further, it would be rewarding to change the notion of strictly disjoint building
blocks to a relaxed definition that allows overlapping parts, nested structures, and
regular patterns because this would provide us with more information and yields
inherent properties that we can exploit in the detection process.

The presented method can be characterized as unsupervised symmetry detec-
tion where only a small set of data-dependent parameters are provided by the user.
As an alternative, semi-supervised techniques take a small number of training ex-
amples as additional input and try to learn how to recognize instances of this class
in the data. It is not clear yet how one can formulate a learning-based symmetry
detection algorithm, however, first results in this direction show potential [Sunkel
et al., 2011]. In future work, we would like to combine canonical low-level fea-
tures, such as the presented line features, with machine learning techniques in order
to detect more general types of symmetries.

Part II

In the second part of the thesis, we presented two methods for example-based 3D
content creation by utilization of their symmetry structure. First, we discovered
that partial symmetries yield docking sites that allow us to replace geometry and
thus produce variations of the exemplar while providing strong guarantees of the
resulting shapes; all output shapes are r-similar to the input shape. The concept
of docking sites is derived directly from partial symmetry, and represents the first
theoretically sound framework for synthesizing r-similar shapes. This concept is
a major contribution of this thesis and defines a first step in the relatively unex-
plored area of inverse procedural modeling of 3D shapes. We developed a method
that systematically extracts docking sites from an exemplar and computes a shape
grammar that produces r-similar shapes. Our method can handle large triangles
meshes as well as point cloud data and offers semi-automatic modeling and fully
automatic creation of random variations.

A major advantage of our method is the guarantee that every output object will
be r-similar to the input; a replacement operation will always lead to a complete
model since we enforce global partitioning in the docking site extraction. This
strategy, however, leads to a fundamental restriction of the space of models that we
can generate with our technique. In future work, we would like to overcome this
limitation and extend our framework to cover the whole space of r-similar shapes.
We believe that by cutting the surface at all docking sites simultaneously results in

120 Conclusions

a canonical set of dockers that span the complete space of r-similar objects.
Currently, our technique is limited to a single exemplar as input. However,

for inverse procedural modeling it would be useful to take multiple input exam-
ples into account in order to learn meaningful subspaces out of the overall space
of constructible models. Another exciting direction for future work would be to
generalize the concept of docking sites to different notions of symmetry. The cur-
rent method is not applicable to organic structures. Consequently, we would like
to define a special kind of symmetry that captures organic structures. In combi-
nation with multiple input examples, one could build a powerful tool for inverse
procedural modeling of organic content like plants that only requires a set of input
examples.

In the second chapter of Part II, we proposed a new type of deformation regu-
larization that maintains the inherent regularities of a shape and thus preserves its
structure. We developed a variational model that is derived by considering a shape
as a collection of 1-parameter symmetry groups. As mentioned above, the method
presented in Chapter 5 is restricted to global cuts through the object. Here, we
extended the concept of docking sites to sliding dockers that allow local changes
in the repetition count of a pattern without the requirement to find a global cut.
Further, we formulated all constraints of the deformation model, including discrete
changes of regular patterns, in such a way that the system matrix is constant which
allows fast solving using prefactorization.

There are some limitations of the described method that could be addressed in
future work. In many 3D shapes we find nearly regular patterns; artists often create
patterns manually, e.g., via moving copy & paste blocks of geometry. Visually,
these patterns appear perfectly regular but a closer look reveals their imperfec-
tion. By relaxation of exact regular patterns to nearly regular patterns the method
would be applicable to much larger range of objects. The same is true for approxi-
mate symmetries: Sometimes the geometry of pattern elements varies a bit but we
would still think of them as a regular pattern. However, allowing more variability
also introduces the chance of possible artifacts due to ambiguities. Therefore, this
relaxation might be more than just changing the thresholds.

Similar to the original docking site technique, sliding dockers are currently re-
stricted to rigid symmetries; here, translational 1-parameter patterns. A straightfor-
ward extension would be to include rotational or helical patterns in the model. And
of course, it would also be interesting to incorporate 2-parameter and 3-parameter
patterns in the deformation model. However, a much more interesting direction
of future work, also in the context of this whole thesis, is to define symmetry in
organic objects and to extend the method to organic patterns since they also appear
frequently in natural objects. Most organic objects (e.g. plants, animals, land-
scapes) are created by a complex interplay of different physical, chemical, and bi-
ological processes. Intuitively, these objects follow rules that one could describe in
a formal model. However, finding a suitable model that describes a class of objects
is a hard task, even for a specific subclass of objects. A major challenge for future
research will be to develop models that capture the structure of general or specific

121

objects. Additionally, a model has to be compact enough to allow computational
efficiency, e.g., in the detection process. This problem is not specific for organic
structures but also appears in man-made shapes such as buildings. The methods
presented in Part II use rather limited models in comparison to the full range of
possibilities in manufacturing or architecture. Research of more expressive ways
to capture structure will be one of the fundamental problems in the future direction
of content creation and shape understanding.

Personal Remarks

In the beginning of this thesis, we had a clear picture in mind of how symmetry can
be detected and used to modify shapes for high-quality content generation. While
the exact shape of our plan was still hiding in the mist of future work ahead of
us, we were quite certain about the elementary structure of the problem. Intuition
and basic knowledge about symmetry had forged a vague idea that we just had to
investigate in more detail and decent engineering would solve all arising problems.
However, as time went by, we discovered that our view of the problem was fun-
damentally wrong and the certainty of our plan vanished. The reason was simple:
We focused too much on symmetry and somehow ignored the opposite. We were
trapped by the idea of building blocks.

The breakthrough came at the point where we considered all aspects of partial
symmetry - symmetric and non-symmetric parts. This change of perspective pre-
sented symmetry in a different light and finally led to the concept of docking sites.
Our intuition from the beginning was not entirely wrong but lacked deeper under-
standing. This experience told me that no matter how confident and plausible a
plan appears to be, it is always beneficial to take a step back and look from another
point of view. Also sometimes, you need to think about the contrary.

122 Conclusions

Bibliography

Adams, B., Ovsjanikov, M., Wand, M., Seidel, H.-P., and Guibas, L. J. (2008).
Meshless modeling of deformable shapes and their motion. In Symposium on
Computer Animation.

Aliaga, D., Rosen, P., and Bekins, D. (2007). Style grammars for interactive visu-
alization of architecture. IEEE Trans. Vis. Comp. Graph., 13(4):786–797.

Allen, B., Curless, B., and Popović, Z. (2003). The space of human body shapes:
reconstruction and parameterization from range scans. In SIGGRAPH ’03: ACM
SIGGRAPH 2003 Papers, pages 587–594, New York, NY, USA. ACM.

Alt, H., Mehlhorn, K., Wagener, H., and Welzl, E. (1988). Congruence, similarity
and symmetries of geometric objects. Discrete Comput. Geom., 3(3):237–256.

Anguelov, D., Srinivasan, P., Pang, H.-C., Koller, D., Thrun, S., and Davis, J.
(2004). The correlated correspondence algorithm for unsupervised registration
of nonrigid surfaces. In NIPS.

Atallah, M. J. (1985). On symmetry detection. IEEE Trans. Computers, pages
663–666.

Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes.
Pattern Recognition, 13(2):111–122.

Barla, P., Breslav, S., Thollot, J., Sillion, F., and Markosian, L. (2006). Stroke
pattern analysis and synthesis. Computer Graphics Forum, 25(3).

Ben-Chen, M., Butscher, A., Solomon, J., and Guibas, L. J. (2010). On dis-
crete killing vector fields and patterns on surfaces. Comput. Graph. Forum,
29(5):1701–1711.

Ben-Chen, M., Weber, O., and Gotsman, C. (2009). Variational harmonic maps for
space deformation. ACM Transactions on Graphics, 28(3).

Bendels, G. H., Klein, R., and Schilling, A. (2003). Image and 3d-object editing
with precisely specified editing regions. In Vision, Modeling and Visualisation
2003, pages 451–460.

123

124 BIBLIOGRAPHY

Berner, A., Bokeloh, M., Wand, M., Schilling, A., and Seidel, H.-P. (2008).
A graph-based approach to symmetry detection. In Proc. Symp. Point-Based
Graphics 2008.

Berner, A., Wand, M., Mitra, N. J., Mewes, D., and Seidel, H.-P. (2011). Shape
analysis with subspace symmetries. Computer Graphics Forum, 30(2). Proceed-
ings Eurographics 2011.

Besl, P. J. and Mckay, N. (1992). A method for registration of 3-d shapes. IEEE
Trans. Pattern Anal. Mach. Intell., 14(2).

Bhat, P., Ingram, S., and Turk, G. (2004). Geometric texture synthesis by example.
In Symp. Geometry Processing.

Blanz, V. and Vetter, T. (1999). A morphable model for the synthesis of 3d faces.
In Proceedings of the 26th annual conference on Computer graphics and inter-
active techniques, SIGGRAPH ’99, pages 187–194.

Bokeloh, M., Berner, A., Wand, M., Schilling, A., and Seidel, H.-P. (2008). Slip-
page features. Technical Report WSI-2008-03, University of Tübingen, WSI/-
GRIS.

Bokeloh, M., Berner, A., Wand, M., Seidel, H.-P., and Schilling, A. (2009). Sym-
metry detection using feature lines. Computer Graphics Forum, 28(2).

Bokeloh, M., Wand, M., Koltun, V., and Seidel, H.-P. (2011). Pattern-aware shape
deformation using sliding dockers. ACM Transactions on Graphics, 30(6).

Bokeloh, M., Wand, M., and Seidel, H.-P. (2010). A connection between partial
symmetry and inverse procedural modeling. ACM Trans. Graph., 29:104:1–
104:10.

Botsch, M. and Kobbelt, L. (2004). An intuitive framework for real-time freeform
modeling. ACM Transactions on Graphics, 23(3):630–634.

Botsch, M. and Sorkine, O. (2008). On linear variational surface deformation meth-
ods. IEEE Transactions on Visualization and Computer Graphics, 14(1):213–
230.

Brown, B. and Rusinkiewicz, S. (2007). Global non-rigid alignment of 3-D scans.
ACM Transactions on Graphics (Proc. SIGGRAPH), 26(3).

Cabral, M., Lefbvre, S., Dachsbacher, C., and Drettakis, G. (2009). Structure-
preserving reshape for textured architectural scenes. Computer Graphics Forum,
28(2).

Castro, E. D. and Morandi, C. (1987). Registration of translated and rotated im-
ages using finite fourier transforms. IEEE Trans. Pattern Anal. Mach. Intell.,
9(5):700–703.

BIBLIOGRAPHY 125

Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. (2011). Probabilistic
reasoning for assembly-based 3d modeling. In ACM SIGGRAPH 2011 papers,
SIGGRAPH ’11, pages 35:1–35:10.

Chaudhuri, S. and Koltun, V. (2010). Data-driven suggestions for creativity support
in 3d modeling. In ACM SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA ’10,
pages 183:1–183:10.

Chen, L. and Meng, X. (2009). Anisotropic resizing of model with geometric
textures. In Conf. on Geometric and Physical Modeling (SPM), pages 289–294,
New York, NY, USA. ACM.

Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple
range images. Image Vision Comput., 10(3):145–155.

Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature
space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619.

Coquillart, S. (1990). Extended free-form deformation: a sculpturing tool for 3d
geometric modeling. In Proc. Siggraph, pages 187–196.

Efros, A. A. and Leung, T. K. (1999). Texture synthesis by non-parametric sam-
pling. In Proc. Int. Conf. Comp. Vision.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24:381–395.

Fisher, M., Savva, M., and Hanrahan, P. (2011). Characterizing structural relation-
ships in scenes using graph kernels. ACM Trans. Graph., 30:34:1–34:12.

Frome, A., Huber, D., Kolluri, R., Bulow, T., and Malik, J. (2004). Recognizing
objects in range data using regional point descriptors. In Proceedings of the
European Conference on Computer Vision (ECCV).

Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A.,
Rusinkiewicz, S., and Dobkin, D. (2004). Modeling by example. ACM Trans.
Graph., 23(3).

Gal, R. and Cohen-Or, D. (2006). Salient geometric features for partial shape
matching and similarity. ACM Trans. Graph., 25(1):130–150.

Gal, R., Shamir, A., Hassner, T., Pauly, M., and Cohen-Or, D. (2007). Surface
reconstruction using local shape priors. In Proc. Symp. Geometry Processing.

Gal, R., Sorkine, O., Mitra, N., and Cohen-Or, D. (2009). iwires: An analyze-and-
edit approach to shape manipulation. ACM Trans. Graph., 28(3).

126 BIBLIOGRAPHY

Gatzke, T., Grimm, C., Garland, M., and Zelinka, S. (2005). Curvature maps for
local shape comparison. In In Shape Modeling International, pages 244–256.

Gelfand, N. and Guibas, L. J. (2004). Shape segmentation using local slippage
analysis. In SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 214–223, New York, NY, USA.
ACM.

Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M. (2003). Geometrically
stable sampling for the icp algorithm. In Proc. Int. Conf. 3D Digital Imaging
and Modeling.

Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. (2005). Robust global
registration. In Proc. Symp. Geometry Processing, pages 197–206.

Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. (1996). The lumi-
graph. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 43–54, New York, NY, USA.
ACM Press.

Gumhold, S., Wang, X., and MacLeod, R. (2001). Feature extraction from point
clouds. In Proc. Meshing Roundtable.

Harris, C. and Stephens, M. (1988). A combined corner and edge detection. In
Proc. 4th Alvey Vision Conference, pages 147–151.

Hart, J. and Flynn, O. C. P. (1997). Similarity hashing: A computer vision solution
to the inverse problem of linear fractals. Fractals, 5:35–50.

Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., and Seidel, H.-P. (2009). A
Statistical Model of Human Pose and Body Shape. Comput. Graph. Forum,
28(2):337–346.

Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. (2001).
Image analogies. In Proc. Siggraph 2001, pages 327–340.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1992). Sur-
face reconstruction from unorganized points. In Proc. Siggraph 1992.

Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B.,
and Shum, H.-Y. (2006a). Subspace gradient domain mesh deformation. ACM
Trans. Graph., 25(3):1126–1134.

Huang, Q., Mech, R., and Carr, N. (2009). Optimizing structure preserving em-
bedded deformation for resizing images and vector art. In Pacific Graphics.

Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., and Pottmann, H. (2006b). Re-
assembling fractured objects by geometric matching. ACM Trans. Graphics,
25(3):569–578.

BIBLIOGRAPHY 127

Huber, D. F. and Hebert, M. (2001). Fully automatic registration of multiple 3D
data sets. In IEEE Computer Society Workshop on Computer Vision Beyond the
Visible Spectrum (CVBVS 2001).

Ijiri, T., Mĕch, R., Igarashi, T., and Miller, G. (2008). An example-based procedu-
ral system for element arrangement. Computer Graphics Forum, 27(3).

Johnson, A. E. and Hebert, M. (1999). Using spin images for efficient object
recognition in cluttered 3d scenes. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 21(5):433–449.

Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. (2007). Harmonic
coordinates for character articulation. ACM Trans. Graph., 26.

Ju, T., Schaefer, S., and Warren, J. (2005). Mean value coordinates for closed
triangular meshes. ACM Trans. Graph., 24:561–566.

Kalogerakis, E., Hertzmann, A., and Singh, K. (2010). Learning 3D Mesh Seg-
mentation and Labeling. ACM Transactions on Graphics, 29(3).

Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., and Rusinkiewicz, S.
(2003a). A reflective symmetry descriptor for 3d models. Algorithmica,
38(1):201–225.

Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2003b). Rotation invariant
spherical harmonic representation of 3D shape descriptors. In Proc. Symp. Ge-
ometry Processing.

Kim, V., Lipman, Y., Chen, X., and Funkhouser, T. (2010). Mobius transformations
for global intrinsic symmetry analysis. Computer Graphics Forum (Symposium
on Geometry Processing), 29(5).

Kraevoy, V., Julius, D., and Sheffer, A. (2007). Shuffler: Modeling with inter-
changeable parts. In Pacific Graphics 2007.

Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. (2008). Non-homogeneous
resizing of complex models. ACM Trans. Graph., 27(5):1–9.

Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. (2003). Graphcut
textures: image and video synthesis using graph cuts. ACM Trans. Graph.,
22(3):277–286.

Lagae, A., Dumont, O., and Dutré, P. (2005). Geometry synthesis by example. In
Conf. Shape Modeling and Applications.

Lai, Y.-K., Hu, S.-M., Gu, D. X., and Martin, R. R. (2005). Geometric texture syn-
thesis and transfer via geometry images. In Symp. Solid and Physical Modeling,
pages 15–26.

128 BIBLIOGRAPHY

Lamdan, Y. and Wolfson, H. J. (1988). Geometric hashing: A general and efficient
model-based recognition scheme. In Proc. Int. Conf. Computer Vision.

Leordeanu, M. and Hebert, M. (2005). A spectral technique for correspondence
problems using pairwise constraints. In International Conference of Computer
Vision (ICCV), volume 2, pages 1482 – 1489.

Li, X. and Guskov, I. (2005). Multiscale features for approximate alignment of
point-based surfaces. In Symp. Geometry Processing, pages 217–226.

Li, X., Guskov, I., and Barhak, J. (2006). Robust alignment of multi-view range
data to cad model. In SMI ’06: Proceedings of the IEEE International Con-
ference on Shape Modeling and Applications 2006, page 17, Washington, DC,
USA. IEEE Computer Society.

Lipman, Y., Chen, X., Daubechies, I., and Funkhouser, T. (2010). Symmetry fac-
tored embedding and distance. ACM Trans. Graph., 29:103:1–103:12.

Lipman, Y., Levin, D., and Cohen-Or, D. (2008). Green coordinates. ACM Trans.
Graph., 27.

Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. (2008). A local/global
approach to mesh parameterization. Computer Graphics Forum, 27(5):1495–
1504.

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. In Int.
J. Computer Vision, volume 20, pages 91–110.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In
Proceedings of the International Conference on Computer Vision-Volume 2 -
Volume 2, ICCV ’99.

Loy, G. and Eklundh, J. (2006). Detecting symmetry and symmetric constellations
of features. In Proc. Europ. Conf. Computer Vision, pages 508–521.

Martinet, A., Soler, C., Holzschuch, N., and Sillion, F. (2006). Accurate detection
of symmetries in 3d shapes. ACM Trans. on Graphics, 25(2):439 – 464.

Merrell, P. (2007). Example-based model synthesis. In Symp. Interactive 3D
Graphics and Games, pages 105–112.

Merrell, P. and Manocha, D. (2008). Continuous model synthesis. ACM Trans.
Graph., 27(5):1–7.

Merrell, P., Schkufza, E., and Koltun, V. (2010). Computer-generated residential
building layouts. In ACM SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA
’10, pages 181:1–181:12.

BIBLIOGRAPHY 129

Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. (2011). Interactive
furniture layout using interior design guidelines. ACM Trans. Graph., 30:87:1–
87:10.

Mezger, J., Thomaszewski, B., Pabst, S., and Straßer, W. (2008). Interactive
physically-based shape editing. In Symposium on Solid and Physical Model-
ing, pages 79–89. ACM.

Miller, W. (1972). Symmetry Groups and their Applications. Academic Press.

Mitra, N. J., Bronstein, A., and Bronstein, M. (2010). Intrinsic regularity detection
in 3d geometry. In Proceedings of the 11th European conference on computer vi-
sion conference on Computer vision: Part III, ECCV’10, pages 398–410, Berlin,
Heidelberg. Springer-Verlag.

Mitra, N. J., Gelfand, N., Pottmann, H., and Guibas, L. (2004). Registration of
point cloud data from a geometric optimization perspective. In Symp. Geometry
Processing.

Mitra, N. J., Guibas, L., Giesen, J., and Pauly, M. (2006a). Probabilistic finger-
prints for shapes. In SGP ’06: Proceedings of the fourth Eurographics sym-
posium on Geometry processing, pages 121–130, Aire-la-Ville, Switzerland,
Switzerland. Eurographics Association.

Mitra, N. J., Guibas, L., and Pauly, M. (2007). Symmetrization. In ACM Transac-
tions on Graphics, volume 26.

Mitra, N. J., Guibas, L. J., and Pauly, M. (2006b). Partial and approximate sym-
metry detection for 3d geometry. ACM Trans. Graph., 25(3):560–568.

Mitra, N. J. and Pauly, M. (2008). Symmetry for architectural design. In Advances
in Architectural Geometry, pages 13–16.

Moravec, H. P. (1981). Rover visual obstacle avoidance. In The 7th International
Joint Conference on Artificial Intelligence, Vancouver, British Columbia, pages
785–790. IJCAI.

Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and B., C. (2002). Stable real-
time deformations. In Proc. Symp. Computer Animation (SCA), pages 49–54.

Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Gool, L. V. (2006). Procedural
modeling of buildings. ACM Trans. Graph., 25(3):614–623.

Müller, P., Zeng, G., Wonka, P., and Gool, L. V. (2007). Image-based procedural
modeling of facades. ACM Trans. Graph., 26(3).

Neubert, B., Franken, T., and Deussen, O. (2007). Approximate image-based tree-
modeling using particle flows. ACM Trans. Graph., 26(3).

130 BIBLIOGRAPHY

Nguyen, M. X., Yuan, X., and Chen, B. (2005). Geometry completion and detail
generation by texture synthesis. The Visual Computer, 21(9–10):669–678.

Novotni, M. and Klein, R. (2003). 3d zernike descriptors for content based shape
retrieval. In SM ’03: Proceedings of the eighth ACM symposium on Solid mod-
eling and applications, pages 216–225, New York, NY, USA. ACM.

Ohtake, Y., Belyaev, A., and Seidel, H.-P. (2004). Ridge-valley lines on meshes
via implicit surface fitting. In Proc. Siggraph, pages 609–612.

Ovsjanikov, M., Sun, J., and Guibas, L. (2008). Global intrinsic symmetries of
shapes. In Eurographics Symposium on Geometry Processing (SGP).

Parish, Y. I. H. and Müller, P. (2001). Procedural modeling of cities. In Proc.
Siggraph 2001, pages 301–308.

Pauly, M., Keiser, R., and Gross, M. (2003). Multi-scale feature extraction on
point-sampled models. In Proc. Eurographics.

Pauly, M., Mitra, N., Giesen, J., Gross, M., and Guibas, L. J. (2005). Example-
based 3d scan completion. In Proc. Symp. Geometry Processing.

Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. (2008). Dis-
covering structural regularity in 3D geometry. ACM Transactions on Graphics,
27(3).

Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., and Funkhouser, T.
(2006). A planar-reflective symmetry transform for 3D shapes. ACM Transac-
tions on Graphics (Proc. SIGGRAPH), 25(3).

Prusinkiewicz, P. and Lindenmayer, A. (1990). The Algorithmic Beauty of Plants.
Springer Verlag.

Raviv, D., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2007). Symme-
tries of non-rigid shapes. In Proc. Non-rigid Registration and Tracking (NRTL)
workshop. See Proc. of International Conference on Computer Vision (ICCV).

Raviv, D., Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2009). Full and
partial symmetries of non-rigid shapes. International Journal of Computer Vi-
sion (IJCV).

Raviv, D., Bronstein, A. M., Bronstein, M. M., Kimmel, R., and Sapiro, G. (2010).
Diffusion symmetries of non-rigid shapes. In Proc. 3D Data Processing, Visu-
alization and Transmission (3DPVT).

Rodrigues, O. (1816). De l’attraction des sphéroïdes. Correspondence sur l’École
Impériale Polytechnique 3 (3).

BIBLIOGRAPHY 131

Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of the ICP algorithm. In
Proc. 3rd Intl. Conf. 3D Digital Imaging and Modeling, pages 145–152.

Rustamov, R. M. (2008). Augmented planar reflective symmetry transform. Vis.
Comput., 24(6):423–433.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient ransac for point-cloud shape
detection. Computer Graphics Forum, 26(2):214–226.

Schnabel, R., Wessel, R., Wahl, R., and Klein, R. (2008). Shape recognition in 3d
point-clouds. In Proc. Conf. in Central Europe on Computer Graphics, Visual-
ization and Computer Vision.

Sederberg, T. W. and Parry, S. R. (1986). Free-form deformation of solid geometric
models. In Proc. Siggraph, pages 151–160.

Sharf, A., Alexa, M., and Cohen-Or, D. (2004). Context-based surface completion.
ACM Trans. Graph., 23(3):878–887.

Simari, P., Kalogerakis, E., and Singh, K. (2006). Folding meshes: hierarchical
mesh segmentation based on planar symmetry. In SGP ’06: Proceedings of the
fourth Eurographics symposium on Geometry processing, pages 111–119.

Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: Exploring photo
collections in 3d. In SIGGRAPH Conference Proceedings, pages 835–846, New
York, NY, USA. ACM Press.

Sorkine, O. and Alexa, M. (2007). As-rigid-as-possible surface modeling. In Pro-
ceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Process-
ing, pages 109–116.

Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P.
(2004). Laplacian surface editing. In SGP ’04: Proceedings of the 2004 Eu-
rographics/ACM SIGGRAPH symposium on Geometry processing, pages 175–
184, New York, NY, USA. ACM.

Sumner, R. W., Schmid, J., and Pauly, M. (2007). Embedded deformation for shape
manipulation. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 80, New
York, NY, USA. ACM.

Sunkel, M., Jansen, S., Wand, M., Eisemann, E., and Seidel, H.-P. (2011). Learn-
ing line features in 3d geometry. In Computer Graphics Forum (Proc. EURO-
GRAPHICS), volume 30.

Talton, J., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. (2011). Metropo-
lis procedural modeling. ACM Trans. Graphics, 30(2).

Tan, P., Zeng, G., Wang, J., Kang, S. B., and Quan, L. (2007). Image-based tree
modeling. ACM Trans. Graph., 26(3).

132 BIBLIOGRAPHY

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987). Elastically deformable
models. In Proc. SIGGRAPH ’87, pages 205–214, New York, NY, USA. ACM.

Tevs, A., Bokeloh, M., Wand, M., Schilling, A., and Seidel, H.-P. (2009). Iso-
metric registration of ambiguous and partial data. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2009). IEEE
Computer Society.

Thrun, S. and Wegbreit, B. (2005). Shape from symmetry. In Proc. Int. Conf.
Computer Vision.

Toledo, S. (2003). Taucs: A library of sparse linear solvers. Tel-Aviv University,
available online at http://www.tau.ac.il/ stoledo/taucs/.

S̆t’ava, O., Benes̆, B., Mĕch, R., Aliaga, D., and Kris̆tof, P. (2010). Inverse pro-
cedural modeling by automatic generation of l-systems. Computer Graphics
Forum, pages 665–674.

von Funck, W., Theisel, H., and Seidel, H.-P. (2006). Vector field based shape
deformations. ACM Trans. Graph., 25(3):1118–1125.

Wand, M., Jenke, P., Huang, Q.-X., Bokeloh, M., Guibas, L., and Schilling, A.
(2007). Reconstruction of deforming geometry from time-varying point clouds.
In Proc. Symp. Geometry Processing.

Wand, M. and Straßer, W. (2002). Multi-resolution rendering of complex animated
scenes. Computer Graphics Forum, 21(3). Eurographics 2002.

Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., and Xiong, Y.
(2011). Symmetry hierarchy of man-made objects. Computer Graphics Forum
(Special Issue of Eurographics), 30(2):287–296.

Wolter, J. D., Woo, T. C., and Volz, R. A. (1985). Optimal algorithms for symmetry
detection in two and three dimensions. The Visual Computer, 1(1):37–48.

Wonka, P., Wimmer, M., Sillion, F., and Ribarsky, W. (2003). Instant architecture.
ACM Trans. Graph., 22(3):669–677.

Wyngaerd, J. V. and Gool, L. V. (2002). Automatic crude patch registration: toward
automatic 3d model building. Comput. Vis. Image Underst., 87(1-3):8–26.

Xiao, J., Fang, T., Zhao, P., Lhuillier, M., and Quan, L. (2009). Image-based street-
side city modeling. ACM Trans. Graph., 28(5):1–12.

Xu, K., Zhang, H., Tagliasacchi, A., Liu, L., Li, G., Meng, M., and Xiong, Y.
(2009a). Partial intrinsic reflectional symmetry of 3d shapes. ACM Trans.
Graph., 28:138:1–138:10.

BIBLIOGRAPHY 133

Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B.
(2009b). Joint-aware manipulation of deformable models. ACM Trans. Graph.,
28(3):1–9.

Yamany, S. M. and Farag, A. A. (2002). Surfacing signatures: An orientation
independent free-form surface representation scheme for the purpose of objects
registration and matching. IEEE Trans. Pattern Anal. Mach. Intell., 24(8):1105–
1120.

Yeh, Y.-T. and Mĕch, R. (2009). Detecting symmetries and curvilinear arrange-
ments in vector art. Computer Graphics Forum, 28(2):707–716.

Zelinka, S. and Garland, M. (2006). Surfacing by numbers. In Graphics Interface
2006.

Zheng, Q., Sharf, A., Wan, G., Li, Y., Mitra, N. J., Cohen-Or, D., and Chen, B.
(2010). Non-local scan consolidation for 3d urban scenes. ACM Transactions
on Graphics, 29:94:1–94:9.

Zheng, Y., Fu, H., Cohen-Or, D., Au, O. K.-C., and Tai, C.-L. (2011). Component-
wise controllers for structure-preserving shape manipulation. Comput. Graph.
Forum, 30(2):563–572.

Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y.
(2005). Large mesh deformation using the volumetric graph laplacian. ACM
Trans. Graph., 24(3):496–503.

Zhou, K., Huang, X., Wang, X., Tong, Y., Desbrun, M., and Baining Guo, H.-Y. S.
(2006). Mesh quilting for geometric texture synthesis. ACM Trans. Graph.,
25(3):690–697.

Complete List of the Authors Publications

A. Tevs, A. Berner, M. Wand, I. Ihrke, M. Bokeloh, J. Kerber, H.-P. Seidel: Ani-
mation Cartography - Intrinsic Reconstruction of Shape and Motion. ACM Trans-
action on Graphics 2012 (conditionally accepted)

M. Bokeloh, M. Wand, V. Koltun, H.-P. Seidel: Pattern-Aware Shape Deformation
Using Sliding Dockers. SIGGRAPH ASIA 2011

M. Bokeloh, M. Wand, H.-P. Seidel: A Connection between Partial Symmetry and
Inverse Procedural Modeling. SIGGRAPH 2010

Jens Kerber, Martin Bokeloh, Michael Wand, Jens Krüger, Hans-Peter Seidel: Fea-
ture Preserving Sketching of Volume Data. International Workshop on Vision,
Modeling and Visualization, 2010.

134 BIBLIOGRAPHY

A. Berner, M. Bokeloh, M. Wand, A. Schilling, H.-P. Seidel: Generalized Intrinsic
Symmetry Detection. MPI Informatik Tech Report MPI-I-2009-4-005, 2009.

A. Tevs, M. Bokeloh, M.Wand, A. Schilling, H.-P. Seidel: Isometric Registration
of Ambiguous and Partial Data. In: Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR ’09), 2009.

M. Bokeloh, A. Berner, M.Wand, H.-P. Seidel, A. Schilling: Symmetry Detection
Using Feature Lines. In: Computer Graphics Forum, Proc. Eurographics ’09.

M. Wand, B. Adams, M. Ovsjanikov, A. Berner, M. Bokeloh, P. Jenke, L. Guibas,
H.-P. Seidel, A. Schilling: Efficient Reconstruction of Non-rigid Shape and Motion
from Real-Time 3D Scanner Data. In: ACM Transactions on Graphics 28(2), April
2009.

A. Berner, M. Bokeloh, M.Wand, A. Schilling, H.-P. Seidel: A Graph-Based Ap-
proach to Symmetry Detection. In: Proc. Symposium on Point-Based Graphics,
2008.

M. Bokeloh, A. Berner, M. Wand, A. Schilling, H.-P. Seidel: Slippage Features.
Technical Report, WSI-2008-03, University of Tübingen, 2008.

M. Wand, A. Berner, M. Bokeloh, P. Jenke, A. Fleck, M. Hoffmann, B. Maier,
D. Staneker, A.Schilling, H.-P. Seidel: Processing and Interactive Editing of Huge
Point Clouds from 3D Scanners. In: Computers and Graphics, 32(2), 204-220,
2008.

M. Wand, A. Berner, M. Bokeloh, A. Fleck, M. Hoffmann, P. Jenke, B. Maier,
D. Staneker, A.Schilling: Interactive Editing of Large Point Clouds. In: Proc.
Symposium on Point-Based Graphics (PBG 07), 2007.

M. Wand, P. Jenke, Q. Huang, M. Bokeloh, L. Guibas, and A. Schilling: Recon-
struction of Deforming Geometry from Time-Varying Point Clouds. In: Proc. 5th
Eurographics Symposium on Geometry Processing, Barcelona, Spain, pp. 49-58,
2007.

P. Jenke, M. Wand, M. Bokeloh, A. Schilling, W. Strasser: Bayesian Point Cloud
Reconstruction. In: Computer Graphics forum 25(3), 379-388 (Proc. Eurographics
2006), 2006.

M. Bokeloh, M. Wand: Hardware Accelerated Multi-Resolution Geometry Syn-
thesis. In: Symposium on Interactive 3D Graphics and Games 2006.

