
UNIVERSITY OF NAVARRA

SCHOOL OF ENGINEERING

DONOSTIA-SAN SEBASTIÁN

Study of Augmented Reality

Methods for Real Time Recognition

and Tracking of Untextured 3D

Models in Monocular Images

DISSERTATION
submitted for the

Degree of Doctor of Philosophy
of the University of Navarra by

Hugo Álvarez Ponga

under the supervision of

Diego Borro Yagüez

Dec, 2011

http://www.eg.org
http://diglib.eg.org

A mi familia.

Agradecimientos

Esta tesis me ha aportado numerosos conocimientos técnicos, y lo que es
aún más importante, ha confirmado mi suerte al darme la posibilidad de
descubrir el grupo humano tan incréıble que tengo a mi alrededor. De hecho,
las siguientes palabras van dedicadas a todas aquellas personas que me han
ayudado. Aun sabiendo que la deuda contráıda perdurará, gracias, gracias
y gracias.

En primer lugar agradezco al Gobierno Vasco la concesión de una de
sus becas doctorales, más concretamente la financiación obtenida a través
del Programa de Formación de Personal Investigador del Departamento de
Educación, Universidades e Investigación.

Doy las gracias a Alejo Avello, Jordi Viñolas y Luis Matey por apostar
en mı́ y dejarme realizar los estudios de doctorado en el área de simulación
del CEIT. Esta gratitud es extensible a la Universidad de Navarra, y
especialmente al TECNUN, por la formación profesional y académica
ofrecida, aśı como el personal de administración y servicios, quien ha hecho
más cómodo mi trabajo.

Tanto en mi etapa universitaria en la Facultad de Informática de la
UPV/EHU como en mi etapa de doctorando en el CEIT he recibido muchos
y buenos consejos por parte de Alex Garcia Alonso. Gracias por todos
ellos, especialmente aquellos tan directos y simples como ¡publicar, publicar,
publicar!

Habré tomado decisiones erróneas durante la tesis, pero tengo claro
cuál ha sido uno de mis mayores aciertos: la elección de Diego Borro
como director de tesis. Gracias por el esfuerzo y tiempo que me has
dedicado, por transmitirme ese punto de confianza cuando los resultados no
acompañaban. Ha sido muy enriquecedor el poder haber trabajado contigo,

iii

iv

tanto profesionalmente como personalmente. ¡Gracias!

También me gustaŕıa dar las gracias a mis socios de AR, sois
insustituibles. Gracias Jairo por toda tu ayuda, especialmente en los duros
inicios (¡forza Altza connection!); y gracias Ibai por motivarme y hacerme
réır durante la última etapa.

Tampoco podŕıa haber escogido mejores compañeros de trabajo.
Gracias a todos vosotros por haber conseguido que disfrute el d́ıa a d́ıa:
Nerea A., Ainara B., Ainara P., Iñigo, Tomasz, Julian, Mike, Álvaro S.,
Ane, Javi M., Pablo, Ainitze, Jorge, Iñaki, Manolo, Imanol P., Jorge
Juan, Emilio, Yaiza (por esas miradas a través de la mampara), Alvaro
B., Fran (por tu naturalidad), Sergio, Alberto, Iker (por tus interesantes
comentarios), Aiert, Ibon y Aitor C. (por ofrecerme modelos 3D de calidad),
Gaizka (por esas rutas moteras), Maite (por tus observaciones femeninas),
Carlos (por tu gran apoyo técnico), Josune (por tus buenos consejos),
Alba (por contagiarme tu buen humor), Goretti (por esos ánimos y
gestos desinteresados, sabes que tengo amigos), Imanol H. y Pedro (por
amenizar las sobremesas, el ajedrez es un deporte), Aitor A. (por esas
representaciones gráficas, no fake), Borja (por esos debates a = b ∗ c/f ,
me encantan), Luis (Kun) A., Ilaria (por mejorar mi italiano), Alex V.
(por tus sinceras reflexiones, visualizas como nadie), Gorka (por crear a
Meteo), Javi B., Nere E., Luis U., Ignacio M., Oskar, Aitor R., Maider,
Denis, Dimas.

No me olvido de mis valiosos amigos, quienes han sido capaces de alegrar
mis ratos libres y soportar mis numerosas ausencias: Aitor, Dani, David
(Boni), Diego P., Igone, Iker G., Javi F., Javi P., Jony, Odin, y Sergio L.,
por citar algunos. ¡Gracias!

Y por supuesto, tengo mucho que agradecer a mi familia, no solo por
su apoyo durante la tesis, sino a lo largo de toda mi vida. Todo lo que
he conseguido ha sido gracias a vosotros. Gracias a mis padres Eduardo y
Goretti, a mi hermana Inge, y a mi ”hermano” Ander.

Si de algo estoy orgulloso, es de poder haber compartido esta
experiencia con todos vosotros (más alguno que seguramente se me haya
olvidado). ¡Gracias!

Abstract

The main challenge of an augmented reality system is to obtain perfect
alignment between real and virtual objects in order to create the illusion
that both worlds coexist. To that end, the position and orientation of the
observer has to be determined in order to configure a virtual camera that
displays the virtual objects in their corresponding position. This problem
is known as tracking, and although there are many alternatives to address
it by using different sensors, tracking based on optical sensors is the most
popular solution. However, optical tracking is not a solved problem.

This thesis presents a study of the existing optical tracking methods
and provides some improvements for some of them, particularly for those
that are real time. More precisely, monocular optical marker tracking and
model-based monocular optical markerless tracking are discussed in detail.
The proposed improvements are focused on industrial environments, which
is a difficult challenge due to the lack of texture in these scenes.

Monocular optical marker tracking methods do not support occlusions,
so this thesis proposes two alternatives: (1) a new tracking method based
on temporal coherence, and (2) a new marker design. Both solutions are
robust against occlusions and do not require more environment adaptation.
Similarly, the response of model-based monocular optical markerless
tracking methods is jeopardized in untextured scenes, so this thesis proposes
a 3D object recognition method that uses geometric properties instead of
texture to initialize the tracking, as well as a markerless tracking method
that uses multiple visual cues to update the tracking.

Additionally, the details of the augmented reality system that has been
developed to help in disassembly operations are given throughout the thesis.
This serves as a tool to validate the proposed methods and it also shows
their real world applicability.

v

vi

Resumen

El principal desaf́ıo de un sistema de realidad aumentada consiste en alinear
correctamente los objetos reales y virtuales, creando la ilusión de que ambos
mundos coexisten. Para ello es necesario calcular la posición y orientación
del observador que permita configurar la cámara virtual que renderiza
los objetos virtuales en su posición exacta. Este problema es conocido
como tracking, y aunque existen varias alternativas para su resolución,
usando diferentes sensores, el tracking óptico es la solución más popular.
No obstante, el tracking óptico es un problema no resuelto.

Esta tesis presenta un estudio de los métodos de tracking óptico
existentes y propone mejoras en algunos de ellos, especialmente en aquellos
que son tiempo real. Más concretamente, se analizan en profundidad los
métodos de tracking óptico monocular con marcadores y los métodos de
tracking óptico monocular basado en el modelo (sin marcadores). Las
mejoras se han propuesto teniendo en cuenta las caracteŕısticas de los
entornos industriales, que carecen de textura.

El tracking óptico monocular con marcadores no soporta oclusiones,
por lo que este trabajo propone dos soluciones: (1) un nuevo método de
tracking basado en coherencia temporal, y (2) un nuevo diseño de marcador.
Ambas soluciones consiguen mayor robustez ante oclusiones sin necesidad
de adecuar más el entorno. Asimismo, el tracking óptico monocular basado
en el modelo no funciona correctamente en escenas poco texturadas, por
lo que esta tesis propone un método de reconocimiento 3D que inicializa el
tracking usando caracteŕısticas geométricas en vez de textura, y un método
de tracking que combina múltiples caracteŕısticas visuales para actualizarse.

Este documento también detalla el sistema de realidad aumentada
desarrollado para la ayuda en operaciones de desmontaje. Este sirve como
herramienta de validación, además de ser un ejemplo de aplicabilidad real.

vii

viii

Contents

I Introduction 1

1 Introduction 3

1.1 Augmented Reality . 3

1.2 Motivation . 9

1.3 Contributions . 12

1.4 Thesis Outline . 14

2 Background 15

2.1 Camera Geometry . 16

2.2 Camera Calibration . 20

2.3 Visual Cues . 22

2.3.1 Features . 22

2.3.1.1 FAST . 24

2.3.1.2 SIFT . 25

2.3.1.3 Optical Flow 28

2.4 Camera Tracking . 30

2.4.1 Stereo System . 31

2.4.2 Monocular System 33

2.4.2.1 Marker Tracking 33

2.4.2.2 Markerless Tracking 34

2.5 Discussion . 38

ix

x CONTENTS

II Proposal 41

3 Marker Tracking 43

3.1 Introduction . 43

3.1.1 ARToolkitPlus . 44

3.1.2 Marker Occlusion . 46

3.1.2.1 Previous Works 47

3.1.2.2 Proposed methods 48

3.2 Occlusion-OBB . 49

3.2.1 Initialization . 50

3.2.2 Marker Search . 51

3.2.3 Pose Estimation . 52

3.2.3.1 Translation 52

3.2.3.2 Rotation 54

3.2.3.3 Pose Update 55

3.2.4 Proportion Values 56

3.2.5 Experiments and Results 58

3.2.6 Observations and Limitations 58

3.3 Occlusion-patches . 60

3.3.1 Justification of the New Design 61

3.3.2 Algorithm Overview 62

3.3.3 Offline Phase . 64

3.3.3.1 Keyframe Selection 64

3.3.3.2 3D Point Cloud Generation 65

3.3.3.3 Databases of Descriptors 66

3.3.4 Online Phase . 67

3.3.4.1 Frame-To-Frame Tracking 67

3.3.4.2 Tracking by Detection 70

3.3.5 New Interface Possibilities 72

3.3.6 Experiments and Results 73

3.3.6.1 Tracking by Detection Parameterisation . . 74

3.3.6.2 Frame-To-Frame Tracking Robustness . . . 79

CONTENTS xi

3.3.6.3 Occlusion-patches Robustness 80

3.4 Discussion . 83

4 3D Object Recognition 85

4.1 Introduction . 85

4.2 Previous Works . 86

4.3 Proposed Method . 87

4.3.1 Algorithm Overview 88

4.3.2 Offline . 89

4.3.2.1 Geometric Feature Extraction 90

4.3.2.2 Virtual Keyframe Generation 92

4.3.2.3 Virtual Keyframe Hashing 95

4.3.3 Online . 96

4.3.3.1 Junction Detection 96

4.3.3.2 Junction Hashing 97

4.3.3.3 Keyframe Matching 99

4.3.3.4 Pose Refinement 102

4.3.3.5 Pseudocode 103

4.3.4 First Camera Pose 103

4.4 Experiments and Results . 103

4.4.1 Parameter discussion 103

4.4.2 Examples . 109

4.5 Discussion . 112

5 Markerless Tracking 113

5.1 Introduction . 113

5.2 Proposed Method . 114

5.2.1 Edge Tracker . 114

5.2.2 Feature Tracker . 117

5.2.3 Particle Filter . 119

5.2.4 Integration of Multiple Trackers 124

5.3 Experiments and Results . 126

xii CONTENTS

5.4 Discussion . 130

6 AR Disassembler 133

6.1 Introduction . 134

6.2 Previous Works . 134

6.3 Proposed AR Disassembler 136

6.3.1 Disassembly Planning 138

6.3.1.1 Model Format 139

6.3.1.2 Precedence Graph and Disassembly Path . 140

6.3.2 Recognition and Tracking 141

6.3.2.1 Observations 141

6.4 Experiments and Results . 142

6.5 Usability Analysis . 145

6.5.1 Subjects . 147

6.5.2 Task . 149

6.5.3 Experimental Design 149

6.5.4 Procedure and Equipment 150

6.5.5 Results . 152

6.6 Discussion . 155

III Conclusions 157

7 Conclusions and future work 159

7.1 Conclusions . 159

7.2 Future research lines . 162

IV Appendices 165

A Real time SIFT 167

A.1 Simplified SIFT . 167

A.1.1 Scale invariance . 168

A.1.2 Computational Time 170

CONTENTS xiii

B Pose from a 3D Plane 173

B.1 The Direct Linear Transformation (DLT) 173

B.2 Pose estimation from a 3D plane 175

C Hierarchy of 2D transformations 177

C.1 Isometries . 177

C.2 Similarity transformations 178

C.3 Affine transformations . 178

C.4 Projective transformations 179

C.5 Summary . 180

D Usability Experiments 181

D.1 Paper Documentation . 181

E Generated Publications 187

Index 191

References 191

xiv CONTENTS

List of Figures

1.1 Examples of augmented reality 4

1.2 Detailed Milgram Reality-Virtuality continuum. 5

1.3 Video See Through - Magic Mirror examples. 6

1.4 Optical See Through - Magic Lens examples. 6

1.5 Mechanical and ultrasonic head tracking sensors (Sutherland) 7

1.6 Examples of AR applications for mobile devices. 8

1.7 Examples of AR for marketing and publicity. 9

1.8 Examples of AR for industrial environments. 10

2.1 Pinhole camera model. 16

2.2 Perspective projection model simplified. 17

2.3 Perspective projection model. 18

2.4 Distortion suffered by a pixel of the camera sensor. 19

2.5 Examples of different calibration patterns. 21

2.6 Different types of visual cues. 23

2.7 FAST feature detection. 25

2.8 Corner location using DOG. 26

2.9 Feature detection using DOG. 27

2.10 SIFT descriptor. 28

2.11 Optical flow for two images of a sequence. 29

2.12 Classification of the optical tracking methods. 31

2.13 Depth image example. 32

2.14 Two camera geometry. 32

xv

xvi LIST OF FIGURES

2.15 Marker tracking system overview. 34

2.16 3D scene reconstruction from multiple image views. 35

2.17 SLAM execution. 36

2.18 Edge-based markerless 3D tracking. 37

2.19 3D object recognition based on appearance. 39

3.1 Different types of markers. 44

3.2 ARToolkitPlus pipeline. 45

3.3 Perspective correction of a BCH marker. 46

3.4 Segmentation for different marker occlusions. 47

3.5 Different types of bounding boxes. 49

3.6 Occlusion-OBB overview. 50

3.7 Occlusion with image axes. 53

3.8 OBB computation using the AABB as a starting point. . . 54

3.9 Rotation in Z axis between two OBBs. 55

3.10 Translations in a pinhole camera model. 56

3.11 Occlusion-OBB against different occlusions. 59

3.12 Occlusion-OBB vs ARtag. 60

3.13 Binary segmentation vs Edge segmentation. 61

3.14 Evolution of the new marker design. 62

3.15 Occlusion-patches overview. 63

3.16 Offline phase of Occlusion-patches. 64

3.17 Frame-To-Frame tracking initialization. 68

3.18 GREY descriptor. 68

3.19 Refinement of the frame-to-frame tracking. 69

3.20 An example of Occlusion Signal output. 73

3.21 Photo Viewer sequence. 74

3.22 Marker designs for experiments. 75

3.23 Simulation of the partial occlusion of the marker. 75

3.24 Scale study for tracking by detection. 76

3.25 Parameterisation study for tracking by detection. 78

3.26 Camera pose using the frame-to-frame tracking. 79

LIST OF FIGURES xvii

3.27 Occlusion-patches response for a video sequence. 81

3.28 Occlusion-patches output for different occlusions. 82

4.1 3D object recognition overview. 89

4.2 Definition of 3D sharp edges and 3D L junctions. 91

4.3 Geometric Feature Extraction for a 3D box. 91

4.4 3D sharp edges before and after removing inner edges. . . . 92

4.5 Virtual keyframe generation. 93

4.6 Junction basis definition. 94

4.7 Junction extraction using pyramidal JUDOCA. 97

4.8 Keyframe Matching steps. 99

4.9 Junction basis clustering. 100

4.10 Similarity measure for a 2D affine transformation. 102

4.11 Image and camera pose acquisition for experiments. 105

4.12 Recognition results for 3D elephant model. 107

4.13 Recognition results for 3D text model. 108

4.14 Recognition results for different scenes and models. 110

4.15 Recognition results for a complex model. 111

4.16 Recognition of multiple instances of a 3D model. 111

5.1 2D displacements of control points. 115

5.2 Multiple hypotheses for each control point. 116

5.3 3D point tracking and generation for different scenes. 120

5.4 Tracking using a particle filter. 121

5.5 Oriented distance transform. 123

5.6 Particle annealing effect to avoid local minimums. 124

5.7 Markerless tracking algorithm. 125

5.8 Execution time and error for different tracking setups. . . . 128

5.9 Response of different tracking configurations. 129

6.1 Automatic AR Disassembler overview. 137

6.2 Disassembly planning procedure. 138

6.3 Component parts of a model. 139

xviii LIST OF FIGURES

6.4 Extraction directions using RRT. 140

6.5 Geometric features for different disassembly steps. 142

6.6 Disassembly of the Box-1 model. 145

6.7 Disassembly of the Box-2 model. 146

6.8 Disassembly of the Matryoshka model. 146

6.9 Disassembly of the Gear-box model. 147

6.10 Disassembly of the Elephant model. 147

6.11 Participants profile. 148

6.12 Lego Elephant before and after disassembly. 149

6.13 Snapshot of the AR system. 151

6.14 Exec. time for each subject and instructional media. 153

6.15 Responses for the usability questionnaire. 154

6.16 Preferences of subjects regarding instructional media. . . . 155

A.1 Image training of simplified-SIFT to avoid scale ambiguity. 169

A.2 Execution time of simplified-SIFT. 171

B.1 The mapping of points between two planes. 174

C.1 Four sets of four points with the same cross ratio. 179

C.2 2D transformation groups. 180

List of Tables

3.1 ARToolkitPlus fps, with and without Occlusion-OBB. . . . 58

4.1 Geometric Feature Extraction examples. 92

4.2 Execution time of 3D recognition in different scenes. 111

5.1 Execution time of (Point+PF+Edges) for the video sequence. 130

6.1 Execution time for disassembly planning. 143

6.2 Execution time for geometric feature extraction. 144

6.3 Accuracy and execution time for recognition. 144

6.4 Statistics (mean(stdev)) for the usability questionnaire. . . 154

A.1 Main differences between SIFT and simplified-SIFT. 168

A.2 Mean execution time of simplified-SIFT. 170

xix

xx LIST OF TABLES

List of Algorithms

3.1 Marker search executed by Occlusion-OBB. 51
4.1 Pseudocode of 3D object recognition. 104

xxi

xxii LIST OF ALGORITHMS

Part I

Introduction

Chapter 1

Introduction

The key to ultimate success
is the determination to progress day by day

Edmar Mednis

Some ideas from this chapter have been published in:

Basogain, X., Olabe, M., Etxebarri, A., Izkara, J. L., Garrido, R.,
and Álvarez, H. “Towards the augmented reality in wearable personal
assistants”. In II Jornadas sobre Realidad Virtual y Entornos
Virtuales (JOREVIR’08). Albacete, Spain. June, 2008.

Puerto, M., Gil, J., Álvarez, H., and Sánchez, E. “Influence of user
grasping position on haptic rendering”. IEEE/ASME Transactions
on Mechatronics, N. 99, pp. 1–9. 2011.

1.1 Augmented Reality

Augmented Reality (AR) is a technology that enriches the way in which
users experience the real world with additional virtual information. This
augmented data could refer to simple 2D annotations or more sophisticated
3D objects (Figure 1.1).

In contrast to Virtual Reality (VR), where the user is completely
immersed in a synthetic world, AR consist on adding virtual objects to
the real world. The main goal of AR is to create the sensation that virtual
objects belong to the real world, offering perfect alignment between virtual

3

4 Chapter 1. Introduction

(a) 2D augmentation. (b) 3D augmentation.

Figure 1.1: Examples of augmented reality (Azuma et al., 2001).

and real objects. The virtual-reality continuum proposed by Milgram
(Milgram et al., 1995) emphasizes the differences between AR and VR
(Figure 1.2).

A common AR system requires a display device to render an image
in which the virtual objects are overlaid with their real counterparts. This
device can be as simple as a computer monitor or television, or as a complex
as a head mounted display (HMD). (Azuma, 1997) and (Cawood and Fiala,
2008) classify display devices into two categories: Video See Through -
Magic Mirror and Optical See Through - Magic Lens. The first group
situates the user in front of a projection screen and does not allow any
direct view of the real world (Figure 1.3), while the second alternative uses
transparent displays so that the user can look directly through them to see
the real world (Figure 1.4).

The main challenge of an augmented reality system is to obtain a robust
and accurate registration. The registration problem is based on finding a
perfect alignment between real and virtual objects since it is essential to
create the illusion that virtual and real worlds coexist. This requirement
can be clearly seen in the example of 2D annotations presented above
(Figure 1.1(a)), where misalignment between the text and car positions
can induce an error of interpretation. To solve this problem, the position
and orientation of the observer has to be determined. Using this information
a virtual camera can be configured, indicating the exact location where the
virtual objects should be drawn in the image. Another challenge for AR

Section 1.1. Augmented Reality 5

Figure 1.2: Detailed Milgram Reality-Virtuality
continuum (image licensed under the Creative Commons
Attribution-ShareAlike 3.0 License).

6 Chapter 1. Introduction

(a) HMD (Azuma, 1997). (b) Smartphone (Wagner and
Schmalstieg, 2007).

Figure 1.3: Video See Through - Magic Mirror examples.

(a) HMD (Azuma, 1997). (b) BMW head up display (©BMW).

Figure 1.4: Optical See Through - Magic Lens examples.

systems is the problem of finding the parameters that define the camera,
which is referred to as tracking. It requires the extraction of the 6 degrees
of freedom (DOF) that represent the user’s viewpoint, 3-DOF for the
orientation and 3-DOF for the translation. There are many alternatives to
address this problem, which differ in the type of sensors they use (Rolland
et al., 2001): inertial sensors combine accelerometers and gyroscopes to
estimate the translation and rotations respectively; ultrasound sensors rely
on the delay times of ultrasonic pulses to infer position and orientation;
GPS receivers use the signals emitted by a set of satellites to triangulate
its position; magnetic sensors measure the magnetic fields to deduce the

Section 1.1. Augmented Reality 7

viewpoint parameters; and optical sensors process the image of the scene
captured by a camera to obtain its corresponding 6-DOF.

The first work associated with augmented reality dates from 1968
(Sutherland, 1968), when Ivan Sutherland built a prototype with a HMD
to render 2D perspective images that created the illusion of visualizing 3D
dimensional data (Figure 1.5). This was the starting point for many of the
AR applications that exist today, which have extended along many different
fields, such as medicine (Blum et al., 2009), cultural heritage (Izkara et al.,
2008) or education (Juan et al., 2010), to name a few.

Figure 1.5: Mechanical (left) and ultrasonic (right) head tracking
sensors used by Sutherland (Sutherland, 1968).

Recently, due to the meteoric evolution of the market for mobile
devices, augmented reality is increasingly present in everyday life. For
example, (Basogain et al., 2008) describes an AR platform that tries to
develop a Wearable Personal Assistant, using mobile devices as tools that
provide user-support for daily activities. Moreover, nowadays these devices
have several integrated sensors, which provide all necessary hardware
for tracking. Layar and Wikitude are applications that demonstrate this
ability; they use a hybrid tracking system that combines a GPS and
compass-integrated sensors to compute the position and orientation of the
device respectively. This, together with a geolocated online database, makes
it possible to overlay virtual information related to the places that are being
recorded by the camera sensor (Figure 1.6(a)). Similarly, the game industry
has adapted some of its products to satisfy this emerging demand, as can be
seen in the release of augmented reality games like Invizimals, developed by

8 Chapter 1. Introduction

Novarama for the PSP platform (Figure 1.6(b)). In this case, only optical
tracking is used to recognize some special patterns placed in the scene
(markers), whose geometric properties are known and allow the recovery of
the position and orientation of the camera. This optical tracking method
was made popular in 1999, when Hirokazu Kato developed the ARToolkit
(Kato and Billinghurst, 1999), a widely known marker-based monocular
optical tracking.

(a) Wikitude screenshot. (b) Invizimals screenshot (©Sony Corp.).

Figure 1.6: Examples of AR applications for mobile devices.

The current success of augmented reality in the marketing and publicity
fields also highlights its growth in popularity. Many companies have started
using AR to make different and novel advertisements. This is the case for
various automotive companies, which overlay virtual information about
their products when some predefined markers are detected in the image
captured by the camera sensor (Figure 1.7(a)). As mentioned above, the
camera parameters are extracted using marker-based optical tracking.
Usually, these markers are simple pieces of paper, and therefore they have
low manufacturing costs and are easily integrated with everyday items like
magazines or newspapers. Continuing with this idea, the company CWjobs
proposes a CV based on AR (Figure 1.7(b)), displaying virtual information
related to the skills and experience of applicants when these markers are
detected.

Augmented reality solutions can also be found for industrial
environments. For example, (Hakkarainen et al., 2008) proposes the use of a
marker-based optical tracking to assist with assembly tasks (Figure 1.8(a))
by visualizing what the next part and placement should be. Nonetheless,
not all optical tracking solutions are based on markers. Some applications
extract the camera position and orientation via computer vision techniques

Section 1.2. Motivation 9

(a) Mini advertisement (©Mini). (b) CV based on AR (©CWjobs).

Figure 1.7: Examples of AR for marketing and publicity.

that process the image captured by the camera sensor without any special
hardware or external markers. Usually, these techniques try to make
correspondences between some visual cue templates and those detected
in the camera image, obtaining the camera parameters that best fits the
transformation of correspondences. Multiple visual cues have been used to
validate the quality of the correspondences. (Ulrich et al., 2009) recognize
industrial objects by detecting the presence of shapes with similar contour
geometries in the image, which can be used to perform several tasks,
e.g., render virtual data associated with the object (Figure 1.8(b)), pick
and place operations or quality control. Sometimes, however, due to the
meaningful characteristic features that the target model has, the recognition
of the object is based on appearance. On this basis, (De Crescenzio et al.,
2011) recognize some components of an airplane by comparing the similarity
of their texture patterns. An AR application that support technicians
in aircraft maintenance and repair operations validates its functionality
(Figure 1.8(c)). Additionally, (Puerto et al., 2011) perform a colour-based
identification of the user’s grasping position to analyse its influence on
haptic rendering (Figure 1.8(d)).

1.2 Motivation

Tracking based on optical sensors is the most popular solution due to the
fact that it requires minimal environmental adaptation and its low cost.
It does not need to add bulky machines to the scene or force the user to
use heavy devices, it only uses a camera to capture images of the scene,

10 Chapter 1. Introduction

(a) Augmented assembly (Hakkarainen
et al., 2008).

(b) Augmented data related to the
recognized object (Ulrich et al., 2009).

(c) Augmented instruction for maintenance
task (De Crescenzio et al., 2011).

(d) Augmented view of the user grasping
position (Puerto et al., 2011).

Figure 1.8: Examples of AR for industrial environments.

a computer to process the images, and a screen to overlay the virtual
information. Despite this, optical tracking is not a solved problem.

As stated before, the use of markers to solve the optical tracking
problem is a common alternative in many fields . They provide accurate
camera parameters, and they also require low computational resources.
Nevertheless, besides having to add markers to the scene, the other
shortcoming they suffer from is that they do not support occlusions. The
tracking fails even when the marker is slightly occluded, making impossible
for virtual information to be displayed. This failure produces an undesirable
effect on users, who lose their sense of realism. The constant appearance
and disappearance of virtual objects jeopardizes the effectiveness of AR
technology. Similarly, in AR applications that are oriented to industrial

Section 1.2. Motivation 11

environments it is very likely that the marker is occluded. Because the
technicians use their hands to do the corresponding tasks, it is easy for
the hands to occlude a part of the marker. The use of mobile devices
also enhances the need for the treatment of occlusions. These devices
are usually light, and as a consequence, they are moved easily, which
increases the likelihood of occlusion. The probability of putting the marker
partially outside the camera’s field of view increases with the rapid
sudden movements that usually occur when manipulating handheld devices.
Because of that, it would be very interesting to offer a solution that obtains
more robustness against occlusions and does not require any extra scene
modification to achieve it.

As noted above, augmented reality has an important role in industrial
environments. In addition, from the point of view of usability, AR offers
multiple benefits in assembly tasks (Maad, 2010). This statement alleges
that virtual information is interpreted more easily than documentation
based on paper. Thus, AR guidance reduces errors in assembly sequences,
as it is clear how to proceed and where the next component is supposed
to be placed. Furthermore, AR animation favours the identification of
relations between the different components due to the enriched visual
perception of their parameters, such as texture, material or colour. As
a consequence of the improved comprehension of the assembly task,
performance improvements are also obtained because technicians are able
to perform the same task in less time. This improvement in efficiency can
also be explained by the stimulation of motivation, since the enjoyment of
the interactive experience in AR animation might increase the motivation
and interest of technicians. It is noticeable that all these advantages are
analogous for disassembly tasks.

Due to all the advantages mentioned above, many researchers have
addressed the problem of building an AR system for guidance in
assembly/disassembly tasks. In most cases marker-based optical tracking is
used to recover the 6 DOF of the camera, but the environment adaptation
that the marker tracking systems require is not always possible. Thus,
it would be beneficial to have an AR guidance system that uses optical
tracking that dispenses with markers. Due to this reasoning, solutions
that use multiple cameras (stereoscopic vision) should be discarded, as the
main objective is to minimize environment adaptation. In fact, monocular
optical tracking based on computer vision techniques already exist for
industrial environments, as mentioned earlier. However, existing approaches

12 Chapter 1. Introduction

have two main drawbacks. First, many of these techniques are designed
for environments rich in texture, where the presence of different texture
patterns favours the distinctiveness of appearance, and consequently,
tracking is simplified. On the other hand, these methods need an extensive
user intervention to obtain some of the visual cue templates required for
tracking, as well as the specification of the assembly/disassembly sequence.
Considering all these problems, it would be useful to build an AR system
for guidance that uses monocular optical 3D tracking that is not based on
markers, that minimizes user intervention by building all the necessary data
automatically, and that is a valid solution for untextured environments. It is
noteworthy that this last requirement is critical, as many industrial objects
have a homogeneous outer surface that does not provide much information,
and consequently is a difficult challenge.

The realism of AR increases when correct illumination is estimated or
when highly detailed models are rendered (Quintana et al., 2010). Similarly,
the effectiveness of AR increases when virtual elements are added in real
time. As stated by (Russ, 1999), the meaning of real time varies with
the application’s characteristics; i.e., for some situations, such as video
processing, very short exposures and high rates are needed, while for others,
such as remote sensing, a single frame is taken over long periods. The real
time definition that is used in this dissertation is that accepted for video
acquisition, namely, 1/30 second per full frame. This enables the computer
to refresh the augmented data very quickly, constantly obtaining a valid
alignment between virtual and real elements, even when the camera is
moving. Thus, it would be important to execute AR methods near the
limits of real time.

1.3 Contributions

The goal of this thesis is the improvement of the existing monocular
optical tracking solutions for augmented reality, with a focus on industrial
environments. Using standard hardware components, such as a low cost
webcam and a common computer equipped with a simple monitor, the main
challenge that this dissertation addresses is the calculation in real time of
the 6 DOF that define the position and orientation of the camera that is
used to overlay the virtual information. In order to achieve this objective
and provide a valid solution for most contexts, a new marker-based method

Section 1.3. Contributions 13

as well as novel tracking alternatives based on computer vision techniques
are proposed. Furthermore, the characteristics of industrial environments
have been considered when designing these methods, and as a result,
they can handle untextured scenes. Apart from that, an AR system
for guidance in disassembly tasks has been developed to validate the
quality and capacity of the proposed monocular optical tracking based on
computer vision techniques. This AR system uses techniques that deduce
automatically the disassembly sequence, offering a complete framework.
The main contributions can be classified as follows:

• Two marker-based tracking methods for the treatment of occlusions.

Both methods are able to update the camera parameters when the
marker is partially occluded. The first one only updates 4 DOF of the
camera, which is enough for some AR applications. As compensation
for this shortcoming, the computational cost is low, making it ideal for
mobile platforms. The second method consists of a new marker design
that enables the extraction of the 6 DOF of the camera despite the
marker occlusion. It offers new ways of developing novel interfaces.
Additionally, it is based on texture patches that are customizable,
which is a desirable property for marketing and publicity purposes.

• A complete optical tracker that uses computer vision techniques to
obtain the camera parameters.

First, a 3D object recognition method initializes the 6 DOF of
the camera despite the difficult conditions of industrial objects
(i.e., homogeneous outer surface). It uses the geometric constraints
of the target model to calculate the camera parameters. These
constraints are automatically extracted during a preprocessing
stage. Once the camera position and orientation are initialized (a
problem that is known as first camera pose in AR), a 3D optical
tracker processes incoming camera images to update the 6 DOF
of the camera. Using computer vision techniques and temporal
coherence constraints, it measures the displacement of some image
features between consecutive frames to apply the same motion to
the camera parameters. The proposed method uses a well known
computer vision technique called SIFT (Lowe, 2004), which obtains
correspondences between different features of two images. As the
literature demonstrates, it is one of the most robust techniques,
but it consumes too many resources. Because of that, a simplified

14 Chapter 1. Introduction

version of SIFT has been implemented, which offers a balance between
robustness and computational cost.

• An AR system for guidance in disassembly tasks.

The system only requires a single untextured 3D triangle mesh of
each component that belongs to the model that is going to be
disassembled. A path planning module (Aguinaga et al., 2008) is
used to automatically compute the disassembly sequence, finding
collision-free trajectories. Moreover, this module has been integrated
with the optical tracker mentioned above, building a complete
framework that is characterized by its ability to generate all the data
automatically, minimizing user intervention, and offering assistance
in disassembly operations.

1.4 Thesis Outline

This dissertation is organized in 7 chapters. Chapter 1 introduced the
augmented reality technology, as well as the motivation and contributions
of this work within that area of knowledge. Chapter 2 presents some
preliminary concepts that are needed to understand subsequent chapters.
A classification of different optical tracking approaches is offered among
other ideas. Chapter 3 discusses monocular optical tracking based on
markers, including proposed solutions to overcome occlusions. Chapter
4 deals with the 3D recognition of untextured industrial models, which
serves as a initialization method for the camera parameters (first camera
pose). Chapter 5 describes the monocular optical 3D tracking based on
computer vision techniques that has been implemented to update the
camera parameters. Chapter 6 presents the AR system that has been built
to provide guidance in disassembly tasks. Finally, Chapter 7 enumerates
the conclusions of this thesis and proposes some future research lines.

Some appendices also appear at the end of this document to explain
some technical concepts in more detail. Appendix A focuses on the
simplifications that have been applied to the original SIFT algorithm,
and Appendix B provides the mathematical background to compute the
camera pose from a 3D planar structure. Moreover, Appendix C shows a
hierarchy of 2D transformations, and Appendix D includes a part of the
documentation used in the usability experiments of Chapter 6.

Chapter 2

Background

Not infrequently... the theoretical is a synonym
of the stereotyped. For the ”theoretical” in chess
is nothing more than that which can be found in

the textbooks and to which players try to
conform because they cannot think up anything

better or equal, anything original

Mikhail Chigorin

The position and orientation of the camera must be determined in
order to obtain perfect alignment between real and virtual objects and
increase the effectiveness of augmented reality. Because of that, this chapter
describes the mathematical tools that are necessary to understand the
camera behaviour. The state of the art in camera tracking is also presented,
addressing the problem of finding the parameters of the camera from an
image or multiple images.

Some ideas introduced in this chapter can be found in:

Barandiarán, J., Álvarez, H., and Borro, D. “Edge-based markerless
3d tracking of rigid objects”. In International Conference on Artificial
Reality and Telexistence (ICAT’07), pp. 282–283. Esbjerg, Denmark.
November, 2007.

Sánchez, J. R., Álvarez, H., and Borro, D. Gft: Gpu fast triangulation
of 3d points (ISBN: 3-642-15909-5), volume 6374 of Lecture Notes
in Computer Science, Computer Vision and Graphics, pp. 235–242.
Springer-Verlag Berlin Heidelberg. 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. “Towards real time 3d

15

16 Chapter 2. Background

tracking and reconstruction on a gpu using monte carlo simulations”.
In International Symposium on Mixed and Augmented Reality
(ISMAR’10), pp. 185–192. Seoul, Korea. October, 2010.

2.1 Camera Geometry

When the real world is shown through an image captured by a camera a 2D
representation of the 3D world is perceived. The geometry of the camera
(lens and sensor) must be known to apply this 3D-2D transformation.
Furthermore, the accuracy of this projection process is critical, as it is
the responsible of misleading our mind into believing that this is a window
from which the 3D world is seen.

The camera lens is an optical device through which the light hits the
internal sensor of the camera to form the image. There are several ways to
explain this procedure, but the pinhole model is the simplest and widely
accepted representation used in computer vision applications. It assumes
the following statements: (1) that the wave propagation of light can be
modelled as a straight rays; (2) that the lens can be substituted by an
infinitesimally small aperture (a single point called center of projection);
and (3) that the camera sensor can be represented by a planar surface
called image plane, which is in front of the aperture hole. Thus, rays of
light leaving the 3D object pass through the center of projection to form
an inverted 2D image of the object in the image plane (see Figure 2.1).

Figure 2.1: Pinhole camera model.

Section 2.1. Camera Geometry 17

This way of relating a 3D world point with a 2D image point is known as
perspective projection, and it explains the formation of images in a pinhole
camera. As it is shown in Figure 2.2, the camera coordinate system is
defined such that the XY plane is aligned with the image plane and the Z
axis coincides with the optical axis, which is the axis passing through the
center of projection, also called optical center. The intersection of the optical
axis and the image plane is a point called principal point. In order to avoid
the image appears inverted, an equivalent geometry configuration is used,
where the optical center is moved behind the image plane. For this reason,
the image plane is located at (0,0,f), where f is a non-zero distance, referred
as focal length. Furthermore, for the moment, it is assumed that the camera
and world coordinate systems are aligned to facilitate comprehension.

Figure 2.2: Perspective projection model simplified : camera and
world coordinate systems are aligned.

According to the assumptions made above, the projection of a 3D point
can be obtained by similar triangles:

x = f
X

Z
, y = f

Y

Z
, (2.1)

where (X,Y, Z) are the 3D world coordinates of a point, and (x, y) are their
image coordinates.

18 Chapter 2. Background

For a point with (X,Y, Z) cartesian coordinates, its homogeneous
coordinates are given by (kX, kY, kZ, k), where k is an arbitrary constant
that is non-zero. Using this notation, Equation 2.1 can be linearized,
obtaining the following matrix form:

xy
1

 ∼
fXfY
Z

 ∼
f 0 0 0

0 f 0 0
0 0 1 0



X
Y
Z
1

 . (2.2)

Nonetheless, this is an ideal camera, where several factors have not
taken into account. In general, the image coordinate system is centred on
the top left corner of the image (Figure 2.3), so the pixel coordinates of the
principal point are not (0,0), but (px,py).

Figure 2.3: Perspective projection model.

Similarly, the camera sensor can result in a non-square pixels that are
incorrectly positioned respect to the lens (Figure 2.4). The non-square
size (sx,sy) produces two different focal lengths, one for each axis (fx =
f
sx
, fy = f

sy
), while the error in the alignment between the sensor and lens

is expressed as (s = tanα ∗ f
sy

), called the skew parameter.

Section 2.1. Camera Geometry 19

Figure 2.4: Distortion suffered by a pixel of the camera sensor.

Based on these changes the new projection coordinates are given by:

xy
1

 ∼ KPN

X
Y
Z
1

 ∼
fx s px

0 fy py
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1

 , (2.3)

where PN is the projection matrix of the normalized camera, and K
describes the characteristics of the camera.

There are other effects associated to the imperfection of lens that modify
the final image coordinates. These effects are related to the tangential and
radial distortions. The first one is an image defect caused by errors of
lens centration, while the second one causes straight lines to curve, which
results in image magnification. To correct this magnification, the image can
be warped using the non-linear Brown’s distortion model (Brown, 1966):

xu = px + L(r)(x− px), yu = py + L(r)(y − py), (2.4)

where (x,y) is an image point, (xu,yu) is the undistorted image point,
r2 = (x− px)2 + (y − py)2, and L(r) is a distortion factor that can be
approximated by a Taylor expansion L(r) = 1 + k1r + k2r

2 + k3r
3 + ...,

being {k1, k2, k3, ...} the coefficients for radial correction.

Equation 2.3 assumes that the camera and world coordinate systems
are aligned, but this is not the most realistic example. Considering that the
world coordinate system is fixed, the alignment is lost when the camera is

20 Chapter 2. Background

moved around the scene1. Thus, an Euclidean transformation is required to
align these coordinate systems and apply the pinhole model (Figure 2.3).

Applying this coordinate transfer to Equation 2.3, the 3D-2D projection
pipeline results in:

xy
1

 ∼ KPNRt

X
Y
Z
1

 ∼ KPN [R ~t
~0>3 1

]
X
Y
Z
1

 (2.5)

where R is a 3x3 rotation matrix and ~t is a 3x1 translation vector. Both
represent the alignment between camera and world coordinate systems.

The matrix K is called the camera intrinsic parameters, while the
matrix that describes the position and orientation of the camera (Rt)
is called the camera extrinsic parameters. Furthermore, the PN matrix
is usually omitted for clarity in the notation, and consequently, this
simplification is also used in the rest of the thesis. A more detailed
explanation about the camera geometry can be found in (Faugeras et al.,
2001; Hartley and Zisserman, 2004).

2.2 Camera Calibration

If the camera intrinsic parameters are known, then it is said that the camera
is calibrated. Thus, camera calibration is the process of determining the
values of the matrix K.

An object with a known geometric configuration is usually used to
calibrate the camera. This object receives the name of calibration pattern,
for which the location of several 3D control points is known. Given an image
of the calibration pattern, the correspondence between these 3D points and
their image projections is determined, which provides a set of equations that
are used to find out the camera intrinsic parameters:

1The camera coordinate system could have been considered as fixed and the world
coordinate system as mobile, which is referred as the duality of the observer.

Section 2.2. Camera Calibration 21

xy
1

 ∼ P

X
Y
Z
1

 (2.6)

where (X,Y, Z) are the 3D coordinates of the control points and (x, y) their
corresponding image position. P is a 3x4 matrix that codifies both intrinsic
and extrinsic parameters of the camera. Only six 3D-2D correspondences
are needed to obtain P , which is decomposed in P ∼ K ∗ Rt using the
QR theorem (Flaquer et al., 2004). QR theorem states that a non-singular
matrix P can be factored as the product of an upper triangular matrix K
and an orthogonal matrix Rt, so the values of K are accessible.

As it is shown in Figure 2.5, calibration patterns are constructed so
that the control points are easily identifiable in the image, facilitating the
collection of correspondences. Examples of this calibration method can be
found in (Tsai, 1987; Zhang, 2000).

(a) (Zhang, 2000) pattern. (b) Chessboard. (c) Multi-planar pattern.

Figure 2.5: Examples of different calibration patterns.

Sometimes, however, is not possible to exploit the information provided
by a calibration pattern. This is the case of images that have already been
taken in an arbitrary scene and in which no calibration pattern appears.
Examples of these images are those available in image libraries or extracted
from a video sequence, which come without calibration data. Self calibration
methods are used in order to deduce the internal camera parameters in
these situations. For that purpose, they combine several images of the
scene that are taken from different points of view (multiview geometry).
Additionally, they assume some constraints like the existence of parallelism
and orthogonality in the scene; or introduce some simplifications such as
zero-skew (s = 0) or constant aspect ratio (sx = sy), which make easier

22 Chapter 2. Background

the extraction of K. More details about these methods can be found in
(Hemayed, 2003), where a survey on self calibration techniques is presented.

Camera intrinsic parameters are fixed provided that the focus is not
changed, the zoom is not applied, and the image resolution is not altered.
Therefore, the calibration process is only executed each time the camera
configuration is modified.

2.3 Visual Cues

Visual cues are defined as those measures taken from an image (an array
of colour pixels), which are used to perform multiple tasks, including
optical tracking. Different types of visual cues can be detected in an image
(Figure 2.6), such as image points that are very distinguishable from their
neighborhood (features), areas with abrupt intensity changes (edges), or
regions with homogeneous intensity levels (blobs). In addition, there are
more complex structures derived from these visual cues, such as lines
(straight edges), circles (blobs with circular shape) or junctions (a point
where two straight edges meet).

Features are a very common alternative because of its simplicity, and
they are used by many methods explained in this dissertation. For that
reason, an overview of this type of image measurement is provided in the
following paragraphs.

2.3.1 Features

Features, also called corners, keypoints or interest points, are a low level
image measurements used for image analysis, particularly for tracking.
They can be defined as salient points of the image, which are very
distinguishable from their local neighbourhood. In its simple form, they
are represented by pixel coordinates (sometimes with subpixel accuracy).

The process of determining the presence of features in an image is
called feature extraction or feature detection. The quality of a feature
detector is related to its ability to detect the same corner in different
images (repeatability), being invariant to viewing conditions. It should be
tolerant to as many transformations as possible, including camera rotations,

Section 2.3. Visual Cues 23

Figure 2.6: Different types of visual cues.

translations, scales, or illumination changes. Accuracy and performance are
also an important issues when selecting an appropriate feature detector.

A more complete representation of a feature is given by the image
region of its vicinity. A patch centered at the interest point is used to
extract different image properties such as pixel intensities, colour, texture,
edges etc, which are stored in a vector called feature descriptor. Each
descriptor describes the appearance or shape of its corresponding feature, so
a similarity measure of feature descriptors is used to get correspondences
of a corner that is in multiple images. A good feature descriptor should
satisfy the following properties:

• Highly distinctive: Two different features should have two different
descriptors, i.e., the probability of a mismatch is low.

• Robustness: The descriptor of a feature should remain unchanged

24 Chapter 2. Background

despite the transformations applied to the image, i.e, the descriptor
of a feature is preserved after rotations, translations, scales or
illumination changes.

• Good performance: The computational cost of building and
comparing feature descriptors should be low, being able to run in
real time systems. The euclidean distance between two descriptors is
usually enough to measure their similarity.

There are many feature detectors and descriptors algorithms.
(Mikolajczyk and Schmid, 2004) describes several feature detectors, while
(Mikolajczyk and Schmid, 2005) presents a comparison of different feature
descriptors. Likewise, (Gauglitz et al., 2011) offers an evaluation of some
feature detectors and descriptors oriented to optical tracking. A brief
explanation of the popular FAST interest point detector (Rosten and
Drummond, 2006) and the widely used SIFT feature descriptor (Lowe,
2004) is provided below, as they have been used in this thesis.

2.3.1.1 FAST

FAST (Features from Accelerated Segment Test) is a feature detector that
classifies a pixel p as a corner if there are n pixel values in a discretized
circle centered on p (denoted by p → x) that are all brighter than the
intensity of p (Ip) plus a threshold t, or darker than Ip − t (Equation 2.7).

Sbright = {x | Ip→x ≥ (Ip + t)} ,

Sdark = {x | Ip→x ≤ (Ip − t)} ,

p ∈ Features⇔ (|Sbright| ≥ n) ‖ (|Sdark| ≥ n) . (2.7)

A Bresenham circle of radius 3 is used, so 16 pixels around the
candidate p are considered (Figure 2.7); n is usually set to 9 (FAST-9)
or 12 (FAST-12). A high-speed test is also used to discard non-corners
with the minimum amount of checks: at least three of the four pixels located
at 1, 5, 9 and 13 positions (called compass directions) must be brighter or
darker than Ip to continue testing the remaining locations.

Section 2.3. Visual Cues 25

Figure 2.7: FAST feature detection (left) and enlarged image
patch of a detected corner (right).

The response (quality) of each feature p is given by the intensity
contrast between Ip and its surrounding pixels:

max

 ∑
x∈Sbright

(|Ip→x − Ip| − t),
∑

x∈Sdark

(|Ip→x − Ip| − t)

 .

This score function is used to apply a non-maximal suppression, which gets
stable features by removing corners that have and adjacent corner with
higher response.

FAST obtains a good balance between repeatability and performance
(it process high resolution images in few milliseconds), which is the reason
of its popularity in real time applications. Additionally, the set of final
features can be categorized as bright or dark at no extra cost, which is
useful, since bright features do not need to be compared with dark features
in post-processing steps such as matching.

2.3.1.2 SIFT

SIFT (Scale Invariant Feature Transform) includes both a feature detector
and a feature descriptor. Corners are located using the Difference of

26 Chapter 2. Background

Gaussians (DOG) function, which is invariant to scale and orientation. An
input image is convolved with different Gaussian kernels at multiple scales,
and adjacent Gaussian images are subtracted to produce DOG. Corners
are related to pixels that are locally maxima or minima, i.e., sample points
whose value is larger or smaller than their 26 neighbors, 8 in the current
scale and 18 in the upper and lower scales (Figure 2.8).

Figure 2.8: Corner location using DOG (Lowe, 2004).

The scale in which the corner is detected is stored, as it determines the
size of the local image region used to build the feature descriptor (scale
invariance)(Figure 2.9). Moreover, as this technique offers regions rather
than points, it is considered as a blob detector.

Each located corner is represented by a descriptor (SIFT descriptor),
which is extracted relative to the dominant orientation of the corner to
achieve invariance to rotations. The image gradients of the surrounding
pixels are calculated, whose orientations are used to build an orientation
histogram. This histogram is discretized in 36 orientations (10 degrees per
orientation), and each sample that is added to the histogram is weighted by
its gradient magnitude and by a Gaussian-weight that gets more importance
to central samples. The dominant orientation of a corner is the highest peak
of the histogram. Nonetheless, if multiple peaks with similar magnitude are
detected, then the corner is replicated with different dominant orientations.

The coordinates and gradient orientations of the pixels that belong
to the local image patch of the feature are rotated according to the
corresponding dominant orientation (rotation invariance). Furthermore,

Section 2.3. Visual Cues 27

Figure 2.9: Feature detection using DOG. Each rectangle
represents the scale and orientation of a feature.

this patch is subdivided in n ∗ n subregions, and each subregion is
characterized by an orientation histogram of b bins (Figure 2.10), where
n and b are application dependent parameters defined by the user. Finally,
all these histograms are concatenated into a single histogram, which is
normalized to unit length to reduce the effects of illumination. n = 4 and
b = 8 is a typical parameterisation, which gives a vector of 4 ∗ 4 ∗ 8 = 128
elements for each feature.

SIFT is a very robust technique for object recognition. Features
extracted in some reference images are matched to those features detected
in the current image by using similarity between SIFT descriptors. However,
SIFT has high computational cost for real time tasks, as it takes hundred
of milliseconds to process an image of 640x480 resolution. Speeded-Up
Robust Features (SURF) method (Bay et al., 2008) is similar to SIFT,
which uses efficient tools such as integral images to minimize computational
cost, but still not real time. Due to this limitation, a simplified version of
SIFT has been implemented for this dissertation, called simplified-SIFT

28 Chapter 2. Background

Figure 2.10: SIFT descriptor (Lowe, 2004).

(see Appendix A). In this implementation the expensive DOG operator is
replaced by the FAST detector, and some parallel techniques are applied
in order to reduce the computational time.

2.3.1.3 Optical Flow

Apart from the location and description, the motion is another property
that can be useful when dealing with features. Thus, optical flow is a
technique that estimates the motion of a feature between two consecutive
frames, taken at times t and t + ∆t. For a feature with intensity I(x, y, t)
that is moved by ∆x, ∆y and ∆t between two images, optical flow satisfies
the following constraint:

I(x+∆x, y+∆y, t+∆t) = I(x, y, t)+
δI

δx
∆x+

δI

δy
∆y+

δI

δt
∆t+H.O.T., (2.8)

where δI
δx ,

δI
δyand

δI
δt are partial derivatives of I, and H.O.T. are the higher

order terms of Taylor series. Assuming a small movement, H.O.T. can be
disregarded, resulting in δI

δx∆x+ δI
δy∆y+ δI

δt∆t = 0, which is a single equation
with two unknowns (∆x and ∆y, corresponding to the feature motion). This
problem is known as aperture problem.

Lucas-Kanade method (Lucas and Kanade, 1981) is an optical flow
algorithm that assumes that the flow remains constant in the local
neighbourhood of each feature. Therefore, the aperture problem is solved
by adding the constraints of pixels that are in the local neighbourhood. It
provides the following least squares solution:

Section 2.3. Visual Cues 29

ε(∆x,∆y) =
∑
u,v∈W

[I(u, v)− J(u+ ∆x, v + ∆y)]2, (2.9)

where I and J are consecutive images, W is the size that defines the local
neighbourhood, and ε is the residual function to be minimized. Notice that
Equation 2.9 corresponds to the sum of squared differences (SSD) of the
intensities of two image patches.

Large values of W allows large motions, but increases the instability
of the estimated flow. Because of that, a pyramidal implementation of
Lukas-Kanade algorithm is proposed in (Bouguet, 2000), which offers a
trade off between accuracy and robustness. First, optical flow is estimated
at the lowest resolution image, and then, this result is propagated to the
next resolution image as an initial guess. This procedure is repeated until
the highest resolution is reached, which coincides with the original image.
Note that W is fixed for all resolutions, so large motions computed at low
resolutions are refined by the accurate estimations of high resolutions. An
example of this method can be shown in Figure 2.11, which is configured
with two pyramidal reductions and W = 10 pixels.

(a) Detected features. (b) Flow of features.

Figure 2.11: Optical flow for two images of a sequence.

Optical flow estimations cannot be used indefinitely without any
correction, as the errors in the estimations are integrated over the time,
i.e., optical flow prone to drift. Additionally, it works better against smooth
movements due to the assumption of small movement between images.
Local regions with constant image intensity also jeopardizes the quality
of the optical flow, as it produces degenerate solutions. Indeed, that is

30 Chapter 2. Background

why features are selected, as they obtain optimal optical flow estimations.
For more information about the usage of features with the Lucas-Kanade
algorithm, the interest reader can refer to (Tomasi and Kanade, 1991),
where the Kanade-Lucas-Tomasi (KLT) feature tracker is described.

2.4 Camera Tracking

Camera tracking is the process that extracts the position and orientation
(jointly called pose) of the camera relative to a global coordinate system
(usually cited as world coordinate system). As introduced earlier, several
sensors can be combined to address this task, but in this dissertation only
optical tracking (also called visual tracking) is studied. Thus, given an
image, the camera tracking finds out the camera extrinsic parameters (Rt)
that best align the camera and world coordinate systems.

The source of information for optical tracking is(are) the image(s) of
the scene captured by the camera(s), which emphasizes the need for image
processing. Moreover, computer vision is a field of study and research that
focuses on interpreting the world that is seen in one or more images. Because
of that, computer vision is used to calculate the camera pose, recognizing
some visual cues in the image(s) captured by the camera(s).

Given an input image, the image positions of some visual cues are
detected and matched with their corresponding 3D locations to extract
the camera pose. It can be expressed mathematically assuming the
pinhole camera model, solving ~mi = P ~Mi for a set of ~mi ↔ ~Mi

correspondences, where ~mi is the 2D image position of the visual cue i, ~Mi

are their corresponding 3D coordinates, and P = KRt. The Direct Linear
Transformation (DLT) algorithm (Hartley and Zisserman, 2004) solves that
linear equation in case that the camera is not calibrated. Besides this
technique, the Perspective-to-Point (PnP) methods (Lepetit et al., 2009)
are also used when K is known. Nevertheless, all these linear methods lack
precision when the measurements ~mi are inexact (generally termed noise),
so it is preferable to use a non-linear minimization of the reprojection error,
i.e., the squared distance between ~mi and the projection of ~Mi:

argmin
Rt

∑
i

∥∥∥~mi −KRt ~Mi

∥∥∥. (2.10)

Section 2.4. Camera Tracking 31

The non-linear least-squares Levenberg-Marquadt2 (LM) algorithm
(Madsen et al., 1999) is extensively used to solve Equation 2.10. It is an
iterative process that converges into the local minima combining the Gauss
Newton method with the gradient descent approach. Moreover, it requires a
starting point, so the estimation computed by a linear method (DLT-PnP)
is used to initialize the final solution.

There are many ways to get ~mi ↔ ~Mi correspondences, resulting in
different optical tracking methods. A possible classification of the existing
optical tracking methods is shown in Figure 2.12.

Figure 2.12: Classification of the optical tracking methods.

2.4.1 Stereo System

A stereo system processes several images of the scene at the same time,
which are taken from different points of view by a set of cameras located
strategically. In its simplest form, it is similar to the biological stereo vision
of the human eyes, where two images of the same scene are captured
from two different and known locations (left and right eye). Thereby, the
3D information of an object that appears in both images is extracted by
triangulating its 2D image positions. This is how humans perceive the depth

2A widely used open source implementation of this method can be found in
http://www.ics.forth.gr/ lourakis/levmar/.

32 Chapter 2. Background

of objects, and this also explains why is hard to estimate the distance at
which an object is when the vision of one eye is lost. A depth image map
can be obtained after triangulating all point correspondences, like the one
presented in Figure 2.13.

Figure 2.13: Depth image (right) for a given scene (left).

In order to perform the triangulation, points that are the projections
of the same point in the 3D space must be identified in two or more
views (correspondence problem). Generally, the image appearance of the
local vicinity of each point is used to match points along a sequence of
images. Additionally, these correspondences are constrained by the epipolar
geometry (Hartley and Zisserman, 2004) (see Figure 2.14). Given a point
in the left image (~x0), the epipolar geometry states that its correspondence
in the right image (~x1) belongs to a straight line (~l1). The line that belongs
to the right image (~l1) is the projection of the ray formed by the left
optical center (~C0) and the image point ~x0, so it is called epipolar line
associated to ~x0. This is analogous for points of the right image and their
left correspondences.

Figure 2.14: Two camera geometry.

Section 2.4. Camera Tracking 33

The extraction of the 3D information, together with the known camera
calibration parameters, facilitates the process of relating visual cues with
their 3D values, i.e., helps to solve Equation 2.10. The disadvantage of a
stereo system is that it requires bulky and expensive hardware. For further
reading on stereo systems, please refer to (Brown et al., 2003).

2.4.2 Monocular System

Unlike a stereo system, a monocular system is composed of a single camera,
which captures one image of the scene each time. Therefore, the knowledge
about the scene should be extended to cope with this loss of information.
There are many ways to represent this prior knowledge (Lepetit and Fua,
2005), which can be classified as marker and markerless tracking.

2.4.2.1 Marker Tracking

A marker tracking system adds a known and easily identifiable patterns
(called markers, fiducials or landmarks) to the scene. Although there are
different patterns, black squares printed on a white sheet (Cawood and
Fiala, 2008; Kato and Billinghurst, 1999; Wagner and Schmalstieg, 2007;
Zhang et al., 2002) are a widely used markers due to their good performance
and low cost of manufacture. Thus, in case that multiple of these markers
are detected, each one is distinguished by the unique identifier that is
codified in its center. Likewise, assuming that a single marker has been
added to the scene, its 2D image position (~mi) is determined by finding
black square shapes in the camera image. Moreover, the world coordinate
system is centered on the marker (indeed, the world coordinate system
is usually centered on the target object), so its 3D coordinates (~Mi) are
known. Considering that the marker lies on a plane and the camera is
calibrated (K is known), the camera pose is recovered from four ~mi ↔ ~Mi

correspondences that do not form triplets of collinear points (see Appendix
B). More precisely, the correspondences of the four corners of the marker
are used to compute the camera extrinsic parameters (Figure 2.15). This
is a very fast and accurate technique to build AR applications, which is
even executed on mobile platforms (Schmalstieg and Wagner, 2007). As
a counterpart, it requires environment adaptation, which is not always
possible.

34 Chapter 2. Background

Figure 2.15: Marker tracking system overview. A square marker
of the ARToolkitPlus library (Wagner and Schmalstieg, 2007) is
shown. A virtual yellow shovel is superimposed in the image.

2.4.2.2 Markerless Tracking

A markerless tracking system does not add artificial markers to the scene, it
takes advantage of the visual cues that are naturally in the scene. Depending
on whether the scene geometry is known or not, the markerless tracking is
divided into two groups (Teichrieb et al., 2007):

1. Structure From Motion

In Structure From Motion (SFM) approaches the camera movement
is estimated while the 3D reconstruction of the scene is performed
(Longuet-Higgins, 1981). They estimate both Rt and ~Mi. Some visual
cues (usually features) are tracked throughout a sequence of images,
and their corresponding 2D positions are stored (Figure 2.16). Thus,
given a minimum set of two images with its corresponding visual
cue positions, the camera pose and the structure of the scene are
recovered. For that purpose, the multiple view geometry theory is
used (Hartley and Zisserman, 2004), similar to that exposed for stereo
systems (Section 2.4.1). It is noteworthy that these solutions only
require the data stored in previous frames.

In addition, two refinements of the SFM algorithm exist to
avoid errors due to noisy measurements (Sánchez, 2010): batch
optimisations and recursive estimations.

Section 2.4. Camera Tracking 35

Figure 2.16: 3D scene reconstruction from multiple image views.
(Courtesy of (Zach et al.)).3

Batch optimisations minimize a cost function that refers to the
difference between the projections of an unknown 3D scene
points and their known image measurements. They use the
Bundle Adjustment (BA) technique (Triggs et al., 2000) to
jointly optimise the 3D structure and the motion parameters. In
their first implementations, the entire video sequence was used
for optimisation (Hartley, 1994), making them impractical for
real time. Recently, (Klein and Murray, 2007) uses a local BA
over the last five selected keyframes and parallel techniques (one
thread computes the mapping and other thread performs the
tracking) to meet real time requirements.

Recursive estimations are probabilistic methods that have been
extensively used in the robotics community in order to address
the Simultaneous Localization and Mapping (SLAM) problem.
They compute an online reconstruction of the scene using
recursive Bayesian estimators, formulating the problem as a

3C. Zach, A. Irschara, and H. Bischof. What can missing correspondences tell us
about 3D structure and motion? IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1-8. June, 2008.

36 Chapter 2. Background

state-space model. The state-space model is described by a state
model, which is associated to the transition over the time of
the 3D structure and motion parameters; and a observation
model, which is related to the measurements that determine the
transition. One of the first successful implementations using this
technique is described in (Davison, 2003). Moreover, (Sánchez
et al., 2010c) presents an efficient implementation based on GPU.
In this approach all the calculus are performed by the GPU
pipeline, the 3D reconstruction (Sánchez et al., 2010a; Sánchez
et al., 2010b) as well as the camera tracking, making it feasible
for real time.

Figure 2.17: SLAM execution, courtesy of (Sánchez
et al., 2010c). The original image (left) and the 3D scene
reconstruction (right) are shown. A virtual X-Wing
(from Star Wars movie) is embedded in the real scene.

2. Model-Based

Model-based techniques store the knowledge about the scene in a 3D
model, which is available before the camera tracking begins. The 3D
model could be represented by its simple 3D geometry (Drummond
and Cipolla, 2002), or by a more detailed description that includes
the geometry and the texture of its surface (Vacchetti et al., 2004).
In both cases some visual cues that belong to the 3D model are
tracked throughout a sequence of images to estimate the camera
extrinsic parameters. Depending on the prior knowledge about these
visual cues two different techniques are distinguished: frame-to-frame
tracking and tracking by detection.

Frame-To-Frame tracking, also known as recursive tracking or

Section 2.4. Camera Tracking 37

incremental tracking, uses the previous pose to estimate the
current one. More precisely, the current 2D image locations
of the target visual cues are estimated (~m′i). Some techniques
(Barandiarán et al., 2007) combine the previous camera with
a predictor4(LaViola, 2003; Salih and Malik, 2011) to get an
estimation of the current camera pose, which is used to project
the 3D visual cues and obtain ~m′i. Other approaches, however,
use the previous 2D image positions of the visual cues to provide
~m′i as a function of intensity differences between two consecutive
frames (Bleser et al., 2005). A local search is also performed
in the vicinity of each ~m′i to find the correct position of the
visual cue in the current image (~mi). This search is based on the
similarity (shape, texture, etc.) between the reference visual cues
and those candidates detected in the current image. Once ~mi is
estimated for enough visual cues, the camera pose is computed
solving Equation 2.10. Due to its recursive nature, this method
suffers from drift (error accumulation) and is sensible to fast
camera movements. It also requires an initial pose to start the
recursive process, which is obtained manually or using a tracking
by detection method.

Figure 2.18: 3D wire-frame (left) used to perform
edge-based markerless 3D tracking (right) (Drummond
and Cipolla, 2002). A local search (white lines) in the
vicinity of the previous pose (black wire-frame) is done
to find the current camera pose.

4A predictor stores the camera pose of previous frames to feed a transition model and
provide an estimate of the current camera pose according to the trajectory followed by
the camera.

38 Chapter 2. Background

Tracking by detection, sometimes called 3D object recognition,
faces the challenge of computing the camera pose without
previous information, so it is used for automatic initialization
and recovery from failure. It tries to match some reference visual
cues with those detected in the entire image, without limiting
the search to a local area imposed by the previous state. Multiple
2D views of the 3D model (keyframes) are taken from different
positions and orientations during an offline training phase to
build a database of 3D visual cues (Figure 2.19). Each 3D visual
cue is characterized by a set of 2D views (~m′i), which try to
simulate the online conditions of the 3D visual cue and improve
the matching quality between reference (~m′i) and detected (~mi)
visual cues. Some authors (Rothganger et al., 2006) use the
appearance (texture) of the visual cues to establish ~m′i ↔ ~mi

correspondences, while others use shape similarity (Wiedemann
et al., 2008) to determine positive matches. Considering that
each ~m′i is a 2D view of a 3D visual cue ~Mi, Equation 2.3 is solved
as long as enough ~m′i ↔ ~mi correspondences are computed.

2.5 Discussion

Multiple methods have been presented in this chapter to recover the
position and rotation of the camera from an image. Some of them use
multiple cameras to simplify the problem, but they require bulky and
expensive hardware. Other methods, however, rely on a single camera
(monocular systems) and more sophisticated computer vision techniques.
Thus, certain solutions add markers to the scene, obtaining a fast and
accurate camera pose at the expense of environment adaptation, which is
not always possible. Other alternatives solve both the camera motion and
the structure of the scene, for which correspondences of some visual cues
are determined throughout a sequence of images. They only need some
previous frames as an input, but have high computational cost compared
to other solutions. Additionally, they are oriented to scenes rich in texture.
Another option that has been proposed stores (before tracking occurs) the
knowledge about the scene in a 3D model, which is matched to the visual
cues detected in the image to estimate the camera extrinsic parameters.
Although the main drawback of this technique is the generation of the 3D

Section 2.5. Discussion 39

Figure 2.19: 3D object recognition based on appearance
(Rothganger et al., 2006). Some keyframes are generate
during an offline phase (top) to match reference features
(bottom-left) with those detected in the current image
(bottom-right).

model, it can handle textureless scenes and offers a robust response in a
reasonable amount of time.

The goal that is pursued determines the selection of an appropriate
tracking method. Thus, this dissertation focuses on methods oriented to
industrial environments, which are characterized by the absence of texture.
Moreover, it is oriented to monocular systems, the use of standard hardware
components, and real time solutions. Considering these requirements
marker tracking systems and model-based markerless tracking methods are
the best choices. Both methods are complementary, using the model-based
alternative when the environment adaptation is not an option, and using
the marker tracking system when the 3D model is not available.

40 Chapter 2. Background

Part II

Proposal

Chapter 3

Marker Tracking

The hallmark of the artist is simplicity

Larry Evans

A synthesis of this chapter has been published in:

Álvarez, H. and Borro, D. “Cálculo de la pose de la cámara
ante oclusiones de un marcador”. In Proceedings of the XVIII
Conferencia Española de Computación Gráfica (CEIG’08), pp.
123–132. Barcelona, Spain. September, 2008.

Álvarez, H. and Borro, D. “A novel approach to achieve robustness
against marker occlusion”. In International Conference on Computer
Vision Theory and Applications (VISAPP’09), pp. 478–483. Lisboa,
Portugal. February, 2009.

Álvarez, H., Leizea, I., and Borro, D. “A new marker design for
a robust marker tracking system against occlusions”. Submitted to
Computer Animation and Virtual Worlds, 2011.

3.1 Introduction

Marker tracking systems are characterized by adding artificial landmarks
(also called markers or fiducials) to the scene. There are different types of
markers (Figure 3.1), such as circular (de Ipiña et al., 2002), planar (Zhang
et al., 2002), or based on colour-coded (Mohring et al., 2004). Nonetheless,
all of them share the same property: they are easy to detect in the image.

43

44 Chapter 3. Marker Tracking

Thus, the information that they provide is extracted and used to calculate
the camera pose. Although they are robust, accurate and real time tracking
system, their main inconvenience is the environment adaptation, which is
not always possible. Moreover, marker occlusion is another shortcoming, as
the system fails even if the marker is only slightly occluded, producing an
undesirable effect on users, who lose the sense of realism.

Figure 3.1: Different types of markers.

3.1.1 ARToolkitPlus

ARToolkitPlus (Wagner and Schmalstieg, 2007) is a widely used
non-commercial real time marker tracking system that uses black square
markers (Figure 3.1, middle) to compute the camera pose. It is an
evolution of the ARToolkit library originally developed by Hirokazu Kato
(Kato and Billinghurst, 1999), which is considered one of the most
influential software libraries in the growth of augmented reality technology.
These improvements include the use of BCH markers (Bose, Chaudhuri,
Hocquenghem), the use of digital encoding, segmentation based on dynamic
thresholds, or the ability to run in mobile devices.

ARToolkitPlus executes sequentially several steps to extract the 6 DOF
of the camera (Figure 3.2). Although these steps are not a standard, they
are very similar to those executed by other systems, and consequently, they
are used here to explain how a common marker tracking system works.
These steps are known as ARToolkitPlus pipeline and process the input
camera image to obtain the camera pose:

1. Segmentation: The input grey image is transformed to a binary
image using a threshold. Grey levels that are above the threshold are
considered as white, and those that are below as black. Note that the

Section 3.1. Introduction 45

Figure 3.2: ARToolkitPlus pipeline.

threshold is adapted dynamically by using the mean grey value of the
marker if it was previously detected, and a random value otherwise.

2. Candidate Detection: Since the marker is black, this step groups
each set of contiguous black pixels to form a marker candidate.

3. Candidate Filtering: Based on the square shape of the marker,
those candidates detected in the previous step that do not have a
square shape or have a small area are discarded. To determine the
shape of a candidate, the number of corners along its boundary are
counted, and only those that have 4 corners are considered as squares.

4. Marker Detection: Remaining square candidates are unprojected
to a normalized surface, making a perspective correction (Figure 3.3).
More precisely, the central area of each candidate is unprojected, since
this is the region that codifies the marker identifier. This normalized
surface is divided into a grid and each cell is interpreted as a single
bit so that each marker generates an array of bits that identifies it
uniquely. Therefore, a candidate is discarded unless its identifier is
equal to one of the marker identifiers. BCH markers use blocks of 6x6
pixels (6x6 bits), 12 bits to codify the marker identifier (212 = 4096
different markers), and 24 bits of redundancy for error correction.

46 Chapter 3. Marker Tracking

(a) Interior area. (b) Unprojected area. (c) Marker identifier.

Figure 3.3: Perspective correction of a BCH marker.

5. Pose Estimation: Once the presence of a marker has been identified
in the image, the camera pose is obtained using the DLT algorithm
(see Appendix B). 3D marker coordinates are known and fixed,
since the world coordinate system is centered on the marker.
Additionally, 2D image positions of the four corners of the marker
are accessible (Candidate Filtering step), so they are matched with
their corresponding 3D coordinates. Using these four 2D-3D matches,
which do not form triplets of collinear points, the camera pose is
recovered uniquely.

3.1.2 Marker Occlusion

Partial occlusion of the marker causes tracking failure, since none of the
candidates detected in the image are considered as a marker. Even a small
occlusion of the marker is often enough to fail. ARToolkitPlus, for example,
fails even when the marker is occluded approximately 2%. This has a
negative impact on users, as the virtual information cannot be aligned
properly, and consequently, the sense of realism is lost.

Partial occlusion of the marker involves the following problems, or a
combination of them:

• Change in shape: When the marker is occluded with a bright object,
some black pixels are considered as white after the Segmentation step
(Figure 3.4, middle). Similarly, when the marker is occluded with a
dark object, some black pixels are added around the marker (Figure
3.4, right). Both cases involve an erroneous filtering of candidates

Section 3.1. Introduction 47

because the square shape is distorted.

• Unknown identifier: The marker identifier cannot be determined if
the interior area of the marker is partially occluded; it is not possible
to know which marker is in the field of view of the camera.

• Few 2D-3D matches: Sometimes one corner of the marker is not
visible due to the occlusion (Figure 3.4), so its 2D image position
is unknown. In these cases, one of the four 2D-3D matches that are
required to update the camera pose (Pose Estimation step) is lost.

Figure 3.4: Segmentation (bottom) for different occlusions (top).

3.1.2.1 Previous Works

Some authors place multiple markers in the scene to solve the marker
occlusion problem (Kato and Billinghurst, 1999). Thus, they increase the
probability of finding one visible marker at the cost of more environment
adaptation. Continuing with this idea (Tateno, 2007) uses multiple layers
of markers. The main disadvantage of this approach is the accuracy waste
after switching between layers due to scale change. Moreover, these markers
require larger sizes to get similar recognition rates to that of a common
single marker.

ARTag is a marker tracking system (Fiala, 2005a) that uses edge
segmentation for the identification of target patterns. It is more robust

48 Chapter 3. Marker Tracking

than ARToolkitPlus against bad illumination conditions, and it is capable
of closing broken contours (Fiala, 2005b). Nonetheless, it only supports
small occlusions, such as putting the fingertip on the marker.

(Wagner et al., 2008) presents two new marker designs. Although not
designed for occlusions, they support some restrictive partial occlusion of
their interior area, as they use the frame of the marker to codify their
digital identification. An incremental tracking of features is also described
to handle marker occlusions. It assumes that the marker lies on a textured
plane, from which features are detected. As a drawback, this technique is a
scene dependent, and according to the authors, it is limited to a few seconds
due to drift.

In (Malik et al., 2002) an incremental tracking of features is also applied.
In this case, only features that belong to the marker are detected and
tracked. A correct spatial configuration of features is required to guarantee
a minimum number of features and to obtain an accurate homography1

between two consecutive frames. As a result, it is not a valid method for
all markers, since it depends on the patterns that are inside the marker. It
suffers the problem of drift as well.

(Marimon et al., 2007) uses a particle filter to obtain the 6 DOF of
the camera when the ARToolkit library fails. It minimizes the reprojection
error between the four corners of the marker and those features detected
in the current image. The number of particles should be large enough in
order to adapt to sudden movements. However, the computational cost of
this operation is too high, so the robustness is jeopardized by the number
of particles, i.e., by the real time requirement.

3.1.2.2 Proposed methods

Following the argumentation presented above, two new methods have
been developed to address the limitation of the marker tracking systems
against occlusions: Occlusion-OBB and Occlusion-patches. Both of them
use computer vision techniques to update the camera pose in real time
when the marker is partially occluded. Instead of using multiple markers
so that there is always one marker visible, these proposals offer more

1A projective transformation that maps points on one plane to points on another
plane. In computer vision, assuming the pinhole camera model, a homography relates
two images of the same 3D plane. See Appendix C.

Section 3.2. Occlusion-OBB 49

robustness using a single marker. The environment adaptation has not been
jeopardized in favour of robustness against occlusions.

As an overview, Occlusion-OBB uses temporal coherence to track the
oriented bounding box (OBB, Figure 3.5(b)) of the marker and update
the camera pose. It is a valid solution for any marker tracking system
that uses parallelogram markers. It is very fast and can be executed on
mobile devices, but only updates 4 DOF of the camera. Occlusion-patches,
meanwhile, uses a new marker design that provides more information when
the marker is partially occluded. It places customizable texture patches
along the frame of the marker to have more visible features (with known 3D
coordinates) during the marker occlusion, which facilitates the calculation
of the camera pose. It is a valid solution for markers that do not take
advantage of their frame to codify information. It obtains the 6 DOF of
the camera, but compared to Occlusion-OBB requires more computational
cost.

It is noteworthy that ARToolkitPlus has been used to prove the validity
of the proposed approaches, as it is a widely used non-commercial marker
tracking system that uses parallelogram markers that do not take advantage
of their frame to codify information.

3.2 Occlusion-OBB

Occlusion-OBB is a method that has been proposed to update the camera
pose despite partial occlusion of the marker. It tracks the bounding boxes
(Figure 3.5) of the marker using temporal coherence assumptions, without
requiring too much image processing.

(a) (b)

Figure 3.5: Different types of bounding boxes. (a) Axis Aligned
Bounding Box (AABB). (b) Oriented Bounding Box (OBB).

50 Chapter 3. Marker Tracking

Due to its low computational cost, Occlusion-OBB is oriented to mobile
devices, whose popularity has increased in recent years. As these devices
have limited processing and memory capabilities, it is necessary to assume
some simplifications. Indeed, only 4 DOF of the camera pose are calculated.

Figure 3.6 shows how ARToolkitPlus and Occlusion-OBB interact. The
first one updates the camera pose and stores some information when the
marker is completely visible. This data, called occlusion data, contains
information about the last two poses. More precisely, it stores the identifier
and the AABB (Figure 3.5(a)) of the marker, and the camera pose of
the last two poses. Occlusion-OBB, meanwhile, uses the occlusion data
to initialize, and it is executed when ARToolkitPlus fails, i.e., when the
marker is partially occluded. Note that ARToolkitPlus is executed first
every frame, so it recovers the control as soon as the marker is completely
visible.

Figure 3.6: Occlusion-OBB overview.

3.2.1 Initialization

Occlusion-OBB requires an initialization step, which is executed every time
the marker changes from visible to occluded. This step accesses occlusion
data to compute the area of the marker (extracted from the AABB), and
activates the new search of the marker (Section 3.2.2). This way, this search
is only executed when the marker is occluded, i.e., it is executed on demand.

Section 3.2. Occlusion-OBB 51

The trajectory set by the last two frames is extrapolated in order to
update the camera pose: Rit = Ri−1

t +(Ri−2
t −R

i−1
t), where Rkt is the camera

pose of the frame k. This is a good estimation only for the first frame of
Occlusion-OBB because the trajectory may change considerably for longer
time intervals.

3.2.2 Marker Search

ARToolkitPlus fails against a partial occlusion of the marker because none
of the candidates detected are considered as a marker (Section 3.1.1).
However, a part of the marker remains visible in the image, which can
be exploited to estimate the camera pose.

Following this reasoning, a new marker search is executed, which
processes those candidates detected and discarded by the ARToolkitPlus
pipeline. This new technique performs a less restrictive search and uses
temporal coherence to find the presence of the marker: assuming that the
frame-rate is high, the position and area of the marker will not suffer too
much variation between two consecutive frames. As a result, the new search
focuses on candidates that are close to the last position of the marker and
whose area has not changed too much (Algorithm 3.1).

Algorithm 3.1 Marker search executed by Occlusion-OBB.

1: selectedCandidate← NULL;
2: for all ci in CANDIDATES do
3: if dist(ci,Marker) < SEARCH WINDOW then
4: if dist(ci,Marker) < dist(selectedCandidate,Marker) then
5: if |area(Marker)− area(ci)| / area(Marker) < 0.25 then
6: selectedCandidate← ci;
7: end if
8: end if
9: end if

10: end for

Condition 3 of Algorithm 3.1 removes candidates that are not close
to the position of the marker in the last frame (Marker), where dist(i, j)
is the distance between the centers of i and j, and SEARCH WINDOW
is a threshold that sets the maximum search distance. Large search
distances increase the probability of selecting an erroneous candidate, but

52 Chapter 3. Marker Tracking

can withstand sudden movements. Good results have been obtained with
searches that do not exceed 75 pixels at 320x240 resolution. Condition 4
of Algorithm 3.1 selects the candidate that is closest to Marker, provided
that the area has not changed more than 25% (condition 5 of Algorithm
3.1). Note that the AABB of each candidate is calculated so that the width
and height of the AABB are multiplied to compute area.

If no candidate is selected this search is also executed in the two
incoming frames to avoid the effects of a possible image blur generated
by a fast camera movement. It is noteworthy that this recovery step is only
executed twice because temporal coherence cannot be applied for longer
periods of time. In case that these additional search attempts do not work
Occlusion-OBB fails and waits until ARToolkitPlus works fine again.

Occlusion-OBB continues the processing and estimates the camera
pose for the candidate that satisfies all the conditions of Algorithm 3.1.
Additionally, as a partial occlusion of the marker generally means that
the identifier of the marker cannot be determined (Section 3.1.2), the last
identifier stored by ARToolkitPlus is returned, which corresponds to the
correct one.

3.2.3 Pose Estimation

The camera pose is estimated once one of the candidates is considered as
the target marker. Different procedures are used to calculate translation
and rotation values.

3.2.3.1 Translation

2D displacement of the center of the marker (distance between the
selected candidate and the previous position of the marker) is used to
estimate 3D translation in X (tX ′) and Y (tY ′) (Equations 3.1 and
3.2). More specifically, measured pixel translation of the center (∆x, ∆y)
is extrapolated to 3D translation using precomputed 2D-3D proportions
(Section 3.2.4).

tX ′ = X2D−3D ∗∆x, (3.1)

tY ′ = Y2D−3D ∗∆y, (3.2)

Section 3.2. Occlusion-OBB 53

where ∆x and ∆y are the pixel translation of the center of the marker for
x and y image axis, respectively, and X2D−3D and Y2D−3D are the 2D-3D
proportions for each axis.

For each candidate its AABB and center is calculated. Indeed, the
center of the marker is approximated by the center of the AABB. Both
points suffer similar movement, but the computation of the center of the
AABB is cheaper, as it does not require any image processing. Note that
the AABB only surrounds the visible part of the marker (Figure 3.7), so
the dimensions of the AABB vary for different degrees of marker occlusion.
Additionally, the center of the AABB is only displaced by n/2 pixels in x
coordinate when the width of the AABB is modified by n pixels (analogous
for y and height). Therefore, using the center of the AABB in Equations
3.1 and 3.2, ∆x is multiplied by 2 when the marker is occluded with the
vertical image axis, and ∆y is multiplied by 2 when the marker is occluded
with the horizontal image axis.

Figure 3.7: Occlusion with vertical (left) and horizontal (right)
image axes. Red rectangle represents the AABB of the visible
part of the marker.

Z translation modifies the size of an object in the image. Based on this
statement, the changes in the dimensions of the AABB are multiplied by
a 2D-3D proportion to obtain the 3D Z translation (tZ ′, Equation 3.3).
Similar to X and Y translations, Z translation depends on the image axis
in which the marker is occluded. The width of the AABB is analysed when
the marker is occluded with the horizontal image axis, and the height of
the AABB is analysed when the marker is occluded with the vertical image
axis.

tZ ′ = Z2D−3D ∗ diff(AABBcandidate, AABBmarker), (3.3)

where diff(i, j) calculates the difference in dimensions between i and j

54 Chapter 3. Marker Tracking

according to the occlusion axis (horizontal or vertical).

All this procedure generates ambiguity when the marker is occluded
in the corners of the image. In these regions is not possible
to distinguish between translations. The dimensions of the AABB
can vary due to (X,Y) translations or Z translations. In order to
clarify this confusion, a movement in the image corner is interpreted
as Z translation when both dimensions of the AABB increase
or decrease similarly: |width(AABBcandidate)/width(AABBmarker) −
height(AABBcandidate)/height(AABBmarker)| ∼ 0. This is the most
generally interpretation, as it is unlikely to make two translations almost
identical at the same time in X and Y.

3.2.3.2 Rotation

The new rotation parameters are only updated for Z axis, since there is
not enough information for other axes (Section 3.2.6). The rotation in Z
axis corresponds to the rotation of the OBB of the marker in the last two
consecutive frames. The AABB is used to calculate the OBB, as it is shown
in Figure 3.8.

Figure 3.8: OBB computation using the AABB as a starting point.

Starting in each AABB corner the image features that are closest to each
AABB corner are chosen by moving in horizontal and vertical directions.
This procedure results in 4 points (red points of Figure 3.8), but only 3
of these 4 points belong to the OBB, so the 3 points that generate two
perpendicular vectors are selected (green points of Figure 3.8). The last

Section 3.2. Occlusion-OBB 55

point of the OBB corresponds to the parallelogram rule. This is executed
very fast because the image area defined by the AABB is only processed.
Additionally, the image that has been already segmented by ARToolkitPlus
is analysed.

To calculate the rotation between the OBB of the previous frame
(OBBprev) and the OBB of the current frame (OBBcurr) the angle formed
by the same side of both OBBs is measured. Corners of OBBcurr are
stored in clockwise and all the possible configurations (permutations) are
compared to the point configuration of OBBprev to guarantee that both
OBBs have the same point configuration. Once the point configuration
of OBBcurr that is closest to OBBprev is selected, the first two corners
of OBBprev and OBBcurr are used to calculate two vectors (~v1 and ~v2

respectively, Figure 3.9), which represent the same side .

Figure 3.9: Rotation in Z axis (rZ ′) between two OBBs.

To obtain the rotation angle in Z axis (rZ ′), the dot product of ~v1 and
~v2 is calculated (Equation 3.4).

rZ ′ = acos

(
~v1 · ~v2

‖~v1‖‖~v2‖

)
. (3.4)

3.2.3.3 Pose Update

Once the new translations (tX ′, tY ′ and tZ ′) and rotations (rZ ′) are known,
the previous camera pose ([R|~t]) is transformed into the new camera pose
([R′|~t′]):

t′T = tT + (tX ′, tY ′, tZ ′)T . (3.5)

56 Chapter 3. Marker Tracking

R′ =

cos rZ ′ − sin rZ ′ 0
sin rZ ′ cos rZ ′ 0

0 0 1

 ∗R. (3.6)

Furthermore, the occlusion data is updated with information concerning
the current frame. The candidate that has been selected replaces the data of
the marker, ensuring the evolution of the marker appearance for subsequent
frames.

3.2.4 Proportion Values

X2D−3D (Equation 3.1), Y2D−3D (Equation 3.2) and Z2D−3D (Equation
3.3) are calculated during an offline step, using the pinhole camera model
and the similar triangles rule. Pure translations are assumed to simplify
calculations and get an approximated proportions. This implies that when
a translation in one axis is performed, the other two translations are set to
0 (Figure 3.10).

(a) Translation in X axis (analogous for Y axis).

(b) Translation in Z axis.

Figure 3.10: Translations in a pinhole camera model.

Section 3.2. Occlusion-OBB 57

Assume that fx and fy are the focal lengths, (X1,Y1,Z1) and (X2,Y2,Z2)
represent 3D coordinates of a point in two consecutive frames, and (x1,y1)
and (x2,y2) are their corresponding projections. X2D−3D and Y2D−3D

consider that there is no translation in Z axis (Z1 − Z2 = 0 → Z1 = Z2),
and are given by:

X2D−3D =
(X2 −X1)

(x2 − x1)
=

(X2 −X1)
fx
Z1
∗ (X2 −X1)

=
Z1

fx
=
Z2

fx
. (3.7)

Y2D−3D =
(Y2 − Y1)

(y2 − y1)
=

(Y2 − Y1)
fy
Z1
∗ (Y2 − Y1)

=
Z1

fy
=
Z2

fy
. (3.8)

Similarly, Z2D−3D sets to 0 the translation in X and Y axes, which
implies the following relations:

X1 = X2 ⇒
Z1 ∗ x1

fx
=
Z2 ∗ x2

fx
⇒ Z2 =

x1

x2
∗ Z1. (3.9)

Y1 = Y2 ⇒
Z1 ∗ y1

fy
=
Z2 ∗ y2

fy
⇒ Z2 =

y1

y2
∗ Z1. (3.10)

Additionally Z2D−3D is divided in Zx2D−3D and Zy2D−3D, since the image
resolution is not necessarily square (fx 6= fy). A greater/lower number of
pixels in one image axis implies that a difference of one pixel is considered as
a lower/greater increase in 3D motion. Taking everything in consideration,
Zx2D−3D and Zy2D−3D are given by:

Zx2D−3D = Z2−Z1
x2−x1 =

x1
x2
∗Z1−Z1

x2−x1 =

(
x1
x2
−1

)
∗Z1

x2−x1 .

Zy2D−3D = Z2−Z1
y2−y1 =

y1
y2
∗Z1−Z1

y2−y1 =

(
y1
y2
−1

)
∗Z1

y2−y1 .

(3.11)

The use of Zx2D−3D or Zy2D−3D depends on the occlusion axis. i.e.,
Zx2D−3D and Zy2D−3D are selected for occlusions of the marker with the
horizontal and vertical image axis respectively.

Equations 3.7, 3.8 and 3.11 vary for different Z values (distance between
the camera and the marker). Thus, different proportion values are computed
for different Z values during the offline step, and the proportion that is
closest to the current Z value is chosen during the online execution.

58 Chapter 3. Marker Tracking

3.2.5 Experiments and Results

Occlussion-OBB has been executed with two different hardware devices: a
PC (P4 3GHz, 2GB RAM) and a PDA (Dell Axim X 50v). Table 3.1 shows
the frames per second (fps) that takes an ARToolkitPlus execution, with
and without Occlusion-OBB.

ARToolkitPlus + Occlusion-OBB
no occlusion occlusion ARToolkitPlus

PC 27-29 27-29 27-29
PDA 6 8 8

Table 3.1: ARToolkitPlus fps, with and without Occlusion-OBB.

When ARToolkitPlus calculates the camera pose (the marker is
completely visible, no occlusion), Occlusion-OBB jeopardizes the frame-rate
of the PDA execution (∼ 2 frames per second) due to the storage of the
occlusion data. On the contrary, ARToolkitPlus fails when the marker is
partially occluded, and the camera pose is calculated by Occlusion-OBB.
Notice that the pipeline of ARToolkitPlus is not executed completely
(Candidate Filtering step fails, Section 3.1.1), so this saving of time is used
by Occlusion-OBB, and the total fps remains constant.

The response of Occlusion-OBB against different conditions is presented
in Figure 3.11. It is a valid method for both PDA (left column of Figure
3.11) and PC (right column of Figure 3.11). Additionally, top right of Figure
3.11 demonstrates that Occlusion-OBB supports severe occlusions. Right
column of Figure 3.11 also indicates that the new marker search explained
above (Section 3.2.2) is a robust technique that is not confused by objects
with similar shape and colour.

Occlusion-OBB has also been compared to ARTag, which is a
commercial marker tracking software that supports tiny occlusions.
Occlusion-OBB is more robust, as it is demonstrated in Figure 3.12 by
obtaining satisfactory results for those cases in which ARTag fails.

3.2.6 Observations and Limitations

Rotation in Z axis modifies the size of the AABB, so it could be interpreted
as translation in Z axis too. In order not to mix both movements a

Section 3.2. Occlusion-OBB 59

Figure 3.11: Occlusion-OBB against different occlusions.

constraint has been set: Translation in Z axis is executed when the rotation
angle is less than β degrees, where β is a threshold. Good performance has
been obtained with a value between 2 and 3 degrees.

In this approach, the variations of the AABB determine the translation
in Z axis (Section 3.2.3). Similarly, they could be used to calculate the
rotation in X and Y axes (difference in the width and height of the
AABB respectively), provided that the translations in Z axis are forbidden.
Nonetheless, translation in Z axis is a more important and usual movement.

As explained in Section 3.1.2, the shape of the marker is distorted
after the Segmentation step when the user occludes the marker with black
objects. Indeed, the AABB of the marker increases considerably, causing the
failure of Occlusion-OBB (Figure 3.13(a)). An initial prototype that uses
edge segmentation instead of binary segmentation has been implemented
to overcome this problem. As ARTag does, image edges are detected and
those closed contours are interpreted as candidates ((Figure 3.13(b))). As
a counterpart, it has a high computational cost, so it would not be oriented

60 Chapter 3. Marker Tracking

(a) Occlusion-OBB. (b) ARTag.

Figure 3.12: Occlusion-OBB vs ARtag.

to mobile platforms.

Although Occlusion-OBB calculates 4 DOF, it is enough for some tasks.
Moreover, this technique does not need especial markers or extra prepared
environments, so it can be used in scenes that are already prepared for
ARToolkitPlus, without installing anything. In fact, it is a fast method
that can be used directly by any marker tracking system based on squared
markers.

3.3 Occlusion-patches

Occlusion-patches is based on a new marker design that has been proposed
to overcome the problem of marker occlusion. It can be adapted to any
marker tracking system that uses its central area to codify the digital
identification (ARToolkitPlus, for example). It takes advantage of an
untapped frame to place some textures that will be tracked during marker

Section 3.3. Occlusion-patches 61

(a) Binary segmentation (left) and Candidate Detection (right).

(b) Edge segmentation (left) and Candidate Detection (right).

Figure 3.13: Binary segmentation vs Edge segmentation. Green
rectangle indicates the success of the Candidate Detection step.

occlusion. This way, the response of the marker tracking system is not
jeopardized when the marker is visible and the camera pose is also updated
when the marker is occluded. A robust tracking technique exploits the
information that these textures provide to calculate the 6 DOF of the
camera in real time. The extra information that this new marker design
provides can be used to develop new human-machine interfaces as well.

3.3.1 Justification of the New Design

Partial occlusion of the marker causes tracking failure because few 2D-3D
matches are found for the estimation of the camera pose (Section 3.1.2). To
overcome this constraint there should be as many features as possible with
known 3D coordinates lying on the marker surface. This would increase
the probability of finding, at least, four 2D-3D matches during marker

62 Chapter 3. Marker Tracking

occlusion. Because of that, texture patches have been added to the frame
of the marker (middle image of Figure 3.14), which is an area not used by
the ARToolkitPlus library. Indeed, these textures are customizable, which
lets users make their own designs.

Each texture is painted with a different colour (right image of
Figure 3.14) to accelerate the matching step. The colour codification
lets distinguish the texture that each point belongs to, while different
texture patterns guarantee that not all the points look like the same point
(see Section 3.3.4.2). It is also noteworthy that the frame of the marker
has been slightly expanded (the new marker size is 12% larger) to get
reasonable texture sizes and to maintain a thin black outer border. This
black outer border benefits the segmentation step of the ARToolkitPlus
pipeline (Section 3.1.1), as the square shape is more easily detected despite
the presence of the textures.

Figure 3.14: Evolution of the new marker design.

The same texture configuration can be used for all markers or a unique
set of textures can be designed to build a special marker. This decision only
modifies the training phase (Section 3.3.3).

3.3.2 Algorithm Overview

Figure 3.15 shows the interaction between Occlusion-patches and
ARToolkitPlus. The data associated to the current state is stored (Update
Occlusion Data) when the ARToolkitPlus pipeline is executed successfully.
This data is used to initialize the Occlusion-patches when ARToolkitPlus
fails, and thus, it guarantees that the occlusion state is updated every time
the marker is visible.

Occlusion-patches combines two different tracking methods:

Section 3.3. Occlusion-patches 63

Figure 3.15: Occlusion-patches overview.

frame-to-frame tracking and tracking by detection. The first one is
based on temporal coherence, which provides a fast and robust tracking
against no-strong camera movements. The second tracking method,
meanwhile, computes the pose regardless of the movement of the camera,
but requires more computational resources. This way, both tracking
methods are combined to obtain a robust tracking. The frame-to-frame
tracking is used as long as possible, while the tracking by detection is
used for failure recovery. Furthermore, the tracking by detection method is
based on appearance, so it requires a database of feature descriptors that
belong to the marker. This database is computed during an offline phase
(Section 3.3.3.3), which is executed only once for each marker design.

In the next section the offline phase of Occlusion-patches is detailed,
while in the subsequent sections the online phase is described by explaining
how the two tracking methods mentioned above interact.

64 Chapter 3. Marker Tracking

3.3.3 Offline Phase

The offline phase builds all the data that the tracking by detection method
requires to be executed in the online phase. For that purpose, the marker
is trained along a set of keyframes. These keyframes are processed, and
the 2D features that belong to the surface of the texture patches are
back-projected, obtaining their corresponding 3D values. These features
should be as distinguishable as possible in order to generate a unique
descriptor for each of them. In addition, these 3D points and descriptors
are indexed in a database, which is used to get a set of matches during the
online phase. All the steps involved in this phase are shown in Figure 3.16.

Figure 3.16: Offline phase of Occlusion-patches.

3.3.3.1 Keyframe Selection

The main goal of this step consists of generating a set of keyframes of the
marker. Thus, the marker is rendered from different points of view in a
virtual scene, i.e., synthetic images are used instead of taking real images

Section 3.3. Occlusion-patches 65

of the marker. This procedure lets minimize the user intervention during
the training phase.

The number of keyframes depends on the set of movements that the
camera covers at runtime, without exceeding the maximum storage of the
database. Moreover, due to the real time requirements of the online phase,
the FAST operator is used to process the keyframes, which does not provide
scale information (see Section 3.3.3.2). Hence, as it is done in (Wagner
et al., 2010), the marker is trained along multiple scales to solve the scale
ambiguity (see Appendix A). However, very small scales are discarded
because of the poor quality of feature detection, which makes difficult to
obtain a set of good matches (Section 3.3.6). Additionally, keyframes that
put the marker in front of the camera are only considered, without applying
rotations. This is a valid assumption for an object that lies on a plane, and
it has been successfully applied by other authors (Xu et al., 2008).

3.3.3.2 3D Point Cloud Generation

Once the set of keyframes is obtained, interest points that lie on the surface
of the marker are extracted for each keyframe. The FAST operator is used
to detect these 2D features since it provides good repeatability and low
computational cost. Note that not all the features that lie on the marker
are processed, but rather a filter is passed to get those that belong to one
of the four textures of the marker. As the position of the textures is fixed
and known, a mask is applied to identify the pixels that belong to those
areas. Furthermore, the 2D features are divided into four different clusters
according to the texture they belong to.

Remaining 2D features are back-projected to obtain their 3D values,
which is a necessary step because a set of 2D-3D matches are required at
runtime to calculate the camera pose. This way, all the virtual camera poses
that define the set of keyframes are used to render the marker with a color
codification. In fact, the marker is modelled as a triangle mesh and each
triangle is rendered with a unique colour, so the location of each 2D feature
points to a unique colour, which is used to index the corresponding facet.
Once each 2D feature is matched to its corresponding 3D triangle, its 3D
values are given by barycentric coordinates (Gall et al., 2006).

As a result of this procedure four 3D point clouds are created, one for
each texture of the marker (Figure 3.16).

66 Chapter 3. Marker Tracking

3.3.3.3 Databases of Descriptors

This step receives four 3D point clouds (one for each texture of the marker)
and computes the descriptors that characterized the appearance of each
point. SIFT has been chosen for that purpose, since it has demonstrated
high performance compared to other local descriptors (Mikolajczyk
and Schmid, 2005). More precisely, a simplified version of SIFT has
been used, called simplified-SIFT (Appendix A). In summary, besides
replacing the expensive Difference of Gaussians feature detector by the
lightweight FAST operator, parallel techniques are applied to satisfy real
time requirements. Moreover, the parameterisation of simplified-SIFT is
application dependent, so an in depth study of these parameters is presented
in Section 3.3.6 according to the proposed marker design.

Simplified-SIFT implies that no scale information is obtained during the
extraction of features. Therefore, an scale-space like (Wagner et al., 2010)
is implemented to avoid scale ambiguity and get better matching results
at runtime. As a result, each 3D point is related to multiple descriptors,
one for each image that results from applying different Gaussian filters to
each keyframe. In fact, 8 Gaussian filters with a standard deviation factor
of 1/

√
2 the previous one (recursively) have reached a good compromise

between storage and computational cost. These scale-space levels, together
with the marker scales of Section 3.3.3.1, try to cover the expected scale
ranges at runtime.

Once all descriptors of all 3D points are computed, they are indexed in
a database using kd-trees2. A different database is created for each texture,
resulting in four different databases. It is noteworthy that this arrangement
offers fast and robust matches during the online phase, since an input
feature is only matched with its corresponding texture database. Indeed,
the FLANN library (Fast Library for Approximate Nearest Neighbors)
integrated in the widely known OpenCV library (Bradski and Kaehler,
2008) has been used to build these databases, which offers an efficient
approximated nearest neighbour.

2In this thesis Kd-trees are space-partitioning data structures that organize features
based on their descriptors (multi dimensional space). They offer an efficient nearest
neighbour search.

Section 3.3. Occlusion-patches 67

3.3.4 Online Phase

This phase is executed every time ARToolkitPlus does not detect the
marker. It uses the data provided by the last successful execution of
ARToolkitPlus to initialize the frame-to-frame tracking (Figure 3.15).
This technique works fine while no fast camera movements are applied,
otherwise the tracking is lost. Therefore, in case of rapid camera movement
the tracking by detection method is called, which uses the databases of
descriptors created in the offline phase (see previous section). This second
method is based on appearance and supports fast camera movements, so it
is used as a recovery tool. If the tracking by detection computes the camera
pose successfully, then the system returns to the initialization step of the
frame-to-frame tracking, starting the whole process over again. Likewise, if
the marker is not detected after a few attempts (Failure status of Figure
3.15), then the Occlusion-patches does not update the camera pose and the
system waits until ARToolkitPlus is successfully executed. It is noteworthy
that the ARToolkitPlus pipeline is executed every time to check the marker
visibility, and thus, Occlusion-patches is disabled as soon as ARToolkitPlus
detects the marker.

3.3.4.1 Frame-To-Frame Tracking

The first step of the frame-to-frame tracking consist of initializing some
control points that will be tracked in subsequent frames. The last successful
camera pose and frame that were registered are used to back-project
features that lie on the surface of the marker as well as computing
their representative descriptors (Figure 3.17). The FAST detector is
used to extract these features, while the camera pose is provided by
ARToolkitPlus or by tracking by detection after recovering from a failure.
The back-projection process is similar to that explained in Section 3.3.3.2,
using barycentric coordinates to compute 3D values.

Back-projected features and descriptors are not the same as those
generated in the offline phase. These features belong to the entire surface of
the marker, i.e., they are not limited to the frame of the marker. In addition,
they do not use simplified-SIFT descriptor, but a simple descriptor (called
GREY) that is based on the grey values of the surrounding patches. It is
similar to normalized cross correlation (NCC), but using a Gaussian weight.
More precisely, a sparse 11x11 sample grid centered on each feature is used

68 Chapter 3. Marker Tracking

Figure 3.17: Frame-To-Frame tracking initialization. Image of
the last successful execution of ARToolkitPlus (left). Feature
detection (blue points) and back-projection of the strongest
features (green points) that are uniformly distributed (right).

to build a 121 bin descriptor (Figure 3.18). Each bin value corresponds
to the grey value of the corresponding sample, which is multiplied by a
Gaussian weight that is proportional to the distance to the center. Each
descriptor is also normalized to be invariant against illumination changes.
This descriptor is not as robust as simplified-SIFT, but it has demonstrated
considerable robustness and low computational cost (Section 3.3.6).

Figure 3.18: Sparse 11x11 sampling grid (left) and gaussian weight
(right) used by GREY. Red indicates more weight.

In order to reduce the computational cost, the maximum number of
back-projected features has also been limited to 49. The marker is divided
into 49 equal cells (7x7 grid), and only the strongest feature is retained

Section 3.3. Occlusion-patches 69

for each cell (Figure 3.18). This is a fast technique to limit the maximum
number of features and maintain an uniform spatial distribution of features,
which favours the response against occlusions because it does not matter
which side of the marker is occluded.

This initialization step is executed every time the marker changes from
visible to occluded. It guarantees that all features and descriptors are
updated with the last visible frame, and thus, they are adapted to possible
environmental changes such as different illumination conditions.

Once the initialization step is finished, all back-projected features
that are visible in the image are tracked in the subsequent frames. An
incremental tracking similar to those presented in (Malik et al., 2002;
Wagner et al., 2008) is used. First, the new locations of the features are
predicted using a pyramidal optical flow (Section 2.3.1.3). This technique
provides a good starting point for the second step, which searches in the
vicinity of the predicted locations the presence of points with similar GREY
descriptors (Figure 3.19). This way, a feature is considered successfully
tracked if a corner is found in a 20x20 window centered on the predicted
location, and whose descriptor is highly correlated to the original descriptor
(correlation value higher than 0.9). This step removes outlier matches and
minimizes drift, which is a typical problem faced by this type of techniques.

Figure 3.19: Refinement of the frame-to-frame tracking. Green
lines indicate optical flow prediction, while red dots correspond
to the final location. Red squares define the area for refinement.
Features without red square are considered as outliers.

The location of the features that pass the correlation rule is replaced
by the location of the corner they are matched to. However, some of these

70 Chapter 3. Marker Tracking

remaining matches can be outliers, so a hypothesize-and-verify technique
like RANSAC (Fischler and Bolles, 1981) is used to compute the affine
transformation (see Appendix C) that best fits the movement of inlier
features between the two consecutive frames. Note that a minimum set
of inlier matches (6 for this dissertation) are required to validate the
correctness of the current tracking.

The estimated affine transformation provides the new 2D locations of
the 3D control points that have been computed during the initialization,
so this new set of 2D-3D matches is used to update the camera pose.
Moreover, these 3D control points are projected with the new camera pose,
and the resulting 2D locations are used as a starting point for the next
frame. Additionally, a refinement step similar to that mentioned above
is performed. If a corner with similar GREY descriptor appears in the
10x10 vicinity of the projection of each control point, then its position
and descriptor is replaced. Otherwise, both position and descriptor are not
changed, although they are considered for the next frame as well. This last
refinement step ensures that descriptors evolve and improves the quality
of the optical flow for the next frame. Should be noted that the simple
projection of a 3D point may fall in the middle of a homogeneous image
area if a non-accurate camera pose is used, which is not an optimal scenario
for optical flow techniques (Section 2.3.1.3).

At least 15% of control points that are visible must be updated by
the last refinement procedure to validate the correctness of the current
tracking. This requirement, together with the affine restriction, identifies
bad tracking frames due to fast movements or drift and decides when to
execute the tracking by detection method.

3.3.4.2 Tracking by Detection

The tracking by detection method recovers the camera pose without any
user intervention in case that the frame-to-frame tracking fails. In order to
achieve this, features extracted in the current camera image are matched
with those indexed in the database during the offline phase.

Each of the four textures of the marker has been codified with a unique
colour, building a different database for each one (Section 3.3.3.3). Thus,
for each feature detected in the current image the texture it belongs to is
calculated. To do this, for each feature the number of pixels of its vicinity

Section 3.3. Occlusion-patches 71

(10x10 window) that belong to each colour is counted. Furthermore, to
determine the colour of each pixel its corresponding values in the HSV
colour space (Hue-Saturation-Value) are considered. If the saturation or
value component of a pixel is in the extreme of its range, then this
pixel is not considered as coloured, but rather as a white or black pixel.
Otherwise, the hue channel specifies the colour of a pixel. Moreover,a feature
is considered as coloured if half of their surrounding pixels belong to the
same colour; i.e., there is a dominant colour. This colour codification step
is very useful since it reduces the number of matching combinations by 75%
comparing each feature with only one of the four textures. It also rules out
too many points that do not belong to the frame of the marker.

The simplified-SIFT descriptor is calculated for those features that
belong to the frame of the marker and pass the color test. Considering that
each of these features has been matched to one of the four textures of the
marker, only the corresponding database is used to get a correspondence.
The query to the database returns the two closest descriptors (d1 and d2,
respectively) according to the input descriptor (di). FLANN library gets
an efficient approximation of the nearest neighbour, while the euclidean
distance is used to determine the proximity between two descriptors.
Therefore, d1 and di are positively matched as long as the distance between
d1 and di is considerable smaller than the distance between d2 and di
(k ∗ ‖d1 − di‖2 < ‖d2 − di‖2, where k ∈ [0, 1] is constant set to 0.6 for
this thesis).

As a result of matching current detected features with those stored in
the database a set of 2D-3D matches are obtained. Nonetheless, some of
these matches may be outliers, so the robust PROSAC method (Chum
and Matas, 2005) is used to compute the camera pose. This is a
hypothesize-and-verify method similar to RANSAC, with the difference
that the most probable matches have higher probability to be selected.
Here, the probability of a match is considered inversely proportional to the
distance between its corresponding descriptors.

An ad-hoc PROSAC has also been proposed to exploit some properties
of the new design of the marker. It is based on a new sample selection
criteria that favours the quality of the homography that represents the
transformation between the two sets of points (2D-3D). First, two textures
of the marker that have, at least, two correspondences are randomly
chosen, and then, two matches for each of those two textures are selected

72 Chapter 3. Marker Tracking

according to their matching quality. This hierarchical criteria overcomes
the restriction of the homography generation, which states that not all the
points can be collinear. In addition, it returns more stable homography
transformations due to the optimal spatial distribution of selected points.

Finally, the maximum number of matches has also been limited to 75
with the aim of running the method in real time. This way, the matches
with the highest quality will be selected first.

3.3.5 New Interface Possibilities

The new marker design that is proposed provides more information when
the marker is occluded, which can be used to develop new interfaces. These
new interface possibilities are complementary to those interfaces created
by other authors, who have also used occlusions to implement them. For
example, (Lee et al., 2004) places multiple markers at specified locations
and depending on which markers are occluded different user actions are
interpreted. In a similar way, (Canada et al., 2003) presents a simple hand
gesture recognition. It is noteworthy that all these interfaces can be easily
adapted to Occlusion-patches, while the novel interfaces that are shown
here are more difficult to obtain with other designs.

All the interfaces presented here have to determine which features
of the marker are visible. This is a simple task when the marker is not
completely inside the field of view of the camera because the projection
of the occluded points fall outside the image. However, this is not the
case for occlusions caused by other objects such as the user’s hands. For
these cases, only those features that have a point with similar GREY
descriptor in its vicinity are considered as visible. Note that this information
is already generated by the frame-to-frame tracking (Section 3.3.4.1), so it
has a negligible computational overhead. Two novel interfaces are presented
below to demonstrate these abilities, but it can be extrapolated to numerous
applications.

Occlusion Signal

The placement of textures along the frame of the marker implies
the detection of multiple features. Using this assumption the degree
of occlusion can be measured, which is proportional to the number
of occluded points. Indeed, an occlusion signal can be displayed to

Section 3.3. Occlusion-patches 73

inform the user about the degree of occlusion (Figure 3.20). This is
similar to the idea of a coverage signal used by mobile devices.

Figure 3.20: An example of Occlusion Signal output.

Photo viewer

Due to the presence of textures multiple features are extracted in each
border of the marker. Thus, the border with fewer visible features
can be identified, which corresponds to the occluded side of the
marker. Moreover, the occlusion of each border can be interpreted
as a different action. To prove this usability a photo viewer has been
implemented (Figure 3.21), for which a different action is executed
depending on which border is occluded:

• left-border: go to the previous photo.

• right-border: go to the next photo.

• up-border: apply a positive zoom to the current photo.

• down-border: apply a negative zoom to the current photo.

3.3.6 Experiments and Results

In this Section several characteristics of the new marker design are
investigated. The hardware setup consists of an Intel Core 2-Duo at
2.40GHz and 2GB of RAM equipped with a Logitech QuickCam Connect
webcam. All the experiments have been executed with a Windows 7
operating system.

74 Chapter 3. Marker Tracking

(a) Initial state. (b) Previous photo. (c) Positive zoom.

Figure 3.21: Photo Viewer sequence.

3.3.6.1 Tracking by Detection Parameterisation

First, the response of the tracking by detection method has been studied.
Multiple marker designs have been used (Figure 3.22) to investigate
the importance of choosing a good texture content. More precisely,
four different marker designs have been developed to simulate multiple
conditions:

• Words (Figure 3.22(a)) represents a typical design that can be used
for marketing purposes by encoding some words of a message along
the frame of the marker.

• Random-characters (Figure 3.22(b)) is similar to Words, but using
randomly selected characters to demonstrate that no specific letters
are required.

• Random-shapes (Figure 3.22(c)) symbolizes textures that are made
using logos.

• Repetitive-symbols (Figure 3.22(d)) is referred to those shapes
that have a repetitive pattern and do not provide distinctiveness.

To obtain the results that are presented below a set of images with
a known camera pose are required. According to this, a set of snapshots
was acquired, in which the marker was completely visible. These images
were processed with the normal ARToolkitPlus pipeline, obtaining the
corresponding camera pose for each one. Moreover, these poses were used

Section 3.3. Occlusion-patches 75

(a) Words. (b) Random-characters.

(c) Random-shapes. (d) Repetitive-symbols.

Figure 3.22: Marker designs for experiments.

to draw black patches on the surface of the marker, simulating marker
occlusions (Figure 3.23).

Figure 3.23: Simulation of the partial occlusion of the marker.

The scale is the first parameter that has been examined. Nevertheless,
this parameter is not dependent on the marker design, but the size of
the textures. It is noteworthy that the size of the textures is very small

76 Chapter 3. Marker Tracking

compared to the size of the whole marker, as the total increase in the size
of the marker has been minimized (Section 3.3.1). This, however, increases
the difficulty of their detection, since textures appear too small in the image,
without sharpness. Figure 3.24 shows the average success ratio of tracking
by detection for the four marker designs of Figure 3.22. It is displayed
according to the width of the marker and the resolution of the image.

Figure 3.24: Scale study for tracking by detection.

This ratio is increased for larger marker sizes because textures appear
clearly and more accurate simplified-SIFT descriptors are calculated. At
320x240 resolution a good detection ratio is obtained when the marker
width is larger than 75 pixels (22,44% of the image width), while at 640x480
resolution a similar ratio is obtained for a width of 125 pixels (19,53% of
the image width). This difference can be explained by the larger amount of
blur that 320x240 images have.

The detection is considered successful for an input image when the
reprojection error of the marker bounding box using the real pose and
that returned by tracking by detection is below a threshold (5 pixels, for
example). In addition, should be point out that tracking by detection has

Section 3.3. Occlusion-patches 77

not had false positives for these experiments; i.e. the presence of the marker
has not been detected unless it was actually there. This is a desirable
property, as this is the starting point for the frame-to-frame tracking
method, which is based on temporal coherence.

Simplified-SIFT has also been analysed. A set of snapshots have been
taken for each marker design of Figure 3.22 using the scale ranges in
which the tracking by detection is executed successfully (Figure 3.24).
These snapshots have been used to perform several executions of the same
image set, but with different simplified-SIFT configurations. The i− j − k
parameterisation of simplified-SIFT corresponds to the number of regions
(i), the number of histogram bins (j), and the patch size (k) that is used to
build the simplified-SIFT descriptor (Appendix A). Figure 3.25 shows the
success ratio of tracking by detection for each marker design, according to
the simplified-SIFT parameterisation and for different image resolutions.

The ratio of success increases for larger simplified-SIFT patches because
more stable descriptors are built. Likewise, the computational cost increases
proportionally with the size of the patch, so a compromise between
robustness and computational cost must be reached. Furthermore, the
image resolution also influences this decision, as low resolutions require
smaller patch sizes to get those results achieved by high resolutions.

The other two parameters of simplified-SIFT (the number of regions and
the number of histogram bins) are related to the size of the descriptor. They
offer the possibility of establishing the degree of descriptor-distinctiveness
that best suits the properties of the corresponding textures. According to
Figure 3.25 the best results are obtained when the patch is divided into
4 ∗ 4 regions and the number of histogram bins that codify each region is
set between 4 and 8.

Although a different set of images has been used for each marker design,
which could explain small differences in the success ratio between two
different marker designs, the results of Figure 3.25 for 640x480 resolution
establish that textures with a repetitive pattern (Repetitive-symbols) harm
the descriptor-distinctiveness. This implies that multiple false matches
appear during the detection, which increases the computational time that
PROSAC takes to discard these outliers (Section 3.3.4.2).

The good response of Random-characters and Random-shapes designs
demonstrates that textures with words and shapes are valid solutions, since

78 Chapter 3. Marker Tracking

(a) 320x240 resolution.

(b) 640x480 resolution.

Figure 3.25: The tracking by detection success (left) and
computational time (right) according to the simplified-SIFT
parameterisation and image resolution.

they build good quality descriptors as a result of generating a lot of unique
patches around each 3D point. The response of Words proves that positive
detection results are also obtained using textures with customized words as
long as a repetitive-pattern does not appear.

Taking everything into consideration, 4-4-25 and 4-4-31 simplified-SIFT
parameterisations are the configurations that generally provide the best
compromise between ratio of success and computational cost for 320x240
and 640x480 resolutions respectively.

Section 3.3. Occlusion-patches 79

(a) Without refinement step.

(b) With refinement step.

Figure 3.26: Camera pose (red) using the frame-to-frame tracking.

3.3.6.2 Frame-To-Frame Tracking Robustness

Only the Words design (Figure 3.22(a)) has been used to validate the
robustness of the frame-to-frame tracking, as the results are similar for other
designs. The same video sequence has been executed twice, one without
the refinement step presented in Section 3.3.4.1 and the other one using
the refinement process. In the video the marker is occluded by the user’s
hand movement and lies on a textured surface to increase the difficulty
of tracking. In addition, although the video is at 640x480 resolution the
frame-to-frame tracking is executed at 320x240 resolution to reduce the
computational cost.

As shown in Figure 3.26, this experiment demonstrates the robustness
of the refinement step, which returns a good pose despite the hand occlusion
because poorly tracked features are corrected using the correlation of GREY
descriptors (Section 3.3.4.1). The absence of the refinement step increases
the tracking error due to the poor prediction of the optical flow, which
is confused by the hand movement. This last option is the technique
used by other authors (Malik et al., 2002; Wagner et al., 2008), so the
frame-to-frame tracking proposed here offers greater robustness compared
to similar solutions.

80 Chapter 3. Marker Tracking

The computational time for the two executions was 8.1 and 13.05
milliseconds respectively. The time difference is due to the cost of computing
and matching the GREY descriptors that are necessary for the refinement
step. Should be noted that this is the worst scenario for the frame-to-frame
tracking, as there are a lot of visible features that must be tracked (none of
the control points of the marker fall outside the image). Additionally, there
are a lot of corners around the marker (blue points of Figure 3.26(b)),
whose GREY descriptors must be computed and which can produce false
matches. Despite all these difficulties the frame-to-frame tracking runs in
real time and computes a good camera pose.

3.3.6.3 Occlusion-patches Robustness

Figure 3.27 shows the response of Occlusion-patches for a video sequence
in which both tracking methods are mixed. The marker was visible during
the entire sequence in order to successfully execute ARToolkitPlus and
provide the correct pose of each frame of the video. Marker occlusions were
simulated using the procedure described in Section 3.3.6.1.

The image position of the center of the marker along the entire sequence
is shown in Figure 3.27(a) to indicate that the marker is continuously
moving. Even fast movements that impede tracking can also be appreciated.
Red dots of Figure 3.27(b) represent the execution of the tracking by
detection. The computational time is the sum of both tracking techniques.

The frame-to-frame tracking is executed as long as possible due to
its low computational time (Figure 3.27(b)). When this method fails as
a consequence of a fast movement or error accumulation the tracking
by detection is called. This method computes the correct camera pose
and restarts the frame-to-frame tracking. This way, the reprojection error
between the correct camera pose and that returned by Occlusion-patches
(Figure 3.27(c)) is maintained at reasonable levels most of the time. The
few frames that have higher reprojection error are those frames that the
frame-to-frame tracking takes to indicate failure. Even so, the time it takes
to react is very small and the results are still visually acceptable.

Figure 3.28 displays the output of Occlusion-patches for different types
of marker occlusions. A virtual teapot as well as the marker bounding
box are rendered to indicate tracking success. Figure 3.28(a) demonstrates
that Occlusion-patches supports hand occlusions, including recovery from a

Section 3.3. Occlusion-patches 81

(a) Marker motion for 320x240 (left) and 640x480 (right).

(b) Computational time for 320x240 (left) and 640x480 (right).

(c) Reprojection error for 320x240 (left) and 640x480 (right).

Figure 3.27: Occlusion-patches response for a video sequence.

fast camera movement (Figure 3.28(b)). Figure 3.28(c) shows the ability to
compute the camera pose when the marker is partially outside the image.
In addition, Figure 3.28(d) represents the tracking success when the marker
is occluded by multiple objects. Likewise, Figure 3.28(e) and Figure 3.28(f)
display the robustness against occlusions made by objects with similar
colour.

82 Chapter 3. Marker Tracking

(a) Hand. (b) Hand (tracking by detection).

(c) Image border. (d) Multiple objects.

(e) Coloured object. (f) Coloured object.

Figure 3.28: Occlusion-patches output for different occlusions.

Section 3.4. Discussion 83

3.4 Discussion

As presented in Chapter 1, marker tracking systems are a widespread
alternative for the development of AR applications, including industrial
environments. Moreover, as stated by (Cawood and Fiala, 2008), there are
many criteria/metrics that must be considered when evaluating the quality
of a marker tracking system, among which appears occlusion immunity.
Despite these observations a marker tracking system usually fails when the
marker is not completely visible in the image.

Marker occlusion may be caused by a sudden camera movement, which
puts the marker partially outside the image. This forces to put the marker
completely visible in the image again to recover the camera pose. However,
this is not always an easy task, as sometimes people are limited by the small
size of their work space. In other cases, this type of occlusions are facilitated
by the great freedom of movement offered by handheld devices. This is the
case of a worker who uses a mobile device equipped with a camera to
receive augmented instructions that help in maintenance operations. There
are other type of occlusions caused by the presence of objects between the
camera and the marker, which are also a likely scenario in maintenance
operations since occlusions with tools and the hands of the worker are
common.

Knowing the importance of occlusions in industrial environments,
in this chapter two different approaches (Occlusion-OBB and
Occlusion-patches) have been proposed to address the problem of
marker occlusion. Both use computer vision techniques to update the
camera pose in real time when the marker is partially occluded. They
discard the option of adding more environment adaptation (multiple
markers), as they work with a single marker.

Occlusion-OBB uses simple image processing techniques and temporal
coherence assumptions. It only updates 4 DOF of the camera pose, but has
a very low computational cost. It was designed having in mind the limited
computing capabilities of mobile devices, which were the target market. It
has been implemented assuming square markers, so it is limited to those
type of patterns. Indeed, it would be difficult to compute the rotation of
circular markers using these ideas.

Although Occlusion-patches enhances the robustness and is oriented to

84 Chapter 3. Marker Tracking

standard PCs, it is noteworthy that similar techniques have already been
implemented for mobile platforms (Wagner et al., 2010), which suggests
that it could be adapted to these devices. Occlusion-patches is based on
a new marker design, which places textures in the frame of the marker.
These textures are customizable by the users, which is a desirable property
to offer high adaptability and for marketing purposes. This approach
combines two different tracking methods to obtain more robustness, which
has been demonstrated through a set of experiments. The first one is
a fast method based on temporal coherence, which works fine while no
fast camera movements take place, while the second one is a tracking
method based on appearance, which supports rapid camera movements.
Additionally, two novel human-machine interfaces have been presented to
show the new possibilities that have been arisen as a result of obtaining
more information during marker occlusions. In contrast to Occlusion-OBB,
although this approach has been tested with square markers, it can be
applied to markers with any shape. Textures should be considered as a set
of tags that can be attached to any surface.

Besides other advantages, this chapter covers broadly the problem
of marker occlusion by offering a solution for different computation
capabilities and for different requirements (4 DOF vs 6 DOF).

Chapter 4

3D Object Recognition

You have to have the fighting spirit.
You have to force moves and take chances

Bobby Fischer

This section describes a monocular 3D object recognition oriented to
untextured 3D models, which are very common in industrial environments.
Due to the lack of texture, this recognition method uses geometric features
of the model (junctions and edges) to recover the camera pose, without
knowledge about previous frames. Indeed, recognition methods are used to
initialize markerless tracking systems as well as failure recovery because of
their non-recursive nature.

A synthesis of this chapter has been submitted to:

Álvarez, H. and Borro, D. “Junction assisted 3d pose retrieval of
untextured 3d models in monocular images”. Submitted to IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2011.

4.1 Introduction

The problem of 3D object recognition tries to recover the six camera
parameters that define the viewpoint from which the model is shown in
the image, which is hampered by the lack of knowledge about previous
frames. Although the recognition of a 3D model in monocular images has
been investigated in many computer vision areas, its greatest popularity
has been achieved in industrial environments. It is used for multiple

85

86 Chapter 4. 3D Object Recognition

tasks, such as automatic inspection of model properties (von Bank et al.,
2003; Schoenfelder and Schmalstieg, 2008) or pick and place operations.
Moreover, most of the models related to this environment share a common
property: the lack of texture on their surface.

This chapter addresses the challenge of recognising an untextured
3D model from a monocular image, in the shortest amount of time and
minimizing the user interaction. This is a difficult task since robust and fast
techniques based on texture (Lowe, 2001; Lowe, 2004; Rothganger et al.,
2006; Bay et al., 2008) cannot be used. Therefore, the proposed approach is
based on the geometric properties of the model such as edges and junctions
(points where several edges meet).

In the following sections previous works on 3D object recognition will
be presented, and then, the proposed approach will be detailed. Some
experiments and results will be also included, which highlight the good ratio
that the proposed approach obtains between performance and robustness.

4.2 Previous Works

3D model recognition in monocular image is a well-known problem that has
been studied by several authors, which offer different ways of proceeding
according to the model and environment properties.

(Lowe, 2001; Lowe, 2004; Rothganger et al., 2006; Bay et al., 2008)
use feature descriptors to determine a set of 2D-3D matches that define
the 3D pose of the model. Some 2D views of the model are selected as
representative during the training step. These views are processed, and
features that lie on the surface of the model are extracted. For each
feature its 3D position and descriptor is calculated and used to train a
classifier that will be the responsible of the matching during the online
phase. Furthermore, descriptor-based techniques combined with geometric
constraints improve precision and efficiency (Hinterstoisser et al., 2007).
All of them achieve good results and high frame rates, but the robustness
is decreased for untextured objects. They are oriented to rich textured
objects, since descriptors that can be extracted from their surface are more
discriminative, thereby improving the matching results. Generally, these
methods also require user intervention to get the training dataset.

Other approaches use the contours of the model to get a positive match

Section 4.3. Proposed Method 87

(Selinger and Nelson, 1999; Ulrich et al., 2003; Opelt et al., 2006; Ferrari
et al., 2008; Holzer et al., 2009; Hinterstoisser et al., 2010). They are based
on the shape of the model, and therefore, they are suitable for untextured
models. In the training step 2D views of the model are processed in order
to extract the corresponding edges and transform the online problem to
a 2D-2D edge pattern matching. Although some of the works cited only
address the problem of 2D-2D edge matching (Ulrich et al., 2003; Opelt
et al., 2006; Ferrari et al., 2008), they can be extrapolated to 3D recognition
using a similar training step to that mentioned above. All of them need
the acquisition of real 2D views, so they are configured for specific light
conditions and edge responses extracted from the real training images. This
is not the case of (Stark et al., 2010; Ulrich et al., 2009), which use a virtual
training to build 2D artificial views of the object, reaching more generality.

The third group of alternatives are based on geometric features
(Lamdan and Wolfson, 1988; Costa and Shapiro, 2000; Shahrokni et al.,
2002; Sehgal, 2003; Kotake et al., 2007). Distinctive 3D geometric features
of the model are extracted in the offline phase, and their geometric
relationships are indexed in a data base. During the online phase image
input features are detected and compared to the database. Consistent
matches receive a vote and the solutions with the highest number of
votes are selected for further processing. Generally, these features provide
poor distinctiveness, so an input feature generates multiple matches,
which increases the computational effort. Due to their computational
requirements they are more popular for no time-critical applications such
as 3D pose recovery in 3D scenes (Drost et al., 2010). They have also been
optimised using the correspondences specified by the user (Franken et al.,
2005), but this has the disadvantage of requiring user intervention.

4.3 Proposed Method

The proposed approach is related to geometric and contour based solutions.
In the offline phase, it builds a global hash table using geometric
relationships between the junctions of the model. These relationships are
extracted from a set of 2D synthetic model views, which are created
automatically, without user intervention. In addition, a sophisticated
geometric constraint between two junctions is proposed, which allows to
reduce false matches, and consequently, the computational time. This is

88 Chapter 4. 3D Object Recognition

the main difference with geometric alternatives, which waste too much
time processing many unnecessary matches. In the online phase, rather
than using a voting scheme, matches with a similar position and scale
are clustered. Each cluster is considered as a valid hypothesis and is
evaluated using a similarity measure based on contours. This improves
robustness, as hypotheses are not thresholded according to the number
of votes. In summary, optimised geometric constraints are used to generate
pose candidates, which are evaluated using contours.

(Ulrich et al., 2009) is the work that comes closest to the 3D model
recognition described in this chapter. Both studies create artificial 2D views
of the model in the training step, use a robust contour based similarity
measure, and both can recognise untextured 3D models in a reasonable
amount of time. Compared to (Ulrich et al., 2009), the proposed method
offers less memory requirements and it is not limited to a predefined scale
of the model.

The use of junctions for object recognition is not a new idea. They
have demonstrated their viability for 2D object recognition (Wang et al.,
2010). However, an expensive edge detection algorithm and complex
descriptors are required to get successful results, which takes several
minutes. The solution presented here, meanwhile, offers an efficient and
robust mechanism to handle junctions and recognize 3D objects in a
few hundred of milliseconds, which is fast enough for some time-critical
applications.

4.3.1 Algorithm Overview

The proposed algorithm overview is shown in Figure 4.1. It is divided
into two main blocks. In the first one (Offline) geometric features of the
model are extracted and used to build a collection of virtual keyframes.
The second block (Online), meanwhile, processes the camera image to
find positive correspondences between the camera image features and the
virtual keyframe features, as these positive correspondences will establish
the presence of the object in the current view. An in depth explanation of
each block is given in the following paragraphs.

Section 4.3. Proposed Method 89

Figure 4.1: 3D object recognition overview.

4.3.2 Offline

This stage extracts automatically all the information that the model
provides and overrides completely the user interaction. This aim is
hampered by the lack of texture in the model, which precludes any well
known method of the literature (Lowe, 2001; Lowe, 2004; Rothganger

90 Chapter 4. 3D Object Recognition

et al., 2006; Bay et al., 2008). Thus, although the model only retains
information about its geometry (triangle mesh), it will be enough to perform
an automatic object detection, as it is shown in this chapter. This stage is
executed only once per model.

4.3.2.1 Geometric Feature Extraction

The detection of geometric features (such as edges) from a triangular mesh
is not a new problem (Jiao and Heath, 2002; Yamakawa and Shimada, 2005;
Platonov and Langer, 2007). Most techniques are based on the detection
of sharp changes between the normals of neighbour triangles, besides some
local constraints to improve results (Jiao and Heath, 2002; Yamakawa and
Shimada, 2005). Other authors, however, render the model from different
points of view and backproject detected 2D edges to 3D space by taking
into account the texture of the model (Platonov and Langer, 2007).

A simplified version of (Jiao and Heath, 2002; Yamakawa and Shimada,
2005) has been implemented for this thesis. Therefore, a 3D sharp edge is
detected if the angle between its neighbour facets is larger than a predefined
threshold (30-40 degrees for example), without considering local constraints
(Figure 4.2(a)). Additionally, 3D junctions of the model are detected, which
is a problem that has not been previously addressed by other authors. If
two 3D sharp edges have one coincident vertex and the angle that they form
satisfies a predefined minimum and maximum thresholds (good results have
been obtained with 80 and 100 degrees respectively), then both of them
build a 3D junction. This way, the extracted 3D junctions are L junctions.
In fact, the vertex where more than 2 sharp edges meet are split into several
L junctions (Figure 4.2(b)). These definitions are shown in Figure 4.2, while
real examples are presented in Figure 4.3.

This technique also considers sharp edges and junctions that belong
to the inner boundary of a model (Figure 4.4). These types of edges and
junctions are always hidden by other parts of the model and do not provide
relevant information. Similarly, undesired sharp edges and junctions can be
detected due to a bad tessellation. Following this reasoning, a refinement
step is applied to discard these outlier edges and junctions. The model
is rendered from different points of view using the OpenGL pipeline and
following a sphere path. Good results have been obtained with steps of
altitude and azimuth of 30 degrees, which gives a total of 144 views. For each

Section 4.3. Proposed Method 91

(a) 3D sharp edge. (b) L junctions.

Figure 4.2: Definition of 3D sharp edges and 3D L junctions.

Figure 4.3: Geometric Feature Extraction for a 3D box. Facets
(left), 3D sharp edges (middle) and 3D L junctions (right).

view a 2D edge map is generated applying the Sobel operator to the depth
buffer image of OpenGL, which is filled rendering the 3D triangle mesh,
similar to (Wuest et al., 2007). This 2D edge map stores the projection
of strong edges and junctions that are visible from the current point of
view. On the other hand, visible 3D edges and junctions are determined for
the current view from the collection of 3D sharp edges and junctions using
the OpenGL occlusion query. Thus, in case that a 3D sharp edge is visible
and its projection appears in the 2D edge map, it receives a vote. Notice
that this vote scheme is analogous for junctions and repeated for all views.
Finally, only the 3D sharp edges and junctions with a minimum number
of votes are retained as inliers, as they are strong 3D edges and junctions
that belong to the outer boundary.

This refinement process improves the quality of the geometric feature
extraction as well as guarantees the robustness of the recognition. Table
4.1 shows resulting geometric feature extraction for several 3D models.

92 Chapter 4. 3D Object Recognition

(a) All edges. (b) Outer edges.

Figure 4.4: 3D sharp edges before and after removing inner edges.

Table 4.1: Geometric Feature Extraction examples.

Elephant 3D text Box Tri. bracket Giraffe

Facets 104 158 12 38 53040

Edges 57 42 12 23 148

Junctions 76 28 24 30 124

4.3.2.2 Virtual Keyframe Generation

As a result of the previous step 3D sharp edges and 3D junctions are
obtained for an input 3D model, but this 3D information cannot be matched
directly to the camera 2D image. A training process is required to create

Section 4.3. Proposed Method 93

several 2D views of these 3D features and simplify the problem to a 2D-2D
matching. Because of that, some 2D synthetic views of the model (virtual
keyframes) are created moving a virtual camera (that is pointing to the
model center) along a sphere. This procedure is illustrated in Figure 4.5.

(a) Virtual cameras. (b) Virtual keyframes.

Figure 4.5: Virtual keyframe generation.

This is an automatic process parameterised by the rotation ranges
along each axis ([xmin, xmax], [ymin, ymax] and [zmin, zmax]) and their
corresponding rotation steps (∆x, ∆y and ∆z) (see Section 4.4 for an in
depth discussion). In contrast to other similar approaches (Ulrich et al.,
2009), space partition of the model scale is not required because the
proposed method computes the scale during the execution (Section 4.3.3.3),
i.e., it is not limited to a set of scales fixed in the offline phase.

For each virtual keyframe visible 3D sharp edges and 3D junctions
are determined using an OpenGL occlusion query. They are also projected
to the image plane of the virtual camera, and therefore, each virtual
keyframe stores a list of 2D edges and a list of 2D junctions as well as their
corresponding 3D values. Furthermore, for each 2D junction two angles are
stored: (1) the minimum angle between its two branches (α) and (2) the
minimum angle in the clockwise direction that one of its two branches form
with the x axis (β) (see Figure 4.6).

94 Chapter 4. 3D Object Recognition

Figure 4.6: Junction basis definition.

Notice that a 2D junction that is considered separately does not provide
much distinctiveness for untextured models since it does not lie on a
textured surface. It only offers a simple geometric constraint based on the
angle of its branches. Due to this reasoning, a junction basis descriptor
is used, which stores the relative orientation of two 2D junctions (Figure
4.6) and offers a more sophisticated geometric constraint. It is similar to
the point pair feature described in (Drost et al., 2010), but oriented to
junctions. A junction basis of i and j 2D junctions is defined as:

junction basis(i, j) = (αi, βi, αj , βj , θij , dij), (4.1)

where θij is the angle between the vij vector and x axis, dij = ‖vij‖2, and
vij vector is defined by the junction i and junction j centers. It follows that
a junction basis is asymmetric since θij 6= θji.

Degenerated results arise when the distance between the junction
centers is close to 0 (dij ≈ 0) (see Section 4.3.3.3), so they are discarded. In
summary, each virtual keyframe is composed of a list of 2D visible edges plus
their 3D values and a junction basis set. In fact, for each virtual keyframe
with n junctions a maximum of n!/(n− 2)! junction bases are stored.

Section 4.3. Proposed Method 95

4.3.2.3 Virtual Keyframe Hashing

After processing all virtual keyframes, all junction bases will be grouped in a
global hash table, similar to (Lamdan and Wolfson, 1988; Drost et al., 2010).
This way, an input junction basis is associated with all virtual keyframes
that have a junction basis with similar description, which provides an
efficient mechanism to match junction bases.

The key of the hash table is extracted from βi, βj and θij of each
junction basis. Other parameters are discarded for key generation to
simplify the procedure and reduce key dimensionality. The key is thereby
computed applying a proper quantisation step to these 3 angles (∆βi, ∆βj
and ∆θij , respectively), and each record of the hash table stores a list of
pairs (keyframe id, junction basis id).

This is an efficient scheme for matching an input junction basis in
constant time. However, the partition of βi, βj and θij angles in several
intervals introduces errors at their boundaries. Due to the impreciseness
of the junction detector, besides distortions caused by the projective
transformations when processing the input camera image, some angles may
cross the boundary to the next angle interval. This would jeopardise the
matching quality by promoting unstable results. That is why the same
criteria adopted by (Ulrich et al., 2003) is applied, considering overlapping
intervals. Hence, in the global hash table a junction basis will be stored
in the corresponding position and in neighbour records. More precisely, a
junction basis with βi, βj and θij angles will be indexed using the ranges

[βi −∆βi ∗ ξi, βi + ∆βi ∗ ξi],
[βj −∆βj ∗ ξj , βj + ∆βj ∗ ξj], (4.2)

[θij −∆θij ∗ ξij , θij + ∆θij ∗ ξij],

where ξi, ξj , ξij ∈ [0, 1] are the ratio of overlap for intervals. See Section
4.4 for reasonable values of these parameters.

96 Chapter 4. 3D Object Recognition

4.3.3 Online

Once an input 3D model has been processed in the offline-phase, its
geometry description is represented by a set of junction bases that are
scattered along a set of virtual keyframes. Therefore, given an input image,
the problem is to find the optimal junction basis correspondences that
recover the 3D pose of the object. The necessary steps to achieve this goal
are detailed in the following subsections.

4.3.3.1 Junction Detection

Before proceeding with the junction basis construction the presence of
2D juntions in the image must be determined. Junction detectors can be
classified into two main groups: region based and edge based approaches
(Cazorla and Escolano, 2003). The first group processes intensities inside
a predefined circular region to segment them into homogeneous intervals.
The edge based techniques, meanwhile, try to identify edges that emanate
from the junction center so that the response of edge filters and the value
of a statistical test determine the presence of junction branches.

Although there are several junction operators (Cazorla and Escolano,
2003; Parida et al., 1998), most of them are computationally demanding,
making them unsuitable for real time applications. JUDOCA (JUnction
Detection from Circumferential Anchor points) (Laganiere and Elias,
2004) is one of the most efficient junction detectors, which is public
available1. It belongs to the edge based group, and has demonstrated a
good relation between robustness and performance. Due to this property,
this operator has been chosen for this dissertation. Notice, however, that
all the framework that is described in this chapter is valid regardless of
the selected junction detector. For the completeness of the thesis a brief
explanation of how JUDOCA works is given here. An interest reader can
refer to (Laganiere and Elias, 2004) for an in depth explanation.

JUDOCA considers a circle of radius p centered on each edge pixel of
the image (Figure 4.7). Furthermore, each edge point in the circle perimeter
is an anchor point that defines a putative radial line with the center pixel. If
most of this putative radial line lies on an image edge, then it is considered
as a junction branch. Finally, edge pixels with more than one branch

1www.site.uottawa.ca/research/viva/projects/judoca

Section 4.3. Proposed Method 97

emanating from them are defined as junctions. Indeed, continuing with
the same criteria as Section 4.3.2.1, junctions with more than 2 branches
are split into several L junctions, and α and β angles are extracted for each
junction.

Figure 4.7: Junction extraction using pyramidal JUDOCA.

Some modifications have also been introduced to the original JUDOCA.
First, a junction is suppressed only if there is another junction with similar
and stronger branches in its vicinity. In contrast to the original method,
branch orientations are taken into account for non-maxima suppression.
This guarantees a better repeatability ratio at the expense of computational
effort. Similarly, JUDOCA algorithm is executed at two different image
resolutions to increase the detection ratio. Finally, due to the algorithm
profile, operations associated with each circle are independent, so parallel
techniques are also applied to decrease the computational time. As shown
in Figure 4.7, the parallel execution of JUDOCA for a non-complex image
takes less than 31 milliseconds at 640x480 resolution using an Intel Core
i7-860 at 2.80GHz and 3GB of RAM.

4.3.3.2 Junction Hashing

After processing the input image, all pairs of extracted junctions that do not
have coincident centers are considered as potential junction bases that lie
on the model. These junction bases are built as explained in Section 4.3.2.2

98 Chapter 4. 3D Object Recognition

and provide a set of votes for each keyframe. For each potential junction
basis the hash table computed offline (Section 4.3.2.2) is accessed and the
list of (keyframe,junction basis) pairs associated with it are obtained. Thus,
an image junction basis is matched with multiple virtual junction bases
scattered along the virtual keyframes. After repeating this process for all
image junction bases, each virtual keyframe have a list of (image junction
basis, virtual junction basis) matches, which represents the relationship
between the virtual keyframe and the input camera image.

Since all pairs of image junctions are considered, the computational
complexity increases exponentially with the number of image junctions.
This is the case of cluttered scenes, where too many junctions are detected.
Nonetheless, all image junction bases do not have the same importance
because only a few of them belong to the model. Based on this assumption,
it would be interesting to use a heuristic that selects the most probable
junction basis in complex scenes while maintaining the computational cost
at reasonable levels (see Section 4.4.1). Hence, the weight (w) of each image
junction basis is based on:

w(junction basisij) = (1.0/dij)
pi∗pj∗N (4.3)

where dij is the distance between junction centers, pi and pj are the quality
of junction i and j respectively, and N is a scale factor. Edges of the
image are broken by curvature points, and the quality of each junction
is proportional to the size of the edge portion it belongs to. This tries
to penalise junctions extracted from short false edges due to noise, i.e.,
junction bases whose junctions are extracted from long straight edges and
which are not too distant from each other are favoured. Since this heuristic
is only applied in cluttered scenes, where the model is surrounded by other
objects, setting more weight to close junctions sounds reasonable because
distant junctions probably belong to two different objects.

Taking everything into consideration, all image junction bases are
sorted in descending order using Equation 4.3 and only the best k junction
bases are considered for the hashing process described above. Note that
the pose of the model is not selected according to the number of matched
junction bases, but all hypotheses generated by all matches are explored,
so few matches of the optimum pose are required to get the correct one
(Section 4.3.3.3). Because of that, the use of the heuristic does not decrease
robustness and increases significantly performance.

Section 4.3. Proposed Method 99

4.3.3.3 Keyframe Matching

All the steps involved in Keyframe Matching are shown in Figure 4.8 to
facilitate comprehension.

Figure 4.8: Keyframe Matching steps.

As a result of the previous steps, each keyframe has a list of (image
junction basis, virtual junction basis) matches, i.e., matches have been
clustered by keyframes. However, the matches of a single keyframe can
represent different image positions at different scales. Thus, each keyframe
matches must be clustered by both scale and position.

Scale Clustering

The scale (s) of each junction basis match is computed as:

s(junction basisi, junction basisj) = di/dj , (4.4)

where di is the distance between junction centres of junction basisi and dj
is the distance between junction centres of junction basisj . Both distances
are higher than 0 because it is a precondition to build a junction basis.
To accelerate the process the scale space has been divided at predefined
intervals. Additionally, overlapping intervals have been taken into account
by associating each junction basis match with the two closest intervals.

Position Clustering

Once junction basis matches have been clustered by scale, then they are
grouped by the image position they point to, similar to (Opelt et al., 2006).
To achieve this, for each keyframe the gravity centre of all its junctions is
calculated in the offline phase, and for each virtual junction basis the vector
that is pointing to the gravity centre is stored (Figure 4.9). Therefore, in the

100 Chapter 4. 3D Object Recognition

online phase this vector is applied to the respective matched image junction
basis with a proper scale, obtaining a unique image position. Junction basis
matches that point to close image positions are grouped together, which is
controlled by a threshold that has been set proportionally to the scale.

Figure 4.9: Junction basis clustering based on the image position
they point to. Junction bases i and j are clustered together, while
junction basis k is an outlier.

2D Affine Transform

After all clustering processes, all junction basis matches of a keyframe that
share scale and image position are clustered together (ci). The next step
requires the analysis of each ci cluster through the computation of the 2D
affine transform (see Appendix C) that maps the virtual junction basis to
the matched image junction basis. Each junction basis match provides two
diferent 2D-2D point matches given by the implicit matching of its junction
centers. Notice that although two junction basis matches are only required
for each ci test, the best affine transformation (ai) in the least squares sense
is retrieved for each ci.

Evaluation

Afterwards, each ai is evaluated, and the ai with the highest score is selected
for each keyframe. Only one ai is maintained for each keyframe so that
multiple instances of the model can be recognised in the same image, but
from different points of view (Figure 4.16).

Section 4.3. Proposed Method 101

For the evaluation of each ai the similarity measure explained in (Steger,
2002) and used successfully in (Ulrich et al., 2009) is applied. The set of
2D edges extracted in the offline-phase for each keyframe is transformed
according to ai (Figure 4.10), generating a set of edge samples characterised
by their normals (ei). Then, the similarity measure (m) is computed as the
sum of the dot products between ei and image edge gradients (gi) at the
corresponding transformed locations:

m =
1

n
∗

n∑
i=1

|〈ei, gi〉|
‖ei‖2 ∗ ‖gi‖2

, (4.5)

where n is the number of edge samples. Notice that the absolute value
of the dot products is considered to ignore the contrast between the
model and scene, which is unknown for keyframes taken from virtual
processing. Modifications proposed in (Steger, 2002) are also used to speed
up calculations.

Due to imprecision in the calculation of 2D affine matrices and
projective distortions, the alignment of the transformed keyframe edges
and image edges may be undesired (Figure 4.10), which decreases the value
of m. Thus, image edges are searched along each ei, as it is done for pose
refinement (Drummond and Cipolla, 2002). The search is performed in a
limited neighbourhood of each edge sample, proportional to the scale, until
an image edge is found or the search space is exceeded. Although this
increases the computational effort a bit, it is a necessary step to avoid false
detections.

Based on the similarity measure of Equation 4.5 ai candidates that do
not fit well to image edges are discarded, i.e., ai is ruled out in case that its
corresponding m value is below a predefined threshold (thrm). The score
of the remaining ai is computed as

ma = m ∗ v (4.6)

where v = | {(ei, gi) \ |dot(ei, gi)| > thrm} |. This favours candidates with
good edge fitting and high scale (high number of edge samples). If multiple
instances of the model are recognised, then the candidate with the highest
scale covers the larger area of the image, and it is probably the view that
the user wants to select. Due to this reasoning only the ai with the highest

102 Chapter 4. 3D Object Recognition

Figure 4.10: Similarity measure for a 2D affine transformation.

ma score is maintained for each keyframe.

All the operations explained in this section are independent for each
keyframe, so parallel techniques are applied easily. This is an essential step
because the execution time is reduced considerably.

4.3.3.4 Pose Refinement

The previous keyframe matching process obtains a list of 2D affine matrices,
one for each view in which the model is detected. However, in case that only
one instance of the model would be required, then the global ai with the
highest ma will be selected.

Once the subset of the target keyframes is selected, the final step
requires the acquisition of the 3D pose for each one. For this aim the 2D
data (scale, rotation and position) provided by each ai can be interpreted as
a combination of different 3D transformations, as it is done in (Ulrich et al.,
2009). Nevertheless, here the efficient PnP algorithm described in (Lepetit
et al., 2009) is applied because of its simplicity and good performance.
2D edge samples are transformed according to ai and matched to their
corresponding 3D values stored in the offline phase, formulating the PnP
problem. Additionally, the 3D pose is refined using the procedure explained
in (Drummond and Cipolla, 2002). 3D visible edges are projected, and for
each projected 2D edge sample a local search is performed along the edge
normal. Each 3D sample looks for the presence of edges in the corresponding

Section 4.4. Experiments and Results 103

projected image area. This produces multiple hypotheses for each edge
sample, which are handled with a robust estimator. The resultant refined
3D pose is obtained from the non-linear optimisation of the reprojection
error.

4.3.3.5 Pseudocode

The pseudocode of the Online phase is presented here (Algorithm 4.1) to
improve comprehension and facilitate its reproduction.

4.3.4 First Camera Pose

Applications that use this method to solve the first pose problem can
achieve greater robustness using a history of votes. In cluttered scenes,
where some false positives may appear due to the presence of objects
with similar shapes, a minimum number of repetitions may be requested
to consider the extracted view as an inlier recognition. If a keyframe is
detected in the current frame, it gets a vote. Thus, if in the last q frames
a keyframe has been detected p times (p << q), then it is considered as an
inlier view and it is returned. This scheme is supported by the idea that the
user will try to focus on the model, covering the main area of the image. If
the user realises that the model is not currently detected he/she will move
the camera and will generate a sequence of different views that feeds the
voting scheme.

4.4 Experiments and Results

This section evaluates the response of the proposed algorithm. All the
experiments have been executed with an Intel Core i7-860 at 2.80GHz and
3GB of RAM. Images were captured with a Logitech QuickCam Connect
webcam and a resolution of 640x480 pixels.

4.4.1 Parameter discussion

The most critical parameters to configure are related to the space
partition that defines the junction basis data base. The range of target

104 Chapter 4. 3D Object Recognition

Algorithm 4.1 Pseudocode of 3D object recognition.

1: Input: camera image (I)
2: Output: recognised 3D poses (P)
3: K: set of keyframes

4: J ← JUDOCA(I)
5: for all ji ∈ J do
6: for all jk ∈ J do
7: if distanceCenters(ji, jk) > 0 then
8: bik ← junction basis(ji, jk)
9: Lmatches ← hash(bik)

10: updateMatches(K,Lmatches)
11: end if
12: end for
13: end for

14: F ← ∅
15: for all ki ∈ K do
16: A← ∅
17: S ← clusterByScale(ki)
18: for all si ∈ S do
19: C ← clusterByPosition(si)
20: for all ci ∈ C do
21: ai ← buildAffine(ci)
22: A← A+ ai
23: end for
24: end for
25: F ← F +maxScore(A)
26: end for

27: P ← ∅
28: for all fi ∈ F do
29: pi ← build3DPose(fi)
30: P ← P + pi
31: end for

views are specified by [xmin, xmax], [ymin, ymax] and [zmin, zmax] and their
corresponding steps ∆x, ∆y and ∆z. The angle steps that characterise
the number of bins for the global hash table must be also provided: ∆βi,

Section 4.4. Experiments and Results 105

∆βj and ∆θij (Section 4.3.2.2). Additionally, the overlapping percentage
between adjacent bins has to be set: ξi, ξj and ξij .

To show the influence of the parameterisation, the proposed method
has been executed several times with different parameter values and the
same input images.

Input images were acquired in a scene similar to the one presented
in Figure 4.11. Using a standard marker tracking system (Wagner and
Schmalstieg, 2007), the relative pose between the marker and the camera
is known. Likewise, a fixed transformation between the marker and the 3D
model was set to obtain the relative pose between the 3D model and the
camera. Furthermore, as the position of the 3D model in the scene and its
corresponding projection could not match precisely (red wireframe of Figure
4.11), the reprojection error was minimized (Drummond and Cipolla, 2002)
in order to achieve a precise match and increase the accuracy of the 3D pose
(green wireframe of Figure 4.11). Finally, the camera was moved around
the model in order to build a set of input views with a known 3D pose of
the model.

Figure 4.11: Image and camera pose acquisition for experiments.

[xmin, xmax], [ymin, ymax] and [zmin, zmax] have been fixed to [−10◦, 90◦],
[−90◦, 90◦] and [−90◦, 90◦] respectively. Although smaller ranges could have
been used in order to get lower computational times, the experiments have
been configured for the general case by covering a wide range of views. ∆x,

106 Chapter 4. 3D Object Recognition

∆y and ∆z values have been taken from the [5◦, 20◦] range, while ∆βi, ∆βj
and ∆θij from the [5◦, 7◦] range. ξi, ξj and ξij have been set to 0.25 or 0.5.
The experiments have been executed using a heuristic (Section 4.3.3.1) with
a maximum of 10000 junction bases (H10000) and without any limitations
(HMAX).

This procedure has been repeated for two different objects: the elephant
and the 3D text presented in Table 4.1. The number of input images for
each model has varied between 50 and 75. The results for both 3D models
are presented in Figure 4.12 and Figure 4.13.

The computational time, accuracy and robustness of the proposed
parameterisations have been compared. The computational time of each
parameterisation is computed as the mean time for all input images. The
accuracy, meanwhile, is calculated as the mean edge reprojection error
between the input 3D pose and the 3D pose generated by our technique.
Finally, the robustness is considered as the ratio between successfully
recognised images and the total number of input images.

Analysing the pattern of Figures 4.12 and 4.13 the following general
conclusions are extracted:

• Small ∆x, ∆y and ∆z values produce more robust and accurate
results at the expense of higher computational cost. Fine space
partition increases the number of keyframes to match and
consecuently the execution time is higher. The probability of getting
a keyframe close to the input camera increases, which improves
robustness and accuracy.

• ∆βi, ∆βj and ∆θij angles with their associated ξi, ξj and ξij values
alter the results as well, but have less impact on them. Small intervals
produce less junction basis matches in the Junction Hashing step
(Section 4.3.3.2) which reduces the computational effort and decreases
robustness.

• The results of the 3D text model are similar to those of the 3D
elephant model, but with smaller computational times and more
robustness (Figure 4.13). The 3D text model is simpler, with fewer
junctions, so a simple junction basis database is built.

• The influence of the proposed heuristic is hardly appreciated in these
results. The threshold of maximum junction basis is high enough

Section 4.4. Experiments and Results 107

(a) Computational time.

(b) Robustness.

(c) Reprojection error.

Figure 4.12: Recognition results for 3D elephant model.

108 Chapter 4. 3D Object Recognition

(a) Computational time.

(b) Robustness.

(c) Reprojection error.

Figure 4.13: Recognition results for 3D text model.

Section 4.4. Experiments and Results 109

to not jeopardise the matching. Its importance is only perceived in
cluttered scenes (Figure 4.14). Because of that, the use of the heuristic
is recommended, as it does not decrease the performance in general
cases and it limits the computational time in cluttered scenes.

Taking these experiments into consideration, a good trade between
execution time, robustness and accuracy is obtained using the following
parameterisation: ∆x = 15◦, ∆y = 15◦, ∆z = 10◦, ∆βi = 7◦, ∆βj = 7◦,
∆θij = 7◦, ξi = 0.5, ξj = 0.5, ξij = 0.5 and a heuristic with a maximum of
10000 junction bases. In addition, this parameterisation can be used with
any model because the pattern of figures is similar for every single model.

4.4.2 Examples

The response of the proposed 3D recognition method against different
models and scenes is shown in Figures 4.14 and 4.15. The parameterisation
suggested by the previous section is used to configure the 3D recognition,
while the properties of each 3D model are detailed in Table 4.1. All of them
are untextured models, with different shapes and materials.

Figure 4.14 demonstrates that the proposed method works fine under
difficult conditions. It is able to find the true 3D pose in very cluttered
scenes (a)(c)(h). It can also retrieve the 3D pose in scenes with poor lighting
(b) or against partial occlusions (b)(d)(e). Reflections of the mechanical
pieces are supported satisfactorily as well (f)(g)(h). Moreover, the same
junction basis database can be used for models with the same geometry,
but different texture (e)(f).

Figure 4.15 also highlights that the proposed 3D recognition can handle
complex models (53040 facets) positively.

It is noteworthy that the execution time is maintained at reasonable
values in unfavourable contexts, while it is quite low in scenes with few
junctions (less than 51 milliseconds in (f)). In fact, in non-complex scenes
this method can be used for tracking due to the high frame rate. In scenes
with high number of junctions the hashing and matching steps consume
most of the computational time, since many ai candidates are processed.
In non-complex scenes, however, JUDOCA is the critical step. In these
examples, although JUDOCA reduces the number of junctions to build
and decreases the computational time, hashing and matching steps are

110 Chapter 4. 3D Object Recognition

(a) Elephant in a cluttered scene. (b) Elephant against poor lighting.

(c) 3D text in a cluttered scene. (d) 3D text with partial occlusion.

(e) Box with partial occlusion. (f) Box with light reflections.

(g) Triangular bracket with light reflections. (h) Triangular bracket in a cluttered scene.

Figure 4.14: Recognition results for different scenes and models.

Section 4.4. Experiments and Results 111

(a) Complex giraffe close to the camera. (b) Complex giraffe far from the camera.

Figure 4.15: Recognition results for a complex model.

most benefited steps due to the low number of ai candidates (see Table 4.2
for an example of computational times in these two scenes).

Table 4.2: Exec. time (milliseconds) for Figures 4.14 (a) and (f).

Scene JUDOCA Hashing + Matching Refinement

Figure 4.14(a) 76.96 545.29 3.68
Figure 4.14(f) 33 14.65 2.56

Finally, Figure 4.16 illustrates that the proposed method detects
multiple instances of a model in a single image. Here, the computational
time does not suffer a noticeable peak, only the time associated to the pose
refinement is increased, as it returns multiple pose instances.

Figure 4.16: Recognition of multiple instances of a 3D model.

112 Chapter 4. 3D Object Recognition

4.5 Discussion

In this chapter a solution for the 3D recognition of untextured 3D models
in a single image has been detailed. Despite the lack of texture, it
obtains good results because is based on geometric features of the model,
which are extracted automatically, without user intervention. An efficient
geometric constraint based on a pair of junctions is presented, which
offers a sophisticated mechanism for matching and discarding the high
amount of unnecessary matches that are generally processed by geometry
based approaches. The computational effort is thereby decreased, obtaining
reasonable execution times. Generally, the method presented here takes less
than 100 ms to recognise a 3D object in a non-complex scene.

Parameterisation of the method has also been studied by providing
a balanced configuration between robustness and performance. Indeed,
although there are several parameters to configure, there is a single
parameterisation that works fine for most models. This way, there is no
need to modify parameters when different target models are used, which is
a desirable property.

Some limitations should also be noted. As the recognition is based on
matching junctions and edges over the entire image, complex scenarios with
cluttered backgrounds may cause the detection of some false positives. This
is noticeable when the user points to a keyboard, which has numerous
edges, and therefore the system gives false positives detecting an object
where none exist. If this happens, a simple camera shake will be enough
to restart recognition. Another option would be to impose a restriction on
colour similarity to validate the detection, which should be set during the
offline phase. On the other hand, the proposed recognition relies on the
existence of edges and junctions in the model, so its application domain
is reduced to polyhedral objects. Nonetheless, it does not require texture
information, it can handle textureless models. Thus, the proposed method
offers an alternative to the problem of recognition, since it can work fine
with untextured models that the existing 3D recognition methods based
on texture cannot. Note that in case of trying to recognize an object
without texture or without well-defined geometric properties, then the
recognition would be almost impossible. Additionally, this thesis is oriented
to industrial environments, where the presence of untextured polyhedral
objects is quite common.

Chapter 5

Markerless Tracking

When you see a good move, wait,
look for a better one

Emanuel Lasker

This chapter presents a 3D markerless tracking algorithm adapted to
the characteristics of industrial environments. It offers a robust tracking
by combining multiple visual cues, so it is able to handle untextured 3D
models.

A part of this chapter has been published in:

Barandiarán, J., Álvarez, H., and Borro, D. “Edge-based markerless
3d tracking of rigid objects”. In International Conference on Artificial
Reality and Telexistence (ICAT’07), pp. 282–283. Esbjerg, Denmark.
November, 2007.

Álvarez, H., Aguinaga, I., and Borro, D. “Providing guidance for
maintenance operations using automatic markerless augmented reality
system”. In Proceedings of the 10th IEEE International Symposium
on Mixed and Augmented Reality (ISMAR’11), pp. 181–190. Basel,
Switzerland. October, 2011.

5.1 Introduction

Markerless tracking methods update the camera pose by using visual cues
that are already in the scene, without having the need to modify the

113

114 Chapter 5. Markerless Tracking

environment with artificial landmarks. As stated in Chapter 2, markerless
tracking can be classified according to the knowledge about the geometry of
the scene, but this chapter only focuses on model-based markerless tracking
that uses frame-to-frame techniques. In other words, this chapter addresses
the problem of finding the new camera pose giving the information of the
previous frame and the geometry of the 3D model, since the target 3D
models lack texture.

The proposed markerless tracking method assumes that the information
about previous frame is available. Thus the 3D recognition method
presented in Chapter 4 is used to obtain the first camera pose, i.e., to
initialize the tracking. Then, the camera pose calculated at time t − 1 is
used to feed the tracking at time t.

Additionally, some geometric features are extracted from the input 3D
triangle mesh during an offline phase, similar to that explained in Section
4.3.2.1. This way, 3D sharp edges and 3D L junctions are automatically
extracted, without user intervention. From here it is assumed that this
information is available, but the explanation of this procedure is not
repeated here to avoid duplications.

5.2 Proposed Method

Given the intrinsic camera parameters and the data generated in the
previous frame, the frame-to-frame tracking developed in this chapter
computes the extrinsic camera parameters by using temporal coherence
and combining multiple visual cues. More precisely, self-supplied and robust
markerless tracking that combines an edge tracker, a point based tracker
and a 3D particle filter has been designed to continuously update the
camera pose. Each of these tracking techniques are detailed below, including
how they are combined to exploit their best properties. An in depth
explanation about tracking methods that use different visual cues can be
found in (Lepetit and Fua, 2005).

5.2.1 Edge Tracker

Edge based trackers are computationally efficient and stable to lighting
changes, even for specular materials. Therefore, these solutions satisfy real

Section 5.2. Proposed Method 115

time requirement besides tracking untextured 3D models. These methods
can be grouped into two categories:

• Without edge extraction: strong gradients are looked for in the
current image around the estimation of the previous object pose,
without explicitly extracting the contours (Harris, 1992; Drummond
and Cipolla, 2002; Vacchetti et al., 2004; Barandiarán et al., 2007).

• With explicit edge extraction: image contours are processed, and
some primitives such as straight line segments are extracted and
matched to model primitives (Lowe, 1992; Koller et al., 1993).

The first group is a fast and general approach, so it is used in this thesis.
Indeed, RAPID (Harris, 1992), which belongs to the first group, was one
of the first 3D trackers that worked successfully in real time. It considers a
set of 3D points that lie on the 3D model edges, called control points, and
the 3D motion of the model between two consecutive frames is recovered
from the 2D displacements of these control points (Figure 5.1).

Figure 5.1: 2D displacements of control points. They are used to
compute the motion of the model between the previous (black
wireframe) and current frames (white wireframe).

Moreover, there are several ways to calculate the 2D displacements
of control points. Some solutions consider those control points that
lie on the same edge as a single primitive (stronger movement
constraints)(Armstrong and Zisserman, 1995), while other alternatives
consider multiple displacement hypotheses for each control point (Figure
5.2)(Vacchetti et al., 2004). This second option has been implemented for
this dissertation due to its robustness against cluttered scenes.

116 Chapter 5. Markerless Tracking

Figure 5.2: Multiple hypotheses for each control point.

Assuming that 3D edges are extracted in an offline phase, the 3D edge
tracker performs a simple loop. Visible 3D edges are detected and projected
into the current camera image using the OpenGL occlusion query and the
previous camera pose respectively. Then, for each projected 3D edge a set
of 2D edge samples (~mi) are selected (control points, whose 3D coordinates
~Mi are known), and a local search along the edge normal (~ni) is done

to establish the presence of these samples in the current camera image
(~m′i) (Figure 5.1). If an image edge pixel is detected in the vicinity of
a control point, then a positive correspondence is found. Note that this
procedure can provide multiple match hypotheses for each control point
(Figure 5.2). Finally, the camera pose of the current frame (Rt) results
from the minimization of the distances between selected image edge pixels
and projected control points (minimization of the reprojection error):

Rt = argmin
Rt

∑
i

PTuk

(
min
j

∥∥∥(~m′ij −KRt ~Mi) ∗ ~ni
∥∥∥), (5.1)

where ~m′ij represents the hypothesis j for the control point i, and PTuk is the
Tukey function that reduces the influence of outliers using the M-estimator
approach:

PTuk(x) =

{
c2

6

[
1−

(
1− (xc)2

)3]
if |x| ≤ c

c2

6 otherwise
, (5.2)

where c is a bandwidth parameter that usually is set proportional to the
standard deviation of the estimation error. This way, when |x| is larger than

Section 5.2. Proposed Method 117

c Tukey estimator becomes flat and large residual errors have no influence
at all.

5.2.2 Feature Tracker

The recursive edge tracking presented above is fast and precise, but it
does not support fast movements. Indeed, several authors (Rosten and
Drummond, 2005; Vacchetti et al., 2004) have integrated an accurate edge
tracker with a robust feature tracker in order to cope with abrupt camera
motions. It is well known that point based trackers can deal with rapid
motions, since features are relatively easy to localize and match between
frames. Following this reasoning, a point based tracker that is compatible
with the previous edge tracker has been designed.

The proposed feature tracker combines the best properties of the point
based trackers presented in (Bleser et al., 2005; Platonov et al., 2006).
Hence, optical flow (Section 2.3.1.3) estimates the new feature locations,
while simplified-SIFT descriptor (Appendix A) is used to get a more
accurate position. It consist of a simple loop of two steps: 3D point
generation and 3D point tracking. The first one back-projects features that
belong to the surface of the model, while the second one performs the
tracking of these features between consecutive frames.

• 3D point generation: 2D features are extracted from the previous
frame using the FAST operator (Section 2.3.1.1). Then, assuming
that the pose of the previous frame is known, features that lie on the
surface of the model are back-projected. This can be done efficiently
using the OpenGL pipeline and the previous camera pose. Hence,
each model facet is rendered with a unique colour so that each 2D
feature location points to a unique colour, i.e., it can be used to index
the corresponding facet. Once the 3D facet (with vertex ~r1,~r2 and ~r3)
in which the 2D feature lies is known, the 3D coordinates (~r) of the
feature are computed using barycentric coordinates (λ1, λ2 and λ3):
r = λ1~r1 + λ2~r2 + λ3~r3 subject to λ1 + λ2 + λ3 = 1. Barycentric
coordinates of a triangle represent the proportion of each triangle
vertex to make a specified point the center of mass of the triangle.
They are given by:

118 Chapter 5. Markerless Tracking

λ1 = (y2−y3)(x−x3)+(x3−x2)(y−y3)
(y2−y3)(x1−x3)+(x3−x2)(y1−y3)

λ2 = (y3−y1)(x−x3)+(x1−x3)(y−y3)
(y2−y3)(x1−x3)+(x3−x2)(y1−y3)

λ3 = 1− λ1 − λ2

(5.3)

where (x,y) and (xi,yi) are the image coordinates of point ~r and vertex
~ri respectively.

Although many features can appear on the surface of the model, only
a small subset of them are retained due to real-time requirements (30
features for this thesis). As a result, features with strongest response
are selected first. Additionally, simplified-SIFT descriptor is stored
(with a fixed patch size of 25 pixels) for each selected feature.

This step is executed every frame to continuously refresh the 3D point
cloud and deal with appearing and disappearing points, which are
usually caused by rotations.

• 3D point tracking: features selected by the 3D point generation
step (~Mi) are tracked with pyramidal Lukas-Kanade optical flow
(Section 2.3.1.3). This provides an estimation of the current 2D
position of these 3D points. To get the correct 2D location (~m′i),
the current image is processed to find a feature with a similar
simplified-SIFT descriptor (similar to the refinement step of Section
3.3.4.1). This search is limited to the vicinity of each feature
(a window search of 75 pixels for this dissertation) due to the
temporal coherence assumptions between consecutive frames. The
matching of two simplified-SIFT descriptors follows the simple rule
mentioned in Section 3.3.4.2: two descriptors are matched if the
euclidean distance of the second nearest descriptor is significantly
greater than the distance to the nearest descriptor. If no match is
found, this 2D-3D correspondence is discarded, otherwise it assists in
the calculation of the new camera pose. A non-linear optimisation
(Levenberg-Marquardt) of the reprojection error of the selected
correspondences is performed by using the previous camera pose
as an initial guess. More precisely, the pseudo-Huber robust cost
function (Platonov et al., 2006) is minimized to reduce the influence
of outlier correspondences, similar to the Tukey function of the edge

Section 5.2. Proposed Method 119

tracker1:

Rt = argmin
Rt

∑
i

PHub

(∥∥∥~m′i −KRt ~Mi

∥∥∥), (5.4)

where PHub(x) = 2b2(
√

1 + (x/b)2−1) and b is a bandwidth parameter
that usually is set proportional to the standard deviation of the
estimation error.

Figure 5.3 shows an example of the proposed feature tracker.
Fuchsia points display back-projected features, fuchsia arrows represent
2D displacements of the surface points, and the white wireframe is the
estimated camera pose. Notice that although the 3D point generation step
can make an erroneous back-projection of features due to occlusions (points
that lie on the marker pen, Figure 5.3(b)), the feature tracker remains stable
as long as the occlusion is not severe.

The new camera pose that is calculated by using the 2D displacements
of the features that lie on the surface of the model is used as a starting
point for the edge tracker presented above.

5.2.3 Particle Filter

The combination of the edge and feature trackers presented above offers
good tracking results. However, the feature tracker only works when a
minimum set of features are detected on the surface of the model. This
requirement is generally satisfied, since industrial models are composed of
several parts, which favours the presence of corners. An example of this
property can be observed in Figure 5.3, where assembled screws generate
multiple salient points on the surface of the box. Note that this is not the
same for all models (Box model of Table 4.1), where not enough features
are detected due to the homogeneity of the outer surface. Following this
reasoning, a 3D particle filter that uses multiple visual cues has been
incorporated to the proposed markerless tracking, making it able to handle
objects with different surface materials.

1Huber estimator makes the convergence to a global minimum more reliable, while
Tukey estimator is preferred to remove the influence of outliers when a starting point
close to the actual minimum is provided.

120 Chapter 5. Markerless Tracking

(a) Fast camera movement.

(b) Fast camera movement plus an occlusion.

Figure 5.3: 3D point tracking (left) and generation (right).

Particle filters belong to the family of Sequential Monte Carlo (SMC)
methods, and are robust against non-static scenes in which multi-modality
is likely (Pupilli and Calway, 2005). The key idea is to represent the
required posterior distribution of the camera motion by a set of random
samples with associated weights and to compute estimates based on these
samples and weights (Figure 5.4). They are divided into two stages:
particle generation and particle evaluation. In the particle generation step,
the previous camera pose is perturbed to generate multiple camera pose
candidates of the current frame (particles). However, it is not possible to
generate samples directly from the target distribution, so they are drawn
from an approximated distribution called importance density. The particle
evaluation step, on the other hand, is responsible of assigning a weight to
each particle and selecting the correct one. Due to its recursive nature,
particles of time i are propagated using the particles of time i − 1, so
their associated weights also depend on their previous values (Sequential

Section 5.2. Proposed Method 121

Importance Sampling, SIS). This recursive propagation involves the problem
of degeneracy, where after a few iterations all but one particle will have
negligible weight. In order to avoid this, only particles with higher weights
are augmented and those with low weights are discarded, which is a
technique called Sequential Importance Resampling (SIR). Both robustness
and computational cost are proportional to the number of particles, so this
parameter is critical to reach good results within reasonable computational
times. An in depth discussion about particle filters can be found in
(Arulampalam et al., 2002; Salih and Malik, 2011).

Figure 5.4: Tracking using a particle filter. Samples are drawn in
gray. White indicates particles with higher weight.

One of the greatest difficulties to be faced when working with particle
filters consist of determining the functions that generate and evaluate
particles. For this thesis, a random walk motion model is used to generate
particles, i.e., particles are distributed uniformly along the interest search
space. This decision has been taken because there is no information or
constraints about the type of movement that the camera is going to perform.
The particle evaluation step, meanwhile, uses the 3D junctions and edges
extracted in the offline phase as well as the 3D points back-projected by
the feature tracker. More precisely, the likelihood (w) of each particle (Pi)
is inversely proportional to the reprojection error of visible 3D junction
centers (Xi) and back-projected 3D features (Yi), taking into account how
many pixels of the projection of visible 3D edges coincide with an image
edge:

122 Chapter 5. Markerless Tracking

w(Pi) =
|Vi| / |Zi|∑n

j=1 PHub(δ(Pi, Xj)) +
∑m

j=1 PHub(δ(Pi, Yj))
(5.5)

where |Zi| is the number of pixels that results from the projection of 3D
visible edges with the camera matrix Pi provided by the particle i, |Vi| is the
number of Zi pixels whose distance to the closest image edge point is below
a predefined threshold, δ defines the reprojection error, PHub represents
the pseudo-Huber function (Section 5.2.2), n is the number of visible 3D
junction centres and m is the number of back-projected 3D features.

The current 2D locations of the corresponding points must be known in
order to calculate the reprojection error. Thus, those 3D junction centres
that were visible in the previous frame are projected and tracked using
a pyramidal Lukas-Kanade optical flow (Section 2.3.1.3). Notice that the
current 2D positions of back-projected 3D features are known because
they have already been processed by the feature tracker, so they are
not calculated again by the 3D particle filter. All these 2D translation
estimations are also used to fix the optimum number of particles in
accordance with demand (between 200 and 1000 for this dissertation). If
strong 2D translations are detected the number of particles is increased,
while in the absence of movement few particles are needed.

Efficient distance transforms are used to obtain the ratio of inlier edge
pixels (|Vi|/|Zi|), similar to (Klein and Murray, 2006), but executing all the
calculations in the CPU. A distance transform of an image stores for each
pixel the distance to the closest edge of the image (Figure 5.5). Based on
this definition, visible 3D edges are projected and for each 2D edge sample
the distance to the closest edge pixel is obtained with a simple look-up in
the image distance transform. Thus, Zi is the set of all 2D edge samples,
while Vi is the set of 2D edge samples whose distance to the closest edge
pixel is below a predefined threshold. Furthermore, orientation of edges is
considered to discard false matches, as it is done in (Heisele and Rocha,
2008). In fact, the current camera edge image is split into four orientation
specific edge images and for each edge image its corresponding distance
transform is computed. This way, an input 2D edge sample is only compared
to the image distance transform indexed by its orientation.

In addition, visible 3D edges and junctions are pre-computed for a
set of points of views along a 3D sphere (analogous to Virtual Keyframe
Generation of Section 4.3.2.2) in order to reduce the computational cost.

Section 5.2. Proposed Method 123

Figure 5.5: Oriented distance transform (white ≡ edge proximity).

This increases memory requirements, but decreases the execution time
because given an input camera pose its visible 3D edges and junctions
are obtained with a simple look-up.

A particle annealing is also applied to get correct results with a
limited number of particles (Deutscher et al., 2000; Gall et al., 2007).
Particle annealing is a process in which samples are iteratively focused onto
potential modes. More precisely, particles are propagated with an uniform
distribution with smaller width and re-weighted with a more stringent
function (Equation 5.5) at each annealing step, which results in greater
concentration of the samples around the most probable particle clusters.
This technique allows moving towards the global maximum without being
distracted by local minima (Figure 5.6).

Analogous to the feature tracker, the new camera pose estimated by
the particle filter is used as an initial guess for the edge tracker presented
above.

124 Chapter 5. Markerless Tracking

Figure 5.6: Particle annealing effect to avoid local minimums.
Image courtesy of (Gall et al., 2007).

5.2.4 Integration of Multiple Trackers

The overall markerless tracking scheme is shown in Figure 5.7. The feature
tracker is executed first to handle strong movements. If a minimum number
of 3D points are back-projected (7 for example), then the 3D point tracking
step is executed and the camera pose is updated. Otherwise the 3D particle
filter is called to approximate the current camera pose. Afterwards, the
edge tracker is executed to refine the camera pose, avoiding the possible
error caused by a non-accurate reconstruction of the 3D point cloud or
non-accurate particle likelihood calculation. In fact, the edge tracker is
executed several times recursively to obtain more accurate results, since
after each iteration the estimated camera pose is closer to the real one (a

Section 5.2. Proposed Method 125

good estimation is obtained after 2-3 iterations). The feature tracker and
the 3D particle filter offer a good initial guess of the correct camera pose,
while the edge tracker calculates a precise one.

Figure 5.7: Markerless tracking algorithm.

It should be noted that both the feature tracker and the particle filter
are executed in down-sample resolution images to reduce the computation
time. The edge tracker, meanwhile, is executed at the original scale to get
more accuracy (Section 5.3).

This procedure is executed every frame until the edge tracker fails. In
order to determine the success of the edge tracker the similarity measure
explained in Section 4.3.3.3 is used. Visible 3D edges are projected using

126 Chapter 5. Markerless Tracking

the camera pose refined by the edge tracker, and the score is the sum of
the dot products between the gradients of these projected samples and
the image edge gradients at the corresponding locations. If this score is
below a predefined threshold (∼ 0.7), then the edge tracker fails and the
system starts the recovery mode and returns to the 3D recognition stage
(Chapter 4).

5.3 Experiments and Results

This section presents the results of the proposed markerless tracking
algorithm. The hardware setup consists of an Intel Core i7-860 at 2.80GHz
and 3GB of RAM equipped with a Logitech QuickCam Connect webcam.

To prove the benefits of the proposed tracking method the same
video sequence (640x480 resolution) has been executed with three different
tracking configurations. The first one combines a feature tracker, a particle
filter and an edge tracker (Point+PF+Edges). The second one disables the
particle filter (Point+Edges), and the last one disables the feature tracker
(PF+Edges). The main goal of this comparison is to show the advantages
of using different types of tracking techniques together, obtaining a robust
tracking and satisfying real time requirements.

All the process has been repeated with three different 3D models (Box-1,
Matryoshka and Gear-box of Figure 5.9, whose geometric properties are
shown in Table 6.2) to simulate multiple conditions. These three models
offer the majority of possible scenarios. The Box-1 model represents an
industrial model with some corners on its surface, the Matryoshka model
represents a model with an homogeneous outer surface (without feature
presence) and the Gear-box represents an industrial model with complex
geometry.

The feature tracker and the particle filter perform their calculations
in down-sampled resolution (320x240) to reduce the computational time,
while the edge tracker is executed in the original scale (640x480) to achieve
high accuracy. Additionally, the particle filter is limited to a maximum set
of 1000 particles to control the total runtime.

Similarly to Section 4.4, a marker has been placed in the scene, and
the real camera pose of each video frame has been obtained using the
ARtoolkitPlus marker tracking system. This allows to calculate the error

Section 5.3. Experiments and Results 127

between the estimated and real camera poses. However, it is noteworthy
that there is an increase in measurement error because the video sequence
consists of rapid camera movements that try to lose the tracking. The
non-perfect calibration between the marker and model reference systems
also distort error measurements.

The execution time and the reprojection error of different tracking
configurations and 3D models is shown in Figure 5.8 for the input
video sequence. Box-1 and Gear-box are tracked successfully with the
three tracking configurations, while the (Point+Edges) option fails for the
Matryoshka example after frame 110 (Figure 5.9(b)). The reason for this
failure is that the Matryoshka model has an homogeneous outer surface
where not many features are detected. Therefore, in the absence of features
the point based tracker fails, and the particle filter is the more robust
tracker. Nevertheless, in the Box-1 example, where many features lie on
the surface of the box due to the presence of screws, the feature tracker
runs faster and has lower reprojection error than the particle filter (Figure
5.9(a)). For the Gear-box example, although the feature tracker is slower
than the particle filter, its reprojection error is lower (Figure 5.9(c)). In
addition, it has been observed during experiments that the feature tracker
can track fast camera movements that the particle filter option cannot.
Thus, the feature tracker is the best option for most examples, as it is very
common to detect a minimum set of features on the surface of the model. A
tracker that combines both of them gets the best properties of each option,
running fast and accurately for models with features on their surface and
offering high robustness in absence of features.

The execution time of Box-1, Matryoshka and Gear-box models for
the video sequence using (Point+PF+Edges) configuration is detailed
in Table 5.1. It displays the execution time required by each tracking
step, including the Image Processing step, which handles a large camera
image (640x480). Although the feature tracker includes the computation
of the simplified-SIFT descriptors parametrized with 4 ∗ 4 regions and 8
orientations (4∗4∗8 = 128 bins), its execution time remains low. Note that
the total execution time is kept below real time limits.

128 Chapter 5. Markerless Tracking

(a) Box-1.

(b) Matryoshka.

(c) Gear-box.

Figure 5.8: Exec-time and error for different tracking setups.

Section 5.3. Experiments and Results 129

(a) Box-1, frame 130. (b) Matryoshka, frame 111. (c) Gear-box, frame 114.

Figure 5.9: Response of different tracking configurations.

130 Chapter 5. Markerless Tracking

Table 5.1: Exec-time of (Point+PF+Edges) for the input video.

Time (ms)
Box-1 Matryoshka Gear-box

Mean Std. Mean Std. Mean Std.

Image Processing 7.29 0.7 7.29 0.57 7.41 0.62
Feature Tracker 12.14 1.49 8.8 2.4 19.72 2.85
Particle Filter 0.78 0.1 11.51 7.73 1.47 0.41
Edge Tracker 2.47 0.76 3.65 0.8 4.58 0.55

Total 22.73 2.15 31.3 7.66 33.23 3.54

5.4 Discussion

There are several markerless tracking techniques in the literature, each
one with its own advantages and disadvantages. Some of them works fine
when some distinguishable points are detected in the scene (tracking based
on features), supporting even fast camera movements. Other approaches,
meanwhile, handle multiple motion hypotheses (particle filters), whose
validity can be verified using different image measurements, not just
features. These solutions are robust, but require significant computational
time and their accuracy is limited by the number of hypotheses (particles).
Finally, other alternatives such as those based on edges are computationally
efficient methods that offer high accuracy, being stable to lighting changes.

Following this reasoning, in this chapter a robust markerless tracking
method that uses multiple tracking techniques has been presented. It
combines an edge tracker, a feature tracker and a 3D particle filter to
offer a robust 3D tracking against multiple and undesirable conditions such
as homogeneous surfaces that can be found in many industrial objects.
The feature tracker offers robustness against rapid camera movements, the
particle filter is used as a robust alternative in the absence of features
(untextured scenes) and the accurate edge tracker refines the final camera
pose. More precisely, the particle filter is called in case that the feature
tracker fails. In this situation the information processed by the feature
tracker is reused to determine the optimal number of particles, which is
set according to the type of motion observed and real time requirements.
Furthermore, the camera pose calculated by the feature tracker or by the
particle filter is used as an initial guess by the edge tracking to obtain
accurate results. This way, different tracking techniques have not been used
independently, but they have been integrated efficiently to build a single,

Section 5.4. Discussion 131

robust and real time markerless tracking method.

Besides combining multiple tracking methods, these tracking techniques
have also been modified to suit the initial preconditions of the thesis,
i.e., real time, automatic nature and industrial environments. The feature
tracker uses simplified-SIFT descriptors to fulfil real time limits. It also
generates and refreshes automatically the 3D point cloud. Likewise, the
particle filter is adapted dynamically by setting the number of particles
proportionally to the motion, which reaches a balance between robustness
and computational time. Indeed, this last technique has been configured
to use multiple image measurements (edges, junctions and features) and
handle objects with homogeneous surfaces, typical of industrial models.

Additionally, this markerless tracking has been combined with the 3D
recognition method proposed in Chapter 4. The 3D recognition method
initializes and restarts the tracking in case of failure, so a complete solution
is offered.

As argued throughout all previous paragraphs, this chapter describes
a complete framework for a self-supplied, robust and real time markerless
tracking that can be used in multiple conditions, including untextured 3D
models of industrial environments.

132 Chapter 5. Markerless Tracking

Chapter 6

AR Disassembler

The winner of the game is the player who makes
the next-to-last mistake
Savielly Tartakower

This chapter describes a new real-time augmented reality tool to help
in disassembly during maintenance operations. This tool provides workers
with augmented instructions to perform maintenance tasks more efficiently.

In order to compute the camera pose and render augmented
instructions, the 3D recognition and tracking methods presented in
Chapters 4 and 5 are used, respectively. Therefore, this chapter shows a
real world applicability of the methods proposed throughout this thesis.

A disassembly planing module is also integrated to offer a complete
system, obtaining automatically the assembly/disassembly sequence of an
input 3D model.

A synthesis of this chapter has been published in:

Álvarez, H., Aguinaga, I., and Borro, D. “Providing guidance for
maintenance operations using automatic markerless augmented reality
system”. In Proceedings of the 10th IEEE International Symposium
on Mixed and Augmented Reality (ISMAR’11), pp. 181–190. Basel,
Switzerland. October, 2011.

133

134 Chapter 6. AR Disassembler

6.1 Introduction

Augmented Reality is a set of technologies that enrich the way in which
users experience the real world by embedding virtual objects in it that
coexist and interact with real objects. This way, the user can be exposed
to different environments and sensations in a safe and more realistic way.
Because of that, this chapter describes a real time automatic markerless
AR disassembler for maintenance and repair operations.

The system generates instructions indicating which the next step is
and the way to proceed. The instructions are displayed graphically by
superimposing a virtual representation of the next step on top of the real
view of the system being repaired. Thus, the next part to disassemble is
virtually coloured in red and translated along the extraction path. Indeed,
a virtual arrow emphasize the extraction direction. This online assistance
reduces the time spent by technicians searching for information in paper
based documentation, so it enables faster and more reliable operation.

The main challenge addressed by this AR system is the automatic
generation of the suitable information to provide user feedback. The
system receives as an input a single untextured 3D triangle mesh of each
component. The assembly/disassembly sequence is computed automatically
from this input, finding collision-free extraction trajectories and the
precedence relationship of the disassembly of the different parts composing
the target system (Section 6.3.1). Additionally, some geometric features,
such as edges and junctions, are also automatically extracted to identify and
track the different components during their manipulation (Section 6.3.2).

6.2 Previous Works

Several works (Raghavan et al., 1999; Tang et al., 2003) demonstrate the
benefits of AR based approaches applied to the assistance in maintenance
and repair operations in terms of operation efficiency. Compared to Virtual
Reality (VR), AR offers a more realistic experience because the user
interacts with real objects, while VR manipulates virtual objects and is
limited by the lack of suitable sensors feedback. Further, VR is oriented
to training rather than guidance, improving the skills of users through
multiple simulations, while AR can be used for both training and guidance.

Section 6.2. Previous Works 135

Motivated by this reasoning, many authors have been addressed the
problem of building an AR tool that provides guidance for maintenance
operations. The main characteristics of some of these solutions are detailed
below.

(Yuan et al., 2008) describes an AR application for assembly guidance
using a virtual interactive tool. It offers a visual interface with an intuitive
interactive mechanism. The user controls different instruction messages
with a pen and the assembly steps are displayed in the image. However,
instructions are limited to 2D photographic images on the camera image
border. The system does not perform 3D model tracking to offer 3D
augmentation data. Similarly, (Baird and Barfield, 1999) describes an AR
maintenance prototype based on an untracked system.

Other approaches (Weidenhausen et al., 2003; Zauner et al., 2003;
Liverani et al., 2004; Billinghurst et al., 2008; Schoenfelder and Schmalstieg,
2008; Farkhatdinov and Ryu, 2009; Henderson and Feiner, 2009) rely
on marker-based tracking systems to compute the camera position and
orientation. Using these systems, instructions are registered in the real
world with a high degree of realism. They achieve high accuracy with
low computational cost. Nonetheless, they require environment adaptation,
which is not always possible, and marker and 3D model coordinate systems
must be properly calibrated by the user. In addition, marker tracking
systems can fail when the markers are partially occluded (Section 3.1.2).
This is a likely scenario in maintenance operations, since occlusions with
the hands of the worker and tools are common.

Other alternatives use natural features to retrieve the 6 DOF of
the camera. During an offline process, some views of the scenario are
taken. These keyframes are used as input for a training process, where
2D-3D correspondences are established by back-projecting detected 2D
image features into the known 3D model. During the online phase, 2D
features are extracted from the camera image and matched to those that
were indexed in the offline phase, obtaining the camera pose. Using this
procedure, (De Crescenzio et al., 2011) describes an application for airplane
maintenance, while (Platonov et al., 2006) details a prototype for car repair
guidance. These solutions do not modify the environment, but they need
some user intervention to generate the training datasets. They are also
optimised for textured scenes, which do not always exist in industrial
environments.

136 Chapter 6. AR Disassembler

Some interesting solutions do not need the 3D model, but require high
interactivity with users (Reitmayr et al., 2007). Some virtual annotations
(disassembly instructions) are added manually to the scene by clicking on
the image position that should be. Then, the system estimates the 3D
location of the notes automatically, which are rendered correctly registered
to the environment using SLAM techniques.

Compared to all these works, the proposed approach is a more robust
framework. It is able to compute automatically the assembly/disasssembly
sequence, which has not been addressed by any of the papers cited above,
since this information is usually considered an input parameter given by the
user. Additionally, the proposed markerless tracking handles untextured
3D models. All the tracking data is extracted automatically from the
model geometry, without user intervention. Based on these statements
some problems outlined earlier are overcome: environment adaptation and
textureless scenes.

6.3 Proposed AR Disassembler

Figure 6.1 shows all the steps of the proposed AR framework. The
automatic offline phase receives as input a 3D model of the system to
maintain. This model is composed of several parts, each one with its own
3D triangle mesh and located in its assembly position (without texture).
With this minimal information, the disassembly-planning module is able to
extract the precedence order in which the parts should be placed or removed
(Section 6.3.1). Furthermore, some geometric features, such as edges and
junctions, are extracted to address the tracking problem (Section 6.3.2).
These geometric features let us perform the 3D model recognition and
tracking during the online phase. Within this phase, once the camera pose
has been computed, the system offers an augmented instruction, indicating
how to assemble/disassemble the next part. Then, the users perform the
corresponding operation and notify the system that they want to continue
with the next step. Note that this notification has been implemented as
a simple keystroke, but it could have been implemented with a more
sophisticated voice command.

Section 6.3. Proposed AR Disassembler 137

Figure 6.1: Automatic AR Disassembler overview.

138 Chapter 6. AR Disassembler

6.3.1 Disassembly Planning

The assembly or disassembly procedure for a product can be described
by two main components: a precedence graph and the disassembly paths
for each component (Latombe, 1999). The precedence graph describes the
order of the operations as a graph (Figure 6.2(b)). In this graph each node
represents a component and it is connected to a set of other elements whose
removal must precede the disassembly of the element represented by it.
The second component, the disassembly path (Figure 6.2(c)), represents
the motion that is required to extract the component from the assembly.

(a) Model. (b) Precedence graph. (c) Disassembly paths.

Figure 6.2: Disassembly planning procedure.

The initial works on the generation of assembly and disassembly
sequences started at the end of the 80’s and early 90’s (Homem de Mello
and Sanderson, 1991). The works on disassembly planning can be classified
in two main groups (component based and product based planners)
according to the input information used. In component based planning, this
information is based on the description of the components of the product
by means of its geometry, behaviour, type, etc. The algorithm is usually
divided into two sub-problems: the localization of a direction which allows
the local translation of the components, and a second step that validates
this extraction direction by checking if the generated path is collision free.
Some of the first works were based on the recursive partitioning of the
assembly into subassemblies (Wilson, 1992).

The second class are product based planners. These use more abstract
input describing the product, as the precedence relationships of the
disassembly process. Their objective is the generation of optimal sequences.

Section 6.3. Proposed AR Disassembler 139

For this purpose these approaches used optimisation algorithms such as
Genetic Algorithms (Marian et al., 2003).

Due to the automatic nature of the methods proposed in this thesis,
a component based planner is used here (Aguinaga et al., 2007), whose
outcome is the precedence graph and disassembly path for a system. Once
this information is computed, the assembly/disassembly sequences can be
obtained by traversing the graph from a target component, and removing
each other node connected to it. An interest reader can refer to (Aguinaga,
2007) for a more detailed explanation about disassembly planning.

6.3.1.1 Model Format

Input 3D models are composed of a set of parts that need to disassemble.
The 3D model of Figure 6.3, for example, is composed by 7 parts: a box,
a lid, four small screws, and a cord connector similar to a big screw. No
texture information is required as input because it is limited to the geometry
of the 3D model. Each part of the model is defined as a simple 3D triangle
mesh, and all of them must be provided with respect to the same origin and
located in their initial configuration, i.e., as if the model was assembled.

Figure 6.3: Component parts of a model.

It is noteworthy that although CAD software usually allows defining
explicitly some relationships (contacts, tolerances, etc.) between the

140 Chapter 6. AR Disassembler

geometric position of the different components of a system, they are not
required for the proposed framework.

6.3.1.2 Precedence Graph and Disassembly Path

To obtain the precedence graph and disassembly paths, the algorithm
proceeds heuristically to select different components, and then, it tries to
generate a disassembly path for them. For most components in industrial
settings the extraction path of any component can be represented by a single
straight line. The contact information of the different components is used
in order to find the set of free local extraction directions. Afterwards, the
different directions are tested for collisions in the extraction. Unfortunately,
this procedure fails when the extraction path is more complex. In this case,
a more robust path planning algorithm based on Rapid Growing Random
Trees (RRT) (Aguinaga et al., 2008) is used (Figure 6.4). This approach is
more flexible but also more expensive computationally (see Section 6.4).

Figure 6.4: Extraction directions using RRT. Image courtesy of
(Aguinaga, 2007).

If an extraction path is found for a component, the algorithm finds
which components need to be previously removed by testing the removal
path with a set of all the components in their initial configuration. Any
component that collides with positions in the extraction path needs to be

Section 6.3. Proposed AR Disassembler 141

removed prior to it. This way, the complete precedence graph is built in a
trial and error process.

Notice that the assembly/disassembly sequence graph is computed only
once for each input 3D model. In fact, the entire process is executed in a few
seconds during the offline stage. This sequence is used by the Recognition
and Tracking module to figure out which is the following scenario to
recognize and track.

6.3.2 Recognition and Tracking

The proposed AR disassembler combines the recognition and tracking
methods presented in Chapter 4 and 5, respectively. The markerless
tracking algorithm is divided into two stages: automatic offline processing
and online tracking. In the offline stage, some geometric features, such
as edges and junctions, are extracted automatically from the input 3D
triangle mesh. This procedure is explained in Section 4.3.2.1, but in this
case the models of Table 6.2 are processed. During the online stage, the
recognition method (Chapter 4) uses these geometric features to match the
input camera image to one of the synthetic views generated during the
offline stage. It is used for both initialization and tracking failure recovery.
The tracking method (Chapter 5), meanwhile, assumes that the information
from the previous frame is available, and combines multiple visual cues to
obtain a robust real time tracking under different conditions. The overall
markerless tracking scheme is shown in Figure 5.7.

6.3.2.1 Observations

An input 3D model is composed of several components. Therefore, the
presence or removal of a part modifies the geometric composition of
the model (Figure 6.5), i.e., each assembly/disassembly step detected by
the automatic disassembly planning module generates the appearance
or disappearance of different edges and junctions. Because of this, each
geometric configuration that results from a part removal is treated as
a separate 3D model, for which geometric features are extracted. Notice
that although multiple disassembly sequences can be considered, only the
sequential order set by the disassembly-planning module is used to get the
collection of possible geometric configurations. In the same way, during the

142 Chapter 6. AR Disassembler

online execution the next step is known, and it is clear which geometric
configuration should be loaded, since the sequence has a predefined order.
This method increases the memory requirements, but it offers robust
recognition and tracking results.

Figure 6.5: Geometric features for different disassembly steps.

During the automatic offline learning stage, the 3D recognition method
generates several 2D synthetic views of the 3D geometric features moving
a virtual camera along a sphere. Thus, rotation ranges and steps for each
axis are parameters that must be set. They can be set by the user or
inferred from the disassembly planning module. Since the next part of
assembly/disassembly is known, only the views that put this component
in front of the camera are trained, ruling out other views. This is not a
strict requirement because the user will usually try to focus the camera
on this part as an instinctive behaviour. Besides, this action improves the
memory requirements and the computational cost, as there will be fewer
keyframes to process. Assuming that the next part to process is put in
front of the camera (with all the model completely visible and covering the
entire image), good results have been obtained processing only those views
that are in the [−45◦, 45◦] range for all axes. Additionally, angle steps that
vary from 5 to 8 degrees have been used, which gives a total of 2000-5000
keyframes, depending on the complexity of the model and the maximum
storage capacity.

6.4 Experiments and Results

This section presents the results obtained with the proposed AR
disassembler. The hardware setup consists of an Intel Core i7-860 at
2.80GHz and 3GB of RAM equipped with a Logitech QuickCam Connect

Section 6.4. Experiments and Results 143

webcam.

In Table 6.1 the execution time of the disassembly planning module is
presented for the set of 3D models shown in Figures 6.6, 6.7, 6.8, 6.9 and
6.10 (this time includes the generation of a disassembly graph as well as the
disassembly paths and sequences). It is capable of obtaining the disassembly
sequence of parts with different geometric properties in a few seconds. The
computational cost depends on the complexity and structure of the model.
It is noteworthy that it can also find complex disassembly paths using the
RRT algorithm (Section 6.3.1.2), as is required for the Gear-box example.

Table 6.1: Execution time for disassembly planning.

Model Disassembly steps Time (sec)

Box-1 6 1.5
Box-2 3 0.69

Matryoshka 5 1.6
Gear-box 2 101.660 (RRT)
Elephant 20 6.09

Table 6.2 displays extracted geometric features for the 3D models shown
in Figures 6.6, 6.7, 6.8, 6.9 and 6.10. Only one geometric configuration is
presented for each 3D model. The number of facets measures the complexity
of the extraction procedure.

The response of the 3D recognition module against the geometric
configurations processed in Table 6.2 is detailed in Table 6.3. A set
of keyframes were taken for each model using a marker tracking
system (Wagner and Schmalstieg, 2007). Hence, the real camera pose was
known for these keyframes, which was used to obtain the accuracy of the
recognition. The automatic training of the 3D recognition module used
a range of [-45,45] degrees applied for each axis, starting from the point
of view that put the next part to disassemble in front of the camera
(Section 6.3.2.1). All test were executed at 640x480 resolution, finding the
first camera pose with high accuracy in a few hundreds milliseconds.

In Figures 6.6, 6.7, 6.8, 6.9 and 6.10, some snapshots of augmented
instructions that the proposed system provides are displayed for a set
of 3D models. Instructions are in red, while the 3D model that is being
tracked is highlighted in green. This set of models covers multiple geometric
configurations, different types of surfaces, as well as disassembly steps of
varying complexity. Figure 6.6 shows the good response of the system

144 Chapter 6. AR Disassembler

Table 6.2: Execution time for geometric feature extraction.

Facets Edges L Junctions Time (sec)

Box-1 3102

118 24

1.43

Box-2 (step 3) 40

21 32

1.33

Matryoshka 208

12 24

1.47

Gear-box 59658

172 59

26.84

Elephant 9084

72 80

3.65

Table 6.3: Accuracy and execution time for recognition.

Model Mean Reprojection Error (pixels) Time (ms)

Box-1 4.26 99.66
Box-2 (step 3) 4.47 63.16

Matryoshka 4.55 107.52
Gear-box 6.57 155.03
Elephant 4.72 356.05

against models with specular surfaces. In addition, Figure 6.7(c) displays a
satisfactory output when small parts are tracked. Figure 6.8 demonstrates
the robustness of the system for scenes where multiple parts with similar
geometry are put in front of the camera. In fact, this also proves that the
system will not be jeopardized by the tools that the worker places in the
task-space, provided that objects and tools do not have the same shape.

Section 6.5. Usability Analysis 145

Likewise, although the recognition and tracking of Box-2 and Matryoshka
models is hampered by their textureless and homogeneous outer surface,
the results are satisfactory. Figure 6.9 indicates that the proposed tracking
can handle models with high complexity, combining both rectilinear and
curvilinear edges. Indeed, the extraction path of the gear is composed of
several movements in multiple directions, although only the direction of
last extraction step is shown in Figure 6.9. Finally, Figure 6.10 proves the
ability of the system to disassemble models composed of many parts, as
well as, tracking small geometric configurations.

(a) Step 1. (b) Step 2. (c) Step 3.

(d) Step 4. (e) Step 5. (f) Step 6.

Figure 6.6: Disassembly of the Box-1 model.

6.5 Usability Analysis

AR has demonstrated its validity for educational purposes (Juan et al.,
2010). This way, this section evaluates the effectiveness of the proposed AR
system for disassembly tasks. It is based on the idea that AR is beneficial
for users, since they can see simultaneously both instructions and the real

146 Chapter 6. AR Disassembler

(a) Step 1. (b) Step 2. (c) Step 3.

Figure 6.7: Disassembly of the Box-2 model.

(a) Step 1. (b) Step 2. (c) Step 3.

(d) Step 4. (e) Step 5.

Figure 6.8: Disassembly of the Matryoshka model.

world, i.e., they do not have to constantly change their attention from the
instructional media to the task (Baird and Barfield, 1999). The following
paragraphs describe the experimental procedure that has been designed
to compare AR instructions with the traditional method (documentation
based on paper).

Section 6.5. Usability Analysis 147

(a) Step 1. (b) Step 2.

Figure 6.9: Disassembly of the Gear-box model.

(a) Step 1. (b) Step 4. (c) Step 8.

(d) Step 12. (e) Step 16. (f) Step 20.

Figure 6.10: Disassembly of the Elephant model.

6.5.1 Subjects

20 participants were asked to perform the experiment, which lasted
approximately 10-15 minutes. 14 subjects were male and 6 were female,
aged from 23 to 36 years (mean=27.55, stdev=3.55) (top of Figure 6.11).

148 Chapter 6. AR Disassembler

They did not received any payment for the participation, and subjects were
required to respond a questionnaire prior to the experiment to determine
their profile. This questionnaire contained the following statements, which
had to be answered on a scale from 1 (none/beginner) to 5 (assiduous
use/expert):

QP1 Rate your familiarity with computer-assisted disassembly systems

QP2 Rate your familiarity with AR systems

QP3 Rate your skill level in performing assembly/disassembly tasks

Analysing the bottom of Figure 6.11, most of the participants did
not have too much experience with disassembly tasks (with and without
computer assistance, mean=2.15, stdev=1.39 and mean=2.55, stdev=1.36
respectively) or AR technology (mean=2.65, stdev=1.23). More precisely,
13 subjects (65% of total) reported low familiarity with computer-assisted
disassembly tasks (QP1<=2), 16 subjects (80% of total) reported a
medium-low familiarity with AR (QP2<=3), and 14 subjects (70% of total)
reported a medium-low skill level with disassembly tasks (QP3<=3).

Figure 6.11: Participants profile.

Section 6.5. Usability Analysis 149

6.5.2 Task

The experimental task in this study consists of disassembling some parts
of the Lego Elephant presented in Figure 6.12. There were 7 Lego bricks
that users had to disassemble with their hands. Since this was a simple
task, users were not informed in advance about what parts had to be
disassembled, they discovered the next step during the execution (just
in time). This complication was intended to make more difficult the
disassembly task, requiring the use of instructions. It was considered enough
for the purposes of this experiment.

Figure 6.12: Lego Elephant before and after disassembly.

Two different types of instructional media were used to perform the
task: paper instructions and computer-aided instructions (AR instructions).

6.5.3 Experimental Design

Two types of designs are used to distribute the subjects of
an experiment: between-subjects and intra-subjects. Between-subjects
distributes participants in several groups and each group only executes
a part of the experiment, while intra-subject assigns all participants
to the same group, who execute the whole experiment. Compared to
between-subjects, intra-subject design avoids the appearance of elite
groups, i.e. the risk of imbalance distribution of the participants along
the groups according to their ability (Otero and Dolado, 2000). However,
intra-subjects design suffers from the learning effect due to the recurrence
of the same participants in all parts of the experiment.

Intra-subjects design was used in this experiment. Furthermore, in order

150 Chapter 6. AR Disassembler

to avoid distortions in the results of this experiment, participants executed
all parts of the experiment on a rotating basis: half of the participants
executed the experiment in the order paper-AR and the other half in the
order AR-paper, where paper indicates that paper instructions were used
and AR indicates that computer-aided instructions were used.

Additionally, two different disassembly possibilities were prepared (T1
and T2). Both obtained the same result, but the parts were disassembled
in a different order. This way, T1 was used for the first execution, while T2
was chosen for the second one, regardless of the instructional media. This
resulted in two main options: paper(T1)-AR(T2) or AR(T1)-paper(T2).
This also helped to minimize the learning effect.

The independent variable for the experiment was the type of media
used to display the disassembly instructions (paper or computer-aided).
The dependent variables were the time to complete the disassembly task,
the number and type of errors during the disassembly task, and responses
to a usability questionnaire.

6.5.4 Procedure and Equipment

As mentioned above, the subjects had to disassemble the 7 parts of the
Lego Elephant presented in Figure 6.12, using two different instructional
media: paper and computer-aided instructions. Moreover, the execution
order was controlled to minimize the learning effect (paper(T1)-AR(T2) or
AR(T1)-paper(T2)). The subjects did not receive a training session on how
to disassemble parts of a Lego object.

For the paper instructions, subjects were given a manual 5
pages long (A4 size), which contained a detailed explanation and a
graphic representation of each disassembly step (see Appendix D). The
experimenter only indicated that the document had to be read carefully, as
it contained all the necessary information.

For the computer-aided instructions, subjects used the AR system that
has been described along this chapter, which offers virtual instructions
that explain how to perform the disassembly operation (Figure 6.13). The
experimenter gave a brief explanation (2-3 minutes) on how to use this tool,
indicating that the system recognizes the object that is in front of camera
and renders its virtual information in the corresponding image position,

Section 6.5. Usability Analysis 151

i.e., it achieves a perfect alignment between real and virtual objects. The
subjects were told that the system overlays a virtual representation of the
disassembly operation in the image (left panel of Figure 6.13), indicating the
next part to disassemble (coloured in red) and which is the extraction path
to follow (emphasized with a red arrow). Additionally, the experimenter
explained that there was a virtual panel with the 3D model with which
to interact (using the mouse) and have multiple points of view of the
disassembly operation (right panel of Figure 6.13). Indeed, the experimenter
pointed that they could use keys ’←’ and ’→’ to navigate between different
disassembly steps:

Next step (→): the system shows the next part to disassemble. If there
are not more steps to perform, it displays a message indicating that
the task has been finished.

Previous step (←): the system returns to the previous part of the
disassembly operation.

Figure 6.13: Snapshot of the AR system.

After finishing the explanation, subjects were invited to simulate
a disassembly step using the AR system (familiarization phase). The
experimenter did not use the Elephant model to teach how to handle the
AR system, but the model of Figure 6.6. An Intel Core i7-860 at 2.80GHz

152 Chapter 6. AR Disassembler

and 3GB of RAM equipped with a Logitech QuickCam Connect webcam
was used in collaboration with a simple monitor (22 inches) to offer AR
instructions.

As well as timing subjects, the experimenter registered the errors made
by the subjects during the experiment. However, due to the clarity of the
instructions and the difficulty level of the task, there were no errors.

After finishing the experiment, subjects completed a questionnaire
to determine their subjective opinion about the instruction media and
the usability of that media. This questionnaire contained the following
questions, which had to be answered on a scale from 1 (not very easy)
to 5 (very easy):

AR instructions

Q1 How easy was it to use?

Q2 How helpful was it to solve the disassembly task?

Q3 How easy was it to interact with?

Q4 How enjoyable was it to use?

Paper instructions

Q1 How easy was it to use?

Q2 How helpful was it to solve the disassembly task?

Q3 How easy was it to interact with?

Q4 How enjoyable was it to use?

Q5 What type of instructions do you prefer? (from 1: AR; to 5: Paper)
Why?

6.5.5 Results

Performance Times

The mean execution time of paper instructions was 108.4 seconds
(stdev=38.43), while the mean of AR instructions was 135 seconds
(stdev=47.98). Noting this difference, a paired t-test with a significance
level of 0.05 was applied to the execution times, which confirmed that there

Section 6.5. Usability Analysis 153

was a statistical difference (t(19)=2.36, p=0.03). The main reason of this
difference is that the subjects did not read the instructions. The disassembly
task was intuitive, so that they just watched the graphical representations.

Figure 6.14 shows the execution time (in seconds) for each subject
and instructional media. The first 10 measures correspond to the
AR(T1)-paper(T2) order, while the last 10 measures correspond to the
paper(T1)-AR(T2) order. It can be observed that the paper execution time
of the first 10 measures (mean=85.6, stdev=22.23) was low compared to
the last 10 measures (mean=131.2, stdev=38.32). Indeed, an Analysis of
Variance (ANOVA) procedure was applied to investigate the potential effect
of execution order on the paper execution time. The results of the ANOVA
indicated that there was statistically significant effect of execution order
on the paper execution time (F=10.6, p=0.004). Based on this, one could
argue that AR instructions provide a better understanding of the task,
allowing users to extrapolate the acquired skills more efficiently to other
settings (paper instructions).

Figure 6.14: Exec. time for each subject and instructional media.

Usability

Figure 6.15 shows the number of subjects for each response of the usability
questionnaire, grouped by question number (Q1-Q4) and instructional
media. Moreover, Table 6.4 displays descriptive statistics of the responses

154 Chapter 6. AR Disassembler

according to the question number and instructional media.

Figure 6.15: Responses for the usability questionnaire.

Table 6.4: Statistics (mean(stdev)) for the usability questionnaire.

Q1 Q2 Q3 Q4

AR 4.5 (0.69) 4.05 (1.1) 4.4 (0.75) 4.4 (0.82)
Paper 4.55 (0.69) 4.2 (1.06) 4.35 (1.18) 2.5 (1.1)

It should be noted the high scores that most of the users gave to the
usability of both instructional media. They found easy to use (Q1), very
helpful (Q2), and easy to interact with (Q3). The main difference was the
sense of enjoyment (Q4) experimented by the subjects. For most subjects
AR instructions were more motivating.

The questionnaire also included a question on which subjects had
to specify and argue the preferred instructional media (Q5). Figure 6.16
displays the number of subjects for each preferred option. It is clear that
most of the subjects chose AR instructions to perform disassembly tasks.
Indeed, subjects who did not choose AR instructions argued that it was
too simple task to take advantage of AR technology. They indicated that

Section 6.6. Discussion 155

with more complex tasks they would also have chosen AR instructions.

Figure 6.16: Preferences of subjects regarding instructional media.

6.6 Discussion

In this chapter an automatic AR disassembler oriented to maintenance and
repair operations has been described. The novelty of the proposed system
relies on its ability of being a complete framework that is self supplied. All
the data is extracted automatically from a collection of 3D parts that are
provided as untextured 3D triangle meshes.

An existing VR disassembly planning module has been adapted to the
proposed AR framework to compute the assembly/disassembly sequence,
which is obtained finding collision-free trajectories. Moreover, the 3D
recognition method presented in Chapter 4 has been used to retrieve the
first camera pose of the input untextured 3D model and for recovery in case
of tracking failure. It is based on the geometric properties of the model, so
the proposed system can deal with scenes that lack texture. Similarly, the
markerless tracking method detailed in Chapter 5 has been used to perform
the tracking. It offers a robust and real time 3D tracking against multiple
and undesirable conditions, so the proposed AR disassembler is a complete
framework that runs in real-time and tries to facilitate the work of workers,
replacing the paper-based documentation.

156 Chapter 6. AR Disassembler

The information computed by the disassembly planning is used to
guide the training process of the recognition and tracking methods. More
precisely, since the next part to assembly/disassembly is known, then the
recognition and tracking methods are trained to identify that piece as if it
was in front of the camera. This way, the proposed framework is not a set of
independent modules, but an AR system that combines multiple methods
in an intelligent way.

An experiment that validates the usability of the proposed AR system
has been also presented. Although the limited sample size (20 subjects)
makes difficult to perform rigorous statistical analysis, the results indicate
that the proposed AR system help users understanding the disassembly
task. In fact, it was found that the use of AR stimulates users to perform
the task. However, due to the simplicity of the disassembly task, most of
the subjects performed the task faster with paper documentation because
they did not read instructions.

Finally several aspects of this chapter requires a deeper study in the
future, such as a visual inspection that ensures the correctness of the
assembly/disassembly task or a more complete experiments (with more
subjects and with a more complex disassembly task) that validate the
usability of the system.

Part III

Conclusions

Chapter 7

Conclusions and future work

Inevitably the machines must win,
but there is still a long way to go

before a human on his or her best day
is unable to defeat the best computer

Garry Kasparov

7.1 Conclusions

This thesis studies several augmented reality tracking techniques for
industrial environments. More precisely, real time monocular optical
tracking methods are investigated, since these solutions increase the
effectiveness of AR (real time) using a single camera (monocular) and a
limited budget (optical sensors).

The main contributions of this work are focused on the design
and development of recognition and tracking methods that offer a
robust response when dealing with the untextured scenes of industrial
environments, as well as building an AR system for guidance in disassembly
tasks to validate the quality and capacity of the proposed techniques.

Optical tracking methods that are based on markers fail even if
the marker is only slightly occluded. Furthermore, due to the fact that
occlusions caused by the hands of the worker and tools are common
in industrial environments, two new methods have been developed to
address this shortcoming: Occlusion-OBB and Occlusion-Patches. Both use
computer vision techniques and avoid using multiple markers to obtain

159

160 Chapter 7. Conclusions and future work

the camera pose, i.e., environment adaptation has not been jeopardized in
favour of robustness against occlusions. Different computation capabilities
and requirements (6 DOF vs 4 DOF) have also been considered when
designing these solutions. The main contributions and conclusions obtained
for each of these proposals are:

1. Occlusion-OBB: This is a method that uses temporal coherence
assumptions and simple image processing to track the bounding box
of the marker and update the camera pose. Due to the popularity of
mobile devices, it has been oriented towards mobile platforms. Indeed,
as these devices have limited processing and memory capabilities,
Occlusion-OBB assumes some simplifications so that only 4 DOF of
the camera are updated (translation in 3 axes and rotation in the axis
that is perpendicular to the image plane). It is a valid solution for
some tasks, such as advertising applications. Additionally, it can be
used in scenes that are already prepared for parallelogram markers
(ARToolkitPlus, for example) without having to install anything since
it does not need to prepare an environment with more artificial
landmarks.

2. Occlusion-Patches: This is a new marker design that places
customizable texture patches along the frame of the marker to have
more visible features (with known 3D coordinates) during marker
occlusion, which facilitates the computation of the camera pose
(6 DOF). This way, it can be adapted to any marker tracking
system that uses its central area to codify digital identification
(ARToolkitPlus, for example). These textures are customizable, which
lets users make their own designs or address marketing purposes.
This approach combines two different tracking techniques (frame to
frame tracking and tracking by detection), whose computational cost
is considerable compared to Occlusion-OBB. The first one measures
2D displacements of features using Lukas and Kanade optical flow and
a simplified version of the SIFT descriptor to calculate the camera
pose. The second approach, meanwhile, is based on appearance, so
that the image’s 2D features are matched with their corresponding 3D
features using a simplified version of SIFT descriptors. In addition,
two novel human-machine interfaces have been introduced to show
the new possibilities that have arisen as a result of obtaining more
information during marker occlusions.

Section 7.1. Conclusions 161

Sometimes is not possible to modify the environment, so marker-based
alternatives cannot be used. To solve this problem markerless tracking
methods take advantage of the visual cues that are naturally in the scene.
Some of these solutions store knowledge about the scene in a 3D model,
which is available before the camera tracking begins. The 3D model can
be represented by its geometry and texture, but most objects that are in
industrial environments lack texture, which jeopardizes the tracking task. In
order to track untextured 3D models, 3D object recognition and markerless
tracking methods based on geometric properties have been developed. The
first method initializes the tracking, while the second one updates the
camera pose using frame to frame assumptions:

1. 3D object recognition: This method processes the untextured
3D model to automatically extract its geometric features, such as
3D sharp edges and 3D L junctions. Several 2D synthetic views
of these 3D geometric features are taken during the automatic
training phase, which are matched to those features with similar
geometric description detected in the current camera image. An
efficient geometric constraint based on a pair of junctions is proposed
to get camera pose candidates, while edges are used to obtain the
similarity measure. A parameterisation study has also been presented,
providing a configuration that works fine in most scenarios.

2. Markerless tracking: Self-supplied and robust markerless tracking
that combines an edge tracker, a feature tracker and a particle filter
has been developed to continuously update the camera pose. All these
techniques have not been used independently, but rather they have
been integrated to exploit the advantages of each one. The feature
tracker and the particle filter offer a good initial guess of the correct
camera pose, even if rapid camera movements are applied, while the
edge tracker calculates the precise pose. The particle filter is used
as an alternative to the feature tracker in the absence of features. It
combines edges, junctions and points to obtain stable results.

Although each proposed method has been validated with its own set
of experiments, an AR disassembler tool has been developed to show the
real world applicability of the methods proposed throughout this thesis.
This tool substitutes paper documentation, and provides workers with
augmented instructions in order to perform maintenance tasks. The novelty

162 Chapter 7. Conclusions and future work

of the proposed system relies on its ability to be a real time and complete
framework that is self-supplied. All the data is extracted automatically
from a collection of 3D parts that are provided as untextured 3D triangle
meshes. Additionally, an existing VR disassembly planning module has
been adapted to this AR system, which computes assembly/disassembly
sequences by finding collision-free trajectories. The 3D recognition and
markerless tracking methods mentioned earlier are responsible for retrieving
the camera pose. Similar to the integration procedure explained above,
all these methods have been combined in an intelligent way, taking
advantage of the disassembly order to guide the training of the recognition
and tracking methods. The usability of this AR system has been also
demonstrated through a set of user experiments.

In summary, several real time tracking methods have been proposed
to offer robust tracking in industrial environments. Both marker and
markerless tracking methods have been presented to fulfil multiple
requirements. An AR disassembly tool has been developed to demonstrate
its real applicability. Furthermore, the proposed solutions do not need
expensive hardware, as they use a single low cost camera to capture images
and a standard PC to process them, i.e., they have a wide application
domain.

7.2 Future research lines

Several research lines have been identified in this thesis, which can guide
future studies. These ideas are presented below according to the part they
belong to:

• Occlusion-Patches: The accuracy and robustness of the camera
pose could be improved if edges are combined with features. The
tracking method presented here only uses features, which are robust
against rapid camera movements. However, edges give more accurate
results, and are stable even with lighting changes.

• 3D object recognition: This method recognizes an object using its
geometric properties. It is optimised for untextured 3D models, so
its response can be jeopardized if the model has a textured surface.
Thus, it would be interesting to incorporate appearance data, such

Section 7.2. Future research lines 163

as texture or colour patterns, to the recognition process. This would
decrease false positives and would extend the application domain.

Additionally, other edge similarities should be tested to validate
the success of recognition. Currently edge similarity is used (Steger,
2002), but (Hinterstoisser et al., 2010) has recently proposed an
efficient technique for recognizing objects using dominant gradient
orientations. This method requires real images of the target object
to perform the training (manual training), but it is capable of
building online templates once the object has been detected. Hence, a
system that incorporates this technique will be capable of dynamically
learning the contours of the object.

• Markerless tracking: The proposed markerless tracking combines
multiple tracking techniques (edge tracker, feature tracker and
particle filter), which are configured to obtain good results satisfying
real time constraints. Moreover, all of them have been implemented
using only the CPU, wasting the computing capabilities of the GPU.
This way, a GPU implementation of some of these techniques, similar
to the GPU particle filter detailed in (Klein and Murray, 2006) or
the GPU feature tracking presented in (Sinha et al., 2006), would
balance the computational effort between the CPU and GPU. This
would save computational time, and more sophisticated techniques
could be applied, such as a complete version of the SIFT descriptor
(Lowe, 2004) or a real time SLAM technique (Sánchez, 2010). In fact,
SLAM is a technique that makes a 3D reconstruction of the scene as
well as performs the camera tracking, i.e., it is capable of learning new
environment conditions during the online execution so that occlusion
or disappearance of the target model is supported.

• AR Disassembler: The AR tool that has been presented guides
workers in disassembly operations, but it does not verify the
correctness of the task. Therefore, a feedback module should be
incorporated to determine whether the user performs the disassembly
task correctly, one that explain how to proceed in the case of an error.
This improves efficiency and is helpful for users (Ryoo et al., 2010).

The user is responsible for notifying the system that the task is
completed, for which a simple key is pressed. This is uncomfortable
if his hands are busy, so it should also be controlled by gesture
recognition or a voice command. It is noteworthy that the proposed

164 Chapter 7. Conclusions and future work

AR system uses the solution of a simple key press because it is a
prototype that serves as proof of concept.

As explained in (Hakkarainen et al., 2008), a client-server architecture
should be implemented to extend the application domain. Using this
architecture, complex calculations are executed on a PC (a server),
while the results are displayed on the screen of a remote device (the
client). This eliminates the need to move bulky hardware components
since a thin client such as a mobile device can access the server results.

An experiment that validates the usability of the proposed AR
system has been described (Section 6.5). However, more complete
experiments (with more subjects and with a more complex
disassembly task) should be done, applying robust statistical analysis.
For example, several experiments have demonstrated the effectiveness
of AR for assistance in maintenance and repair operations in terms of
operation efficiency (Raghavan et al., 1999; Tang et al., 2003), while
the experiment that has been presented here did not obtain the same
conclusion due to the low difficulty of the proposed disassembly task.
The results of more complete experiments would improve the system
and elicit suggestions about perceived tracking deficiencies as well as
the best way to display augmented instructions.

The SLAM techniques have received much attention in recent years.
They do not need environment adaptation and they automatically compute
the 3D model of the scene, without providing it as an input parameter. They
are interesting solutions, and their computational time decreases every year
due to advances in hardware capabilities. Because of that, the study of real
time markerless tracking methods oriented toward industrial environments
should be extended to SLAM techniques as well.

Part IV

Appendices

Appendix A

Real time SIFT

The following paragraphs present the simplifications that have been applied
to the original SIFT method (Lowe, 2004), which have been inspired in
(Wagner et al., 2008; Wagner et al., 2010). The resulting approach has
been called simplified-SIFT and is executed in real time.

A.1 Simplified SIFT

SIFT (Scale Invariant Feature Transform) is a method that locates
and describes the features that are in an image. The Difference of
Gaussians (DOG) operator is the responsible of extracting features from
an image. It provides high repeatability and scale invariance, but has
high computational cost. Because of that, it has been replaced by the
FAST operator (Rosten and Drummond, 2006), which offers a good balance
between repeatability and computational cost. As a counterpart, FAST is
not invariant to scale, so the robustness is jeopardized.

The original SIFT descriptor is parametrized by n and b, where n ∗ n
is the number of subregions in which the local image area of a feature
(denoted by p) is divided. b is the number of bins that are used to build
a histogram that describes the image gradients of each subregion. The
size of p is estimated by DOG, which approximates the scale of each
feature. Simplified-SIFT, however, uses FAST operator, which is not able
to estimate the size of p. Thus, simplified-SIFT descriptor is parametrized
by n, b and s, where s is the size of the local image patch used to build
the feature descriptor. This value is not adapted dynamically, as it is for
DOG, but is set by the user. Reasonable values of s belong to the interval

167

168 Appendix A. Real time SIFT

[15..31]. Moreover, s is the same for all features and for all executions
(fixed patch size), so some calculus are precomputed to save time during
the online execution. More precisely, as SIFT descriptor rotates p according
to its dominant orientation (invariance to rotation), the cost of several
mathematical operations is saved by precomputing all possible rotations of
p.

Knowing that the descriptor of each feature is calculated independently,
simplified-SIFT uses parallel techniques. It is based on the SIMD (Single
Instruction, Multiple Data) model, where multiple processing units execute
the same instruction (feature descriptor computation) sent by the control
unit, but with different sets of data (different image patches). The
instruction is executed in parallel, but synchronously.

Furthermore, although SIFT replicates the descriptors of those features
that do not have strong dominant orientation (multiple orientations
with similar weight), simplified-SIFT only retains the highest dominant
orientation, which reduces the matching quality but facilitates the parallel
computation.

The main differences between SIFT and simplified-SIFT are
summarized in Table A.1.

SIFT simplified-SIFT

Feature Detector DOG FAST
Scale Invariance Yes No

Patch Size Dynamic Fixed
Dominant Orientation Multiple Single

Execution Sequential Parallel
Real time No Yes

Table A.1: Main differences between SIFT and simplified-SIFT.

A.1.1 Scale invariance

Simplified-SIFT replaces DOG by FAST so that the invariance against
scale is lost. Therefore, the content of a feature descriptor may change for
two images taken from two different scales, which decreases the matching
quality.

Section A.1. Simplified SIFT 169

This is not a serious problem for some real time tracking approaches. In
some cases simplified-SIFT is used to estimated the new location of those
features detected in the previous frame. Moreover, in these examples each
feature descriptor is updated every frame, so the temporal coherence and
real time properties ensure that the scale change between two consecutive
frames will not suffer too much change. In these situations the content
of a feature descriptor will be similar for two consecutive frames and the
matching quality will remain at good levels.

Figure A.1: Image training of simplified-SIFT to avoid scale
ambiguity.

SIFT is also used for object recognition tasks. Features of objects
are extracted from a set of reference images and stored in a database
(reference features). Thus, given a new image, those features extracted in
the new image are matched to the reference features. The similarity between
descriptors is used to get correspondences and an object is recognized
if enough positive matches are found. This way, the scale invariance
is an important property for this type of approaches. Nevertheless,
simplified-SIFT can still be used in such applications by doing a more

170 Appendix A. Real time SIFT

extensive preprocessing of the set of reference images. Following this
reasoning, the reference images are trained along multiple scales and
Gaussian filters (Figure A.1), which results in a scale-space technique
similar to (Lowe, 2004). This procedure increases storage requirements,
as one descriptor is stored for each feature and scale, but it covers the
expected ranges at runtime so that the scale ambiguity problem is solved.

A.1.2 Computational Time

Simplified-SIFT has been executed with different parameterisations and
hardware configurations (Figure A.2). Two different PCs have been used:
an Intel Core 2-Duo at 2.40GHz and 2GB of RAM (Figure A.2(a)), and
an Intel Core i7-860 at 2.80GHz and 3GB of RAM (Figure A.2(b)). s has
been set to [15,21,25,31] values, n = 4, and b = 8. The number of features
has been increased in ascending order, from 100 to 1000 with a step of
100. The execution time includes both feature extraction (FAST) and the
computation of feature descriptors. Moreover, Table A.2 shows the mean
execution time of simplified-SIFT for different number of features. All the
experiments have been executed at 640x480 resolution.

Num. Features

100 300 500 700 1000

Core 2-Duo 14.7 25.75 36.88 48.29 65.29
Core i7-860 10.99 15.36 19.88 24.82 32.31

Table A.2: Mean execution time (ms) of simplified-SIFT.

Analysing these values, Intel Core i7-860 can be used with any
configuration, as it fulfils the real time requirement (∼ 33 ms). Intel Core
2-Duo, meanwhile, should be limited to 500 features to maintain real time
limits, which is already a high value.

The original SIFT takes around 500 ms to process a 640x480 image with
500 features, even using an Intel Core i7-860 at 2.80GHz and 3GB of RAM.
Although a non-optimised implementation has been used1, the difference
is remarkable. Notice, however, that the execution of SIFT includes scale
invariance. Additionally, a GPU implementation of SIFT is also available2,

1An open-source SIFT library written in C: http://blogs.oregonstate.edu/hess/code/sift/.
2SiftGPU: http://cs.unc.edu/ ccwu/siftgpu/.

Section A.1. Simplified SIFT 171

(a) Core 2-Duo.

(b) Core i7-860.

Figure A.2: Execution time (ms) of simplified-SIFT.

which computes ∼ 4500 points in less than 100 ms for an image at 640x480
resolution. This is a great amount of points, but the computational time
exceeds real time requirements.

172 Appendix A. Real time SIFT

Appendix B

Pose from a 3D Plane

The following sections describe how to obtain the camera pose from a
planar 3D structure when the camera intrinsic parameters are known. A
more detailed explanation about this procedure can be found in (Hartley
and Zisserman, 2004). In fact, the pose ambiguities1 derived from the
procedure of extracting the camera pose for planar targets are detailed
in (Schweighofer and Pinz, 2006), but they are not presented here.

B.1 The Direct Linear Transformation (DLT)

The basic Direct Linear Transformation (DLT) algorithm is a simple linear
algorithm that determines H given a set of 2D to 2D point correspondences
(~mi ↔ ~m′i), where H is a 3x3 matrix that represents a 2D projection
transformation (see Appendix C) such that ~m′i = H~mi. H defines a mapping
from one plane to another plane (Figure B.1) and has 8 degree of freedom
(9 entries defined up to a scale). This way, four point correspondences are
only necessary to calculate H, as each point correspondence provides two
constraints. Additionally, these correspondences should not form triplets of
collinear points in order to avoid a degenerate transformation and obtain
a unique solution of H.

That equation can be formulated as ~m′i × H~mi = 0. Moreover, using
homogeneous coordinates (~m′i = (x′i, y

′
i, z
′
i)
T), and some changes in notation

(~hjT ~mi = ~mT
i
~hj , where ~hjT is the j-th row of the matrix H), the original

equation can be written in the form

1Existence of two local minima for the pose estimation error function.

173

174 Appendix B. Pose from a 3D Plane

Figure B.1: The mapping of points from π1 plane to π2 plane.

 0T −w′i ~mT
i y′i ~m

T
i

w′i ~m
T
i 0T −x′i ~mT

i

−y′i ~mT
i x′i ~m

T
i 0T


~h1

~h2

~h3

 = 0. (B.1)

However, only two equations of Equation B.1 are linearly independent,
so the set of equations becomes:

[
0T −w′i ~mT

i y′i ~m
T
i

w′i ~m
T
i 0T −x′i ~mT

i

]~h1

~h2

~h3

 = 0. (B.2)

This can be expressed as a linear equation in the unknown ~h: Ai~h = 0,
where Ai is a 2x9 matrix whose entries are given by the coordinates of the
~mi ↔ ~m′i points, and ~h is a 9-vector made of the coefficients Hij .

Given a set of four ~mi ↔ ~m′i correspondences, each with its 2x9 Ai
matrix, all of them are assembled into a single 8x9 matrix A. Thus, A~h = 0
can be solved using Singular Value Decomposition (SVD) (Flaquer et al.,
2004). More precisely, A8x9 = U8x9D9x9V

T
9x9, where D = diag(σ1, σ2, ..., σ9)

is the diagonal matrix of singular values arranged in descending order down
the diagonal and the matrices U and V are orthonormal. The columns of
V are the eigenvectors of ATA and the required solution (~h) is the column
of V corresponding the smallest singular value (σ9, last column).

DLT minimizes the algebraic error (minimizes the norm ‖Ah‖), which
is not geometrically or statistically meaningful. However it has a low

Section B.2. Pose estimation from a 3D plane 175

computational cost and offers a linear (and consequently unique) solution,
so it is used as a starting point for a non-linear minimization of a geometric
or statistical cost function.

B.2 Pose estimation from a 3D plane

Given the known camera intrinsic parameters (K) and the image projection
of a 3D planar structure, the camera extrinsic parameters (Rt) can be
determined. The relation between the coordinates of points that lie on a
3D plane (~Mi = (X,Y, 0)T , assuming Z = 0 plane) and its image projection
(~mi = KRt ~Mi) can be represented using homogeneous coordinates as:

~mi = K
[
~r 1 ~r 2 ~r 3 ~t

] 
X
Y
0
1

 = K
[
~r 1 ~r 2 ~t

] XY
1

 = H

XY
1

 , (B.3)

where ~r 1, ~r 2 and ~r 3 are the first, second and third column of the
rotation matrix R respectively, t is the translation vector and H is a 3x3
homogeneous matrix, called a homography matrix.

The matrix H can be estimated from four correspondences ~mi ↔ ~Mi

using the DLT algorithm (Section B.1). Furthermore, since K is known,
the camera pose can be recovered from the product K−1H, where the last
column ~r 3 is computed as the cross product of ~r 1 and ~r 2 (~r 3 = ~r 1×~r 2) to
satisfy the orthonormality constraint of the rotation matrix R. Indeed, the
orthonormality conditions are never perfectly met, so a renormalization step
is applied (Simon and Berger, 2002): ~r 2 = ~r 2/‖~r 2‖, ~r 3 = ~r 1 × ~r 2/‖~r 1 ×
~r 2‖, ~r 1 = ~r 2 × ~r 3.

176 Appendix B. Pose from a 3D Plane

Appendix C

Hierarchy of 2D
transformations

This appendix describes the specializations of a 2D projective
transformation and their geometric properties. Assuming that the 2D
projective transformation is a group (projective linear group), then these
specializations (affine, similarity and isometry) are subgroups of this group.
All these transformations are described by those terms that are invariant,
i.e., those elements or quantities of a geometric configuration that are
preserved. See (Hartley and Zisserman, 2004) for more details.

C.1 Isometries

2D isometries are transformations that preserve Euclidean distance
(iso=same, metric=measure). They are represented as

x′y′
1

 =

ε cos θ −sin θ tx
ε sin θ cos θ ty

0 0 1

 ∗
xy

1

 (C.1)

where ε = 1 means that the isometry is orientation-preserving and is a
Euclidean transformation (a composition of a translation and rotation).
ε = −1, meanwhile, means that the isometry reverses orientation.

A 2D isometry transformation has 3 degrees of freedom, one for rotation
and two for the translation. Thus, the transformation can be computed from
two point correspondences.

177

178 Appendix C. Hierarchy of 2D transformations

The invariants of a 2D isometry are length (the distance between two
points), angle (the angle between two lines), and area.

C.2 Similarity transformations

2D similarity transformations are isometries composed with an isotropic
scaling. They are represented as

x′y′
1

 =

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

 ∗
xy

1

 (C.2)

where the scalar s represents the isotropic scaling.

A 2D similarity transformation has 4 degrees of freedom, the scale
factor and those associated with a Euclidean transformation. Thus, the
transformation can be computed from two point correspondences.

The invariants of a 2D similarity are angle (parallel lines are mapped
to parallel lines), ratio of lengths and ratio of areas.

C.3 Affine transformations

2D affine transformations are non-singular linear transformations followed
by a translation. They are represented as

x′y′
1

 =

a11 a12 tx
a21 a22 ty
0 0 1

 ∗
xy

1

 (C.3)

A 2D affine transformation has 6 degrees of freedom corresponding to
the six matrix elements. Thus, the transformation can be computed from
three point correspondences.

The invariants of a 2D affine are parallel lines (intersection of parallel
lines remains at infinity), ratio of lengths of parallel line segments, and ratio
of areas.

Section C.4. Projective transformations 179

C.4 Projective transformations

A 2D projective transformation, also called homography, is a linear
transformation on homogeneous 3-vectors represented by a non-singular
3x3 matrix:

x′y′
1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 ∗
xy

1

 (C.4)

A 2D projective transformation has 8 degrees of freedom (9 entries
defined up to a scale). Thus, a 2D projective transformation between two
planes can be computed from four point correspondences, with no three
collinear on either plane.

A 2D projective transformation is invariant to a ratio of ratios or cross
ratio of lengths on a line (Figure C.1). Given 4 points xi the cross ratio is
defined as

Cross(x1, x2, x3, x4) =
|x1x2| |x3x4|
|x1x3| |x2x4|

where

|xixj | = det

[
xi1 xj1
xi2 xj2

]

Figure C.1: Four sets of four points with the same cross ratio.

180 Appendix C. Hierarchy of 2D transformations

C.5 Summary

Figure C.2 summarizes the 2D transformation groups and their invariant
properties. Transformations lower in the image are specializations of those
above. A transformation lower in the image inherits the invariants of those
above.

Figure C.2: 2D transformation groups.

Appendix D

Usability Experiments

This appendix completes the description of the experiment that has been
done to validate the usability of the AR system (Section 6.5).

D.1 Paper Documentation

Here the paper documentation that the experimenter gave to the subjects is
presented. This correspond to the T1 disassembly order. The document of
the T2 disassembly order is analogous, changing the sequence order of some
steps: 3, 4, 1, 2, 5, 7, 6. This way it is not copied here to avoid duplication.

181

Disassembly of a Lego Elephant

This manual outlines the steps that must be followed to disassemble some
parts of the Lego Elephant presented in Figure 1.

Figure 1 - Lego Elephant.

Note that you do not need any special tools to disassemble this object, just
use your hands.

7 parts must be disassembled in total:

• 3 2x2 Lego bricks

• 2 2x3 Lego bricks

• 2 1x2 Lego bricks

IMPORTANT: These parts must be disassembled in a correct order,
i.e., there is a predefined disassembly order that must be satisfied.

Please read the following instructions carefully to avoid mistakes.

Step 1:

Disassemble the 2x2 Lego brick that is at the bottom of the hind leg of the Elephant:
take the Elephant with one hand and pull out the brick with the other hand. Do it gently,
trying not to destroy the overall structure of the object.

Figure 2 – Step 1.

Step 2:

Disassemble the 2x2 Lego brick that is at the bottom of the hind leg of the Elephant
after Step 1: take the Elephant with one hand and pull out the brick with the other hand.
Do it gently, trying not to destroy the overall structure of the object.

Figure 3 – Step 2.

Step 3:

Disassemble the 2x3 Lego brick that is at the head of the Elephant after Step 2: take the
Elephant with one hand and pull out the brick with the other hand. Do it gently, trying
not to destroy the overall structure of the object.

Figure 4 – Step 3.

Step 4:

Disassemble the 1x2 Lego brick that is close to the eye of the Elephant after Step 3: take
the Elephant with one hand and pull out the brick with the other hand. Do it gently,
trying not to destroy the overall structure of the object.

Figure 5 – Step 4.

Step 5:

Disassemble the 2x3 Lego brick that is at the top of the body of the Elephant after Step
4: take the Elephant with one hand and pull out the brick with the other hand. Do it
gently, trying not to destroy the overall structure of the object.

Figure 6 – Step 5.

Step 6:

Disassemble the 1x2 Lego brick that corresponds to the eye of the Elephant: take the
Elephant with one hand and pull out the brick with the other hand. Do it gently, trying
not to destroy the overall structure of the object.

Figure 7 – Step 6.

Step 7:

Disassemble the 2x2 Lego brick that is at the bottom of the hind leg of the Elephant
after Step 6: take the Elephant with one hand and pull out the brick with the other hand.
Do it gently, trying not to destroy the overall structure of the object.

Figure 8 – Step 7.

The final state should be the one shown at Figure 9 to ensure the correctness of the
disassembly task.

Figure 9 – Lego Elephant after the disassembly process.

Appendix E

Generated Publications

Books

Sánchez, J. R., Álvarez, H., and Borro, D. Gft: Gpu fast triangulation
of 3d points (ISBN: 3-642-15909-5), volume 6374 of Lecture Notes
in Computer Science, Computer Vision and Graphics, pp. 235–242.
Springer-Verlag Berlin Heidelberg. 2010.

Journals

Puerto, M., Gil, J., Álvarez, H., and Sánchez, E. “Influence of user
grasping position on haptic rendering”. IEEE/ASME Transactions
on Mechatronics, N. 99, pp. 1–9. 2011.

Álvarez, H., Leizea, I., and Borro, D. “A new marker design for
a robust marker tracking system against occlusions”. Submitted to
Computer Animation and Virtual Worlds, 2011.

Álvarez, H. and Borro, D. “Junction assisted 3d pose retrieval of
untextured 3d models in monocular images”. Submitted to IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2011.

187

188 Appendix E. Generated Publications

Conferences

Basogain, X., Olabe, M., Etxebarri, A., Izkara, J. L., Garrido,
R., and Álvarez, H. “Towards the augmented reality in wearable
personal assistants”. In II Jornadas sobre Realidad Virtual y Entornos
Virtuales (JOREVIR’08). Albacete, Spain. June, 2008.

Álvarez, H. and Borro, D. “Cálculo de la pose de la cámara
ante oclusiones de un marcador”. In Proceedings of the XVIII
Conferencia Española de Computación Gráfica (CEIG’08), pp.
123–132. Barcelona, Spain. September, 2008.

Álvarez, H. and Borro, D. “A novel approach to achieve robustness
against marker occlusion”. In International Conference on Computer
Vision Theory and Applications (VISAPP’09), pp. 478–483. Lisboa,
Portugal. February, 2009.

Sánchez, J. R., Álvarez, H., and Borro, D. “Towards real time 3d
tracking and reconstruction on a gpu using monte carlo simulations”.
In International Symposium on Mixed and Augmented Reality
(ISMAR’10), pp. 185–192. Seoul, Korea. October, 2010.

Álvarez, H., Aguinaga, I., and Borro, D. “Providing guidance
for maintenance operations using automatic markerless augmented
reality system”. In Proceedings of the 10th IEEE International
Symposium on Mixed and Augmented Reality (ISMAR’11), pp.
181–190. Basel, Switzerland. October, 2011.

189

Posters

Barandiarán, J., Álvarez, H., and Borro, D. “Edge-based markerless
3d tracking of rigid objects”. In International Conference on Artificial
Reality and Telexistence (ICAT’07), pp. 282–283. Esbjerg, Denmark.
November, 2007.

Sánchez, J. R., Álvarez, H., and Borro, D. “Gpu optimizer: A
3d reconstruction on the gpu using monte carlo simulations”. In
Proceedings of the 5th International Conference on Computer Vision
Theory and Applications (VISAPP’10), pp. 443–446. Angers, France.
May, 2010.

190 Appendix E. Generated Publications

References

Aguinaga, I. Automatic analysis of the precedence relationships and
disassembly routes for selective disassembly planning in mechanical
systems using virtual mock-ups. PhD thesis, Escuela Superior de
Ingenieros, Universidad de Navarra. 2007.

Aguinaga, I., Borro, D., and Matey, L. “Path planning techniques for the
simulation of disassembly tasks”. Assembly Automation, Vol. 27, N. 3,
pp. 207–214. 2007.

Aguinaga, I., Borro, D., and Matey, L. “Parallel rrt-based path planning
for selective disassembly planning”. The International Journal of
Advanced Manufacturing Technology, Vol. 36, pp. 1221–1233. 2008.

Álvarez, H., Aguinaga, I., and Borro, D. “Providing guidance for
maintenance operations using automatic markerless augmented reality
system”. In Proceedings of the 10th IEEE International Symposium
on Mixed and Augmented Reality (ISMAR’11), pp. 181–190. Basel,
Switzerland. October, 2011.

Álvarez, H. and Borro, D. “Cálculo de la pose de la cámara ante oclusiones
de un marcador”. In Proceedings of the XVIII Conferencia Española
de Computación Gráfica (CEIG’08), pp. 123–132. Barcelona, Spain.
September, 2008.

Álvarez, H. and Borro, D. “A novel approach to achieve robustness against
marker occlusion”. In International Conference on Computer Vision
Theory and Applications (VISAPP’09), pp. 478–483. Lisboa, Portugal.
February, 2009.

Álvarez, H. and Borro, D. “Junction assisted 3d pose retrieval of untextured

191

192 REFERENCES

3d models in monocular images”. Submitted to IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2011.

Álvarez, H., Leizea, I., and Borro, D. “A new marker design for a robust
marker tracking system against occlusions”. Submitted to Computer
Animation and Virtual Worlds, 2011.

Armstrong, M. and Zisserman, A. “Robust object tracking”. In Asian
Conference on Computer Vision (ACCV’95), volume I, pp. 58–61.
Singapore. December, 1995.

Arulampalam, M. S., Maskell, S., and Gordon, N. “A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking”. IEEE
Transactions on Signal Processing, Vol. 50, pp. 174–188. 2002.

Azuma, R. “A survey of augmented reality”. Media, Vol. 6, N. 4, pp.
355–385. 1997.

Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and MacIntyre,
B. “Recent advances in augmented reality”. IEEE Computer Graphics
and Applications, Vol. 21, N. 6, pp. 34–47. 2001.

Baird, K. and Barfield, W. “Evaluating the effectiveness of augmented
reality displays for a manual assembly task”. Virtual Reality, Vol. 4,
pp. 250–259. 1999.

Barandiarán, J., Álvarez, H., and Borro, D. “Edge-based markerless 3d
tracking of rigid objects”. In International Conference on Artificial
Reality and Telexistence (ICAT’07), pp. 282–283. Esbjerg, Denmark.
November, 2007.

Basogain, X., Olabe, M., Etxebarri, A., Izkara, J. L., Garrido, R., and
Álvarez, H. “Towards the augmented reality in wearable personal
assistants”. In II Jornadas sobre Realidad Virtual y Entornos Virtuales
(JOREVIR’08). Albacete, Spain. June, 2008.

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. “Speeded-up robust
features (surf)”. Computer Vision and Image Understanding, Vol. 110,
pp. 346–359. 2008.

Billinghurst, M., Hakkarainen, M., and Woodward, C. “Augmented
assembly using a mobile phone”. In Proceedings of the 7th International

REFERENCES 193

Conference on Mobile and Ubiquitous Multimedia (MUM’08), pp.
84–87. Umea, Sweden. December, 2008.

Bleser, G., Pastarmov, Y., and Stricker, D. “Real-time 3d camera tracking
for industrial augmented reality applications”. In International
Conference in Central Europe on Computer Graphics, Visualization
and Computer Vision (WSCG’05), pp. 47–54. Plzen-Bory, Czech
Republic. January, 2005.

Blum, T., Heining, S. M., Kutter, O., and Navab, N. “Advanced training
methods using an augmented reality ultrasound simulator”. In 8th
IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR’09), pp. 177–178. Orlando, USA. October, 2009.

Bouguet, J.-Y. “Pyramidal implementation of the lucas kanade feature
tracker description of the algorithm”. 2000.

Bradski, G. and Kaehler, A. Learning OpenCV: Computer vision with
the OpenCV library (ISBN: 0596516134). O’Reilly Media, 1st edition.
2008.

Brown, D. C. “Decentering distortion of lenses”. Vol. 32, N. 3, pp. 444–462.
1966.

Brown, M., Burschka, D., and Hager, G. “Advances in computational
stereo”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 25, N. 8, pp. 993–1008. 2003.

Canada, C., Mcdonald, C., and Roth, G. “Replacing a mouse with hand
gesture in a plane-based augmented reality system”. In Proceedings of
Vision Interface (VI’03). Halifax, Canada. June, 2003.

Cawood, S. and Fiala, M. Augmented reality a practical guide. Pragmatic
Bookshelf. 2008.

Cazorla, M. and Escolano, F. “Two bayesian methods for junction
classification”. IEEE Transactions on Image Processing, Vol. 12, N. 3,
pp. 317–327. 2003.

Chum, O. and Matas, J. “Matching with prosac - progressive sample
consensus”. volume 1, pp. 220–226. Los Alamitos, California, USA.
June, 2005.

194 REFERENCES

Costa, M. S. and Shapiro, L. G. “3d object recognition and pose with
relational indexing”. Computer Vision and Image Understanding, Vol.
79, pp. 364–407. 2000.

Davison, A. “Real-time simultaneous localisation and mapping with a
single camera”. In Proceedings of 9th IEEE International Conference
on Computer Vision (ICCV’03), pp. 1403 –1410 vol.2. Nice, France.
October, 2003.

De Crescenzio, F., Frantini, M., Persiani, F., Di Stefano, L., Azzari, P., and
Salti, S. “Augmented reality for aircraft maintenance and operations
support”. IEEE Computer Graphics and Applications, Vol. 31, N. 1,
pp. 96–101. 2011.

de Ipiña, D. L., ca, P. R. S. M., and Hopper, A. “Trip: A low-cost
vision-based location system for ubiquitous computing”. Personal and
Ubiquitous Computing, Vol. 6, pp. 206–219. 2002.

Deutscher, J., Blake, A., and Reid, I. “Articulated body motion capture by
annealed particle filtering”. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’00), volume 2, pp. 126 –133. Hilton
Head, SC, USA. June, 2000.

Drost, B., Ulrich, M., Navab, N., and Ilic, S. “Model globally, match locally:
Efficient and robust 3d object recognition”. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’10), pp. 998–1005.
San Francisco, USA. June, 2010.

Drummond, T. and Cipolla, R. “Real-time visual tracking of complex
structures”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 24, pp. 932–946. 2002.

Farkhatdinov, I. and Ryu, J.-H. “Development of educational system for
automotive engineering based on augmented reality”. In International
Conference on Engineering Education and Research (ICEER’09).
Seoul, South Korea. August, 2009.

Faugeras, O., Luong, Q. T., and Papadopoulo, T. The geometry of multiple
images: the laws that govern the formation of multiple images of a
scene. MIT Press. 2001.

REFERENCES 195

Ferrari, V., Fevrier, L., Jurie, F., and Schmid, C. “Groups of adjacent
contour segments for object detection”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 30, N. 1, pp. 36–51. 2008.

Fiala, M. “Artag, a fiducial marker system using digital techniques”. pp.
590–596. San Diego, CA, USA. June, 2005.

Fiala, M. “Comparing artag and artoolkit plus fiducial marker
systems”. In IEEE International Workshop on Haptic Audio Visual
Environments and their Applications (HAVE’05). Ottawa, Ontario,
Canada. October, 2005.

Fischler, M. A. and Bolles, R. C. “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography”. Communications of the ACM, Vol. 24, N. 6, pp. 381–395.
1981.

Flaquer, J., Olaizola, J., and Olaizola, J. Curso de álgebra lineal. Eunsa.
2004.

Franken, T., Dellepiane, M., Ganovelli, F., Cignoni, P., Montani, C., and
Scopigno, R. “Minimizing user intervention in registering 2d images
to 3d models”. The Visual Computer, Vol. 21, N. 8-10, pp. 619–628.
2005.

Gall, J., Potthoff, J., Schnörr, C., Rosenhahn, B., and Seidel, H.-P.
“Interacting and annealing particle filters: Mathematics and a recipe
for applications”. Journal of Mathematical Imaging and Vision, Vol.
28, N. 1, pp. 1–18. 2007.

Gall, J., Rosenhahn, B., and Seidel, H. P. “Robust pose estimation with
3d textured models”. In Pacific-Rim Symposium on Image and Video
Technology (PSIVT’06), pp. 84–95. Hsinchu, Taiwan. December, 2006.

Gauglitz, S., Höllerer, T., and Turk, M. “Evaluation of interest point
detectors and feature descriptors for visual tracking”. International
Journal of Computer Vision, Vol. 94, pp. 335–360. 2011.

Hakkarainen, M., Woodward, C., and Billinghurst, M. “Augmented
assembly using a mobile phone”. In 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality (ISMAR’08), pp.
167–168. Cambridge, UK. September, 2008.

196 REFERENCES

Harris, C. “Tracking with rigid objects”. MIT Press, 1992.

Hartley, R. I. “Euclidean reconstruction from uncalibrated views”.
In Proceedings of the Second Joint European - US Workshop on
Applications of Invariance in Computer Vision, pp. 237–256. Ponta
Delgada, Azores, Portugal. October, 1994.

Hartley, R. I. and Zisserman, A. Multiple view geometry in computer vision.
Cambridge University Press, ISBN: 0521540518, second edition. 2004.

Heisele, B. and Rocha, C. “Local shape features for object recognition”. In
19th International Conference on Pattern Recognition (ICPR’08), pp.
1–4. Tampa, Florida, USA. December, 2008.

Hemayed, E. “A survey of camera self-calibration”. In Proceedings of
IEEE Conference on Advanced Video and Signal Based Surveillance
(AVSS’03), pp. 351 – 357. Miami, FL, USA. July, 2003.

Henderson, S. J. and Feiner, S. “Evaluating the benefits of augmented
reality for task localization in maintenance of an armored personnel
carrier turret”. In Proceedings of the 8th IEEE International
Symposium on Mixed and Augmented Reality (ISMAR’09), pp.
135–144. Orlando, USA. October, 2009.

Hinterstoisser, S., Benhimane, S., and Navab, N. “N3m: Natural 3d markers
for real-time object detection and pose estimation”. In IEEE 11th
International Conference on Computer Vision (ICCV’07), pp. 1–7. Rio
de Janeiro, Brazil. October, 2007.

Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., and Navab, N. “Dominant
orientation templates for real-time detection of texture-less objects”.
In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’10), pp. 2257–2264. San Francisco, USA. June, 2010.

Holzer, S., Hinterstoisser, S., Ilic, S., and Navab, N. “Distance transform
templates for object detection and pose estimation”. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’09),
pp. 1177–1184. Miami, FL, USA. June, 2009.

Homem de Mello, L. and Sanderson, A. “Representations of mechanical
assembly sequences”. IEEE Transactions on Robotics and Automation,
Vol. 7, N. 2, pp. 211–227. 1991.

REFERENCES 197

Izkara, J., Mediavilla, A., Rodriguez-Maribona, I., and Armijo, A.
“Information technologies and cultural heritage: Innovative tools for
the support in the participative management of historical centres”.
In 8th European Conference on Research for Protection, Conservation
and Enhancement of Cultural Heritage (CHRESP’08). Ljubljana,
Slovenia. November, 2008.

Jiao, X. and Heath, M. T. “Feature detection for surface meshes”.
In Proceedings of 8th International Conference on Numerical Grid
Generation in Computational Field Simulations, pp. 705–714. Waikiki
Beach, Hawaii. June, 2002.

Juan, C., Llop, E., Abad, F., and Lluch, J. “Learning words using
augmented reality”. In IEEE 10th International Conference on
Advanced Learning Technologies (ICALT’10), pp. 422–426. Sousse,
Tunisia. July, 2010.

Kato, H. and Billinghurst, M. “Marker tracking and hmd calibration for
a video-based augmented reality conferencing system”. In Proceedings
of the 2nd IEEE and ACM International Workshop on Augmented
Reality (IWAR’99), pp. 85–94. Washington, DC, USA. October, 1999.

Klein, G. and Murray, D. “Full-3d edge tracking with a particle filter”.
In Proceeding of the British Machine Vision Conference (BMVC’06),
volume 3, pp. 1119–1128. Edinburgh. September, 2006.

Klein, G. and Murray, D. “Parallel tracking and mapping for small ar
workspaces”. In Proceedings of the 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR’07), pp. 1–10.
Nara, Japan. November, 2007.

Koller, D., Danilidis, K., and Nagel, H.-H. “Model-based object tracking
in monocular image sequences of road traffic scenes”. International
Journal of Computer Vision, Vol. 10, pp. 257–281. 1993.

Kotake, D., Satoh, K., Uchiyama, S., and Yamamoto, H. “A fast
initialization method for edge-based registration using an inclination
constraint”. In Proceedings of the 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR’07), pp.
239–248. Orlando, USA. November, 2007.

198 REFERENCES

Laganiere, R. and Elias, R. “The detection of junction features in images”.
In IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP’04), volume 3, pp. 573–576. Montreal, Quebec,
Canada. May, 2004.

Lamdan, Y. and Wolfson, H. “Geometric hashing: A general and efficient
model-based recognition scheme”. In Second International Conference
on Computer Vision (CV’88), pp. 238–249. Tampa, USA. December,
1988.

Latombe, J.-C. “Motion planning: A journey of robots, molecules,
digital actors, and other artifacts”. International Journal of Robotics
Research, Vol. 18, N. 11, pp. 1119–1128. 1999.

LaViola, J. J. “Double exponential smoothing: an alternative to kalman
filter-based predictive tracking”. In Proceedings of the Workshop on
Virtual Environments (EGVE’03), pp. 199–206. Zurich, Switzerland.
May, 2003.

Lee, G., Billinghurst, M., and Kim, G. “Occlusion based interaction
methods for tangible augmented reality environments”. In Proceedings
of ACM SIGGRAPH international conference on Virtual Reality
continuum and its applications in industry (VRCAI’04), pp. 419–426.
Nanyang Technological University, Singapore. June, 2004.

Lepetit, V. and Fua, P. “Monocular model-based 3d tracking of rigid
objects: a survey”. Foundations and trends in computer graphics and
vision, Vol. 1, pp. 1–89. 2005.

Lepetit, V., Moreno-Noguer, F., and Fua, P. “Epnp: An accurate o(n)
solution to the pnp problem”. International Journal of Computer
Vision, Vol. 81, pp. 155–166. 2009.

Liverani, A., Amati, G., and Caligiana, G. “A cad-augmented reality
integrated environment for assembly sequence check and interactive
validation”. Concurrent Engineering, Vol. 12, N. 1, pp. 67–77. 2004.

Longuet-Higgins, H. C. “A computer algorithm for reconstructing a scene
from two projections”. Nature, Vol. 293, pp. 133–135. 1981.

Lowe, D. “Robust model-based motion tracking through the integration
of search and estimation”. International Journal of Computer Vision,
Vol. 8, pp. 113–122. 1992.

REFERENCES 199

Lowe, D. “Local feature view clustering for 3d object recognition”. In
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’01), volume 1, pp. 682–688.
Kauai, HI, USA. December, 2001.

Lowe, D. “Distinctive image features from scale-invariant keypoints”.
International Journal on Computer Vision, Vol. 60, pp. 91–110. 2004.

Lucas, B. D. and Kanade, T. “An iterative image registration technique
with an application to stereo vision”. In Proceedings of the 7th
International Joint Conference on Artificial Intelligence (IJCAI’81),
pp. 674–679. Vancouver, BC, Canada. August, 1981.

Maad, S. Augmented reality. InTech. January 2010.

Madsen, K., Nielsen, H. B., and Tingleff, O. “Methods for non-linear least
squares problems”. 1999.

Malik, S., Roth, G., and Mcdonald, C. “Robust 2d tracking for real-time
augmented reality”. In Proceedings of International Conference on
Vision Interface (VI’02), pp. 399–406. Calgary, Canada. May, 2002.

Marian, R. M., Luong, L. H., and Abhary, K. “Assembly sequence planning
and optimisation using genetic algorithms part i. automatic generation
of feasible assembly sequences”. Applied Soft Computing, Vol. 2/3F,
pp. 223–253. 2003.

Marimon, D., Maret, Y., Abdeljaoued, Y., and Ebrahimi, T. “Particle
filter based camera tracker fusing marker and feature point based
cues”. In Proc. of the IS&T/SPIE Electronic Imaging Conf. on Visual
Communications and Image Processing. San Jose, CA, USA. February,
2007.

Mikolajczyk, K. and Schmid, C. “Scale & affine invariant interest point
detectors”. International Journal of Computer Vision, Vol. 60, pp.
63–86. 2004.

Mikolajczyk, K. and Schmid, C. “A performance evaluation of local
descriptors”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 27, pp. 1615–1630. 2005.

200 REFERENCES

Milgram, P., Takemura, H., Utsumi, A., and Kishino, F. “Augmented
reality: A class of displays on the Reality-Virtuality continuum”.
In Proceedings of the SPIE Conference on Telemanipulator and
Telepresence Technologies, volume 2351, pp. 282–292. Boston,
Massachusetts, USA. November, 1995.

Mohring, M., Lessig, C., and Bimber, O. “Video see-through ar on consumer
cell-phones”. In Proceedings of the 3rd IEEE/ACM International
Symposium on Mixed and Augmented Reality (ISMAR’04), pp.
252–253. Arlington, VA, USA. November, 2004.

Opelt, A., Pinz, A., and Zisserman, A. “A boundary-fragment-model
for object detection”. In European Conference on Computer Vision
(ECCV’06), pp. 575–588. Graz, Austria. May, 2006.

Otero, M. and Dolado, J. Medición para la gestión en la ingenieŕıa del
software (ISBN: 84-7897-403-2), chapter 3, pp. 51–72. RA-MA. 2000.

Parida, L., Geiger, D., and Hummel, R. “Junctions: detection, classification,
and reconstruction”. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 20, N. 7, pp. 687–698. 1998.

Platonov, J., Heibel, H., Meier, P., and Grollmann, B. “A mobile markerless
ar system for maintenance and repair”. In Proceedings of the 5th IEEE
and ACM International Symposium on Mixed and Augmented Reality
(ISMAR’06), pp. 105–108. Santa Barbara, USA. October, 2006.

Platonov, J. and Langer, M. “Automatic contour model creation out
of polygonal cad models for markerless augmented reality”. In
Proceedings of 6th IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR’07), pp. 1–4. Nara, Japan. November,
2007.

Puerto, M., Gil, J., Álvarez, H., and Sánchez, E. “Influence of user
grasping position on haptic rendering”. IEEE/ASME Transactions
on Mechatronics, N. 99, pp. 1–9. 2011.

Pupilli, M. and Calway, A. “Real-time camera tracking using a particle
filter”. In In Proceedings of the British Machine Vision Conference
(BMVC’05), pp. 519–528. Oxford, U.K. September, 2005.

REFERENCES 201

Quintana, A., Quirós, R. J., Remolar, I., and Camahort, E. “Un sistema
de realidad aumentada basado en el campo de luz”. In XX Congreso
Español de Informática Gráfica (CEIG’10), pp. 97–104. Valencia,
Spain. September, 2010.

Raghavan, V., Molineros, J., and Sharma, R. “Interactive evaluation of
assembly sequences using augmented reality”. IEEE Transactions on
Robotics and Automation, Vol. 15, N. 3, pp. 435–449. 1999.

Reitmayr, G., Eade, E., and Drummond, T. W. “Semi-automatic
annotations in unknown environments”. In Proceedings of the 6th IEEE
and ACM International Symposium on Mixed and Augmented Reality
(ISMAR’07), pp. 1–4. Nara, Japan. November, 2007.

Rolland, J. P., Baillot, Y., and Goon, A. A. A survey of tracking technology
for virtual environments, pp. 67–112. Ed. Barfield and Caudell,
Mahwah, USA. 2001.

Rosten, E. and Drummond, T. “Fusing points and lines for high
performance tracking”. In Proceedings of the Tenth IEEE International
Conference on Computer Vision (ICCV’05), pp. 1508–1515. Beijing,
China. October, 2005.

Rosten, E. and Drummond, T. “Machine learning for high-speed corner
detection”. In European Conference on Computer Vision (ECCV’06),
volume 1, pp. 430–443. Graz, Austria. May, 2006.

Rothganger, F., Lazebnik, S., Schmid, C., and Ponce, J. “3d object
modeling and recognition using local affine-invariant image descriptors
and multi-view spatial contraints”. International Journal of Computer
Vision, Vol. 66, N. 3, pp. 231–259. 2006.

Russ, J. C. The image processing handbook (3rd ed.). CRC Press, Inc.,
Boca Raton, FL, USA. 1999.

Ryoo, M. S., Grauman, K., and Aggarwal, J. K. “A task-driven intelligent
workspace system to provide guidance feedback”. Computer Vision
and Image Understanding, Vol. 114, pp. 520–534. 2010.

Salih, Y. and Malik, A. S. “Comparison of stochastic filtering methods for
3d tracking”. Pattern Recognition, Vol. 44, pp. 2711–2737. 2011.

202 REFERENCES

Sánchez, J. R. A stochastic parallel method for real time monocular
slam applied to augmented reality. PhD thesis, Escuela Superior de
Ingenieros, Universidad de Navarra. 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. Gft: Gpu fast triangulation
of 3d points (ISBN: 3-642-15909-5), volume 6374 of Lecture Notes
in Computer Science, Computer Vision and Graphics, pp. 235–242.
Springer-Verlag Berlin Heidelberg. 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. “Gpu optimizer: A 3d
reconstruction on the gpu using monte carlo simulations”. In
Proceedings of the 5th International Conference on Computer Vision
Theory and Applications (VISAPP’10), pp. 443–446. Angers, France.
May, 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. “Towards real time 3d
tracking and reconstruction on a gpu using monte carlo simulations”.
In International Symposium on Mixed and Augmented Reality
(ISMAR’10), pp. 185–192. Seoul, Korea. October, 2010.

Schmalstieg, D. and Wagner, D. “Experiences with handheld augmented
reality”. In Proceedings of the 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR’07), pp. 1–13.
Nara, Japan. November, 2007.

Schoenfelder, R. and Schmalstieg, D. “Augmented reality for industrial
building acceptance”. In IEEE Virtual Reality Conference (VR ’08),
pp. 83–90. Reno, Nevada, USA. March, 2008.

Schweighofer, G. and Pinz, A. “Robust pose estimation from a planar
target”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 28, N. 12, pp. 2024–2030. 2006.

Sehgal, A. “3D object recognition using bayesian geometric hashing and
pose clustering”. Pattern Recognition, Vol. 36, N. 3, pp. 765–780. 2003.

Selinger, A. and Nelson, R. C. “A perceptual grouping hierarchy for
appearance-based 3d object recognition”. Computer Vision and Image
Understanding, Vol. 76, pp. 83–92. 1999.

Shahrokni, A., Vacchetti, L., Lepetit, V., and Fua, P. “Polyhedral object
detection and pose estimation for augmented reality applications”. In

REFERENCES 203

Proceedings of the Computer Animation (CA’02), pp. 65–69. Geneva,
Switzerland. June, 2002.

Simon, G. and Berger, M.-O. “Reconstructing while registering: a
novel approach for markerless augmented reality”. In Proceedings
of International Symposium on Mixed and Augmented Reality
(ISMAR’02), pp. 285–293. Darmstadt, Germany. October, 2002.

Sinha, S. N., Frahm, J.-M., Pollefeys, M., and Genc, Y. “Gpu-based video
feature tracking and matching”. In Workshop on Edge Computing
Using New Commodity Architectures (EDGE’06). Chapel Hill, USA.
May, 2006.

Stark, M., Goesele, M., and Schiele, B. “Back to the future: Learning
shape models from 3d cad data”. In Proceedings of the British Machine
Vision Conference (BMVC’10), pp. 106.1–106.11. Aberystwyth, UK.
August, 2010.

Steger, C. “Occlusion, clutter, and illumination invariant object
recognition”. In International Archives of Photogrammetry and
Remote Sensing (IAPRS’02), volume XXXIV, part 3A, pp. 345–350.
2002.

Sutherland, I. E. “A head-mounted three dimensional display”. In
Proceedings of Fall Joint Computer Conference (FJCC’68), volume 33,
pp. 757–764. San Francisco, California, USA. December, 1968.

Tang, A., Owen, C., Biocca, F., and Mou, W. “Comparative effectiveness of
augmented reality in object assembly”. In Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI’03), pp.
73–80. Ft. Lauderdale, Florida, USA. April, 2003.

Tateno, K. “A nested marker for augmented reality”. In IEEE Virtual
Reality Conference (VR’07), pp. 259–262. Charlotte, North Carolina,
USA. March, 2007.

Teichrieb, V., Lima, M., Lourenc, E., Bueno, S., Kelner, J., and Santos, I.
H. F. “A survey of online monocular markerless augmented reality”.
International Journal of Modeling and Simulation for the Petroleum
Industry, Vol. 1, N. 1, pp. 1–7. 2007.

Tomasi, C. and Kanade, T. “Detection and tracking of point features”.
Technical Report CMU-CS-91-132, Carnegie Mellon University. 1991.

204 REFERENCES

Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W.
“Bundle adjustment - a modern synthesis”. In Proceedings of the
International Workshop on Vision Algorithms: Theory and Practice
(ICCV’00), pp. 298–372. Corfu, Greece. September, 2000.

Tsai, R. “A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses”.
IEEE Journal of Robotics and Automation, Vol. 3, N. 4, pp. 323–344.
1987.

Ulrich, M., Steger, C., and Baumgartner, A. “Real-time object recognition
using a modified generalized hough transform”. Pattern Recognition,
Vol. 36, N. 11, pp. 2557–2570. 2003.

Ulrich, M., Wiedemann, C., and Steger, C. “Cad-based recognition of 3d
objects in monocular images”. In International Conference on Robotics
and Automation (ICRA’09), pp. 1191–1198. Kobe, Japan. May, 2009.

Vacchetti, L., Lepetit, V., and Fua, P. “Stable real-time 3d tracking
using online and offline information”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 26, pp. 1385–1391. 2004.

von Bank, C., Gavrila, D., and Wöhler, C. “A visual quality inspection
system based on a hierarchical 3d pose estimation algorithm”. In
Proceedings of the 25th DAGM symposium on Pattern Recognition,
volume 2781, pp. 179–186. Magdeburg, Germany. September, 2003.

Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg,
D. “Pose tracking from natural features on mobile phones”. In
Proceedings of the 7th IEEE/ACM International Symposium on Mixed
and Augmented Reality (ISMAR’08), pp. 125–134. Cambridge, UK.
September, 2008.

Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg,
D. “Real-time detection and tracking for augmented reality on mobile
phones”. IEEE Transactions on Visualization and Computer Graphics,
Vol. 16, N. 3, pp. 355 –368. 2010.

Wagner, D. and Schmalstieg, D. “Artoolkitplus for pose tracking on mobile
devices”. In Proceedings of 12th Computer Vision Winter Workshop
(VCWW’07), pp. 139–146. St. Lambrecht, Austria. February, 2007.

REFERENCES 205

Wang, B., Bai, X., Wang, X., Liu, W., and Tu, Z. “Object recognition
using junctions”. In Proceedings of the 11th European conference on
Computer vision (ECCV’10), pp. 15–28. Heraklion, Crete, Greece.
September, 2010.

Weidenhausen, J., Knoepfle, C., and Stricker, D. “Lessons learned on the
way to industrial augmented reality applications, a retrospective on
arvika”. Computers and Graphics, Vol. 27, N. 6, pp. 887–891. 2003.

Wiedemann, C., Ulrich, M., and Steger, C. “Recognition and tracking of
3d objects”. In Proceedings of the 30th DAGM symposium on Pattern
Recognition, pp. 132–141. Munich, Germany. June, 2008.

Wilson, R. H. On geometric assembly planning. Phd-thesis, Stanford
University. 1992.

Wuest, H., Wientapper, F., and Stricker, D. “Adaptable model-based
tracking using analysis-by-synthesis techniques”. In Proceedings of
the 12th international conference on Computer analysis of images and
patterns (CAIP’07), pp. 20–27. Vienna, Austria. August, 2007.

Xu, K., Chia, K. W., and Cheok, A. D. “Real-time camera tracking for
marker-less and unprepared augmented reality environments”. Image
Vision Computing, Vol. 26, N. 5, pp. 673–689. 2008.

Yamakawa, S. and Shimada, K. “Polygon crawling: Feature-edge extraction
from a general polygonal surface for mesh generation”. Engineering
With Computers, Vol. 26, pp. 257–274. 2005.

Yuan, M. L., Ong, S. K., and Nee, A. Y. C. “Augmented reality for assembly
guidance using a virtual interactive tool”. International Journal of
Production Research, Vol. 46, N. 7, pp. 1745–1767. 2008.

Zauner, J., Haller, M., Brandl, A., and Hartman, W. “Authoring of a mixed
reality assembly instructor for hierarchical structures”. In Proceedings
of the Second IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR’03), pp. 237–246. Tokyo, Japan. October,
2003.

Zhang, X., Fronz, S., and Navab, N. “Visual marker detection and
decoding in ar systems: A comparative study”. In Proceedings of
the 1st International Symposium on Mixed and Augmented Reality
(ISMAR’02), pp. 97–106. Darmstadt, Germany. September, 2002.

206 REFERENCES

Zhang, Z. “A flexible new technique for camera calibration”. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 22,
pp. 1330–1334. 2000.

	I Introduction
	Introduction
	Augmented Reality
	Motivation
	Contributions
	Thesis Outline

	Background
	Camera Geometry
	Camera Calibration
	Visual Cues
	Features
	FAST
	SIFT
	Optical Flow

	Camera Tracking
	Stereo System
	Monocular System
	Marker Tracking
	Markerless Tracking

	Discussion

	II Proposal
	Marker Tracking
	Introduction
	ARToolkitPlus
	Marker Occlusion
	Previous Works
	Proposed methods

	Occlusion-OBB
	Initialization
	Marker Search
	Pose Estimation
	Translation
	Rotation
	Pose Update

	Proportion Values
	Experiments and Results
	Observations and Limitations

	Occlusion-patches
	Justification of the New Design
	Algorithm Overview
	Offline Phase
	Keyframe Selection
	3D Point Cloud Generation
	Databases of Descriptors

	Online Phase
	Frame-To-Frame Tracking
	Tracking by Detection

	New Interface Possibilities
	Experiments and Results
	Tracking by Detection Parameterisation
	Frame-To-Frame Tracking Robustness
	Occlusion-patches Robustness

	Discussion

	3D Object Recognition
	Introduction
	Previous Works
	Proposed Method
	Algorithm Overview
	Offline
	Geometric Feature Extraction
	Virtual Keyframe Generation
	Virtual Keyframe Hashing

	Online
	Junction Detection
	Junction Hashing
	Keyframe Matching
	Pose Refinement
	Pseudocode

	First Camera Pose

	Experiments and Results
	Parameter discussion
	Examples

	Discussion

	Markerless Tracking
	Introduction
	Proposed Method
	Edge Tracker
	Feature Tracker
	Particle Filter
	Integration of Multiple Trackers

	Experiments and Results
	Discussion

	AR Disassembler
	Introduction
	Previous Works
	Proposed AR Disassembler
	Disassembly Planning
	Model Format
	Precedence Graph and Disassembly Path

	Recognition and Tracking
	Observations

	Experiments and Results
	Usability Analysis
	Subjects
	Task
	Experimental Design
	Procedure and Equipment
	Results

	Discussion

	III Conclusions
	Conclusions and future work
	Conclusions
	Future research lines

	IV Appendices
	Real time SIFT
	Simplified SIFT
	Scale invariance
	Computational Time

	Pose from a 3D Plane
	The Direct Linear Transformation (DLT)
	Pose estimation from a 3D plane

	Hierarchy of 2D transformations
	Isometries
	Similarity transformations
	Affine transformations
	Projective transformations
	Summary

	Usability Experiments
	Paper Documentation

	Generated Publications
	Index
	References

