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Abstract

This cumulative dissertation presents a complete model for simulating smoke using
polygonal vortex filaments. Based on a Hamiltonian system for the dynamics of
smooth vortex filaments, we develop an efficient and robust algorithm that allows
simulations in real time. The discrete smoke ring flow allows to use coarse polygonal
vortex filaments, while preserving the qualitative behavior of the smooth system. The
method handles rigidly moving obstacles as boundary conditions and simulates vortex
shedding. Obstacles as well as shed vorticity are also represented as polygonal fila-
ments. Variational vortex reconnection prevents the exponential increase of filament
length over time, without significant modification of the fluid velocity field. This
allows for simulations over extended periods of time. The algorithm reproduces vari-
ous real experiments (colliding vortex rings, wakes) that are challenging for classical
methods.
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Zusammenfassung

Die vorliegende kumulative Dissertation behandelt die Simulation von Rauch mittels
polygonaler Wirbelfilamente. Basierend auf einem Hamiltonschen System für glatte
Wirbelfilamente wird ein robuster und effizienter Algorithmus entwickelt, mit dem
die Bewegung von Rauch in Echtzeit simuliert werden kann. Durch den diskreten
Rauchringfluss bleiben die qualitativen Eigenschaften des glatten Systems auch bei
grober Diskretisierung erhalten. Die Methode ermöglicht realistische und hochde-
taillierte Simulationen, wobei auch starr bewegte Hindernisse als Randbedingung
berücksichtigt werden. Dabei wird auch das Ablösen der Grenzschicht (“vortex shed-
ding”) simuliert. Die Hindernisse, sowie die abgelösten Wirbel, werden wiederrum
durch polygonale Wibelfilamente dargestellt, somit basiert das gesamte Modell auss-
chließlich auf polygonalen Filamenten. Das exponentiell schnelle Anwachsen der Länge
der Filamente wird durch variationale Wiederverbindung (“vortex reconnection”) ver-
hindert, ohne dabei die Strömung signifikant zu verändern. Damit sind Simulationen
über lange Zeiträume möglich. Mit dem Algorithmus können viele reale Experimente
(z.B. kollidierende Wirbelringe, Wirbelschleppen) reproduziert werden, die mit klas-
sischen Verfahren nur schwer zu simulieren sind.
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Introduction

Filament-based simulation of smoke is highly attractive for the creation of special
effects in computer graphics, because filaments provide a very compact model for real-
istic smoke. The main reason is that vorticity usually comes to life as two-dimensional
vortex sheets in the boundary layers of obstacles. These vortex sheets curl up into
one-dimensional structures, which can be modeled directly by filaments. Simulating
the evolution of these filaments is extremely efficient and gives a tremendous amount
of detail. From an effect artist’s point of view, vortex filaments provide a natural and
intuitive primitive for the design of flows.

The vortex filaments determine the fluid velocity field completely, and their time
evolution is simply the forward advection with the velocity field they generate. A
straightforward implementation of this evolution is however problematic: The velocity
field is infinite on the filaments, and the use of polygonal vortex filaments leads to
a discretization error (related to the smoke ring flow) which cannot be discarded.
Vortex stretching in 3D results in an exponential increase of total filament length over
time, making simulations over extended periods of time impractical. Also obstacles are
difficult to incorporate, because filament-based simulation takes place in unbounded
space.

While vortex filaments are frequently used in computational physics for approximating
certain vorticity fields by a large number of weak filaments [Cho90, Cho93, AH88,
MM91, MM92, Ber06, AH88, Ber09], they have not attracted much attention in
computer graphics. The basic idea was introduced to the community by Angelidis
and Neyret [AN05] with an unphysical modification of the equation of motion. The
resulting method incorporates parameters that have no physical interpretation, which
makes it difficult to achieve realistic simulations. Smoke simulations for computer
graphics are mostly based on semi-Lagrangian methods on a Eulerian grid [Sta99,
FSJ01], allowing only low resolutions at interactive rates.

We develop a robust and efficient numerical method from the discretization of smooth
vortex filaments as polygons. The problems mentioned before are addressed by a
solid mathematical understructure that incorporates ideas from discrete differential
geometry and integrable systems. By the use of the computational power provided
by commodity graphics hardware, we achieve real-time performance even for complex
scenes.
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Summary

In the three consecutive articles of this cumulative dissertation we have developed a
model for filament-based smoke simulation that is (a) physically correct and math-
ematically sound, (b) efficient enough for interactive applications, (c) stable and
efficient over long simulation horizons, and (d) includes moving obstacles that shed
vorticity.

Ulrich Pinkall, Boris Springborn and Steffen Weißmann. A new doubly-
discrete analog of smoke ring flow and the real time simulation of fluid
flow. J. Phys. A: Math. Theor. 40(42), 2007.

The article describes the doubly-discrete smoke ring evolution for polygons, based on
iterated Darboux transforms. The system converges to the smoke ring flow in the limit
of smooth curves. The evolution preserves length and area vector of a polygon, which
corresponds to the conservation of energy and momentum for the smooth system.
The discrete evolution is needed in the numerical algorithm for filament-based fluid
simulation to compensate the lack of local interaction that occurs when the smooth
vortex filaments are replaced by polygons. The discretization error stems from the
fact that a vertex is not affected by its two adjacent edges, while the velocity of a
smooth filament incorporates a contribution in binormal direction that is proportional
to its curvature. The discrete integrable system is an extension of previous work by
Hoffmann [Hof08], allowing for polygons that have non-constant edge lengths. This is
crucial since the non-local effects from the Biot-Savart velocity field quickly destroy
any arc-length parametrization. In addition, an explicit evaluation of the Biot-Savart
formula is given for polygonal filaments. In fact our evaluation of the correct velocity
field is computationally more efficient than the unphysical modification in [AN05].
The article also describes how to determine the necessary parameters for the Darboux
transforms to match a certain time step. Finally it sketches the implementation of the
basic simulation algorithm that allows real-time simulation with a moderate amount
of filaments.

Steffen Weißmann and Ulrich Pinkall. Real-time interactive simulation of
smoke using discrete integrable vortex filaments. Proc. Vir. Real., Inter.
& Phys. Sim., 2009.

The paper describes the implementation of an interactive application to simulate
smoke on desktops and also in immersive virtual environments, based on the theory
developed in [PSW07]. The paper gives aspects of implementation and pseudo-code
for the doubly-discrete smoke ring evolution. The use of vortex filaments is motivated
as a model for vorticity fields that develop in real flows. Vorticity is usually created
in the boundary layer around obstacles, resulting in vortex sheets that are swept
away by the flow. These sheets quickly roll up into one–dimensional structures which
can be modeled excellently by a small number of filaments. This insight enables
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modeling of very realistic flows. As validation, very realistic and highly resolved jets
were simulated. Also a new way for the design of divergence-free background fields by
static vortex filaments has been introduced. This allows control of large scale features
of the flow.

Steffen Weißmann and Ulrich Pinkall. Filament-based smoke with vortex
shedding and variational reconnection. ACM Trans. Graph. 29(4), Proc.
ACM/SIGGRAPH Conf., 2010.

In this paper we provide several important enhancements to the method described
in [WP09]. Vortex reconnection allows for long time simulations, since it avoids the
exponential growth of computational complexity. We have given a new variational
reconnection criterion that prevents alternating reconnections which occur when using
the criterion introduced by Chorin [Cho90, Cho93]. In addition, our reconnections
improve the overall geometry of the filaments. Minimization of the underlying energy
can optionally be used to further improve the filament geometries. Moving obstacles as
boundary conditions have been included into the algorithm. Obstacles are represented
by their surface, given as a triangle mesh. Given such a (possibly moving) obstacle, a
vortex sheet on the surface is computed that makes the flow go around the obstacle
and creates zero velocity inside. The vortex sheet is computed using a variant of
the panel method [KP01]. Finally the vortex sheet is discretized as a collection of
vortex filaments on the obstacle, making the method consistent in the sense that
the whole simulation is purely driven by filaments. Vortex shedding is added to the
simulation on top of the obstacle method. Physically, vortex shedding simply denotes
the fact that the boundary layer vortex sheet is swept away downstream with the flow.
It is well-known that vortex sheets quickly roll up into one–dimensional structures,
which can be modeled excellently by filaments. Consequently, we simulate this effect
by releasing some of the obstacle filaments into the flow. For validation we have
simulated several real experiments. Filament collisions were simulated to validate
the physical correctness of the proposed reconnection criterion. Jet simulations with
different reconnection parameters demonstrate the long time stability of the method.
Our method of vortex shedding was validated by comparing the simulation of a wake
behind a sphere with experimental data.
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1 A new doubly discrete analogue of smoke ring flow and
the real time simulation of fluid flow

Ulrich Pinkall, Boris Springborn, Steffen Weißmann

J. Phys. A: Math. Theor. 40, 2007, pp. 12563–12576.

Modelling incompressible ideal fluids as a finite collection of vortex fil-
aments is important in physics (super-fluidity, models for the onset of
turbulence) as well as for numerical algorithms used in computer graphics
for the real time simulation of smoke. Here we introduce a time-discrete
evolution equation for arbitrary closed polygons in 3-space that is a dis-
cretisation of the localised induction approximation of filament motion.
This discretisation shares with its continuum limit the property that it
is a completely integrable system. We apply this polygon evolution to a
significant improvement of the numerical algorithms used in Computer
Graphics.

1.1 Introduction

The motion of vortex filaments in an incompressible, inviscid fluid has aroused
considerable interest in quite different areas:

Differential geometry. The limiting case of infinitely thin vortex filaments leads
to an evolution equation for closed space curves γ,

γ̇ = γ′ × γ′′. (1.1)

Equation (1.1) was discovered in the beginning of the 20th century by Levi-Civita and
his student Da Rios [SDR06] and is called the smoke ring flow or localised induction
approximation. In 1972 Hasimoto [Has72] discovered that the smoke ring flow is in fact
a completely integrable Hamiltonian system equivalent to the non-linear Schrödinger
equation. See [Ric91] for more details on the history of the smoke ring equation.
Subsequently the smoke ring flow has been studied by differential geometers as a
natural evolution equation for space curves [CI05, CGS86, Ive06, LP90]. Also discrete
versions of the smoke ring flow in the form of completely integrable evolution equations
for polygons with fixed edge length have been developed [Hof00, Hof08, DS95].

Fluid dynamics. As will be explained below, for applications in fluid mechanics a
finite thickness of the vortex filaments has to be taken into account. The transition
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1 A new doubly discrete analogue of smoke ring flow

from infinitely thin filaments to filaments of finite thickness involves the incorpora-
tion of long range interactions (governed by the Biot-Savart law) between different
filaments and different parts of the same filament into the purely local evolution
equation (1.1). The resulting evolution of vortex filaments has been extensively
studied both numerically and in the context of explaining the onset of turbulence
[Cho91]. Including in addition a small amount of viscosity in the equations leads to
striking physical effects like vortex reconnection [KL93, KL03, CKL03] and numerical
techniques like “hairpin removal” [Cho90, Cho93].

Computer graphics. Filament-based methods for fluid simulation are becoming
important in Computer Graphics for special effects in motion pictures and for real
time applications like computer games [AN05, ANSN06]. Here the emphasis is on
physical correctness and speed rather than numerical accuracy. Filament methods
are ideal for these applications because complicated fluid motions can be created by
a graphics designer by modelling the initial positions and strengths of the filaments.
Moreover, filament methods work in unbounded space rather than in a bounded box
(as is the case for grid-based methods [Sta99]). This is desirable for the simulation of
smoke.

The main goal of this paper is to improve the numerical algorithms currently used
in Computer Graphics by applying the recent knowledge from Discrete Differential
Geometry to the motion of polygonal smoke rings. Our method makes it possible
to model thin filaments by polygons with arbitrarily few vertices. For comparison,
using current methods to model a circular smoke ring which is thin enough to entrain
smoke in a torus shape, it is necessary to use a regular polygon with at least 800
vertices.

In Section 1.2 we will explain the evolution equation for systems of vortex filaments
that we will discretise. The resulting equations of motion are still Hamiltonian like
the smoke ring flow (1.1). However, since already Poincaré knew that a system of
vortex filaments consisting of more than three parallel straight lines (the “n-vortex
problem”) fails to be an integrable system [AK98, p. 58f], we do not believe that this
system is an integrable Hamiltonian system. Nevertheless it is a small perturbation
of the integrable system constituted by the limit of infinitely thin filaments. This
might be interesting for future investigations along the lines of KAM theory.

In Section 1.3 we consider polygonal vortex filaments. In this case, there is an
elementary formula (1.11) for the Biot-Savart integral.

In Section 1.4 we will develop an extension of the known discrete-time smoke ring flow
for polygons of constant edge lengths to arbitrary polygons. This is needed because
after including the long range Biot-Savart interactions, the lengths of the edges will
be no longer constant in time.

In the theory of integrable systems it is known at least since the 1980s that integrable
difference equations may be interpreted as Darboux transformations of integrable
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1.2 Euler’s Equation for Vortex Filaments

differential equations [LB80, Lev81, NQC83]. In the meantime, this seminal discovery
has lead to a reversed point of view, where the discrete integrable systems are
considered fundamental and the continuous systems appear as smooth limits (see for
example [ABS03] and the references therein). In this vein, we will in Section 1.4 define
the discrete-time integrable system in terms of iterated Darboux transformations of
polygons and show afterwards that the smoke ring flow is obtained as a smooth limit.

In Section 1.5 we will describe our numerical method that very efficiently models the
motion of fluids near the smoke ring limit.

1.2 Euler’s Equation for Vortex Filaments

Consider an incompressible, inviscid fluid in euclidean 3-space whose velocity field u
vanishes at infinity and whose vorticity ω = curlu is compactly supported. Then u
can be reconstructed from ω by the Biot-Savart formula

u(x) = − 1

4π

∫
R3

x− z
|x− z|3

× ω(z) dz. (1.2)

The equation of motion can then be written as

ω̇ = [ω, u]. (1.3)

Viewed as an evolution equation on the vector space M of compactly supported
divergence-free vector fields on R3 this is a Hamiltonian system: A symplectic form σ

on M is defined as follows. Let ω ∈M and ω̇,
◦
ω ∈ TωM. Then

σω(ω̇,
◦
ω) =

∫
R3

det(ω, ω̇,
◦
ω). (1.4)

Let H :M→ R be the quadratic function

H =

∫∫
〈ω(x), ω(y)〉
|x− y|

dx dy, (1.5)

where 〈·, ·〉 is the euclidean scalar product on R3. Then H is the Hamiltonian for
the dynamical system (1.3). See [AK98, EM70] for more details on this Hamiltonian
description of ideal fluids.

If the vorticity of a fluid is concentrated on a closed curve γ in a delta-function like
manner, by Equation (1.2) the resulting velocity field u becomes

u(x) = − Γ

4π

∮
x− γ(s)

‖x− γ(s)‖3
× γ′(s) ds. (1.6)

Here Γ is the circulation around the filament. The problem with Equation (1.6) is
that in order to determine the motion of γ itself, u has to be evaluated on γ, which
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1 A new doubly discrete analogue of smoke ring flow

Figure 1.1: The space of links as the phase space for vortex filaments.

results in a logarithmically divergent integral. Usually, this problem is handled by
considering a vorticity field concentrated in a tube around γ of small but finite radius
r. For small r the velocity in this tube is dominated by a term proportional to the
localised induction approximation. (See, for example, [Saf92, p. 36f].) Here we want
to derive the smoke ring flow by taking the limit r → 0. In order to prevent vortex
filaments acquiring infinite speed, one has to scale the circulation Γ down to zero
when performing the limit to infinitely thin filaments. This means that the fluid
velocity (1.6) goes to zero as well.

The resulting picture is then as follows: The fluid is completely at rest away from the
filaments while the filaments just cut through the fluid with finite speed according to
the smoke ring flow:

γ̇j = Kj γ
′
j × γ′′j . (1.7)

Here the constants Kj account for the fact that the circulation of the different filaments
γj might go to zero at a different rate.

Equation (1.7) can be viewed as a completely integrable Hamiltonian system on the
space of weighted links (see Figure 1.1) endowed with the symplectic form

σγ(γ̇,
◦
γ) =

∑
j

Kj

∮
γj

det(γ′j , γ̇,
◦
γ). (1.8)

For single curves this symplectic form is due to V. I. Arnold [AK98]. The corresponding
Hamiltonian is a weighted sum of the filament lengths

H =
∑
j

Kj Length(γj).
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1.3 Polygonal Vortex Filaments

Equation (1.7) can be obtained (using a simple renormalisation of time) as a limit
as a→ 0 of the following system: Stick with (1.8) as the symplectic form, with Kj

replaced by the non-zero circulation Γj around γj . As a Hamiltonian, use

H =
∑
i,j

ΓiΓj
8π

∮ ∮ 〈γ′i(s), γ′j(s̃)〉√
a2 + |γi(s)− γj(s̃)|2

ds ds̃.

The resulting equation of motion is

γ̇i(s) = −
∑
j

Γj
4π

∮
γi(s)− γj(s̃)√

a2 + |γi(s)− γj(s̃)|2
3 × γ

′
j(s̃) ds̃. (1.9)

This equation of motion (1.9) can also be derived as follows:

• Smooth the delta-function like vorticity field ω0 of the link by a suitable convo-
lution kernel and obtain

ω(x) =
3a2

4π

∫
R3

ω0(y)√
a2 + |x− y|2 5 dy.

• Compute the corresponding velocity field u with curlu = ω:

u(x) = − Γ

4π

∑
j

∮
x− γj(s)√

a2 + |x− γj(s)|2
3 × γ

′
j(s) ds. (1.10)

• Evaluate u on the filaments to obtain (1.9).

To summarise: We model fluid motion near the filament limit by a Hamiltonian
system on the space of weighted links. This system is still Hamiltonian but no longer
integrable. Nevertheless it still has all the constants of motion induced by invariance
with respect to the euclidean symmetry group. For example the weighted sum of the
area vectors

A =
∑
j

Γj

∮
γ′j × γj

is one of the preserved quantities. (Compare Theorem 4 of Section 1.4.)

The physical approximation implicit in our model is that we ignore possible deforma-
tions of the internal structure of the filaments and reduce everything to the evolution
of the filament curves. The finite thickness of the filaments is taken into account by
applying a fixed convolution kernel.

1.3 Polygonal Vortex Filaments

In order to develop a numerical method for modelling fluid motion near the filament
limit we have to discretise the vortex filaments, i.e. we replace them by polygons. If
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1 A new doubly discrete analogue of smoke ring flow

γ is a piecewise linear parametrisation of a closed polygon, on each edge we have
γ′′ = 0 and we find an explicit anti-derivative for the integrands of equation (1.10):(

〈γ, γ′〉√
a2 + |γ|2 (|γ′|2a2 + |γ × γ′|2)

γ × γ′
)′

=
γ × γ′√
a2 + |γ|2 3 . (1.11)

Here we have abbreviated x− γj(s) to γ, γ′j(s) to γ′ and the prime is derivation with
respect to s.

Inspection of Equation (1.11) reveals the following problem: The two adjacent edges
have no influence at all on the velocity of a vertex. This amounts to effectively
employing a distance cut-off in order to regularise the singular integral (1.6) for
points on γ. It is known [Saf92] that this is roughly equivalent to modelling vortex
tubes of thickness equal to the edge length of the polygon. Using this model we
would therefore be unable to model thin (and therefore fast) filaments without using
excessively many edges for each polygon.

The contribution of local effects behaves like the smoke ring flow and the resulting
equation of motion for a vertex γi of a polygonal vortex filament γ is then

γ̇i = u(γi) + λκibi, (1.12)

where u is given by Equation (1.10) using (1.11), κibi denotes curvature times binormal
at γi, and λ is constant for fixed a. Since the non-local effects quickly destroy any
arc-length parametrisation (i.e. the lengths of the different edges of the polygon) and
we do not have an adequate notion of curvature for arbitrary polygons, we can not
evaluate (1.12) directly.

On the other hand, for polygons with constant edge lengths it is known that the doubly
discrete smoke ring (or Hasimoto) flow [Hof08] captures excellently the qualitative
behaviour of the smooth smoke ring flow. In the next section we will discuss a version
of this doubly discrete smoke ring flow which works also for polygons with varying
edge lengths.

1.4 Darboux Transformation of Polygons

In this section we develop a discrete-time evolution for closed polygons that has the
smoke ring flow (1.1) as a limit when the polygon approaches a smooth curve and
the time-step goes to zero. This evolution (obtained by iterating so-called Darboux
transformations) shares with its continuum limit the property that it is a completely
integrable system in the sense that it comes from a Lax pair of quaternionic 2× 2-
matrices with a spectral parameter. (This system therefore fits into the framework
of [BS02].) The constants of the motion of the discrete system converge to constants
of the motion of the smooth system in the limit.

Let γ : Z→ R3 be an immersed polygon in R3, where immersed means that γi 6= γi+1

for all i ∈ Z, and let Si = γi+1 − γi. If γ is periodic with some period n, then the
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1.4 Darboux Transformation of Polygons

S̃i

lTi − Si

ηi+1

lTi+1

lTi

Siγi

ηi

γi+1

Figure 1.2: A polygon γ and an edge of its Darboux transform η.

polygon is closed and γ may be interpreted as a function on Z/nZ. In the following,
we identify R3 with the imaginary quaternions ImH = {xi+ yj + zk |x, y, z ∈ R}.

Definition. A polygon η is called a Darboux transform of γ with twist parameter
r ∈ R and distance l > 0, if ‖ηi − γi‖ = l for all i ∈ Z, and the normalised difference
vectors Ti defined by lTi = ηi − γi satisfy the quaternionic equation

Ti+1 = (−r + lTi − Si)Ti(−r + lTi − Si)−1. (1.13)

The Darboux transformation of polygons and its relationship with the nonlinear Schrö-
dinger equation and smoke ring flow was treated in [Hof08] under the assumption
that the polygon γ has constant edge length. To drop this assumption was suggested
to us by Tim Hoffmann [Hof05].

Geometrically, Equation (1.13) has the following meaning (see Figure 1.2).

The difference vector Ti+1 is obtained from Ti by a rotation with axis lTi − Si.
The quadrilateral γiγi+1ηi+1ηi is therefore a “folded parallelogram”. In particular,
corresponding edges of γ and η have the same length. The angle of rotation is
2 arctan(‖lTi − Si‖/r). For r = 0 it is π. For r → ±∞, it goes to zero and in the
limit the Darboux transformation becomes a translation.

Equation (1.13) can be written in the form

Ti+1 = (aTi + b)(cTi + d)−1, (1.14)

where a, b, c, d ∈ H depend on Si and the parameters l, r. That is, for each i ∈ Z, Ti+1

is obtained by applying a quaternionic fractional linear transformation fi : H̄→ H̄ to
Ti, where H̄ = H ∪ {∞}. Indeed, (1.13) is equivalent to

Ti+1 =
(
lTi − r − Si

)(
(r + Si)Ti + l

)−1
. (1.15)

To see this note that T−1
i = −Ti because Ti is a purely imaginary unit quaternion,

and hence Ti(−r + lTi − Si)−1 = (rTi + l + SiTi).
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1 A new doubly discrete analogue of smoke ring flow

It is convenient to rewrite fractional linear transformations as matrix multiplication.
Just as the extended complex plane C̄ = C∪{∞} can be identified with the Riemann
sphere S2 and with the complex projective line CP1, H̄ ∼= S4 ∼= HP1. The quaternionic
projective line HP1 is the set of (quaternionic) 1-dimensional subspaces of the vector
space H2 over H. We consider H2 as right vector space: the product of a vector(
p
q

)
∈ H2 and a scalar λ ∈ H is

(
p
q

)
λ = (pλqλ ). A point[

p

q

]
=

(
p

q

)
H ∈ HP1

corresponds to the point pq−1 ∈ H̄, and p, q are quaternionic homogeneous coordinates
for this point. Now any fractional linear transformation of H̄ can be written as
quaternionic 2×2-matrix acting from the left on quaternionic homogeneous coordinates
of HP1: Writing Ti in quaternionic homogeneous coordinates,

Ti = T
(1)
i (T

(2)
i )−1,

one obtains from (1.15)(
T

(1)
i+1

T
(2)
i+1

)
= Ui(l, r)

(
T

(1)
i

T
(2)
i

)
, Ui(λ, ρ) :=

(
λ −ρ− Si

ρ+ Si λ

)
. (1.16)

The following Theorem 1 characterises the Darboux transformations of polygons via
a Lax pair of quaternionic 2× 2-matrices with spectral parameter. Theorem 2 is a
permutability theorem for these Darboux transformations.

Theorem 1 (Lax pair). Let Si = γi+1 − γi, |Ti| = 1, and let Ui(λ, ρ) be defined
by (1.16) and

Ũi(λ, ρ) =

(
λ −ρ− S̃i

ρ+ S̃i λ

)
,

Vi(λ, ρ) =

(
λ −ρ+ r − lTi

ρ− r + lTi λ

)
.

Then

Vi+1(λ, ρ)Ui(λ, ρ) = Ũi(λ, ρ)Vi(λ, ρ) (1.17)

for all λ, ρ ∈ R, if and only if S and T satisfy (1.13) and

lTi+1 + Si = S̃i + lTi. (1.18)

That is, if and only if η = γ + lT is a Darboux transform of γ with twist parameter r
and distance l, and S̃i = ηi+1 − ηi.
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1.4 Darboux Transformation of Polygons

Of course (1.17) means that the following diagram commutes:

H2 Ũi−→ H2

Vi

x xVi+1

H2 Ui−→ H2

Proof. Note that in general for quaternionic 2× 2-matrices with a+, a, b, b̃ ∈ H and
λ ∈ R the equality(

λ a+

−a+ λ

)(
λ b
−b λ

)
=

(
λ b̃

−b̃ λ

)(
λ a
−a λ

)
is equivalent to

a+b = b̃a and λ(a+ + b) = λ(b̃+ a).

It follows that (1.17) holds for all λ ∈ R, if and only if (1.18) holds and

(−ρ+ r − lTi+1)(−ρ− Si) = (−ρ− S̃i)(−ρ+ r − lTi).

Use (1.18) to eliminate S̃i from this equation and gather terms of equal power in ρ on
both sides. The coefficients of ρ2 are both 1, and the coefficients of ρ are obviously
equal. What remains is the equation

(r − lTi+1)(−Si) = (−Si − lTi+1 + lTi)(r − lTi).

Solve for Ti+1 to obtain (1.13).

Theorem 2 (Permutability). Suppose η = γ + lT is a Darboux transform of γ with
twist parameter r and distance l, and η̂ = γ + λT̂ is a Darboux transform of γ with
twist parameter ρ and distance λ, then η + λT̃ with

T̃ =
(
λT̂ − ρ+ r − lT

)(
(ρ− r + lT )T̂ + λ

)−1
(1.19)

is a Darboux transformation of η with twist parameter ρ and distance λ.

Proof. Note that T̃i is obtained by applying the quaternionic fractional linear transfor-
mation represented by the matrix Vi(λ, ρ) to T̂i. Let us write T̃i = Vi(λ, ρ)T̂i for short.
Since η̂ is a Darboux transform of γ with twist parameter ρ and distance λ, Equa-
tion (1.16) says that T̂i+1 = Ui(λ, ρ)T̂i. Now Theorem 1 implies T̃i+1 = Ũi(λ, ρ)T̃i
and hence (again by Equation (1.16)), η + λT̃ is a Darboux transformation of η with
twist parameter ρ and distance λ.

Even if γ is a closed curve, the curves obtained by iterating (1.13) will in general
not close up. However, we will see that any closed curve has generically two closed
Darboux transforms.
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1 A new doubly discrete analogue of smoke ring flow

The fractional linear transformations fi : Ti 7→ Ti+1 that are represented by the
matrices Ui(l, r) have the special property that they map the unit sphere S2 = {q ∈
ImH | q2 = −1} to itself. This follows directly from (1.13). Hence the restrictions
fi|S2 are Möbius transformations of S2. In fact, they are orientation preserving
Möbius transformations: By continuity, it is enough to check this for a particular
value of r and l; and for r = 0, l = 0 one obtains Ti+1 = SiTiS

−1
i , which is a 180◦

rotation with axis Si.

In order to find for given l, r the closed Darboux transforms of γ, one has to look
for choices of the initial unit vector T0 such that the recursion (1.15) generates a
sequence with period n, i.e. T0 = Tn. The composition fn−1 ◦ . . . ◦ f0, which maps
T0 7→ Tn, is represented by the monodromy matrix

Hl,r = Un−1(l, r) · · ·U2(l, r)U1(l, r)U0(l, r).

It is itself an orientation-preserving Möbius transformation of the unit sphere S2 onto
itself. For special cases (we will see below that this cannot happen for all l, r) this
Möbius-transformation could be the identity, but in general it will have exactly two
fixed points (counted with multiplicity).

With each closed curve γ we have thus associated a monodromy map fn−1 ◦ . . . ◦ f0.

T0 will be a fixed point if and only if
(
T0
1

)
is an eigenvector of the monodromy

matrix Hl,r. The following theorem is an immediate consequence of Theorem 1.

Theorem 3. Suppose η = γ + lT is a closed Darboux transform of γ with distance
l and twist parameter r. Then for all λ and ρ, the monodromy matrix Hη

λ,ρ of η is
conjugate to the monodromy matrix Hλ,ρ of γ:

Hη
λ,ρ = V0(λ, ρ)Hλ,ρV0(λ, ρ)−1. (1.20)

This means that if
(
T̂0
1

)
is an eigenvector of Hλ,ρ, then V0(λ, ρ)

(
T̂0
1

)
is an eigenvector

of Hη
λ,ρ.

Moreover, one can compute all closed Darboux transforms of η without having to
solve an eigenvalue problem, even without iterating the fi. Indeed, by Theorem 2, all
closed Darboux transforms of η are given by (1.19).

Theorem 3 implies that apart from the edge lengths there are many other quantities
connected with closed polygons that are invariant under Darboux transforms: For
each λ, ρ the conjugacy class of the monodromy matrix Hλ,ρ is invariant. We will
show that this implies a nice geometric invariant: The area vector of a closed polygon
turns out to be invariant under Darboux transformations (Theorem 4).

To derive the invariance of the area vector from the invariance of the conjugacy class
of the monodromy matrix, we equip the set of quaternionic 2× 2-matrices of the form(

a −b
b a

)
, a, b ∈ H (1.21)
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1.4 Darboux Transformation of Polygons

with the structure of a C-algebra that is isomorphic to gl(2,C). First note that a
quaternionic 2× 2-matrix is of the form (1.21) precisely if it commutes with

J =

(
0 −1
1 0

)
.

Define the multiplication of such a matrix with a scalar λ+ iρ ∈ C by

(λ+ iρ)A = (λI + ρJ)A, (1.22)

where I is the identity matrix.

The complex multiples of the identity are then

Z = (λ+ iρ)I = λI + ρJ =

(
λ −ρ
ρ λ

)
. (1.23)

Thus we can write Ui(λ, ρ) and Vi(λ, ρ) as

Ui(λ, ρ) = (λ+ iρ)I + J

(
Si 0
0 Si

)
,

Vi(λ, ρ) = (λ+ iρ)I + J

(
−r + lTi 0

0 −r + lTi

)
.

Remark. This means we can combine λ and ρ into one complex spectral parameter
λ+ iρ.

Equation (1.23) also implies that the trace-free complex matrices in gl(2,C) correspond
to those matrices of the form (1.21) with a, b ∈ ImH. Further, a matrix of the
form (1.21) has a, b ∈ ImH precisely if its square is a matrix of the form (1.23), that is,
a (complex) multiple (with multiplication defied by (1.22)) of the identity. Identifying
C with the matrices of the form (1.23) we obtain

1

2
trC

(
a −b
b a

)
= Re a+ (Re b)J

and

detC

(
a −b
b a

)
=

1

2
((trA)2 − trA2) = |a2| − |b2|+ 2〈a, b〉J.

In particular

detC

(
l −r − S

r + S l

)
= l2 − r2 − |S|2 + 2lrJ,

which vanishes precisely when r = 0, l = ±|S|. Using the notation

diag(S) :=

(
S 0
0 S

)
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1 A new doubly discrete analogue of smoke ring flow

for S ∈ H we can express Hλ,ρ as

HZ = (Z + Jdiag(Sn−1)) · · · (Z + Jdiag(S0)),

with Z given by (1.23). Hence detCHZ is a complex polynomial of degree 2n with
zeroes precisely at Z = ±|S0|, ..., ±|Sn−1|. By Theorem 3 this determinant is invariant
under Darboux transforms. This just corresponds to the fact that the edge lengths
are invariant by construction. Non-trivial further invariants come from the complex
polynomial

P (Z) = trCHZ

of degree n. Let us look at the polynomial coefficients of HZ itself:

HZ =
n∑
k=1

ZkAn−k,

where
Ak = Jk

∑
n−1≥j1,...,jk≥0

diag(Sj1 · · ·Sjk).

In particular,

A0 = I,

A1 = Jk
∑n−1

k=0 diag(Sk) = 0,

A2 = −
∑

n−1≥i>j≥0 diag(SiSj).

That is, A2 is a diagonal matrix with both diagonal entries equal to

q = −
∑

n−1≥i>j≥0

SiSj .

The real part of q is

Re(q) =
∑

n−1≥i>j≥0〈Si, Sj〉 = 1
2

∑
i6=j〈Si, Sj〉 = 1

2 |
∑n−1

i=0 Si|2 −
1
2

∑n−1
i=0 |Si|2

= −1
2

∑n−1
i=0 |Si|2.

This is a function of the edge lengths and therefore not interesting. The imaginary
part of q is given by

2A := Im(q) = −
∑

i>j Si × Sj

=
∑n−1

j=1

(∑n−1
i=1 Si

)
× Sj

=
∑n−1

j=1 (γj − γ0)× (γj+1 − γj)

=
∑n−1

j=1 (γj − γ0)× (γj+1 − γ0).

This invariant A is just the area vector. The following proposition (with obvious
proof) clarifies its geometrical meaning.
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1.4 Darboux Transformation of Polygons

Proposition 1. Let a ∈ R3 be a unit vector, |a| = 1, and endow the plane a⊥ with
the volume form

deta⊥(X,Y ) := detR3(a,X, Y ).

Then the area enclosed by the orthogonal projection γ̂ of the polygon γ

γ̂n = γn − 〈γn, a〉a

is equal to 〈M,a〉.

This explains the name area vector : It encodes all the projected areas.

Theorem 4. The area vector A is invariant under Darboux transforms.

Proof. By (1.20), the monodromy matrix of the Darboux transformed curve η,

Hη
Z =

n∑
k=0

ZkAηn−k,

satisfies

Hη
Z(Z + J(−rI + l diagT0)) = (Z + J(−rI + l diagT0))HZ (1.24)

Using

HZ = Zn + Zn−2A2 + ...+A0,

Hη
Z = Zn + Zn−2Aη2 + ...+Aη0

and comparing the Zn−2-coefficients in both sides of (1.24) we obtain Aη2 = A2.

Finally we consider the continuum limit of smooth curves γ : S1 → R3 and indicate
why Darboux transforms with small parameters l, r do indeed converge to the smoke
ring flow (1.1). The continuum limit of (1.13) is obtained by replacing S by hS and
then computing T ′ := d

dh

∣∣
h=0

Th. The resulting differential equation is

T ′ = (TS − ST )(−r + lT )−1

or

T ′ =
2

r2 + l2
T × (lT × S − rS), (1.25)

where S : R→ R3 is given by

γ′ = S.

One can check that, as expected, the transformed curve η = γ + lT satisfies

|η′| = |γ′|.
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1 A new doubly discrete analogue of smoke ring flow

The monodromy of the ODE (1.25) is a Möbius transformation of S2 that generically
has exactly two fixed points. Thus, for generic parameters l and r a space curve γ
has exactly two closed Darboux transforms.

Assume now that we have for r = −l a family of such closed Darboux transforms ηl
that depend analytically on l. Then we reparametrise ηl as

γl(s) := ηl(s− l) = γ(s− l) + lTl(s− l). (1.26)

Then γ0 = γ and comparing coefficients of l in the power series expansion of (1.26)
we obtain

∂

∂l

∣∣∣
l=0

γl = 0,
∂2

∂l2

∣∣∣
l=0

γl = γ′ × γ′′.

Hence

γl − γ0 = l2γ′ × γ′′ +O(l3).

A small time-step ∆t of the smoke ring flow is therefore approximated by a Darboux
transform with length l given by l2 = ∆t.

Remark. In order to eliminate the reparametrising effect of the Darboux transforms it
is convenient to apply first a Darboux transform with parameters l and −r followed
by a reverse Darboux transform with parameters l and r. This will cancel out the
(first order in t) tangential shift and leave only the (second order in t) smoke ring
evolution (see [Hof00]).

1.5 An algorithm for the real time simulation of fluid flow

Based on the theoretic foundations covered in the previous sections, we have im-
plemented the following algorithm for the simulation of fluid flow. Our aim was to
develop an algorithm which is fast enough to generate realistic looking computer
animations of fluid motion in real time. Figure 1.3 shows a sample screen shot from
a simulation which runs smoothly on standard hardware. We assume the vorticity
is concentrated along a few vortex rings, which we represent by closed polygons.
Their motion is governed by a mixture of the velocity field induced by the polygonal
vortex rings via the smoothed Biot-Savart formula (1.10) of Section 1.3, and Darboux
transformations which approximate a time step of the polygonal smoke ring flow
as explained in Section 1.4. The rationale behind this scheme is that the velocity
field induced by an edge of a polygonal vortex filament is zero on that edge itself.
Thus, the adjacent edges do not contribute to the velocity of a vertex. The Darboux
transforms make up for this lack of local interaction. The following is a summary
description of the algorithm. Details (in particular how we set the parameters ri and
li of the Darboux transformation) are given below.

26



1.5 An algorithm for the real time simulation of fluid flow

Figure 1.3: 2562 fluid particles evolving under the influence of three polygonal vortex
filaments.

input:

• positions γij of the jth vertex of the ith polygonal vortex filament γi,
where i = 1 . . .m, j = 1 . . . ni.

• strengths Γi and smoothing (thickness) parameters ai of the vortex fila-
ments.

• positions pi ∈ R3 of advected particles, where i = 1 . . . k.

• time-step ∆t .

loop:

1 Compute a double Darboux transform ηi with parameters ∓ri, li of each
polygon γi. γij ← ηij .

2 Solve γ̇ij = u(γij) for time-step ∆t, where u(x) is the velocity field obtained
by the smoothed Biot-Savart formula (1.10).

3 Update the particle positions pi by solving ṗi = u(pi) for time-step ∆t.

In Step 1, we determine the parameters li and ri as follows. The amount of smoke
ring flow needed to make up for the lack of local interaction depends on the thickness
ai, the number of edges ni and the total length Li of γi. Since we do not know the
correct speed for an arbitrary polygon, we determine the parameters for the test case
of a regular ni-gon with same strength, thickness and total length. We choose the
parameters in such a way that for the regular ni-gon the sum of self-induced velocity
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1 A new doubly discrete analogue of smoke ring flow

from the Biot-Savart formula (1.10) plus the effect of a double Darboux transform
coincides with the analytically known speed Ui for a circle with same length Li:

Ui =
Γi

2Li

(
ln

4Li
πai
− 1

)
, (1.27)

compare [Saf92, p. 212]. We compute the self-induced speed Ũi of the ni-gon by
evaluating the smoothed Biot-Savart formula (1.10) at one vertex for all edges of the
ni-gon. This speed is slower than Ui because the adjacent edges have no influence
on a vertex, see Section 1.3. Now we choose ri and li such that a double Darboux
transformation translates the regular ni-gon by a distance of (Ui − Ũi) ∆t. A single
Darboux transform of the regular ni-gon is a translation in binormal direction plus
a non-zero rotation about the centre axis. The rotation cancels out for a double
Darboux transform and is therefore arbitrary. We choose the rotation angle to be
2π/ni, which leads to the following formulas for li and ri:

li =

√
(Li/ni)

2 + σ2
i , ri = σi cot(π/ni) ,

where we have abbreviated 1
2(Ui − Ũi) ∆t by σi.

In Step 2, we use the fourth order Runge-Kutta scheme (RK4) to solve the ordinary
the differential equation ẋ = u(x) for the time-step ∆t. To advect the large number
of particles in Step 3 we use second order Runge-Kutta (RK2), where we use the
two polygon positions after Step 1 and Step 2 as intermediate values. To improve
performance further, this step is computed on the computer’s graphics chip (GPGPU).

Evaluating u(x) via Equation (1.10) is unproblematic, because the integral on the
right hand side can be solved explicitly for straight line segments; see Equation (1.11)
in Section 1.3.
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2 Real-time interactive simulation of smoke using discrete
integrable vortex filaments

Steffen Weißmann, Ulrich Pinkall

Proc. Vir. Real., Inter. & Phys. Sim. 2009, pp. 1–10.

We present a fluid solver for the real-time interactive simulation of inviscid,
ideal fluid flow. The simulation is based on the evolution of discrete vortex
filaments, which allow a dramatic increase of detail and performance
compared to traditional methods used in Computer Graphics. As a fully
Lagrangian method the simulation is not restricted to a fixed domain and
does not suffer from numerical dissipation. Vortex filaments arise naturally
in real flows and thus provide an excellent building block for modeling
realistic smoke. We present a GPU-based implementation which allows
the interactive experimentation with 3D fluid flow on desktop computers
and also in distributed immersive virtual environments.

2.1 Introduction

Real-time simulation of 3D smoke is an important ingredient for virtual environments
in general and computer games in particular. Nevertheless computational challenges
have so far prevented the widespread implementation of such simulations. While it
is possible to achieve realistic and highly resolved 3D smoke animations in extensive
offline simulations, real-time applications are still missing the desirable detail and
realism.

We describe a 3D method that is highly efficient while allowing a tremendous amount
of detail. The method is based on the simulation of the evolution of vortex filaments.
Vorticity originates as 2–dimensional vortex sheets that tend to roll up into com-
plicated 1–dimensional structures. The resulting visual complexity easily exceeds
the level of detail that can be achieved with real-time grid based methods, as in
Figure 2.1. The use of vortex filaments provides an efficient method to capture the
complexity of smoke with very sparse data. The whole fluid velocity field is defined by
the vortex filaments and can be used to advect arbitrary marker particles. Besides the
application for real-time simulation, the method provides a significant improvement
for the workflow of effects artists designing smoke animations. It allows to obtain an
immediate preview of the fluid motion. The final animation can then be rendered
with an arbitrary number of particles – without affecting the fluid motion at all.
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2 Real-time interactive smoke using discrete integrable vortex filaments

Figure 2.1: Comparison of a photograph (left, from [Jef]) with our simulation (right).
The 3962 particles are rendered as unshaded transparent GL points.

2.2 Related work and contribution

Real-time 3D smoke simulations have so far been restricted to low resolution grid-
based Eulerian methods (mostly based on Stam’s Stable Fluids [Sta99] with vorticity
confinement [FSJ01]) or to algorithms based on 2D reductions [KW05]. Recent
progress with GPU techniques allows relatively large 3D grids [LLW04, CLT07,
Yan09a, Yan09b] for such methods. Model reduction [TLP06] can significantly speed
up such simulations, but it requires extensive precomputations as well as giant storage,
which limits its practical applicability to very small grids. Also hybrid methods based
on [SRF05] were applied to real-time applications, for instance in [EVG07].

Smoothed Particle Hydrodynamics methods [SF95, DG96, MCG03, BT07] can be
used at interactive rates with a respectable number of particles thanks to GPU
techniques [ZSP07, YWH+09]. These methods are used with great success for the
simulation of water and other liquids. They are however not well-suited for inviscid
fluids such as smoke.

The use of vortex filaments as basic primitives for modeling 3D smoke was pioneered
by Angelidis and Neyret [AN05, ANSN06]. They however simulated the motion of
smoke using a kernel function that differs significantly from the physical system,
resulting in an incorrect asymptotic falloff of the velocity field.

Our method is based on the direct discretization of the actual physics. The fluid
motion is described by a Hamiltonian system, which guarantees the conservation of
both energy and momentum. We are able to explicitly integrate the correct kernel
function for the discretized vortex filaments. This yields not only an important
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2.3 Physics of vortex filaments

increase of physical realism but at the same time in fact a reduction of the com-
putational costs. Our second contribution is the following: When discretizing the
vortex filaments as polygons, their velocity will be significantly underestimated when
calculated by the integral kernel alone: Both adjacent edges do not contribute at all
to the velocity of a vertex. This effectively results in modeling vortex filaments that
have a thickness equal to the edge lengths. This means that excessively many edges
would be required to model thin (and therefore fast) filaments. We compensate this
discretization artifact by incorporating a discrete evolution equation for polygons
(developed in [PSW07]), that excellently captures the locally induced speed. Also
this local contribution to the evolution conserves energy and momentum and can be
computed efficiently. We are therefore able to model thin vortex filaments using only
a small number of edges.

We will describe an interactive, GPU accelerated implementation for use in distributed,
immersive virtual environments and on desktop computers.

2.3 Physics of vortex filaments

Irrotational regions will usually be rare given an arbitrary divergence free velocity
field. The fluids that we are going to simulate (represented by a small number of
vortex filaments) are mostly irrotational, except for thin tubular regions around the
filaments. Therefore some explanation is required why it is nevertheless a good idea
to model realistic fluids in this way: First, in inviscid fluid, there is no way to increase
the volume that contains vorticity. Second, 2–dimensional vortex sheets tend to roll
up into 1–dimensional core structures [RVJ00] (see Figure 2.2). This implies that
vortex filaments will actually stay filaments, since any flattening of the core structure
will result in a rollup. Most important, vorticity usually originates as vortex sheets,
for instance at boundary layers or around jets. Thus we can excellently model realistic
fluids, using a small number of vortex filaments.

Besides the physical motivation, vortex filaments are a very convenient model: They
move along with the motion of the fluid, they do not split, join or vanish. They do
not change their strength, so only the geometry of the filaments needs to be tracked.
From an artist’s point of view, filaments give an intuitive primitive to model fluid
motion. Another very important property of vortex filaments is that they ensure
that the vorticity field is always divergence free. In contrast, vortex particle methods
[PK05] only guarantee a divergence free velocity field – the vorticity field will not
stay divergence-free when the vortex structures break up.

2.3.1 Mathematical description

The motion of an inviscid, ideal fluid is described by a time-dependent divergence
free velocity field u, obeying Euler’s equation. The vorticity field ω = curlu is again
a divergence free vector field, and we assume that it is compactly supported. The
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2 Real-time interactive smoke using discrete integrable vortex filaments

Figure 2.2: Sketch of the rollup of a vortex sheet to vortex filaments, from [RVJ00].

vorticity field lines are either closed or end on boundaries, which is not a strict
mathematical consequence but based on the observation how vorticity is created in
real fluid flow. Euler’s equation in vorticity form

ω̇ = curl(ω × u) (2.1)

states that the vorticity field is forward advected by the velocity field just as the fluid
material. The right hand side of Equation (2.1) is the Lie bracket [ω, u] of divergence
free vectorfields in R3.

From the vorticity field ω we can reconstruct the velocity field u using the formula

u(x) = − 1

4π

∫
R3

x− z
‖x− z‖3

× ω(z) dz. (2.2)

This is an integral over the whole of R3, but with the restriction to vorticity fields
that are supported on tubular neighborhoods of closed space curves γk, Equation (2.2)
reduces to a sum of line integrals – the Biot-Savart law:

u(x) =
∑
k

−Γk
4π

∮
x− γk(s)
‖x− γk(s)‖3

× γ′k(s) ds, (2.3)

Here, Γk is the strength of the filament, it is the flux of vorticity across any cross section
of the filament core. The strength is constant along the filament and also constant in
time, by Helmholtz’s theorems and also as a direct consequence of Equation (2.1).

For the following discussion we will regard one single vortex filament γ, the results
can be transferred to a set of filaments by superposition (i.e. summation) of the
individual vector fields.

The dynamical system we want to simulate is

γ̇(s) = u(γ(s)) (2.4)

where u is given by Equation (2.3). The problem is that the velocity field u diverges
logarithmically for points on the γ. Assuming a small but finite tube radius of the
vortex filament γ reveals that the filament moves according to the smoke ring flow

γ̇(s) = Kγ′(s)× γ′′(s), (2.5)
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2.3 Physics of vortex filaments

Figure 2.3: Flow around a sphere using image vorticity.

where the constant K is proportional to the strength Γ of γ. The smoke ring
equation (2.5) is obtained by a renormalization from Equation (2.4), thus it conserves
both energy and momentum of the original system. It was discovered at the beginning
of the 20th century by Da Rios [SDR06], its integrability was found by Hasimoto
[Has72]. A historical review is given in [Ric91].

The correct speed of a smooth vortex filament with small thickness a is obtained by
applying a cut off to the right-hand-side of Equation (2.4): A small portion around
the evaluation point is excluded from the integration domain. This is known [Saf92]
to be equivalent to replacing the singular Biot-Savart kernel by the Rosenhead-Moore
kernel, which gives the velocity field

u(x) = − Γi
4π

∮
x− γ(s)√

a2 + ‖x− γ(s)‖23 × γ
′(s) ds, (2.6)

where a (the thickness parameter) depends on the core radius of the filament. Another
way to obtain Equation (2.6) is to apply a fixed convolution kernel to the singular
vorticity field which is concentrated along the filament (see [PSW07]). For a > 0 this
velocity field has no singularities at all, which makes its evaluation unproblematic.

The singular Biot-Savart formula (2.3) causes two problems to the numerics: The
singular behavior at the filaments and the fact that it is hard to integrate analyt-
ically – already for circular filaments it results in elliptic functions. Angelidis and
Neyret [AN05] have addressed these issues by a modification of the kernel function.
To ease analytical integration, they have changed the exponent in the denominator
from 3 to 4. The resulting equation of motion is no longer related to the physical
system, for instance the asymptotic falloff is different and the system does not scale
correctly.
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2 Real-time interactive smoke using discrete integrable vortex filaments

Figure 2.4: Designing irrotational background velocity fields using static vortex fila-
ments. The particles were injected from a circular curve at the left and
advected by the induced velocity field from the static filaments.

2.3.2 Boundary conditions and background flow

We will not deal with boundary conditions here. Slippy boundaries can be modeled
using image vorticity [Saf92], for instance an infinite ground plane (as in [AN05])
is obtained by mirroring all filaments at the plane. A sphere can be modeled by
inversion of the vortex filaments at the sphere (see Figure 2.3). The resulting velocity
field will be tangent to the surface, but in contrast to real boundaries, no vorticity
is created. We will not go into details about these special cases for dealing with
boundaries. We will describe the incorporation of arbitrary obstacles in future work.

As a background flow, any irrotational field can be added to the velocity field given
by Equation (2.6). In this way simple effects of wind or temperature lift can be
simulated. It is however not possible to combine this with the image vorticity
construction described above, except for the case that the background flow is already
tangent to the boundaries. On the other hand it is difficult to design an irrotational
background field with certain features. Therefore we suggest the use of static vortex
filaments, that contribute to the velocity field but do not get advected by the flow:
Such filaments generate a velocity field that is irrotational except for some small
region around the filament. In this way one can easily design a background field
that for instance guides the fluid motion along a certain path, see Figure 2.4. This
gives artists a very intuitive tool to control large scale features of the fluid motion.
In addition, such background flows can be combined with the simple image vorticity
constructions.
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2.3.3 Conservation laws

The smooth system we have described is a Hamiltonian system (see [EM70, AK98]),
preserving the energy

E =
∑
i,j

ΓiΓj
8π

∮ ∮ 〈γi(s), γj(s̃))〉√
a2 + ‖γi(s)− γj(s̃)‖2

ds ds̃. (2.7)

This energy has a nice geometric interpretation: It is the sum of pair-wise fluxes, that
the filaments induce to each others. Physically, the energy is very closely related to
the kinetic energy T =

∫
R3〈u(x), u(x)〉dx, in fact it is the kinetic energy of a fluid

with the same vortex filaments, but a slightly different core structure and radius.
Another constant of motion is the hydrodynamic impulse

A =
∑
i

1

2

∮
γi(s)× γ′i(s) ds (2.8)

whose geometric interpretation (for closed filaments) is the following: For any plane
n⊥ with unit normal vector n, the signed area of the orthogonal projection of the
filaments onto that plane is 〈A,n〉. As a reference for Equations (2.7) and (2.8)
see [Saf92].

This invariant has an important consequence for the geometry of the filaments (see
[Cho91]): Vortex filaments stretch rapidly while evolving under the fluid flow. At the
same time, their projected area (for instance onto A⊥) stays constant. This is only
possible when the filaments fold, leading to very long and highly curved filaments.
While folding, nearby sections of the vortex filaments tend to align anti-parallel,
resulting in effectively canceling out each others’ contribution to the overall velocity
field. A special case is the creation of hairpins [Cho90, Cho93]. In slightly viscous
fluids, vortex reconnections occur at such anti-parallel aligned filaments.

2.4 Polygonal discretization of smooth filaments

We start with the smooth Hamiltonian system described in Section 2.3.1 and discretize
it by replacing the smooth vortex filaments by polygons and advecting the polygon
vertices according to the dynamical system (2.4). In Section 2.4.1 we will describe in
detail the explicit integration of the velocity field (Equation (2.6)) that is generated
by a straight filament edge. The resulting velocity field is obtained by summing up
over all edges. For a single step of the simulation we will integrate the ODE (2.4)
over the current time step ∆t using a standard forward integration scheme.

It turns out that, due to the discretization as polygons, the locally induced velocity
of the filaments gets lost. This happens since adjacent edges do not contribute to the
velocity at a vertex. The actual locally induced speed is proportional to the smoke
ring flow (2.5), which we cannot compute directly for polygons. Instead, we apply
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2 Real-time interactive smoke using discrete integrable vortex filaments

one step of a time-discrete evolution equation (the doubly-discrete smoke ring flow
for polygons derived in [PSW07]) that acts as a time integrator of the smoke ring
flow for polygons. In Section 2.4.3 we will explain how to compute a single step of
the evolution and how to determine the necessary parameters.

2.4.1 Explicit integration of the Biot-Savart law

If γ is a piecewise linear parametrization of a closed polygon, on each edge we have
γ′′ = 0 and we find an explicit anti-derivative for the integrands of equation (2.6):

〈γ, γ′〉√
a2 + |γ|2 (|γ′|2a2 + |γ × γ′|2)

γ × γ′. (2.9)

Here we have abbreviated x− γ(s) to γ, γ′(s) to γ′ and the prime is derivation with
respect to s.

More explicitly, regard a single edge with startpoint γ0 and endpoint γ1: Then

γ(s) = γ0 + s(γ1 − γ0),

and the cross-product
γ(s)× γ′(s) = γ1 × γ0

does not depend on s. The generated velocity field at zero is

u(0) = 〈γ0, γ1〉

‖γ0‖2√
a2+‖γ0‖2

− ‖γ1‖2√
a2+‖γ1‖2

a2‖γ1 − γ0‖2 + ‖γ1 × γ0‖2
γ1 × γ0, (2.10)

any other point x can be evaluated by replacing γi by γi − x. This simple formula
is actually surprising: Even for circular filaments the integration of the Biot-Savart
formula (2.3) requires elliptic functions. Also the modified kernel used in [AN05]
turns out to be much more expensive to evaluate, it includes angle-computations that
require evaluation of the arctan-function.

2.4.2 Local effects at vertices

The two adjacent edges have no influence at all on the velocity of a vertex. This is
roughly equivalent to modeling vortex tubes of thickness equal to the edge length of
the polygon. Using this model we would be unable to model thin (and therefore fast)
filaments without using excessively many edges for each polygon.

Asymptotic analysis of the velocity field at such a vertex induced by its two adjacent
edges (see [Wei06]) reveals the following: The contribution of local effects behaves
like the smoke ring flow (2.5) and the resulting equation of motion for a vertex γi of
a polygonal vortex filament γ is then

γ̇i = u(γi) + λκibi, (2.11)
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2.4 Polygonal discretization of smooth filaments

Figure 2.5: An oval curve evolving under the smoke ring flow and its discrete analog,
from [Hof08].

where u is given by summing up Equation (2.6) for all filaments using (2.10), κibi
denotes curvature times binormal at γi, and λ is constant depending on a. The mathe-
matical notion of curvature is only available for arc-length parametrized polygons, i.e.
all edges have equal length. Since the non-local effects quickly destroy any arc-length
parametrization we can not evaluate (2.11) directly.

On the other hand, it is known that the doubly discrete smoke ring (or Hasimoto)
flow [Hof00, Hof08, PSW07] captures excellently the qualitative behavior of the
smooth smoke ring flow (2.5) for polygons, see Figure 2.5. Thus we apply it as an
integrator of the locally induced velocity term κb.

2.4.3 The doubly-discrete smoke ring flow

The doubly-discrete smoke ring flow is a discrete evolution equation for closed polygons.
This means, given a closed polygon γ, we can compute a new polygon γ̃, that
corresponds to the time-evolution of the polygon under the smooth smoke ring flow,
see [Hof00, Hof08, PSW07]. One step of this evolution is obtained by computing two
successive closed Darboux transforms. The Darboux transform is obtained from the
initial polygon by elementary geometric constructions (Darboux steps). This will be
described in Section 2.4.3.1.

A single step of the evolution depends on two parameters, which determine the
corresponding time step of the smooth evolution. In Section 2.4.3.3 we will describe
how to determine the required parameters in order to match the current time step.

2.4.3.1 Darboux transforms of polygons

We start with the closed polygon γ, with vertices γ1, γ2, . . . , γn and edges S1 =
γ2 − γ1, S2 = γ3 − γ2, . . . , Sn = γ1 − γn. The Darboux transform η of γ is also a
polygon with the same number of edges, and same edge lengths. But η is usually
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2 Real-time interactive smoke using discrete integrable vortex filaments

not closed, thus it has the vertices η1, η2, . . . , ηn, η̃1 and edges S̃1 = η2 − η1, S̃2 =
η3 − η2, . . . , S̃n = η̃1 − ηn. The Darboux transform has two real parameters, namely
the distance parameter l > 0 as well as the twist parameter r. The polygon η is
obtained by the following procedure:

• Choose a start point η1 of η, with distance l from γ1. We denote the distance
vector η1 − γ1 by lT1, where T1 is a unit vector, and l the distance.

• Map η1 to the next point η2 of η by a single Darboux step, see below. The step
depends only on the difference vector lT1 and the first edge S1 of γ, and it has
two important properties:

– The distance between η2 and γ2 is also l:

η2 − γ2 = lT2.

– The edge lengths of η and γ are equal:

‖S1‖ = ‖S̃1‖.

• Now that we have obtained η2 we apply a Darboux step to η2 to obtain η3 and
so on. More precisely, we can replace the indices 1 and 2 by i and i+ 1, which
allows us to determine the next vertex ηi+1 as soon as we have determined
its predecessor ηi. Thus we transport the initial start point η1 all around the
polygon γ, and we finally arrive at η̃1.

A single Darboux step is given as a quaternionic equation, so we identify R3 with
the set of imaginary quaternions ImH. From the current distance vector lTi and the
current edge Si of γ, we obtain lTi+1 as:

lTi+1 = (−r + lTi − Si)lTi(−r + lTi − Si)−1. (2.12)

We can apply this equation iteratively to our initial distance vector lT1 (between γ1

and the start point η1 of η) to obtain the distance vector lT̃1 (between γ1 and the end
point η̃1 of η), and we will denote this map by f :

f : lT1 7→ lT̃1. (2.13)

For the doubly-discrete smoke ring flow we need to determine a closed Darboux
transform. Therefore we need to determine the start point η1 in such a way that η is
closed, i.e. η̃1 = η1. This is the case when the initial distance vector lT1 is a fixed
point of f . To compute a fixed point we use the power method, i.e. we start with
some initial vector with length l and iterate f until convergence.

2.4.3.2 A single Darboux step

Now we describe a single Darboux step that determines ηi+1 from ηi. Look at a single
quadrilateral with the edges Si, lTi+1, −S̃i, −lTi (Figure 2.6). Since opposite edges
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S̃i

lTi − Si

ηi+1

lTi+1

lTi

Siγi

ηi

γi+1

Figure 2.6: A polygon γ and a single edge S̃i of its Darboux transform η.

have equal length, it is a parallelogram, folded about one of its diagonals. The folding
angle about the diagonal between γi+1 and ηi,

Di = ηi − γi+1 = lTi − Si,

is required to be
αi = 2 arctan ‖Di‖/r,

where the twist parameter r enters. This rule determines ηi+1 uniquely. In particular,
the newly obtained distance vector lTi+1 is obtained by an αi-degree rotation of the
previous distance vector lTi about the diagonal Di. By adding lTi+1 to γi+1, we have
obtained ηi+1.

This construction might be implemented by computing the corresponding rotation
matrix and apply it to lTi, but it is much simpler to implement using quaternions,
using Equation (2.12).

2.4.3.3 Parameters for the Darboux transforms

One step of the doubly-discrete smoke ring evolution is obtained by two subsequent
Darboux transforms, the first with parameters l and +r, the second with parameters
l and −r. To determine l and r for a polygon γ with n vertices and total length L,
we regard a regular, planar n-gon γ̃ with the same total length L and compute its
self-induced speed:

Ũ = ‖u(γ̃i)‖.
Note that u(γi) (given by Equation (2.6)) is the same for each vertex γ̃i and perpen-
dicular to the n-gons plane.

Now we compare Ũ with the analytically known speed of a smooth circular vortex
filament with same length:

U =
Γ

2L

(
ln

4L

πa
− 1

)
. (2.14)
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2 Real-time interactive smoke using discrete integrable vortex filaments

The Darboux-transform η of a regular n-gon γ̃ is a shifted copy of γ̃: It is rotated
about the center axis with angle φ, and translated along the center axis, with distance
d. For the combination of two successive Darboux transforms with parameters l and
±r the rotations will cancel, and the resulting motion is a pure translation along the
center axis, with distance 2d. The correct speed is obtained when

2d = ∆t (U − Ũ).

With a choice of the rotation angle φ = 2π/n, the parameters turn out to be

l =

√
(L/n)2 + d2, r = d cot(π/n). (2.15)

2.4.4 Summary

We have presented all necessary formulas to compute a single step of the evolution of
polygonal vortex filaments. In Equation (2.10) we have presented the explicit formula
to evaluate the velocity field induced by the individual edges. We can use this to
directly advect the filament vertices for a given time step using a standard forward
ODE integration scheme, for instance the Runge-Kutta scheme RK4. But the resulting
motion of the discrete filaments does not adequately reproduce the physical system: It
underestimates the locally induced speed of the individual filaments. We account for
this by applying a single step of the doubly-discrete smoke ring flow evolution to each
of the filaments. Therefore one first needs to determine the twist parameter r and the
distance parameter l for the given time step, using the Equations (2.15) and (2.14).
The step itself is obtained by computing two successive Darboux transforms. This is
done by determining a fixed point of the map defined in Equation (2.13), which is
itself defined by a sequence of Darboux steps (2.12). The fixed point is obtained by
applying the power method.

2.5 Implementation

We will now describe how to implement a fluid simulator using the evolution of
discrete vortex filaments. The implementation splits into two independent parts:
The evolution of vortex filaments, and the advection of particles. From the evolving
filaments, we obtain the current velocity vector field at each time step. We can
evaluate this velocity field on the whole of R3 using the Biot-Savart formula (2.6).
We will use this velocity vector field for particle advection, using a standard ODE
integration scheme.

In our implementation this second part is implemented using a GLSL shader to
perform particle advection on a GPU. The filament simulation is implemented in a
Java library. The most expensive part of the filament simulation is the advection
step which includes evaluations of the induced velocity field at all filament vertices.
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2.5 Implementation

Figure 2.7: Interactive smoke simulation in an immersive, distributed environment.

A significant speed up can be achieved when implementing this part on the GPU,
but in our experimental implementation we favor the greater flexibility of a CPU
implementation.

For particle advection we transfer the whole set of edges to the GPU. This needs
to be done in every time step. The particle positions are also stored on the GPU,
but they are only transferred during the initialization of the simulation. This allows
to advect a large number of particles compared to the number of filament edges, at
interactive rates.

The implementation uses jReality [WGB+09], which provides the infrastructure for
interaction and rendering. Applications written in jReality will run also in distributed,
immersive virtual environments with head-tracking and tracked input devices, see
Figure 2.7. Interaction with the 3D scene is usually done with a pointer device, which
is the mouse pointer in a default desktop setup and the 6DOF tracked wand in an
immersive environment.

2.5.1 Filament evolution

Each simulation step of the filament evolution consists of the two steps:

1. Evolve each filament by one step of the doubly-discrete smoke ring evolution,
by computing two successive Darboux transforms.
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2 Real-time interactive smoke using discrete integrable vortex filaments

2. Advect the vertices of the filaments according to the evolution Equation (2.4),
using a standard ODE integration scheme. The right hand side is obtained by
implementing Equation (2.10) and summing up over all filament edges.

2.5.1.1 Implementation of the doubly-discrete smoke ring evolution

To compute one step of the doubly-discrete smoke ring evolution for time step ∆ t we
need to do the following:

1. Determine the length L and number of vertices n of γ.

2. Compute U according to Equation (2.14).

3. Compute Ũ . Construct a reference n-gon with same length as γ and evaluate
its own induced speed at a vertex.

4. Compute l and r according to Equations (2.15).

5. Compute the Darboux-transform η of γ with parameters l and r.

6. Compute the Darboux-transform γ̂ of η with parameters l and −r.

Now γ̃ is the required step of the doubly-discrete smoke ring evolution of γ.

We will now explicitly implement the computation of the Darboux-transform. The
following pseudocode assumes that vectors in R3 are implemented by a class real3

and quaternions are implemented in a class quat. Quaternions are constructed by
passing the real part as a double and the imaginary part as a real3. The two classes
have all standard operators implemented, quat.inverse() gives the inverse of a
quaternion. A polygon is stored as a vector containing all polygon vertices.

First, we implement a single Darboux step, as described in Equation (2.12):

real3 darboux_step(real3 S_i , real3 lT_i , double r) {

quat rlT_S = quat(-r, lT_i - S_i);

quat lT = quat(0, lT_i);

quat lTnext = rlT_S*lT*rlT_S.inverse ();

return lTnext.imag ();

}

Then we compute the end vector lT̃1 for a given start vector lT1, see Equation (2.13):

real3 monodromy(vector <real3 > gamma , real3 lT_1 , double r) {

real3 lT = real3(lT_1);

for (int i=0; i<n; i++) {

real3 S_i = gamma[i+1]- gamma[i];

lT = darboux_step(S_i , lT , r);

}

return lT;

}
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Now we determine a start vector lT that leads to a closed Darboux transform. This
vector is a fixed point that we determine by applying the power method to the
previous method:

real3 power_method(vector <real3 > gamma , double l, double r) {

real3 lT = real3(0, 0, l);

for (int i=0; i<MAX_ITERS; i++) {

real3 lastLT = real3(lT);

lT = monodromy(gamma , lT , r);

if ((lT - lastLT ).norm() < EPS) return lT;

} // signal: "did not converge"

}

Finally, we construct the closed Darboux transform η using the start vector lT that
gives a closed solution:

void darboux(vector <real3 > gamma ,

vector <real3 > eta , double l, double r) {

real3 lT = power_method(gamma , l, r);

for (int i=0; i<n; i++) {

eta[i]= gamma[i]+lT;

real3 S_i = gamma[i+1]-gamma[i];

lT = darboux_step(S_i , lT , r);

}

}

Note that in some rare cases the power method might fail to converge (which usually
does not happen in our simulations). In this case we just skip the computation of
the Darboux transform. To handle these cases also, a more sophisticated method,
for instance the periodic QR decomposition [Kre06], needs to be implemented to
determine the fixed point.

2.5.2 Particle advection

Particle advection is performed using the second-order Runge-Kutta scheme. This
scheme requires the velocity field (and thus the filaments) only at t = ti + ∆t /2,
other schemes would require more filament positions during one time step, resulting
in higher traffic between CPU and GPU memory. The advection step of a particle
is implemented as a GLSL fragment shader. The fragment shader iterates all vortex
filament edges, transforms them such that the evaluation point is at the origin,
evaluates the velocity field generated by the current edge, and sums up.

2.5.3 Rendering

Our focus is the real-time interactive simulation algorithm, rather than rendering.
For this reason we have chosen the cheapest and fastest way to render the marker
particles: As plain, unshaded, highly transparent points.
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2 Real-time interactive smoke using discrete integrable vortex filaments

Figure 2.8: Control of large scale flow features. The image shows the evolution of a
jet, guided along a spiral curve using a discretized vortex tube.

2.5.4 Interaction

Our implementation contains several modeling tools for interactive design of fluid
motion. The tools to design an initial setup:

Filament editor: Closed polygonal vortex filaments can be modeled as an initial
vorticity configuration. Each closed polygon has an associated strength Γ and a
thickness parameter a. Figure 2.1 has been made using three initial filaments.

Vortex tube: Static vortex filaments can be placed along the cross-sections of a
tube, which is modeled by its center curve and a given radius. This is used
to model a background flow that guides the overall motion of the fluid, see
Figures 2.4, 2.8.

Jet emitter: A jet is simulated by frequent emission of circular filaments. This
is possible since the originally created vortex sheet rolls up to vortex core
structures (Section 2.3). To break symmetry, a random distortion is applied
to each filament. This was used in the Figures 2.8 and 2.9, and also below the
sphere in Figure 2.3.

For interaction during the simulation one can create new smoke rings using the mouse
or a wand in an immersive environment.
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2.6 Results and discussion

Figure 2.9: Simulation of a jet. The left picture shows 10242 particles, injected into
the flow from a circular curve at the bottom, where also the filaments
are inserted. The right hand side shows the vortex filaments at the same
time of the simulation.

2.6 Results and discussion

The system we have described allows the interactive simulation of 3D smoke on
desktops and also in immersive virtual environments. The system is able to simulate
realistic and physically accurate fluid motions using a small number of filaments, as
shown in the figures. Using the GPU it is possible to advect a large number of marker
particles in real time. Table 2.1 shows framerates measured on a Intel Core 2 Extreme
CPU X9650 3.00GHz with 4 GB RAM and a nVidia GeForce 8800 Ultra GPU. Note
that the frame rate is limited to 200 fps by the update rate of the Java AWT event
queue.

Because of the physically accurate Biot-Savart law, our approach is independent
of scale; scaling the fluid domain will result in a correctly scaled velocity field. In
contrast, the method of Angelidis and Neyret requires adjustments of parameters
that are not physically meaningful. By the use of the doubly-discrete smoke ring flow
we are able to model even thin filaments with a small number of edges.

The resulting simulations are accurate for a limited amount of time, even when the
filaments incur long edges and sharp cusps, see for instance the filaments shown
in Figure 2.9. From the discussion about energy and the geometry of the smooth
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# Edges
# Particles 8 64 128 256 512

4096 >200 >200 180 115 9.4
16384 >200 >200 148 94 9.0
65536 195 126 90 56 8.1
262144 63 42 33 21.8 5.5
1048576 16.8 11.85 9.7 6.2 2.6

Table 2.1: Performance in fps including simulation and rendering.

filaments in Section 2.3.3 we conclude that polygons need to be subdivided in order to
capture the increasing complexity of the smooth filaments. This will however quickly
lead to polygons with excessively many edges and to edge lengths that cause problems
to the numerics.

Previously described methods to increase stability for long-time simulations can also
be added to our method, although they are not satisfying: An unnatural amount
of damping [AN05], and filtering of high frequencies of the filaments [ANSN06].
We believe that in order to implement long-time simulations one has to cope with
the increasing complexity of the filaments by handling topology changes due to
reconnections.

2.7 Conclusion and outlook

We have presented a method to simulate smoke that uses the physically correct
velocity field. Local effects are captured by the doubly-discrete smoke ring flow. Thus
the simulation is physically accurate even for a coarse discretization of the filaments.
We have implemented the method for desktop and immersive virtual environments.
Using GPU techniques, our solution runs in real time.

Current research aims to introduce arbitrary polygonal meshes as boundary conditions,
and to handle filament reconnections.

46



3 Filament-based smoke with vortex shedding and
variational reconnection
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Simulating fluids based on vortex filaments is highly attractive for the
creation of special effects because it gives artists full control over the
simulation using familiar tools like curve editors or the scripted generation
of new vortex filaments over time. Because filaments offer a very compact
description of fluid flow, real time applications like games or virtual reality
are also possible.

We present a complete model that includes moving obstacles with vortex
shedding, all represented as filaments. Due to variational reconnection the
long-time behavior of our method is excellent: Energy and momentum
stay constant within reasonable bounds and computational complexity
does not increase over time.

3.1 Introduction

Using vortex filaments as basic primitives for modeling fluid flow provides the most
efficient method to capture the complexity of smoke with sparse data. This viewpoint
was pioneered in [AN05, ANSN06]. In [PSW07, WP09] substantial improvements of
the method were developed that yield an important increase in physical realism as
well as a reduction of the computational costs. In particular, discrete differential
geometry and integrable systems were used to obtain accurate simulations even with
coarse polygonal filaments.

Vortex filaments provide a discretization of fluid dynamics where the vorticity field
is concentrated along closed curves. Realistic smoke can be modeled using a small
number of vortex filaments. The main reason is that in the real world all vorticity
comes to life as two-dimensional vortex sheets in the boundary layers of obstacles.
These vortex sheets curl up into complicated one-dimensional structures, the vortex
filaments. Simulating these filaments directly provides an extremely efficient way to
model the whole flow.

We extend existing methods for long time stability and efficiency, while we also
include boundaries with vortex shedding (see Figure 3.1). Our approach gives special
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Figure 3.1: Flow around an ellipsoid with vortex shedding.

effects artists full control over the simulation by modeling the geometry of the initial
filaments. Obstacles can be handled as triangular meshes. No Eulerian grid is
required. Our method is fast enough to simulate non-trivial scenarios in real time,
with a level of detail that easily exceeds the resolution that can be achieved by
grid-based simulations. In combination with GPU-accelerated particle advection it
can be used for computer games and virtual environments.

3.1.1 Goals and contributions

Our goal is to develop an algorithm that allows vortex filament simulations that
(a) are plausible and efficient enough to run in real time, (b) run stably over long
simulation times, (c) can handle static and moving obstacles including vortex shedding
at boundaries. We will validate our method on various scenarios including the
simulation of real experiments.
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3.2 Related work

Hamiltonian formulation for thick vortex filaments: Conservation of energy
is essential for the long-time stability and plausibility of physical simulations. In
Section 3.3 we give a formulation of filament dynamics based on a Hamiltonian
system. Compared to [WP09] we allow for filaments with different thickness and
work throughout with the correct velocity field. The Hamiltonian of our system is
indeed the kinetic energy. It is exactly preserved for smooth filaments.

Variational model of vortex reconnection: Vortex filaments have a strong ten-
dency to develop hairpins [Cho90, Cho93], which leads to an exponential increase in
time of the number of polygon edges needed in a numerical simulation. Chorin has
shown that a simple model of reconnection and hairpin removal leads to accurate and
efficient simulations of a vortex ring consisting of many weak closed filaments. This
criterion can however lead to alternating reconnections. In Section 3.5 we propose a
reconnection criterion based on a variational principle. The key idea is to reduce the
filament length while staying as close as possible to the original flow. Our reconnec-
tions decrease a certain functional and thus cannot lead to alternating reconnections.
At the same time our method improves the overall geometry of the filaments.

Boundary conditions and vortex shedding: Obstacles are important not only
to restrict the fluid domain, but also as a source of vorticity (vortex shedding). In
Section 3.4 we show how to include static or moving obstacles into the simulation,
by computing image vorticity [Saf92] as a vortex sheet on the obstacle. Our method
to compute the boundary layer is related to the standard 3D panel method [KP01],
but our approach reduces the size of the resulting linear system by a factor of two.
In addition, we represent the image vorticity as a collection of vortex filaments on
the surface of the obstacle. Vortex shedding is modeled by releasing some of these
filaments into the flow.

Explicit flux computation: The computation of normal flux induced from a
polygonal vortex filament through another polygon is required both for obstacles and
reconnection. Its explicit integration (given in Appendix 3.A) is new and also of
interest for the numerics of boundary integral equations [SS04].

Validation: Vortex reconnection can be observed in experiments with real vortex
filaments: Two obliquely colliding vortex rings can merge into one big filament that
splits again into two separate rings [Lim89]. Head-on collision of two vortex rings can
result in a reconnection that leads to many small vortex rings [LN92]. For validation
we demonstrate how our method reproduces these real experiments (Figures 3.7, 3.8).
We also simulate vortex shedding behind a sphere and demonstrate the long-time
robustness of our method using a jet simulation.

3.2 Related work

Much work on 3D smoke simulations is based on Stam’s Stable Fluids [Sta99], together
with vorticity confinement [FSJ01]. We will not review the entire literature here and
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instead refer to the course notes [MJT08] and the references therein. Despite their
ongoing success, grid-based methods share some fundamental problems: The whole
fluid domain needs to be discretized, which requires knowledge of the overall behavior
of the simulation in advance. Aliasing effects occur due to preferred directions along
the grid axes. The large number of grid cells needed restricts the possible resolution,
even when using sparse grids. Real-time applications are only possible with coarse
grids.

The importance of vorticity for the believability and detailed structure of flows has long
been recognized as evidenced by the body of work geared at ensuring that vorticity is
not lost [SF93, FSJ01, Ney03, SRF05, KLLR05, ETK+07, NSCL08, KTJG08] or even
added in a user controlled way [PK05, PTSG09]. Simplicial fluids [ETK+07] preserve
circulation (and thus vorticity) by construction. Still there is dissipation of energy
which can be avoided using variational integrators for fluids [MCP+09]. Nevertheless
it is not possible to accurately resolve the one- or two-dimensional structures of
vorticity created at boundary layers even with high-resolution meshes.

Mesh-free methods used in computer graphics are mostly based on SPH [SF95,
DG96, MCG03, BT07, YWH+09] or vortex particles. Inviscid flow like smoke is
challenging for SPH. Vortex particles [PK05] have difficulties in maintaining the
solenoidal property of the vorticity field, which requires the vortex particles to align
along closed loops. Vortex particles have also been used with great success in hybrid
approaches [SRF05, CCB+08, PTSG09].

The use of vortex filaments as basic primitives for modeling 3D smoke was pioneered
by Angelidis and Neyret [AN05]. A more physically based method was introduced
in [WP09] in combination with a discrete integrable system that compensates for
discretization errors inherent to the polygonal vortex filament model. The excessive
increase of filament length makes long time simulations impossible, which has been
addressed in [ANSN06] by filtering high frequencies from the filament geometries. A
physically motivated approach was introduced by Chorin [Cho90, Cho93]: Hairpin
removal and filament reconnection. Chorin’s method was also used in [Ber06, MG07,
Ber09].

Real-time methods for 3D smoke simulation are mostly based on Semi-Lagrangian
methods using GPU techniques [CLT07, Kim08, Yan09a]. Reductions to 2D [RNGF03,
KW05] have also been used to improve performance. Model reduction [TLP06] can
significantly speed up simulations, but it requires extensive precomputations as well
as giant storage.

Vortex shedding from boundary layers has been modeled using vortex particles:
[PK05] compute the boundary layer using the standard 3D panel method [KP01].
[PTSG09] determine the boundary layer directly from the laminar flow computed
using a grid. Filaments on the other hand are better adapted than vortex particles to
the coherent structures that emerge anyway during vortex shedding. Therefore they
can yield realistic and detailed results with less computational effort.
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3.3 Filament dynamics

3.3 Filament dynamics

Filament-based fluid simulation makes use of the vorticity formulation of an ideal
fluid: The time-dependent velocity field v of the fluid is determined by its vorticity
field ω = curl v. Instead of computing the evolution of v directly, one computes the
evolution of ω. Given ω, v can be evaluated at arbitrary points. The vorticity field ω
itself is advected by the velocity field v that it generates.

Realistic flows can be approximated very accurately by vortex filaments, closed curves
along which the vorticity field is concentrated. Instead of having to track the evolution
of a vorticity field ω on the whole space, we only need to track the evolution of some
closed space curves. Therefore we do not need to discretize the whole fluid domain,
but just the space curves defining the vorticity field. As discretizations of the vortex
filaments we use polygons.

The basic algorithm of filament-based fluid simulation takes an initial configuration
of vortex filaments γ and computes the time evolution of this configuration for time
step ∆t. Each of these configurations γ|t0 , γ|t1 , . . . defines the velocity field v|ti at
time ti. This sequence is used to advect a set of marker particles.

We emphasize that our smooth filament model is a Hamiltonian system. This fact im-
plies for free the conservation of energy and momentum, which is extremely important
for physical realism and long-time robustness of the method.

3.3.1 Mathematical description

The velocity v of an incompressible fluid in R3 (which is at rest near infinity) can be
uniquely reconstructed from its vorticity field ω = curl v by the Biot-Savart formula:

vω(x) =
1

4π

∫
R3

ω(z)× x− z
|x− z|3

dz. (3.1)

The Euler equations of ideal fluid motion just say that ω is forward advected by the
velocity field it generates.

Let us now look at the situation where the vorticity ωγ of the fluid is concentrated on a
finite collection γ of closed oriented curves γi (the vortex filaments) in a delta-function
like manner: Then the generated velocity field (3.1) reduces to a sum of line integrals
along the filaments:

vγ(x) =
∑
i

Γi
4π

∮
γ′i(s)×

x− γi(s)
|x− γi(s)|3

ds.

Here Γi denotes the strength of the filament γi. It is the flux of vorticity through any
cross section of a tube surrounding the filament. Γi is constant along the filament,
since the vorticity field is divergence free. It is also constant in time by Kelvin’s
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3 Filament-based smoke with vortex shedding and variational reconnection

Figure 3.2: Vorticity and velocity field of a planar polygonal vortex filament γ,
smoothed by S0.1. Left: Trajectories of ω = S0.1ωγ. Right: Level lines
of |v| of the generated velocity field v = S0.1vγ.

theorem, because it is the circulation of velocity around the filament (Γi =
∮
〈v, η′i〉,

ηi a small loop around the tube).

A naive application of the general fact that vorticity is advected by the velocity would
then say that the filaments γi evolve by evaluating the velocity field vγ on the filament
points:

γ̇j(s) = vγ(γj(s)).

This is however problematic since vγ is infinite on the curves γi. Any realistic model
therefore has to consider filaments of a small non-zero thickness instead of infinitely
sharp ones. We achieve this by spreading out the delta-function like vorticity by
a suitable smoothing operator: For any (possibly vector-valued) function f and
parameter a define a smoothed version Saf by the convolution

(Saf)(x) =
3a2

4π

∫
R3

f(y)√
a2 + |x− y|2 5 dy.

Roughly speaking, a measures the distance over which delta functions are spread
out by Sa. Figure 3.2 illustrates the effect of Sa on a sharp planar polygonal vortex
filament. For our discussion it is important to know that the smoothing operator Sa
has a square root

√
Sa that is also given by convolution with a suitable kernel, see

[Sat99, Eq. (8.23)]. We do not have an explicit expression for
√
Sa but later we will

provide a good approximation.

Applying Sa to the velocity field vγ we obtain

(Sa vγ)(x) =
∑
i

Γi
4π

∮
γ′i(s̃)×

x− γi(s̃)√
a2 + |x− γi(s̃)|2

3 ds̃, (3.2)

which is known as the Rosenhead-Moore formula. It turns out that the corresponding
evolution equation for filaments

γ̇j(s) =
∑
i

Γi
4π

∮
γ′i(s̃)×

γj(s)− γi(s̃)√
a2 + |γj(s)− γi(s̃)|2

3 ds̃ (3.3)
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3.3 Filament dynamics

is an excellent model for filament-based fluid simulation. It models the evolution of a
vorticity field that is obtained from smoothing sharp filaments with

√
Sa. This looks

surprising at a first glance (why
√
Sa instead of Sa?), but in fact the advection of

filaments involves two smoothing operations: First the singular vector field generated
by the infinitely sharp filaments is smoothed. Then this vector field is averaged around
filament points in order to approximate the advection of the smoothed vorticity. The
total effect of both

√
Sa smoothing operations can be combined into smoothing once

with Sa.

Note however that a fluid evolving purely under Euler’s equation cannot be represented
exactly by a filament model: Any initially radially symmetric vorticity around the
filaments will deform and lose its symmetry. Thus it can no longer be represented by
filaments.

Nevertheless, system (3.3) evolves almost as under Euler’s equation, but with the
additional constraint that the vorticity field is always obtained from smoothing sharp
filaments with

√
Sa. Even though it is a slight modification of the original system, it

still conserves kinetic energy and momentum of the velocity field.

The physical interpretation of our filament model is obtained from inspection of the
underlying Hamiltonian system, given in [MW83, PSW07]: From the fact that Sa has
a square root

√
Sa given as a convolution (thus being self-adjoint), the Hamiltonian

Ha(γ) =

∫
R3

〈Savγ , vγ〉 =

∫
R3

〈
√
Savγ ,

√
Savγ〉

turns out to be in fact the kinetic energy T =
∫
R3 |
√
Savγ |2 of the velocity field√

Savγ . As a Hamiltonian system, both the kinetic energy T and the hydrodynamic
momentum

p(γ) =
1

2

∑
i

Γi

∮
γi × γ′i

are exactly preserved. The hydrodynamic momentum is proportional to the standard
definition of momentum

∫
R3

√
Savγ , see [Saf92].

Ha can also be computed using only integrals along filaments instead of the whole
space:

Ha(γ) =
∑
i,j

ΓiΓj
8π

∮ ∮ 〈γ′i(s), γ′j(t)〉√
a2 + |γi(s)− γj(t)|2

ds dt.

This reveals its geometric interpretation, which is particularly important for obsta-
cles (Section 3.4):

Ha(γ) =
1

2

∑
i

Γi fluxγi(Sa vγ).

Here fluxη(u) denotes the normal flux of the vector field u through a disc with
boundary η. In Appendix 3.A we show how to compute Ha(γ) explicitly in the case
of polygonal filaments.
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3 Filament-based smoke with vortex shedding and variational reconnection

Two problems remain to be solved: First, we do not have a good algorithm to compute√
Sa vγ , which would be the correct velocity field for advecting point particles. If

we had used the nicely computable field Sa vγ instead, we would have computed
the velocity of blurred particles (obtained by smoothing a delta function by

√
Sa).

Second, the assumptions that all filaments are spread out by the same amount seems
restrictive. One would like to be able to handle filaments with different thickness
parameters ai.

As a solution to both problems we propose to approximate Sa by the convolution S̃a
with a suitable heat kernel

Ka(x, y) =
1

(
√
πλa)3

e−|x−y|
2/(λa)2 .

The precise value of the constant λ does not matter for our argument, nor is it
important what type of approximation we use. What matters is only the way Ka

depends on a, which is obviously correct for dimensional reasons. Then, using Sa ≈ S̃a
and the well known formula (∗ denotes the convolution product)

S̃a ∗ S̃b = S̃√a2+b2

we arrive at the approximations

Sa ∗ Sb ≈ S√a2+b2 ,√
Sa ≈ S a√

2
,

√
Sa ∗

√
Sb ≈ S√

a2+b2

2

.
(3.4)

The proposed solution to the mentioned problems is therefore:

• Point particles are advected with the velocity field (3.2) with a2 replaced by
a2
i /2.

• Filaments evolve according to the evolution equation (3.3) with a2 replaced by
(a2
i + a2

j )/2.

This modification does not affect the excellent properties of the system. It is still
Hamiltonian and the kinetic energy is preserved up to the error made by our approxi-
mation for

√
Sai ∗

√
Saj .

3.3.2 Numerical formulation

The basic numerical method for filament-based fluid simulation that we are using was
given in [WP09]: We replace the smooth filaments by polygons, then we advect each
polygon vertex xjk (the k-th vertex of the polygon γj) according to the evolution
equation (3.3) for filaments:

ẋjk = (Saijvγ)(xjk). (3.5)
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3.4 Obstacles

Figure 3.3: Vortex filaments that force a constant background flow to be tangential
to the bunny. Inside the velocity is almost zero. The mesh has 678
vertices and 1352 facets.

Here Saijvγ denotes the velocity field (3.2) with a2 replaced by (a2
i +a2

j )/2 as described
above. Saijvγ is given as a sum of integrals over the closed polygons γi. Each integral
can be evaluated explicitly as a sum over the polygon edges. The explicit formula
is given in [WP09]. The evolution equation for the filament vertices (3.5) is a time-
independent first order ODE, which can be solved for given time step ∆t with an
explicit ODE solver. Given an initial configuration of polygonal vortex filaments
γ|t0 , we obtain the next configuration γ|t1 , t1 = t0 + ∆t in the time evolution of γ by
numerical integration of the initial value problem

x|t1 = x|t0 +

∫ ∆t

0
(Saijvγ)(x) dτ, x|τ=0 = x|t0 .

Here we have used x as short hand for xjk. However this evolution is known to
lead to discretization errors that stem from the fact that adjacent edges do not
contribute to the velocity field at a vertex. This effect can be compensated using
the doubly-discrete smoke ring flow, a correction step that is applied before each
numerical integration. This step yields an important increase in the physical realism
of the simulation, especially for coarse polygons. The mathematical description can
be found in [PSW07], the concrete implementation of the method is given in [WP09].
Iteration of these two steps finally gives the evolution of the discrete vortex filaments.

3.4 Obstacles

Filament based fluid simulation is not confined to any box containing a grid but
takes place in unbounded space. This advantage is at the same time a limitation
since it is not clear how to treat obstacles (walls, terrain, moving characters . . . ).
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3 Filament-based smoke with vortex shedding and variational reconnection

Here we explain how to incorporate arbitrary moving obstacles. In fact there is
a way to replace obstacles dynamically by certain sets of closed vortex filaments
placed on the surface of the obstacles, as shown in Figure 3.3. These vortex filaments
are given as level sets of a scalar function on the obstacle surface. This makes our
approach coherent in the sense that the whole simulation is purely driven by filaments.
Moreover, we gain the possibility to simulate vortex shedding by letting some of these
filaments diffuse away from the obstacles into the surrounding flow.

3.4.1 Mathematical model

Consider an obstacle with smooth boundary M and a fluid velocity field v that has
a scalar potential near M . For instance, v can include velocity generated by vortex
filaments but also background flow and rigid motion of the obstacle. Now we can
construct a vortex sheet on M in such a way that the velocity field vM generated by
the vortex sheet compensates the normal component of v: The superimposition of v
and vM makes the fluid flow around the obstacle, i.e., v + vM is tangent to M .

This vortex sheet is defined by a scalar function f on M and the velocity field that it
generates is

vM (p) =
1

4π

∫
M

(N × grad f)(q)× p− q
|p− q|3

dq. (3.6)

Here dq denotes the area element of M . Note that grad f is tangent to M and
therefore N × grad f is grad f rotated by 90◦ around N .

The function f on M is determined uniquely (up to a constant) by the condition that
the normal component of the velocity field vM given by Equation (3.6) cancels the
normal component of v:

〈v(q), N(q)〉+ 〈vM (q), N(q)〉 = 0. (3.7)

The vortex sheet on M obtained in this way is called the image vorticity [Saf92].

Comparison of the sheet velocity field (3.6) with the Biot-Savart law (3.1) reveals that
the vorticity ωM of the sheet is concentrated along the vector field κ = N × grad f on
M . The field lines of κ are precisely the level lines of f , since grad f is perpendicular
to these level lines. From this observation it is intuitively clear that the vortex sheet
can be approximated by a choice of certain level lines as filaments with appropriate
strength. We will now deduce how to choose these levels and their strengths.

Near a point q ∈ M where grad f does not vanish one can introduce coordinates
(s, f) where f itself is one of the coordinate functions and s provides an arclength
parameter on each level line of f . Then in these coordinates

∂q

∂s
=
N × grad f

| grad f |
, ds df = | grad f | dq
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3.4 Obstacles

and the integral in Equation (3.6) can be expressed locally as∫
∂q

∂s
× (p− q)/|p− q|3ds df.

This local information leads to the following global picture: Let y be a regular value of
f . Then the preimage f−1(y) is the union of finitely many closed level lines γ1, . . . , γn
on M . Let us denote by vy the velocity field generated by γ1, . . . , γn considered as
vortex filaments of unit strength. Then vM can also be computed as

vM =

∫ ∞
−∞

vy dy.

This integral can now be conveniently approximated by summing up the values of vy
at equidistant samples with distance Γ > 0:

vM ≈
∞∑

i=−∞
Γ viΓ = vγM .

Here Γ viΓ denotes the velocity field generated by the preimage f−1(iΓ) as vortex
filaments of strength Γ. Most of the preimages will be empty, but for iΓ in the range
of f it is a finite set of closed level lines on M . Thus we obtain a finite set of vortex
filaments with strength Γ generating a velocity field vγM that approximates vM . In
the limit Γ→ 0 we obtain the original velocity field vM .

Depending on the value chosen for Γ we either obtain a larger number of weak
filaments (for small Γ) or a smaller number of strong filaments (for larger Γ). The
quality of the approximation vM ≈ vγM increases with smaller Γ. In our application
Γ needs to be chosen such that the approximation is sufficiently accurate while the
number of filaments is small.

3.4.2 Polygonal discretization

For the discretization we assume that the surface of the obstacle is given as a polygonal
mesh M . First we approximate f by a function that it is constant on the facets φi
of M . Consider such a function f with values fi on the facets: The gradient of f is
concentrated in a singular way between adjacent facets, i.e., on the edge graph of the
mesh. Thus, by a 90◦ rotation, the vorticity of the sheet is concentrated along the
edges, and the strength of an edge eij (between the facets φi and φj) is the difference
fj − fi. Therefore, the vortex sheet in this case is obtained by superimposing the
boundary polygons ηi of the facets φi as vortex filaments of strength fi. At each
vertex the sum of the strengths satisfies Kirchhoff’s law, i.e., incoming intensity equals
outgoing intensity. This reflects the fact that the vorticity field is divergence free.
Thus we have discretized the vorticity in the boundary layer of M as a “divergence free
vector field” concentrated on the edge graph of M . This fits in with the philosophy
of discrete exterior calculus [DKT08].
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3 Filament-based smoke with vortex shedding and variational reconnection

Figure 3.4: Filament approximation of vortex sheets: The piecewise constant f
on the dual mesh gives vorticity on the edge graph (left). f linearly
interpolated on the primal triangle mesh yields vorticity along level lines
(right).

Now we smooth the singular vorticity on the edge graph with thickness parameter a.
This corresponds to a non-zero thickness of the boundary layer. Equation (3.7) turns
into a linear system, stating that the total normal flux through each φi is zero:∑

j

fj fluxηi(Savηj )︸ ︷︷ ︸
aij

= −fluxηi(v)︸ ︷︷ ︸
gi

. (3.8)

The matrix entry aij is the normal flux through φi of the velocity field induced by the
boundary polygon ηj as a unit strength vortex filament of thickness a (Appendix 3.A).
Since each edge participates with opposite orientation in two faces, turning on all
faces with the same vorticity has no effect at all. So the vector {1, . . . , 1} lies in the
kernel of the matrix A = (aij), and in fact it spans the kernel for connected obstacles.
By Stokes’ theorem the total flux

∑
j ai,j vanishes, so the range of A is the orthogonal

complement of {1, . . . , 1}. Fortunately, for the same reason also the right hand of
Equation (3.8) lies in this space, so the linear system has a unique solution.

For a static obstacle the matrix A can be precomputed and prefactored, so the main
computational cost during the simulation is the repeated evaluation of the right hand
side y in Equation (3.8).

For a single rigidly moving obstacle the only change is that we have to add to the
right hand side gi the flux through φi resulting from the rigid motion (Appendix 3.B).
This adds only little to the total cost. On the other hand, for several obstacles moving
independently, the off-diagonal blocks in the matrix A correspond to the interaction
of different obstacles. These need to be recomputed continuously.

Note that the flow we generate is not perfectly tangent to the original triangle mesh,
but the net flux of the flow through each face vanishes.

The piecewise constant f on the facets φi determines a vortex sheet whose vorticity
is concentrated on the edge graph of M . To approximate such a sheet by filaments
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3.5 Variational reconnection

as for smooth obstacles, we need a smoothed version f̃ of f . We obtain f̃ by linear
interpolation of a function f̂ that has values on the vertices of M . This f̂ is obtained
directly from the dual mesh M∗ of M : Compute f as described above for the dual
facets φ∗i and take it as a function f̂ on the primal vertices. If M is a triangle mesh
(which we assume), we can interpolate f̂ to a function f̃ that is linear on the triangles.
The level sets f̃−1(iΓ) are then polygons lying on M , as shown in Figure 3.4.

For convincing results the distance between subsequent levels should match the sheet
thickness a. When the distance between subsequent levels is too big, the flow does
not follow the obstacle surface properly, wavy motion along the surface occurs. The
distance depends on both the velocity field v and the level spacing Γ. Depending on
the scenario Γ has to be chosen properly.

3.4.3 Vortex shedding

Vortex shedding occurs when the boundary layer diffuses away from the obstacle due
to viscosity and is subsequently swept along with the fluid. Even in the limit of zero
viscosity this effect cannot be discarded. It is well-known that the shed vortex sheets
quickly roll up into one-dimensional core structures [GA88, RVJ00]. Thus separation
effectively happens in chunks of thick vortex filaments. This is in fact the key reason
why filament based smoke simulation is so strikingly effective in modeling natural
phenomena.

The filament discretization of vortex sheets enables us to directly model vortex
shedding: By releasing filaments into the flow. After a fixed time delay, one or more
vortex filaments of γM are added to the set of filaments γ. Before releasing a filament,
we apply an offset of length a/2 in normal direction of the obstacle.

Our experiments show that the behavior of the simulation is surprisingly indifferent
to the particular choice of filaments we choose to release into the flow. This is because
the released filaments approximately slide downstream along the obstacle, taking
successively the position of other levels we could have chosen. In the beginning of a
simulation, the released filaments start to substantially move away from the obstacle
only near downstream stagnation points. Later on the influence of the already shed
filaments makes newly shed filaments depart from the obstacle at also earlier stages.
As long as the released filaments enclose the major downstream stagnation points
(local minima of the function f̃) we obtain realistic wakes behind the obstacles. In
practice we choose all filaments that are closest to the local minima of f̃ .

3.5 Variational reconnection

As has been observed by Chorin [Cho90, Cho93], filament based modeling of fluids
runs into a fundamental problem: nearby portions of filaments that are approximately
anti-parallel attract each other and form long stretches where two oppositely oriented
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3 Filament-based smoke with vortex shedding and variational reconnection

filament pieces nearly coincide with opposite orientation. The effects of these portions
of the filaments on the overall flow approximately cancel out, so they could safely be
removed from the computation. The problem is made worse by the fact that in the
long run these unnecessary double strands of filaments get stretched and convoluted
by the flow which leads to an exponential increase in the number of polygon edges
needed to capture the geometric complexity of the filaments.

The solution to this problem is to eliminate almost anti-parallel nearby portions of
filaments by changing the filament topology. This process is called vortex reconnection.
In his seminal papers on this subject Chorin [Cho90, Cho93] used many weak filaments
to model a fluid with spread-out vorticity. He decides whether to reconnect a pair of
polygon edges using a geometric criterion based on the distance between the edges
and their directions. He only allows one reconnection per filament and time step since
iterative computation of all reconnections is not guaranteed to terminate: Back and
forth reconnection is possible.

We propose a variational approach: Given a configuration γ of filaments that need
reconnection we determine a new configuration η optimally matching the two following
objectives:

• The velocity field generated by η should be as close as possible to the one
generated by γ.

• The total length of η should be as small as possible.

Let us look at the situation where two of the filaments γi get close to each other in such
a way that reconnection is desirable. Then both filaments necessarily must have the
same strength Γ, otherwise the construction would lead to a vorticity graph (like on the
edge graph of an obstacle). Moreover, since filaments with a thickness varying along
the filament are not an option for us, we assume that both filaments have the same
thickness a. For a configuration with different thicknesses and strengths reconnections
are computed for each subset of filaments with same strength and thickness. The
reconnection could also take place between different portions of the same filament, so
for simplicity we think of the two filaments as a possibly disconnected single filament
γi. If we change γi into a new configuration and keep all the other filaments not
participating in the reconnection the same, the difference in the generated velocity
field will be just the velocity field generated by ηi− γi. Here −γi denotes the filament
γi with the reversed orientation. This means that we can ignore the other filaments
and assume without loss of generality that there is only one filament (possibly having
two connected components). So henceforth we drop the index i. As a measure of
closeness d(η, γ) between the velocity fields generated by the two configurations η
and γ we use the L2-norm of the velocity field generated by η − γ:

d2(η, γ) =

∫
R3

|
√
Sa vη−γ |2.

Denoting the length of η by L(η) we then want to minimize

F (η) = λΓL(η) + d(η, γ). (3.9)
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3.5 Variational reconnection

Figure 3.5: Variational reconnection. Two nearby filaments are reconnected to one
single filament. Variation of the reconnected filament according to gradF
significantly improves the geometry.

Here λ is a constant parameter that still is to be determined. Setting λ to zero would
lead to the original configuration γ as the absolute minimum of the functional (3.9).
λ > 0 means that we try to reduce the length of η while still trying to remain close
to γ. The use of the non-smooth functional d (instead of d2) comes from the fact
that we want to model discontinuous changes. The situation is similar to dry friction,
where sliding down a slope only occurs when it is steep enough.

A further use of the functional (3.9) can be to improve the filament geometry after
reconnection by numerically minimizing F to mend the geometric artifacts created
by connecting polygon points in a different way. This is shown in Figure 3.5. We see
this as an optional step in the algorithm that can be omitted when simulation speed
is the main issue.

Our main use of the Functional F is that it provides a unified criterion for deciding
whether or not reconnection or hairpin removal should be performed between portions
of a (possibly disconnected) filament. The goal is to reconnect whenever reconnection
results in a lower value of the functional F , i.e., F (η) < F (γ). The velocity field
induced by the difference of the two configurations η − γ is equivalent to the field
induced by a single closed filament δ:

γ δ η

Let us denote the four segments of δ by δt, δb, δl, δr (top, bottom, left, right) and
compute

F (η)− F (γ) =

= λΓ(L(η)− L(γ)) +

√∫
R3

|
√
Sa vδ|2

= λΓ(L(δt) + L(δb)− L(δl)− L(δr)) + Γ
√

fluxδ(Savδ).

Thus we reconnect whenever

L(δt) + L(δb)− L(δl)− L(δr) +
√

fluxδ(Savδ)/λ < 0. (3.10)
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3 Filament-based smoke with vortex shedding and variational reconnection

This criterion provides a unified approach both to reconnection and to hairpin removal.
For polygonal filaments this specializes to the following: For two edges el = (x1, x2),
er = (x3, x4), the corresponding filament δ is the quadrilateral with vertices x1, x2,
x3, x4. We reconnect the two edges when Equation (3.10) is satisfied.

In the special case that two adjacent edges (with zero or one intermediate edges) are
reconnected, one obtains a degenerated filament consisting of one or two vertices.
Such a filament does not generate any velocity and is therefore discarded. The
reconnection is then in fact a hairpin removal [Cho93].

Note that our criterion implies that reconnection can only occur when the distance
between the two edges is smaller than the edge length. Thus, for short edges (shorter
than a), one has to consider not only single edges but polygon segments consisting of
several consecutive edges. We avoid these additional calculations by maintaining a
roughly uniform edge length using adaptive subdivision of the polygons.

Although reconnection does change energy and momentum, our experiments show
that in typical situations these changes occur in a way that is sufficiently random to
not cause any systematic drift. Visually the results are very similar to simulations
without reconnection, see Figure 3.6.

3.6 Implementation

The central task of filament-based fluid simulation is to compute the evolution
of an initial configuration of filaments. In each step, the filament configuration
defines a vector field on R3 via the Biot-Savart law (3.2). The evolution thus gives
a time-dependent vector field which is used to advect marker particles. For our
implementation we use the basic simulation method described in Section 3.3.2 and
extend it with our enhancements for obstacles, vortex shedding and reconnection.
Each simulation step of the filament evolution consists of the sub steps:

(a) Apply doubly-discrete smoke ring evolution to compensate discretization errors
[WP09].

(b) Advect filaments according to the evolution equation (3.11) for time step ∆t.

(c) Add shed vortex filaments from obstacles.

(d) Drop edges that are too short and subdivide long edges.

(e) Reconnect all edge pairs that fulfill the criterion (3.10).

(f) Drop degenerate filaments (with less than 3 vertices).

Edge removal is realized by collapsing short edges to their center point. For subdivision
we use cubic interpolation. To avoid comparing all edge pairs in (e) we use spatial
hashing.
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Figure 3.6: Simulation of a jet. Without reconnection we end up with 2560 edges
after 600 simulation steps in contrast to 882 edges with reconnection.
Note the almost identical structure of the particle evolutions with and
without reconnections.

3.6.1 Filament advection with obstacles

Filament advection is a first-order ODE ẋ = F (t, x), where t is time and x the vector
of filament vertices, compare with Section 3.3.2. In case of a moving obstacle the
ODE is time-dependent. F is evaluated as follows: t defines the current obstacle
pose, the filament vertex vector x defines the current filament set γ. Together with
obstacle motion and possibly a background flow vB the filaments γ determine a set
of image vortex filaments γM on the obstacle. F is then given as the background flow
vB combined with the velocity field generated by the filaments γ ∪ γM :

ẋi = vB(xi) + (Saijvγ∪γM )(xi). (3.11)

Evaluating the right-hand side of Equation (3.11) amounts to

(a) compute image vorticity filaments γM on the obstacle,

(b) evaluate the background flow vB and the velocity field induced by γ ∪ γM at
the vertex positions xi, see Equation (3.5).

The filaments γM are obtained as follows:

• For the dual faces of the triangulated obstacle surface M compute the normal
flux g from the velocity field induced by the vortex filaments γ, from background
flow, and from rigid motion of the obstacle.

• Solve the linear system Af̂ = g. A is the precomputed obstacle matrix for the
dual mesh M∗. To solve the linear system we replace the matrix A = (aij) by
Ã = (aij + ε), which has full rank and yields the solution for the original system.
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3 Filament-based smoke with vortex shedding and variational reconnection

• Take f̂ as a function on the primal vertices and denote by f its piecewise
linear interpolation on the triangles. Determine all level sets f−1(iΓ) with
iΓ ∈ [fmin, fmax]. Each level set consists of one or more closed polygons lying
on M .

• Add each polygon as a vortex filament with strength Γ to the set of image
vorticity filaments γM .

To compute the normal flux of velocity (required for the entries of the obstacle
matrix A as well as for the right hand side g), we use analytical evaluation for nearby
filaments and one point quadrature for far away filaments (see Appendix 3.A). Rigid
motion flux is computed as described in Appendix 3.B.

To determine the closed level sets we represent the triangle mesh M using a half-edge
data structure [Wei85].

To advect the filament vertices we solve the ODE (3.11) for time step ∆t using either
standard Runge-Kutta with fixed step size (RK2 or RK4) or a more sophisticated ex-
plicit solver when high accuracy is required. For instance the colliding vortex filaments
shown in Section 3.7 were computed using a Dormand-Prince 5/4 solver [DP80].

3.6.2 Parallelization

Evaluating the velocity field (and also the flux) becomes expensive for a large number
of filament edges. Nevertheless we achieve excellent performance even for complex sce-
narios via parallelization. Our implementation uses jReality [WGB+09] for rendering
and interaction. Particle advection via a GLSL shader is integrated into the rendering
pipeline. After each simulation step the current set of filament edges (from γ and γM )
is transferred to the GPU, and particles are advected for the current time step using
the mid-point scheme. CUDA is used to achieve interactive rates for scenarios with
many filament edges and obstacles: The evaluations of the velocity field at filament
vertices (Equation (3.11)) and the flux evaluations through the obstacle facets (the
RHS of Equation (3.8)) are computed simultaneously for different vertices/facets.

3.7 Results and Discussion

We have chosen three different scenarios to demonstrate physical accuracy, plausibility,
long-time stability and performance of our method.

Colliding vortex rings: We compare physical experiments of colliding vortex
rings [LN92, Lim89] with our simulation. Videos of the real experiments can be
found on youtube (head-on, oblique). Both scenarios work out-of-the-box with our
simulator, fast enough to run with 65,536 particles at 25 fps. The oblique collision
(Figure 3.7) was computed this way. For the head-on collision (Figure 3.8) though we
had to use a 40 times smaller time-step because we had to trace particles in a very
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3.7 Results and Discussion

Figure 3.7: Oblique collision of two vortex rings. Comparison with real experiments
by T. T. Lim, with permission.
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3 Filament-based smoke with vortex shedding and variational reconnection

Figure 3.8: Head-on collision of two vortex rings. Comparison with real experiments
by T. T. Lim, with permission.
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3.7 Results and Discussion

Figure 3.9: Number of edges used to simulate a jet (Figure 3.6). Circular filaments
are added at a fixed rate at the orifice, thus the total number of edges
added to the simulation grows linearly (blue). Without reconnection, the
number of edges grows exponentially fast due to subdivision (red). With
variational reconnection, the number of edges grows slowly (depending
on λ) and long time simulations are possible.

thin tube around the filaments. The mid-point scheme used for particle advection had
difficulties keeping the particles close to the filaments when using large time-steps.
The initial filaments are regular 16-gons, with each edge split into two segments by
linear interpolation. This accounts for the 16-fold symmetry of the result. Lim reports
that the number of small filaments that emerge from the collision varies from run to
run. Both in our simulation and in the experiments slight deviations of the initial
filaments from being round determine which frequency will dominate in the end.

Long-time jet simulation: We compare the number of edges required to simulate
a jet with and without reconnection. A jet is simulated by repeatedly emitting
new circular filaments at a fixed but slightly distorted position, to break symmetry.
Figure 3.6 shows the the simulations after 600 steps. We add a new filament (consisting
of 16 edges) every 20th iteration, i.e., the number of edges added to the simulation
grows linear over time (blue graph in Figure 3.9). Without reconnection, the number
of polygon edges increases exponentially fast due to subdivision (red graph), which
makes long-time simulations impractical. With reconnection (green graphs) we can
easily achieve sub-linear growth, depending on the particular value of λ. Thus
we are able to simulate over arbitrary long simulation times without explosion of
computational costs.
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3 Filament-based smoke with vortex shedding and variational reconnection

Wake behind a sphere: Using our method for vortex shedding we achieve
realistic wakes behind objects, as shown for an ellipsoid in Figure 3.1. The wake
behind a sphere from our simulation is compared to a photograph of an experiment
by Henri Werlé [Dyk82] in Figure 3.10. Different wake patterns (Figure 3.11) can be
achieved by varying the amount of vorticity shed into the flow.

Performance: The method does not scale nicely with the number of filament
edges and marker particles, because each evaluation of the velocity field requires
summation over all filament edges. Nevertheless we achieve good performance even
for complex scenarios using parallelization (Section 3.6.2): All of the figures included
in this paper are frames from simulations running at about 1 fps on our test machine
(Core 2 Extreme CPU X9650 3.00GHz, GeForce 8800 Ultra), using 1,048,576 marker
particles. Animations that are less optimized for quality but still detailed and plausible
(i.e., with less particles) easily run at 20 fps or more. Note in particular that the
filament simulations without particles always run at interactive rates. Since the
filaments contain all information of the fluid motion, effects designers can work with
a real time tool that shows the full information of the fluid motion with a moderate
amount of particles.

3.8 Conclusion and outlook

Our method allows the simulation of 3D fluid flow around obstacles with vortex
shedding. It is fast enough to run at interactive rates while achieving resolutions that
are challenging for previous methods. Long-time simulations are possible through
the use of reconnection, which keeps the number of filament edges low. Our new
reconnection criterion is based on a variational principle, which also improves the
overall geometry of the filaments. We have validated our implementation by repro-
ducing real experiments of colliding vortex rings and realistic wakes behind objects.
We emphasize that the algorithm is sufficiently robust and efficient to be used as an
interactive tool for effects artists and in game engines.

Further work is needed to make large scenes tractable: LOD is needed to speed up
velocity field evaluations. This will make the method scale much better with the
number of marker particles and the number of filament edges. For scenes containing
many moving obstacles some hierarchical scheme is required, e.g., hierarchical matri-
ces [BGH03]. A model for vorticity creation due to buoyancy is required to simulate
the turbulent motion of hot gas. Forces exerted by the fluid on movable obstacles
can be simulated via virtual momentum [Saf92]. Furthermore, we want to find ways
to handle free surfaces using filaments. This would enable us to simulate water with
an interface to air.
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3.8 Conclusion and outlook

Figure 3.10: Wake behind a sphere. Comparison of a photo by Henri Werlé (colors
inverted) with our simulation. Reproduced with permission of ONERA,
The French Aerospace Lab.

Figure 3.11: Different wake patterns behind a sphere. The simulations differ only
in the rate at which image vorticity filaments are released into the flow.
Note the transition to turbulence from right to left.
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3 Filament-based smoke with vortex shedding and variational reconnection

3.A Flux evaluation

For two polygons γ and η we need to compute the normal flux of the velocity field
Savγ (generated by γ) through a disk D with boundary ∂D = η:

fluxη(Savγ) =

∫
D
〈Savγ , N〉 dA.

Here N denotes the surface normal and dA the area element. When the distance
between the two filaments η and γ is large we can approximate the flux by a simple
one point quadrature. For nearby filaments the velocity field becomes almost singular,
here the explicit formula is needed. This is most significant for the self-flux fluxη(Savη),
which occurs in the diagonal entries of the obstacle matrix (Equation (3.8)) and in
the reconnection criterion (3.10).

One point quadrature

Given that Savγ is generated by a vortex filament that is far away from D, Savγ is
approximately constant over the whole disk. Let η1, . . . , ηm be the vertices of η. We
use the approximation

cη =
1

m

∑
ηi,

Iη =
1

2

∑
ηi × ηi+1,

fluxη(Savγ) ≈ 〈(Savγ) (cη), Iη〉.

Analytic evaluation

The vector potential ψγ of velocity field Savγ generated by a single smoke ring γ with
unit strength Γ = 1 is

ψγ(x) =
1

4π

∮
γ′(s)√

a2 + |x− γ(s)|2
ds,

and we can apply Stokes’ theorem in order to compute the flux through a disk bounded
by η:

fluxη(Savγ) =

∮
η
〈ψγ , η′(t)〉 dt.

Let us denote the polygon edges by liSi = γi+1 − γi and LjTj = ηj+1 − ηj , with unit
vectors Si and Tj . Then,

fluxη(Savγ) =

=
∑
i,j

〈Si, Tj〉
4π

∫ li

0

∫ Lj

0

ds dt√
a2 + |(ηi − γi) + tTj − sSi|2
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3.A Flux evaluation

and we have to compute

f =

∫ l

0

∫ L

0

ds dt√
a2 + |p+ tT − sS|2

(3.12)

for each pair of edges. We make use of the fact that the quadratic polynomial
|p+ tT − sS|2 − |p|2 defines a positive definite quadratic form r on the s, t-plane,
given that S and T are not collinear (in this special case we obtain a much simpler
formula which we will derive later). Computing the principal axes of r we obtain

f =

∫
M(�)

1

|detG|
1√

K2 + r2
, � = [0, L]× [0, l]

where M is the affine map

M :
(s
t

)
7→ G

(s
t

)
+H,

G =
1

2

(
|S − T | |S − T |
|S + T | − |S + T |

)
, H = −

(
〈p, S−T|S−T |〉

〈p, S+T
|S+T |〉

)
.

Here H is the projection of p onto the span of S and T , K2 = a2 + |p−H|2 and
detG = − sinα, where α ∈ [0, π] is the angle between S and T .

We rephrase f as integration of the two-form du ∧ dv/
√
K2 + r2 and apply Stokes’

Theorem. Let us denote the corners and edges of the parallelogram M(�) by Ai and
`iBi = Ai+1 −Ai. Then

f =
1

detG

∫
M(�)

du ∧ dv√
K2 + r2

=
1

detG

∫
∂M(�)

udv − vdu√
K2 + r2 +K

=
1

detG

∑
i=1...4

∫ `i

0

〈Ai + ξBi, JBi〉 dξ√
K2 + |Ai + ξBi|2 +K

=
∑
i=1...4

det (Ai, Bi)

detG

∫ `i

0

dξ√
K2 + |Ai + ξBi|2 +K

.

For small detG this formula can cause numerical issues that can be controlled by
means of the right factorization depending on whether S → T or S → −T . It remains
to find an anti-derivative of

1

K +
√
K2 + |Ai + ξBi|2

=
1

K +
√
K2 + P (ξ)︸ ︷︷ ︸

Q(ξ)

.
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3 Filament-based smoke with vortex shedding and variational reconnection

Rewrite the quadratic polynomial P (ξ) as (ξ + C)2 + D2, with C = 〈A,B〉 and
D2 = |A|2 − 〈A,B〉2. For D > 0 an anti-derivative is given by

K

D

(
atan

D

C + ξ
− atan

DQ(ξ)

K(C + ξ)

)
+ log (C + ξ +Q(ξ)) ,

which reduces in the limit D → 0 to

− C + ξ

K +Q(ξ)
+ log (C + ξ +Q(ξ)) .

Parallel edges: For the case that S = ±T , the contribution of a single edge pair
(Equation (3.12)) becomes

f =

∫ l

0

∫ L

0

ds dt√
K2 + ((t∓ s) + 〈p, T 〉)2

,

with K2 = a2 + |p|2 − 〈p, T 〉2 ≥ a2. Here an anti-derivative is given by

±
(√

K2 +X2 −X log
(
X +

√
K2 +X2

))
,

where we have used X as short hand for 〈p, T 〉+ (t∓ s).

3.B Flux from rigid motion

We assume that the rigid motion g is a screw motion over the current time step ∆t.
It is determined by an element ġ = (θω, hω − θω × c) in the Lie algebra se(3) of the
Lie group SE(3) of rigid motions. The flux through the polygon η with vertices ηi is
given by

fluxη(ġ) =
1

∆t
(〈Aη, θω〉+ 〈Iη, hω − θω × c〉) ,

where

Iη =
1

2

∑
ηi × ηi+1,

Aη =
∑ ηi − ηi+1

2

(
|ηi+1 − ηi|2

3
+ 〈ηi, ηi+1〉

)
.

To determine θ, h, ω and θω×c we assume that the initial obstacle pose is the identity,
and its final pose (after the time step) is given as a rotation matrix R together with
a translation vector T (see also [Ang04]). Then θω is obtained from

R−RT = 2 sin(θ)ω,
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3.B Flux from rigid motion

where the anti-symmetric 3 × 3-matrices are identified with R3. We further know
that the translation vector is given by T = c − Rc + hω with c ⊥ ω, Rc ⊥ ω. This
yields h = 〈T, ω〉.

Denoting a rotation with axis α and rotation angle |α| by Rα we finally obtain

−θω × c =
θ

2 sin θ
2

R− θ
2
ω(Rc− c).
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Directions for future research

Regarding the performance and scalability of the method, further research is required
to reduce the quadratic complexity of the filament simulation. The velocity field
needs to be evaluated more efficiently, e.g., using a tree code as in [LK01] adapted
to filaments. The same holds for obstacles: Many moving obstacles are not possible
at interactive rates. Here an hierarchical scheme (e.g., based on hierarchical matri-
ces [BGH03]) is required, based on low-rank approximations for interaction between
far away obstacle parts.

To further improve the stability of our method we want to develop a variational
integrator that preserves kinetic energy and momentum of the fluid. Concerning
extensions of the physical model, we want to include buoyancy effects, deformable
obstacles, free surfaces and the two-way coupling between fluid and obstacles.

We also want to derive a relation between the Reynolds number and the parameters
that occur in our method to simulate vortex shedding (frequency, offset, circulation).
This would allow to determine these parameters directly from the chosen obstacle
size, background velocity and fluid material (e.g., water or smoke).
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