
UNIVERSITY OF NAVARRA

ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES

DONOSTIA-SAN SEBASTIÁN

A STOCHASTIC PARALLEL METHOD FOR

REAL TIME MONOCULAR SLAM APPLIED

TO AUGMENTED REALITY

DISSERTATION
submitted for the

Degree of Doctor of Philosophy
of the University of Navarra by

Jairo R. Sánchez Tapia

Dec, 2010

http://www.eg.org
http://diglib.eg.org

A mis abuelos.

Agradecimientos

Lo lógico hubiese sido que la parte que más me costara escribir de la Tesis fuera
la que la gente fuese a leer con más atención (el capı́tulo que desarrolla el método
propuesto, por supuesto). Por eso resulta un tanto desconcertante que me haya
costado tanto escribir esta parte. . .

Me gustarı́a empezar agradeciendo a Alejo Avello, Jordi Viñolas y Luis Matey
la confianza que depositaron en mi al aceptarme como doctorando en el área de
simulación del CEIT, ası́ como a todo el personal de administración y servicios
por facilitar tanto mi trabajo. Del mismo modo, agradezco a la Universidad de
Navarra, y especialmente a la Escuela de Ingenieros TECNUN el haber aceptado
y renovado año tras año mi matrı́cula de doctorado, ası́ como la formación que
me ha dado durante este tiempo. No me olvido de la Facultad de Informática de
la UPV/EHU, donde empecé mi andadura universitaria, y muy especialmente a su
actual Vicedecano y amigo Alex Garcı́a-Alonso por su apoyo incondicional.

Agradezco también a mi tutor de prácticas, director de proyecto, director de
Tesis y amigo Diego Borro toda su ayuda. Han sido muchos años hasta llegar aquı́,
en los que además de trabajo, hemos compartido otras muchas cosas.

La verdad es que como todo doctorando sabe (o sabrá), los últimos meses de
esta peregrinación se hacen muy duros. El concepto de tiempo se desvanece, y
la definición de fin de semana pasa a ser “esos dı́as en los que sabes que nadie
te va a molestar en el despacho”. Sin embargo, dicen que con pan y vino se
anda el camino, o en mi caso con Carlos y con Gaizka, que además de compartir
este último verano conmigo, también me han acompañado durante todo el viaje.
Gracias y V’s.

Me llevo un especial recuerdo de los tiempos de La Crew. En aquella época
asistı́ y participé en la creación de conceptos tan innovadores como la marronita,
las torrinas o las simulaciones del mediodı́a, que dificilmente serán olvidados. A

iii

todos vosotros os deseo una vida llena de pelı́culas aburridas.

Como lo prometido es deuda, aquı́ van los nombres de todos los que
colaboraron en el proyecto Una Teja por Una Tesis: Olatz, Txurra, Ane A., Julián,
Ainara B., Hugo, Goretti, Tomek, Aiert, Diego, Mildred, Maite, Gorka, CIBI,
Ilaria, Borja, Txemi, Eva, Alex, Gaizka, Imanol, Álvaro, Iñaki B., Denix, Josune,
Aitor A., Javi B., Nerea E., Alberto y Fran.

También me gustarı́a mencionar a todas las criaturas que han compartido
mazmorra conmigo, aunque algunos aparezcan repetidos: Aitor “no me da
ninguna pena” Cazón, Raúl “susurros” de la Riva, Carlos “Ignacio” Buchart,
Hugo “estoy muy loco” Álvarez, Gaizka “no me lies” San Vicente, Goretti
“tengo cena” Etxegaray, Ilaria “modo gota” Pasciuto, Luis “apestati” Unzueta,
Diego “que vergüenza” Borro, Maite “cállate Carlos” López, Iker “visitación”
Aguinaga, Ignacio M., Aitor O., Alex V., Yaiza V., Oskar M., Javi Barandiarán,
Iñaki G., Jokin S., Iñaki M., Denix, Imanol H., Álvaro B., Luis A., Gorka V., Borja
O., Aitor A., Nerea E., Virginia A., Javi Bores, Ibon E., Xabi S., Imanol E., Pedro
A., Fran O. y Meteo R.

Entre estas lı́neas también hay hueco para los personajes de mi bizarra
cuadrilla, a.k.a.: Xabi, Pelopo, Iker, Olano, Gonti, Peña, Gorka, Julen, Lope, Maiz,
y los Duques Inaxio y Etx.

And last but not least, agradezco a mi familia, y muy especialmente a mis
padres Emilio y Maria Basilia, y a mi hermano Emilio José todo su apoyo. Por
supuesto también meto aquı́ a Jose Mari y a Montse (aunque me pongan pez
para comer), a Juan, Ane y a Jon. De todas formas, en este apartado la mención
honorı́fica se la lleva Eva por todo lo que ha aguantado, sobre todo durante las
últimas semanas que he “no-estado”.

A todos vosotros y a los que he olvidado poner,

Qatlho’!

Contents

I Introduction 1

1 Introduction 3

1.1 Motivation . 3

1.2 Contributions . 8

1.3 Thesis Outline . 9

2 Background 11

2.1 Camera Geometry . 11

2.2 Camera Motion . 16

2.3 Camera Calibration . 16

2.4 Motion Recovery . 18

2.4.1 Batch Optimization . 20

2.4.2 Bayesian Estimation . 22

2.5 Discussion . 29

II Proposal 31

3 Proposed Method 33

v

3.1 Overview . 34

3.2 Image Measurements . 36

3.2.1 Feature Detection . 37

3.2.2 Feature Description . 39

3.2.3 Feature Tracking . 43

3.3 Initial Structure . 46

3.4 Pose Estimation . 49

3.4.1 Pose Sampling . 50

3.4.2 Weighting the Pose Samples 53

3.5 Scene Reconstruction . 55

3.5.1 Point Sampling . 56

3.5.2 Weighting the Point Samples 58

3.6 Remapping . 59

3.7 Experimental Results . 60

3.7.1 Pose Estimation Accuracy 61

3.7.2 Scene Reconstruction Accuracy 65

3.7.3 SLAM Accuracy . 66

3.8 Discussion . 68

4 GPU Implementation 73

4.1 Program Overview . 74

4.2 Memory Management . 74

4.3 Pose Estimation . 78

4.4 Scene Reconstruction . 80

4.5 Experimental Results . 81

4.5.1 Pose Estimation Performance 82

4.5.2 Scene Reconstruction Performance 83

4.5.3 SLAM Performance . 84

4.6 Discussion . 86

III Conclusions 89

5 Conclusions and Future Work 91

5.1 Conclusions . 91

5.2 Future Work . 94

IV Appendices 97

A Projective Geometry 99

A.1 The Projective Plane . 100

A.2 The Projective Space . 101

A.3 The Stratification of 3D Geometry 102

A.4 Stratified 3D Reconstruction . 103

A.4.1 Projective Reconstruction 104

A.4.2 From Projective to Affine 104

A.4.3 From Affine to Metric 105

A.4.4 From Metric to Euclidean 106

A.5 A Proposal for Affine Space Upgrading 106

A.5.1 Data Normalization . 107

A.5.2 Computing Intersection Points 108

A.5.3 Plane Localization . 108

A.5.4 Convergence . 110

B Epipolar Geometry 111

B.1 Two View Geometry . 111

B.2 The Fundamental Matrix . 112

B.3 The Essential Matrix . 114

C Programming on a GPU 117

C.1 Shaders . 118

C.2 CUDA . 120

C.2.1 CUDA Program Structure 121

C.2.2 Occupancy . 121

C.2.3 CUDA Memory Model 122

D Generated Publications 125

D.1 Conference Proceedings . 125

D.2 Poster Proceedings . 126

References 127

Index 135

List of Figures

1.1 Based on the Milgram Reality-Virtuality continuum. 4

1.2 Mechanical and ultrasonic tracking systems used by Sutherland. . 4

1.3 Smartphones equipped with motion sensors. 5

1.4 Screenshot of Wikitude. 5

1.5 Screenshot of Invizimals . 6

1.6 ARMAR maintenance application 7

2.1 Light rays passing through the pin-hole. 12

2.2 Athanasius Kircher’s camera obscura. 13

2.3 Perspective projection model. 14

2.4 The pixels of a CCD sensor are not square. 15

2.5 Two examples of camera calibration patterns. 17

2.6 Different features extracted from an image. 18

2.7 Dense reconstruction of the Colosseum. 22

3.1 SLAM Pipeline. 35

3.2 Description of the feature tracker. 37

3.3 Different responses of the Harris detector. 39

3.4 Feature point detection using DOG. 41

3.5 SIFT computation time. 42

ix

3.6 Measurements taking on the images 43

3.7 A false corner indectectable by the Kalman Filter 45

3.8 Outliers detected by the Kalman Filter 46

3.9 Scale ambiguity shown in photographs. From Michael Paul
Smith’s collection. 48

3.10 Uncertainty region triangulating points from images. 48

3.11 Description of the pose estimation algorithm. 50

3.12 Weighting likelihoods compared. 55

3.13 Description of the point adjustment algorithm. 56

3.14 A lost point being remapped. 59

3.15 The synthetic data used for the experiments. 61

3.16 Pose estimation accuracy in terms of the reprojection error. 62

3.17 Estimated camera path compared to the real. 64

3.18 Reconstruction accuracy in terms of the reprojection error. 65

3.19 Histogram of the reconstruction error. 66

3.20 Projection error comparison. 67

3.21 Projection error in pixels in the outdoor scene. 67

3.22 Indoor sequence. 70

3.23 Outdoor sequence. 71

4.1 Interpolation cube. The center texel has the (0, 0, 0) value. 76

4.2 Interpolated Gaussian CDF using different number of control points. 77

4.3 Memory layout and involved data transfers. 78

4.4 Execution of the pose estimation kernel. 80

4.5 Execution of the structure adjustment kernel. 81

4.6 Pose estimation time. 83

4.7 Reconstruction time varying the number of samples used. 83

4.8 Reconstruction time varying the number of keyframes used. 84

4.9 Execution times. 85

4.10 Comparison between different GPUs. 85

4.11 Percentage of GPU usage. 86

A.1 Perspective distortion caused by a camera. Parallel lines meet at a
common point. 100

A.2 Metric, affine and projective transforms applied on an object in
Euclidean space. 104

A.3 The plane at infinity is the plane defined by �Vx, �Vy and �Vz . These
points are the vanishing points of the cube. 105

A.4 Edge matching process. (a) and (b) feature matching
between images. (c) Projective reconstruction. (d) Projective
reconstruction after edge detection and matching. 107

A.5 The lines might not intersect. 108

A.6 Computing intersections with noise. 109

B.1 Set of epipolar lines intersecting in the epipoles. 112

C.1 Performance evolution comparison between CPUs and GPUs. . . 120

C.2 Thread hierarchy. 122

C.3 Memory hierarchy. 123

C.4 Example of a coalesced memory access. 124

List of Tables

3.1 Parameters of the synthetic video. 61

3.2 Accuracy measured in a synthetic sequence. 63

4.1 Capabilities of the used CUDA device. 82

xiii

List of Algorithms

3.1 Remapping strategy. 60
4.1 Overview of the SLAM implementation. 74
4.2 Overview of the CUestimatePose() kernel. 79
4.3 Overview of the CUadjustPoint() kernel. 81

xv

Notation

Vectors are represented with a hat �a, matrices in boldface capital letter A, scalars
in italic face a and sets in uppercase S. Unless otherwise stated, subindices are
used to reference the components of a vector�a = [a1, a2, . . . , an]

� or for indexing
the elements of a set S = {�x1, �x2, . . . , �xn}. Superindices are used to refer a
sample drawn from a random variable x(i).

�M : A world point (4-vector)
�m: A point in the image plane (3-vector)
�0n: The zero vector (n-vector)
In: The n× n identity matrix
�xk: State vector at instant k of a space-state system
x̂k: An estimator of the vector �xk

Xk: The set of state vectors of a space-state system in instant k
Xi:k: The set of state vectors of a space-state system from instant i to instant k
�yk: Measurement vector at instant k of a state-space system
Yk: The set of measurement vectors of a space-state system up to instant k

xvii

Abstract

In augmented reality applications, the position and orientation of the observer
must be estimated in order to create a virtual camera that renders virtual objects
aligned with the real scene. There are a wide variety of motion sensors available
in the market, however, these sensors are usually expensive and impractical. In
contrast, computer vision techniques can be used to estimate the camera pose
using only the images provided by a single camera if the 3D structure of the
captured scene is known beforehand. When it is unknown, some solutions use
external markers, however, they require to modify the scene, which is not always
possible.

Simultaneous Localization and Mapping (SLAM) techniques can deal with
completely unknown scenes, simultaneously estimating the camera pose and the
3D structure. Traditionally, this problem is solved using nonlinear minimization
techniques that are very accurate but hardly used in real time. In this way, this
thesis presents a highly parallelizable random sampling approach based on Monte
Carlo simulations that fits very well on the graphics hardware. As demonstrated
in the text, the proposed algorithm achieves the same precision as nonlinear
optimization, getting real time performance running on commodity graphics
hardware.

Along this document, the details of the proposed SLAM algorithm are
analyzed as well as its implementation in a GPU. Moreover, an overview of the
existing techniques is done, comparing the proposed method with the traditional
approach.

xix

Resumen

En las aplicaciones de realidad aumentada es necesario estimar la posición y
la orientación del observador para poder configurar una cámara virtual que
dibuje objetos virtuales alineados con los reales. En el mercado existe una gran
variedad de sensores de movimiento destinados a este propósito. Sin embargo,
normalmente resultan caros o poco prácticos. En respuesta a estos sensores,
algunas técnicas de visión por computador permiten estimar la posición de la
cámara utilizando únicamente las imágenes capturadas, si se conoce de antemano
la estructura 3D de la escena. Si no se conoce, existen métodos que utilizan
marcadores externos. Sin embargo, requieren intervenir el entorno, cosa que no
es siempre posible.

Las técnicas de Simultaneous Localization andMapping (SLAM) son capaces
de hacer frente a escenas de las que no se conoce nada, pudiendo estimar la
posición de la cámara al mismo tiempo que la estructura 3D de la escena.
Normalmente, estos métodos se basan en técnicas de optimización no lineal que,
siendo muy precisas, resultan difı́ciles de implementar en tiempo real. Sobre esta
premisa, esta Tesis propone una solución altamente paralelizable basada en el
método de Monte Carlo diseñada para ser ejecutada en el hardware gráfico del
PC. Como se demuestra, la precisión que se obtiene es comparable a la de los
métodos clásicos de optimización no lineal, consiguiendo tiempo real utilizando
hardware gráfico de consumo.

A lo largo del presente documento, se detalla el método de SLAM propuesto,
ası́ como su implementación en GPU. Además, se expone un resumen de las
técnicas existentes en este campo, comparándolas con el método propuesto.

xxi

Part I

Introduction

Chapter 1

Introduction

Part of this chapter has been presented in:

Barandiaran, J., Moreno, I., Ridruejo, F. J., Sánchez, J. R., Borro, D., and
Matey, L. “Estudios y Aplicaciones de Realidad Aumentada en Dispositivos
Móviles”. In Conferencia Española de Informática Gráfica (CEIG’05), pp.
241–244. Granada, Spain. 2005.

1.1 Motivation

Facing the success of the virtual reality in industrial and entertainment
applications, augmented reality is emerging as a newway to visualize information.
It consists on combining virtual objects with real images taken from the physical
world, aligning them along a video sequence, creating the feeling that both real
and virtual objects coexist. This combination enriches the information that the
user perceives, and depending on the amount of virtual objects added, (Milgram
and Kishino, 1994) propose the Reality-Virtuality continuum shown in Figure 1.1,
spanning from a real environment to a completely virtual world.

The elements that compound an augmented reality system are a camera
that captures the real world, a computer and a display where the virtual objects
and the images are rendered. The main challenge is to track the position and
the orientation of the observer. Using this information, a virtual camera can be
configured, so that the virtual objects drawin with it align with the real scene.
However, there are other problems like illumination estimation and occlusions

3

4 Chapter 1. Introduction

Figure 1.1: Based on the Milgram Reality-Virtuality continuum. 1

that have to be solved in order to get a realistic augmentation.

Augmented reality started becoming popular in the nineties when the term
was first coined by (Caudell and Mizell, 1992). However, the idea was not new.
Ivan Sutherland built a prototype in the sixties consisting of a head mounted
display that is considered the first work on augmented reality (Sutherland, 1968).

Figure 1.2: The tracking systems used by Sutherland. (Sutherland, 1968)

1This image is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

Section 1.1. Motivation 5

(a) Apple iPhone.
(©Apple Inc.)

(b) Google Nexus One.
(©Google)

Figure 1.3: Smartphones equipped with motion sensors.

As illustrated in Figure 1.2, he tried both mechanical and ultrasonic sensors
in order to track the position of the head.

Recently, thanks to the introduction of smartphones, augmented reality is
starting to break into the masses. These devices (Figure 1.3) have a variety
of sensors like GPS, accelerometers, compasses, etc. that combined with the
camera can measure the pose of the device precisely using limited amounts of
computational power.

An example of a smartphone application is Wikitude. It displays information
about the location where the user is using a geolocated online database. The
tracking is done using the data coming from the GPS, the compass and the
accelerometers and the output is displayed overlaid with the image given by the
camera (Figure 1.4). It runs in Apple iOS, Android and Symbian platforms.

Figure 1.4: Screenshot of Wikitude.

6 Chapter 1. Introduction

The gaming industry has also used this technology in some products. Sony has
launched an augmented reality game for its PSP platform developed by Novarama
called Invizimals. As shown in Figure 1.5, the tracking is done using a square
marker very similar to the markers used in ARToolkit (Kato and Billinghurst,
1999). In contrast to the previous example, there are not any sensors that measure
directly the position or the orientation of the camera. Instead, using computer
vision techniques, the marker is segmented from the image so that the pose can be
recovered using some geometric restrictions applied to the shape of the marker.
This solution is very fast and precise, and only uses the images provided by the
camera. However, it needs to modify the scene with the marker, which is not
possible in some other applications.

Figure 1.5: Screenshot of Invizimals (©Sony Corp.).

Other different type of marker based optical tracking includes the work of
(Henderson and Feiner, 2009). A system oriented to industrial maintenance tasks
is proposed and its usability is analyzed. It tracks the viewpoint of the worker
using passive reflective markers that are illuminated by infrared light. These
markers are detected by a set of cameras that determine the position and the
orientation of the user. The infrared light ease the detection of the markers,
benefiting the robustness of the system. As shown in Figure 1.6, this allows to
display virtual objects in a Head Mounted Display (HMD) that the user wears.

In addition to these applications, there are other fields like medicine, cinema
or architecture that can also benefit from this technology and its derivatives,
providing it a promising future.

However, the examples shown above have the drawback of needing special
hardware or external markers in order to track the pose of the camera. In contrast,

Section 1.1. Motivation 7

Figure 1.6: ARMAR maintenance application (Henderson and Feiner, 2009).

markerless monocular systems are able to augment the scene using only images
without requiring any external markers. These methods exploit the effect known
as motion parallax derived from the apparent displacement of the objects due to
the motion of the camera. Using computer vision techniques this displacement
can be measured, and applying some geometric restrictions, the camera pose can
be automatically recovered. The main drawback is that the accuracy achieved
by these solutions cannot be compared with marker based systems. Moreover,
existing methods are very slow, and in general they can hardly run in real time.

In recent years, the use of high level programming languages for the
Graphics Processor Unit (GPU) is being popularized in many scientific areas.
The advantage of using the GPU rather than the CPU, is that the first has
several computing units that can run independently and simultaneously the same
task on different data. These devices work as data-streaming processors (Kapasi
et al., 2003) following the SIMD (Single InstructionMultiple Data) computational
model.

Thanks to the gaming industry, these devices are present in almost any
desktop computer, providing them massively parallel processors with a very
large computational power. This fact gives the opportunity to use very complex
algorithms in user oriented applications, that previously could only be used in
scientific environments.

Anyway, each computing unit has less power than a single CPU, so the benefit
of using the GPU comes when the size of the input data is large enough. For this
reason, it is necessary to adapt existing algorithms and data structures to fit this
programming model.

Regarding to augmented reality, as stated before, the complexity of monocular
tracking systems makes them difficult to use in real time applications. For

8 Chapter 1. Introduction

this reason, it would be very useful to take the advantage of GPUs in this
field. However, existing monocular tracking algorithms are not suitable to be
implemented on the GPU because of their batch nature. In this way, this thesis
studies the monocular tracking problem and proposes a method that can achieve
a high level of accuracy in real time using efficiently the graphics hardware. By
doing so, the algorithm tracks the camera without leaving the computer unusable
for other tasks.

1.2 Contributions

The goal of this thesis is to track the motion of the camera in a video sequence and
to obtain a 3D reconstruction of the captured scene, focused on augmented reality
applications, without using any external sensors and without having any markers
or knowledge about the captured scene. In order to get real time performance, the
graphics hardware has been used. In this context, instead of adapting an existing
method, a fully parallelizable algorithm for both camera tracking and 3D structure
reconstruction based on Monte Carlo simulations is proposed, being the main
contributions:

• The design and implementation of a GPU friendly 3D motion tracker that
can estimate both position and orientation of a video sequence frame by
frame using only the captured images. A GPU implementation is analyzed
in order to validate its precision and its performance using a handheld
camera, demonstrating that it can work in real time and without the need
of user interaction.

• A 3D reconstruction algorithm that can obtain the 3D structure of the
captured scene at the same time that the motion of the camera is estimated.
It is also executed in the GPU adjusting in real time the position of the
3D points as new images become available. Moreover, new points are
continuously added in order to reconstruct unexplored areas while the rest
are recursively used by the motion estimator.

• A computationally efficient 3D point remapping technique based on
a simplified version of SIFT descriptors. The remapping is done
using temporal coherence between the projected structure and image
measurements comparing the SIFT descriptors.

Section 1.3. Thesis Outline 9

• A local optimization framework that can be used to solve efficiently in
the GPU any parameter estimation problem driven by an energy function.
Providing an initial guess about the solution, the parameters are found using
the graphics hardware in a very efficient way. These problems are very
common in computer vision and are usually the bottleneck of real time
systems.

1.3 Thesis Outline

The content of this document is divided in five chapters. Chapter 1 has
introduced the motivation of the present work. Chapter 2 will introduce some
preliminaries and previous works done by other authors in markerless monocular
tracking and reconstruction. Chapter 3 describes the proposed method including
some experimental results in order to validate it. Chapter 4 deals with the
GPU implementation details, presenting a performance analysis that includes
a comparison with other methods. Finally, Chapter 5 presents the conclusions
derived from the work and proposes future research lines.

Additionally, various appendices have been included clarifying some concepts
needed to understand this document. Appendix A introduces some concepts on
projective geometry, including a brief description of a self-calibration technique.
Appendix B explains the basics about epipolar geometry. Appendix C introduces
the architecture of the GPU viewed as a general purpose computing device and
finally Appendix D enumerates the list of publications generated during the
development of this thesis.

10 Chapter 1. Introduction

Chapter 2

Background

This chapter describes the background on camera tracking and the mathematical
tools needed for understanding this thesis. Some aspects about the camera model
and its parameterization are exposed and the state of the art in camera calibration
and tracking is analyzed.

Part of this chapter has been presented in:

Sánchez, J. R. and Borro, D. “Automatic Augmented Video Creation for
Markerless Environments”. In Poster Proceedings of the 2nd International
Conference on Computer Vision Theory and Applications (VISAPP’07), pp.
519–522. Barcelona, Spain. 2007.

Sánchez, J. R. and Borro, D. “Non Invasive 3D Tracking for Augmented
Video Applications”. In IEEE Virtual Reality 2007 Conference, Workshop
“Trends and Issues in Tracking for Virtual Environments”, pp. 22–27.
Charlotte, NC, USA. 2007.

2.1 Camera Geometry

The camera is a device that captures a three dimensional scene and projects it into
the image plane. It has two major parts, the lens and the sensor, and depending on
the properties of them an analytical model describing the image formation process
can be inferred.

As the main part of an augmented reality system, it is important to know
accurately the parameters that define the camera. The quality of the augmentation
perception depends directly on the similarity between the real camera and the

11

12 Chapter 2. Background

virtual camera that is used to render the virtual objects.

The pin-hole camera is the simplest representation of the perspective
projection model and can be used to describe the behavior of a real camera. It
assumes a camera with no lenses whose aperture is described by a single point,
called the center of projection, and a plane where the image is formed. Light
rays passing through the hole form an inverted image of the object as shown in
Figure 2.1. The validity of this approximation is directly related to the quality of
the camera, since it does not include some geometric distortions induced by the
lenses of the camera.

Figure 2.1: Light rays passing through the pin-hole.

Because of its simplicity, it has been widely used in computer vision
applications to describe the relationship between a 3D point and its corresponding
2D projection onto the image plane. The model assumes a perspective projection,
i.e., objects seem smaller as their distance from the camera increases.

Renaissance painters found themselves interested by this fact and started
studying the perspective projection in order to reproduce realistic paintings of the
world that they were observing. They used a device called perspective machine
in order to calculate the effects of the perspective before having its mathematical
model. These machines follow the same principle as the pin-hole cameras as can
be seen in Figure 2.2.

More formally, a pin-hole camera is described by an image plane situated at
a non-zero distance f of the center of projection �C, also known as optical center
that corresponds with the pin-hole. The image (x, y) of a world point (X,Y, Z) is
the intersection of the line joining the optical center and the point with the image

Section 2.1. Camera Geometry 13

Figure 2.2: Athanasius Kircher’s camera obscura. 1

plane. As shown in Figure 2.3, if the optical center is assumed to be behind the
camera, the formed image is no longer inverted. There is a special point called
principal point, defined as the intersection between the ray passing through the
optical center perpendicular to the image plane.

If an orthogonal coordinate system is fixed at the optical center with the z
axis perpendicular to the image plane, the projection of a point can be obtained by
similar triangles:

x = f
X

Z
, y = f

Y

Z
. (2.1)

These equations can be linearized if points are represented in projective space
using its homogeneous representation. An introduction to projective geometry can
be found in the Appendix A. In this case, Equation 2.1 can be expressed by a 4×3
matrix P called the projection matrix:

x
y
1

 ∼

f 0 0 0
0 f 0 0
0 0 1 0

� �� �
P

X
Y
Z
1

 . (2.2)

In the simplest case, when the focal length is f = 1, the camera is said to be

1Drawing from “Ars Magna Lucis Et Umbra”, 1646.

14 Chapter 2. Background

image plane

principal point

Figure 2.3: Perspective projection model.

normalized or centered on its canonical position. In this situation the normalized
pin-hole projection function Π is defined as:

Π : P3 → P2, �m = Π
�
�M
�
. (2.3)

However, the images obtained from a digital camera are described by a matrix
of pixels whose coordinate system is located on its top left corner. Therefore, to
get the final pixel coordinates (u, v) an additional transformation is required. As
shown in Figure 2.4, this transformation also depends on the size and the shape
of the pixels, which is not always square, and on the position of the sensor with
respect to the lens. Keeping this in consideration, the projection function of a
digital camera can be expressed as:

u
v
1

 ∼

f/sx (tanα) f

sy
px

0 f/sy py

0 0 1

� �� �
K

1 0 0 0
0 1 0 0
0 0 1 0

� �� �
PN

X
Y
Z
1

 , (2.4)

where PN is the projection matrix of the normalized camera, K is the calibration
matrix of the real camera, (sx, sy) is the dimension of the pixel and �p = (px, py)

�

is the principal point in pixel coordinates. For the rest of this thesis, a simplified
notation of the calibration matrix will be used:

Section 2.1. Camera Geometry 15

Figure 2.4: The pixels of a CCD sensor are not square.

K =

fx s px

0 fy py

0 0 1

 . (2.5)

In most cases, pixels are almost rectangular, so the skew parameter s can be
assumed to be 0. It is also a very common assumption to consider the principal
point centered on the image. In this scenario, a minimal description of a camera
can be parameterized only with fx and fy.

The entries of the calibration matrix are called intrinsic parameters because
they only depend on the internal properties of the camera. In a video sequence,
they remain fixed in all frames if the focus does not change and zoom does not
apply.

There are other effects like radial and tangential distortions that cannot be
modeled linearly. Tangential distortion is caused by imperfect centering of the
lens and usually assumed to be zero. Radial distortions are produced by using a
lens instead of a pin-hole. It has a noticeable effect in cameras with shorter focal
lengths affecting to the straightness of lines in the image making them curve, and
they can be eliminated warping the image. Let (u, v) be the pixel coordinates of
a point in the input image and (û, v̂) its corrected coordinates. The warped image
can be obtained using Brown’s distortion model (Brown, 1966):

û = px + (u− px)
�
1 + k1r + k2r

2 + k3r
3 + . . .

�

v̂ = py + (v − py)
�
1 + k1r + k2r

2 + k3r
3 + . . .

� (2.6)

16 Chapter 2. Background

where r2 = (u− px)
2+(v − py)

2 and {k1, k2, k3, . . .} are the coefficients of the
Taylor expansion of an arbitrary radial displacement function L (r).

The quality of the sensor can also distort the final image. Cheap cameras
sometimes use the rolling shutter acquisition technique that implies that not all
parts of the image are captured at the same time. This can introduce some artifacts
induced by the camera movement that are hardly avoided.

2.2 Camera Motion

As stated before, Equation 2.4 defines the projection of a point expressed in a
coordinate frame aligned with the projection center of the camera. However, a
3D scene is usually expressed in terms of a different world coordinate frame.
These coordinate systems are related via a Euclidean transformation expressed
as a rotation and a translation. When the camera moves, the coordinates of its
projection center relative to the camera center changes, and this motion can be
expressed as a set of concatenated transformations.

Since these parameters depend on the camera position and not on its internal
behavior, they are called extrinsic parameters. Adding this transformation to the
projection model described in Equation 2.4, the projection of a point (X,Y, Z)
expressed in an arbitrary world coordinate frame is given by

u
v
1

 ∼

fx s px

0 fy py

0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

�
R �t
�0�3 1

�

X
Y
Z
1

 (2.7)

where R is a 3 × 3 rotation matrix and �t is a translation 3-vector that relates the
world coordinate frame to the camera coordinate frame as shown in Figure 2.3.
In a video sequence with a non-static camera, extrinsic parameters vary in each
frame.

2.3 Camera Calibration

Camera calibration is the process of recovering the intrinsic parameters of a
camera. Basically, there are two ways to calibrate a camera from image sequences:

Section 2.3. Camera Calibration 17

pattern based calibration and self (or auto) calibration. A complete survey of
camera calibration can be found in (Hemayed, 2003).

Pattern based calibration methods use objects with known geometry to carry
out the process. Some examples of these calibration objects are shown in Figure
2.5. Matching the images with the geometric information available from the
patterns, it is possible to find the internal parameters of the camera very fast and
with a very high accuracy level. Examples of this type of calibration are (Tsai,
1987) and (Zhang, 2000). However, these methods cannot be applied always,
especially when using pre-recorded video sequences where it becomes impossible
to add the marker to the scene.

(a) Chessboard pattern. (b) Dot pattern used in ArToolkit.

Figure 2.5: Two examples of camera calibration patterns.

In contrast, self calibration methods obtain the parameters from captured
images, without having any calibration object on the scene. These methods are
useful when the camera is not accessible or when the environment cannot be
altered with external markers. They obtain these parameters by exploiting some
constraints that exist in multiview geometry (Faugeras et al., 1992) (Hartley, 1997)
or imposing restrictions on the motion of the camera (Hartley, 1994b) (Zhong
and Hung, 2006). Other approaches to camera calibration are able to perform the
reconstruction from a single view (Wang et al., 2005) if the length ratios of line
segments are known.

Self calibration methods usually involves two steps: affine reconstruction and
metric upgrade. Appendix A develops an approximation to affine reconstruction
oriented to self calibration methods. The only assumption done is that parallel
lines exist in the images used to perform the calibration.

18 Chapter 2. Background

2.4 Motion Recovery

The recovery of the motion of a camera is reduced to obtain its extrinsic
parameters for each frame. Although they can be obtained using motion sensors,
this section is only concerned on the methods that obtain these parameters using
only the images captured.

Each image of a video sequence has a lot of information contained in it.
However, its raw representation as a matrix of color pixels needs to be processed in
order to extract higher level information that can be used to calculate the extrinsic
parameters. There are several alternatives that are used in the literature, such as
corners, lines, curves, blobs, junctions or more complex representations (Figure
2.6). All these image features are related to the projections of the objects that are
captured by the camera, and they can be used to recover both camera motion and
3D structure of the scene.

(a) Feature points. (b) Junctions.

(c) Edges. (d) Blobs corresponding to the posters.

Figure 2.6: Different features extracted from an image.

Section 2.4. Motion Recovery 19

In this way, Structure from Motion (SFM) algorithms correspond to a family
of methods that obtain the 3D structure of a scene and the trajectory of the camera
that captured it, using the motion information available from the images.

SFM methods began to be developed in the eighties when Longuet-Higgins
published the eight point algorithm (Longuet-Higgins, 1981). His method is based
on the multiple view geometry framework introduced in Appendix B. Using a
minimum of two images, by means of a linear relationship existing between the
features extracted from them, the extrinsic parameters can recovered at the same
time the structure of the scene is obtained. However the equation systems involved
in the process are very sensitive to noise, and in general the solution obtained
cannot be used for augmented reality applications. Trying to avoid this problem,
SFM algorithms have evolved in two main directions, i.e., batch optimizations
and recursive estimations. The first option is very accurate but not suitable for real
time operation. The second option is fast but sometimes not as accurate as one
would wish.

Optimization based SFM techniques estimate the parameters of the camera
and 3D structure minimizing some cost function that relates them with the
measurements taken from images (points, lines, etc.). Having an initial guess
about the scene structure and the motion of the camera, 3D points can be projected
using Equation 2.7 and set a cost function as the difference between these
projections and measurements taken from the images. Then, using minimization
techniques, the optimal scene reconstruction and camera motion can be recovered,
in terms of the cost function.

On the other hand, probabilistic methods can be used as well to recover
the scene structure and the motion parameters using Bayesian estimators. These
methods have been widely used in the robot literature in order to solve the
Simultaneous Localization and Mapping (SLAM) problem. External measures,
like video images or laser triangulation sensors, are used to build a virtual
representation of the world where the robot navigates. This reconstruction is
recursively used to locate the robot while new landmarks are acquired at the same
time. When the system works with a single camera, it is known as monocular
SLAM. In fact, SLAM can be viewed as a class of SFM problem and vice versa,
so existing methods for robot SLAM can be used to solve the SFM problem.

20 Chapter 2. Background

2.4.1 Batch Optimization

One of the most used approaches to solve the SFM problem has been to model it
as a minimization problem. In these solutions, the objective is to find a parameter
vector �x that having an observation �y minimizes the residual vector ��e� in:

�y = f(�x) + ��e� . (2.8)

In the simplest case, the parameter vector �x contains the motion parameters
and the 3D structure, the observation vector �y is composed by image
measurements corresponding to the projections of the 3D points and f() is the
function that models the image formation process. Following this formulation and
assuming the pin-hole model, the objective function can be expressed as:

argmin
i

k�

i=1

n�

j=1

�
�
�Π
�
Ri

�Mj + �ti

�
− �mi

j

�
�
�, (2.9)

where Ri and �ti are the extrinsic parameters of the frame i, �Mj is the point j of
the 3D structure, �mi

j is its corresponding measurement in the image i and Π is the
projection function given in Equation 2.3.

The solution obtained with this minimization is jointly optimal with respect
to the 3D structure and the motion parameters. This technique is known as Bundle
Adjustment (BA) (Triggs et al., 2000) where the name “bundle” refers to the rays
going from the camera centers to the 3D points. It has been widely used in the
field of photogrammetry (Brown, 1976) and the computer vision community has
successfully adopted it in the last years.

Since the projection function Π in Equation 2.9 is nonlinear, the problem
is solved using nonlinear minimization methods where the more common
approach is the Levenberg-Marquardt (LM) (Levenberg, 1944) (Marquardt, 1963)
algorithm. It is an iterative procedure that, starting from an initial guess for the
parameter vector, converges into the local minima combining the Gauss-Newton
method with the gradient descent approach. However, some authors (Lourakis and
Argyros, 2005) argue that LM is not the best choice for solving the BA problem.

Usually, the initial parameter vector is obtained with multiple view geometry
methods. As stated, the solution is very sensitive to noise, but it is reasonably
close to the solution, and therefore it is a good starting point for the minimization.

Section 2.4. Motion Recovery 21

The problem of this approach is that the parameter space is huge. With a normal
parameterization, a total of 6 parameters per view and 3 per point are used.
However, it presents a very sparse structure that can be exploited in order to
get reasonable speeds. Some public implementations like (Lourakis and Argyros,
2009) take advantage of this sparseness allowing fast adjustments, but hardly in
real time.

Earlier works like (Hartley, 1994a), compute a stratified Euclidean
reconstruction using an uncalibrated sequence of images. BA is applied to
the initial projective reconstruction which is then upgraded to a quasi-affine
representation. From this reconstruction the calibration matrix is computed and
the Euclidean representation is found performing a second simpler optimization
step. However, the whole video sequence is used for the optimization, forcing
therefore to be executed in post processing and making it unusable in real time
applications.

One recent use of BA for real time SLAM can be found in (Klein and
Murray, 2007). In their PTAM algorithm they use two computing threads, one for
tracking and the other for mapping, running on different cores of the CPU. The
mapping thread uses a local BA over the last five selected keyframes in order to
adjust the reconstruction. The objective function that they use is not the classical
reprojection error function given in Equation 2.9. In contrast, they use the more
robust Tukey biweight objective function (Huber, 1981), also known as bisquare.

There are other works that have successfully used BA in large scale
reconstruction problems. For example, (Agarwal et al., 2009) have reconstructed
entire cities using BA but they need prohibitive amounts of time. For example, the
reconstruction of the city Rome took 21 hours in a cluster with 496 cores using
150k images. The final result of this reconstruction is shown in Figure 2.7. It is
done using unstructured images downloaded from the Internet, instead of video
sequences.

Authors, like (Kahl, 2005), use the L∞ norm in order to reformulate the
problem as a convex optimization. These types of problems can be efficiently
solved using second order cone programming techniques. However, as the author
states, the method is very sensitive to outliers.

22 Chapter 2. Background

Figure 2.7: Dense reconstruction of the Colosseum (Agarwal et al., 2009).

2.4.2 Bayesian Estimation

In contrast to batch optimization methods, probabilistic techniques compute the
reconstruction in an online way using recursive Bayesian estimators. In this
formulation, the problem is usually represented as a state-space model. This
paradigm, taken from control engineering, models the system as a state vector �xk

and a measurement vector �yk caused as a result of the current state. In control
theory, state-space models also include some input parameters that guide the
evolution of the system. However, as they are not going to be used in this text,
they are omitted in the explanations without loss of generality.

The dynamics of a state-space model is usually described by two functions,
i.e., the state model and the observation model. The state model describes how the
state changes over time. It is given as a function that depends on the current state
of the system and a random variable, known as process noise, that represents the
uncertainty of the transition model:

�xk+1 = f (�xk, �uk) . (2.10)

The observation model is a function that describes the measurements taken
from the output of the system depending on the current state. It is given as
a function that depends on the current state and a random variable, known as
measurement noise, that represents the noise introduced by the sensors:

Section 2.4. Motion Recovery 23

�yk = h (�xk, �vk) . (2.11)

The challenge is to estimate the state of the system, having only access to its
outputs. Suppose that at any instant k a set of observations Yk = {�y1, . . . , �yk}
can be measured from the output of the system. From a Bayesian viewpoint, the
problem is formulated as the conditional probability of the current state given
the entire set of observations: P (�xk|Yk). The key of these algorithms is that the
current state probability can be expanded using the Bayes’s rule as:

P (�xk|Yk) =
P (�yk|�xk)P (�xk|Yk−1)

P (�yk|Yk−1)
. (2.12)

Equation 2.12 states the posterior probability of the system, i.e., the filtered
state after when measurements �yk are available. Since Equation 2.10 describes a
Markov chain, the prior probability of the state can also be estimated using the
Chapman-Kolmogorov equation:

P (�xk|Yk−1) =

�

P (�xk|�xk−1)P (�xk−1|Yk−1)d�xk−1. (2.13)

In the SLAM field, usually the state �xk is composed by the camera pose
and the 3D reconstruction, and the observation �yk is composed by image
measurements. As seen, under this estimation approach, the parameters of the
state-space model are considered random variables that are expressed by means
of their probability distributions. Now the problem is how to approximate them.

If both model noise and measurement noise are considered additive Gaussian,
with covariances Q and R, and the functions f and h are linear, the optimal
estimate (in a least squares sense) is given by the Kalman filter (Kalman, 1960)
(Welch and Bishop, 2001). Following this assumption, Equations 2.10 and 2.11
can be rewritten as:

�xk+1 = A�xk + �uk

�yk = H�xk + �vk.
(2.14)

The Kalman filter follows a prediction-correction scheme having two steps,
i.e., state prediction (time update) and state update (measurement update),
providing equations for solving the prior an the posterior means and covariances
of the distributions given in Equations 2.12 and 2.13. The initial state must

24 Chapter 2. Background

be provided as a Gaussian random variable with known mean and covariance.
Under this assumption and because of the linearity of Equation 2.14, the Gaussian
property of the state and measurements is preserved.

In the state prediction step, the prior mean and covariance of the state in time
k + 1 are predicted. It is only a projection of the state based on the previous
prediction x̂k and the dynamics of the system given by Equation 2.14, and it
can be expressed as the conditional probability of the state in k + 1 given the
measurements up to instant k:

P (�xk+1|Yk) ∼ N
�
x̂

(−)
k+1,P

(−)
k+1

�
, (2.15)

where

x̂
(−)
k+1 = Ax̂k

P
(−)
k+1 = APkA

� +Q.
(2.16)

When measurements are available, the posterior mean and covariance of the
state can be calculated in the state update step using the feedback provided by
these measurements. In this way, the state gets defined by the distribution

P (�xk+1|Yk+1) ∼ N (x̂k+1,Pk+1) , (2.17)

where

x̂k+1 = x̂
(−)
k+1 +Gk+1

�
�yk −Hx̂

(−)
k+1

�

Pk+1 = (I−Gk+1H)P
(−)
k+1.

(2.18)

The matrix G is called the Kalman Gain, and it is chosen as the one that
minimizes the covariance of the estimation Pk+1:

Gk+1 = P
(−)
k+1H

�
�
HP

(−)
k+1H

� +R
�−1

. (2.19)

In the case that the state or the observation models are nonlinear, there is
an estimator called the Extended Kalman Filter (EKF) that provides a similar
framework. The idea is to linearize the system using the Taylor expansion of the
functions f and h in Equations 2.10 and 2.11. Let

Section 2.4. Motion Recovery 25

x̃k+1 = f
�
x̂k,�0

�

ỹk+1 = h
�
x̃k+1,�0

� (2.20)

be the approximate a priori state and measurement vectors, assuming zero noise.
If only the first order of the expansion is used, the state and the observation models
can be rewritten as:

�xk+1 ≈ x̃k+1 + J�xk
(�xk − x̂k) + J�uk

�uk

�yk ≈ ỹk + J�yk
(�xk − x̃k) + J�vk

�vk,
(2.21)

where x̂k is the a posteriori state obtained from the previous estimate, J�xk
is the

Jacobian matrix of partial derivatives of f with respect to �x at instant k, J�uk
is the

Jacobian of f with respect to �u at instant k, J�yk
is the Jacobian of h with respect

to �x at instant k and J�vk
is the Jacobian of h with respect to �v at instant k. Having

the system linearized, the distributions can be approximated using equations 2.15
and 2.18.

One of the first successful approaches in real time monocular SLAM using
the EKF was the work of (Davison, 2003). Their state vector �xk is composed
by the current camera pose, its velocity and by the 3D features in the map. For
the camera parameterization they use a 3-vector for the position and a quaternion
for the orientation. The camera velocity is expressed as a linear velocity 3-vector
and an angular velocity 3-vector (exponential map). Points are represented by
its world position using the full Cartesian representation. However, when they
are first seen, they are added to the map as a line pointing from the center of
the camera. In the following frames, these lines are uniformly sampled in order
to get a distribution about the 3D point depth. When the ratio of the standard
deviation of depth to depth estimate drops below a threshold, the points are
upgraded to their full Cartesian representation. As image measurements they use
2D image patches of 9×9 to 15×15 pixels that are matched in subsequent frames
using normalized Sum of Squared Difference correlation operator (SSD). In this
case, the measurement model is nonlinear, so for the state estimation they use a
full covariance EKF assuming a constant linear and angular velocity transition
model. Other earlier authors like (Broida et al., 1990) use an iterative version of
the EKF for tracking and reconstructing an object using a single camera. The
work of (Azarbayejani and Pentland, 1995) successfully introduces in the state
vector the focal length of the camera, allowing the estimation even without prior
knowledge of the camera calibration parameters. Moreover, they use a minimal

26 Chapter 2. Background

parameterization for representing 3D points. In this case, points are represented
as the depth value α that they have in the first frame. This representation reduces
to the third part the parameter space needed to represent 3D points, however
as demonstrated later by (Chiuso et al., 2002), it becomes invalid in long video
sequences or when inserting 3D points after the first frame.

However, the flaw of the EKF is that the Gaussian property of the variables
is no longer preserved. Moreover, if the functions are very locally nonlinear, the
approximation using the Taylor expansion introduces a lot of bias in the estimation
process. Trying to avoid this, in (Julier and Uhlmann, 1997) an alternative
approach is proposed called Unscented Kalman Filter (UKF) that preserves the
normal distributions throughout the nonlinear transformations. The technique
consists of sampling a set of points around the mean and transform them using
the nonlinear functions of the model. Using the transformed points, the mean and
the covariance of the variables is recovered. These points are selected using a
deterministic sampling technique called unscented transform.

This filter has been used successfully in monocular SLAM applications in
works like (Chekhlov et al., 2006). They use a simple constant position model,
having a smaller state vector and making the filter more responsive to erratic
camera motions. The structure is represented following the same approach of
Davison in (Davison, 2003).

All variants of the Kalman Filter assume that the model follows a Gaussian
distribution. In order to get a more general solution, Monte Carlo methods have
been found to be effective in SLAM applications. The Monte Carlo simulation
paradigm was first proposed by (Meteopolis and Ulam, 1949). It consists of
approaching the probability distribution of the model using a set of discrete
samples generated randomly from the domain of the problem. Monte Carlo
simulations are typically used in problems where it is not possible to calculate
the exact solution from a deterministic algorithm. Theoretically, if the number of
samples goes to infinity, the approximation to the probability distribution becomes
exact.

In the case of sequential problems, like SLAM, the family of Sequential
Monte Carlo methods (SMC) also known as Particle Filters (PF) (Gordon et al.,
1993) are used. The sequential nature of the problem can be used to ease the
sampling step using a state transition model, as in the case of Kalman Filter based
methods. In this scenario, a set of weighted samples are maintained representing
the posterior distribution of the camera trajectory so that the probability density
function can be approximated as:

Section 2.4. Motion Recovery 27

P (�xk|Yk) ≈
�

i

w
(i)
k δ
�
�xk − �x

(i)
k

�
(2.22)

where δ() is the Dirac Delta and {�x
(i)
k , wi

k} is the sample i and its associated
weight. Each sample represents an hypothesis about the camera trajectory. Since
it is not possible to draw samples directly from the target distribution P (�xk|Yk),
samples are drawn from another arbitrary distribution called importance density
Q(�xk|Yk) such that:

P (�xk|Yk) > 0⇒ Q(�xk|Yk) > 0. (2.23)

In this case, the associated weights in Equation 2.22 are updated every time
step using the principle of Sequential Importance Sampling (SIS) proposed by
(Liu and Chen, 1998):

w
(i)
k ∝ w

(i)
k−1

P
�
�yk|�x

(i)
k

�
P
�
�x

(i)
k |�x

(i)
k−1

�

Q
�
�x

(i)
k |Xk−1, �yk

� . (2.24)

This sampling technique has the problem that particle weights are inevitably
carried to zero. This is because since the search space is not discrete, particles
will have weights less than one, so repeated multiplications will lead them to very
small values. In order to avoid this problem, particles with higher weights are
replicated and lower weighted particles are removed. This technique is known as
Sequential Importance Resampling (SIR).

An example is the work of (Qian and Chellappa, 2004). They use SMC
methods for recovering the motion of the camera using the epipolar constraint to
form the likelihood. The scene structure is recovered using the motion estimates
as a set of depth values using SMC methods as well. They represent the camera
pose as the three rotation angles and the translation direction using spherical
coordinates. The magnitude is later estimated in a post process step through
triangulation. Although results are good, it has two drawbacks: all the structure
must be visible in the initial frame and the real time operation is not achieved.

Authors like (Pupilli and Calway, 2006) use a PF approach in order to obtain
the probability density of the camera motion. They model the state of the system as
a vector containing the pose of the camera and the depth of the mapped features.
However, due to real time requirements, they only use the particle filtering for

28 Chapter 2. Background

estimating the camera pose. For updating the map they use a UKF allowing real
time operation.

Summarizing, a PF gets completely defined by the importance distribution
Q(�xk|Yk) and by the marginal of the observation density P (�yk|�xk). It is very
common to choose the first to be proportional to the dynamics of the system,
and depending on the observation density used, the filter can be classified in two
variants:

• Bottom-up approach or data driven: The marginal P
�
�yk|�x

(i)
k

�
depends

on the features measured in the images. The projections of 3D points
obtained using the camera parameters defined by the sample are compared
with those features, and the probability is set as their similarity. This
strategy can be reduced to four steps:

1. Image Analysis:Measurements are taken from the input images.

2. Prediction: The current state is predicted using the dynamics of the
system and its previous configuration.

3. Synthesis: The predicted model is projected, thus obtaining an image
representation.

4. Evaluation: The model is evaluated depending on the matches
between the measurements taken and the predicted image.

• Top-down approach or model driven: The model of the system guides
the measurement, comparing a previously learned description of the 3D
points with the image areas defined by their projections. Therefore, this
approach does not depend on any feature detection method, but the visual
appearance of 3D points needs to be robustly described. This strategy can
also be reduced to four steps:

1. Prediction: The current state is predicted using the dynamics of the
system and its previous configuration.

2. Synthesis: The predicted model is projected, thus obtaining an image
representation.

3. Image Analysis: A description of the areas defined by the projection
of the model is extracted.

4. Evaluation: The model is evaluated depending on the similarities
between the extracted description and the predicted image.

Section 2.5. Discussion 29

2.5 Discussion

It has be seen in this chapter that there are a lot of alternatives to solve the motion
and the structure parameters of a scene using a video sequence. At the moment,
cannot be said that one of them is the best solution for every estimation problem.
The concrete application together with its accuracy and performance requirements
will determine the appropriate method to be used.

Having that the target application of this thesis is an augmented reality system,
some accuracy aspects can be sacrificed for the benefit of speed. After all, the
human eye tolerates pretty well certain levels of error, but needs a high frame rate
in order not to loose the feeling of smooth animation.

30 Chapter 2. Background

Part II

Proposal

Chapter 3

Proposed Method

Existing SLAM methods are inherently iterative. Since the target platform of
this thesis is a parallel system, iterative methods are not the best candidates for
exploiting its capabilities, because they usually have dependencies between the
iterations that cannot be solved efficiently. In this context, instead of adapting
a standard solution like BA or Kalman Filter, this chapter develops a fully
parallelizable algorithm for both camera tracking and 3D structure reconstruction
based on Monte Carlo simulations. More specifically, a SMC method is adapted
taking into account the restrictions imposed by the parallel programming model.

The basic operation of a SMC method is to sample and evaluate possible
solutions taken from a target distribution. Taking into account that each one of
those samples can be evaluated independently from others, the solution is very
adequate for parallel systems and has very good scalability. In contrast, it is
very computationally intensive being unsuitable for current serial CPUs, even
multicores.

Following these argumentations, this chapter describes a full SLAM method
using SMC, using only a video sequence as input. Some experiments are provided
in order to demonstrate its validity.

A synthesis of this chapter and Chapter 4 has been presented in:

Sánchez, J. R., Álvarez, H., and Borro, D. “Towards Real Time 3D
Tracking and Reconstruction on a GPU Using Monte Carlo Simulations”.
In International Symposium on Mixed and Augmented Reality (ISMAR’10),
pp. 185–192. Seoul, Korea. 2010.

33

34 Chapter 3. Proposed Method

Sánchez, J. R., Álvarez, H., and Borro, D. “GFT: GPU Fast Triangulation
of 3D Points”. In Computer Vision and Graphics (ICCVG’10), volume 6375
of Lecture Notes in Computer Science, pp. 235–242. Warsaw, Poland. 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. “GPU Optimizer : A 3D
reconstruction on the GPU using Monte Carlo simulations”. In Poster
proceedings of the 5th International Conference on Computer Vision
Theory and Applications (VISAPP’10), pp. 443–446. Angers, France. 2010.

3.1 Overview

The pipeline of the SLAMmethod used in this work (shown in Figure 3.1) consists
of three different main modules:

• A Feature Tracking module, that analyzes the input images looking for
salient areas that give useful information about the motion of the camera
and the structure of the underlying scene.

• A 3D Motion Tracking module, that using the measurements taken in the
images estimates the extrinsic parameters of the camera for each frame.

• A Scene Reconstruction module, that extends the structure information
about the scene that the system has, adding new 3D points and adjusting
already mapped ones. This is done taking into account the motion model
predicted by the motion tracker and the measurements given by the feature
tracker.

The scheme proposed here is a bottom-up approach, but the pose and structure
estimation algorithms are suitable for top-down approaches as well. Under erratic
motions, top-down systems perform better since they do not need to detect interest
points into the images. However, they rely on the accuracy of the predictive model
making them unstable if it is not well approximated.

The method proposed here applies to a sequence of sorted images. The camera
that captured the sequence must be weakly calibrated, i.e., only the two focal
lengths are needed and it is assumed that there is no lens distortion. The calibration
matrix used has the form of Equation 2.5. The principal point is assumed to be
centered and the skew is considered null. This assumption can be done if the used

Section 3.1. Overview 35

�����������������
���������������������

������������������
������������������

����
���������

�������������������
�������

�����������
����������

����

���

���������������������

�����������
���������

Figure 3.1: SLAM Pipeline.

camera has not a lens with a very short focal length, which is the case in almost
any non-professional camera.

From now on, a frame k is represented as a set of matched features Yk =�
�yk
1 , . . . , �y

k
n

�
so that a feature �yj corresponds to a single point in each image of

the sequence, i.e., a 2D feature point. The set of frames from instant i up to instant
k is represented as Yi:k. The 3D structure is represented as a set of 3D points Z =
{�z1, . . . , �zn} such that each point has associated a feature point which represents
its measured projections into the images. The 3D motion tracker estimates the
pose using these 3D-2D point matches. Drawing on the previous pose, random
samples for the current camera configuration are generated and weighted using
the Euclidean distance between measured features and the estimated projections
of the 3D points. The pose in frame k is represented as a rotation quaternion �qk

and a translation vector �tk with an associated weight wk. The pin-hole camera
model is assumed, so the relation between a 2D feature in the frame k and its
associated 3D point is given by Equation 2.7.

36 Chapter 3. Proposed Method

In the structure estimation part, the 3D map is initialized using epipolar
geometry (see Appendix B). When a great displacement is detected in the image,
the camera pose relative to the first frame is estimated using the 8 point algorithm
(Longuet-Higgins, 1981). Then, the 3D structure is built using linear triangulation.
This method produces a very noisy structure map, but it is quickly improved by
the structure optimizer.

Every time a new frame becomes available, the 3D structure is adjusted taking
into account the measurements extracted. For this task a SMC model is used as
well. In this case, each point in the map is sampled around its neighborhood and
projected using the pose of the previously tracked frames. These projections are
compared with tracked 2D feature points so that the sample that minimizes the
sum of Euclidean distances is chosen as the new location of the 3D point.

Summarizing, the objective is to find the pose for every frame k and the
reconstruction of every feature point i that satisfy:

�yk
i =

�
u
v

�

=

�
fu(�zi, k)
fv(�zi, k)

�

= Π
�
Rk�zi + �tk

�
(3.1)

Following sections analyze in detail these steps. A study about the feature
tracking is done in Section 3.2 detailing some image measurement techniques.
The initialization of the structure map, including the triangulation of new points
is described in Section 3.3. Section 3.4 deals with the 3D pose estimation. Section
3.5 covers the structure adjustment step, and finally Section 3.6 explains how lost
points can be remapped. Some experiments demonstrating the suitability of the
method are also described in Section 3.7.

3.2 Image Measurements

As stated in Section 2.4 the images need to be processed in order to extract useful
information from them. The main challenge is to identify a set of characteristics
directly related to the 3D structure and the motion of the scene, allowing to recover
those parameters from them.

Among the alternatives, in this thesis a feature point representation has been
chosen because of its simplicity. Figure 3.2 shows an overview of the image
measurement module implemented, composed by a detector, a descriptor and a
tracker. Following sections describe these parts in detail.

Section 3.2. Image Measurements 37

Figure 3.2: Description of the feature tracker.

3.2.1 Feature Detection

A feature point can be defined as a salient point which can be easily identified in
the image. It can be represented as a pixel inside the image or as an estimated
position with its respective covariance. Some desirable properties of a feature
point are:

• It should be well defined, preferably with a set of mathematical restrictions.

• It should be locally differentiable, in the sense that there is no any feature
point in its vicinity that has a similar definition.

• It should be invariant to as many transformations as possible, including
camera rotations, translations, scales and illumination changes.

There are many feature point detectors in the literature. The most common
are those corresponding to the family of corner detectors, that define a corner as
a point having high intensity variations when moving around its vicinity. This is
normally computed as the response of the pixel to the SSD operator between a
patch around the pixel and its vicinity. High values indicate that the point has a
low self-similarity, thus corresponding to a corner. The simplest implementation

38 Chapter 3. Proposed Method

is the Moravec corner detector (Moravec, 1977) that computes the self similarity
shifting a patch in eight directions (horizontals, verticals and diagonals). The
point is considered a corner if all shiftings produce a correlation value above a
predefined threshold. The similarity operator given a window W centered at the
pixel (x, y) with a displacement (Δx,Δy) is defined as:

c(x, y) =
�

(u,v)∈W

[I(u, v)− I(u+Δx, v +Δy)]2 (3.2)

where I(x, y) is the intensity of the pixel with coordinates x, y. However this
operator only finds corners in the direction of the shifted patches, not being
invariant to rotations. Harris and Stephens (Harris and Stephens, 1988) improved
this operator by calculating the dominant intensity variations instead of using
shifted patches. This is done approximating the shifted image using the first order
Taylor expansion:

I(u+Δx, v +Δy) ≈ I(u, v) +
∂I(u, v)

∂x
Δx+

∂I(u, v)

∂y
Δy. (3.3)

Substituting in Equation 3.2:

c(x, y) =
�

(u,v)∈W

�
∂I(u, v)

∂x
Δx+

∂I(u, v)

∂y
Δy

�2

(3.4)

which can be rewritten in a matrix form:

c(x, y) = [Δx Δy]

�

(u,v)∈W

�
∂I(u, v)

∂x

�2 �

(u,v)∈W

�
∂I(u, v)

∂x

∂I(u, v)

∂y

�

�

(u,v)∈W

�
∂I(u, v)

∂x

∂I(u, v)

∂y

� �

(u,v)∈W

�
∂I(u, v)

∂y

�2

�
Δx
Δy

�

= [ΔxΔy]M

�
Δx
Δy

�

.

(3.5)

The matrix M represents the intensity variation in the vicinity of the
interest point. Thus, its eigenvectors denote the directions of maximum intensity

Section 3.2. Image Measurements 39

variations. Figure 3.3 shows some possible behaviors of the Equation 3.5. The
presence of large eigenvalues means that the point corresponds to a corner, in
contrast to smooth regions that are represented by small eigenvalues. Due to
performance reasons, Harris detector does not compute the eigenvalues of all
pixels. Instead the strength of a corner is assigned as:

Mc(x, y) = λ1λ2 − κ (λ1 + λ2)
2 = det(M)− κ trace2(M) (3.6)

where λ1 and λ2 are the eigenvalues of M and κ is a sensitivity parameter.

Figure 3.3: Different responses of the Harris detector 1.

In this work, the corner strength is measured as the minimum eigenvalue of
the matrixM, which corresponds to the Shi and Tomasi detector (Shi and Tomasi,
1994). Moreover a technique known as non-maxima suppression is applied, so
that only the strongest point in a 3 × 3 local neighborhood remains. In this way,
it is not possible to have two consecutive pixels marked as corners. The feature
detection is carried out every frame, but only in the image regions that have no
features on it, i.e., in new areas. Figure 3.6a shows the obtained corners applying
this method.

3.2.2 Feature Description

The representation of a feature point can be extended adding a description of the
image region around its position. It is usually done measuring the local image

1Photography courtesy of Carlos Buchart.

40 Chapter 3. Proposed Method

gradients using a patch centered at the feature point. This information is stored in
a vector called feature descriptor that should have the next properties:

• Highly distinctive: The descriptor of different feature points should be
different.

• Easy to compare: A metric should be defined in order to measure the
difference between two feature descriptors. Usually the Euclidean distance
is sufficient.

• Invariant: The descriptor of a feature point should be preserved even
after image transformations like rotations, translations or scales. Invariance
against illumination changes is also desirable.

There are several descriptors in the literature such as SIFT (Lowe, 1999)
(Lowe, 2004), SURF (Bay et al., 2008) or FERNS (Ozuysal et al., 2010), but
in this thesis, a simplified version of SIFT descriptors are used.

The SIFT method was originally designed for object recognition tasks, but
it can be very useful for tracking where a feature must be located and matched
along different images. In addition to the feature descriptor, it also includes a
feature detector. In object recognition tasks, a SIFT based algorithm can locate an
object in a cluttered image, having only a database with the SIFT features of the
object sought.

In the original implementation of the SIFT algorithm, feature points are
located using the Difference of Gaussians (DOG) technique. It is done subtracting
images produced by convolving the original image with different Gaussian filters
at different scales. It can be seen as a band-pass filter. Each pixel in a scale level is
compared with its eight neighbors. Pixels that are locally maxima or minima are
then compared with its 18 neighbors in the next and previous scales levels. Those
pixels that are locally maxima or minima are considered feature points. The scale
where the feature was detected is stored as the scale of the feature and will be used
later in order to calculate the descriptor of the feature. This process can be viewed
more clearly in Figure 3.4.

In order to achieve invariance against rotations, the dominant direction and
magnitude of the intensity gradient is calculated for each feature point. The
gradients of all the pixels around the feature are calculated, and their magnitudes
are weighted using a Gaussian whose variance depends on the scale of the
feature. The gradients of the pixels are discretized in 36 directions (10 degrees

Section 3.2. Image Measurements 41

Figure 3.4: Feature point detection using DOG (Lowe, 2004).

per direction) building a histogram with their weighted magnitudes. The dominant
direction of the feature is set as the direction corresponding to the highest value
in the histogram. If there are two dominant directions, both magnitudes are stored
replicating the feature point.

Using the dominant direction, a descriptor containing the gradient information
of the neighborhood of the feature is calculated. In the original method a 16× 16
window around the feature is used in the scale image where it was detected. This
window is subdivided in four 4 × 4 regions so that for each region a histogram
of eight gradient orientations is calculated. In order to achieve the rotational
invariance, the dominant direction is subtracted to all the computed gradients.
The descriptor is built as the concatenation of the four histograms giving a total
of 128 elements per feature point. Finally, it is normalized to unit length in order
to minimize the effects of the illumination.

SIFT feature detection and descriptor computation require a lot of processing
time and they are not suitable for real time applications. For that reason, some
simplifications have been adopted in order to get real time performance based
on the indications of (Wagner et al., 2010). First, the original DOG has been
replaced by the faster Shi and Tomasi detector. This implies that the invariance
against scale changes is lost, so the dominant direction of the features must be
calculated using a fixed Gaussian in order to weight the gradients of neighbor

42 Chapter 3. Proposed Method

pixels. Moreover, only one descriptor for each feature is retained, independently
of not detecting a strong gradient orientation. Finally, in order to accelerate the
SIFT descriptor computation, all possible kernel orientations are precomputed in
order to accelerate the online processing.

The main drawback of these restrictions is that the matching quality will
decrease if the system suffers a strong movement combined with a notable scale
change. However, a SLAM application can afford these restrictions since, in
contrast to object detection applications, it can take the advantage of the spatial
coherence given by the sequence of images. However, if the tracking is completely
lost, the spatial coherence cannot be used. In this case, the scale change is not a
problem since these losses are due to sudden movements that do not involve large
scale changes.

Figure 3.5 shows the time needed to compute the descriptors in a test sequence
using an Intel Core2Duo@3.0GHz. It runs quite fast, because the implementation
uses multiple threads and scales well in a multiple-core CPU, needing less that 10
ms to compute about 1000 descriptors.

500 550 600 650 700 750 800
0

5

10

15

20

25

30

35

40

Frame

T
im
e
(m
s)

500 550 600 650 700 750 800
0

200

400

600

800

1000

1200

1400

D
es
cr
ip
to
rs
co
m
p
u
te
d

Figure 3.5: SIFT computation time.

Section 3.2. Image Measurements 43

3.2.3 Feature Tracking

Given the position of a feature point in a reference image, feature tracking refers
to the process of determining its position in the rest of the images of the video
sequence.

Although feature points in different images can be matched using their SIFT
descriptors, in this work they are not used for this purpose. Instead, the optical flow
of the features is computed using the Lukas-Kanade algorithm in two pyramidal
reductions (Bouguet, 2000). The optical flow is defined as the apparent motion
of the features along the video sequence and it is computed as the least squares
solution of:

�(Δx,Δy) =
�

u,v∈w

[I(u, v)− J(u+Δx, v +Δy)]2, (3.7)

where I(x, y) and J(x, y) are consecutive images in the video sequence and
(Δx,Δy) is the optical flow of the image in the window w. The algorithm first
runs the optical flow computation in the lowest resolution image of the pyramid.
Then, the results are propagated to the upper levels as an initial guess of the
optical flow. Finally, in the highest level (the original image) the refined optical
flow is obtained. As can be seen, the optical flow computation is very similar
to the similarity operator given in Equation 3.2. Indeed, the optical flow is the
displacement that minimizes the SSD of a patch in the two images. Figure 3.6b
shows the optical flow vectors associated to a set of features.

(a) Feature points detected by the
Shi-Tomasi method.

(b) Optical flow of the sequence.

Figure 3.6: Measurements taking on the images

44 Chapter 3. Proposed Method

If the optical flow algorithm fails tracking a feature point, it is marked as lost.
In this case, the stored SIFT descriptor is compared with the descriptors of the new
features in order to relocalize the lost feature. The best match is selected as the
one that minimizes the Euclidean distance between those descriptors. Moreover,
the match is only accepted if the difference between the matching score of the
best candidate with respect to the second, is greater than a threshold. As will be
detailed in Section 3.6, in each frame only the feature points having associated a
3D point whose projection using the actual pose is inside the image are subject to
be relocalized. Moreover, only points lying inside a patch around the projection
are considered.

In order to make the tracking robust to outliers, the coherency of the optical
flow is checked using a separate Kalman Filter for each feature point. The filter
provides an estimation about the position of the features assuming a constant
velocity motion model. If this prediction differs from the measurements given
by the optical flow, the point is considered an outlier.

Taking into account the constant velocity model, the state vector for a feature

point is represented as its position and velocity. Let �yk =
�
uk, vk

��
be a point

in the frame k moving with a velocity of (Δx,Δy). The subscripts indicating
the point index have been ommited for readability. Following Equation 2.14, the
transition function of the filter is given by:

ûk+1

v̂k+1

Δx
Δy

 = A

uk

vk

Δx
Δy

+ �ω (3.8)

where �ω follows a 4-dimensional Gaussian distribution with covariance Q. The
transition matrix is defined as:

A =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

Consecuently, the observation function can be defined as:

Section 3.2. Image Measurements 45

�
uk+1

vk+1

�

= H

ûk+1

v̂k+1

Δx
Δy

+ �µ (3.9)

where �µ follows a 2-dimensional Gaussian distribution with covariance R and the
measurement matrix is:

H =

�
1 0 0 0
0 1 0 0

�

.

Considering the state vector as a Gaussian variable and taking into account
that equations 3.8 and 3.9 are linear, the expected position of the feature and its
covariance can be estimated using the equations 2.16 and 2.18.

The covariance Q in Equation 3.8 is modeling the uncertainty of the constant
velocity model. In this way, it is set small but different to zero in order to allow
small velocity variations. The covariance R in Equation 3.9, following the results
of (Kanazawa and Kanatani, 2001), is set as a diagonal matrix with 2 pixels of
uncertainty.

However, as shown in Figure 3.7, some outliers can appear in form of false
corners. These situations are not detected by Kalman Filters because the motion
pattern is coherent with a constant velocity model. In fact, they can only be
detected using higher level geometric constraints, like the epipolar geometry for
example.

Figure 3.7: A false corner indectectable by the Kalman Filter

Anyway, those situations are not considered here as long as they are detected
in the 3D reconstruction stage in Section 3.3.

46 Chapter 3. Proposed Method

In contrast, as shown in Figure 3.8, the outliers induced by incorrect feature
detections are rapidly detected. The plots correspond to the detection process in
a synthetic sequence which has been perturbed with different levels of additive
Gaussian noise.

5 10 15 20 25
0

5

10

15

20

25

30

Frame

O
u
tl
ie
r
co
u
n
t

Using the Kalman Filter
Without using the Kalman Filter

(a) Additive noise of σ = 70 in each color
channel.

5 10 15 20 25
0

5

10

15

20

25

30

35

40

Frame

O
u
tl
ie
r
co
u
n
t

Using the Kalman Filter
Without using the Kalman Filter

(b) Additive noise of σ = 90 in each color
channel.

Figure 3.8: Outliers detected by the Kalman Filter

3.3 Initial Structure

Before starting the pose estimation, an initial 3D structure is needed. There are
several ways to obtain it, depending on the amount of user interaction required.

Klein and Murray (Klein and Murray, 2007) use the five point algorithm
(Stewénius et al., 2006) that can find the Essential matrix using only five point
correspondences. Their initialization is only applicable to online video sequences,
since the user is required to translate the camera in one direction. The initial and
the final frames of the translation are used to estimate the epipolar geometry of
the sequence and the initial map is built after a BA step.

In this thesis, two initialization alternatives are used. In the first, the user is
required to select four points in the image defining a square. Having these points,
the initial pose is calculated using the Direct Linear Transform (DLT) method
(Hartley and Zisserman, 2004). This initialization has the advantage of being very
accurate, but needs the user to cooperate and it is only practical for offline video
sequences.

The second alternative is less restricted and the user is not required to

Section 3.3. Initial Structure 47

cooperate. When a great pixel displacement is detected, the Essential matrix is
calculated using the 8 point algorithm (Longuet-Higgins, 1981) together with
RANSAC (Fischler and Bolles, 1981) and adjusted using LM.

Having two frames of the video sequence described by two sets of matched
features Yk and Yl, the relation between them can be described by the Fundamental
matrix, or in the case of calibrated images by the Essential matrix:

�yl�
i E�yk

i = 0 (3.10)

This relation can be used to write a linear homogeneous system of equations in
the terms ofE. Since the Essential matrix is defined up to an arbitrary scale factor,
having eight point matches is sufficient to solve it. Normally, the feature tracker
has more than eight point matches available, so the problem is overdetermined.
In order to minimize the effects of incorrect correspondences, this fact can be
exploited using the RANSAC algorithm. It randomly selects groups of eight points
and calculates the corresponding Essential matrix for each group. The residual of
each matrix is calculated using Equation 3.10 with all the matches and the correct
matrix is selected as the one that minimizes the number of outliers.

From this matrix and aligning the origin of the coordinate system in the first
frame, the camera pose of the second frame can be recovered (see Appendix B).
This first pose estimation allows to calculate a prior 3D reconstruction using linear
triangulation, that later is adjusted when more views become available.

If scale information is not supplied, the obtained reconstruction is only valid
up to an unknown scale factor, which means that only relative distances can be
measured. This problem is present in every reconstruction algorithm that works
only with images because of the scale ambiguity inherent to perspective cameras.
This effect is illustrated in Figure 3.9. The image on the left seems to be a photo
taken in the fifties. However, looking at the image on the right, it becomes clear
that the photo is taken from a scale model.

The obtained initial reconstruction is translated so that the origin is at the
centroid of the point cloud and scaled so that the Root Mean Squared (RMS)
distance of the points to the origin is

√
3. In this way, the mean norm of every

point is going to be near to one, achieving a better numerical stability in the whole
system. After this transformation, the computed camera pose must be transformed
as well in order to be adjusted to the new 3D point cloud.

At the rest of the sequence, new points are added to the map as long as new 2D

48 Chapter 3. Proposed Method

(a) Looks real. (b) But it is not.

Figure 3.9: Scale ambiguity shown in photographs. From Michael Paul Smith’s
collection. 2

features are detected. These new points are computed using linear triangulation
as well, but in this case the pose data come from the pose estimator instead of
epipolar geometry. However, as stated in Section 3.2, some outliers can appear as
false corners. In order to detect them, before running the triangulation, the epipolar
constraint is checked using the corresponding projections. Since the pose of the
camera is known, the Essential matrix can be directly computed from it.

As seen in Figure 3.10, the triangulation is strongly influenced by the angle
between the rays, being the worst case moving forward or backward. In order
to minimize the uncertainty of the reconstruction, a constraint is imposed on the
length of the baseline of the frames used for the triangulation (Cornelis, 2004).

Figure 3.10: Uncertainty region triangulating points from images.

2http://www.flickr.com/photos/24796741@N05/

Section 3.4. Pose Estimation 49

Let �xk(i) be the ith row of the camera matrix for the frame k. Let uk and vk

be the x,y coordinates of the feature point �yk
i . The corresponding 3D point �zi is

obtained solving:

�xk(3)u
k − �xk(1)

�xk(3)v
k − �xk(2)

�xl(3)u
l − �xl(1)

�xl(3)v
l − �xl(2)

�zi = �0 (3.11)

This stage is implemented in the CPU since it runs very fast, even when many
points are triangulated.

3.4 Pose Estimation

The pose is estimated each frame using the 2D features given by the feature tracker
described in Section 3.2. Since these features might contain noise and outliers, the
direct least squares solution using the DLT method can lead to very large errors in
the estimation. There are several solutions to avoid this problem, but because of
the parallelism requirements of this thesis, a SMC solution has been chosen.

In order to facilitate the sampling task, the pose is parameterized using
a rotation quaternion and a translation 3-vector instead of its 4 × 4 matrix
representation. Although the minimal representation using Euler angles can be
used, quaternions are safer because they do not suffer from gimbal lock. Thus, the

pose in frame k is represented by a 7-vector in the form �xk =
�
�qk,�tk

�T
, so that

the set of camera poses up to k is given by X1:k.

The goal is to get for each frame k the state vector �xk that best adjusts to the
image observations Yk given the 3D structure of the captured scene Z. As stated in
Equation 2.22, the distribution P (�xk|Y1:k, Z) is approximated as a set of weighted

hypotheses S =
��

�x
(1)
k , w

(1)
k

�
, . . . ,

�
�x

(m)
k , w

(m)
k

��
where each weight can be

calculated using Equation 2.24. Taking into account that the system described

here follows a Markov chain model, the proposal density Q
�
�x

(i)
k |Xk−1, Yk

�
can

be chosen to be P (�xk|�xk−1). Substituting in Equation 2.24 the weights of each
sample can be updated as follows:

w
(i)
k ∝ w

(i)
k−1P (Yk|�x

(i)
k , Z). (3.12)

Each hypothesis represents a possible evolution of the model and they can

50 Chapter 3. Proposed Method

be directly drawn from the transition function that describes the state-space

model. Similarly, the observation density P (Yk|�x
(i)
k , Z) can be evaluated using

the stochastic observation model given in Equation 2.11. Figure 3.11 shows a
summary of the steps involved in the pose estimation.

Figure 3.11: Description of the pose estimation algorithm.

In order to work efficiently in the GPU platform, some modifications have
been done to the sampling and weighting steps. Following sections describe in
detail how these distributions are approximated.

3.4.1 Pose Sampling

In each frame k a set of samples A =
�
�x

(1)
k , . . . , �x

(m)
k

�
is drawn from the

proposal P (�xk|�xk−1). As discussed in Section 2.4.2, there are various alternatives
to the transition function like constant velocity or constant acceleration that guide

Section 3.4. Pose Estimation 51

the sampling procedure to specific high probability areas. However, in order to
avoid problems with erratic motion patterns introduced by handheld cameras,
hypotheses are generated using the random walk sampling model, also known
as constant position sampling.

In this way, new samples are generated as random rotations and translations
from the previous pose �xk−1, so the sampling function is:

�x
(i)
k = f (�xk−1, �ωi, �τi) =

�
�qk−1 + �ωi,�tk−1 + �τi

�
(3.13)

where �ωi and �τi are samples taken from random variables following any
distribution. This is an important difference with respect to Kalman filters, since
the Gaussianity is not mandatory.

In this case, the transition function is linear, but this filter can work with
nonlinear functions as well without any special consideration. Note that the
perturbation model applied to the quaternion is a simple vector addition (and
a posterior normalization) instead of a quaternion composition. Compared to a
normal quaternion composition, this perturbation model has a major impact on the
rotation axis rather than on its magnitude. Experimentally it has been concluded
that it describes better the behavior of a handheld camera, and in the same time, it
is the simplest way to update its orientation.

Due to purely practical reasons, �ωi and �τi have been chosen to be drawn from

normally distributed random variables Ω ∼ N
�
�0,Σrot

�
and T ∼ N

�
�0,Σtrans

�

so that the proposal P (�xk|�xk−1) follows a Gaussian distribution as well. In
order to delimit the sampling space, the covariance matrices Σrot and Σtrans

should be carefully chosen. These covariances are modeling the uncertainty
of the pose parameters, so they need to be large enough to cover all the
space of possible camera configurations. However, a large region would lead
to imprecise estimations introducing jitter into the system, while a small region
would introduce drift in the estimation.

Since rotations between frames are very small even with erratic motions,
the covariance matrix Σrot is fixed for all frames. Note that an assumption
of 10 degrees per frame means a total of 250 degrees per second at 25 fps.
Faster rotations would lead to excessive blur that would make the sequence non-
trackeable.

However, the magnitude of the translation can vary a lot between frames, so
the covariance matrix Σtrans is updated every frame. To calculate this matrix, it is

52 Chapter 3. Proposed Method

assumed that the camera only translates locally. In this way, taking Equation 3.1,
the projection of a 3D point can be approximated as:

�yk
i ≈ Π

�
Rk−1�zi + t̂k

�
(3.14)

where the vector t̂k is the only variable in this translational camera model. Since
there are no rotations contributing to the pixel displacement of the projections of
the scene points, the translation obtained from this model can be considered as
the limit of the uncertainty region of the real translation. In order to estimate this
translational model, it can be expressed linearly using the Taylor expansion of
Equation 3.14:

�yk
i ≈ �yk−1

i + Jk−1

�
t̂k − �tk−1

�
+HOT (3.15)

where Jk−1 is the Jacobian matrix of Equation 3.14 evaluated at �zi with respect
to translation and HOT are the Higher Order Terms of the Taylor expansion. As
can be seen, this linearized model is quite similar to the measurement function
used by the Extended Kalman Filter shown in Equation 2.21. In fact, assuming a
constant position model, the a priori estimate t̃k would be �tk−1, complying with
the form of the Extended Kalman Filter.

Equation 3.15 includes in the measurement vector all the tracked feature
points contained in the set Yk. However, since the translational model used here
is just an approximation of the real dynamics of the system, it can be simplified
for efficiency using only a single feature point. In order to get robustness against
outliers and other errors, instead of using a real feature point, the projection of the
centroid of the visible 3D points has been used. The measurement corresponding
to this point is taken as the average pixel displacement of the visible feature points,
so the final measuring function is:

�yk
c ≈ ỹk

c + Jk−1

�
t̂k − �tk−1

�
+HOT (3.16)

where ỹk
c is the projection of the centroid �zc, and �yk

c is the measured pixel
displacement of the visible feature points.

The estimated t̂k can be obtained as a Gaussian random variable using the
update equations of the Kalman Filter. First, the a priori estimate of the translation
is obtained using the time update function, that as mentioned, it has been chosen
to be a constant position model:

Section 3.4. Pose Estimation 53

t̃k = f(�tk−1,�0) = �tk−1. (3.17)

The covariance matrix P
(−)
k of this prediction is approximated as the

translational velocity of the camera in the last frame. From this matrix, the gain of
the measurement update equation can be calculated from Equation 2.19 replacing
the measurement matrix by the Jacobian of the observation function:

Gk = P
(−)
k J�k−1

�
Jk−1P

(−)
k J�k−1 +Rk−1

�−1
(3.18)

where Rk−1 is the covariance matrix of the measurement process. Since this
covariance models the uncertainty of the feature tracker, as stated in Section 3.2,
it is set as Rk−1 = diag(2).

Having the measurement �yk
c , the a posteriori state is obtained from Equation

2.18, but using Equation 3.14 as the nonlinear measurement function h():

t̂k = t̃k +Gk

�
�yk

c − h(t̃k,�0)
�
, (3.19)

and its covariance can be updated as:

Pk = (I3 −GkJk−1)P
(−)
k . (3.20)

A natural solution would be to approximate P (�xk|�xk−1) sampling the
translation directly from this Gaussian instead of using Equation 3.13, however,
the solution would be biased in the direction of the estimation of the Kalman filter.

Having the estimation of the translational model, the covariance of the random
variable T can be set as:

Σtrans = diag
�
abs(t̂k − �tk−1)

�
+Pk. (3.21)

3.4.2 Weighting the Pose Samples

Each sample is weighted using Equation 3.12, which only depends on
the marginal probability of the observation given the state hypothesis, i.e.,

P
�
Yk|�x

(i)
k , Z

�
. As stated, this probability is set proportional to the observation

model of the system given by Equation 2.11.

54 Chapter 3. Proposed Method

In this work, a bottom-up approach is used, and the observation density
is approximated as the Euclidean distance between point projections given the
current hypothesis and corresponding 2D features:

P
�
Yk|�x

(i)
k , Z

�
∝ exp

−
n�

j=1

�
�
�Π
�
R

(i)
k �zj + �t

(i)
k

�
− �yk

j

�
�
�

 (3.22)

where R
(i)
k is the rotation matrix corresponding to �q

(i)
k . Other authors like (Pupilli

and Calway, 2006) use the inlier-outlier likelihood, approximating the distribution
as:

P
�
Yk|�x

(i)
k , Z

�
∝ exp

−

n�

j=1

d
�
�yk

j , �zj , �x
(i)
k

�

 (3.23)

where d() is a distance function defined by:

d
�
�yk

j , �zj , �x
(i)
k

�
=

�
1 if

�
�
�Π
�
R

(i)
k �zj + �t

(i)
k

�
− �yk

j

�
�
� > �d

0 otherwise
(3.24)

The value �d corresponds to a threshold value that indicates if the point is an
inlier or not. This observation density produces good results as well, however
the estimated motion is less smooth and an annealing step is required. These two
weighting functions are shown in Figure 3.12.

The pose that is used for rendering virtual objects is chosen to be the one
with the greatest weight. Moreover, resampling is done each frame since it has
no sense in bottom-up schemes. The reason is that having 2D features already
matched, there is no need for multimodality.

The likelihood of the frame is calculated as a threshold function that depends
on the number of inliers that the sample gets. If there are enough inliers, the
frame is considered a keyframe, and it will be used by the structure adjustment
algorithm. In addition, only points that have been inliers in the previous frames
are used for the pose estimation. There are more complex methods for keyframe
selection in the literature, but this solution is easy to implement and gets good
results with this random sampling method.

Section 3.5. Scene Reconstruction 55

Sample

L
ik
el
ih
o
o
d

Inlier − Outlier likelihood

Euclidean likelihood

Figure 3.12: Weighting likelihoods compared.

Finally, in order to get a smooth motion and avoid jitter, the pose that is used to
render virtual objects is filtered using a desp filter (LaViola, 2003) that maintains
a record of the previous poses in order to get the smoothed estimate.

3.5 Scene Reconstruction

Following the same argumentation as in the pose estimation, the 3D structure map
is reconstructed using SMC as well. The structure estimation has two major parts,
i.e. point initialization and point adjustment. New points are added constantly to
the map as described in Section 3.3, and mapped points are adjusted using the
information from new frames.

Structure points are parameterized as 3-vectors, so that �zj = [xj , yj , zj]
T .

Every frame, a list of points having their reprojection error greater than a threshold
is built. For each of those points, the adjustment process is executed iteratively.

In this case, it makes no sense to talk about a state-space model, since the
scene is considered to be rigid and hence invariant along the sequence. However,
the same approach that has been employed in the motion estimation can be used
if a single point is considered a dynamic system whose transition function is a
random walk model.

Under this assumption, the distribution P (�zj |Y1:k, X1:k) can also be
approximated as a set of weighted samples. The proposal density is chosen to

be P (�zj |�z
(−)
j) where �z

(−)
j denotes the point location in the previous frame, so the

56 Chapter 3. Proposed Method

weights of the samples are calculated as:

w
(i)
j ∝ P (Y1:k|�z

(i)
j , X1:k). (3.25)

The observation density is approximated using the measurement model given
in Equation 2.11. This can be seen as a nonlinear minimization that is computed
for each structure point. A summary of these steps is illustrated in Figure 3.13.
Following sections describe in detail how these distributions are approximated.

Figure 3.13: Description of the point adjustment algorithm.

3.5.1 Point Sampling

For each point �zj , a set of random samples B =
�
�z

(1)
j , . . . , �z

(q)
j

�
is generated

around its neighborhood using a random walk transition function:

Section 3.5. Scene Reconstruction 57

�z
(i)
j = f

�
�z

(−)
j , �ψi

�
= �zj + �ψi (3.26)

where �z
(−)
j is the prior location of the point being adjusted and ψ is a sample

taken from a random variable following any distribution. Again, Gaussianity is

not mandatory, however a normally distributed variable Ψ ∼ N
�
�0,Σj

�
has been

used due to its simplicity, so the proposal P (�zj |�z
(−)
j) is also normal.

The covariance matrix of the noise distribution can be bounded using the
method described for the covariance of the translation vector in the pose sampling
function. Following the same argumentation, the projection of the point �zj can be

linearized around its prior location �z
(−)
j using the first order Taylor expansion:

�yk
j = ŷk

j + Jk
j

�
�zj − �z

(−)
j

�
+HOT (3.27)

where Jk
j is the Jacobian of Equation 3.1 evaluated in the last frame with respect

to �z
(−)
j , and ŷk

j is its projection.

The solution can be estimated using the same update functions detailed in
Section 3.4. In this case, the covariance matrix of the time update function is set
as the sample covariance of the point in the previous adjustment step. In Section
3.5.2 will be shown in detail how to compute this matrix.

The output of this filter is an estimation ẑj about the new position of the
point. However, it should be noted that only the information of the last view is
used in Equation 3.27. This implies that the prediction of the filter will be optimal
(assuming linearity and Gaussianity) only with respect to the last observation
and not globally optimal for the whole sequence, and thus incorrect. However,
this prediction can be used as the bounds of the sampling function, setting the
covariance matrix of Ψ as:

Σj = diag
�
abs(ẑk − �z

(−)
j)

�
+Pk, (3.28)

where Pk is the covariance matrix of the estimation of the filter.

58 Chapter 3. Proposed Method

3.5.2 Weighting the Point Samples

For each sample, the point is projected along the past keyframes and its weight
is calculated using Equation 3.25. There are a lot of possible choices in order

to approximate the distribution P (Y1:k|�z
(i)
j , X1:k), like inlier-outlier likelihoods or

more complex distance functions. Here, it is set proportional to the Euclidean
distance between the projections of the sample in the previous keyframes and the
2D features measured in those keyframes:

P (Y1:k|�z
(i)
j , X1:k) ∝ exp

�

−
k�

l=1

�
�
�Π
�
Rl�z

(i)
j + �tl

�
− �yl

j

�
�
�

�

, (3.29)

which corresponds to a bottom-up approach. The solution is taken as the point
with the greatest weight. However, as mentioned in Section 3.5.1, the covariance
of the sample set is needed in order to estimate the search space for the sampling
function in the next adjustment step. In order to obtain this covariance, first the

resulting weights need to be normalized so that
�q

i=1 ŵ
(i)
j = 1. Having these

weights, the mean z̄ and the covariance S = [su,v] of the sample can be obtained
as:

z̄ =

q�

i=1

ŵ(i)�z(i) (3.30)

su,v =

�k
i=1 ŵ

(i) (zu − z̄u) (zv − z̄v)

1−
�N

k=1

�
ŵ(i)

�2 , 1 ≤ u, v ≤ 3 (3.31)

where zu denotes the uth component of the vector �z. Note that the subscript
relating the point index has been omitted for readability.

The covariance information results very useful in order to detect bad
estimations. This covariance is describing an ellipsoid in the space where the true
position of the point is with a high probability. As newmeasures become available,
the size of this ellipsoid decreases, which means that the estimate is becoming
stable. The axes of the ellipsoid can be obtained as the eigenvectors of the matrix
S and the magnitude as its eigenvalues. The eigenvalues can be used, for example,
to determine which points are the best candidates for the pose estimation.

Section 3.6. Remapping 59

If after the adjustment the posterior residual is less than the prior and minor
than a threshold, the point in the map is modified. If not, the point is considered
as an outlier and removed from the structure map.

3.6 Remapping

The tracking of an image feature can be lost due to noise or simply because
it disappears from the image due to camera motion. When this happens, the
corresponding 3D point in the map is marked as lost. In each frame these lost
points are projected using the pose information estimated by the 3D tracker. If the
projections are located within the image, the system tries to remap them.

Since each feature has a SIFT descriptor associated, a fixed size window is
used around the projection of the point being remapped looking for a feature
having a similar descriptor. Figure 3.14 illustrates an example of a point being
remapped. In this example, the stored descriptor is compared with the descriptor
of the five features located inside the window.

Figure 3.14: A lost point being remapped.

If the difference between the best match and the second best is greater
than a threshold, the rematching is considered stable and the point is remapped.
Algorithm 3.1 shows the summary of the remapping strategy:

60 Chapter 3. Proposed Method

Algorithm 3.1 Remapping strategy.

Require: W → Remapping window.
Require: �di → descriptor of the point remapped.
F←DetectFeaturePoints(W)
bestDifference←∞
secondBest←∞

for all �p in F do
diff=descriptor(�p)-�di

if diff<bestDifference then
secondBest← bestDifference
bestDifference← diff

else if diff<secondBest then
secondBest← diff

end if
end for

if bestDifference>threshold and bestDifference> k∗secondBest then
remmap(�zi)

end if

3.7 Experimental Results

The accuracy of the method described in this chapter is analyzed in this section.
In this way, various tests have been done using both synthetic and real data.

Synthetic data consist on a virtual video sequence rendered using a camera
moving around a virtual object. The object is 1 m wide and initially it is located
at 3 m from the camera center. The projections of its vertices simulate the 2D
features that act as the input of the algorithm, allowing to analyze its behavior
without introducing in the experiments the bias produced by the feature tracker.
Anyway, this uncertainty is simulated adding noise to the projections. Figure 3.15
shows this virtual scene while Table 3.1 summarizes some of the parameters used
to render it.

Real sequences have been recorded using a Logitech webcam working at
320×240. For these tests, two video sequences have been used. The first video,
shown in Figure 3.22, consists in a desktop size indoor scenario composed by

Section 3.7. Experimental Results 61

(a) Virtual object. (b) Camera path.

Figure 3.15: The synthetic data used for the experiments.

a mock-up of a city. This scenario contains a lot of textured shapes and a
very structured geometry. In contrast, the second video, shown in Figure 3.23,
is an outdoor sequence consisting in a more homogeneous environment. The
ground truth values of these videos has not been measured, therefore the errors
are expressed as the reprojection residuals of the estimated structure using the
estimated pose, compared to the image measurements given by the feature tracker.

Number of frames 100

Frame rate 25 fps.

Focal length 500 pix.

View port 320x240

Tracked features 450

Table 3.1: Parameters of the synthetic video.

Unless otherwise stated, 5122 samples are used for the pose estimation and
163 for the structure estimation.

3.7.1 Pose Estimation Accuracy

In order to establish the number of hypotheses needed to converge successfully,
the pose estimation algorithm has been tested independently from the structure
reconstruction part. Using the synthetic sequence, the pose of the camera has
been computed for each frame using different amount of hypotheses in each
experiment. Moreover, two versions of the test sequence have been used, i.e.,
a clean sequence without any perturbation in the input data, and a perturbed

62 Chapter 3. Proposed Method

sequence with Gaussian noise added to the positions of the 2D feature points.
The mean is set as 0 and the covariance as 2 for each dimension, following
the assumptions made in Section 3.2 about the uncertainty associated to the 2D
tracker. In addition, a 20% of the matches are intentionally modified in order to
test the robustness against outliers.

The motion estimator is fed using 100 structure points leaving the rest for
measuring the errors. The resulting camera path is compared with the ground truth
data and the error is measured as the Euclidean distance between the projections
of the structure points using the estimated path and the positions of the 2D features
given by the synthetic sequence:

�(i) =

�m
j=1

�
�
�Π
�
Ri�zj + �ti

�
− �yi

j

�
�
�

m
. (3.32)

Figure 3.16 shows the results of these experiments as a box plot. On each
box, the central mark is the median of the reprojection error, the edges of the box
are the 25th and 75th percentiles and the whiskers extend to the maximum and
minimum values. Figure 3.16a corresponds to experiments done using the clean
data, while Figure 3.16b shows the results of the perturbed sequence.

162 322 642 1282 2562 5122
0

2

4

6

8

10

12

E
rr
o
r
(p
ix
)

Number of hypotheses

(a) Without noise in the input data.

162 322 642 1282 2562 51220

2

4

6

8

10

12

E
rr
o
r
(p
ix
)

Number of hypotheses

(b) With additive noise and outliers.

Figure 3.16: Pose estimation accuracy in terms of the reprojection error.

As seen, the dispersion from the median decreases with the number of samples
taken. This is the normal behavior of a Monte Carlo approximation, since the
target distribution is better described as the number of samples increases.

From the perturbed data, it could be inferred that the pose estimation error
increases with the noise in the feature points. However, it is not necessarily true

Section 3.7. Experimental Results 63

since the projections are compared against the noisy feature points. In contrast,
Figure 3.17 shows the difference between the real and the estimated camera paths
using the perturbed sequence and a configuration of 2562 hypotheses. One plot
for each translation and rotation axis is shown.

As can be seen, the estimated motion is very near to the ground truth data
even with a relatively high reprojection error. Moreover, due to the random walk
sampling function, the algorithm can handle very well erratic motion patterns like
the sudden change of direction that appears in the frame 50.

Table 3.2 shows a resume of the tests done with the synthetic data. Each
column contains the Mean Squared Error (MSE) and the standard deviation of
the pose estimation resulting from perturbing the sequence with additive Gaussian
noise. The covariance of the noise is diagonal and its magnitude is specified by
the header of the column.

Table 3.2: Accuracy measured in a synthetic sequence.

Noise 2 Noise 4 Noise 6 Noise 8

MSE 4.62× 10−6 1.05× 10−5 1.98× 10−5 2.66× 10−5

Tx
Std. dev. 7.61× 10−6 1.55× 10−5 2.91× 10−5 3.62× 10−5

MSE 3.93× 10−6 9.91× 10−6 1.92× 10−5 2.94× 10−5

Ty
Std. dev. 6.41× 10−6 1.40× 10−5 2.72× 10−5 4.57× 10−5

MSE 1.30× 10−4 3.79× 10−4 4.73× 10−4 8.86× 10−4

Tz
Std. dev. 1.88× 10−4 7.03× 10−4 6.85× 10−4 1.30× 10−3

MSE 2.19× 10−5 7.18× 10−5 1.05× 10−4 1.65× 10−4

Rx
Std. dev. 2.42× 10−5 1.15× 10−4 1.44× 10−4 2.57× 10−4

MSE 3.57× 10−5 6.33× 10−5 1.25× 10−4 2.05× 10−4

Ry
Std. dev. 5.13× 10−5 9.17× 10−5 2.27× 10−4 3.07× 10−4

MSE 2.51× 10−5 5.01× 10−5 1.16× 10−4 1.55× 10−4

Rz
Std. dev. 4.07× 10−5 7.01× 10−5 1.65× 10−4 2.19× 10−4

The MSE represents the drift in the estimation and the standard deviation the
jitter. As expected, both quantities increase with the noise. However, the tracking
converges even with a noise of 8 pixels of standard deviation in the input.

Resuming, it has been shown that the proposed estimator is robust enough to
deal with erratic motions even with high levels of noise in the input data. However,
these benefits are obtained in exchange for huge computational resources. Note
that in these tests a total of 5122 samples have been used.

64 Chapter 3. Proposed Method

0 20 40 60 80 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Frame

P
o
si
ti
o
n
in
X

Real path

Estimated path

(a) Position comparison in X.

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Frame

P
o
si
ti
o
n
in
Y

Real path

Estimated path

(b) Position comparison in Y.

0 20 40 60 80 100
−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

Frame

P
o
si
ti
o
n
in
Z

Real path

Estimated path

(c) Position comparison in Z.

0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Frame

R
o
ta
ti
o
n
in
X
(r
a
d
)

Real path

Estimated path

(d) Rotation comparison in X.

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frame

R
o
ta
ti
o
n
in
Y
(r
a
d
)

Real path

Estimated path

(e) Rotation comparison in Y.

0 20 40 60 80 100
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Frame

R
o
ta
ti
o
n
in
Z
(r
a
d
)

Real path

Estimated path

(f) Rotation comparison in Z.

Figure 3.17: Estimated camera path compared to the real.

Section 3.7. Experimental Results 65

3.7.2 Scene Reconstruction Accuracy

Similarly to the experiments done with the pose estimation, the scene
reconstruction part has also been evaluated using the same synthetic sequence.
In order to measure the behavior of the algorithm with respect to the number
of samples and not to bias the result with the noise introduced by the pose
estimation, it has been tested separately using the ground truth pose information of
the simulated camera. Figure 3.18 shows the results of the experiments using the
clean sequence, and the sequence with the feature points perturbed with noise. The
noise is set as a Gaussian with mean 0 and covariance 2. The errors are expressed
as the reprojection error that the final structure has in each frame of the sequence
using Equation 3.32.

0 43 83 163 323 6430

1

2

3

4

5

E
rr
o
r
(p
ix
)

Number of hypotheses

(a) Without noise in the input data.

0 43 83 163 323 6430

1

2

3

4

5

6

7

E
rr
o
r
(p
ix
)

Number of hypotheses

(b) With additive noise and outliers.

Figure 3.18: Reconstruction accuracy in terms of the reprojection error.

The first box of each plot corresponds to the structure obtained by linear
triangulation without applying any adjustment to it. From both figures 3.18a and
3.18b follow that the filter performs better as the number of hypotheses used
increased. However, as can be seen in Figure 3.18b, depending on the input data,
the reconstruction can converge to the optimum with less hypotheses. It should
be noticed that the minimum reprojection error increases after the optimization.
However, it is normal, since reducing the overall error usually means that the error
in some frames gets incremented.

These results demonstrate that the method is effective reaching the
minimization objective, that depends on the reprojection error. However, it not
gives information about the accuracy of the estimation. In order to measure this
accuracy, the estimated structure has been compared with the real, available from

66 Chapter 3. Proposed Method

the simulated data. This test has been done with the noisy dataset, using a total of
163 hypotheses. The resulting reconstruction has 637 points. In order to establish
a comparison, both structures are scaled and displaced so their centroid is at the
origin and the RMS distance of the points to the origin is

√
3. This implies that the

mean distance of the points to the origin is 1, so the Euclidean distance between
the estimated points and the ground truth points can be interpreted as a percentage.
Figure 3.19 shows the histogram of errors between the two point clouds.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

Error

Figure 3.19: Histogram of the reconstruction error.

As seen in the results, the mean reconstruction error is around 2.5% and the
number of outliers is very low. These values are acceptable for augmented reality
applications, however they may not be sufficient for other applications, like robot
navigation.

3.7.3 SLAM Accuracy

In order to evaluate the full SLAM application, some results using the real video
sequences are presented in this section. Moreover, the accuracy of the proposed
method has been compared with the popular implementation of BA given in
(Lourakis and Argyros, 2009).

Starting with the indoor sequence, the reprojection error of both algorithms is
shown in Figure 3.20. The tests are executed using the same feature tracker and the
same structure initialization. BA is parameterized with the default configuration
given by the author. The projection errors are measured using the state of the
SLAM algorithm in the last frame of the video using Equation 3.32. From the plot
follows that the proposed method performs better than BA. However, it should be

Section 3.7. Experimental Results 67

noted that since outlier detection and keyframe selection depend on the output of
the minimization algorithm, the SLAM sequence evolves differently in each case.
This means that the final reconstruction has different amount of points, different
scale, etc. Moreover, the difference between them is about 1-2 pixels, so it could
be said that they obtain the same precision level.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

Frame

E
rr
o
r
(p
ix
)

Bundle Adjustment

Monte Carlo

Figure 3.20: Projection error comparison.

Finally, Figure 3.21 shows the reprojection error in the outdoor sequence. It
can be seen that even with a bad initialization, the error drops to a few pixels
quickly.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

Frame

E
rr
or
(p
ix
)

Figure 3.21: Projection error in pixels in the outdoor scene.

68 Chapter 3. Proposed Method

3.8 Discussion

In this chapter a full SLAM method has been described that uses Monte Carlo
simulations to estimate separately both the motion of the camera and the structure
of the scene. Some experiments are also provided, demonstrating the suitability
of the method. The design of these filters has involved two main challenges: the
design of a good sampling function and a representative weighting function.

Normally, the dynamics of the systems modeled are very predictable, like in
the case of a robot for example. However, a handheld camera is more complex,
since its motion cannot be predicted and its uncertainty cannot be modeled as
easily as other sensors. In contrast, structure points are easier to model, because
strictly speaking they remain fixed in the entire sequence. However, it has been
shown that it is very practical to model them as dynamic particles in order to apply
the same tools used for the motion estimation.

In the case of point estimation, the sample covariance has been successfully
used to guide the sampling procedure of the next estimation. On the other hand, it
is not calculated for the pose, since the erratic nature of a handheld camera makes
it impractical and it can be reasonably approximated by its velocity. However, it
could be a good clue about the quality of the tracking and could help detecting
degenerate estimations, like those derived from blurry images. Computationally
speaking, calculating the sample covariance also implies calculating the sample
mean, which involves iterating twice over the sample set. Taking into account that
the number of samples needed for the pose estimation is very high compared with
the structure estimation, it becomes quite expensive to do.

Regarding to the weighting functions, the pixel projection error has been
selected as the representative measurement of the likelihood. Since there is no
more information available in the images, the decision to take only refers to the
metric to be used. This work uses the Euclidean distance, however, there exist
more robust metrics that can also be used. Taking into account that the probability
distributions of all the parts can be approximated from the weighted samples
and propagated along the transforms, the Mahalanobis distance could be a good
solution for future improvements of the method.

A final consideration can also be done about the number of samples used to
approximate the distributions. In the case of the pose estimation, the motion is
very smooth in most frames, so the result can be obtained using a few samples. In
the same way, in the structure adjustment, when the point is near to the optimum

Section 3.8. Discussion 69

the number of samples could be reduced as well. These facts can be exploited
modifying online the number of hypotheses used in each frame, reducing the time
needed to converge in many cases. In fact, there are already some works in this
line that could be adapted for this purpose (Fox, 2003).

Summarizing, the framework given can be used to port any minimization
problem to a GPU. It should be done iteratively following the next steps:

1. Determine the Jacobian of the objective function and evaluate it for the
current candidate solution.

2. From the Jacobian, determine the covariance for the sampling function
using the residual error and the measurement update equations.

3. Get the sampling set using the desired sampling function.

4. Weight each sample using the objective function.

70 Chapter 3. Proposed Method

(a) Augmented video.

(b) Scene reconstruction.

Figure 3.22: Indoor sequence.

Section 3.8. Discussion 71

(a) Augmented video.

(b) Scene reconstruction.

Figure 3.23: Outdoor sequence.

72 Chapter 3. Proposed Method

Chapter 4

GPU Implementation

This section explains the details of the implementation of the algorithm in the
parallel computing device. The reference implementation has been developed
using the CUDA computing language (Kirk and Hwu, 2010), however it can
be programmed using any other alternative. The main characteristics desired
in a CUDA program (or any other GPU based computing language) are few
communications with the host, no dependencies between parallel threads, non
divergent functions (avoiding if-then-else constructors) and high arithmetic versus
memory access ratio. Taking this into account, the next sections explain the
implementation details of the pose estimation and point adjustment algorithms.
For interested readers, an introduction to the GPU architecture is also given in
Appendix C.

A synthesis of this chapter and Chapter 3 has been presented in:

Sánchez, J. R., Álvarez, H., and Borro, D. “Towards Real Time 3D
Tracking and Reconstruction on a GPU Using Monte Carlo Simulations”.
In International Symposium on Mixed and Augmented Reality (ISMAR’10),
pp. 185–192. Seoul, Korea. 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. “GFT: GPU Fast Triangulation
of 3D Points”. In Computer Vision and Graphics (ICCVG’10), volume 6375
of Lecture Notes in Computer Science, pp. 235–242. Warsaw, Poland. 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. “GPU Optimizer : A 3D
reconstruction on the GPU using Monte Carlo simulations”. In Poster
proceedings of the 5th International Conference on Computer Vision
Theory and Applications (VISAPP’10), pp. 443–446. Angers, France. 2010.

73

74 Chapter 4. GPU Implementation

4.1 Program Overview

The implementation of the method has been divided in two main computing
kernels, one for the pose estimation and other for the structure adjustment.
The remaining parts of the SLAM pipeline, such as the feature tracker or the
point triangulation, are implemented directly in the CPU. These two kernels run
recursively every frame following the flow shown in Algorithm 4.1. The functions
that are executed in the GPU are marked with the prefix “CU”.

Algorithm 4.1 Overview of the SLAM implementation.

Yk ← trackFeatures(Yk−1);
for all �zj in Z do
if isVisible(zj) in current frame and isGoodForTrack(�zj) then

markToTrack(�zj);
end if

end for

�xk ← CUestimatePose(Yk, Z);
Z← Z ∪ triangulatePoints(Yk, X1:k);

for all �zj in Z do
�pj ← Projection(�zj , �xk)
if norm(�pj − �yk

j) > threshold then
�zj ← CUadjustPoint(�zj , X1:k, Y1:k)

end if
end for

As shown, the pose estimation kernel runs once in each frame. Before its
execution, the points that are going to be used for the estimation are marked
depending on its visibility, and only if they have been inliers in the previous
frames. Then, using the estimated pose, the structure estimation kernel is executed
for each point whose reprojection error is above a threshold.

4.2 Memory Management

It is very important to choose correctly the memory structures used in CUDA
kernels, since the main bottleneck of the graphics hardware is the bandwidth and

Section 4.2. Memory Management 75

the latency of its memory. The data that are frequently used should be stored in the
constant memory, and the use of the global memory should be reduced as much
as possible. Moreover, data transfers between the host and the device should be
minimized, or at least try to make them asynchronously whenever possible due to
the latency they have.

The set Yk containing the feature points of the last tracked frame and the set
Z with the 3D structure are stored in the constant memory of the device. There is
no need to use special data structures, since the CUDA device can handle vector
types. In this way, 2D features are stored in an array of 2-vectors, and 3D points in
another array of 4-vectors (homogeneous representation). The information about
the camera path is also stored in the constant memory as a rotation matrix and
a translation vector for each frame. However, it must be taken into account that
the amount of constant memory of the current hardware is very limited, making it
necessary to keep only a subset of the data in the memory of the GPU.

The array of feature points must be updated every frame after making the
image measurements. It is updated so that the indices of corresponding 3D-2D
points in their arrays match. The time needed for each update is hidden making
the data transfer asynchronous.

In contrast, the array containing the 3D structure remains constant along the
sequence, except when a point is adjusted or when it is lost. In the first case, the
point in the array must be updated, needing only one device-to-device copy, since
the new point is computed in the CUDA device. In the second case, the lost point
is swapped with the last point in the array, doing the same with its corresponding
2D feature in order to preserve the matching. These device-to-device operations
are fast and they can be done asynchronously as well. New points are just added
to the end of the array when they are triangulated.

The pose history is managed as a circular queue and new poses are added
using a device-to-device transfer as well, after the execution of the pose estimation
kernel.

Since the GPU lacks from random number generating functions, an array with
random numbers is precomputed in the CPU and loaded into the memory of the
CUDA device. This array is used in every frame without updating it. There are
some algorithms to compute random numbers directly in the GPU, like (Howes
and Thomas, 2007). However, as experiments demonstrate, this pseudo-random
sampling gives good results avoiding the calculation of thousands of random
numbers for each frame.

76 Chapter 4. GPU Implementation

In the case of the pose sampling, two arrays are used. Each element of these
arrays is a 4-vector representing the perturbations to the rotation quaternion and
translation vector respectively (homogeneous representation). The size of these
arrays is set as the number of hypotheses sampled in each frame. A standard
normal distribution has been chosen since it can be easily modified using the
covariance matrix computed in Equation 3.21, thus avoiding the updating of the
arrays every frame.

Although this array is an input datum that acts as read only memory, due
to size constraints it is stored in the global memory instead of in the constant
memory. Generated hypotheses are also stored in the global memory, but in
this case it is mandatory since the constant memory can only be used for read
operations.

For the structure optimization, an alternative sampling approach has been
used. Although in Section 3.5.1 it has been stated that the space is randomly
sampled, in order to achieve better performance and drawing on the fact that
mapped points have 3 degrees of freedom, the built-in trilinear texture interpolator
of the CUDA device has been used to sample the position of each hypothesis. In
this way, a 3 dimensional 3× 3× 3 cubic array is defined whose center texel has
the value (0, 0, 0). As seen in Figure 4.1, the value of the each texel is set as the
coordinates it has in the texture.

Figure 4.1: Interpolation cube. The center texel has the (0, 0, 0) value.

Section 4.2. Memory Management 77

Using the hardware interpolator, a uniform sampling can be done very fast
using this cubic texture. Additionally, an approximation of a normal distribution
can also be obtained using the inverse of its Cumulative Distribution Function
(CDF). Setting in each texel the value of the CDF evaluated at its location, an
approximation of the curve defined by that function can be interpolated. Since it
is approximated linearly, its accuracy depends on the number of texels used in
each dimension, who are acting as the control points of the interpolated curve.
Figure 4.2 shows the approximated CDF for a single dimension.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 points

8 points

16 points

Figure 4.2: Interpolated Gaussian CDF using different number of control points.

The interpolated value must be properly scaled using the covariance matrix
computed in Equation 3.28. The resulting hypotheses are stored in the global
memory, as in the case of the pose samples.

For every point �zj optimized it is also necessary to transfer its corresponding

2D features in the past keyframes
�
�yk

j , �y
l
j , . . . , �y

m
j

�
. This set is built in the host

and transferred to the constant memory of the device each time a point is adjusted.
The pose information for the corresponding frames is also stored in the constant
memory as a history of previous poses. This set is updated each frame adding the
estimated pose using a device-to-device transfer.

Summarizing, Figure 4.3 shows the memory layout including the data
transfers done by each kernel during the execution of the algorithm. The arrows
indicate the direction of the transfers.

78 Chapter 4. GPU Implementation

Figure 4.3: Memory layout and involved data transfers.

4.3 Pose Estimation

The pose is estimated each frame using a single computing kernel. It has two parts:
sampling and weighting. Both parts are performed by the parallel device. In this
way, the data needed are the 3D structure and its projections in the current frame.

The problem has been partitioned so that each computing thread samples
and weights a single hypothesis. Therefore, there is no need of communications
between threads, since each hypothesis is processed regardless of the others. As
said in Section 4.2, in each frame k, the CPU only transfers the coordinates of
the tracked feature points Yk. The 3D reconstruction is not transferred since it is
permanently stored in the constant memory of the CUDA device. Algorithm 4.2
shows a resume of the computing kernel.

Although there is a conditional statement in the kernel, it does not suppose
a performance drop, since the condition is evaluated equal in all the threads and
thus without producing divergences in the program flow.

Section 4.3. Pose Estimation 79

Algorithm 4.2 Overview of the CUestimatePose() kernel.

Require: randomR→ Array with random rotations
Require: randomT → Array with random translations
i← getThreadIndex()

�x
(i)
k .R← norm(randomR[i] + �xk−1.R)

�x
(i)
k .T ← Σtrans ∗ randomT [i] + �xk−1.T

w
(i)
k ← 0

for all �zj in Z do
if isMarkedToTrack(zj) then

�pj ← Π(�x
(i)
k .R ∗ �zj + �x

(i)
k .T)

w
(i)
k ← w

(i)
k + norm(�pj − �yk

j)
end if

end for
w

(i)
k ← exp

�
−w

(i)
k

�

After the execution of the kernel, a list of weighted samples is obtained. The
best sample is chosen as the current camera pose. Looking for the best sample
implies looping through the list, comparing the weights of all samples. This is not
the best situation for a GPU because this search requires comparisons that cannot
be done directly in parallel. Since the system typically works with a large amount
of samples, transferring the whole list to the main memory of the CPU becomes
prohibitive. Because of this, the search is also done in the GPU using a parallel
reduction.

A reduction is characterized by an input vector and an output element that is
computed recursively as function of the input elements. In each iteration, the size
of the input vector is reduced so that in the last iteration the resulting element is the
solution sought. In this case, the function is a comparison between two elements
that can be done in parallel. In this thesis the implementation proposed in (Harris,
2008) has been used, that uses a more sophisticated approach in order to get the
peak performance of the CUDA device taking into account some architectural
issues. Finally, the resulting pose is transferred to the CPU and moved to the pose
history that is kept in the memory of the GPU.

Figure 4.4 shows the data flow in the execution of the pose estimation kernel.
As seen, two floating point numbers are transferred for each feature before starting
the execution and one pose vector after finishing. All these memory transfers can

80 Chapter 4. GPU Implementation

be done asynchronously, allowing the CPU to work on other tasks.

Figure 4.4: Execution of the pose estimation kernel.

4.4 Scene Reconstruction

The reconstruction is adjusted if the last tracked frame is marked as a keyframe.
Only points having their projection error greater than a threshold are subject to be
adjusted (typically 2-3 pixels). Since the resolution strategy is similar to the one
used in the tracking kernel, the problem is partitioned in a similar manner. There
is only one computing kernel, and each thread computes a single hypothesis about
the position of a point.

Not all keyframes are used in the minimization. In order to cover most parts
of the sequence and to avoid falling into local minima because of using only the
last frames, the chosen keyframes are scattered along the time line. A Fibonnaci
sequence has been used to generate the indices of the keyframes starting from
currentFrame − Fib (2). In this way, a lot of recent frames are used in the
adjustment but some old frames are used too, leading to a better global behavior
of the minimization.

For each point, the CPU must transfer to the GPU the indices of the frames
to be used in the adjustment and the 2D features in those frames. As noted above,
the poses corresponding to the frames are already stored in the constant memory
of the GPU. Algorithm 4.3 shows the summary of the adjustment kernel.

Like in the pose estimation kernel, the best sample is chosen using a reduction
algorithm and then transferred to the host. If the posterior projection error is less
than the prior, the point is updated in the map. Figure 4.5 shows the overview of
the kernel execution for each 3D point being adjusted.

Section 4.5. Experimental Results 81

Algorithm 4.3 Overview of the CUadjustPoint() kernel.

Require: interpTex→ Interpolation texture
Require: indicesToAdjust→ Indices of the frames to be used
i← getThreadIndex()

�z
(i)
j ← �z

(−)
j +Σ�zj

∗ interpTex[i]

w
(i)
j ← 0

for all k in indicesToAdjust do

if isVisible(�z
(−)
j) in k then

�pj ← Π(�xk.R ∗ �z
(i)
j +, �xk.T)

w
(i)
j ← w

(i)
j + norm(�pj − �yk

j)
end if

end for
w

(i)
j ← exp

�
−w

(i)
j

�

The sample mean and covariance are also calculated in the device using a
parallel reduction. Two reduction passes are needed, since the mean is necessary
in order to compute the covariance.

Figure 4.5: Execution of the structure adjustment kernel.

4.5 Experimental Results

This section details the performance tests done using the proposed
implementation. The hardware used for the experiments is an Intel Core 2
duo at 3.0GHz with 4GB of RAMmemory and a nVidia GeForce GTX260 whose
capabilities are shown in Table 4.1.

82 Chapter 4. GPU Implementation

Table 4.1: Capabilities of the used CUDA device.

Number of cores 192
Processor

Clock rate 1.15GHz

Global memory 896MB
Shared memory per block 64KBMemory
Constant memory 64KB

CUDA capabilities 1.3
Maximum number of threads per block 512
Maximum dimension of a block 512×512×64

CUDA

Maximum dimension of a grid 65535×65535×1

The experiments detailed in next sections have been divided in three groups
corresponding to the motion estimation performance, the structure adjustment
performance and finally the full SLAM system performance.

4.5.1 Pose Estimation Performance

For the pose estimation experiments the synthetic sequence described in Table 3.1
has been used. The time needed by the kernel is only conditioned by the number of
points used and by the number of hypotheses evaluated in each frame. Therefore,
two sets of experiments have been done in order to measure the influence of these
parameters in the estimation time.

Starting with the number of hypotheses, the total time needed is shown in
Figure 4.6a. The number of points used has been fixed to 100 for each test. This
time includes the computation itself and the data transfers needed to send the
input data to the device and to read the results back. As seen, the estimation can
be easily done in real time, needing an average of 4 ms for each frame using
5122 hypotheses and, as expected, the time increases linearly with the number
of samples taken. In addition, it should be noted that this operation is done
asynchronously, so the CPU remains idle during this time.

In the same way, Figure 4.6b shows the time spent varying the number of
points used, using 5122 hypotheses. Like in the previous experiment, the time
increases linearly with the number of points. This fact could be used to adapt
dynamically the number of points used in function of the required computation
time.

Section 4.5. Experimental Results 83

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Frame

T
im
e
(m
s)

5122 hypotheses

256
2
 hypotheses

128
2
 hypotheses

642 hypotheses

(a) Varying the number of hypotheses.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Frame

T
im
e
(m
s)

400 points
300 points
200 points
100 points

(b) Varying the number of points.

Figure 4.6: Pose estimation time.

4.5.2 Scene Reconstruction Performance

The performance of the reconstruction depends on the number of points adjusted
in each frame, the total number of hypotheses and the amount of keyframes used
in the optimization. The experiments described in this section measure the time
needed by the structure adjustment kernel, taking into account the time spent
transferring the data. Unless otherwise stated, for each adjustment a total of 13
keyframes are used and a total of 163 samples are evaluated.

Figure 4.7 shows the execution time needed to adjust the structure depending
on the number of points optimized. The experiment has been repeated for different
amount of samples.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

Number of points

T
im
e
(m
s)

83 samples

163 samples

323 samples

643 samples

Figure 4.7: Reconstruction time varying the number of samples used.

84 Chapter 4. GPU Implementation

The kernel is executed once for each point, thus the total time is increased
linearly with the number of points. As shown, in each frame up to 200 points can
be adjusted in real time using the default 163 number of samples and 13 frames.

Looking to Figure 4.8, it can be seen that the number of frames used has very
little influence in the total time. From Algorithm 4.3 follows that the number of
matrix operations is directly determined by the amount of keyframes used, as it
is the control variable of the loop that computes the likelihood of the sample.
This fact means that the limiting factor of the algorithm is the bandwidth of the
system, rather than its arithmetical power. However, due to memory limitations,
the maximum number of frames that can be stored in the device used in the
experiments is 13.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

Number of points

T
im
e
(m
s)

13 key frames

8 key frames

5 key frames

Figure 4.8: Reconstruction time varying the number of keyframes used.

4.5.3 SLAM Performance

The performance of complete SLAM system has been measured using the indoor
sequence shown in Figure 3.22. Figure 4.9a shows the total time used in each
frame including the pose estimation, the structure adjustment and the point
remapping. The size of the 3D structure map is shown in the plot as well. In each
frame, 5122 hypotheses about the camera location are sampled and weighted. For
each structure point a total of 13 keyframes are used in order to adjust its position.

As shown, the algorithm needs 25 ms per frame in average, meaning a frame
rate of about 40 fps. Given that standard cameras work at 15-30 fps, the achieved
frame rate is enough for real time monocular SLAM applications. Comparisons

Section 4.5. Experimental Results 85

with a CPU implementation of this algorithm are not provided, since it is very
slow and unusable for real time applications.

Figure 4.9b shows the time needed by BA to process the same video using
the same parameters. As seen, it is not usable in real time tracking with the
number of frames and features provided. Although a better parameterization could
improve these times, the difference is very large. Abrupt changes are because the
LM minimization can detect when the solution is near to the local minima and
it finishes the process. It is a desirable feature, however the adjustment method
proposed in this thesis cannot detect this situation because of its parallel nature.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

Frame

T
im
e
(m
s)

0 50 100 150 200 250 300 350 400
0

200

400

600

800

M
a
p
si
ze

(a) Total time on a real sequence using GPU.

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

Frame

T
im
e
(m
s)

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

M
a
p
si
ze

(b) Total time using Bundle Adjustment.

Figure 4.9: Execution times.

Finally, Figure 4.10 compares the total time needed to execute the algorithm
in the outdoor sequence shown Figure 3.23, using different GPUs. For readability,
the frames have been reordered in the plot depending on the execution time.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

T
im
e
(m
s)

GTX260

GTX280

GTX470

Figure 4.10: Comparison between different GPUs.

86 Chapter 4. GPU Implementation

Figure 4.11: Percentage of GPU usage.

In this scenario, the average time is greater than in the previous sequence.
The reason is that more points per frame are adjusted (a mean of 120 per frame),
probably caused by the homogeneity of the road and garden areas. These zones
introduce noise in the feature tracking process, and thus in the 3D reconstruction.

Summarizing, Figure 4.11 shows the percentage of GPU time used by each
part. The plot includes the memory transfers done in all the three possible
directions, i.e., host - device, device - host and device - device. As shown, the
most time consuming part corresponds to the point adjustment. Some bottlenecks
like memory read/write operations inside the kernels are not detailed, but they are
included inside the kernel execution parts.

4.6 Discussion

In this chapter, the details of the CUDA implementation of the method are given.
It can easily work in real time despite the limitations of the current hardware.
In the case of the pose estimation, the speed is clearly limited by the computing
power of the device, since the number of samples that need to be evaluated is very
high. On the other hand, the structure estimation is limited by the bandwidth of
the device. It is mainly because a lot of data transfers are needed for each point
because the GPU cannot handle the data structures that a good implementation
needs.

Section 4.6. Discussion 87

The computational power limitation could be currently solved using a system
with multiple CUDA devices, allowing to handle a bigger reconstruction or more
samples per estimation. These kind of systems are not very common at user
level, however, other applications like large scale reconstructions are already using
computer clusters that could take advantage of this implementation.

There are also some functionality aspects, as the lack of random number
generating functions or the size of the shared and the constant memory spaces,
that are limiting the method. However, it is a matter of time to overcome these
limitations. In fact, hardware manufactures have already announced the random
number functionality in their future products.

The hardware evolves very rapidly, and this is still a very new technology.
In this way, the algorithm presented here has been designed to comply all the
requirements needed to grow together with this technology.

88 Chapter 4. GPU Implementation

Part III

Conclusions

Chapter 5

Conclusions and Future Work

Better that I devote myself to study the other
great mystery of the universe. . .

DR. EMMET BROWN

5.1 Conclusions

This thesis presents a new approach to solve the SLAM problem in real time.
Rather than adapt a traditional method, a fully parallelizable method based on
Monte Carlo simulations has been proposed for both camera tracking and scene
reconstruction. These types of methods have a prohibitive computational cost.
However, thanks to the processing capabilities of GPU devices, a real time
implementation has also been proposed.

The SLAM problem has been addressed using a bottom-up approach. In
this context, all the parts of the SLAM pipeline have been covered through the
document, including the 2D feature tracking, camera motion estimation, scene
reconstruction and point remapping. The main contributions and conclusions
obtained for each of these parts are:

1. Feature point tracker: The proposed 2D feature tracker can detect
and track salient points in the images combining some state of the art
techniques. More specifically, the Shi and Tomasi detector has been
used combined with the optical flow of Lucas and Kanade. It has been
demonstrated that the robustness against outliers can be greatly improved
using a linear Kalman Filter in order to detect unpredictable motion

91

92 Chapter 5. Conclusions and Future Work

patterns. However, there are still some issues induced by false corners that
cannot be detected at this level.

In addition, for each feature point a simplified version of the SIFT
descriptor is computed. Its simplicity allows an efficient implementation
with a negligible computational cost making it usable for real time SLAM
applications, but loosing some features that standard SIFT descriptors have.
Moreover, a lot of resources can be dedicated to calculate them, since the
CPU time is not wasted in the pose and structure estimation tasks.

2. Pose estimation: The proposed camera tracker can estimate the 6 degrees
of freedom of the camera using a Monte Carlo sampling method. The
main contribution in this part has been a fully parallelizable sampling and
weighting method that, as demonstrated, can run very fast in the graphics
hardware available in almost any desktop computer. In this part, the strategy
used to predict the uncertainty region in the sampling step has been crucial
in order to reduce the number of samples needed by the filter, and thus
increasing its performance. Moreover, its stochastic nature is very robust
against outliers and other measuring errors, thus being a good alternative to
classic trackers. It also has been demonstrated that the sampling function
is flexible enough to deal with erratic motions, like those that appear in
handheld cameras.

3. Structure estimation: The structure reconstruction is approached in a
similar way. In contrast to Bundle Adjustment method, it is separately
estimated from the pose, but it has been demonstrated in the experiments
that the solution converges to the correct result as the video sequence
advances.

Starting from the initial solution obtained by means of linear triangulation,
structure points are adjusted using a Monte Carlo sampling as well. The
sampling and weighting methods have been specifically designed to obtain
the peak performance of the graphics hardware being able to run in real
time together with the camera tracker. In this part, the uncertainty region
of the sampling function has also been obtained using the linearization of a
hypothetical dynamic model.

4. Point remapping: Finally, a simple point remapping method is also
proposed, so that lost points can be relocated in the images using the
SIFT descriptors computed by the feature tracker. This remapping allows to
recognize already visited places reducing the drift of the tracking each time

Section 5.1. Conclusions 93

an old point is remapped. It has also been seen that the simplifications done
in the descriptors can be assumed taking into account the spacial coherency
that can be obtained from the SLAM system.

Synthetic and real data have been used in order to validate the proposed
SLAM solution in accuracy and performance terms. As shown in the experiments,
the results are very similar to the classical structure from motion approach
using Bundle Adjustment in conjunction with nonlinear minimization methods.
However, in performance terms, a mean of 20x speed up is achieved, with the
advantage of leaving the CPU free to do other tasks.

In contrast, since the observation densities of both estimators follow a bottom-
up approach, they suffer the classic drawback of this type of methods: they are
very sensitive to quick camera motions that generate motion blur and make the
measures given by the feature tracker incorrect. Taking into account that bottom-
up approaches are driven by those measurements and future predictions depends
on past predictions, these noisy images can lead to a catastrophic result in the
output of the predictors. Normally, this situation can be detected and the tracking
can be recovered using relocalization techniques (Williams et al., 2007). However,
they can lead to incorrect mappings that degrade the 3D structure and to an
unrecoverable error state.

Like other computer vision methods, it also depends on the quality of the
camera used and on the lighting factors, but these problems cannot be easily
avoided. However, all the tests with real videos have been done using a low cost
webcam, and its minimum resolution, showing that the method can tolerate quite
well cheap cameras and low resolutions.

Augmented reality needs a lot of computational resources to work. The trend
today is to improve the hardware by means of parallelism rather than in arithmetic
power. Just like happened years ago with 3D graphics, a good solution is to use a
specialized massively parallel hardware. As this thesis demonstrates, in the field of
augmented reality, random sampling algorithms are the best candidates for future
methods because of their parallelism level, high accuracy and robustness against
outliers.

In summary, and very important to note, this work presents a GPU
computational framework that can be used to solve many computer vision
problems. In this thesis it has been used to solve the camera tracking and 3D
reconstruction problems, but it could be applied to almost any measurement driven
minimization algorithm, getting a fast, robust and easy to implement method.

94 Chapter 5. Conclusions and Future Work

5.2 Future Work

The work presented in this document leaves several research lines opened for
future investigations. They are enumerated according to the part to which they
belong.

1. Feature tracking: As said, an important drawback is the use of a bottom-
up approach. It could be solved using a top-down approach eliminating
the feature tracking and matching the point correspondences using other
criterion. The more natural solution would be using a complete version
of the SIFT descriptor. However, nowadays its computational cost is
unaffordable even for modern processors. Currently, there are some
efforts to get fast implementations computing the descriptors using the
graphics hardware, like (Changchang, 2007). Its speed is still bellow the
requirements of a SLAM application, nevertheless in the future it could be
a good improvement to this SLAM approach.

Meanwhile, a hybrid approach could benefit from the speed of the
bottom-up approach and the relocalization capabilities of a top-down
implementation. This could be achieved using the bottom-up observation
density only if the uncertainty of the pose estimation is bellow some
threshold, switching to the top-down density when the uncertainty is high.
In this way a good compromise between speed and flexibility could be
obtained.

The tracking itself could also be improved using a single Kalman filter
containing all the points instead of having one estimation per point. This
would give an overall overview of the motion of the features rather than
several local predictions, and the information about the correlation that the
covariance of the state would give could be used to improve the robustness
of the tracker against false corners.

2. Pose estimation: The pose estimation could be improved both in the
sampling and weighting aspects. Regarding to the sampling phase, its
capacity to predict high probability areas is fundamental in order to reduce
the number of hypotheses needed. Apart to the improvements that could
be done in the estimation of the sampling covariance, it could also benefit
from an annealed approximation, sequentially reducing the sampling space
in a hierarchical way. This would probably reduce the number of samples
needed in each anneal level, compared with the direct sampling approach.

Section 5.2. Future Work 95

However, it only would be useful in the case that the estimated uncertainty
is bigger than the real.

The weighting function could also be improved using more sophisticated
metrics, taking into account the covariances of the 3D points. In this way,
the points whose position is better approximated would have more weight
in the final likelihood, getting a more accurate result and adding robustness
to the observation function.

Finally, as discussed in Section 3.8, it is very reasonable to reduce the
number of samples in the states where the uncertainty is low.

3. Structure estimation: Regarding to the performance aspects of the filter,
the structure estimation could also benefit from the improvements proposed
to the pose estimation algorithm, including the annealing step, the top-down
approach, the study of more robust metrics and the adaptative size of the
sampling space.

Moreover, because of the rigidity of solid objects, structure points are
usually highly correlated. This means that the more probable position of
a 3D point is influenced by their neighbors, because the distance between
them tends to be conserved. This relationship could be used to drive the
minimization and remapping steps, leading to faster convergences and more
accurate results. Moreover, it would be possible to adjust a point even
without having its corresponding measurements, as it would be pulled to
the optimal position by the other points. The main drawback is that this
“global” approach requires a very high dimensional space, increasing the
total time, and probably loosing the real time performance, at least with the
current hardware.

Finally, the augmented reality field still has some open research aspects in the
line of realistic rendering. A good tracking is not sufficient to create a realistic
feeling of coexistence between real and virtual objects. Topics like illumination
and occlusions have to be also solved.

The scene illumination can be estimated using external reflective markers
using the Image Based Lighting (IBL) technique (Debevec, 2002), however there
is still a lot to do in markerless light extraction. Some interesting techniques
are already being applied in order to extract an approximate illumination from
single images (López-Moreno et al., 2009) in the image processing field. They can
extract the position and the intensity of multiple light sources requiring only the
presence of a convex object that the user has to select. Although the exact positions

96 Chapter 5. Conclusions and Future Work

are not extracted, the authors claim that it is enough for rendering purposes.
However, since in an augmented reality application the pose of the camera is
known, the method could be extended taking this information into account, getting
an even better approximation. Moreover, the manual object selection could be
avoided taking into account that a 3D representation of the scene is also available.

The occlusions are normally solved using dense structure reconstruction
techniques. However, usually those techniques are not suitable for real time
augmented reality applications. Besides, a dense reconstruction combined with
the information about the illumination could be used to project the shadows
between real and virtual objects.

Part IV

Appendices

Appendix A

Projective Geometry

We are used to describe our world using the traditional Euclidean geometry. This
geometry describes in a natural way some properties that can be measured in
the space like parellelism, lengths and angles. These properties remain invariant
after applying any Euclidean transformation, however, as can be seen in Figure
A.1 the transformation that a camera applies to a 3D scene does not preserve
these properties. Parallel lines are no longer parallel, the distances between
objects cannot be measured and the angles are not preserved. This is because
the perspective transformation that happens inside a camera belongs to the group
of projective transformations. The projective geometry is a more general case of
the Euclidean geometry that allows describing a larger class of transformations,
such as perspective projection. Moreover, it allows describing special points, like
points lying in the infinity, in the same way as ordinary points.

The projective space of dimension n, Pn is defined as the set of points
�x ∈ Rn+1 − {�0n+1} where two points are said to be equivalent or similar if and
only if �x1 ∼ �x2 ⇔ �x1 = λ�x2. The following sections describe some aspects of the
projective plane P2 and the projective space P3 . It is a very brief description, but
enough to understand this thesis. For a deeper discussion oriented to computer
vision applications, the interested reader can refer to (Hartley and Zisserman,
2004).

A synthesis of this appendix has been presented in:

Sánchez, J. R. and Borro, D. “Automatic Affine Structure Recovery Using
RANSAC”. In Congreso Español de Informática Gráfica (CEIG’10), pp.
155–164. Valencia, Spain. 2010.

99

100 Appendix A. Projective Geometry

Figure A.1: Perspective distortion caused by a camera. Parallel lines meet at a common
point.1

A.1 The Projective Plane

In projective geometry, a point on a plane is represented by an homogeneous 3-
vector

�m = (x, y, w)� (A.1)

such that at least one entry is not zero. Usually, if w = 0 the point is said to be at
infinity.

A point transformation in the projective plane is represented by a non singular
3 × 3 matrix with eight degrees of freedom: �m� = H�m called homography.
These transformations are also known as collineations, since they preserve point
collinearity.

Lines in the projective plane are also defined by 3-vectors and have the form
�l = (a, b, c)�. A point �m lies on the line �l if and only if:

�m��l = 0. (A.2)

A line can be defined with two points as:

�l = �m1 × �m2. (A.3)

1Photo by Evan Leeson http://www.flickr.com/photos/ecstaticist/

Appendix Section A.2. The Projective Space 101

In the same manner, the intersection point defined by two lines is represented
by �m = �l1×�l2. This symmetry is applicable to any statement concerning to points
and lines and it is called the duality principle of the projective plane.

A.2 The Projective Space

Similarly, points in projective space are represented by homogeneous 4-vectors:

�M = (X,Y, Z,W)� . (A.4)

A point transformation in projective space is represented by a non singular
4× 4 matrix: �X � = H �X .

A plane in the projective space is also represented by a 4-vector �π =
(π1, π2, π3, π4)

�. A point �X lies on the plane �π if:

�π� �X = 0. (A.5)

Equation A.5 is unaffected by multiplication, so only the ratios
{π1 : π2 : π3 : π4} are significant. This means that a plane in projective space
has 3 degrees of freedom. From this fact it follows that a plane can be defined by
three non-collinear points �X1, �X2 and �X3:

�X�
1

�X�
2

�X�
3

�π = �0. (A.6)

The duality principle is also applicable in projective space. In this case, the
dual of the point is the plane. In the same way that a plane is defined by three
points, a point can be defined by three planes:

�π�1
�π�2
�π�3

 �X = �0. (A.7)

Lines in projective space can be defined by the two points or by the
intersection of two planes. They have various possible representations. The most

102 Appendix A. Projective Geometry

common is the null-space and span representation where a line is represented by
a 2× 4 matrix with the form

W =

�
�A�

�B�

�

(A.8)

where the span λ �A + µ�B is the pencil of points lying on the line. In the same
way, a line can be represented as the intersection of two planes using a matrix
composed of two planes:

W∗ =

�
�P�

�Q�

�

. (A.9)

The span λ� �P + µ� �Q is the pencil of planes with the line as axis.

A.3 The Stratification of 3D Geometry

We are used to perceive the world in a Euclidean way. Having a Euclidean
representation of an object, it can be measured from it almost everything (lengths,
angles, volumes, etc.). However, it is sometimes impossible to obtain a Euclidean
representation of an object, so we must handle a simplified version of it. This is
the case in most of computer vision applications, since the camera is a projective
machine. That is why the concept of the stratification of the 3D geometry
(Faugeras, 1995) is needed.

In 3D geometry, there are four different layers: projective, affine, metric and
Euclidean. Each layer is a subset of the previous one and it has associated a group
of transformations that leave some properties of the geometrical entities invariant.

The Euclidean layer is the most restrictive one. A Euclidean transformation
is represented by a 6 degrees of freedom 4 × 4 matrix, 3 for rotation and 3 for
translation:

Te =

�
R �t
�0�3 1

�

(A.10)

where �t = (tx, ty, tz)
� is a 3D translation vector and R is a 3D orthogonal

rotation matrix. This group of transformations leave the volume of objects
invariant.

Appendix Section A.4. Stratified 3D Reconstruction 103

The next layer is the metric or similarity one. Similarity transformations are 7
degrees of freedom 4× 4 matrices and are represented by:

Tm =

�
sR �t
�0�3 1

�

(A.11)

where s is a scalar representing an arbitrary scale factor. This transformation
leaves invariant relative distances, angles and a special entity called the absolute
conic.

The next layer is the affine one. Affine transformations are 12 degrees of
freedom 4× 4 matrices represented by:

Ta =

�
A �t
�0�3 1

�

(A.12)

where A is an invertible 3 × 3 matrix. Transformations belonging to this layer
leave invariant the parallelism of planes, volume ratios, centroids and a special
entity called the plane at infinity.

The less restrictive layer is the projective one. Projective transformations are
15 degrees of freedom 4× 4 matrices represented by:

Tp =

�
A �t
�v� v

�

(A.13)

where �v is a 3-vector and v is a scalar. As in the case of plane homographies,
this transformation is a collinearity that leaves invariant intersections and surfaces
tangencies in contact.

Figure A.2 shows the effect of applying these transformations in a cube
represented in Euclidean space.

A.4 Stratified 3D Reconstruction

Having only two views of a scene captured by an uncalibrated camera, it
is only possible to retrieve a 3D reconstruction up to an arbitrary projective
transformation. This means that if we want the real Euclidean structure, we have
to apply a projective transformation to the retrieved reconstruction. In the example

104 Appendix A. Projective Geometry

Figure A.2: Metric, affine and projective transforms applied on an object in Euclidean
space.

shown in Figure A.2 the transformation required to upgrade the projective cube to
Euclidean geometry is T−1

p .

This may not be sufficient for some tasks, like augmented reality, but it can
be the starting point of a stratified reconstruction, i.e. add richer information to
the reconstruction allowing it to be upgraded to the next geometric layer. First,
the projective reconstruction is upgraded to the affine layer, then to the metric and
finally to the Euclidean.

A.4.1 Projective Reconstruction

The projective reconstruction of the scene can be recovered using the Fundamental
matrix F. It is an 8 degrees of freedom 3× 3 matrix that relates the projection of
a 3D point in two different views.

From the Fundamental matrix a projective 3D transformation relating two
views can be obtained. With this information the 3D structure can be recovered
via linear triangulation methods. Appendix B explains in detail these topics.

A.4.2 From Projective to Affine

Upgrading from projective to affine supposes to find the plane at infinity. This is
the plane where parallel lines meet. In affine space, this plane is truly located at
infinity and has coordinates �π∞ = (0, 0, 0, 1)�, so points lying on it haveW = 0

Appendix Section A.4. Stratified 3D Reconstruction 105

(they are at infinity). However, this does not happen in projective space because
parallelism is not an invariant property of it. Lines that are parallel in affine space
meet in a normal plane in projective space (not at infinity). It is said that the
plane at infinity is not on its canonical position. Finding this plane allows us to
obtain a transformation that moves it to its canonical position, making parallel
lines meet again at infinity. The projective transformation that allows the upgrade
from projective to affine space is defined by:

Tpa =

�
I3 �0
�π�∞

�

⇔ T−�
pa �π∞ = (0, 0, 0, 1)� . (A.14)

As seen in Figure A.3, three sets of parallel lines are enough to locate the
plane at infinity using Equation A.6.

Figure A.3: The plane at infinity is the plane defined by �Vx, �Vy and �Vz . These points are
the vanishing points of the cube.

A.4.3 From Affine to Metric

The metric level is the richest one that can be obtained from images. Upgrading
from affine to metric supposes finding the absolute conic Ω∞. This entity is a
planar conic that lies on the plane at infinity. The key in this step is to find an
affine transformation that maps the identified conic to its canonical position in
Euclidean space (X2 + Y 2 + Z2 = 0 andW = 0).

106 Appendix A. Projective Geometry

A.4.4 From Metric to Euclidean

This step can be performed only if real lengths of the reconstructed object are
known. This allows to obtain a scale factor s that upgrades metric reconstruction
to Euclidean space.

A.5 A Proposal for Affine Space Upgrading

This section proposes a new method to upgrade a projective reconstruction to
affine space. It is based on locating the plane at infinity assuming that there exist
parallel lines in the scene. This is an acceptable assumption in almost any man-
made scene.

The first step is to obtain a projective reconstruction of the scene and then
locate the maximum number of lines on it. The line search can be done either
manually or automatically. If the projective reconstruction has been retrieved from
an image pair (using the Fundamental matrix and feature point matching) the
lines can be detected in images locating the feature points that define them and
then matching these points with the reconstructed vertices. Figure A.4 shows this
process. In this way, the result would be a 3D structure containing edges and
not only points. These 3D edges are the only information needed to obtain the
plane at infinity. There are several edge detectors that can be used to carry out this
detection, like Canny operator (Canny, 1986) or the Hough transform (Duda and
Hart, 1972).

Once lines are detected, the next step is to compute the intersection of all line
pairs. Due to numerical stability reasons, it may be a good idea to normalize the
3D points so that the centroid is at the origin and the RMS distance of 3D points
to the origin is

√
3.

Some of these intersection points will be vanishing points and others will not.
The idea is to find vanishing points and use them to update the projective structure
to affine space. Since vanishing points are located in the plane at infinity, there will
be a plane defined by three of the computed intersection points that will contain
all the vanishing points. This plane can be identified as the plane to which more
intersection points belong, assuming that intersection points not corresponding to
parallel lines (non vanishing points) are randomly scattered across the space.

Appendix Section A.5. A Proposal for Affine Space Upgrading 107

Figure A.4: Edge matching process. (a) and (b) feature matching between images. (c)
Projective reconstruction. (d) Projective reconstruction after edge detection and

matching.

A.5.1 Data Normalization

The transformation matrix related to this normalization is:

HN =

√
3

rms 0 0 −
√

3∗cx
rms

0
√

3
rms 0

−
√

3∗cy

rms

0 0
√

3
rms

−
√

3∗cz
rms

 (A.15)

where RMS is the root mean squared distance of 3D points to the origin and �c is
the centroid.

This normalization can be inverted when the plane at infinity is found
and before doing the affine rectification. If �π∞ is the plane at infinity of the
unnormalized structure, then from Equation A.5 follows:

�π�∞ �X = �π�∞H−1
N HN

�X = H−�
N �π∞HN

�X (A.16)

so the plane at infinity recovered from the normalized structure is π∞N =
H−�

N �π∞. The original plane can be retrieved from the normalized one using
π∞ = H�

Nπ∞N .

108 Appendix A. Projective Geometry

A.5.2 Computing Intersection Points

The intersection of two lines defined respectively by the pairs of points
�
�A, �B

�

and
�
�C, �D

�
can be computed equaling the span of these points:

λ1
�A+ µ1

�B = λ2
�C + µ2

�D. (A.17)

This leads to the next linear system of equations:

A1 B1 −C1 −D1

A2 B2 −C2 −D2

A3 B3 −C3 −D3

A4 B4 −C4 −D4

λ1

µ1

λ2

µ2

 =

�0. (A.18)

The solution of this system can be computed as the singular vector
corresponding to the smallest singular value of the coefficients matrix. This leads
to two intersection points. Theoretically they must be equal, but can be different
because lines might not intersect as shown in Figure A.5 due to noise or numerical
stability reasons.

Figure A.5: The lines might not intersect.

A good choice is the middle point of the line joining these two points.

A.5.3 Plane Localization

The plane at infinity is located using RANSAC (Fischler and Bolles, 1981) over
all the computed intersection points. RANSAC is an iterative algorithm that

Appendix Section A.5. A Proposal for Affine Space Upgrading 109

randomly takes groups of three points and computes the plane defined by them
using Equation A.6. Then, the restriction described in Equation A.5 is tested on all
intersection points and if the residual error is near to zero, the point is considered
to lie on the plane. Points lying on the plane are called inliers and points not lying
on it are called outliers. RANSAC takes as a solution the group that generates
less outliers. The parameterization needed is the threshold value of Equation A.6
to consider that a point lies on the plane and the maximum number of iterations
allowed to RANSAC.

Theoretically, all lines along the same direction intersect in the same
vanishing point. However, due to noise in the points defining lines and
numerical stability reasons, this may not be true. As seen in Figure A.6, small
perturbations in the position of a vertex modifies considerably the intersection
point. Furthermore, the error in the intersection is proportional to the distance
from the computed intersection point to the corrupted vertex. If �V is a point
belonging to the line λ �A + µ�B, then if �B is corrupted, error in �V will grow
linearly with µ:

λ �A+ µ
�
�B + �EB

�
= �V + µ �EB. (A.19)

To solve this problem, intersection points close to each other are considered
equal and their centroid is taken as the true intersection point, since the error in the
centroid will be less than or equal to the maximum error. Due to Equation A.19,
the distance used to compare points depends linearly on the norm of one of them.

Figure A.6: Computing intersections with noise.

Since the intersection points that appear many times are suspected of being
vanishing points, the original RANSAC has been modified to take this into
account. Each intersection point has an associated weight wi that conditions the
probability to be chosen by RANSAC. This coefficient is selected according to
the number of times the point appears when computing intersections. Thus, if
there are n intersection points and �P is the centroid of k nearby points, the weight
associated to �P would be wP = k/n being

�
wi = 1. These modifications make

RANSAC faster and more robust against noise in vertex position.

110 Appendix A. Projective Geometry

A.5.4 Convergence

In absence of noise, the minimum number of pairs of parallel lines required is
four, where at least three of them have different directions. If only three pairs are
supplied, the maximum number of inliers that would be detected when trying this
group by RANSAC would be three, just like when trying another group of non
parallel lines.

Appendix B

Epipolar Geometry

Epipolar geometry, also known as multiview geometry, describes the relation that
exists between different views of a scene. In other words, the projection of a point
in one image can be restricted if the projection of that point in other views is
known.

Some early works in stereo vision, like (Marr and Poggio, 1979), established
the relations between the projections of a point in a stereo system and its depth,
where the views are related by a known translation. This work was extended by
Longuet-Higgins (Longuet-Higgins, 1981) giving the relation that exists between
two arbitrary views and an algorithm that computes the 3D reconstruction of the
captured scene. This work is considered the basis of all the multiview geometry
field.

The following sections describe the aspects of epipolar geometry needed to
understand this thesis. Only the case of two views is analyzed but the interested
reader can refer to (Hartley and Zisserman, 2004) for a broader review of these
concepts extended to n views.

B.1 Two View Geometry

In a projective camera (like a pin-hole) 3D points that are collinear with respect to
the optical center have the same projection. However, if these points are viewed
from a different viewpoint, their projections change giving the impression that
their relative position has changed. This effect is known as motion parallax.

The projections of these points in the second image are constrained in some
way. If a plane that contains �z1, �z2 and the optical centers of the two cameras

111

112 Appendix B. Epipolar Geometry

Figure B.1: Set of epipolar lines intersecting in the epipoles.

is defined, the projections of these points in the second image are constrained to
lie in the line defined by the intersection of the plane with the image. In fact,
every plane that contains both optical centers intersects with the images in two
lines known as epipolar lines. These lines have a common point called epipole.
Epipoles are the projections of the camera centers in the opposite image. Figure
B.1 shows the epipolar lines and the epipoles of a pair of images.

This relation is encapsulated by a 3× 3 matrix F called Fundamental matrix.
For every pair of projections �yj and �yk of a point �z the epipolar constraint is
defined as:

�yk�F�yj = 0. (B.1)

Since point �yk is restricted to lie in the epipolar line �lk, from Equation A.2
and substituting in Equation B.1 the epipolar lines can be obtained as:

�lk = F�yj

�lj = F��yk.
(B.2)

B.2 The Fundamental Matrix

The Fundamental matrix is the algebraic representation of the epipolar geometry.
It depends only on the position and orientation of the two cameras that define the
two views and it can be derived using their projection matrices.

Suppose an arbitrary 3D point �z whose projection in the first image is defined

Appendix Section B.2. The Fundamental Matrix 113

as �yj = Pj�z where Pj is the projection matrix of the first camera. The line that
goes through �z and the camera center can be obtained backprojecting the point �yj

as follows:

�z(λ) = P
+

j �y
j + λ�Cj (B.3)

where P
+

j is the Moore-Penrose pseudo inverse of Pj and �Cj is the camera center
of the first camera. Taking the point defined by λ = 0, its projection in the second
image can be written as PkP

+

j �y
j . In the same way, the epipole in the second

image can be obtained projecting the camera center of the first image as

�ek = Pk
�Cj . (B.4)

Having these projections, the epipolar line can be recovered using Equation
A.3:

�lk = [�ek]×PkP
+

j �y
j (B.5)

where [�ek]× is the 3 × 3 antisymmetric matrix representing the vectorial product
with �ek. Finally, using Equation B.2 the Fundamental matrix can be obtained as:

F = [�ek]×PkP
+

j . (B.6)

If the first camera is centered at the origin of the coordinate system, the
projection matrices can be expanded as:

Pj = Kj [I3|�03]

Pk = Kk[R|�t].
(B.7)

Since the epipole �ek is the projection of the first camera center in the second
image, Equation B.4 can be rewritten as:

�ek = Kk[R|�t]�Cj = Kk[R|�t]

�
�03
1

�

= Kk�t. (B.8)

Substituting in Equation B.6, the Fundamental matrix can be expressed in
terms of the camera matrices:

114 Appendix B. Epipolar Geometry

F = [Kk�t]×Kj [R|�t]

�
K−1

j
�0�3

�

= [Kk�t]×RK−1
j = K−�

k [�t]×RK−1
j . (B.9)

The Fundamental matrix has rank 2 and its overall scale is not significant, so
it has eight degrees of freedom, i.e. λF is projectively equivalent to F for any non
zero scalar λ. From Equation B.4 it follows that if there is no displacement, i.e.
the two camera centers are the same, the Fundamental matrix would be the zero
matrix.

B.3 The Essential Matrix

The Essential matrix is a particular case of the Fundamental matrix when the
calibration matrices of the cameras are known.Without loss of generality, consider
two views taken by the same camera whose calibration matrix is K. In this case,
the projections �yj and �yk can be normalized as:

ŷj = K−1�yj

ŷk = K−1�yk.
(B.10)

Under this assumption, Equation B.1 can be expressed in terms of normalized
points:

ŷk�Eŷj = 0 (B.11)

that can be rewritten using denormalized coordinates as �y�k K−�EK�yj = 0. From
this follows that the Essential matrix can be expressed in terms of the Fundamental
matrix as:

F = K−�EK. (B.12)

Taking Equation B.9 into account, the Essential matrix can be expressed in
terms of the rotation matrix and the translation vector that relate the two cameras:

E = [�t]×R. (B.13)

Appendix Section B.3. The Essential Matrix 115

However, since there is an overall scale ambiguity because of the
homogeneous quantities, the Essential matrix has only five degrees of freedom.

The translation vector can be recovered solving the problem E��t = �0.
Because of the scale factor ambiguity, only the direction can be recovered, so
the solution is chosen as the vector complaining

�
��t
�
� = 1. The opposite direction

−�t is also a valid solution.

In order to obtain the rotation, the matrix E needs to be decomposed in
the form of Equation B.13 where

�
�t
�
×
is an antisymmetric matrix and R is an

orthogonal matrix. From the Singular Value Decomposition (SVD) follows that
E = S diag (σ, σ, 0)V�, where U and V are orthogonal matrices. The singular
value diagonal matrix can be rewritten as:

diag (σ, σ, 0) = σ

0 −1 0
1 0 0
0 0 0

� �� �
Z

0 1 0
−1 0 0
0 0 1

� �� �
W

(B.14)

where Z is antisymmetric and W is orthogonal. Taking into account that E is
defined up to an arbitrary scale factor, it can be assumed without loss of generality
that σ = 1. Since U andV are orthogonal, the SVD decomposition can be
rewritten by means of a product of an antisymmetric matrix and an orthogonal
matrix:

E = [�t]×R =
�
UZU�

��
UWV�

�
, (B.15)

so R = UWV�. There are also two possible rotations depending on the
sign of the axis. The second solution is obtained as R = UW�V�, so
taking into account the two possible translation vectors, there are a total of four
possible camera configurations. The true solution can be obtained as the one that
reconstructs points in the front of the camera.

116 Appendix B. Epipolar Geometry

Appendix C

Programming on a GPU

With the arrival of programmable GPUs, many people have been using them
to perform more than special effects. GPGPU computing is a recent field of
work in computer science. The goal of this area is to take advantage of the high
computational power of modern graphic processors (which currently is an order
of magnitude higher than CPUs) and their specific operation sets for computer
graphics. Among the most common techniques to performGPGPU computing can
be found the use of shaders and, more recently, CUDA. Although other CUDA-
like technologies exist, such as Direct Computing (Microsoft) and OpenCL, only
CUDA 2.3 will be treated in this section, since it was the one employed in the
work, and the three are very similar and most of the concepts can be shared.

GPGPU computing is mainly based in the SIMD (Single Instruction, Multiple
Data) programming model. In this model, multiple processing units execute the
same instruction over a data set under the supervision of a common control unit,
i.e., data is processed in parallel but synchronously.

Part of this appendix has been presented in:

Eskudero, I., Sánchez, J. R., Buchart, C., Garcı́a-Alonso, A., and Borro, D.
“Tracking 3D en GPU Basado en el Filtro de Partı́culas”. In Congreso
Español de Informática Gráfica (CEIG’09), pp. 47–55. San Sebastián,
Spain. 2009.

117

118 Appendix C. Programming on a GPU

C.1 Shaders

Shaders are special programs used to modify the fixed rendering pipeline,
employed in conjunction with graphic APIs such as OpenGL or Direct3D.
Depending on the graphic API used, the shader programming language to be
employed may vary. The most important shading languages are Cg© (NVIDIA®),
HLSL (Microsoft®) and GLSL (Khronos Group). Cg and HLSL are very similar,
and the three are C-like languages. Different shader types exist to manipulate data
in different stages of the pipeline:

• Vertex shaders: transform 3D vertices (once per run) to the 2D coordinate
system of the viewport. Vertex shaders can modify the position, color and
texture coordinates of the vertices, but cannot create new vertices.

• Geometric shaders: assemble the geometric primitive that will be sent to
the rasterizer. These shaders can create or destroy vertices and are usually
employed for tessellation of parametric or implicit surfaces.

• Fragment shaders: also known as pixel shaders, compute the color of the
individual pixels that come from the rasterizer. Fragment shaders are very
flexible and are commonly used in objects lighting and texturing, special
effects and even in non-polygonal based visualization, such as volume
rendering. Their main disadvantage is that they cannot write data to a
different pixel coordinate than the one assigned by the rasterizer.

Given natural analogies with the SIMD model, GPGPU computing usually
makes use of fragment shaders to work. Although less formal, it is easier to see
how it works in a scheme:

• First, data is stored in textures, as if they were arrays. The only limitations
here are those self imposed by the texture structure: all the elements must
have the same structure and each of them can stored up to four values of
the same basic data type (floats, integers), corresponding to each of the four
color components: red, green, blue or alpha channel.

• The viewport is configured appropriately to draw data. For example, if the
computation is one output per each input, the viewport must be setup to
have the same size as the texture. The rendering output is set to be another
texture, so results can be written back to memory.

Appendix Section C.1. Shaders 119

• The fragment shader is enabled. Textures and any other individual
parameters are loaded.

• A textured rectangle is drawn to fulfill the viewport. In this way, each
rasterized pixel will correspond to a texel.

In this way, the fragment shader is executed for each element of the data and
the results are written to the specified texture that can be later read or used as the
input of another shader (thus avoiding the costly transfer to and from the main
memory).

Some common GPGPU applications are iterative processes of the form of
xi+1 = f(xi). In this case, a technique called ping–pong rendering is commonly
used. It consists in the use of two interchangeable textures of the same size and
structure, one for reading the data and one for writing; after each iteration, their
roles are simply swapped.

Fragment shaders impose some restrictions in the programming model that
must be taken into account:

• No random position scattering (writing). A fragment shader can only write
in the position specified by the rasterizer. For example, it is not possible for a
shader to store its results in different cells of a grid; in this case, the value of
each cell must be computed by an individual shader and each shader must
have the corresponding rasterizer position. This follows that the viewport
determines the structure of the output.

• Only modern GPUs allow branching (execution bifurcations produced by
conditional statements and loops), but its use must be reduced as much as
possible in order to avoid high speed penalties. If two threads of the same
shader enter different regions of a branch, each set is executed by the two
threads but only the corresponding memory states are kept for each one.

• Transfers between main memory and graphic memory must be carefully
scheduled to reduce bandwidth overhead.

• Current graphics hardware imposes different restrictions with respect to the
texture size. Initially these constrains included not only the maximum size,
but also that the size must be a power-of-two. Nowadays this limitation has
disappeared and the maximum size is often 4096× 4096.

120 Appendix C. Programming on a GPU

C.2 CUDA

CUDA™ (Computing Unified Device Architecture) is a C extension developed
by NVIDIA®, which allows a higher level of abstraction than that obtained with
shaders. CUDA capable devices can accelerate the execution of computationally
intensive programs exploiting the data level parallelism of the executed
algorithms. These devices can work together in order to solve large problems
and they always work within a host (a PC). This technology was introduced
in desktop computers with the G80 GPU in late 2006 that was included in the
GeForce® 8800 graphics card family. At the same time, NVIDIA launched its
Tesla® dedicated GPGPU device. Basically, the only difference between a Tesla
device and a normal GPU is that the first lacks a display output. Recent Tesla
devices based on the Fermi™ architecture also have four times more arithmetic
precision than its graphics device equivalent.

As seen in Figure C.1 the peak performance of GPUs has been greatly
improved compared with general purpose microprocessors. However, this
performance can only be achieved exploiting the data level parallelism that CUDA
devices require.

(a) Floating point operations per second. (b) Memory bandwidth comparison.

Figure C.1: Performance evolution comparison between CPUs and GPUs. (NVIDIA,
2010)

CUDA has solved some of the main disadvantages of GPGPU programming
through shaders, e.g. the fixed-position scattering limitation. This has allowed
numerous algorithms to become easier to implement in the GPU. Regardless
of this ease, it is still necessary to design the algorithms to use efficiently the

Appendix Section C.2. CUDA 121

resources of the CUDA device.

Additionally to CUDA, other similar technologies exist, such as Direct
Computing (Microsoft) and OpenCL (Khronos Group). The following sections
will introduce some basic concepts on CUDA, however, most of them are
applicable to other computing technologies.

C.2.1 CUDA Program Structure

A CUDA program is built using both regular functions, that are executed in the
host, and CUDA functions, called kernels, that are executed in the CUDA device.
These functions are separately compiled using the standard C++ compiler for the
CPU code and the NVIDIA nvcc compiler for the CUDA kernels.

CUDA kernels, when called, are executed many times in parallel using the
threading capabilities of the device. As shown in Figure C.2, these threads are
grouped in blocks, that at the same time are grouped in a grid. Grids and blocks
are one, two or three dimensional arrays and their size is only limited by the
CUDA device.

The size of the grid and the blocks can be set by the user in every kernel
call. Each thread executes the same kernel code and has a unique ID that can
be accessed from the kernel giving a natural way to do computations across the
elements of a matrix.

C.2.2 Occupancy

When a group of threads is received to be executed, the multiprocessor device
splits them into warps that are individually scheduled. Awarp is a group of threads
(32 by the time this memory was written) that starts together at the same program
address but that are free to branch independently. A warp executes a command at
a time, so full efficiency is realized when all the threads of the warp follow the
same instruction path.

Occupancy is the ratio of the number of active warps per multiprocessor
to the maximum number of possible active warps. It is an important metric in
determining how effectively the hardware is used: a higher occupancy eases the
device to hide memory latency and therefore helps to improve performance. For
more information about occupancy and CUDA programs optimization, refer to
(NVIDIA, 2010).

122 Appendix C. Programming on a GPU

Figure C.2: Thread hierarchy. (NVIDIA, 2010)

C.2.3 CUDA Memory Model

CUDA devices have their own memory space and threads can not access directly
to the host memory. The data must to be transferred from host to device in order
to make the computations and from device to host in order to get the results.

Figure C.3 shows an overview of the device memory. Each thread has a
private local memory where local variables are stored. At block level, there
is a shared memory visible to all threads of the block whose size can be set
dynamically before the kernel invocation. Finally, there is a global memory
that can be randomly accessed by all threads and it is persistent across kernel
executions. There are also two read only memories, i.e., constant memory and
texture memory. Constant memory is a small space that can be accessed randomly
very fast. In contrast texture memory, which inherits from graphics applications,

Appendix Section C.2. CUDA 123

is a large memory that can be organized in up to three dimensions. It is locally
cached and can be accessed through a hardware interpolator.

Figure C.3: Memory hierarchy. 1

Compared to traditional shaders, CUDA threads can randomly read and write
in any position of the global memory. However, this memory has a lot of access
latency and should be used with care. Although having many threads can hide the
access latency, the global memory has a limited amount of bandwidth and can
be easily collapsed making computing units go idle. This problem can be solved
moving the data from global memory to shared memory, which has much less
latency, and using it across the threads of the same block.

CUDA devices can read up to 16 bytes from global memory in a single
instruction. If threads of a half-warp access simultaneously to different words
lying in the same memory segment, accesses are coalesced in a single memory

1Courtesy: NVIDIA

124 Appendix C. Programming on a GPU

transaction of 4, 8 or 16 bytes. In general, a memory transaction will be executed
for each memory segment requested by threads in a block. Figure C.4 shows an
example of coalesced memory accesses that are desirable in any CUDA program.

Figure C.4: Example of a coalesced memory access. (NVIDIA, 2010)

In conclusion, in order to use efficiently the CUDA device, special care should
be taken in the data level parallelism of the algorithm and in the memory access
patterns, trying to minimize the memory transfers between the host and the device.
For these reasons, many existing algorithms can not be directly implemented in
CUDA, needing new approaches that exploit the benefits of this architecture.

Appendix D

Generated Publications

D.1 Conference Proceedings

Sánchez, J. R., Álvarez, H., and Borro, D. “Towards Real Time 3D
Tracking and Reconstruction on a GPU Using Monte Carlo Simulations”.
In International Symposium on Mixed and Augmented Reality (ISMAR’10),
pp. 185–192. Seoul, Korea. 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. “GFT: GPU Fast Triangulation
of 3D Points”. In Computer Vision and Graphics (ICCVG’10), volume 6375
of Lecture Notes in Computer Science, pp. 235–242. Warsaw, Poland. 2010.

Sánchez, J. R. and Borro, D. “Automatic Affine Structure Recovery Using
RANSAC”. In Congreso Español de Informática Gráfica (CEIG’10), pp.
155–164. Valencia, Spain. 2010.

Eskudero, I., Sánchez, J. R., Buchart, C., Garcı́a-Alonso, A., and Borro, D.
“Tracking 3D en GPU Basado en el Filtro de Partı́culas”. In Congreso
Español de Informática Gráfica (CEIG’09), pp. 47–55. San Sebastián,
Spain. 2009.

Sánchez, J. R. and Borro, D. “Non Invasive 3D Tracking for Augmented
Video Applications”. In IEEE Virtual Reality 2007 Conference, Workshop
“Trends and Issues in Tracking for Virtual Environments”, pp. 22–27.
Charlotte, NC, USA. 2007.

125

126 Appendix D. Generated Publications

D.2 Poster Proceedings

Sánchez, J. R., Álvarez, H., and Borro, D. “GPU Optimizer : A 3D
reconstruction on the GPU using Monte Carlo simulations”. In Poster
proceedings of the 5th International Conference on Computer Vision
Theory and Applications (VISAPP’10), pp. 443–446. Angers, France. 2010.

Sánchez, J. R. and Borro, D. “Automatic Augmented Video Creation for
Markerless Environments”. In Poster Proceedings of the 2nd International
Conference on Computer Vision Theory and Applications (VISAPP’07), pp.
519–522. Barcelona, Spain. 2007.

Barandiaran, J., Moreno, I., Ridruejo, F. J., Sánchez, J. R., Borro, D., and
Matey, L. “Estudios y Aplicaciones de Realidad Aumentada en Dispositivos
Móviles”. In Conferencia Española de Informática Gráfica (CEIG’05), pp.
241–244. Granada, Spain. 2005.

References

Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., and Szeliski, R. “Building rome
in a day”. In IEEE International Conference on Computer Vision (ICCV’09),
pp. 72–79. Kyoto, Japan. September, 2009.

Azarbayejani, A. and Pentland, A. “Recursive estimation of motion, structure,
and focal length”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 17, N. 6, pp. 562–575. June, 1995.

Barandiaran, J., Moreno, I., Ridruejo, F. J., Sánchez, J. R., Borro, D., and
Matey, L. “Estudios y Aplicaciones de Realidad Aumentada en Dispositivos
Móviles”. In Conferencia Española de Informática Gráfica (CEIG’05), pp.
241–244. Granada, Spain. 2005.

Bay, H., Ess, A., Tuytelaars, T., and Vangool, L. “Speeded-Up Robust Features
(SURF)”. Computer Vision and Image Understanding, Vol. 110, N. 3, pp.
346–359. June, 2008.

Bouguet, J. “Pyramidal implementation of the lucas kanade feature tracker
description of the algorithm”. 2000.

Broida, T. J., Chandrashekhar, S., and Chellappa, R. “Recursive 3-D motion
estimation from a monocular image sequence”. IEEE Transactions on
Aerospace and Electronic Systems, Vol. 26, N. 4, pp. 639–656. 1990.

Brown, D. C. “Decentering Distortion of Lenses”. Photogrammetric Engineering,
Vol. 32, N. 3, pp. 444–462. 1966.

Brown, D. C. “The bundle adjustment - progress and prospects”. In XIIIth
Congress of the International Society for Photogrammetry (ISPRS’76), pp.
1–33. Helsinki, Finland. 1976.

127

128 REFERENCES

Canny, J. “A Computational Approach to Edge Detection”. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. PAMI-8, N. 6, pp. 679–698.
November, 1986.

Caudell, T. P. and Mizell, D. “Augmented reality: an application of heads-
up display technology to manual manufacturing processes”. In Hawaii
International Conference on System Sciences (HICSS’92), pp. 659–669.
Kauai, USA. 1992.

Changchang, W. “SiftGPU: A GPU Implementation of Scale Invariant Feature
Transform (SIFT)”. 2007.

Chekhlov, D., Pupilli, M., Mayol-Cuevas, W., and Calway, A. “Real-time and
robust monocular SLAM using predictive multi-resolution descriptors”. In
2nd International Symposium on Visual Computing, volume 4292, pp. 276–
285. Lake Tahoe, NV, USA. 2006.

Chiuso, A., Favaro, P., and Soatto, S. “Structure from motion causally
integrated over time”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 24, N. 4, pp. 523–535. April, 2002.

Cornelis, K. From uncalibrated video to augmented reality. PhD thesis, Katholike
Universiteit Leuven. 2004.

Davison, A. J. “Real-Time Simultaneous Localisation and Mapping with a Single
Camera”. In IEEE International Conference on Computer Vision (ICCV’03),
pp. 1403–1410 vol.2. Nice, France. 2003.

Debevec, P. “Image-Based Lighting”. IEEE Computer Graphics Applications,
Vol. 22, N. 2, pp. 26–34. 2002.

Duda, R. O. and Hart, P. E. “Use of the Hough transformation to detect lines and
curves in pictures”. Communications of the ACM, Vol. 15, N. 1, pp. 11–15.
January, 1972.

Eskudero, I., Sánchez, J. R., Buchart, C., Garcı́a-Alonso, A., and Borro, D.
“Tracking 3D en GPU Basado en el Filtro de Partı́culas”. In Congreso
Español de Informática Gráfica (CEIG’09), pp. 47–55. San Sebastián, Spain.
2009.

Faugeras, O. “Stratification of three-dimensional vision: projective, affine, and
metric representations”. Journal of the Optical Society of America, Vol. 12,
N. 3, pp. 465–484. 1995.

REFERENCES 129

Faugeras, O., Luong, Q., and Maybank, S. “Camera self-calibration: Theory and
experiments”. In European Conference on Computer Vision (ECCV’92),
volume 588, pp. 321–334. Santa Margherita Ligure, Italy. 1992.

Fischler, M. A. and Bolles, R. C. “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography”. Communications of the ACM, Vol. 24, N. 6, pp. 381–395.
1981.

Fox, D. “Adapting the Sample Size in Particle Filters Through KLD-Sampling”.
The International Journal of Robotics Research, Vol. 22, N. 12, pp. 985–
1003. December, 2003.

Gordon, N., Salmond, D., and Smith, A. “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation”. In IEE Proceedings of Radar and
Signal Processing, volume 140, pp. 107–113. 1993.

Harris, C. and Stephens, M. “A combined corner and edge detector”. Alvey vision
conference, Vol. 15, pp. 147–151. 1988.

Harris, M. “Optimizing Parallel Reduction in CUDA”. 2008.

Hartley, R. I. “Euclidean reconstruction from uncalibrated views”. Applications
of invariance in computer vision, Vol. 825, pp. 237–256. 1994.

Hartley, R. I. “Self-calibration from multiple views with a rotating camera”. In
European Conference on Computer Vision (ECCV’94), volume 800, pp. 471–
478. Stockholm, Sweden. 1994.

Hartley, R. I. “Kruppa’s Equations derived from the Fundamental Matrix”. IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, N. 2,
pp. 133–135. March, 1997.

Hartley, R. I. and Zisserman, A. Multiple View Geometry in Computer Vision
(ISBN: 0521-54051-8). Cambridge University Press. 2004.

Hemayed, E. “A survey of camera self-calibration”. In IEEE Conference on
Advanced Video and Signal-Based Surveillance, pp. 351–357. Miami, FL,
USA. 2003.

Henderson, S. J. and Feiner, S. “Evaluating the benefits of augmented
reality for task localization in maintenance of an armored personnel carrier
turret”. In IEEE International Symposium on Mixed and Augmented Reality
(ISMAR’09), pp. 135–144. Orlando, FL,USA. October, 2009.

130 REFERENCES

Howes, L. and Thomas, D. Efficient random number generation and application
using CUDA (ISBN: 0-321-51526-9), chapter 37. NVIDIA Corporation.
2007.

Huber, P. J. Robust Statistics (ISBN: 9780471418054). Wiley. 1981.

Julier, S. J. and Uhlmann, J. K. “A New extension of the Kalman filter to nonlinear
systems”. In International Symposium of Aerospace/Defense Sensing,
Simulation and Controls (ISASSC’97), pp. 182–193. Orlando, FL,USA.
1997.

Kahl, F. “Multiple View Geometry and the L∞ norm”. In International
Conference on Computer Vision (ICCV’05), pp. 1002–1009. Beijing, China.
2005.

Kalman, R. E. “A new approach to linear filtering and prediction problems”.
Journal of basic Engineering, Vol. 82, N. Series D, pp. 35–45. 1960.

Kanazawa, Y. and Kanatani, K. “Do we really have to consider covariance
matrices for image features?” In IEEE International Conference on
Computer Vision (ICCV’01), number 5, pp. 301–306. Vancouver, Canada.
2001.

Kapasi, U. J., Rixner, S., Dally, W. J., Khailany, B., Mattson, P., and Owens, J. D.
“Programmable stream processors”. Computer, Vol. 36, N. 8, pp. 54–62.
August, 2003.

Kato, H. and Billinghurst, M. “Marker tracking and HMD calibration for a video-
based augmented reality conferencing system”. In Proceedings 2nd IEEE
and ACM International Workshop on Augmented Reality (IWAR’99), pp. 85–
94. San Francisco, CA, USA. 1999.

Kirk, D. B. and Hwu, W. W. Programming Massively Parallel Processors (ISBN:
978-0-12-381472-2). 2010.

Klein, G. and Murray, D. “Parallel tracking and mapping for small AR
workspaces”. In International Symposium on Mixed Augmented Reality
(ISMAR’07), pp. 1–10. Nara, Japan. November, 2007.

LaViola, J. J. “Double exponential smoothing: an alternative to Kalman filter-
based predictive tracking”. In Proceedings of the workshop on Virtual
environments, volume 39, pp. 199–206. 2003.

REFERENCES 131

Levenberg, K. “AMethod for the Solution of Certain non-linear problems in Least
Squares.” The Quarterly of Applied Mathematics, Vol. 2, pp. 164–168. 1944.

Liu, J. S. and Chen, R. “Sequential Monte Carlo Methods for Dynamic Systems”.
Journal of the American Statistical Association, Vol. 93, N. 443, p. 1032.
September, 1998.

Longuet-Higgins, H. C. “A computer algorithm for reconstructing a scene from
two projections”. Nature, Vol. 293, N. 5828, pp. 133–135. September, 1981.

López-Moreno, J., Hadap, S., Reinhard, E., and Gutierrez, D. “Light source
detection in photographs”. In Congreso Español de Informática Gráfica
(CEIG’09), volume 0, pp. 161–167. San Sebastián, Spain. 2009.

Lourakis, M. I. A. and Argyros, A. A. “Is Levenberg-Marquardt the most efficient
optimization algorithm for implementing bundle adjustment?” In IEEE
International Conference on Computer Vision (ICCV’05), pp. 1526–1531.
Beijing, China. 2005.

Lourakis, M. I. A. and Argyros, A. A. “SBA: A Software Package for Generic
Sparse Bundle Adjustment”. ACM Transactions on Mathematical Software,
Vol. 36, N. 1, pp. 1–30. March, 2009.

Lowe, D. G. “Object recognition from local scale-invariant features”. In
International Conference on Computer Vision (ICCV’99), volume 2, pp.
1150–1157 vol.2. Kerkyra, Corfu, Greece. 1999.

Lowe, D. G. “Distinctive image features from scale-invariant keypoints”.
International journal of computer vision, Vol. 60, N. 2, pp. 91–110.
November, 2004.

Marquardt, D. W. “An Algorithm for Least Squares Estimation of Nonlinear
Parameters”. Journal of the Society for Industrial and Applied Mathematics,
Vol. 11, N. 2, pp. 431–441. August, 1963.

Marr, D. and Poggio, T. “A Computational Theory of Human Stereo Vision”.
Proceedings of the Royal Society B: Biological Sciences, Vol. 204, N. 1156,
pp. 301–328. May, 1979.

Meteopolis, N. and Ulam, S. “The monte carlo method”. Journal of the American
Statistical Association, Vol. 44, N. 247, pp. 335–341. 1949.

132 REFERENCES

Milgram, P. and Kishino, F. “A taxonomy of mixed reality visual displays”. IEICE
Transactions on Information Systems, Vol. E77-D, N. 12, pp. 1321–1329.
1994.

Moravec, H. P. “Towards Automatic Visual Obstacle Avoidance”. In
International Joint Conference on Artificial Intelligence (IJCAI’77), pp.
584–590. Cambridge, MA, USA. 1977.

NVIDIA. NVIDIA CUDA C Programming Guide. 2010.

Ozuysal, M., Calonder, M., Lepetit, V., and Fua, P. “Fast keypoint recognition
using random ferns.” IEEE transactions on pattern analysis and machine
intelligence, Vol. 32, N. 3, pp. 448–61. March, 2010.

Pupilli, M. and Calway, A. “Real-time visual slam with resilience to erratic
motion”. In International Conference on Computer Vision and Pattern
Recognition (CVPR’06), pp. 1244–1249. New York, NY, USA. 2006.

Qian, G. and Chellappa, R. “Structure from motion using sequential monte carlo
methods”. International Journal of Computer Vision, Vol. 59, N. 1, pp. 5–31.
August, 2004.

Sánchez, J. R., Álvarez, H., and Borro, D. “GFT: GPU Fast Triangulation of 3D
Points”. In Computer Vision and Graphics (ICCVG’10), volume 6375 of
Lecture Notes in Computer Science, pp. 235–242. Warsaw, Poland. 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. “GPU Optimizer : A 3D reconstruction
on the GPU using Monte Carlo simulations”. In Poster proceedings of the
5th International Conference on Computer Vision Theory and Applications
(VISAPP’10), pp. 443–446. Angers, France. 2010.

Sánchez, J. R., Álvarez, H., and Borro, D. “Towards Real Time 3D Tracking and
Reconstruction on a GPU Using Monte Carlo Simulations”. In International
Symposium on Mixed and Augmented Reality (ISMAR’10), pp. 185–192.
Seoul, Korea. 2010.

Sánchez, J. R. and Borro, D. “Automatic Augmented Video Creation for
Markerless Environments”. In Poster Proceedings of the 2nd International
Conference on Computer Vision Theory and Applications (VISAPP’07), pp.
519–522. Barcelona, Spain. 2007.

REFERENCES 133

Sánchez, J. R. and Borro, D. “Non Invasive 3D Tracking for Augmented Video
Applications”. In IEEE Virtual Reality 2007 Conference, Workshop “Trends
and Issues in Tracking for Virtual Environments”, pp. 22–27. Charlotte, NC,
USA. 2007.

Sánchez, J. R. and Borro, D. “Automatic Affine Structure Recovery Using
RANSAC”. In Congreso Español de Informática Gráfica (CEIG’10), pp.
155–164. Valencia, Spain. 2010.

Shi, J. and Tomasi, C. “Good features to track”. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’94), pp.
593–600. Seattle, WA, USA. 1994.

Stewénius, H., Engels, C., and Nistér, D. “Recent developments on direct relative
orientation”. ISPRS Journal of Photogrammetry and, Vol. 60, N. 4, pp. 284–
294. June, 2006.

Sutherland, I. “A head-mounted three dimensional display”. In Proceedings of
the Fall Joint Computer Conference, volume 33, pp. 757–764. San Francisco,
California, USA. 1968.

Triggs, B., McLauchlan, P., Hartley, R. I., and Fitzgibbon, A. “Bundle adjustment
- A modern synthesis”. Vision algorithms: Theory and Practice, Vol. 1883,
pp. 298–372. 2000.

Tsai, R. “A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses”. IEEE Journal
of robotics and Automation, Vol. 3, N. 4, pp. 323–344. August, 1987.

Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg, D.
“Real-Time Detection and Tracking for Augmented Reality on Mobile
Phones”. IEEE Transactions on Visualization and Computer Graphics, Vol.
16, N. 3, pp. 355–368. 2010.

Wang, G., Tsui, H., Hu, Z., and Wu, F. “Camera calibration and 3D reconstruction
from a single view based on scene constraints”. Image and Vision
Computing, Vol. 23, N. 3, pp. 311–323. March, 2005.

Welch, G. and Bishop, G. “An introduction to the Kalman filter”. In Siggraph’01.
Los Angeles, CA, USA. 2001.

134 REFERENCES

Williams, B., Klein, G., and Reid, I. “Real-time SLAM relocalisation”. In 2007
IEEE 11th International Conference on Computer Vision (ICCV’07), pp. 1–
8. Rio de Janeiro, Brazil. October, 2007.

Zhang, Z. “A flexible new technique for camera calibration”. IEEE Transactions
on Pattern Analysis andMachine Intelligence, Vol. 22, N. 11, pp. 1330–1334.
2000.

Zhong, H. and Hung, Y. “Self-calibration from one circular motion sequence and
two images”. Pattern Recognition, Vol. 39, N. 9, pp. 1672–1678. September,
2006.

Index

A
Affine transformations, 103
augmented reality, 3

B
Bayesian estimators, 22
Bottom-up approach, 28
Bundle Adjustment, 20

C
calibration matrix, 14
camera, 11
collineations, 100
constant position sampling, 51
constant velocity model, 44
corner detector, 37

Difference of Gaussians, 40
Harris, 38
Moravec, 38
Shi and Tomasi, 39

CUDA, 120
Cumulative Distribution Function, 77

D
duality principle, 101

E
epipolar constraint, 112
epipolar geometry, 36
epipolar lines, 112
epipole, 112

Essential matrix, 114
Euclidean transformation, 102
Extended Kalman Filter, 24
extrinsic parameters, 16

F
feature descriptor, 40

FERNS, 40
SIFT, 40
SURF, 40

feature point, 37
feature tracking, 43
focal length, 13
Fundamental matrix, 112

G
GPGPU, 117
GPU, 117

I
image features, 18
importance density, 27
intrinsic parameters, 15

K
Kalman filter, 23

Kalman Gain, 24
state prediction, 24
state update, 24

kernels, 121
keyframe, 54

135

136 INDEX

L
linear triangulation, 48

M
Monte Carlo methods, 26
motion parallax, 7, 111

N
non-maxima suppression, 39
normalized pin-hole projection, 14

O
observation model, 22
optical center, 12
optical flow, 43

P
parallel reduction, 79
Particle Filters, 26
perspective projection, 12
pin-hole camera, 12
ping–pong rendering, 119
principal point, 13
projection matrix, 13
projective plane, 99
projective space, 99
Projective transformations, 103

R
Radial distortions, 15
random walk sampling, 51

S
self-similarity, 37
Sequential Importance Resampling, 27
Sequential Importance Sampling, 27
Sequential Monte Carlo methods, 26
Shaders, 118
SIMD, 117
Similarity transformations, 103

Simultaneous Localization and
Mapping, 19

state model, 22
state-space model, 22
stratified reconstruction, 104
Structure from Motion, 19

T
Tangential distortion, 15
Top-down approach, 28

U
Unscented Kalman Filter, 26

