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Abstract

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a recent modality to
investigate the major neuronal pathways of the human brain. However, the rich DW-MRI
datasets cannot be interpreted without proper preprocessing. In order to achieve under-
standable visualizations, this dissertation reduces the complex data to relevant features.

The first part is inspired by topological features in flow data. Novel features reconstruct
fuzzy fiber bundle geometry from probabilistic tractography results. The topological prop-
erties of existing features that extract the skeleton of white matter tracts are clarified,
and the core of regions with planar diffusion is visualized.

The second part builds on methods from computer vision. Relevant boundaries in the
data are identified via regularized eigenvalue derivatives, and boundary information is
used to segment anisotropy isosurfaces into meaningful regions. A higher-order structure
tensor is shown to be an accurate descriptor of local structure in diffusion data.

The third part is concerned with fiber tracking. Streamline visualizations are improved
by adding features from structural MRI in a way that emphasizes the relation between
the two types of data, and the accuracy of streamlines in high angular resolution data
is increased by modeling the estimation of crossing fiber bundles as a low-rank tensor
approximation problem.

Kurzzusammenfassung

Die Diffusions-Bildgebung erlaubt die Untersuchung von Nervenfaser-Verbindungen im
menschlichen Gehirn. Sie erzeugt jedoch große Datenmengen, die ohne geeignete Vorver-
arbeitung kaum interpretiert werden können. Diese Dissertation erzeugt verständliche
Visualisierungen der Daten, indem sie sie auf relevante Merkmale reduziert.

Der erste Teil orientiert sich an topologischen Methoden für Strömungsdaten. Neuar-
tige Merkmale rekonstruieren mittels probabilistischer Traktographie unscharfe Faserbün-
delgrenzen. Die topologischen Eigenschaften bestehender Merkmale zur Extraktion von
Skeletten der weißen Substanz werden aufgeklärt, und die Kernbereiche planarer Diffusion
werden visualisiert.

Der zweite Teil ruht auf Methoden der Mustererkennung. Grenzstrukturen werden
durch regularisierte Eigenwert-Ableitungen erkannt und Anisotropie-Isoflächen mittels
Kantenerkennung in anatomisch bedeutsame Regionen segmentiert. Ein Strukturtensor
höherer Stufe erweist sich als detaillierter Deskriptor der lokalen Struktur in Diffusion-
Daten.

Der dritte Teil befasst sich mit Traktographie-Methoden. Die Stromlinien werden so
durch Merkmale aus strukturellen MRT-Daten ergänzt, dass das räumliche Verhältnis
zwischen beiden Datensätzen erkennbar wird. Die Genauigkeit von Stromlinien in Daten
mit hoher Winkelauflösung wird erhöht, indem die Schätzung kreuzender Faserbündel als
Approximation eines Tensors höherer Stufe modelliert wird.
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Summary

During the past decade, Diffusion Weighted Magnetic Resonance Imaging (DW-MRI)
has been used widely to investigate the white matter of the human brain. This dis-
sertation presents techniques for automated extraction of features from DW-MRI data,
which reduces the large datasets to relevant structural information, in order to produce
comprehensible visualizations. These features span all scales of DW-MRI analysis, from
edge detection and the analysis of orientation distribution functions (ODF) to larger-scale
topological and extremal features.

Topological features have proven efficient for the visual analysis of flow fields. This
dissertation demonstrates that an existing generalization of vector field topology to generic
symmetric tensor fields does not produce useful results when applied to diffusion tensor
(DT-MRI) data. Instead, novel topological features are proposed which are founded on the
anatomical meaning of the data and reflect the uncertainty inherent in any connectivity
estimate from diffusion imaging.

Anisotropy creases are a second type of features which capture the structural skeleton
of diffusion data. This dissertation clarifies their properties and provides a reliable and
efficient algorithm for their extraction. It shows that DT-MRI streamsurfaces, which were
previously suggested to visually represent regions in which the diffusion tensor takes on
planar shape, are not well-defined in general diffusion tensor data, and offers planarity
ridges as an adequate replacement.

Several approaches to feature extraction in this dissertation are closely related to meth-
ods from image processing and computer vision. It is demonstrated how derivatives of
eigenvalue functions can be used to distinguish several anatomically relevant types of
edges in DT-MRI data. Filtered edge information is used to segment anisotropy isosur-
faces into anatomically meaningful regions via an edge-based watershed transformation.
To represent the local image structure of multivariate data such as DT-MRI fields more
accurately, a higher-order structure tensor is proposed.

Often, diffusion images are not the only type of data acquired from a subject. This dis-
sertation presents a method to visually integrate streamlines from DT-MRI fiber tracking
with context from structural MRI. The method is modeled on an anatomical fiber prepara-
tion technique known as Klingler dissection. It demonstrates that opacity isosurfaces are
expressive features in scalar fields and that they can be extracted and rendered efficiently.

Many types of features in DW-MRI data require to estimate the number, orientations,
and volume fractions of individual nerve fiber tracts within a voxel. The final contribution
of this dissertation is to improve the reliability of such estimates in cases where high an-
gular resolution (HARDI) data is available. This is achieved by a low-rank approximation
of higher order tensors, which are used to model the orientation distribution functions
(ODFs) which stem from Q-Ball imaging and spherical deconvolution.
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Zusammenfassung

Die Diffusions-Bildgebung hat sich innerhalb der letzten zehn Jahre als nützliches In-
strument zur Untersuchung der weißen Substanz des menschlichen Gehirns erwiesen.
Diese Dissertation entwickelt Verfahren zur automatischen Extraktion von Merkmalen,
die geeignet sind, die umfangreichen Diffusions-Datensätze auf ihren strukturellen Gehalt
zu reduzieren und verständliche bildliche Darstellungen zu erzeugen. Die vorgestellten
Merkmale decken verschiedene Aspekte der Datenanalyse ab, von der Kantenerkennung
und Analyse von Orientierungsdichtefunktionen bis hin zur Extraktion topologischer und
struktureller Merkmale.

Topologische Merkmale werden häufig zur visuellen Analyse von Strömungsfeldern ein-
gesetzt. Diese Dissertation zeigt, dass eine bestehende Generalisierung der Vektorfeld-
Topologie auf generische symmetrische Tensorfelder nicht zur Analyse von Diffusions-
Tensor (DT-MRI-)Daten geeignet ist. Statt dessen werden aus der anatomischen Bedeu-
tung der Daten heraus neuartige topologische Merkmale entwickelt, die auch die Unsicher-
heit der aus Diffusions-Daten gewonnenen Verbindungsmaße berücksichtigen.

Extremalflächen von Anisotropie-Werten sind eine zweite Möglichkeit, ein strukturelles
Skelett aus Diffusions-Daten zu extrahieren. Diese Dissertation klärt ihre topologischen
Eigenschaften auf und entwickelt einen verlässlichen und effizienten Algorithmus zu ihrer
Extraktion. Es wird gezeigt, dass DT-MRI-Stromflächen, die zuvor zur Visualisierung
planarer Regionen vorgeschlagen wurden, mathematisch schlecht bestimmt sind, und dass
Planaritäts-Maxima einen geeigneten Ersatz darstellen.

Einige der in dieser Dissertation behandelten Verfahren sind sowohl zur Visualisierung
als auch zur Bildverarbeitung und Mustererkennung nützlich. So werden mittels der
Ableitungen der Eigenwert-Funktionen anatomisch relevante Typen von Kanten in DT-
MRI-Daten unterschieden. Mittels einer Wasserscheiden-Transformation und gefilterten
Kanteninformationen werden anschließend Anisotropie-Isoflächen in anatomisch bedeut-
same Bereiche segmentiert. Schließlich werden Strukturtensoren höherer Stufe eingeführt,
die die lokale Struktur in multivariaten Daten (wie etwa DT-MRI) präziser repräsentieren.

Neben den Diffusions-Daten wird häufig auch ein struktureller MRT-Datensatz des
gleichen Probanden angefertigt. Diese Dissertation stellt eine Möglichkeit vor, die Trak-
tographie-Ergebnisse in der Form von Stromlinien im Kontext struktureller MRT-Daten
darzustellen. Das Verfahren bildet die Klingler-Präparationsmethode nach und zeigt,
dass Opazitäts-Isoflächen in Skalarfeldern ausdrucksstarke Merkmale sind, die effizient
extrahiert und dargestellt werden können.

Viele Merkmale zur Interpretation von Diffusions-Daten erfordern eine Schätzung von
Zahl, Ausrichtung und den jeweiligen Volumenanteilen einzelner Nervenfaserbündel. Der
letzte Beitrag dieser Dissertation besteht darin, die Verlässlichkeit derartiger Schätzun-
gen zu verbessern, wenn Daten hoher Winkelauflösung vorliegen. Hierzu wird die Ori-
entierungsdichtefunktion eines Q-Ball oder Spherical Deconvolution-Modells als Tensor
höherer Stufe dargestellt und durch einen Tensor niedrigen Rangs approximiert.
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1. Introduction

Many methods of modern medical and neuroscientific research rely on imaging techniques
whose results cannot be interpreted without adequate data processing, automated analy-
sis, and visualization. One of these techniques is Diffusion Weighted Magnetic Resonance
Imaging (DW-MRI), which provides a unique way to investigate the nerve fiber tracts
(“white matter”) within the human brain, by in vivo diffusion measurements [125, 164].

The microstructure of nerve fibers affects the diffusion behavior of water molecules,
which can be measured by advanced MRI sequences. In particular, the cylinder-like ge-
ometry of nerve fibers constrains the molecular motion to a preferred direction parallel to
the fiber bundle. Over the last 15 years, this has led to an increased interest in using non-
invasive diffusion measurements for the diagnosis of stroke [205], for better understanding
of nerve-related diseases [98, 128] and normal brain function [103, 126, 78, 45], as well as
for improved planning of brain surgery [146].

Since the observed diffusion coefficients are directionally dependent, measurements have
to be taken in a large number of directions to correctly capture the three-dimensional dif-
fusion behavior. The diffusion tensor (DT-MRI) model [13] is used widely to summarize
these measurements such that one can draw conclusions from them. It uses a symmet-
ric 3 × 3 matrix to describe the diffusion process, leading to six degrees of freedom at
each point in space. While this poses a challenge for the visualization already, it has
recently become popular to use High-Angular Resolution Diffusion Imaging (HARDI),
which acquires measurements in even more directions and employs more complex models
[220, 76, 149, 219]. To convey an impression of the involved amount of data, Figure 1.1
presents all images that belong to a single two-dimensional slice in an example HARDI
dataset.

Figure 1.1.: These 60 images all show the same slice of the same brain, with different
diffusion weightings. The total number of images in a single DW-MRI dataset
is over 100 times greater than shown here.
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1. Introduction

Figure 1.2.: Feature extraction reduces the given data to the relevant information and thus
introduces a layer of abstraction between the data and the final visualization.

The goal of scientific visualization is to create digital images that represent scientific
data in a way that it can be explored, understood, and communicated by human experts.
In complex data, it is impossible to convey all available information at the same time,
so visualization involves abstraction. Prior to our work, visualization of diffusion tensors
was primarily achieved by mapping attributes of the tensor to shape, color, or texture
of a visual representation (cf. Section 2.2.5). In such a framework, the abstraction is
performed by mapping only some tensor attributes, or by mapping them only at certain
locations.

In contrast, the general strategy pursued in this dissertation is to extract features as a
separate layer of abstraction between the data itself and its visualization (Figure 1.2). In
accordance with [166], we define features as “phenomena, structures or objects in a data
set that are of interest for a certain research or engineering problem”. As opposed to at-
tributes, which are defined from individual tensors by simple formulas whose solutions are
unique and easy to compute (cf. Section 2.2.4), feature extraction takes into account neigh-
borhoods or even the complete dataset to detect non-local structures. Feature definitions
often include model assumptions, and their extraction frequently involves problems like
automated pattern recognition, segmentation, or clustering, which are computationally
expensive and for which unique solutions may not exist.

Feature-based visualization shifts part of the burden of analyzing complex data to the
computer. It offers the chance of reducing large datasets to the important information,
and allows researchers to concentrate on the aspects relevant to their scientific problem.
However, improper use of features carries the risk of hiding relevant details, or creating
artifacts that stem from post-processing rather than from the data itself. In our work,
we address these risks by careful evaluation: Results are compared to previous methods,
inspected by experts, and, where possible, validated against ground truth.

Most of the methods presented in this dissertation concentrate on the diffusion ten-
sor model. On one hand, DT-MRI data is complex enough so that the benefit from
feature-based methods becomes evident. On the other hand, the basic processing and in-
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terpretation of second-order tensors is understood well enough to allow for a well-founded
treatment of higher level concepts like features. However, we expect that once the foun-
dations for HARDI processing have been laid, the data reduction which is made possible
by feature-based methods will play an even larger role for the visualization of HARDI
data, since it contains up to one order of magnitude more information than a comparable
DT-MRI dataset. Chapter 10 constitutes an initial step into this direction.

1.1. Outline

Individual feature definitions are specific to particular applications or problems. There-
fore, it is natural to develop a variety of complementary methods. The ones proposed in
this dissertation fall into three groups:

1. Structural features reduce the data to the cores and boundaries of regions that
exhibit equivalent qualitative properties.

Similar to the way in which a topological skeleton partitions a flow field into regions
that connect the same source to the same sink (cf. Section 2.3.5), the topological
features for diffusion MRI in Chapter 3 indicate regions that connect functionally
distinct areas in the human brain.

Anisotropy crease surfaces have been shown to represent the cores and boundaries
of white matter structures [114]. In Chapter 4, the properties of these surfaces are
clarified, and in Chapter 5, they are applied to the analysis of planar regions.

2. Often, methods for feature extraction in visualization are closely related to algo-
rithms from image processing and computer vision.

In Chapter 6, regularized eigenvalue derivatives are introduced as a way to detect
different types of edges in DT-MRI data, and in Chapter 7, filtered boundary infor-
mation is exploited to segment isosurfaces of diffusion anisotropy into anatomically
meaningful regions.

A descriptor of the local structure in DT-MRI data is proposed in Chapter 8 and
visualized with a novel glyph for supersymmetric higher-order tensors. This feature
not only allows for the visualization of local variability, but it also holds the potential
to find its way back into image processing and computer vision.

3. Fiber tracking aims at reconstructing the trajectory of nerve fiber bundles, and is
one of the most popular methods for the visualization of DW-MRI data.

In Chapter 9, streamlines from fiber tracking are augmented with context from a
coregistered structural MRI scan to indicate their relation to anatomical landmarks.
The method is based on a novel type of features in scalar data and combines two
three-dimensional datasets in a single intuitive rendering.

To support fiber tracking in HARDI data, an improved method for the estimation
of fiber directions from orientation distribution functions (ODFs) is presented in

3
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Chapter 10. The resulting directions can be considered as features of the underlying
ODFs. At the same time, they lay the foundation for future work on the feature-
based visualization of HARDI data.

Most of the material presented in this dissertation has successfully undergone peer
review [191, 192, 188, 190, 189, 194, 193]. Beside the summary of background material in
Chapter 2, as well as an improved exposition and an updated discussion of related work
throughout the thesis, details that were previously unpublished are the three-dimensional
glyphs, the formal proof, and the results on diffusion tensor data in Chapter 8.

1.2. Data and Software

Most experiments in this dissertation have been performed on a dataset which was pro-
vided by the Max Planck Institute for Human Cognitive and Brain Science (Leipzig).
It consists of diffusion-weighted images (DWIs) acquired on a Siemens 3T Trio scanner
at b = 1000 s/mm2 in 60 isotropically distributed gradient directions (3 averages each),
plus one non-diffusion weighted T2 image (7 averages), voxel size 1.72 mm (isotropic). We
received the images pre-registered to compensate motion and imaging artifacts, but we
have performed the diffusion modeling ourselves.

While it is not ideal to rely on a single dataset for testing, it is common in the context of
visualization research. This is only partly due to the fact that visualization as a discipline
concentrates more on developing novel concepts than on fine-tuning implementations to
a point at which they become polished products for domain scientists. Without access to
a scanner, it is difficult to obtain a larger number of datasets for comparison. Therefore,
we gained additional insight by creating synthetic data with varying model assumptions,
and it is our hope that as part of our future work, we will be able to validate at least some
of the presented methods on a more representative set of real measurements.

Chapter 4 presents results on a CT dataset1 which is courtesy of Bernd Tomandl (Di-
vision of Neuroradiology, University of Erlangen). Figure 9.1 (d) is reproduced from [133]
with the kind permission of S. Karger AG, Basel.

In our implementation, we have made frequent use of the teem library2. Some of our
experiments have also employed camino3, BioTensor4, and CImg5. Inkscape6 and the
GIMP7 were used to create most illustrations.

1Available from http://www.volvis.org/
2Available from http://teem.sf.net/
3Available from http://www.cs.ucl.ac.uk/research/medic/camino/
4Available from http://software.sci.utah.edu/
5Available from http://cimg.sf.net/
6Available from http://www.inkspace.org/
7Available from http://www.gimp.org/
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2. Background

The background material in this chapter is taken from three fields: Tensors (Section 2.1)
are used as a mathematical tool for modeling our data. A good understanding of diffusion
imaging (Section 2.2) is essential to design features that make sense in the context of this
field of application. Topological methods (Section 2.3) are a popular example of feature-
based visualization, and will serve as the starting point for some of our own methods.

Occasionally, we will also make use of some basic notions from differential geometry:
Chapter 5 mentions the second fundamental form of a surface, and Section 8.3.2 uses the
parametric form of a curve and the definition of curvature. However, this is not within
our primary focus, so the interested reader is referred to [169] for details.

2.1. Tensors

This section gives an introduction to tensors and some important concepts related to them,
starting from vectors (Section 2.1.1) and ranging from tensor definition (Sections 2.1.2
and 2.1.3), (multi)linear and homogeneous forms (Sections 2.1.4 and 2.1.5) to results on
tensor decomposition (Section 2.1.6) and approximation (Section 2.1.7). A clear focus is on
the background needed to understand the main part of this dissertation, but occasionally,
definitions are given in slightly greater generality than absolutely required, to make it
easier for the reader to get into the specified literature.

We assume some concepts which can be found in introductory texts on linear algebra
[44]. This includes standard matrix operations like matrix multiplication MN, transpose
MT, inverse M−1, trace tr(M), determinant det(M), and Frobenius norm ‖M‖. Italics a
denote scalars, boldface a indicates vectors, upper-case boldface A denotes second-order
tensors, and upper-case calligraphic letters A are used for general tensors. A function f
from spaces V and W to Y will be written f : V ×W → Y . Further notational conventions
are introduced along with the respective definitions.

2.1.1. Vectors and Coordinates

Even though a vector v is defined in an abstract way, as an element of some vector space
V , computations on vectors usually rely on a component representation which follows
from the introduction of a maximal set of linearly independent basis vectors {bi | i =
1, . . . , n}, where n is the dimension of V . Each vector v has two kinds of components.
Its contravariant components vi are the unique coefficients required to represent v as a
linear combination of the basis vectors:

v = vibi (2.1)
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Equation (2.1) and the remainder of this section employ the Einstein summation con-
vention, according to which using an index exactly twice in the same expression implies
summation over all its possible values. When co- and contravariant components are in-
volved, summation has to happen over one co- and one contravariant index.

By convention, contravariant components vi are used to describe elements from V and
are arranged as column vectors. We write this representation of v as [v]B, where B denotes
the basis with respect to which the components are defined. In case of the canonical basis
of R

n, we simplify the notation and let v denote both the (abstract) vector itself and the
column vector of its components. The distinction will always be clear from the context.

In the remainder of this dissertation, we assume that all vector spaces are equipped
with an inner product, which defines a set of covariant components vi by projecting v

onto bi:
vi = v · bi (2.2)

Covariant components are used to describe linear functionals from V to the underlying
field F , and are written as row vectors. These linear mappings V → F form the dual
vector space V ∗.

When changing from one basis to another, co- and contravariant components follow
different transformation rules. However, it is possible to convert contravariant components
to covariant ones and vice versa via the metric tensor Gij and its inverse Gij, respectively:

vi = Gijv
j with Gij = bi · bj (2.3)

When the basis is orthonormal, the metric tensor equals the unit tensor, so co- and
contravariant components coincide. Since all applications in this dissertation assume or-
thonormal bases, we will ignore the distinction between co- and contravariant components
from now on, and write all indices as subscripts.

A matrix R that transforms the components vi of a vector v with respect to some basis
{bi} to components ṽi with respect to a new basis {b̃i} via [v]eB = R[v]B is formed by
the column vectors that contain the components of the old basis vectors in terms of the
new ones. In this dissertation, both {bi} and {b̃i} are orthonormal and share the same
orientation (i.e., right-handed in R

3), so the resulting transformation is a rotation, and
the corresponding matrix R is orthogonal with det(R) = 1.

2.1.2. Second-Order Tensors

In full generality, the tensor product of two vector spaces V and W over a common field F
is defined as a new vector space V ⊗W over F and a bilinear map

⊗
: V ×W → V ⊗W

such that for each bilinear function f : V ×W → Y to any vector space Y , there exists
a unique linear map f̂ : V ⊗W → Y such that f = f̂ ◦⊗. Using v ⊗ w as shorthand
notation for

⊗
(v,w), this condition can be written as f(v,w) = f̂(v ⊗ w). For clarity,

a schematic illustration is given in Figure 2.1.
All tensor products of two given vector spaces are isomorphic to each other in a natural

way (i.e., without making arbitrary choices) [61]. This makes it legitimate to let the term
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2.1. Tensors

Figure 2.1.: The tensor product allows one to replace a bilinear map f : V ×W → Y by
an equivalent linear map f̂ : V ⊗W → Y from a product space V ⊗W .

“tensor product” also denote the bilinear map
⊗

, and to introduce it in a slightly less
general, but more intuitive way [33].

Let v and w be elements from inner product spaces V and W , respectively, both over a
common field F . Their tensor product is the dyad v ⊗w, and is defined by the fact that
inner multiplication with any vector x from W produces a vector from V , according to

(v ⊗ w) · x = v (w · x) (2.4)

Based on this, a dyadic is defined as any sum of dyads. Since the dyadics form a vector
space over F and the mapping defined by Equation (2.4) fulfills the requirements of the
bilinear map

⊗
in the general definition of the tensor product, dyadics are nothing but

second-order tensors from V ⊗W . Since the vectors that form the individual dyads can be
expressed in bases {bV

i | i = 1, . . . , n} and {bW
j | j = 1, . . . ,m} of V and W , respectively,

a second-order tensor T can be written in terms of n×m components Tij such that

T = Tijb
V
i ⊗ bW

j (2.5)

By convention, the components Tij are arranged in a matrix. Assuming column vectors
and the standard rules of matrix-vector multiplication, v⊗w can be written as vwT, and
multiplication of tensor T with vector v as Tv. Finally, the coordinate transformation
expressed by matrix R in the previous section is applied to T by [T]eB = R[T]BRT.

2.1.3. Higher-Order Tensors

Higher-order tensors arise when at least one of the vector spaces of which a tensor product
is taken is the result of a tensor product already. The order l of the resulting tensors equals
the sum of the orders of the two spaces involved in its definition, where vectors count as
first-order tensors. As an example, consider a triad v⊗w⊗ y of vectors from V , W and
Y , which results from taking the tensor product of V ⊗W with Y . It is defined by the
fact that inner multiplication with a vector x from Y produces a second-order tensor:

(v ⊗ w ⊗ y) · x = v ⊗ w (y · x) (2.6)

Again, sums of triads are called triadics, and they are the same as third-order tensors.
This definition generalizes to orders higher than three in the obvious way and results in
polyads, whose sums are called polyadics, or higher-order tensors. Since the components
of an order-l tensors are addressed by l indices, higher-order tensors and their operations
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can no longer be expressed in standard matrix notation. However, the Frobenius norm
generalizes naturally to order-l tensors T :

‖T ‖ =
√
Ti1i2...ilTi1i2...il (2.7)

2.1.4. Linear Forms and Tensor Rank

From our definition of tensors in Equations (2.4) and (2.6), it is clear that order-l tensors
can be interpreted as linear forms that map vectors to tensors of order (l − 1). In fact, a
tensor corresponds to l different linear mappings, since we may choose to sum over any
of its l indices. This is called the inner product along the mth mode of the tensor, and is
written T ·m x. Let xV , xW and xY be vectors from V , W , and Y , respectively. Then, for
the triad from the previous section, the possible tensor-vector products are:

(v ⊗ w ⊗ y) ·1 xV = w ⊗ y
(
v · xV

)

(v ⊗ w ⊗ y) ·2 xW = v ⊗ y
(
w · xW

)

(v ⊗ w ⊗ y) ·3 xY = v ⊗ w
(
y · xY

) (2.8)

In linear algebra, the rank r of a linear mapping is defined as the dimension of its image.
This notion of rank is transferred to tensors via their corresponding linear mappings.
In the second-order case, the ranks along the first and second mode are equal, which
corresponds to the fact that row and column rank of a matrix coincide. In the general
higher-order case, this is no longer true [94, 53], so tensor rank in the linear algebra sense
becomes a tuple (r1, r2, . . . , rl).

When all involved vectors are non-zero, polyads have rank (1, 1, . . . , 1), so they are
referred to as rank-1 tensors. Based on them, a unique tensor rank r is defined as the
minimum number of rank-1 terms such that the given tensor can be written as a sum
of them [94]. As opposed to the “linear algebra rank”, we will call this number r “de-
composition rank” or simply “rank” of a tensor. In the second-order case, both notions
coincide.

In part of the literature (including [149]), “tensor rank” is used to denote the number
of indices required to address the tensor components. In this dissertation, that number is
always called “tensor order”, and “rank” is strictly reserved for the two definitions given
above.

2.1.5. Multilinear and Homogeneous Forms

Taking the inner product of an order-l tensor with a vector produces a tensor of order
(l− 1), which can, again, be interpreted as a linear form, now mapping vectors to tensors
of order (l − 2). This way, the tensor-vector product can be repeated l times, until a
scalar (a “zeroth-order tensor”) is left. Since each step is linear, the overall mapping from
l vectors to a scalar is a multilinear form.

In the remainder of this dissertation, all vector spaces which are involved in tensor
products coincide. Thus, one may identify all arguments of such multilinear forms. In the
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second-order case, the scalar-valued form is bilinear, and identification of its arguments
leads to a quadratic form. Writing out its component notation in R

2 yields:

vTMv = M11v
2
1 + (M12 +M21) v1v2 +M22v

2
2 (2.9)

From Equation (2.9), it is clear that the components of a second-order tensor that
represents a quadratic form can be chosen such that they are symmetric (M12 = M21).
We let Symn denote the space of symmetric n×n matrices. In the general case, identifying
the arguments of the scalar-valued form of a tensor T produces a homogeneous form T (v):

T (v) = Ti1i2...ilvi1vi2 · · · vil (2.10)

The components of a tensor that represents a homogeneous form can be chosen such
that they are invariant under any index permutation. This has been called total sym-
metry [141] or supersymmetry [37, 121, 170]. Other authors argue that this concept is a
straightforward generalization of matrix symmetry and should not be given a new name
[46]. However, unlike matrices, higher-order tensors may exhibit different types of sym-
metries [141]. In particular, the fourth-order covariance tensors that arise in the context
of DT-MRI [14, 113] possess a certain set of symmetries, but are not invariant under all
index permutations.

In the case of supersymmetric tensors, the mode along which an inner product is taken
does not play a role, so it does not have to be specified as a subscript. Instead, the
number of times the product is repeated can be written as a superscript. In this notation,
Equation (2.10) reads T (v) = T ·l v.

Tensor order l determines the number of vector components that enter the homogeneous
form, which leads to antipodal symmetry T (−v) = T (v) for even l, and to antisymmetry
T (−v) = −T (v) for odd l. When the underlying vector space is R

2, the homogeneous
polynomial can be restricted to the unit circle, resulting in a periodic function on the
real line. It can be shown that for tensors with even order l, the resulting function space
is the same as the one of Fourier series which are truncated after order l, and in which
all odd coefficients are set to zero. In R

3, the corresponding result is an equivalence of
homogeneous polynomials on the unit sphere and truncated spherical harmonics. Details
on this conversion are given in Appendix A.

When the homogeneous form of a tensor T is positive (non-negative) for all vectors v,
T is called positive definite (positive semidefinite).

2.1.6. Eigenvectors and Tensor Decomposition

A unit eigenvector of a second-order tensor T is a unit vector e whose direction is invariant
under tensor-vector multiplication, Te = λe. The corresponding scalar λ is called an
eigenvalue of T and found as a root of the characteristic equation

det(λI − T) = 0 (2.11)

The same scalar may be counted multiple times as an eigenvalue, according to the
number of times it appears as a root of Equation (2.11). Eigenvectors to an eigenvalue of
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multiplicity m form an m-dimensional vector space. In this dissertation, eigenvalues are
sorted such that λ1 ≥ λ2 ≥ λ3.

Symmetric tensors T over R
n can be written in terms of n real eigenvalues λi and n

pairwise orthogonal eigenvectors ei:

T =
n∑

i=1

λiei ⊗ ei (2.12)

Equation (2.12) is known as the eigendecomposition or the spectral decomposition of the
tensor. The orthonormal eigenvectors can be used as the rows of a matrix that rotates
the tensor into its eigenframe, in which it takes on diagonal form.

When the quadratic form of a second-order tensor is restricted to the unit sphere, the
eigenvectors indicate its stationary points, in which the gradient magnitude of the spherical
function vanishes. The corresponding eigenvalues indicate the function values at these
maxima, minima, and saddle points. Consequently, the tensor is positive (semi)definite
as defined in Section 2.1.5 if and only if all eigenvalues are positive (non-negative).

For a tensor of order l, the partial derivative of the homogeneous form T with respect
to axis xj is given by

∂T (v)

∂xj

= l × Tji1i2...il−1
vi1vi2 · · · vil−1 (2.13)

The restriction of the homogeneous form T to the unit sphere has a stationary point
when ∇T (v) aligns with v. Thus, these stationary points are given by the system

{
T ·l−1 e = λe

‖e‖ = 1
(2.14)

Due to the analogy of Equation (2.14) with the eigenvector definition in the second-order
case, vectors e that fulfill it have been called Z-eigenvectors of T [170]. The corresponding
Z-eigenvalues λ equal the value of the homogeneous form at the stationary point and thus
reveal its definiteness. However, Z-eigenvectors are generally not pairwise orthogonal, and
they do not determine the higher-order tensor uniquely.

A decomposition of higher-order tensors into a minimum number of r rank-1 terms
has first been considered by Hitchcock [94], and was later rediscovered in the context of
psychometrics [222], where it became known as canonical decomposition [39] or parallel
factor analysis [88]. For an order-l tensor T , it reads:

T =
r∑

i=1

λiei1 ⊗ ei2 ⊗ · · · ⊗ eil (2.15)

If T is symmetric, one may identify ei1 = ei2 = · · · = eil to obtain a supersym-
metric canonical decomposition [46] which is analogous to the spectral decomposition in
Equation (2.12), except that the involved vectors are no longer pairwise orthogonal. Un-
fortunately, algorithms for practical computation of the canonical decomposition are rare.
Comon and Mourrain [47] present an implementation for tensors over R

2, but the problem
in R

3 is still open.
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2.1.7. Low-Rank Tensor Approximation

Given an order-l tensor T of decomposition rank r, the task of rank-k tensor approxima-
tion is to find a tensor T̃ of rank k < r which minimizes the distance to T in terms of the
Frobenius norm:

arg min
eT

‖T − T̃ ‖ such that T̃ =
k∑

i=1

λivi1 ⊗ vi2 ⊗ · · · ⊗ vil (2.16)

In a supersymmetric approximation, vectors vi1 = vi2 = · · · = vil are identified. For
second-order tensors, a best rank-k approximation can be found via the singular value
decomposition [231], which represents any real n×m matrix M in terms of an orthogonal
n × n matrix U, an orthogonal m ×m matrix V, and a diagonal n ×m matrix Σ that
holds non-negative singular values σi:

M = UΣVT (2.17)

For symmetric, positive semidefinite matrices, the singular value decomposition coin-
cides with the eigendecomposition. An optimal rank-k approximation is found by setting
all but the k largest σi to zero and multiplying out Equation (2.17). Since Eckart and
Young first formulated this theorem in modern matrix notation [65], it is commonly re-
ferred to as “Eckart-Young’s theorem”. However, Stewart [207] suggests that the result
should rather be attributed to Schmidt [186], who had previously formulated an equivalent
theorem in terms of integral equations.

Unfortunately, this elegant result does not carry over to higher-order tensors: Even
when a canonical decomposition can be obtained, truncating it is not guaranteed to give
a best rank-k approximation. De Silva and Lim [54] even pointed out that in the topology
generated by the Frobenius norm, the set of tensors of rank r ≤ k is not closed when
order l > 2 and rank k > 1. Thus, sequences of rank-k tensors may converge to a tensor
of rank r > k, which consequently does not have an optimal rank-k approximation.

2.2. Diffusion Imaging

This section introduces our field of application, diffusion-weighted imaging of the human
brain. Our presentation of diffusion and MRI physics (Sections 2.2.1 and 2.2.2) is limited
to the basics needed to understand the modeling issues detailed in Sections 2.2.3, 2.2.6,
2.2.7, and 2.2.8. In particular, we describe the behavior of protons in the presence of strong
magnetic fields from the perspective of classical physics, which is sufficient to explain
the observations of larger ensembles, as those found in the volume elements (voxels)
of magnetic resonance imaging. For the quantum mechanical description required to
understand the process on a per-atom basis, the interested reader is referred to [232].

For the diffusion tensor model, some scalar measures (Section 2.2.4) and visualization
techniques (Section 2.2.5) are introduced which are important tools for the interpretation
of the data. More general introductions on the acquisition, processing, and visualization
of diffusion tensor data can be found in references [167, 224, 252].
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2.2.1. Diffusion in the Human Brain

Diffusion is a process in which random molecular heat motion causes a net transport
of molecules from a region of higher concentration to one of lower concentration. The
concentration gradient does not, however, apply a force to the individual molecules, and
neither does it impose a preferred direction of motion on them. During a given period
of time, the same fraction of molecules from the lower concentration compartment is
transported to the one with higher concentration as vice versa. It is only due to the larger
number of molecules in the high concentration compartment that the absolute number of
molecules that are transported from high to low concentration prevails.

This net mass transport is described by Fick’s laws [70, 49]. In the case of free isotropic
diffusion, Fick’s first law relates the net chemical flux f (amount of substance per area
and time) to the concentration gradient ∇c via the diffusion coefficient d:

f = −d∇c (2.18)

When no concentration gradient is present, the net flow vanishes, but the diffusion
process itself does not stop: Individual molecules still perform their heat motion. This
process is called self-diffusion and is what is measured in the context of diffusion imaging.

Within the brain, self-diffusion is not free, but affected by tissue microstructure. This
introduces a dependence of the measured diffusion coefficient on diffusion time: When
observing the movement of a molecule for such a short time that it is unlikely to meet an
obstacle, it appears free and the resulting diffusion coefficient is high. As the observation
time becomes longer, interactions with obstacles happen more frequently and the resulting
diffusion coefficient appears to drop. Because of this, the quantity measured in diffusion
imaging is often referred to as an apparent diffusion coefficient (ADC).

Neurons consist of a cell body (soma) which integrates incoming activations and a long
thin axon which conducts action potentials away from the cell. In the human brain, the
cell bodies are concentrated in the gray matter, while the axons form nerve fiber bundles
that constitute the white matter and connect various centers of gray matter.

When investigating the brain, diffusion time is chosen such that the effects of barriers
on the scale of axons can be observed. Individual axons are only a few micrometers
in diameter and much smaller than the achievable voxel size (around one millimeter).
However, they are organized in fiber bundles of larger scale and in many regions of the
white matter, this organization is coherent enough such that a directional dependence
(anisotropy) of the apparent diffusivities can be observed on a voxel level.

Empirically, it has been found that water diffuses more freely in direction of the fiber
bundles than across them, but the exact causes of this have yet to be elucidated. Exist-
ing studies indicate that anisotropy increases with the proliferation of insulating myelin
sheaths around the axons during brain maturation [181], but some diffusion anisotropy is
already observed in unmyelinated fibers [244] and the dependence of the apparent diffusion
coefficient on diffusion time does not support models which are purely based on impene-
trable barriers [127]. Instead, the widely used diffusion tensor model [13] (Section 2.2.3)
assumes that diffusion is hindered, but not restricted by structures like cell membranes,
organelles, and macromolecules.
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2.2. Diffusion Imaging

2.2.2. Diffusion-Weighted MRI

Magnetic resonance imaging exploits the high amount of water in human soft tissue to
produce tomographic images non-invasively. Protons, the nuclei of hydrogen, possess a
magnetic moment and align in an external magnetic field, either parallel (in a low energy
state) or antiparallel (in a high energy state). Moreover, the proton dipole moments
precess (rotate) at the Larmour frequency ωL = γB0, where γ is the gyromagnetic ratio,
a constant specific to the nucleus, and B0 is the strength of the external field.

The direction of the external field is taken as the z axis of a local coordinate system.
Orthogonal to it, fixed x and y axes are defined relative to the measurement equipment.
Additionally, x′ and y′ axes form a frame of reference that rotates at ωL around z. In the
equilibrium, a higher fraction of nuclei aligns parallel, resulting in a net magnetization
vector m parallel to the external field (‖m‖ = m0).

A radio-frequency (RF) electromagnetic pulse at ωL excites the rotating protons to
their high energy state. This reduces the number of parallel protons and, therefore, the
longitudinal net magnetization mz. Moreover, the excited nuclei precess in phase, which
creates a rotating net magnetization mx′ and my′ in the transverse plane. According to
the Bloch equations [25], the components of the net vector m return to their equilibrium
states exponentially when the RF pulse is turned off:

dmz

dt
= −mz −m0

T1

dmx′

dt
= −mx′

T ∗
2

dmy′

dt
= −my′

T ∗
2

(2.19)

The parameters T1 and T ∗
2 are the time constants of the exponential restoration of the

longitudinal and transverse magnetization, respectively. They are specific to certain types
of tissue, so grayscale images that pronounce differences in them display tissue boundaries.
T ∗

2 is both influenced by spin-spin interactions within the tissue, which destroy phase
coherence irreversibly, and slight inhomogeneities in the external field, which lead to
additional phase dispersal through variations in ωL. Since the latter effect is not specific
to the tissue, it is common to reduce its influence by a so-called spin-echo sequence [86].

In a spin-echo sequence, a 90◦ pulse is applied to flip the net magnetization vector into
the xy-plane. After some time τδ, a 180◦ pulse inverts the direction of the precession.
Since static protons keep their individual Larmour frequencies, the spins rephase after 2τδ
and produce a spin-echo (SE, cf. Figure 2.2). A common metaphor for this effect is to
imagine a group of runners who start from a common line and are told to turn around
and return to that line after τδ has passed. If each runner keeps his individual, constant
speed, they will cross the starting line together. The maximal amplitude of subsequent
echoes decays exponentially with time constant T2. It is mainly influenced by spin-spin
interactions.

The Bloch equations neglect the fact that protons are not static during the measure-
ment, but perform a constant heat motion. In particular, moving spins in an inhomo-
geneous external field do not have a constant Larmour frequency. Modeling this effect
allows for an estimation of the self-diffusion coefficient by introducing known inhomo-
geneities (gradients) into the external field [38].

The first pulse sequence which was widely used to measure self-diffusion has been de-
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2. Background

Figure 2.2.: In the Stejskal-Tanner sequence, the decay of spin-echoes (SE) depends on T2

and on the diffusion weighting (DW) caused by the gradient pulses.

veloped by Stejskal and Tanner [206]. It places a gradient pulse of length δ between the
90◦ and the 180◦ pulse of the traditional spin-echo sequence (Figure 2.2). A second gra-
dient after the 180◦ pulse reverses this effect for nuclei that kept their position within the
diffusion time ∆. If the spin has moved, it will experience different phase shifts by the
two gradient fields, leading to a weaker spin-echo (SE). This sequence was integrated into
tomographic imaging and used to investigate the human brain by LeBihan et al. [125].
The resulting slice images are called diffusion-weighted images (DWIs) and compared to
a non-diffusion weighted T2 image to estimate the apparent diffusion coefficient.

The image intensity S(g) of a voxel measured by a Stejskal-Tanner sequence is related
to the intensity S0 in an unweighted spin-echo sequence and the apparent diffusivity d(g)
by the following equation [206]:

S(g) = S0e
−bd(g) (2.20)

The b-value collects the measurement parameters (b = γ2δ2(∆ − δ/3)‖g‖2, where γ, δ
and ∆ are defined as above, and ‖g‖ is the magnitude of the diffusion gradient). Even
though image intensity in MRI is not calibrated to a fixed scale, apparent diffusion coef-
ficients d estimated via Equation (2.20) have the units of diffusivity. ADCs in tissue are
usually lower than the diffusivity of free water, which is ≈ 2.3×10−3 mm2/s at 25◦C [206].

Since the diffusion gradient g is applied along a single direction, only the projection
of the molecular movement onto that direction attenuates the signal. By taking multiple
diffusion-weighted measurements with different gradient directions, it becomes possible
to model the directional dependence of the apparent diffusivity d(g), which is the key to
inferring fiber directions from diffusion data of the human brain.

The sagittal slices in Figure 2.3 illustrate this. Free water has a high T2, so the fluid-filled
sulci and ventricles appear hyperintense (bright) in the unweighted image (a). However,
under diffusion weighting (b/c), the unhindered heat motion of free water causes signal
attenuation. In homogeneous fiber tracts, the attenuation depends on the gradient di-
rection: In (b), the gradient is aligned with the corpus callosum (CC), so this structure
appears hypointense (dark). In contrast, the gradient in (c) is more closely aligned with
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(a) Baseline (b = 0mm2/s) (b) Gradient [0.98 0.06 0.17]T (c) Gradient [−0.06 0.31 0.95]T

Figure 2.3.: In the baseline image (a), cerebrospinal fluid appears bright. The appearance
of anisotropic structures like CST/CPT or CC in diffusion-weighted images
(b) and (c) depends on the gradient direction.

the corticospinal / corticopontine tract (CST/CPT). Due to overall variations in MR val-
ues, Subfigure (a) maps the range [0, 1200], while the dynamic range of Subfigures (b)
and (c) is [0, 180].

2.2.3. The Diffusion Tensor Model

To model the diffusion anisotropy in tissue, the diffusion tensor (DT-MRI) model by
Basser et al. [13] approximates the diffusivity function d(g) with a quadratic form, written
as a symmetric second-order diffusion tensor D:

d(g) = gTDg (2.21)

Since the symmetric tensor D has six degrees of freedom, at least six diffusion-weighted
images are required to estimate it, plus a baseline image S0. When exactly that number
of images is available, tensor components can be estimated in closed form [240]. However,
for robust estimation of anisotropy and principal direction, it is advisable to use more
than the minimum number of directions [106]. In this case, diffusion tensor estimation
can be formulated as a least squares problem on the logarithms ln(S/S0) [13].

When a diffusion-weighted image exhibits higher intensity than the baseline image S0,
Equation (2.20) yields a negative apparent diffusion coefficient, which does not make sense
physically and can be attributed to measurement errors or noise. Consequently, some
methods for processing diffusion tensors assume that D is positive (semi)definite. When
required, this constraint can be enforced after tensor estimation by clamping negative
eigenvalues, which corresponds to a projection to the cone of positive definite tensors.
Variational methods [217] integrate positive definiteness and additional spatial regularity
constraints into the estimation process itself. The Cholesky factorization [230] and the
Log-Euclidean framework [71] offer additional alternatives to enforce positive definiteness.

When using the DT-MRI model, typical b-values for the measurements are on the order
of b = 700 s/mm2 to b = 1000 s/mm2 [240, 220, 106].
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(a) Mean Diffusivity (b) Fractional Anisotropy (c) Linearity cl

Figure 2.4.: Scalar measures of the amount and directional dependence of water diffusion
provide contrast between anatomical structures and can be used for diagnosis.

2.2.4. Scalar Measures in DT-MRI

Tensor-valued data is more difficult to visualize and to interpret than the grayscale images
produced by traditional MRI. Fortunately, several clinical and scientific problems can
already be addressed by considering scalar measures that capture certain anatomically
relevant attributes of the diffusion tensor. These measures are chosen such that they are
invariant under rotation of the coordinate frame. They can be visualized as traditional
slice images or by volume rendering [116], and they serve as quantitative measures in
scientific studies [98, 128].

The most fundamental scalar measure is mean diffusivity (MD), the average diffusivity
over the full unit sphere. It equals one third of the diffusion tensor trace:

MD(D) =
1

3
tr(D) =

1

3
(Dxx +Dyy +Dzz) (2.22)

In healthy subjects, mean diffusivity is approximately constant over gray and white
matter, and much larger in the cerebrospinal fluid [164] (cf. Figure 2.4 (a)). An important
clinical application of diffusion imaging is due to the fact that decreased mean diffusivity
serves as an early indicator of stroke. In the subacute and chronic phases, renormalization
and increase of MD is observed [205].

Let I denote the unit matrix. The trace-free tensor

D = D − 1

3
tr(D) I (2.23)

is the deviatoric (anisotropic part) of D. Based on its magnitude, Basser and Pierpaoli
[16] proposed two measures of overall directional dependence, fractional anisotropy (FA)
and relative anisotropy (RA):

FA(D) =

√
3

2

‖D‖
‖D‖ RA(D) =

√
1

3

‖D‖
MD(D)

(2.24)

Both FA and RA are dimensionless quantities which equal zero for perfectly isotropic
tensors (D = sI). For perfectly linear (rank-one) tensors, FA = 1, RA =

√
2. Higher

values of FA and RA are only attained by indefinite tensors.
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Anisotropy is high in white matter, but low in gray matter and cerebrospinal fluid. This
is shown in Figures 2.4 (b) and (c), where For denotes the fornix, while the labels CC
and CST/CPT are used as above. Decreased diffusion anisotropy is typically interpreted
as a result of damaged nerve tissue structure. However, anisotropy in healthy subjects
is highly variable over different regions of the white matter, so the effects of registration
misalignment and the choice of filtering kernel cannot be neglected when studying the
relation between diseases and changes in anisotropy (cf. [203] and references therein).
Moreover, in the case of crossing fiber bundles, degeneration of one bundle can lead to a
paradoxical increase in anisotropy, as the fibers of the remaining bundle now appear more
coherently organized [163].

FA and RA quantify overall directional dependence, without differentiating between
linear (λ1 ≫ λ2 ≈ λ3) and planar (λ1 ≈ λ2 ≫ λ3) anisotropy. This distinction is called
mode or skewness. The skewness measure s employed by Bahn [11] and the parameter
“mode” used by Criscione [50] and introduced to DT-MRI by Ennis and Kindlmann [67]
are defined as

s = arctan

( √
3 (λ2 − λ1)

2λ3 − λ2 − λ1

)
mode = 3

√
6 det

(
D

‖D‖

)
(2.25)

For perfectly linear tensors, s = π/3, mode = 1. For planar tensors, s = 0, mode = −1.
To avoid confusion with the notion of tensor mode which was introduced in Section 2.1.4,
we will only use the term “skewness” to refer to the distinction between linear and planar
diffusion from now on. Skewness is affected by noise more strongly than mean diffusivity
or anisotropy [12]. When eigenvalues are taken as the axes of a space of tensor shapes,
measures of anisotropy and skewness can be derived by changing to cylindrical or spherical
coordinates [11]. It is noteworthy that even though MD and FA are frequently analyzed
together, they are not strictly orthogonal within that framework. Instead, a measure of
overall diffusivity which is orthogonal to FA is given by the diffusion tensor norm ‖D‖
[11, 67].

The anisotropy measures by Westin et al. [241] integrate skewness by providing coordi-
nates with respect to perfectly linear (cl), planar (cp) and spherical tensors (cs):

cl =
λ1 − λ2

λ1 + λ2 + λ3

cp =
2 (λ2 − λ3)

λ1 + λ2 + λ3

cs =
3λ3

λ1 + λ2 + λ3

(2.26)

For positive definite tensors, cl, cp, and cs lie in the range [0, 1] and fulfill the barycentric
coordinate constraint cl + cp + cs = 1. Figure 2.5 presents glyph visualizations of this
barycentric shape space. More details on tensor glyphs are given in the following section.

Both skewness measures in Equation (2.25) classify a tensor as equally linear and pla-
nar (s = π/6, mode = 0) if λ1 − λ2 = λ2 − λ3. However, the Westin measures from
Equation (2.26) would consider the same tensor twice as planar as linear (cp = 2 × cl).
This discrepancy is fixed by an alternative normalization of the Westin measures [241]:

ĉl =
λ1 − λ2

λ1

ĉp =
λ2 − λ3

λ1

ĉs =
λ3

λ1

(2.27)
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(a) Visualization with ellipsoid glyphs. (b) Visualization with superquadric glyphs.

Figure 2.5.: The Westin measures place tensors into a barycentric shape space with linear,
planar, and spherical tensors at the corners.

Derivatives of scalar measures indicate structural boundaries in the data. Since mean
diffusivity is a linear function of tensor components, its derivative can be computed by
evaluating the measure on the original grid points and taking finite differences. For the
nonlinear fractional anisotropy, Kindlmann et al. [114] take derivatives via the chain rule.
Since sorted eigenvalues are not everywhere differentiable, edge maps with respect to
the Westin measures are less straightforward to compute. It is one contribution of this
dissertation to define regularized eigenvalue derivatives which are everywhere well-defined
and allow for such edge maps (Chapter 6).

A conceptually different way to measure boundaries in DT-MRI data is to consider the
gradient of the tensor field itself, a third-order tensor [154]. Ennis and Kindlmann [67]
demonstrate how this tensor field gradient can be projected onto the gradients of scalar
measures, taken over the space of second-order tensors, to differentiate between various
types of boundaries. A more detailed discussion of this approach is given in Section 6.4.

2.2.5. Standard Visualization Techniques for DT-MRI

In brain data, the orientation of linear diffusion tensors allows one to draw conclusions
about the orientation of fiber structures within the respective voxel. The easiest way to
convey this direction visually is to color code the principal eigenvector in slice images
(Figure 2.6 (a)) or volume renderings.

The most common color scheme, XYZ-RGB, maps the coordinates of the eigenvector
e with respect to an orthonormal basis {bi} of R

3 to the red, green, and blue color
channels, respectively. bi are chosen with respect to the patient, such that b2 and b3

span the sagittal plane, and b2 is aligned with the anterior-posterior intercommissural
line [155].

The alpha value A (or, alternatively, the saturation) of the resulting color is modulated
by a measure of linearity to avoid visualization of meaningless eigenvector directions in
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(a) Color coded slice image (b) Streamlines (tractography) (c) Superquadric glyphs

Figure 2.6.: Color maps, streamlines, and glyphs are standard techniques for DT-MRI
visualization. Here, they display a part of a coronal slice of brain data.

isotropic regions. In the simplest case, an [R,G,B,A] tuple is given as

R = |e · b1| G = |e · b2| B = |e · b3| A = cl (2.28)

This mapping creates undesired ambiguities: Mirroring e at any of the coordinate planes
preserves the resulting color. However, since eigenvectors lack orientation, DT-MRI color
schemes have to map vectors v and −v to the same color. Moreover, to avoid artifactual
edges, continuous changes in direction should lead to continuous changes in color. Pajevic
and Pierpaoli [155] have shown that any scheme that fulfills both of these constraints
suffers from undesired ambiguities.

When the goal is to visualize both orientation and anisotropy at the same time, Equa-
tion (2.28) should not be used in its unmodified form, since perceived brightness is not
the same for pure red, green, and blue on typical displays, and it is also affected by the
blending of colors. In practice, different heuristic variations of Equation (2.28) are in
use (e.g., [155, 197]). By convention, they share the anatomical interpretation that red
indicates the mediolateral direction, green anterior–posterior, and blue superior–inferior.

Techniques for vector field visualization can be applied to the principal eigenvector
field of tensor data, provided that one takes into account the facts that eigenvectors lack
orientation and that they become ill-defined at degeneracies (λ1 = λ2). An important
vector field-based method is the integration of streamlines which are tangential to the
principal eigenvector field. In the context of DT-MRI, this is called fiber tracking [143, 15,
237, 144]. Beside the definition of reasonable termination criteria, a successful streamline-
based visualization requires an appropriate strategy for seeding and culling [251, 223, 138].

Streamlines like the ones in Figure 2.6 (b) convey the inferred trajectory of nerve fiber
bundles in an intuitive manner, but one should keep in mind that the individual lines do
not have clear anatomical correlates. Single axons are far below image resolution. On the
other hand, fiber bundles usually comprise more than a single streamline. Consequently,
approaches have been developed to automatically cluster those streamlines that belong to
a common tract [201, 60, 32, 250], and to construct geometric hulls around them [66, 43].
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Another common tool for vector field visualization is line integral convolution (LIC)
[34]. It produces a dense image of the field, in which the intensity of pixel values along
streamlines is correlated. When modulating transparency with an anisotropy measure,
LIC can also be applied to eigenvector fields [246]. However, in three-dimensional data,
clear and effective rendering of the dense volume produced by LIC is a challenge. Existing
strategies to reveal interior structures include volumetric clipping and interactive dye
injection [200], sparse noise textures and depth-revealing halos [99], transfer functions
that emulate sparse noise, and clipping by dynamic geometry [174].

Both streamline integration and LIC have been modified to use the full tensor infor-
mation: The ellipsoidal cross sections of hyperstreamlines [55] indicate the directions of
the smaller two eigenvectors and the relative magnitude of the corresponding eigenvalues.
HyperLIC [253] uses a convolution kernel whose spatial extent depends on the full tensor.
Both methods have been applied to DT-MRI data [251, 253].

Tensor glyphs are geometric objects whose shape, orientation, and size convey the full
information at discrete points of a tensor field. The most basic type of tensor glyphs are
ellipsoids whose semi-axes are aligned with the eigenvectors and scaled with the eigenvalues
of the tensor. Example tensor ellipsoids are shown in Figure 2.5 (a). A formal definition
and a generalization to higher-order tensors is presented in Section 8.3.

The effectiveness of ellipsoidal glyphs is limited by the fact that the projection of quite
different ellipsoids can result in the same two-dimensional ellipse in image space. Often,
shading does not provide sufficient cues of the three-dimensional shape. Other types of
glyphs avoid this ambiguity [239]. In particular, superquadrics can be parametrized such
that sharp edges convey the direction of clearly defined eigenvectors [110]. Examples of
the resulting tensor glyphs are given in Figures 2.5 (b) and 2.6 (c).

Superquadric tensor glyphs have been used for visualization of both brain [110] and
myocardial DT-MRI data [68], and have been extended to applications outside diffusion
MRI [100]. Beside choosing an appropriate type of glyph, careful seeding can further
improve glyph-based visualizations [117].

2.2.6. Higher-Order Diffusion Models

Validation studies [129, 52] have indicated that in voxels with a single predominant fiber
orientation, the direction of the highest apparent diffusion coefficient, as given by the
principal eigenvector of a second-order diffusion tensor, is well-aligned with this fiber
direction. Unfortunately, many voxels contain more than a single predominant direction,
due to fiber bundles that cross, fan out, bend sharply, or pass each other.

To better capture such complex voxels, it has been proposed to model the apparent
diffusivity function d(g) in a more flexible way, using spherical harmonics [76, 3] or,
equivalently, higher-order tensors [149]. Such high angular resolution diffusion imaging
(HARDI) requires diffusion-weighted measurements in more directions. Since diffusion
imaging projects the molecular motion onto the (unoriented) line defined by g, all models
of apparent diffusivity exhibit antipodal symmetry d(−g) = d(g).

Unfortunately, the maxima of the diffusivity profile no longer align with any fiber di-
rection when a voxel contains more than a single tract [226, 220]. Commonly, n crossing
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Figure 2.7.: Crossing tracts act as separate compartments, whose apparent diffusivities
add non-linearly. Consequently, the maxima of the combined diffusivity func-
tion are not aligned with any fiber direction.

tracts are modeled by independent compartments with volume fractions ci (
∑n

i=1 ci = 1)
and quadratic diffusivities di in each. The apparent overall diffusivity d is a non-linear
mixture of the di, and is no longer quadratic. The modified version of Equation (2.20)
and the resulting expression for d are:

S(g) = S0

n∑

i=1

ci e
−bdi(g) ⇒ d(g) = −1

b
ln

n∑

i=1

ci e
−bdi(g) (2.29)

Figure 2.7 illustrates the case of a 90◦ crossing, in which maxima are offset by 45◦. The
exact shape of d depends on the b-value. HARDI measurements commonly use a larger b
than DT-MRI (b = 1000 s/mm2 to b = 3000 s/mm2), to achieve sharper peaks [220, 213].

2.2.7. Q-Space Imaging and the Q-Ball Method

Compared to higher-order models of diffusion, q-space imaging [35] allows for more direct
conclusions about possible fiber directions. They describe the spin displacement within the
experimental diffusion time by a displacement vector r and reconstruct the voxel-averaged
probability density function (PDF) P (r) of these vectors. Q-space imaging exploits the
fact that P (r) is related to the attenuated signal S(q) via the Fourier transform F :

P (r) = F [S(q)] (2.30)

S(q) is given as a function of the diffusion wavevector q = (2π)−1γgδ, where γ is a
nucleus-specific constant, g is the diffusion gradient, and δ is its duration, as in Sec-
tion 2.2.2. A Cartesian sampling of q-space, followed by a discrete Fourier transform, has
been performed to obtain P [233], but this procedure is infeasible for routine investiga-
tion, since it is time consuming and requires extremely high values of ‖g‖. Moreover, for
practical analysis, P is integrated in radial direction to obtain an orientation distribution
function (ODF) ψ(u) of directions u on the unit sphere (‖u‖ = 1), which discards much
of the acquired information.

Thus, measurements are generally taken on a ball in q-space, with fixed gradient mag-
nitude ‖g‖ and duration δ. Assuming that the signal decays exponentially with ‖g‖
(Equation (2.20)), the expected intensity values on a Cartesian grid in q-space can be
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computed numerically [151]. It is even possible to evaluate the radial part of the integral
analytically, which leads to the diffusion orientation transformation [150].

An even simpler method is q-ball imaging [219]: It uses the Funk-Radon transform, a
mapping from the sphere to the sphere, which treats each point as a pole and assigns
the integral over the associated equator to it. Q-ball imaging exploits the fact that the
Funk-Radon transform of the measurements S(q), which are again taken on a ball in q-
space, provides a good approximation to ψ(u). Q-ball reconstruction is greatly simplified
by working in a spherical harmonics basis, which allows for an analytic solution of the
Funk-Radon transform [5, 92, 57]. For our own implementation, we have followed the
detailed description in [57].

Q-space methods are model-free in the sense that they characterize the diffusion process
without assuming free, hindered, or restricted diffusion. Even though ODF peaks have
been found to align with crossing fiber bundles in some regions of the white matter,
one should keep in mind that q-ball ODFs describe diffusion, not a fiber distribution
[221]. To draw conclusions about white matter structure, q-space measurements have
been combined with models of the diffusion process within and around fiber bundles [10].

In case of restricted diffusion, P (r) need not be symmetric. In theory, this could help to
distinguish crossing (X-shaped PDF) from branching tracts (Y-shaped PDF). In practice,
one considers the magnitude of the complex signal S(q), since its phase is corrupted by
unavoidable bulk motion. This introduces antipodal symmetry P (r) = P (−r) [131].

2.2.8. The Spherical Deconvolution Model

A direct way of inferring fiber orientations from high angular resolution measurements
is spherical deconvolution [213]: It is based on the assumption that the signal from a
single, well-organized fiber population can be described by an axially symmetric response
function R which is assumed constant over the whole brain and for all types of fibers.
Then, the measured signal S is expressed as the convolution of a fiber orientation density
function F with R, taken over the unit sphere. In the notation of [58], both u and w

denote unit vectors, and R is defined as a function on [−1, 1]. Then, the convolution
integral reads

S(u) =

∫

‖w‖=1

R(u · w)F (w)dw (2.31)

After S has been measured, the response function R is estimated from voxels which are
thought to contain a single fiber tract. The fiber distribution F is then obtained from
Equation (2.31) by spherical deconvolution, which is simplified by expressing S using
spherical harmonics and R in a rotational harmonic representation [89].

Both q-ball imaging and spherical deconvolution result in functions on the sphere, but
their semantics differ: While a q-ball orientation distribution functions defines the proba-
bility of a spin displacement, an orientation density function from spherical deconvolution
yields a fiber volume fraction. However, in practice, the spherical deconvolution ODF can
be considered a sharpened version of the q-ball ODF [58]. For simplicity, we use the term
“orientation distribution function” (ODF) for the results of both methods in the remainder
of this dissertation.
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(a) (b) (c) (d) (e)

Figure 2.8.: A 60◦ fiber crossing (a) is not captured by the DT-MRI model (b). Unlike
in a higher-order diffusion model (c), individual fiber peaks add linearly in
q-ball (d) and spherical deconvolution ODFs (e).

As a final overview, Figure 2.8 presents a visual comparison of some common models
for diffusion MRI, based on synthetic data from a 60◦ fiber crossing (a). Modeling the
diffusivity profile using a second-order DT-MRI model (b) or a higher-order tensor (c) fails
to indicate the tract directions. In q-ball imaging (d) and the spherical deconvolution (e),
individual fiber bundles cause peaks which are aligned with the bundle directions, and add
linearly in the final ODF. However, Figure 2.8 also demonstrates that, since the original
peaks have finite width, they interfere and cannot simply be separated by locating maxima
in the combined ODF. This problem will be the topic of Chapter 10.

2.3. Topology in Visualization

Topological methods have been introduced to scientific visualization by Helman and Hes-
selink [90], who proposed to visualize flow fields by extracting topological skeletons. Since
then, topological visualization has been considered widely to reduce complex data to struc-
tural features. This section introduces basic concepts of point set topology (Section 2.3.1)
and vector field topology (Section 2.3.2), and clarifies the notions of genericity and struc-
tural stability (Section 2.3.3). The focus is on the aspects of the topology of steady vector
and tensor fields that are crucial to understand the first part of this dissertation.

In order to emphasize the close relation between vector and eigenvector fields, Sec-
tions 2.3.4 and 2.3.5 treat both topics in parallel. Even though we investigate 3D topology
in the main part of the dissertation, some concepts are first introduced in 2D, where they
are easier to understand. Crease surfaces and surface topology are at the center of interest
in Chapter 4, and are introduced in Sections 2.3.6 and 2.3.7, respectively.

A general overview on topology can be found in [28]. Vector field topology is closely
related to the study of dynamical systems [243]. A broad introduction to the topological
visualization of vector and tensor fields is given in [236, 216, 184, 214].

2.3.1. Brief Introduction to Topology

Let f : X → Y be a function from set X to set Y . According to the ǫ − δ definition of
continuity, f is continuous with respect to metrics dx : X ×X → R and dy : Y × Y → R
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if, for any a ∈ X and any ǫ > 0, there exists a δ > 0 such that

dx(a, b) < δ ⇒ dy(f(a), f(b)) < ǫ (2.32)

Despite the formal dependence on a particular choice of dx and dy, ǫ − δ continuity is
preserved under whole classes of different metrics, indicating that a more general definition
is possible. Therefore, the topological definition of continuity is in terms of open sets: A
function f : X → Y is continuous if

U ⊆ Y is open ⇒ f−1(U) ⊆ X is open (2.33)

Define the ǫ-ball Bǫ(a) around a ∈ X with respect to metric d as

Bǫ(a) = {b ∈ X | d(a, b) < ǫ} (2.34)

and call a subset U ⊆ X “open” if, for each u ∈ U , there is an ǫ such that Bǫ(u) ⊆ U . Then,
the definitions in Equations (2.32) and (2.33) are equivalent, and two metrics generate
the same topology if their families of open sets coincide [28].

This definition can be generalized even further: A topological space (X,T ) is a set
X with any collection T of subsets of X, which are called “open” and which fulfill the
following three axioms:

1. The intersection of two open sets is open.

2. The union of any collection of open sets is open.

3. The empty set ∅ and the whole space X are open.

The open sets that are induced by a metric fulfill this definition, so all metric spaces
are topological spaces. However, the converse is not true: There exist “non-metrizable”
topological spaces which cannot be generated by a metric. In our applications, we will
only deal with metrizable spaces.

We will now provide some topological definitions which are used in the remainder of
this section. A homeomorphism is a function f : X → Y between topological spaces X
and Y that is bijective, continuous, and has a continuous inverse f−1.

A set N ⊆ X is a neighborhood of some point x ∈ N if there exists an open set U ⊆ N
that contains x. A set K ⊆ X is closed if its complement X \ K is open. Sets may be
both open and closed (clopen) in the same topology, and X is connected if and only if its
only clopen subsets are ∅ and X.

For each set A ⊆ X, the interior int(A) is its largest open subset U ⊆ A. Similarly, the
closure cl(A) is the smallest closed set F that contains A (A ⊆ F ⊆ X). The boundary
of A ⊆ X is bdy(A) = cl(A) ∩ cl(X \ A). A ⊆ X is dense in X if cl(A) = X.

An open covering of a set A ⊆ X is a collection {Ui} of open sets such that A ⊆ ⋃i∈I Ui.
A is compact if every open covering has a finite subcover

A ⊆ Ui1 ∪ Ui2 ∪ . . . ∪ Uin with i1, i2, . . . in ∈ I (2.35)
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If X is equipped with a metric d, compactness can be defined in a more intuitive way.
A Cauchy sequence is a sequence (xn) such that for each ǫ > 0, there is some number
N > 0 such that for all i, j > N , d(xi, xj) < ǫ. A is complete if every Cauchy sequence in
A converges in A. Moreover, A is bounded if for any ǫ > 0, it can be covered by finitely
many ǫ-balls. Then, A is compact in the topology generated by the metric if and only if
it is complete and bounded [28].

2.3.2. Vector Field Topology

The vector fields in this dissertation are given as Ck continuous (k ≥ 1) functions v :
D → R

d (d ∈ {2, 3}) on a compact domain D ⊂ R
d. On the set of such functions, the

Cr topology (0 ≤ r ≤ k) is generated by a metric that takes into account function values
and derivatives up to order r [1].

A tangent curve xv of is the trajectory of a massless particle that is advected by v. For
initial position x0, it depends on time t, according to the following initial value problem:

dxv(t;x0)

dt
= v

(
xv(t;x0)

)
with xv(0;x0) = x0 (2.36)

Since v does not depend on any parameters, it is called “steady”, and tangent curves
coincide with streamlines. In the related context of dynamical systems, steady vector
fields are called “autonomous”, and their streamlines are called “orbits”.

Two vector fields v and w are structurally equivalent if there exists a homeomorphism
h : D → D that maps the tangent curves of v to those of w, preserving orientation, but
ignoring parametrization by time. Formally,

h
(
xv(t;x0)

)
= xw

(
γ(t;x0);h(x0)

)
(2.37)

where γ(t;x0) is a reparametrization of the tangent curve starting at x0 that increases
with t and thus preserves orientation [243]. If γ is the identity, v and w are conjugate.

A topological analysis of vector fields examines properties that are invariant over all
structurally equivalent fields. In particular, reparametrization by an increasing function
γ does not affect the asymptotic behavior of tangent curves as t→ ±∞.

A point xω
0 is an ω limit point of x0 if there exists a sequence (tn) with tn → ∞ such

that xv(tn;x0) → xω
0 . Analogously, α limit points are defined by letting tn → −∞ [243].

This definition considers a sequence (tn) instead of taking limt→∞ xv(t;x0) directly to
cover the case of closed streamlines, which will be introduced in Section 2.3.5. Points x0

whose tangent curve converges to a closed streamline have more than a single xω
0 or xα

0 .
The ω and α limit sets of a field are the sets of all ω and α limit points of all points in

D. Since they are invariant under structural equivalence, they are at the center of interest
of vector field topology.

2.3.3. Genericity and Structural Stability

The analysis of steady fields concentrates on generic properties and structurally stable
states. In practice, generic properties are those which are met under general conditions
and remain stable under small perturbations.
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(a) R1 > 0
R2 < 0
Ii = 0

(b) Ri < 0
Ii = 0

(c) R1 = R2 < 0
I1 = −I2 6= 0

(d) Ri = 0
I1 = −I2 6= 0

(e) R1 = R2 > 0
I1 = −I2 6= 0

(f) Ri > 0
Ii = 0

Figure 2.9.: In R
2, first order critical points are classified as saddles (a), attracting /

repelling nodes (b/f), attracting / repelling foci (c/e), and centers (d).

Generic properties are true “almost everywhere”. Formally, a property is generic in
some topological space X if and only if there exists a set U ⊆ X which is a countable
intersection of open dense sets in which all elements have the desired property. Since vector
fields in the Cr topology form a Baire space [243], U itself is open and dense. Openness
ensures that a generic property is preserved by sufficiently small perturbations. Density
guarantees that any element that does not have the generic property can be approximated
arbitrarily closely by an element that has it.

In vector field topology, a field v is called structurally stable if, in the C1 topology,
there exists a neighborhood N around v such that any w ∈ N is structurally equivalent
to v. In general, genericity is stronger than structural stability: Structural stability of
v guarantees that some open set around v is structurally equivalent. Thus, any generic
property that is preserved under structural equivalence holds for all structurally stable
fields. On the other hand, properties that hold for all structurally stable cases need not be
generic, since the set of stable fields may not be dense in the underlying space. Peixoto’s
theorem [158] states that stable vector fields on two-dimensional compact and orientable
manifolds are dense, but this is no longer true in higher dimensions [202].

2.3.4. Critical Points and Degeneracies

In steady two-dimensional flows v : D → R
2, critical points are an important type of

limit points. Critical points can be detected locally as points p at which the vector field
magnitude vanishes (‖v(p)‖ = 0). If we ignore walls along which the vector magnitude
may be constrained to be zero, this generically happens at isolated points. Critical points
are the only places at which streamlines may intersect asymptotically.

Generically, the Jacobian matrix Jv(p) at critical points has full rank (linear or first
order critical point). In this case, the real Ri = ℜ(λi) and imaginary Ii = ℑ(λi) parts
of its eigenvalues can be used to classify the point as a saddle, node, focus, or center,
as illustrated in Figure 2.9. Centers (d) are only structurally stable when the field is
constrained to zero divergence (∇ · v ≡ 0).

The vicinity of a general (nonlinear) critical point p can be segmented into regions of
different asymptotic flow behavior:

1. In a hyperbolic sector (Figure 2.10 (a)), streamlines diverge from p in both directions.
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(a) (b) (c)

Figure 2.10.: General critical points p can have hyperbolic (a), parabolic (b), or elliptic
(c) sectors. Only (a) and (b) are structurally stable.

(a) (b) (c)

Figure 2.11.: Linear degenerate points in tensor fields can be classified as trisectors (a),
double wedges (b), or single wedges (c).

2. In a parabolic sector (Figure 2.10 (b)), streamlines reach p in one direction.

3. In an elliptic sector (Figure 2.10 (c)), streamlines reach p in both directions.

Critical points are characterized by their Poincaré index, which is defined as the number
of counterclockwise revolutions of v(x) when x moves in counterclockwise direction along
the boundary of a ball Bǫ(p) that does not contain any other critical point. Let ne and
nh be the number of elliptic and hyperbolic sectors, respectively. Then, the index of a
critical point is given by [72]

index = 1 +
ne − nh

2
(2.38)

The index of an arbitrary curve in the vector field equals the sum of indices of the
enclosed critical points. It follows from the continuity of the field that indices in vector
fields are always integers. Among the generic critical points, saddles have index −1, all
other first order critical point have index 1.

Tensor topology as defined by Delmarcelle and Hesselink [56] is the topology of tensor
lines, the tangent curves in eigenvector fields. In two dimensions, the analogs of critical
points are degenerate or semiumbilic points in which both eigenvalues are equal. At these
loci, the eigenvectors become ill-defined and tensor lines intersect.

Similar to first order critical points, linear degenerate points are classified based on first
derivatives of the tensor field [56]. Figure 2.11 presents the three structurally stable classes
of degenerate points in R

2, trisectors (a) and two types of wedges: Double wedges have
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a full parabolic sector (b), while single wedges only have one individual tensor line that
enters the degeneracy (c). The Poincaré index is transferred to tensor fields by counting
the number of counterclockwise revolutions of the (unoriented) eigenvector. Due to the
lack of orientation, indices in tensor fields can be half-integers. Trisectors have index −1

2
,

wedges have index 1
2
.

In three dimensions, there are different types of tensor degeneracies: At type P (pla-
nar) degeneracies, the larger two eigenvalues are equal (major and medium tensor lines
intersect), while type L (linear) features involve the smaller eigenvalue pair. In a triple
degeneracy, all eigenvalues coincide. In generic 3D tensor data, triple degeneracies are
structurally unstable, but type L and type P features form stable lines [51, 254]. Stable
tensor degeneracies in 3D are restricted to a plane, and can be classified like 2D degenerate
points within that plane [255].

2.3.5. Separatrices, Basins, and Faces

Critical points are not the only type of limit points in planar vector field topology: Closed
streamlines are integral curves that are traversed by a massless particle periodically. They
can only be detected globally, and act as sources or sinks. Moreover, streamlines end at
inflow or outflow parts at the boundary of the domain. These parts are separated from
each other by boundary switch points, at which the flow is parallel to the boundary. If
the flow is constrained to zero magnitude along walls in the domain, streamlines may also
end in attachment nodes and detachment nodes.

A full topological characterization of a planar vector field connects the limit points by
separatrices, streamlines which form the boundary of hyperbolic sectors. In the first order
case, integration of separatrices starts at saddles, boundary switch points, and attachment
/ detachment nodes. Additionally, closed streamlines act as separatrices.

Limit points and separatrices form the nodes and edges of the topological skeleton. For
presentation, these nodes and edges are placed in the locations from which they were
extracted, so even though the features themselves are based on topology alone, their
visualization also takes into account the employed metric, in the sense that distances
between limit points, as well as lengths and crossing angles of separatrices are preserved.

The topological skeleton partitions the domain into regions of uniform asymptotic flow
behavior: In each region, all streamlines start in the same source and end in the same
sink. This is formalized by the notions of basins and faces. The α basin of a source p

is the set of all points that have p as an α limit point. Similarly, if p is a sink, its ω
basin consists of all points that have p as their ω limit point. The faces of the topological
skeleton result from intersecting all α and ω basins [183].

Due to the lack of orientation, the distinction between α and ω basins does not carry
over to tensor fields. Otherwise, their topological skeleton is comparable: Separatrices
bound hyperbolic sectors and closed tensor lines can be detected using similar methods
as in vector fields [245]. In 3D, Zheng et al. [255] have rendered separating surfaces
emanating from degenerate lines as arrays of hyperstreamlines, but a complete topological
partitioning of the domain has not been attempted.
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(a)

Slice Images Isosurfaces Ridges

(b)

Figure 2.12.: Ridges capture extremal structures. In (a), an isosurface with an extremal
isovalue is extracted as a ridge surface. After adding a slight gradient in (b),
the ridge is almost unaffected, but no longer corresponds to an isosurface.

2.3.6. Height Creases

Local extrema are characteristic structures of scalar fields. Generically, they occur in
isolated points. For cases in which higher-dimensional extremal features are more appro-
priate, there exist crease definitions, which generalize local extrema to ridges (constrained
local maxima) and valleys (constrained local minima).

As an example, consider the datasets presented in Figure 2.12, which attain large values
on the surface of a torus. Even though the values in (a) are constant along the torus,
traditional algorithms for isosurface extraction [132] produce a slightly larger (gray) and a
slightly smaller (red) surface, since they require a non-extremal isovalue. In contrast, algo-
rithms for crease surface extraction successfully reconstruct the shape. In Figure 2.12 (b),
a slight gradient in horizontal direction is overlaid on the original data. In this case,
isosurfaces do not even provide a usable approximation of the torus, while the crease
geometry is more or less unchanged.

The crease definition considered in this dissertation has been introduced to visual com-
puting by Haralick [87], who suggested to use creases to capture highlight and shadow
lines in natural images. Haralick defines creases as lines in a 2D image along which the
first directional derivative, taken in a direction which extremizes the second directional
derivative, changes sign. This is known as the “height crease definition”, since it is moti-
vated by treating the intensity profile of an image as a height field and it is closely related
to the notion of ridges and valleys in surface topography.

Different crease definitions have been proposed and there has been some dispute over the
“correct” one [120]. After a theoretical analysis and visual comparison of results, Eberly
et al. [64] conclude that height creases are most suitable for digital image analysis. Our
definition of d-dimensional creases in n-dimensional space follows their idea, but adopts
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the simplified notation used in [115].
Assume a C2 scalar field f : R

n → R. Let g = ∇f be its gradient and H be its Hessian
with eigenvectors ei and eigenvalues λi, i ∈ {1, 2, . . . , n}, sorted such that λ1 ≥ . . . ≥ λn.
Then, a d-dimensional height ridge is given by the conditions

∀d<i≤n g · ei = 0 ∧ λi < 0 (2.39)

Intuitively, this means that f attains a local maximum in the n−d directions of strongest
convexity. For ridge surfaces in R

3, this definition simplifies to

g · e3 = 0 ∧ λ3 < 0 (2.40)

The valleys of f are exactly the ridges of −f , so they need not be discussed separately.
The crease surfaces defined by Equation (2.40) are two-dimensional manifolds and should
not be confused with surface creases, which are lines of extremal curvature on general
surfaces [19].

Even though height creases are not preserved by homeomorphisms, they are comparable
to topological features in that they extract a structural skeleton of the data. For example,
creases are used to extract medial cores from grayscale images [165]. A more formal
relation to topological visualization lies in the fact that critical points in vector fields are
subsets of the local minima in vector field magnitude. Similarly, degenerate lines in 3D
tensor fields are subsets of crease lines in eigenvalue skewness [215].

2.3.7. Surface Topology

The topological analysis of surfaces is based on the notion of manifolds. An n-manifold Mn

is a topological space in which each point p has a neighborhood which is homeomorphic
to Euclidean n-space, without any boundaries b or ramifications r (cf. Figure 2.13). A
surface is a two-manifold. A surface with boundary includes points with a neighborhood
homeomorphic to the Euclidean half-space.

Figure 2.13.: A non-manifold surface patch, with an inner point p, a boundary point b,
and a ramification r

In each Euclidean neighborhood, we can introduce a coordinate system. On a differ-
entiable manifold, the change between such local coordinate systems is smooth. If there
exist local coordinate systems such that any change between them preserves orientation,
the manifold is orientable, and its orientation allows one to distinguish two sides.
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For the formal definition, we need additional notions. A topological spaceX is Hausdorff
if for any two x, y ∈ X, x 6= y, there are disjoint open sets U and V with x ∈ U and y ∈ V .
In Hausdorff spaces, limits of sequences are unique. All metric spaces are Hausdorff.

A basis B of a topological space X is a collection of subsets of X such that the open
sets are exactly the unions of members of B. The space X is second countable if it has a
countable basis. Euclidean spaces are second countable, since the ǫ-balls with rational ǫ
around rational coordinates are countable and form a basis.

A local coordinate system on a manifold Mn is given by a chart (U, φ), which is a pair
of an open set U ⊆ Mn and a homeomorphism φ : U → U ′ ⊆ R

n, where U ′ is open. A
smooth atlas is a collection of charts such that:

1. Each point x ∈Mn is in the domain of some chart.

2. Between two charts φ : U → U ′ and ψ : V → V ′ with intersecting domains, the
change of coordinates φψ−1 : ψ(U ∩ V ) → φ(U ∩ V ) is C∞.

The definition of a differentiable manifold requires an atlas that contains a maximal set
of charts that fulfill the above conditions. In practice, one works with a smaller atlas that
may contain a few charts, or even just a single one.

Finally, a differentiable manifold is defined as a second countable Hausdorff space Mn

with a maximal smooth atlas. It is orientable if there exists an atlas such that the Jacobian
of φψ−1 has a positive determinant for any two φ, ψ and for all points in the domain. Topo-
logical properties of manifolds are the ones which are invariant under homeomorphisms.
This includes orientability and the number of boundary components and handles.
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Structural Features in DW-MRI Data
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3. Topological Features in Diffusion MRI Data

Topological methods have proven effective for the visualization of flow fields (cf. Sec-
tion 2.3). They are based on the connectivity in the vector field: The domain is parti-
tioned into regions in which all streamlines connect the same source to the same sink, or
in other words, into regions in which the flow exhibits the same asymptotic behavior.

Connectivity in the human brain is investigated via diffusion MRI and algorithms for
tractography (cf. Section 2.2). The fact that estimating connectivity is one of the main
motivations for acquiring diffusion MRI data suggests that a topological analysis should
be beneficial. It is the goal of our work [192] to find an adequate method for this.

Given the popularity of the second-order diffusion tensor model (cf. Section 2.2.3), a
natural starting point is the work by Delmarcelle and Hesselink [56], which generalizes the
concepts of vector field topology to second-order tensor fields. Based on their definitions,
further research has been conducted on 3D tensor topology [93, 254, 255]. More specif-
ically, Zheng et al. [256] have argued that applying tensor topology to DT-MRI is likely
to prove beneficial. While they expect noise artifacts to dominate a naïve topological
visualization of DT-MRI data sets, they suggest that an additional selection of the most
important features would produce a “simple yet powerful representation” [255]. However,
no results from applying tensor topology to DT-MRI have been published so far.

In Section 3.2, we discuss the interpretation of the features from tensor topology and
present both experimental results and theoretical arguments which suggest that degener-
ate lines are, unfortunately, not useful in the context of DT-MRI. As a replacement, we
propose a new paradigm for topological visualization of diffusion MRI data (Section 3.3).
In contrast to the existing “tensor topology”, we refer to it as “diffusion MRI topology”
to reflect the fact that we neither restrict ourselves to the second-order diffusion tensor
model, nor do we expect our approach to be useful for tensor fields that describe different
phenomena (e.g., stress tensors [254]).

The further structure of this chapter is as follows: In Section 3.4, we propose an algo-
rithm to extract the new type of features. In Section 3.5, we demonstrate the robustness
of our method under noise and present experimental results to illustrate that the novel
features allow a meaningful interpretation of the data. Finally, in Section 3.6, we conclude
the chapter and discuss possible directions for future work.

3.1. Related Work

Based on the fundamental ideas of topological visualization, our work defines anatomically
relevant features in diffusion MRI data. Tricoche et al. [215] proposed an alternative gen-
eralization of tensor topology: Starting from the observation that degenerate lines coincide
with crease lines of skewness, they propose to extract creases in fractional anisotropy in-
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stead, and they obtain meaningful results in DT-MRI data. Their work appeared later
than our own [192], but it connects prior work on anisotropy crease surfaces [114] with
tensor topology. In contrast to our work, anisotropy creases rely on scalar anisotropy
rather than connectivity, and they extract structural skeletons rather than partitioning
the domain. In this sense, both methods are complementary. An in-depth discussion and
extension of anisotropy creases is given in Chapters 4 and 5 of this dissertation.

The works by Enders et al. [66] and by Chen et al. [43] are similar to ours in that
they depict fiber pathways as a whole. However, their approach is to cluster and to wrap
streamlines from a deterministic fiber tracking method. In contrast, our pipeline does not
involve any streamlines. Rather, we partition grey matter voxels based on the results of
a probabilistic method and infer the pathways that connect them in a second step.

Jonasson et al. [104] also depict fiber tracts as a whole, but aim at an interactive
segmentation, rather than at a visualization of the dataset. Their approach relies on
the placement of an initial seed for a surface growing algorithm, which is driven by the
similarity of diffusion tensors in adjacent voxels, and it does not determine connectivity
explicitly.

Our paradigm for topological diffusion MRI visualization draws on methods for cortex
parcellation, which were used in the neuroscience community [103, 6, 118, 160]. They
show that changes in connectivity profiles allow for the partitioning of grey matter into
functionally distinct regions. Our focus is to construct a novel visualization method based
on this insight. Moreover, existing approaches do not consider the asymptotic behavior
of the employed tractography methods, so they do not constitute a topological analysis.

To reflect the uncertainty inherent in the inferred connectivity, our topological features
are fuzzy. In flow topology, uncertainty has not yet played a major role. Salzbrunn and
Scheuermann [182] have introduced “fuzzy” streamline predicates as a means to define
characteristic sets of predicates which are difficult to compute directly. However, they do
not use them to visualize uncertainty. To the best of our knowledge, we present the first
approach in which fuzzy topological features convey the level of confidence to the user.

3.2. Degenerate Lines in DT-MRI Fields

The expressive power of topological flow visualization is largely owed to the physical
meaning of the critical points from Section 2.3.4: Sinks, sources, and saddles clearly are
important locations in flow fields. Despite the formal analogy, the interpretation of degen-
erate features in DT-MRI data differs fundamentally. Unlike in vector fields, connectivity
in DT-MRI can only be inferred in a probabilistic sense. The major hyperstreamlines of
a diffusion tensor field can be interpreted as maximum likelihood pathways [17], but type
P features are merely locations in which no single direction has maximum likelihood, not
places in which the pathway “ends” in the sense in which a streamline ends in a sink.

Even if this means that degenerate lines have limited relevance for the topology of
neuronal fiber pathways, they may still constitute an interesting tool for the analysis of
DT-MRI data if they provide stable features in practice. Unfortunately, our experiments
indicate that this is not the case.
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3.2.1. Experimental Setup

In order to explore the potential of degenerate features in DT-MRI data, we implemented
the prediction-correction scheme from [254], which is based on discriminant constraint
functions and Hessian factorization. To obtain the best possible results even under difficult
conditions, we allow for a large number of Newton-Raphson iterations in the correction
phase and repeat failed steps with an extremely small stepsize.

The experiments were performed on the data described in Section 1.2. To avoid visual
clutter, the analysis is limited to a region of interest which spans 21 × 29 × 14 voxels
at the center of the corpus callosum. As suggested in [256], we only consider regions of
sufficient anisotropy (FA ≥ 0.2). The tractography in Figure 3.1 (a) is obtained by major
eigenvector integration and is shown from superior. It includes the corpus callosum (in
red), the cingulum bundles (in green) and a small part of the pyramidal tract (in dark
blue, at the right and left image boundaries).

While type L features are not part of the major hyperstreamline topology, Zheng et al.
[256] suggested that they may be of particular interest for DT-MRI, so we included them
in our analysis. For comparison, we also extracted both streamlines and degenerate lines
after adding Gaussian noise to the DWI and T2 images and re-estimating the diffusion
tensors. The standard deviation was chosen as σ = A/SNR with SNR ∈ {12, 8}, where A
was the average of signal intensities within the white matter mask.

3.2.2. Results

The degenerate lines in Figure 3.1 are colored using the same XYZ-RGB scheme as the
tractography. For type P (L), the color indicates the minor (major) eigenvector direction
of the tensor field. The degenerate lines themselves are generally not aligned with any
eigenvector direction, so the color coding does not indicate the direction of the features.
Rather, red type L features are located within the corpus callosum, green ones are in the
cingulum bundle, and blue ones are in the pyramidal tract. Unfortunately, the degenerate
features do not have any evident correlation with known anatomical structures.

Since our dataset has ten times the minimum number of DWIs required to estimate the
tensors, the noise can be considered low and moderate, respectively, which is reflected by
the fact that the major features of the tractography remain discernible at all noise levels.
Still, the degenerate features of type L change significantly. Even though type P features
appear more stable, this result depends on the choice of interpolation. In Figure 3.1,
we used a smooth (C2) B-spline approximation of the tensor data [154], which stabilizes
feature extraction. Figure 3.2 illustrates the effect of using trilinear interpolation instead.
On exactly the same data, results differ noticeably.

Finally, we demonstrate that the encountered instabilities neither indicate a general
flaw in the concept of tensor topology, nor an error in our implementation. To this end,
we present results on a randomly generated dataset, similar to the one used by Zheng et
al. [254]. Figure 3.3 shows both type L (cool colors) and type P features (warm colors). In
this case, changing the interpolation scheme alters the exact shape of the features slightly,
but generally leaves them well-recognizable.
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(a) Fiber tracts, no added noise (b) Type P, no added noise (c) Type L, no added noise

(d) Fiber tracts, SNR=12 (e) Type P, SNR=12 (f) Type L, SNR=12

(g) Fiber tracts, SNR=8 (h) Type P,
SNR=8

(i) Type L,
SNR=8

Figure 3.1.: A comparison of type P and type L features under Gaussian noise shows
significant changes, even for moderate levels of noise.
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(a) No added noise (b) SNR=12 (b) SNR=8

Figure 3.2.: Type P features with linear interpolation instead of B-spline approximation as
in Figure 3.1. Feature lines depend significantly on the choice of interpolation.

(a) B-spline approximation (b) Trilinear interpolation

Figure 3.3.: In a generic dataset, the degenerate lines are far less affected by the choice of
interpolation.
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3.2.3. Interpretation

In our experiments, we have made two discouraging observations: First, degenerate lines
in DT-MRI data do not have a clear relation to anatomical structures. Second, they are
very sensitive to noise and to the choice of interpolation.

One reason for this lies in specific properties of DT-MRI data. Diffusion tensor fields
from the human brain are not fully unconstrained second-order tensor fields. Rather,
investigating streamlines in DT-MRI data assumes a single dominant fiber bundle per
voxel, and typical single fiber models result in perfectly linear tensors [17]. In other words,
we can expect regions in which the DT-MRI model is appropriate to be densely filled with
type L features, whose exact location will depend on factors outside the model, including
artifacts from noise and interpolation. This explains the large number of unstable type L
features in Figure 3.1.

A second reason for the observed instability of degenerate lines applies to tensor fields
in general: Tricoche et al. [215] have recently pointed out that degenerate lines can be
expressed as crease lines of skewness. Since skewness depends on higher eigenvalue mo-
ments, it is sensitive to perturbations [12]. In addition, height creases depend on higher
derivatives (cf. Section 2.3.6). Thus, noise can be expected to affect degenerate lines
noticeably in general.

3.3. Topological Features in Diffusion MRI Data

Previous research on tensor topology has started from mathematical analogies to flow
topology [56], which is appropriate to define stable features in generic tensor data. In our
work, we are concerned with finding features that have a meaningful interpretation in the
context of our particular application domain, so we choose brain anatomy as the starting
point of our reasoning.

The white matter pathways whose connectivity we would like to investigate, are formed
by axons. Even though axons have an orientation – they start at a cell soma and end in
a synapse – diffusion imaging does not reveal this polarity, so we cannot distinguish if a
connection endpoint is a source or a sink. So far, this agrees with tensor topology, which
does not make this distinction either.

Critical points in flow topology are an instance of the more general notion of limit sets:
They are locations in which a streamline integration starts or ends. In general, such limit
sets do not necessarily form points. For example, the degenerate locations in 3D tensor
topology form lines. At the scope of diffusion images of the brain, neuronal pathways
end at surfaces, namely, at the interfaces between grey and white matter, or between
white matter and the boundary of the domain. Recently, so-called cortex parcellation
studies have shown that, to a certain extent, functionally distinct regions within grey
matter can be found by considering changes in their connectivity profile [103, 6]. We will
call connected regions of uniform connectivity, which are likely to represent anatomically
meaningful units, critical regions, and identify them as the suitable limit sets for our
diffusion MRI topology.

40



3.3. Topological Features in Diffusion MRI Data

(a) A critical region
(yellow surface)

(b) Its 0.4-/0.25-basins
(purple/transparent)

(c) The counterpart of
(b) on the right side

(d) Their common 0.4-
and 0.25-faces

Figure 3.4.: The basin of a critical region (a) consists of the voxels from which a proba-
bilistic tractography reaches the region (b), (c). A face of two regions consists
of the voxels that connect them (d).

As discussed in Section 3.2, the endpoints of streamlines that result from determinis-
tic fiber tracking methods do not necessarily coincide with endpoints of the underlying
neuronal pathways, so we do not consider them appropriate for defining a diffusion MRI
topology. Instead, we base our analysis on the asymptotic behavior of a probabilistic fiber
tracking approach [119] that employs the widely used diffusion tensor model and will be
described in Section 3.4.1. Alternative methods, which may or may not depend on diffu-
sion tensors (e.g., [17]), could be plugged into our framework, making its use independent
of the preferred choice of diffusion and fiber models.

3.3.1. Critical Regions and Basins

The fact that the selected fiber tracking method provides a probabilistic connectivity
measure has to be reflected in the definition of topological features from its results. In
topological flow visualization, the α-basin of a source is the union of all streamlines that
emerge from it. Accordingly, the ω-basin of a sink is the union of streamlines that end
in it [183]. In analogy to these notions, we define the p-basin of a critical region as the
set of points from which a probabilistic tractography reaches that region with probability
P ≥ p. For a point that connects two regions, we expect that around half of the particles
end in each region, so we typically consider p-basins with p < 0.5.

To clarify these basic notions visually, we present some examples obtained with the
method from Section 3.4, on the same region of interest as in Figure 3.1. Since it is taken
from the center of the brain, the critical regions segment the domain boundaries rather
than the cortex. Figure 3.4 (a) shows the deterministic tractography from a posterior/left
viewpoint and a sample critical region as a yellow surface. It corresponds to the left
endpoints of the fibers that pass through the central part of the corpus callosum and
extends to a portion of the internal capsule. This is understandable, since fibers from
both structures intermingle in this region and are not clearly separated anatomically.

Figure 3.4 (b) presents the same critical region with its 0.4-basin instead of the trac-
tography. To provide a confidence interval, the 0.25-basin is rendered transparently. As
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expected, the basin extends over the central part of the corpus callosum and down to-
wards the internal capsule. For the XYZ-RGB color coding of basins and faces, a weighted
average is computed from the tensors within the corresponding structure, with the local
probabilities as weights. Thus, the purple color of the basin indicates the mixture of fibers
that run through the corpus callosum (red) and the internal capsule (blue).

3.3.2. Faces

In flow visualization, one is typically interested in the faces which result from all inter-
sections of α- and ω-basins. These are regions of uniform asymptotic flow behavior, i.e.,
regions in which all streamlines emerge from the same source and end in the same sink.
Taken together, they form the topological skeleton of a flow field.

In diffusion MRI topology, the corresponding notion is the p-face of a pair of criti-
cal regions, consisting of the set of points which connect both regions with probability
P ≥ p. The computation of this probability is left to Section 3.4.5. As an illustration,
Figure 3.4 (c) presents the counterpart of the basin in (b) on the right side of the corpus
callosum. Figure 3.4 (d) shows the common 0.4- and 0.25-faces of the two critical regions,
which clearly depict the part of the corpus callosum that connects both sides.

3.4. Extraction of Topological Features

Figure 3.5 gives an overview of the processing pipeline that will be described in this section.
It comprises a preprocessing step in which the fiber tracking is performed (Section 3.4.1),
a clustering step which forms the critical regions (Sections 3.4.2 and 3.4.3), as well as algo-
rithms for the extraction and ranking of faces for examination by the user (Sections 3.4.4
and 3.4.5). We expect that a topological visualization of diffusion MRI data will be of
specific interest to researchers in neuroscience, so the proposed method aims to provide a
sensible initial visualization, with the option of subsequent user interaction for formation
and testing of specific hypotheses.

3.4.1. Preprocessing

As a first step in finding our topological features, we perform a probabilistic fiber tracking,
using a 3D variant of the algorithm proposed by Koch et al. [119]. First, it classifies
voxels as white matter, grey matter, and cerebrospinal fluid (CSF). The volume outside
the brain is already masked during tensor estimation, based on low signal values. Voxels
with a tensor trace tr(D)/3 > 10−9 m2/s are marked as cerebrospinal fluid and grey
matter is distinguished from white matter based on an anisotropy threshold (white matter:
FA > 0.2). Isolated white or grey matter voxels are caused by fluctuations around the
FA threshold, and removed in a post-processing step. Consequently, we call non-white
matter voxels adjacent to white matter interface voxels and we add dummy voxels when
white matter reaches the boundary of the domain.
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Figure 3.5.: An overview of the processing pipeline. The user can interact with it in a
number of ways to test specific hypotheses.

The tractography itself is based on a random walk of particles at voxel resolution. Let
rmn be the unit vector pointing from voxel m to a voxel n in its 26-neighborhood N
and dm(rmn) = rT

mnDmrmn be the apparent diffusivity in that direction, derived from the
diffusion tensor Dm. Then, Koch et al. define the transition probability p(m → n) from
voxel m to n as

p(m→ n) =
[dm(rmn) + dn(rmn)]a∑

n′∈N [dm(rmn′) + dn′(rmn′)]a
(3.1)

where the exponent a is determined empirically and fixed at a = 7. Taking the exponent
focuses the diffusivity profile to its major direction, which is likely to align with an actual
fiber direction, while allowing for a certain surrounding spread. Some authors have used
the product of diffusivities instead of the sum to adapt this method. In this modified form,
Equation (3.1) has produced plausible cortex parcellations [6] and results that agreed with
findings from fMRI [78].

After the first step, Koch et al. restrict the probability distribution to directions that
deviate less than 90◦ from the previous step. We make two small improvements to this:
First, we additionally set the transition probabilities to CSF voxels to zero, because it
is anatomically impossible that fiber tracts end in the CSF-filled ventricles. Second, we
do not simply truncate the distribution at 90◦, but rather weight the probabilities in
forward direction with cosφ, where φ is the angle between rmn and the current tracking
direction t, calculated from the direction r′mn of the previous step as t = Dmr′mn. This
definition of t accounts for the fact that the fiber direction changes from voxel to voxel
and is analog to the “outgoing” direction in the tensorline propagation by Weinstein et
al. [237]. Section 3.5.2 presents an example where these modifications are necessary to
obtain correct results.
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(a) Random walks in the corpus callosum (b) Random walks in the cingulum

(c) Footprint in the corpus callosum (d) Footprint in the cingulum

Figure 3.6.: Random walks from white matter voxels to the interface are generated. Con-
sequently, footprints are computed that show from which parts of the white
matter an interface voxel was reached.

The random walk is terminated when the particle reaches an interface voxel. For each
white matter voxel, we trace 10 000 particles and record the percentage that goes to the
individual interface voxels. Figures 3.6 (a) and (b) illustrate this: Starting from the
seeding voxels (blue balls), a few random walks in the corpus callosum and cingulum,
respectively, are visualized as yellow tubes. Red isosurfaces indicate interface voxels that
were reached by a relevant percentage of the particles.

Similar to previous methods that pre-compute a deterministic tractography [24], the
preprocessing is performed offline. For the region of interest in Figure 3.7 (4 948 white
matter voxels), it takes more than six minutes on a 2GHz Athlon 64 processor. Our
modifications to the original algorithm account for 25% of this time.

3.4.2. Clustering Criteria for Critical Regions

Cortex parcellation studies have computed and clustered a correlation matrix for the in-
terface voxels in the region of interest, either manually [103] or with k-means [6]. However,
forming critical regions within a topological visualization method requires that the num-
ber of clusters is chosen automatically, based on the data. Moreover, we cannot ensure
connectivity of the critical regions when considering only the correlation matrix, since it
does not contain any information about voxel adjacency. Consequently, a novel approach
is required for the clustering of critical regions. This subsection introduces some nota-
tion and formalizes suitable clustering criteria. A custom algorithm which fulfills these
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requirements will then be presented in the following subsection.
Let W be the set of white matter voxels w, W = |W|. Similarly, I is the set of interface

voxels i, I = |I|. Then, the tractography result for voxel w can be written as a vector t(w)
of dimension I, where ti(w) is the percentage of particles originating from w that reached
i. From this, we define the footprint f(i) of an interface voxel as a vector of dimension
W :

fw(i) = FA(Dw) · ti(w) (3.2)

Weighting particles with fractional anisotropy has not been done by previous authors
and is not strictly necessary to get sensible results. However, it helps to stabilize the
clustering in the presence of noise, since the principal direction in regions of low FA
is unreliable. For the interface voxels marked by blue balls in Figures 3.6 (c) and (d),
isosurfaces indicate which white matter voxels have a super-threshold contribution to the
footprint.

A clustering Γ of the interface voxels is a partition of I into C clusters Γ1, . . . ,ΓC , where
we require that each Γc is connected. The number of clusters C is not known a priori and
changes as part of the clustering process. For each cluster c, the footprint F(c) is defined
as the accumulated footprint of its members:

F(c) =
∑

i∈Γc

f(i) (3.3)

The similarity ψc(i) between a cluster c and an interface voxel i is defined as

ψc(i) =
f(i) · F(c)

‖f(i)‖ · ‖F(c)‖ (3.4)

Since all involved vectors have non-negative components, ψc(i) ∈ [0, 1]. From this, the
homogeneity Ψc of a cluster c is defined as

Ψc =

∑
i∈Γc

‖f(i)‖ψc(i)∑
i∈Γc

‖f(i)‖ (3.5)

Since the total number of particles that arrive at an interface voxel depends on the number
of white matter voxels in its neighborhood, it is appropriate to normalize ψc by the product
of footprint magnitudes in Equation (3.4). In contrast, the weighting in Equation (3.5)
reflects the fact that interface voxels with a small number of particles should contribute
less to the overall homogeneity of a cluster.

Let γ be a function that maps each interface voxel i to its cluster c (γ(i) = c⇔ i ∈ Γc).
Then, a clustering agrees with the data if the total homogeneity Ψ is high:

Ψ =

∑
i∈I ‖f(i)‖ψγ(i)(i)∑

i∈I ‖f(i)‖
(3.6)

If we leave the problem unconstrained, Ψ reaches its optimum for the trivial clustering,
in which each interface voxel has its own cluster. Thus, we require that the homogeneity
of each individual cluster c should approximately equal a parameter h (Ψc ≈ h).
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In our experiments, values around h ≈ 0.2 generally gave useful results. However,
part of the insight in [6] has been gained by trying various values of k for the k-means
clustering, so leaving h as a user-defined parameter is useful for allowing an interactive
exploration of the data. Also, the authors of [6] try to discover whether the data supports
further subdivision of specific clusters, so we allow interactive splitting and merging of
user-selected clusters. A subsequent global optimization of Ψ indicates if a split resulted
in valid sub-clusters: In that case, surrounding clusters should not change much.

3.4.3. Clustering Algorithm

To find a clustering according to the criteria of the previous section, our method proceeds
in two steps: The first step follows a greedy local strategy to create an initial clustering Γ.
The second step globally optimizes both the clustering and the number C of clusters with
respect to Ψ, preserving the conditions of connectivity and cluster homogeneity Ψc ≈ h.
Similar two-step methods have previously been used in computer vision to reduce the
complexity of segmenting images into an unknown number of regions [30].

A common building block of both steps is a variant of the k-means algorithm that uses
a fast-marching region-growing scheme to ensure connectivity of the resulting clusters.
Like k-means, it iteratively computes new cluster footprints Fn+1 from a given clustering
Γn and subsequently uses them to re-assign all interface voxels to new clusters Γn+1.
Convergence is assumed when only a small percentage (2%) of the voxels is re-assigned
to a different cluster.

The footprints Fn+1 are determined by evaluating Equation (3.3). Consequently, for
each cluster c, the voxel i ∈ Γn

c with the highest similarity ψn+1
c (i) is selected as a seed

point. Starting from these seeds, voxels which have not yet been assigned to Γn+1 are
added to an adjacent cluster c. In order to optimize Ψ, voxels are added in descending
order of their similarity ψn+1

c (i). Thus, good-matching voxels are assigned early on, while
dissimilar voxels are initially left free, which gives more suitable clusters the chance to
become adjacent to them. This scheme is efficiently implemented using a priority queue.

To make the algorithm more stable, we replace the parameter h with two parameters,
h+ and h−, where h+ is slightly larger than h−. If the average similarity Ψc of a cluster
is smaller than h−, the cluster is split, to allow for a more precise adaptation to the data.
On the other hand, if merging two adjacent clusters would lead to a cluster homogeneity
which is still larger than h+, the merge is performed.

For initialization, each connected component on the interface is treated as a cluster
and subdivided until h− is reached. At this stage, the region-growing only acts locally
on the voxels of the two newly formed sub-clusters. When a cluster is split, one half
of its members are assigned arbitrarily to each of the two new clusters. After the first
iteration of the region-growing algorithm, the results are again connected and converge to
an optimum. In rare cases, this “careless” initialization causes very small sub-clusters to
split off. This is acceptable, since such clusters will be re-merged later.

The initial clustering ignores interface voxels i with ‖f(i)‖ < 0.2. This exploits the
fact that many of the final clusters are separated by regions of small footprint magnitude.
Ignoring these voxels is an extremely simple and cheap way to identify connected compo-
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nents that are likely to coincide with relevant clusters. Experiments have indicated that
using this heuristic does not affect the final result noticeably, but nearly doubles the speed
of the clustering process.

When the initial clusters have been found, the region-growing is used to extend them
to all interface voxels with ‖f(i)‖ > 0, and to refine them until global convergence. After
merging and splitting clusters as appropriate, this procedure is iterated until no more
merges or splits are necessary. Since the initial clustering is usually quite good, conver-
gence is reached quickly.

In our implementation, we exploit the fact that most interface voxels only connect to a
small fraction of the white matter, i.e., the footprint vectors f are sparse. Thus, we store
them as lists of <voxel index, value> pairs rather than as full-length arrays, which re-
duces the cost of evaluating Equations (3.3) and (3.4). On the region of interest shown in
Section 3.3 (I = 3 408, W = 4 948), the full clustering took 1.3 s on a 2GHz Athlon 64 pro-
cessor. Afterwards, small modifications to h, or user-specified splits and merges, followed
by a global optimization, take around half a second, making these operations appropriate
for interactive exploration of the data.

3.4.4. Definition of Faces

According to the definition in Section 3.3.2, finding the faces in diffusion MRI topology
requires to determine the probability that a given voxel connects any two critical regions.
This information can be collected in the tractography step by using particle pairs that
leave the starting voxel in opposite directions. Pairs of interface voxels that are reached
this way are connected through the starting voxel.

Even though the target space of such pairs is of order I2, only a few pairs are actually
connected, so for small enough regions of interest, a sparse representation makes this
approach feasible. For example, in the region discussed above, probabilistic tractography
from a single white matter voxel reaches 285 individual interface voxels on average, but
only 1 135 voxel pairs. Still, this exact solution may become prohibitively expensive on
larger regions of interest. Already in the case of Figure 3.9, the probabilities of more than
4 · 107 voxel pairs have to be stored. Thus, we present a simple heuristic that estimates
the face probabilities from the cluster footprints F alone. Its fundamental idea is to divide
the particles reaching a given region according to the ratio of particles that went to the
remaining regions and to let them vote for a connection to these regions.

Let Tc(w) be the percentage of particles from a white-matter voxel w that reach cluster
c. If a single region collects more than 50% of the particles (Tc(w) > 0.5), we assume
that the voxel w connects that region to itself with probability Pcc(w) = 2 · Tc(w)− 1. To
compute the connectivity between different regions, we remove these probabilities from
Tc: Let T ′

c(w) = Tc(w) − Pcc(w) be the reduced percentages (such that T ′
c(w) ≤ 0.5) and

let P̃ (w) =
∑

c Pcc(w) be the probability that w connects any critical region to itself.
Then, the estimated probability Pab(w) that w connects clusters a and b (a 6= b) is given
by

Pab(w) = T ′
a(w) · T ′

b(w)

1 − T ′
a(w) − P̃ (w)

+ T ′
b(w) · T ′

a(w)

1 − T ′
b(w) − P̃ (w)

(3.7)
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(a) Exact faces (b) Heuristic faces (c) Clustered streamlines

Figure 3.7.: The nine most relevant faces in the region of interest. Exact faces (a) are well-
approximated by our heuristic (b). A comparison with clustered streamlines
(c) confirms their anatomical relevance.

Equation (3.7) is an ad hoc definition, designed to satisfy the requirements that the
resulting probabilities are non-negative and form a partition of unity. Its symmetry
Pab(w) = Pba(w) reflects the fact that we cannot distinguish between sources and sinks.

Figure 3.7 provides a comparison of faces obtained from tracking particle pairs (in (a))
and faces computed with our heuristic (in (b)). Visually, the approximation appears
adequate. For an objective comparison, we averaged the absolute difference between exact
and approximated Pab(w) over W for the nine displayed faces. The absolute deviation
ranged between 0.0007 and 0.0095, with an overall average of 0.0057. Over the voxels
relevant for display (Pab(w) > 0.33, corresponding to the confidence bounds in Figure 3.7),
the average relative deviation of the heuristic from the exact method was between 0.5%
and 10%, the overall average being 5%.

3.4.5. Selection of Relevant Faces

Like 3D flow topology, diffusion MRI topology suffers from the fact that three-dimensional
faces may occlude each other. To alleviate this problem, we define a metric of face
relevance, which helps the user to select only the important faces for display.

A face is relevant if the voxels it contains belong to it with a high probability. Thus, we
formalize the relevance ρab of a face between clusters a and b as its summed probability
Pab over W , normalized by the magnitude of the joint footprint:

ρab =

∑
w∈W Pab(w)

‖Fa + Fb‖
(3.8)

Equation (3.8) is evaluated for all possible pairs of clusters and the resulting faces are
sorted according to their value of ρ. Then, the user can add faces until cluttering occurs
or less important faces start to appear. In Figure 3.7, the nine most relevant p-faces

48



3.5. Experimental Results

(a) Faces in less ideal data (b) Faces with SNR=12 (c) Faces with SNR=8

Figure 3.8.: The major faces (ρ > 5) remain recognizable at increased levels of noise.

have been selected this way and rendered with p = 0.66 (confidence bounds at p = 0.33).
Computing and sorting took 0.27 s for exact faces, and around 10ms with the heuristic.

Figure 3.7 (c) compares our results to a deterministic tractography, pseudo-colored
according to a clustering with normalized cuts [32]. Both methods agree on the main
features: The corpus callosum (CC) is subdivided into multiple regions and separated
from the cingulum bundles (Cing). Only a few streamlines were seeded inside the in-
ternal capsule (IC, truncated by the region of interest), making it more recognizable in
Figure 3.7 (a) and (b).

Note that in Figure 3.7 (c), some streamlines of the corpus callosum are clustered as
part of the cingulum bundle and vice versa. This is due to the fact that Brun et al.
[32] project the fibers to a low-dimensional feature space in which these streamlines are
not well-separated. In contrast, our clustering works directly on the high-dimensional
voxel footprints. Also, clustering the 2 290 displayed streamlines took 90 s, which made
fine-tuning of the parameters more time intensive than with our method.

3.5. Experimental Results

3.5.1. Robustness under Noise

We tested the robustness of our features under both real and synthetic measurement noise.
Figure 3.8 (a) presents results on a second dataset from the same subject as in Figure 3.7.
It uses the same setup described in Section 1.2, but includes only one, rather than three,
measurements per direction. This reduces the measurement time for a full-brain scan to
15 minutes, at the cost of stronger physical noise.

For direct comparison with the results in Section 3.2.2, Figures 3.8 (b) and (c) addi-
tionally show faces in the datasets which were corrupted with additive Gaussian noise.
Since the noise causes higher variability in the voxel footprints, we have selected a lower
homogeneity target h than in Figure 3.7 to obtain a comparable number of critical regions
(h = 0.24 without noise, h = 0.22 with artificial noise, h = 0.21 with physical noise). In
all examples, we show the 0.66- and 0.33-faces with a relevance value ρ > 5.
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(a) 12 out of the 23
highest-ranking faces

(b) Standard tractography in
XYZ-RGB coloring

(c) Standard tractography,
pseudo-colored by cluster

Figure 3.9.: The relevant structures are also found in this larger region (a). Results from
a deterministic tractography (b) and streamline clustering (c) confirm the
result.

Even though the exact clustering changed slightly, all major structures remain well
recognizable at all noise levels. Timings were around 2 s in all cases.

3.5.2. Results on a Larger Region of Interest

Figure 3.9 presents results on a second region of interest, which spans 49 × 39 × 25
voxels in the center of the brain, right below the corpus callosum. It is shown from
posterior/superior, with additional context from FA slices. As indicated by the streamlines
in Figure 3.9 (b), this region contains more white matter than could be shown occlusion-
free in a single rendering. Therefore, we sorted the 1 176 faces using the ρ-criterion and
manually selected twelve out of the 23 highest-ranking ones for display. They depict the
inferior fronto-occipital fasciculus (IF), the internal capsule (IC), the anterior thalamic
radiation (ATR) and parts of the corpus callosum (CC, truncated by region of interest),
which are also partly reflected in the streamline clustering in Figure 3.9 (c).

In this experiment, it becomes apparent that the probabilistic tractography method
used for pre-processing is not well-suited for tracing thin fibers over long distances, since
few random paths traverse them fully. The notable deviation between the core (p = 0.4)
and the confidence bounds (p = 0.2) of IF and ATR in the rendering reflects the high
amount of uncertainty that results from this.

Other authors have faced the same problem. In their analysis of long-range connectivity,
Hagmann et al. [83] rely on a deterministic model. Perrin et al. [160] stick to a probabilistic
method, but modify it heuristically by giving their particles inertia and letting them create
child particles as they traverse long fascicles. To some degree, we profit from our own
heuristic modifications, described in Section 3.4.1: With the original method [119], we
were not able to reproduce the IF and ATR at all. However, finding a reliable and well-
founded algorithm for the probabilistic estimation of long-range connectivity was outside
the scope of our work.
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I W time time/I WM/I
Figure 3.7 3 408 4 948 1.3 s 0.4ms 413
1/2 of Figure 3.9 7 803 12 765 10.8 s 1.4ms 771
Figure 3.9 14 633 24 787 22.2 s 1.5ms 852

Table 3.1.: Time per interface voxel depends on the average number of white matter voxels
connected to them (WM/I), but is approximately constant otherwise.

To show that our clustering itself remains feasible for larger regions of interest, Table 3.1
summarizes the timings from our experiments. For comparison, we have included a region
of interest that covers only the left half of Figure 3.9. While the input size doubles from
the second to the third row, the time spent per interface voxel remains almost constant.
However, the clustering for Figure 3.7 is much cheaper. This is partially explained by the
sparse representation of voxel footprints, which exploits lower number of white matter
voxels connected to an average interface voxel (WM/I).

3.6. Conclusion and Future Work

The motivation for this work was a lack of connectivity-based features in diffusion MRI
data that would resemble the expressiveness of the features in flow topology. We have
closed this gap by defining suitable, anatomically meaningful topological features in brain
diffusion MRI and proposing a method for their extraction.

At the same time, we have contributed a method for the visual analysis of results from
probabilistic tractography. While visualization research focused on deterministic stream-
line techniques, researchers interested in quantitative connectivity studies have deemed
the confidence measures provided by probabilistic methods indispensable for their work
and are lacking appropriate methods for visualizing their results. In recent papers, slice
projections [18] or volume renderings [6] of scalar connectivity values derived from the
tractography constitute the state of the art.

A second contribution is to explain why degenerate lines are not useful in DT-MRI data.
With this result, we do not question the fact that tensor topology holds the potential to
extract interesting features from other types of tensor fields. In fact, Chapter 4 of this
dissertation points out the role that degenerate lines in Hessian fields play for crease
surfaces, and it even makes use of the algorithm by Zheng et al. [254].

While our work solves some open issues, it also leaves a number of questions to future
research. To reduce the complexity of our approach, we have neglected the uncertainty
in the critical regions themselves. It could be worthwhile to investigate if a probabilistic
clustering further improves visualization. Also, more work could be done on the rendering
of features: Currently, we assign uniform colors to the basins and faces. Textures could
add information relevant for interpreting the probabilistic tractography, like local fiber
orientations and their variance, or the local density of particles.

Out of the need to reflect the uncertainty inherent in our data, we have defined prob-
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abilistic versions of some basic topological features, leading to expressive visualizations.
While it is outside the scope of the present work, it would be interesting to derive a rigor-
ous mathematical framework for fuzzy topological visualization that might rest on existing
fuzzy set theory [97], and to apply it to other cases in which uncertainty visualization may
play a role.

Finally, our approach integrates two topics of active research in the neuroscience com-
munity, namely, finding probabilistic fiber tracking methods that reliably reproduce fiber
tracts known from anatomy (e.g., cf. [18]), and clustering grey matter voxels in a way that
reflects functional units (e.g., cf. [6]). Our work has both benefited from this research and
leads to a method that could help neuroscientists to better explore their data. It is our
hope that having these tasks as part of our visualization pipeline will continue to create
synergies between the two exciting fields of visualization and neuroscience.
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4. Topology and Extraction of Crease Surfaces

Crease surfaces are two-dimensional manifolds along which a scalar field assumes a local
maximum (ridge) or a local minimum (valley) in a constrained space. As demonstrated
in Section 2.3.6, they are complementary to isosurfaces in that they are able to capture
extremal structures in the data.

Despite the fact that applications of crease surfaces in visualization and computer graph-
ics range from medical imaging [114] to vector field visualization [178, 157] and surface
reconstruction from noisy point clouds [209], their mathematical properties have not been
investigated thoroughly. In particular, all previous algorithms for crease surface extraction
ignore degeneracies in the involved eigenvectors.

Our work [193] points out that such degeneracies are practically relevant, since they
are structurally stable and affect the topology of the creases: Unlike isosurfaces, crease
surfaces have boundaries and are not necessarily orientable. Because of these differences,
the marching cubes case table is inappropriate for crease surface extraction, even though
it was widely used for this task. Based on this insight, we propose an efficient algorithm
which produces more accurate representations of crease surfaces.

This chapter is organized as follows: After discussing related work (Section 4.1), we
describe our theoretical results on crease surface topology (Section 4.2) and present our
novel algorithm for crease surface extraction (Section 4.3). We then demonstrate that our
method is a clear improvement over the state of the art (Section 4.4), before we conclude
the chapter (Section 4.5).

The results presented in this chapter are application-independent: They improve crease
surface extraction in general. In the context of our efforts to visualize data from DW-
MRI, the motivation to address this problem was provided by a previous work [114],
which showed that anisotropy crease surfaces are meaningful features in DW-MRI. A
more detailed discussion and extension of this particular application is presented in the
following chapter.

4.1. Related Work

Crease lines have been studied extensively by Pizer et al. in the context of medial core
extraction [165], which generalizes the Blum medial axis analysis of binary objects [27] to
finding the core of objects in grayscale images. Pizer et al. employ a medial function, which
yields high values at the center of an object, and they extract its core as ridges in medial
function values. Lindeberg [130], whose formalism differs slightly from the presentation
in Section 2.3.6, and Damon [51] carefully investigated the behavior of height creases in
Gaussian scale space.
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Crease lines have also been used for finding vortex cores in vector field visualization,
for example by Miura and Kida [140] and by Sahner et al. [179], and for the extraction of
characteristic lines in symmetric tensor fields by Tricoche et al. [215]. In this context, the
parallel vector approach by Peikert and Roth [156] and the feature flow fields by Theisel
and Seidel [211] provide popular algorithms for crease line extraction.

For crease surfaces, Furst et al. have proposed the “marching cores” algorithm [80],
which addresses the problem of finding 2D creases in a 4D (3D+scale) space. In their
“marching ridges” method [79], Furst and Pizer even extend this to the extraction of one-
and two-dimensional creases from spaces of arbitrary dimension. To deal with such high
complexity, they make simplifying assumptions, such as that the boundary of each face is
only intersected twice by a ridge. Intersections are found as changes of sign in g · ei, after
imposing a local orientation on ei via a principal component analysis.

So far, the application of ridge surfaces in visualization has been restricted to single-
scale analysis, so it has been sufficient to find crease surfaces in 3D space. To find skeletal
structures in data from diffusion tensor MRI, Kindlmann et al. [114] have extracted ridge
surfaces as isosurfaces of g·ei = 0, using the marching cubes algorithm [132] after imposing
a per-cell orientation on ei by tracking eigenvectors along subsampled cell edges.

Sadlo and Peikert [178] have used marching cubes on an adaptive grid to extract ridge
surfaces which separate regions of different flow behavior in unsteady vector fields, us-
ing the original rule from [79] to orient eigenvectors. Another recent work on vector
field visualization by Sahner et al. [180] has used crease surfaces, but employed a differ-
ent, watershed-based definition. In computer graphics, Süßmuth and Greiner [209] used
marching cubes to reconstruct surface meshes from noisy point clouds by extracting ridges
of point cloud density. They use the height crease definition, but do not provide details
on their way of orienting eigenvectors.

4.2. On the Topology of Crease Surfaces

In this section, we will discuss differences between the topology of isosurfaces and crease
surfaces, which show that the marching cubes case table is inappropriate for crease ex-
traction. This will lead us to a novel algorithm which is specialized for the extraction of
2D creases from 3D fields.

4.2.1. Degenerate Lines as Boundaries

Unit eigenvectors are only defined up to their sign. However, previous algorithms for the
extraction of crease surfaces rely on a locally consistent sign of the involved eigenvector,
so prior work has suggested different heuristics to impose a local orientation on it [145,
79, 114].

Unfortunately, orienting the eigenvector along the boundary of a cell face is impossible
when the Hessian has a degeneracy in the interior of the face. This is due to the half-
integral Poincaré indices of the three generic types of degenerate points in tensor fields
(cf. Section 2.3.4). For example, Figure 4.1 (a) depicts a degenerate point (blue) and
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4.2. On the Topology of Crease Surfaces

(a) Orienting eigenvectors can lead
to a contradiction.

(b) Lines along which g ⊥ ei end in
degeneracies.

Figure 4.1.: Non-orientability of eigenvectors (a) leads to the fact that creases end at
degenerate points (b).

indicates eigenvector directions in the plane around it by dashed blue lines. As indicated
by the arrows, trying to impose a consistent sign along the cell boundary around the
degeneracy (black) leads to a contradiction. This case is not rare in practice: Degenerate
loci in symmetric 3D tensor fields generally form stable lines (cf. Section 2.3.4).

In the context of crease surfaces, degenerate locations have traditionally been discussed
as a source of numerical difficulty when imposing a local orientation on eigenvectors (e.g.,
[145]). Only recently, it has been pointed out that their presence implies that eigenvec-
tors are not orientable in principle [157]. To the best of our knowledge, it has so far not
been discussed that degenerate lines actually constitute one type of crease surface bound-
aries: Beside the obvious type of boundaries, which are caused by the side constraint on
the eigenvalue (λ3 < 0 or λ1 > 0, respectively), ridge surfaces are bounded by type L
degenerate lines (λ2 = λ3), and valley surfaces are bounded by type P lines (λ1 = λ2).

For crease lines in 2D, this insight follows directly from the Poincaré index of the
degenerate point: Along the boundary of an ǫ-environment around it, the eigenvector turns
±1

2
times (cf. Figure 2.11), while changes in the gradient can be neglected for sufficiently

small ǫ. Thus, both vectors are orthogonal (i.e., the crease intersects the boundary)
exactly once – the crease ends inside of it. Figure 4.1 (b) illustrates this: Along the crease
(orange), gradient vectors (gray) are orthogonal to the eigenvectors (blue). Behind the
degenerate point, both vectors are parallel, so the crease ends.

This argument carries over to crease surfaces in 3D by projecting the gradient vector to
the eigenplane of the repeated eigenvalue (the part outside the eigenplane is orthogonal to
the relevant eigenvector anyway) and observing that generic 3D degenerate points behave
just like 2D degeneracies within that plane (cf. Section 2.3.4). This also clarifies that in
general, crease surfaces do not branch, since this would require degeneracies with index
±(3

2
+ n), n ∈ N0, which are not structurally stable in 3D.

Extracting the skeleton of a bifurcating structure as a crease surface typically does not
result in a non-manifold sheet. Rather, one part of the surface ends shortly before meeting
the other one. In our experience, it is exactly this case in which degenerate lines occur as
crease surface boundaries most frequently in practice.
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4. Topology and Extraction of Crease Surfaces

(a) Cutting along the red and blue
lines yields orientable pieces.

(b) Example path 1

(c) Example path 2

Figure 4.2.: A non-orientable ridge surface, extracted from an MRI volume dataset (a).
Non-orientable paths are shown in detail in (b) and (c).

Note that corresponding results for crease lines in Gaussian scale space have been ob-
tained in the context of medial cores by Damon [51], in a work which has not found
adequate attention in the visualization community: Among other things, Damon proved
that degenerate loci of symmetric 3× 3 matrices form stable lines in 3D (cf. Propositions
8.1 and 9.1 in his work), which was later rediscovered by Zheng et al. [254].

4.2.2. Non-orientability of Creases

The fact that g · ei = 0 defines a surface with boundary even before considering any
further constraints introduces the possibility that crease surfaces may not be orientable,
i.e., it may not in general be possible to assign a normal vector field with consistent sign
to a crease surface. This problem has been encountered by previous authors [115, 178],
but so far, it has not been discussed whether it is a true property of creases or merely
a numerical artifact of existing extraction techniques. Also, examples of non-orientable
creases have not been published so far.

Peikert and Sadlo [157] propose to extract crease surfaces as subsets of the zero isosur-
face of a scalar measure

d = det(g|Hg|HHg) (4.1)

which first appears in a work by Süßmuth and Greiner [209]. The fact that creases can be
expressed as a filtered isosurface suggests that they are orientable. However, the scalar
field d changes sign in an ǫ-band around the crease not only in normal direction, but also
along the surface. More precisely, d = 0 not only when g is orthogonal to the selected
eigenvector (e3 for ridges, e1 for valleys), but to an arbitrary eigenvector. Along parallel
vector lines g ‖ ei, g is orthogonal to both remaining eigenvectors ej (j 6= i), so in these
places, the zero isosurface of d self-intersects – the sign of d changes along the crease.
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4.3. Extraction of Crease Surfaces

Figure 4.3.: Our algorithm creates the mesh per-cell, by finding intersection points (a)/(b),
estimating normals (c), and connecting the points based on them (d)/(e).

Figure 4.2 presents a ridge surface from a real-world MRI dataset. In two places,
marked by arrows, it shows surface pieces which are homeomorphic to the Möbius strip.
This establishes the fact that non-orientability is, in fact, a true property of creases. To
give a better visual impression of the non-orientability, Subfigures (b) and (c) show closed
paths (light blue) along which the normal (red) cannot be oriented – at the points marked
by a red ball, a contradiction occurs. In (a), the parallel vector lines g ‖ e1 are shown in
red, g ‖ e2 in blue, type P degeneracies are shown as yellow spheres. This illustrates that
cutting the crease along these lines would result in pieces that could be oriented using the
scalar d from Equation (4.1).

4.3. Extraction of Crease Surfaces

4.3.1. Basic Idea

From the observations made in the previous section, it follows that marching cubes is
not suitable for the extraction of crease surfaces. Since isosurfaces are closed, it only
considers cases in which the boundary of each cell face is intersected an even number of
times. If there really is an odd number of intersections (because the crease ends inside the
cell), applying the marching cubes case table will either add spurious triangles or create
a hole. In existing algorithms as used in [114] and [178], either of these options happens
at random.

Peikert and Sadlo [157] have proposed to solve this problem by using marching cubes
to extract a superset of creases and filtering out irrelevant parts afterwards. This is
theoretically appealing, but unfortunately, it is infeasible in practice, since the marching
cubes algorithm cannot handle the self-intersections which occur in the zero isosurface of
their scalar field d. In fact, it follows from the non-orientability of crease surfaces that it
is generally not possible to close them in R

3 without introducing self-intersections.
The algorithm we propose instead is also based on cell marching, but does not rely on

the marching cubes case table to determine topology. Figure 4.3 gives an overview of our
pipeline: We first extract individual intersections of cell edges with the crease surface (a)
and of cell faces with the degenerate lines which bound the crease (b). We then estimate
surface normals at these points (c) and use them to select the most likely topology, both

57



4. Topology and Extraction of Crease Surfaces

Figure 4.4.: An intersection of g with the plane spanned by e1 and e2 is detected by
considering the difference vector h that results from projecting g to the plane.

on the faces (d) and within the cell (e). Taken together, this leads to closed polygons over
the boundary of each cell, which can be triangulated to form the final mesh.

Without showing results, Eberly [63] has proposed a similar strategy to extract 2D
creases from 3D fields. However, he assumes that the intersections of crease surfaces with
cell faces can be described as the zero contour of a bilinear function. Like marching cubes,
this does not allow creases to terminate within a cell.

To keep the notation simple, we will restrict our discussion to ridge surfaces. Valleys
are obtained by straightforward analogies or by extracting ridges of −f .

4.3.2. Finding Edge Intersections

Our algorithm makes extensive use of a differentiable symmetric tensor field T(x) which
is derived from the Hessian field H(x) and has g(x) as an eigenvector to eigenvalue 1 if
and only if x is a point on the ridge. Its eigenvectors e′

i and eigenvalues λ′i are defined
from those of the Hessian matrix (ei and λi) as:

e′
i := ei (4.2)

λ′1 := 1 λ′2 := 1 λ′3 :=

{
0 if λ2 − λ3 > θ(
1 − λ2−λ3

θ

)2
else

(4.3)

The definition of λ′3 makes sure that T is a differentiable function of H and that it
remains well-defined as (λ2 − λ3) → 0 and e3 becomes ill-conditioned. We assume that
this starts to play a role when (λ2 − λ3) drops below a threshold θ, which we fixed
empirically at 0.5% of the dynamic range in our data. As a result of this formulation,
degenerate loci are counted as being on the ridge regardless of g. This is reasonable, since
we have shown in Section 4.2.1 that crease surfaces are bounded by these lines.

To detect intersections of the ridge with cell edges, we consider the vector

h(x) := T(x)g(x) − g(x) (4.4)

which is zero if and only if x is a point on the ridge. Otherwise, h indicates the direction in
which the gradient g moves when being projected onto the eigenplane of T (cf. Figure 4.4).
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4.3. Extraction of Crease Surfaces

Let h1 and h2 be the respective vectors at the endpoints of an edge. We assume that the
ridge intersects the edge if h1 · h2 < 0, i.e., if the gradient has changed from one side of
the plane to the other. The relative magnitudes of h1 and h2 provide an estimate of the
point of intersection.

It may appear even easier to locate edge intersections by bracketing zero crossings in
the scalar d from Equation (4.1). Unfortunately, d often has very close pairs of zero
crossings, of which only one indicates a ridge and which are difficult to find in practice.
This happens near parallel vector lines g ‖ ei, for the reasons mentioned in Section 4.2.2.

4.3.3. Extracting the Boundary

To find the endpoints of the ridge on the cell faces, we localize type L degeneracies via
the gradient descent by Zheng et al. [254]. We have augmented it with an Armijo stepsize
selection [7] to improve its convergence properties and we repeat it from different starting
positions on the face in cases where it runs into local minima. To save computations, this
is only done on faces whose boundary is intersected an odd number of times.

Each ridge that enters a face should either leave it again or end in a type L degeneracy.
It is important to ensure this algorithmically to achieve a consistent final triangulation.
If no degeneracy is found, this typically means that we have missed an edge intersection.
In fact, edges along which T varies strongly may be intersected multiple times. To handle
this, we bisect an edge if the values T1 and T2 at its endpoints differ too much. The exact
condition used in our current implementation is

tr(TT
1 T2)√

tr(TT
1 T1) ·

√
tr(TT

2 T2)
< Θ

The threshold Θ is increased iteratively while the total number of intersections is odd
and no degeneracy has been found.

4.3.4. Estimating Normals

The fact that h(x) = 0 for all points x on the surface allows us to compute the surface
normal at x. Directional derivatives of h tangential to the surface are 0, so the Jacobian
∇h has rank one, with the only non-zero eigenvector in normal direction. The fact that
the normal computed this way is only defined up to sign is not a limitation, since the
ridge surface is non-orientable anyway.

Since ∇h = ∇Tg + T∇g −∇g involves the gradient of T, which is in turn defined in
terms of the Hessian, normal estimation assumes that f is at least C3 continuous. Despite
dealing with third derivatives and applying some computational simplifications (detailed
in Section 4.3.6), we found that the normals obtained this way are of reasonable quality
and can be used both for estimating local topology and for rendering (cf. Figure 4.5).
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(a) Normals estimated from discrete mesh
[210]

(b) Normals computed from scalar field f

Figure 4.5.: Despite the use of third derivatives, our analytic normals appear smooth (b).
For comparison, Subfigure (a) shows normals estimated from the mesh.

4.3.5. Generating the Mesh

Our theoretical analysis in Section 4.2 revealed two facts: First, crease surfaces end at
degenerate lines; second, they may not be orientable. To reflect these insights, per-cell
processing has to concentrate on finding the lines that bound the surface. Orientability, on
the other hand, is a global property, and will result automatically if we make the correct
per-cell decisions.

Consistency of the final mesh is guaranteed by estimating the connectivity per-face, and
sharing the results between adjacent cells. Moreover, the boundary points are connected
pairwise per-cell and thus form continuous lines in the final mesh. As an example, Fig-
ure 4.6 illustrates the case discussed in Section 4.2.1, in which one part of a crease (red)
terminates just before it would meet another one (gray) in a non-manifold configuration.
Since marching cubes does not allow the surface to terminate within a cell, it produces a
zig-zag edge (a), even when using a finer resolution (b). On the other hand, our method
extracts a smooth degenerate line which bounds the surface.

To estimate per-face connectivity, we connect the extracted intersection points pairwise.
Since the total number of points per face is low, we simply enumerate all possible pairings
and exclude the ones that would lead to a self-intersection (2D line-line intersection test).
Among the permissible options, we choose the one which agrees best with the computed
normals, i.e., the one which minimizes the sum of absolute dot products of connection
lines and normals at their endpoints.

On each face, we extracted a degeneracy if and only if its boundary was intersected an
odd number of times. Since edges are shared between adjacent faces, this leads to an even
number of degenerate points per cell, which are connected in a similar manner. In rare
cases, a cell has more than two degenerate points. In that case, we use the quads defined
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(a) MC with PCA (b) as (a), 2× res. (c) Proposed method

Figure 4.6.: Unlike marching cubes (a) and (b), our method creates a smooth representa-
tion of crease surfaces that terminate at degenerate lines (c).

by any pair of degenerate points and their respective neighbors on the face to check for
self-intersections (3D triangle-triangle intersection tests after arbitrary subdivision).

After these steps, each cell contains a set of closed polygons (cf. Figure 4.3 (e)). Triangles
are used as is, quads are subdivided arbitrarily. We triangulate larger polygons via a
triangle fan with an additional vertex at the barycenter.

4.3.6. Implementation

Trilinear interpolation is widely used for its computational efficiency. Since creases require
C2 continuity, more advanced interpolation becomes obligatory. Like Kindlmann et al.
[115], we convolve the given sample points with a C2 cubic B-spline kernel. However,
we store the resulting values, gradients, and Hessians at each grid point and interpolate
them trilinearly in between. A very similar approximation is made when using the Phong
shading model [162], which interpolates surface position and normal independently.

We found that this approximation greatly speeds up the bisection of edges and iterative
search for degenerate points on faces, while the resulting changes to the crease are on the
order of a small additive Gaussian perturbation of f . Even approximating third derivatives
by taking finite differences in the trilinearly interpolated Hessian field did not introduce
any notable artifacts in the resulting normals. Note that this choice is an implementation
detail which could be changed without having to alter any part of the algorithm.

Our extraction algorithm only produces exact boundaries where the ridge ends at a
degenerate line. The side constraint (λ3 < 0) is taken into account by excluding cells
for which no vertex meets the constraint. This causes zig-zag boundaries, which are
straightened by triangle trimming in a postprocess. This choice was motivated by the fact
that crease surfaces are typically filtered using application-specific rules anyway, so both
tasks are easily combined. Moreover, it avoids complex special cases that would otherwise
occur in the extraction when the two types of boundaries meet.
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4.3.7. Rendering

On modern graphics hardware, it is straightforward to render non-oriented surfaces, simply
by discarding the sign of the normal in the lighting computation. As an example, let n

denote the surface normal, l the vector towards the light source. The diffuse term in the
Phong shading model [162] usually involves max{n · l, 0}. To render non-oriented surfaces,
we simply replace this expression with |n · l| in a vertex shader program [176].

4.4. Results

4.4.1. Setup and Qualitative Results

To validate our method, we extracted boundary ridges in a volume dataset from a CT scan
of a teddy bear. We chose this dataset because the bear is composed from different materi-
als, which makes it difficult to extract using simple isosurfacing. We resampled the dataset
to 118×118×105 cells with isotropic edge length l = 3 mm. To detect the boundaries, we
computed the gradient magnitude by convolution with directional-derivative-of-Gaussian
kernels at σ = 3.3 mm. From the resulting dataset, we then extracted height ridges at
the data grid resolution using the proposed method, and compared them to results of
marching cubes, using both eigenvector tracking (as in [115]) and principal component
analysis (PCA, as in [178]) as a preprocess.

All previous authors have found it necessary to filter out noise-related parts of creases.
Like Haralick [87], we used a threshold on the ratio ‖g‖/λ3 to restrict the ridge to its most
salient part. Moreover, we put a threshold on absolute value and performed connected
component analysis to remove a background object present in the dataset. As shown in
Figure 4.7, the visual impression of our result (c) is clearly better than the ones from
marching cubes at the same resolution.

Eigenvector tracking cannot process cells in which any edge is near a type L Hessian
degeneracy. These skipped cells lead to the large number of small holes in (a). PCA
processes all cells, but fails to find a consistent orientation in the presence of Hessian
degeneracies or large eigenvector variations. This leads to the spikes and holes in (b).
The degeneracies which cause these problems run through the same cells as the affected
parts of the bear, but belong to surfaces that end in the vicinity of the bear and are filtered
out during post-processing. Since the effect of Hessian degeneracies is not controlled in
previous methods, they can affect any surface that intersects the cell. This problem can
be mitigated by refining the extraction grid, which makes it less likely that a degeneracy
of a “noise” ridge runs through the same cell as a legitimate ridge we would like to keep.

Previous authors have exploited this: Sadlo and Peikert [178] propose an adaptive
refinement around the crease, and Kindlmann et al. [115] globally use a grid which is by
factor 5 finer than the data grid. Indeed, at twice the original resolution, marching cubes
with eigenvector tracking produces a result which looks comparable to ours (d). However,
adaptive refinement cannot avoid ragged crease boundaries (cf. Figure 4.6 and Table 4.3),
leads to overtesselation and comes at considerable computational expense (cf. Table 4.1).
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4.4. Results

(a) Marching cubes with eigenvector tracking (b) Marching cubes with PCA

(c) Proposed method (d) Eigenvector tracking at double resolution

Figure 4.7.: At the original data resolution, the proposed algorithm for crease extraction
(c) provides much better results than marching cubes, (a) and (b).
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Method Time (s) # triangles
evec tracking 24+1 66,662

evec tracking (2× res.) 180+4 578,489
PCA 18+2 201,068

proposed method 38+3 246,040

Table 4.1.: Timings and triangle counts, including filtering.

Method area error (mm)
evec tracking 0.21 m2 0.02 (0.14)

PCA 0.49 m2 0.07 (0.31)
proposed method 0.47 m2 0.02 (0.13)

Table 4.2.: Mean absolute and RMS (in italics) error in face position, as measured by a
gradient descent.

4.4.2. Quantitative Results

Table 4.1 presents algorithm performance, in terms of consumed wall time (on a 2 GHz
laptop) and generated geometry. It shows that the improved accuracy of our algorithm
comes at moderate additional computational expense. In particular, it is more than four
times faster than marching cubes on the refined grid, the only alternative that provides
acceptable quality.

Moreover, we conducted two quantitative experiments which support the observations
from the previous subsection. First, we evaluated the accuracy of the extracted surfaces
by taking a large number of samples from the mesh (1.5 mm−2, uniformly at random), and
measuring the distance to the nearest point on the crease, as found by a gradient descent
in the direction which minimizes the squared norm ‖h‖2 of h from Equation (4.4). This
gradient descent is only used for evaluation, not during crease extraction. Table 4.2 lists
the resulting average absolute and root mean square (RMS, in italics) distances. It clearly
shows the increased error of the PCA result, which is due to erroneous triangles. The table
also lists the total area of the bear, illustrating the fact that eigenvector tracking only
reconstructs part of the surface.

In a second experiment, we considered the boundary components of the meshes and
created a histogram of their length in terms of the number of individual edges. The
results in Table 4.3 confirm that marching cubes produces small holes in the surface.
In particular, eigenvector tracking at both resolutions misses a large number of single
triangles, due to skipped cells. Vertices in which more than two boundary edges meet
are an indicator of spurious holes. In eigenvector tracking at the original resolution, more
than 7% of all boundary vertices are affected. In marching cubes with PCA, it is slightly
less than 1%; in our proposed method, such configurations do not occur by design. Note
that many of the longer boundary components are a consequence of the fact that the
crease also represents the stuffing of the bear.
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Bdy components of length
Method 3 4 5 6 > 6

evec tracking 2158 59 408 69 353
evec tracking (2× res.) 2277 97 469 80 533

PCA 44 31 20 67 923
proposed method 0 10 0 0 136

Table 4.3.: Marching cubes produces a large number of spurious short boundary compo-
nents on crease surfaces.

For further validation, it would have been ideal to implicitly represent a known surface
as a crease and to compare the mesh extracted from the resulting scalar field to the initial
ground truth. Unfortunately, it is not obvious how to transform a surface to a well-defined
height crease, and to the best of our our knowledge, this topic has not been addressed in
the literature.

4.5. Conclusion and Future Work

Crease lines have a long tradition in image processing and computer vision. Crease sur-
faces, their two-dimensional generalization, can offer a versatile tool for visualization,
both to capture boundaries which cannot be characterized as isosurfaces, and to extract
object cores or skeletal structures. However, using crease surfaces widely requires a full
understanding of their properties and reliable numerical methods for their extraction.

This chapter has promoted this goal by clarifying the topological properties of crease
surfaces and proposing a novel algorithm for their extraction. The transformed Hessian
approach in Section 4.3.2 provides a unified framework for the detection of crease surface
intersections, estimation of surface normals, and for a gradient descent to the crease
surface, without the need to orient eigenvectors. The results of our algorithm have been
shown to be more accurate than the ones of existing methods.

To fully harness the potential of creases, future work should investigate their scale
space behavior. This will require the extraction of surfaces from a four-dimensional space.
However, understanding crease surfaces in 3D is a necessary step towards that more
complex goal. Moreover, creases at a single scale have proven sufficient to gain insights
both in prior work [114, 178], and in the following chapter of this dissertation.
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5. Planarity Ridges for DT-MRI Visualization

A standard way to visualize DT-MRI data is to integrate streamlines which are everywhere
tangential to the principal eigenvector of the tensor field, and are interpreted as estimated
fiber pathways (cf. Section 2.2.5). However, this method is inappropriate for regions where
fiber tracts cross or fan out, since the diffusion tensor becomes planar, i.e., its larger two
eigenvalues are similar in magnitude, and there is no single preferred direction.

To transfer the idea of streamlines to such areas, Zhang et al. [251] proposed to integrate
streamsurfaces, which are everywhere tangential to the plane spanned by the major and
medium eigenvectors. In our work [193], we show that the surfaces generated by their
algorithm are ill-defined and do not have a clear interpretation: The method makes arbi-
trary choices which have a strong influence on the final result. This is explained by the
fact that in typical DT-MRI data, surfaces that are everywhere tangential to the major
and medium eigenvectors do not exist.

In a second step, we combine the basic idea of anisotropy creases [114] with results
on crease surface extraction and eigenvalue derivatives from Chapters 4 and 6 of this
dissertation, to provide a viable alternative to streamsurfaces. Crease surfaces in planarity
are well-defined, and they fulfill the goal for which streamsurfaces were developed: To
illustrate the major regions of planar diffusion.

This chapter is organized as follows: After a more detailed review of related work
(Section 5.1), we demonstrate that DT-MRI streamsurfaces are ill-defined (Section 5.2).
Then, we introduce planarity ridges (Section 5.3) and evaluate them (Section 5.4), before
we conclude the chapter (Section 5.5).

5.1. Related Work

In their work on DT-MRI streamsurfaces, Zhang et al. [251] included the caveat that
their definition relies on the assumption that the Lie bracket of the involved eigenvec-
tor fields lies within their common plane. They considered it overly complex to verify
that assumption, but stated that it would likely be fulfilled, since they did not experi-
ence problems in practice. Despite the fact that this integrability condition has never
been checked, streamsurfaces are frequently mentioned as a standard tool for DT-MRI
visualization [252, 224, 167].

In vector field visualization, streamsurfaces are defined as surfaces which are traced
out by advecting a given seed line along the field. This only involves integration along a
single vector field, and does not entail the problems that arise from trying to be every-
where tangential to two vector fields at the same time. Streamsurfaces in the well-defined
sense of flow visualization have been extracted from tensor fields by Jeremić et al. [102].
Sondershaus and Gumhold [204] call the surfaces from [251] “diffusion surfaces”, to avoid
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5. Planarity Ridges for DT-MRI Visualization

(a) Vertices are added radially from
the seed, breadth first.

(b) Integration along n-rings leaves
the surface.

Figure 5.1.: Streamsurface extraction relies on the order in which vertices are added (a).
If the surface were well-defined, the red and blue lines in (b) would coincide.

confusion of these different definitions. In this chapter, we stick to the more widespread
name “streamsurface”, but prefix it with “DT-MRI” to emphasize the difference.

Sondershaus and Gumhold [204] argue that since the minor eigenvector is well-defined
in the regions in which DT-MRI streamsurfaces are integrated, the surfaces should be
manifolds with boundary. In fact, DT-MRI streamsurfaces try to be everywhere perpen-
dicular to the minor eigenvector field. However, vector fields only define an everywhere
orthogonal surface if their derivatives obey a specific symmetry, which corresponds to the
symmetry of the second fundamental form [77], and is not fulfilled by general eigenvector
fields.

The scheme for DT-MRI streamsurface extraction presented in [204] differs from the
one in [251] in that it is based on the operations of face-based surface compression [82],
which makes it suitable to extract two-manifolds with arbitrary topology. Vilanova et al.
[223] present a different method that allows DT-MRI streamsurfaces to have boundary
components, and they combine streamlines with streamsurfaces by creating additional
seed points when entering or leaving a region of planarity. However, both works employ
the original integration rule of [251], which we will show to produce non-consistent results,
depending on the order in which vertices are added.

5.2. DT-MRI Streamsurfaces are Ill-Defined

The original algorithm for DT-MRI streamsurface extraction grows a mesh of equilateral
triangles from a given seed point. Zhang et al. [251] perform the integration along the
edges which are marked by arrows in Figure 5.1 (a), but this choice is arbitrary. Their
integrability condition in terms of the Lie bracket has an alternative formulation which
is much easier to check in practice: If the surface resulting from their algorithm is well-
defined, finding the position of a vertex by integrating along any other path in the mesh
should produce the same result. In particular, integration along cycles should return to
the initial position.

To test this, we integrated cycles along the n-rings n ∈ {1, . . . , 10} around the seed
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point. Integration started at a vertex of the previously extracted DT-MRI streamsurface
and the first step was made in direction of its neighbor on the n-ring in counter-clockwise
direction. Further integration was carried out in the plane spanned by the minor eigen-
vector and the “incoming” vector of the previous step, using the exact rule from [251].
After each n-th step, we turned the incoming vector 60◦ to the left within the current
tangent plane.

If the rule for surface integration were well-defined, the resulting trajectory should
coincide with the corresponding n-ring on the surface. Figure 5.1 (b) shows that this
condition is violated: On the presented streamsurface (gray), the n-rings are shown in
blue. Our trajectories, which clearly depart from the surface, are red. Since we made
conservative choices for stepsize (one fifth of a cell edge length) and numerical integration
scheme (fifth-order Runge-Kutta at 64-bit floating point precision), such strong differences
in such a small neighborhood cannot be explained by numerical errors. Also, integration
was limited to a domain where the second eigenvalue was much larger than the third, so
degeneracies have not played a role.

The algorithm in [251] expands the surface breadth-first, so adjacent vertices are in-
tegrated along similar paths. In our experience, the algorithm becomes unstable when
this order is changed to depth-first, which should not be the case if the surface were well-
defined. Moreover, when allowing for holes in the surface (as in [223]), highly deformed
triangles occur when a boundary component is closed and vertices whose integration paths
had departed for some time become adjacent again.

It appears possible to address these algorithmic problems by adopting methods from
computer vision: In shape from shading, an estimated normal field is used to infer surface
geometry. In this context, there exist various strategies to deal with “nonintegrable” vector
fields (cf. [41] and references therein). However, this does not change the fact that surfaces
which are everywhere aligned with the two principal directions of diffusion generally do
not exist. Because of this, we feel that, in the context of our application, the meaning of
surfaces that are “as well-aligned as possible” with these directions would be unclear.

5.3. Planarity Ridges for DT-MRI Visualization

Our proposed substitute for DT-MRI streamsurfaces extends the idea of anisotropy creases:
Kindlmann et al. [114] have extracted crease surfaces of fractional anisotropy (FA), a
scalar measure which quantifies the overall directional dependence of diffusion (cf. Equa-
tion (2.24) and Section 2.3.6). Anisotropy creases have been shown to represent the
skeleton of white matter structures, and they have proven to produce repeatable results
over a range of subjects [115]. To obtain surfaces that represent regions of planarity, we
replace FA with cp, a specific measure of planarity (cf. Equation (2.26)).

5.3.1. Partial Derivatives of cp

Extracting creases of cp requires formulas for the first and second partial derivatives of cp
with respect to the tensor field. Without loss of generality, we only consider cp,x and cp,xy.
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According to the quotient rule, they are given as

cp,x =
∂cp
∂x

=
A

B

cp,xy =
∂2cp
∂x∂y

=
AyB − ABy

B2

with

A = 2λ1 (λ2,x − λ3,x) + 2λ2 (−λ1,x − 2λ3,x) + 2λ3 (λ1,x + 2λ2,x)

Ay = 2λ1 (λ2,xy − λ3,xy) + 2λ2 (−λ1,xy − 2λ3,xy) + 2λ3 (λ1,xy + 2λ2,xy) +

2λ1,y (λ2,x − λ3,x) + 2λ2,y (−λ1,x − 2λ3,x) + 2λ3,y (λ1,x + 2λ2,x)

B = (λ1 + λ2 + λ3)
2

By = 2 (λ1 + λ2 + λ3) (λ1,y + λ2,y + λ3,y)

First partial eigenvalue derivatives λi,x are found by rotating the corresponding ten-
sor derivative Dx to the eigenframe of the original tensor D. Second partial eigenvalue
derivatives λi,xy are given by rotating the second partial tensor derivative Dxy to the same
frame, but additionally require a correction based on first eigenvector derivatives ei,x. Let
I denote the identity matrix and T+ the Moore-Penrose inverse of T. Then [134]:

λi,x = eT
i Dxei

ei,x = (λiI − D)+
Dxei

λi,xy = eT
i Dxyei + eT

i Dxei,y + eT
i Dyei,x

Planarity cp is defined in terms of sorted eigenvalues, which are not necessarily differ-
entiable at points where two eigenvalues coincide. We address this problem by using the
regularized eigenvalue derivatives from Chapter 6.

5.3.2. Extracting Planarity Ridges

We extracted both ridges in fractional anisotropy and in planarity cp on the dataset from
Section 1.2. Gaussian pre-filtering with σ = 1.72 mm was used and the ridges were filtered
to areas with FA > 0.2 / cp > 0.2.

Our algorithm for crease surface extraction from Chapter 4 facilitated the processing of
full-brain DT-MRI scans at the original resolution: The anisotropy crease in Figure 5.2 (a)
was extracted on the original data grid (93 × 116 × 93) within 26 s, while Kindlmann et
al. [115] report six minutes even after subsampling their data by a factor of two (i.e., to
48 × 48 × 28 voxels), due to the extremely fine extraction grid that they had to use.

Despite the fact that as a non-linear function, FA has higher spatial frequency than
the underlying tensor field itself [115], direct visual comparison between creases extracted
from the approximation in Section 4.3.6 and ones from exact derivatives did not reveal
any notable differences.
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(a) Ridge surface in FA,
colored by major eigenvector.

(b) Ridge surface in cp,
colored by minor eigenvector.

Figure 5.2.: Unlike ridges in FA (a), ridges in cp (b) specifically illustrate the cores of
planar regions. Therefore, they can replace the ill-defined streamsurfaces.

Figure 5.2 compares the ridges in FA and cp in a frontal view. Note that different color
schemes are used: (a) employs standard RGB-XYZ coloring of the major eigenvector,
while (b) color codes the minor eigenvector (e.g., red denotes fanning perpendicular to
the x axis), since no principal direction may be defined in planar regions.

As expected, ridges in cp show the cores of planar regions: They capture the fanning in
the corona radiata (CR) and the cerebellar peduncles (CP), the crossing at the decussa-
tion of the superior cerebellar peduncle (DSCP) and, due to partial voluming, interfaces
between corpus callosum and cingulum (CC/Cing), as well as between corticospinal tract
and pontine crossing tract (CST/PCT). In comparison, the FA ridge (a) also includes
structures with linear diffusion, like the CC, Cing, CST and PCT. Unlike streamsurfaces,
planarity ridges cannot be integrated from arbitrary positions, which alleviates issues of
seeding and culling. Their parameters are scale (i.e., amount of pre-smoothing) and a
threshold for post-filtering.

5.4. Evaluation of Planarity Ridges

For evaluation, we presented our planarity ridges to a neuroscientist. In this process,
we found it helpful to add further anatomical context. We added streamlines from fiber
tracking [143], which we rendered semi-transparently to mitigate problems with occlusion.
Moreover, we seeded superquadric glyphs [110] on the surface.

Figure 5.3 shows an overview of the left hemisphere, seen from a medial cutting plane.
The fused rendering with the streamlines allowed our collaborator to confirm our anno-
tations from Figure 5.2 (b) and, in addition, to identify planar regions corresponding to
the interfaces between anterior thalamic projections and corticospinal tract (ATP/CST),
as well as between internal capsule and putamen (IC/Put). Within the precuneus, the
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Figure 5.3.: Merging the planarity ridge with semi-transparent streamlines made it easier
to recognize the anatomical relevance of its components in this medial view.

planarity ridge exhibits some characteristic dents (red arrows). In this region, the pla-
narity is due to the fanning of the corona radiata (CR) and to its intersection with the
SLF III, a component of the superior longitudinal fasciculus. It is weaker in places where
fiber bundles run, in a more coherent manner, into one of the cortical gyri.

To get a more detailed view on a part of the planarity ridge, Figure 5.4 presents a closeup
of the right hemisphere, near the lateral sulcus. The annotated tracts in Figure 5.4 (a)
are the superior longitudinal fasciculus (SLF) which intersects with the transcallosal fibers
(TF) and the short association fibers (SF), the subinsular white matter (SI), the inferior
fronto-occipital fasciculus (IFO) which intermingles with the uncinate fasciculus (Unc),
as well as the inferior longitudinal fasciculus (ILF).

The superquadric glyphs in Figure 5.4 (b) confirm that the planarity ridges in this
region capture the intersection of SLF with TF and SF, and the bifurcation of IFO and
Unc. Moreover, a planar region exists in the external/extreme capsule (EC), where the
tracts of the subinsular white matter (SI) originate. For our evaluation needs, we found
it sufficient to place the glyphs via a simple stratified surface sampling. If desired, a more
even distribution could be achieved by implementing glyph packing [117] on surfaces.

5.5. Conclusion

In this chapter, we have demonstrated that DT-MRI streamsurfaces, which have been con-
sidered a standard tool for DT-MRI visualization, are mathematically ill-defined, depend
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5.5. Conclusion

(a) Planarity ridges with annotated fiber tracts (b) Annotated planarity ridges with glyphs

Figure 5.4.: Beside using streamlines (a), seeding superquadric glyphs on the surface (b)
helped to identify planarity ridges in this lateral closeup.

on arbitrary choices in their extraction, and thus should not be used.
As a viable alternative, we have proposed to extract planarity ridges as surfaces that

illustrate the regions of planar diffusion. We have derived the required formulas, found
appropriate filtering criteria, and combined the results with streamlines and glyphs to
allow for evaluation by an expert.

In our experiments, the algorithm from Chapter 4 proved crucial for the extraction of
anisotropy creases from full-brain datasets at original resolution.
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Part II.

Computer Vision for DW-MRI
Visualization
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6. Eigenvalue Derivatives for Edge Detection in
DT-MRI

In grayscale images, edges are lines across which image intensity changes rapidly, and
the magnitude of the image gradient is a common measure of edge strength. In tensor-
valued images, edges have a more complex structure: Tensors have several degrees of
freedom, which can be classified as invariant under rotation (shape) and rotationally
variant (orientation). Consequently, there are different types of edges, corresponding to
changes in the different degrees of freedom.

In our work, we are most interested in tensor-valued images from diffusion tensor mag-
netic resonance imaging (DT-MRI) [13], which is introduced in Section 2.2.3. Edge maps
of DT-MRI data have first been created by Pajevic et al. [154]. They distinguish two types
of edges by either considering the full tensor information or only its deviatoric (trace-free)
part. More recently, Kindlmann et al. [113] have presented a framework based on invariant
gradients, which separates six different types of edges, corresponding to all six degrees of
freedom present in a symmetric 3 × 3 tensor. Based on a preliminary description of this
approach [111], we demonstrated the practical relevance of differentiating various types
of edges in matrix data for segmentation and smoothing in an earlier work [187].

The contribution of our current work [190] is to suggest eigenvalue derivatives as a
fundamental tool to discern various types of edges in tensor-valued images. To this end,
we summarize some results from perturbation theory [109], which show how to find the
derivatives of eigenvalues from tensor derivatives. Since all shape measures in DT-MRI
can be defined in terms of eigenvalues (cf. Section 2.2.4), this allows one to map edges with
respect to arbitrary shape measures. Moreover, the existing framework based on invariant
gradients [113] can be formulated in terms of eigenvalue derivatives, which allows us to
simplify and to extend it.

Arsigny et al. [9] have proposed to process the matrix logarithm of diffusion tensors to
ensure that the results remain positive definite. Consequently, they use the gradient of the
transformed tensor field for edge detection. Section 6.5 shows that eigenvalue derivatives
can also be used to analyze various types of edges in this setting, which has not been
attempted before.

6.1. Related Work

In the context of DT-MRI, perturbation theory has previously been used by Anderson [4]
to study the impact of noise on anisotropy measures and fiber tracking. This work differs
from ours not only in scope, but also in methods, since it considers finite deviations from
a noise-free tensor and differentiability of eigenvalues is not relevant to his task.
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6. Eigenvalue Derivatives for Edge Detection in DT-MRI

(a) Differentiable eigenvalue
functions

(b) Sorted eigenvalues (c) Regularized eigenvalue
functions

(d) Derivatives of (a) (e) Derivatives of (b),
discontinuous at 0.5

(f) Regularized derivatives,
everywhere continuous

Figure 6.1.: Sorting eigenvalues may lead to non-differentiable cusps at degeneracies (b).
Regularized eigenvalues are sorted, but everywhere differentiable.

O’Donnell et al. [147] have distinguished two different types of edges in DT-MRI data by
manipulating the certainties in a normalized convolution approach. Their results resemble
the ones obtained from deviatoric tensor fields [154].

Kindlmann et al. [115] extract crease geometry from edges with respect to one specific
shape measure (fractional anisotropy), and demonstrate the anatomical relevance of the
resulting surfaces. Our work lays the foundation for a refinement of this approach, which
is demonstrated in Chapter 5 of this dissertation.

6.2. Regularized Eigenvalue Derivatives

This section will assume a tensor field D(t) which is differentiable in a single scalar t ∈ R

and denote its derivative with respect to t by D′(t). From perturbation theory, it is
known that for a differentiable, symmetric tensor field, there exist differentiable eigenvalue
functions (cf. Chapter two in [109]). They are given by the diagonal elements of [D′(t)]E,
which is obtained by applying the rotation matrix E whose rows are the orthonormal
eigenvectors of D(t) to the derivative D′(t):

[D′(t)]E = ED′(t)ET (6.1)

However, these differentiable eigenvalue functions do not produce sorted eigenvalues,
and ordering them generally introduces non-differentiable cusps at points t at which D(t)
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is degenerate. This is illustrated in Figure 6.1: Even though eigenvalues can be described
by differentiable functions (red and blue lines in Figures 6.1 (a) and (d)), sorted eigenval-
ues are non-differentiable where the original functions cross (Figure 6.1 (b) and (e)). We
propose to solve this problem by regularizing the derivatives to make them everywhere
continuous. This is achieved by smoothly blending the derivatives near degeneracies (Fig-
ure 6.1 (f)).

Within a small neighborhood of a degeneracy, the repeated eigenvalue typically splits
into different eigenvalues, which constitute its λ-group [109]. Even if a repeated eigen-
value itself is not differentiable, the mean value of its λ-group is (dashed black lines in
Figure 6.1). From [D′]E, this mean derivative can be extracted as the average of the
diagonal entries that belong to the duplicated eigenvalue. Our regularized derivatives λ̃′i
are defined to preserve this mean derivative (λ̃′1 + λ̃′2 = (λ1 + λ2)

′).
In Figure 6.1 (c), the regularized derivatives λ̃′i have been integrated numerically to ob-

tain regularized eigenvalue functions λ̃i, which behave mostly like the sorted eigenvalues
in Figure 6.1 (b), but are modified locally around degeneracies to be everywhere differ-
entiable. These functions are shown purely for illustration. Our implementation blends
the derivatives directly and does not make use of the resulting regularized eigenvalue
functions.

In order to decide at which point we should start to blend the derivatives of two eigen-
values λi and λj, we introduce the measure ρij of their relative distance:

ρij =
|λi − λj|
λi + λj

(6.2)

Since we aim at diffusion tensors, this definition assumes that λi > 0. Blending starts
when ρ drops below a threshold ǫ, which was set to ǫ = 0.05 in our experiments.

Let wij = (ρij/ǫ − 1)2. With this, the exact formula we used to define λ̃′1 in terms of
the discontinuous derivatives λ′i is:

λ̃′1 =





λ′1 if ρ12 ≥ ǫ(
1 − 1

2
w12

)
λ′1 + 1

2
w12λ

′
2 if ρ12 < ǫ ∧ ρ23 ≥ ǫ(

1 − 1
2
w12 − 1

6
w12w23

)
λ′1+ if ρ12 < ǫ ∧ ρ23 < ǫ(

1
2
w12 − 1

6
w12w23

)
λ′2 + 1

3
w12w23λ

′
3

(6.3)

λ̃′3 is defined analogously, λ̃′2 is simply obtained as λ̃′2 = λ′1 + λ′2 + λ′3 − λ̃′1 − λ̃′3.
Figure 6.2 compares magnitude maps of ∇λ1 and ∇λ̃1 in a slice of DT-MRI data.

The artifacts in Figure 6.2 (a) become more pronounced when considering edge maps of
non-linear functions of sorted eigenvalues, like the Westin measures.

An alternative way to blend eigenvalue derivatives is to find a rotation Ē such that
those diagonal entries of [D′]Ē which correspond to a repeated eigenvalue equal its λ-group
mean derivative. This is more complex to implement, but has the advantage of cleanly
separating changes in shape (diagonal elements) from changes in orientation (off-diagonal)
while preserving the total derivative magnitude, as measured by the rotationally invariant
Frobenius norm. The key to this method is to observe that in case of a degeneracy, we are
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(a) ‖∇λ1‖ (without regularization) (b) ‖∇λ̃1‖ (with regularization)

Figure 6.2.: In edge maps, ignoring degeneracies leads to small, but noticeable artifacts
(a), which are fixed by the proposed regularization (b).

free to choose any set of mutually orthogonal eigenvectors ei which span the eigenspace
of the repeated eigenvalue.

Let bi be the vectors of the assumed basis, and let D′(1)
j,k be entry (j, k) of the matrix

representation D′(1) = [D′]E. Then, our algorithm works as follows:

1. If ρ1,2 < ǫ, create D′(2) by rotating D′(1) around b3 such that D′(2)
1,1 = D

′(2)
2,2 .

2. If ρ2,3 < ǫ, create D′(3) by rotating D′(2) around b1 such that D′(3)
2,2 = D

′(3)
3,3 .

3. If ρ1,3 < ǫ, identify i such that D′(3)
i,i is in between the remaining two diagonal

entries, D′(3)
j,j ≤ D

′(3)
i,i ≤ D

′(3)
k,k . If D′(3)

i,i is larger (smaller) than µ = 0.5 · (D′(3)
j,j +D

′(3)
k,k ),

rotate around bk (bj) such that D′(4)
i,i = µ. Afterwards, rotate around bi such that

D
′(5)
j,j = D

′(5)
k,k .

The final matrix D′(5) equals [D′]Ē. The correct angles φ for the rotations are found
by writing the desired elements of D′(n+1) as trigonometric functions of elements from
D′(n) and φ and solving the specified equalities for φ. To avoid visible boundaries that
would result from a fixed threshold ǫ, we perform a gradual transition between the non-
degenerate and the degenerate case (ρ = 0) by scaling rotation angles φ by (1−ρ/ǫ). Due
to periodicity, there are infinitely many values of φ which solve the given trigonometric
equalities. However, scaling φ for interpolation only produces the expected result when
selecting the smallest possible value of φ.

6.3. Experimental Results

We used component-wise convolution with a cubic B-spline kernel [154] to obtain a dif-
ferentiable tensor field from the discrete sample values. This method preserves positive
definiteness and implies slight smoothing. Figure 6.3 (a) presents a cl map of a coronal sec-
tion of the brainstem. It reveals several tracts, which have been annotated by an expert:
The pontine crossing tract (pct), the superior cerebellar peduncle (scp), the decussation
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(a) Annotated cl map of the
brainstem

(b) Edges in cl, from eigenvalue
derivatives

(c) Approximate edges from
scalar cl samples

(d) Edges in FA (e) Edges in cs (f) Plots of cl (—), FA (– –), and
cs (· · · )

Figure 6.3.: Edges in cl, based on eigenvalue derivatives, separate adjacent fiber tracts in
DT-MRI data (b). Neither evaluating cl at grid points (c) nor mapping edges
in other shape measures (d+e) produces results of comparable quality.

of the superior cerebellar peduncle (dscp), the corticopontine/corticospinal tract (cpt/cst),
and the middle cerebellar peduncle (mcp). Figure 6.3 (b) is produced by computing the
total derivative of cl,

c′l =
λ1(−2λ′2 − λ′3) + λ2(2λ

′
1 + λ′3) + λ3(λ

′
1 − λ′2)

(λ1 + λ2 + λ3)2
(6.4)

and using regularized eigenvalue derivatives to evaluate it. Minima in edge strength nicely
separate adjacent fiber bundles, which was confirmed by overlaying the edges onto a color
coded direction map. Figure 6.3 (c) illustrates that due to the non-linearity of cl, it is
not sufficient to evaluate this measure at grid points and to construct an edge map by
computing gradients from the resulting scalar samples.

Similar results have previously been obtained by Kindlmann et al. [115], who employ
valley surfaces of fractional anisotropy (FA) to reconstruct interfaces between adjacent
tracts of different orientation. Figure 6.3 (d) presents an FA edge map of the same region.
Unlike cl, FA can be formulated directly in terms of tensor components, so exact edge
maps do not require eigenvalue derivatives. A comparison to Figure 6.3 (b) suggests that
cl produces more pronounced fiber path boundaries. In particular, the dscp is hardly
separated in the FA edge map.

The observation that a shape measure like FA can be used to find boundaries in orien-
tation has been explained by the fact that partial voluming and component-wise interpo-
lation lead to more planar shapes in between differently oriented tensors [115]. Since cl is
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more sensitive to changes between linearity and planarity than FA is, it is better suited
to identify such boundaries.

Further evidence for this reasoning is given in Figure 6.3 (e), which presents edges
in cs, an isotropy measure that completely ignores the difference between linearity and
planarity, and which consequently is less effective at separating tracts than FA. The visual
impression is confirmed by Figure 6.3 (f), which plots cl (solid line), FA (dashed line) and
cs (dotted line, uses the axis on the right) against vertical voxel position along a straight
line that connects the centers of dscp and scp. It exhibits a sharp minimum in cl, a shallow
minimum in FA, and no extremum in cs.

6.4. Invariant Gradients in Terms of Eigenvalue

Derivatives

The currently most sophisticated method for detecting different types of edges in DT-
MRI data has been suggested by Kindlmann et al. [113]. It is based on considering shape
invariants Ji as scalar functions over Sym3, the vector space of symmetric, real-valued
3 × 3 matrices, and computing their gradient ∇DJi, which is an element from Sym3 for
each tensor D. Then, a set {∇̂DJi} of normalized orthogonal gradients is used as part of a
local basis and the coordinates of a tensor derivative D′ with respect to that basis indicate
the magnitude of change which is aligned with changes in the corresponding invariant Ji.

Bahn [11] treats the eigenvalues as a fundamental parameterization of the three-dimen-
sional space of tensor shape. Within this eigenvalue space S ∼= R

3, he proposes a cylindri-
cal and a spherical coordinate system, where both the axis of the cylinder and the pole of
the sphere are aligned with the line of triple eigenvalue identity (λ1 = λ2 = λ3). The re-
sulting coordinates are closely related to standard DT-MRI measures like mean diffusivity
and FA (cf. Section 2.2.4). Ennis and Kindlmann [67] point out that the two alternative
sets of invariants in their own work, Ki and Ri, are analogous to the cylindrical (Ki)
and spherical (Ri) eigenvalue coordinate systems, respectively. However, they state that
the latter cannot be easily applied for edge detection, because they are not formulated in
terms of tensor components.

A connection between both approaches can be made via eigenvalue derivatives: Restrict-
ing tensor [D′]Ē from Section 6.2 to its diagonal yields a vector in R

3, which describes the
shape derivative in eigenvalue space. Moreover, the analogous definitions of the tensor
scalar product 〈A,B〉 = tr(ATB) and the standard dot product on R

3 preserve magni-
tudes and angles when converting between both representations. This means that once D′

has been rotated such that eigenvalue derivatives are on its diagonal, we can alternatively
analyze shape changes in eigenvalue space S or in Sym3, and obtain equivalent results.

This insight simplifies the derivation of invariant gradients: Instead of having to isolate
them from the Taylor expansion (as in the appendix of [67]), invariants Ji can now be
considered as functions over eigenvalue space S, and their gradients ∇SJi in S are simply
found via the basic rules of differentiation. This makes it possible to extend the invariant
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(a) Annotated cl map
(coronal section)

(b) AO measure from [113] (c) Sharper AO measure
involving ∇ĉp

Figure 6.4.: Extending the invariant gradients framework towards the Westin measures
allows for a sharper version of the adjacent orthogonality (AO) measure.

gradients framework towards the Westin measures. The corresponding gradients are

∇S cl ∼




2λ1 + λ3

−2λ1 − λ3

−λ1 + λ2


 ∇S cp ∼




−λ2 + λ3

λ1 + 2λ3

−λ1 − 2λ2


 ∇S cs ∼




−λ3

−λ3

λ1 + λ2


 (6.5)

where scalar prefactors have been omitted for brevity, because the gradients will be nor-
malized before use. All three are orthogonal to ∇S ‖D‖ ∼ (λ1, λ2, λ3)

T. It has been
pointed out [67] that the gradients of the Westin measures cannot be used as part of a
basis of tensor shape space, which follows immediately from the fact that they provide
three coordinates for a two-dimensional space. However, one may still select an arbitrary
measure (cl, cp, or cs) as part of an orthonormal basis of S. The basis is then constructed
from ∇̂S‖D‖, the normalized selected gradient from Equation (6.5), and a third vector
which is the cross product of the first two and captures any remaining changes in shape.

The fiber tracts in Figure 6.4 (a) are superior longitudinal fasciculus (slf), internal
capsule (ic), corpus callosum (cc), cingulum (cing), and fornix (fx). Figure 6.4 (b) presents
a map of the adjacent orthogonality (AO) measure, defined in [113] from the coordinates
of the tensor field derivative in the invariant gradients framework as

AO =

√
‖∇R̂3‖2 + ‖∇φ̂3‖2 (6.6)

It separates differently oriented tracts, based on shape changes towards planarity, mea-
sured by ∇R̂3, and rotations around e3, measured by ∇φ̂3. For detailed information
on rotation tangents Φ̂i, which are used to analyze changes in orientation, the reader is
referred to [113].

For the task of separating differently oriented tracts, we select a basis of S that has ∇S cp
as one of its axes. Since cp reacts more specifically to changes in planarity than R3 does,
a sharper version of AO is then obtained by replacing ∇R̂3 with ∇ĉp. In particular, this
produces clear borders in some locations where the original formulation of AO indicates
no or only very unsharp boundaries (marked by arrows in Figure 6.4 (c)). Overlaying
them on a color coded direction map confirms that they correspond precisely to tract
interfaces.
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6. Eigenvalue Derivatives for Edge Detection in DT-MRI

(a) ‖∇ log D‖ via finite
differences

(b) ‖∇ log D‖ via chain rule (c) same as (a), after tensor
estimation as in [71]

Figure 6.5.: Approximating ‖∇ log D‖ via finite differences of logarithms leads to artifacts
near steep edges (a/c). They are avoided by using the chain rule (b).

6.5. Edge Detection in the Log-Euclidean Framework

The fact that negative diffusivities do not have any physical meaning restricts diffusion
tensors to the cone of positive definite matrices, which is closed under addition and mul-
tiplication by positive scalars. Arsigny et al. [9] point out that after taking the matrix
logarithm, one may process diffusion tensors with arbitrary (even non-convex) operations
without leaving the positive definite cone in the original space, because the inverse map,
the matrix exponential, maps all real numbers back to positive values. The matrix loga-
rithm log D of a diffusion tensor D is computed by performing its spectral decomposition
(Equation (2.12)) and taking the logarithm of the eigenvalues.

Within this framework, edge strength is measured as ‖∇ log D‖. We call this the Log-
Euclidean edge detector, in contrast to the standard Euclidean edge detector ‖∇D‖. To
simplify computations, it has been suggested to evaluate log D at sample positions and
to approximate ‖∇ log D‖ by taking finite differences between the resulting matrices [9].
However, as we have seen in Figure 6.3 (c), approximating the derivative of a nonlinear
function via finite differences may not produce sufficiently exact results. In fact, near steep
edges like those between the ventricles (vent) and brain tissue, we observed artifacts in
approximated Log-Euclidean edge maps, marked by two arrows in Figure 6.5 (a).

This problem can be avoided by applying the multivariate chain rule of differentiation,
which is again simplified by considering eigenvalue derivatives. In the eigenframe of D,
the Jacobian of the matrix logarithm log D takes on diagonal form: Let Di,j be entry
(i, j) of [D]Ē, Li,j be the corresponding entry of [log D]Ē. Then, ∂Li,i/∂Di,i = D−1

i,i = λ−1
i

and for i 6= j, ∂Li,j/∂Di,j = (logDi,i − logDj,j)/(Di,i −Dj,j). All other partial derivatives
vanish. Thus, we simply obtain [(log D)′]Ē from [D′]Ē by multiplication of entries (i, i) by
λ−1

i and multiplication of entries (i, j), i 6= j, by (log λi − log λj)/(λi − λj). The resulting
corrected map is shown in Figure 6.5 (b).

We confirmed that the artifacts in Figure 6.5 (a) are not caused by estimating the tensors
via the standard least squares method [13] and clamping the rare negative eigenvalues
to a small positive epsilon afterwards. They are still present when using the gradient
descent approach from [71], which integrates the positive definiteness constraint into the
estimation process itself (Figure 6.5 (c)).
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(a) Changes in overall diffusivity (b) Changes in anisotropy

(c) Changes in skewness

Figure 6.6.: In (a) and (b), different types of edges are distinguished more cleanly by a
Euclidean (left) than by a Log-Euclidean edge detector (right).

The reformulation of the invariant gradients framework in terms of eigenvalue space
allows us to apply it to Log-Euclidean edge detection, simply by considering the natural
logarithms of eigenvalues as the fundamental axes of tensor shape space. Similar to the
Euclidean case, the cylindrical coordinate system from the work of Bahn [11] can be used
to separate meaningful types of edges. Figure 6.6 (a) shows edges in overall diffusivity,
Figure 6.6 (b) edges in anisotropy. In both cases, the Euclidean result is on the left, the
Log-Euclidean one on the right.

The Log-Euclidean approach measures overall diffusivity by the matrix determinant
instead of the trace. In addition to eigenvalue magnitude, the determinant also reflects
eigenvalue dispersion, which explains why the contours of some fiber tracts appear in the
right image of Figure 6.6 (a). In the Euclidean case, they are isolated more cleanly in
the anisotropy channel. Consequently, anisotropy contours appear more blurred in the
Log-Euclidean case. Overlaying them on a principal eigenvector color map indicates that
they are offset towards the inside of fiber tracts in some places (arrows in Figure 6.6 (b)).
Maps of the third shape axis, which captures transitions between linearity and planarity,
were extremely similar (Figure 6.6 (c)). The dynamic range of values in Subfigure (a) is
much greater than in (b) and (c), so the mapping of gradient magnitude to grayscale has
been adjusted per subfigure in order to improve overall contrast.
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Note that a spherical coordinate system does not produce meaningful results for a Log-
Euclidean edge detector, since the origin is now at λ1 = λ2 = λ3 = e0 = 1, and the
distance to this point is no longer a measure of overall diffusivity.

6.6. Conclusion

Given the ubiquity of the spectral decomposition in DT-MRI processing, eigenvalue deriva-
tives are a natural candidate for the analysis of local changes in this kind of data. In this
chapter, we have used them to generate edge maps with respect to the widely used Westin
shape measures [241], which we have shown to identify anatomical interfaces in real DT-
MRI data and to allow for a more specific analysis of changes in tensor shape than it has
been possible with previously suggested edge detectors.

The existing edge detection framework based on invariant gradients [113] is both sim-
plified and easily extended by considering it in terms of eigenvalue derivatives. Finally,
we have applied our results to analyze the Log-Euclidean edge detector [9]. We have both
corrected a source of artifacts in its previously proposed form and demonstrated that it,
too, allows for separation of different types of edges, yet with a slightly lower anatomical
specificity than the more traditional Euclidean detector.
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7. Segmentation of Anisotropy Isosurfaces

Diffusion anisotropy is the degree to which the apparent diffusivity in a voxel is direc-
tionally dependent. In the human brain, high anisotropy indicates coherently organized
nerve fibers. Consequently, measures of anisotropy play an important role both in clinical
practice and in medical studies (cf. Section 2.2.4).

The isosurfaces of scalar measures like fractional anisotropy (FA) or linearity (cl) outline
the contours of major white matter tracts and thus provide a large-scale overview of
diffusion datasets [257]. However, these surfaces are complex and convoluted, so structures
deep within the brain are occluded by structures further outside from most viewpoints.
User-defined clipping planes reduce this problem, but do not offer a natural and convenient
tool to eliminate curved parts of the surface.

In the previous section, we discussed several types of edge information in diffusion
tensor data. In our work [191], we show how such indicators of anatomical boundaries
can be used to segment anisotropy isosurfaces into meaningful regions. Subsequently, this
segmentation can be used to restrict the surface to the parts a user is interested in, and a
coloring based on the segmented regions helps to visually identify anatomically relevant
parts at first glance.

This chapter is organized as follows: In Section 7.1, we discuss existing methods for mesh
segmentation and relate them to our own work. Section 7.2 formalizes our segmentation
criterion, which is then used by the algorithm described in Section 7.3. Results are
discussed in Section 7.4, before Section 7.5 concludes the chapter.

7.1. Related Work

Our work uses the magnitude of directional derivatives in the tensor field as a criterion to
segment anisotropy isosurfaces. While previous work has confirmed that the magnitude
of the tensor field gradient indicates anatomically meaningful boundaries in the data
[154, 147, 112] and can be used to steer geodesic active contours [69, 187], such differential
information has so far not been used to segment isosurface meshes. Moreover, we consider
directional derivatives rather than the full gradient magnitude, which is critical for our
results.

Watershed-type segmentation methods offer themselves as a natural candidate for the
task at hand, since they are steered by a scalar “height” field and the derivative magnitude
can be used to define such a scalar field on the isosurface. The watershed principle has
previously been used for surface segmentation by Mangan and Whitaker [135] and several
others (cf. [42] and references therein). However, these works have a completely different
background: They aim at segmenting general surface meshes according to their geometric
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7. Segmentation of Anisotropy Isosurfaces

(a) (b) (c)

Figure 7.1.: For separating the narrow cingulum bundle from the corpus callosum (a),
edge weights (c) are more appropriate than vertex heights (b).

properties, while our method depends on the underlying tensor field and finds regions
which are not defined by surface geometry.

Both Rettmann et al. [173] and Vivodtzev et al. [225] have segmented isosurfaces from
cranial MRI. Their approaches are based on geodesic depth and curvature, respectively,
which are suitable to segment the gyri and sulci of the cortical surface, but do not allow
segmentation of the major white matter structures depicted by anisotropy isosurfaces.
Our method draws on information about fiber orientation, which is specific to DT-MRI
and not present in the conventional MRI data these two works deal with.

Our work contributes to the field of general mesh segmentation in that it uses edge
weights as a segmentation criterion, while all previous watershed-based mesh segmentation
methods define a height field on the vertices. In this respect, the work by Page et al. [153]
comes closest to our approach, since it uses a directional height field. However, their
method only considers directional information in the final stage of the segmentation,
when all regions have already been found and 70–90% of the vertices have been labeled
based on vertex-specific information.

As an alternative to anisotropy isosurfaces, direct volume rendering of DT-MRI data
has been suggested [116]. While that approach is not limited to depicting isosurfaces of
anisotropy metrics, it has been used to produce results that are comparable to render-
ings of isosurfaces [224] and share their problems regarding occlusions. In this work, we
concentrate on isosurfaces because our segmentation method requires explicit geometry.

7.2. Definition of Edge Weights

High local contrast in DT-MRI data, as measured by the Frobenius norm of the tensor
field derivative, indicates an anatomical boundary [154]. Standard watershed-based seg-
mentation algorithms like [135] define a height field on the mesh vertices. However, we
found that this strategy only works well for sufficiently broad regions which are sepa-
rated by a clear layer of boundary vertices, and leads to unsatisfactory results on narrow
structures.
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7.2. Definition of Edge Weights

In Figure 7.1 (a), the goal is to separate the cingulum bundle (Cing, green) from the
corpus callosum (CC, red). Figure 7.1 (b) color-codes the derivative magnitude in the
tangent plane at mesh vertices (red indicates low magnitude, blue shows high magnitude).
In the places marked by red circles, the cingulum is only few vertices wide, and using
vertex heights would prevent different parts of it from being merged before a merge with
the corpus callosum occurs.

Therefore, we propose to define an edge weight w, based on the magnitude of the
directional derivative along the edge,

w =

∫

edge

∥∥∥∥
∂D(r(t))

∂e

∥∥∥∥ ds (7.1)

where e is the direction of the edge, and the edge is parametrized as r(t). This rule allows
us to express that vertices should be included in the same region as specific neighbors.
Figure 7.1 (c) shows that with this rule, edges that separate Cing from CC receive a high
weight, while edges within the Cing are much lighter.

In Equation (7.1), we intentionally take the integral of the derivative magnitude along
the edge rather than its average. The resulting bias towards clustering geometrically close
vertices together stabilizes the segmentation in cases where marching cubes generated
extremely short edges. In the implementation, we approximate the integral by evaluating
the magnitude of the directional derivative at the center of the edge, and multiplying the
result with the edge length. As in [154], derivatives are obtained by convolution with the
derivative of a C2 piecewise-cubic reconstruction kernel.

In cerebrospinal fluid (CSF), the apparent diffusion coefficients are much higher than
within tissue, leading to large diffusion tensor traces. At ventricle boundaries, this leads
to spurious derivative magnitudes that dominate those between different white matter
regions. Since tensor trace has been reported to be approximately constant over functional
tissue [164], it is safe to filter out this disturbance, without losing relevant information
elsewhere. Like previous authors [154], we achieve this by considering the derivative of
the trace-free deviatoric from Equation (2.23).

Taking directional derivatives along FA or cl isosurfaces implicitly excludes variations
in these measures, so our segmentation exploits the part of the data which has been
ignored by the anisotropy measure. Since we explicitly eliminate the influence of tensor
trace, the only remaining degrees of freedom are those anisotropy changes which are not
captured by our metric (e.g., skewness in case of FA), and changes in orientation. Thus,
our segmentation criterion is conceptually similar to the adjacent orthogonality measure
(cf. Equation (6.6) and Figure 6.4), which makes it plausible that it will yield anatomically
meaningful results.

We compute the directional derivatives from the gradient, via the chain rule. The
gradient ∇D of a tensor field is a third-order tensor, which can be thought of as a three-
vector of its partial derivatives D(x), D(y), and D(z). A directional derivative is obtained
by taking the inner tensor-vector product with a unit-length vector e = (ex, ey, ez)

T that
defines the desired direction. Combined with the filtering of tensor trace, the formula for
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(a) (b) (c)

Figure 7.2.: Our watershed-based algorithm reduces an initial oversegmentation (a) by
region merging (b) and a final cleaning step (c).

the traceless directional derivative magnitude M reads

M =

∥∥∥∥∥∥
∑

i∈{x,y,z}

ei

[
D(i) − 1

3
tr
(
D(i)

)
I

]∥∥∥∥∥∥
(7.2)

7.3. Performing the Segmentation

Like most watershed-based algorithms, our segmentation method finds initial regions
based on local minima, followed by a merging process to reduce the oversegmentation
which typically occurs in the first stage. Additionally, our algorithm requires a third
stage in which it removes undesired “noise” regions that have not been matched by the
merging criterion. Figure 7.2 gives an overview of these three phases.

7.3.1. Finding Initial Regions

The idea behind the initial step is that each vertex most likely lies in the same region as
the vertex to which it is connected by the edge of least weight w. From that neighbor, we
recursively traverse the mesh until we either meet a vertex that already has a label, which
is then copied to all vertices on our path, or until we enter a vertex through its minimal
edge, and form a new region.

This step of our algorithm is very similar to the original method by Mangan and
Whitaker [135], except that it uses edge weights to decide on the transitions. On a typ-
ical isosurface mesh with 44k vertices, it produces almost 13k regions, which is a strong
oversegmentation (Figure 7.2 (a)).

7.3.2. Merging Close Regions

Watershed methods frequently use closely related criteria for the initial (over-)segmen-
tation and the merging. For example, previous authors [135, 173] have simply merged
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(a) (b)

Figure 7.3.: (a) The area between two adjacent regions is their boundary (white). Bound-
ary lines are shown dashed, the mid-boundary line is strong black. A single
boundary triangle has been hatched.
(b) At junctions, mid-boundary lines can be connected in different ways. For
the line coming from below, the two alternatives are shown dotted.

regions based on the lowest point on their common boundary. In our context, high edge
weights along a large part of a boundary are a good indicator that the adjacent regions are
distinct, even if they share one or two lighter edges. Consequently, we decide to integrate
the directional derivative magnitudes over the full boundary.

Figure 7.3 (a) clarifies the terminology used to formulate our merging rule: Triangles
whose vertices belong to more than one region are called boundary triangles and form the
boundary between adjacent regions. Boundary vertices are connected by boundary lines.
The midpoints of edges within the boundary are connected by the mid-boundary line.

The integrated weight W along a boundary is given by

W =

∫∫

boundary

√√√√
2∑

i=1

∥∥∥∥
∂D(b(s, t))

∂vi

∥∥∥∥
2

dA (7.3)

where b(s, t) parameterizes the surface between the boundary lines and the vi are any two
unit vectors that span the surface element dA. In practice, we again filter the derivatives,
as described by Equation (7.2).

The integral in (7.3) is approximated for each boundary triangle by evaluating the
derivative magnitudes at the midpoint of each of its edges, averaging the results and
multiplying them with the area of the triangle. We found this scheme both reliable and
efficient to implement, since it allows us to re-use the tensor field gradients that were used
to define the edge weights.

The length of boundary lines is not an indicator of region saliency: In particular, distinct
regions can meet along short boundary lines. Consequently, we define the effective weight
W ′ = W/l, where l is the length of the mid-boundary line.

Junctions are triangles at which three boundaries meet. We distribute the informa-
tion from junction triangles to the three adjacent boundaries by adding one third of the
triangle’s weight, area and mid-boundary length to each of them. While the integral in
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(7.3) can be evaluated as before, the length of the mid-boundary line is now estimated by
averaging over both possible configurations (cf. Figure 7.3 (b)).

Since the boundaries and the resulting weights are changed by merges, the order of
merge operations plays an important role for the final result. We keep all boundaries in
a priority queue and iteratively merge the lightest one, until a user-defined threshold on
W ′ is reached.

The merging step is the core of our method, reducing the 13k initial regions in the above
example to 623 more meaningful ones (Figure 7.2 (b)). In terms of mesh segmentation in
general, it is also the main novelty of our approach. We expect that it can be transferred
to other segmentation goals, as long as a reasonable definition of edge weights can be
given.

7.3.3. Cleaning up

Many watershed approaches that are based on vertex heights merge based on basin depth,
defined as the difference between boundary height and minimal height within a region [135,
173]. In contrast, our algorithm only considers absolute boundary weights. Consequently,
regions that are fully contained in areas of high gradient magnitude are left as noise, since
none of their boundaries are ever selected in the merging step.

The resulting noise regions are mostly either very small, or thin and elongated regions
along the boundary of two larger ones. In a final step, we force a merge of all regions
for which the number of internal edges is lower than the number of edges that form
the boundary. This captures both types of noise regions, without introducing any new
parameters. In all cases, large and legitimate regions were preserved.

The merging partner for the noise regions was again selected using the lowest effective
weight W ′. In our example, the final step removed 536 out of 623 regions left after merging
(Figure 7.2 (c)).

7.3.4. Notes on the Implementation

In an efficient implementation of the described segmentation, the mesh is traversed only
once, for the initial labeling. The subsequent merging and cleaning stages are performed
via simple data structures for regions and boundaries. For each region, we store the
number of internal and boundary edges, a list of all boundary indices, and a list of all
regions that have been merged into this region. For each boundary, we store the associated
region and edge indices, as well as the accumulated weights W , and mid-boundary line
length l.

Merging itself is performed using a priority queue that holds all boundary indices and
their effective weights W ′. We maintain an array that keeps track of the final region
to which each region of the initial oversegmentation has been merged. If a third region
is adjacent to both of the regions we are about to merge, we also need to merge the
corresponding boundaries, and update the priority queue. In addition, some care has
to be taken as a merge may turn a former junction into a boundary triangle and the
boundary information has to be updated accordingly.
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7.4. Results

(a) (b)

Figure 7.4.: A part of an FA=0.5 isosurface, viewed from the midsagittal plane. (a) shows
the standard XYZ-RGB color scheme, (b) presents an annotated segmentation
result in random pseudocolors.

For typical datasets, our prototype implementation performs the whole segmentation in
less than three seconds on a 2GHz Athlon 64 processor. This is true both for the example
discussed above (44k vertices), and for all results presented in the following section.

7.4. Results

Anisotropy isosurfaces typically consist of one large, central surface and several smaller
ones around it. We have performed a connected component analysis and only retained
the main component in all our examples. Thus, the presented regions have all been found
by our segmentation method. Like previous authors [257, 224], we have tried different
values to find an isolevel which clearly depicts the structures of interest.

7.4.1. Segmentation Results and Region-Based Clipping

Figure 7.4 presents a sample result from running our algorithm on an isosurface at FA=0.5.
In Subfigure (b), we assign a random pseudocolor to each region in order to emphasize the
boundaries found by our method. A comparison to images in a brain atlas [195] suggests
that our segmentation correctly captures a number of anatomic structures. For example,
the cingulum bundle (Cing) is clearly separated from the corpus callosum (CC), and the
internal capsule (IC) is recognized as a region of its own.

Note that the corpus callosum has not been separated from the corona radiata (CR),
reflecting the fact that there is a smooth transition between both structures: In fact,
the fibers from the internal capsule which fan out in the corona radiata are intermingled
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(a) (b)

Figure 7.5.: Segmentation results can be used to reveal parts of the surface which are
otherwise occluded. In (b), parts of the surface in (a) have been clipped to
give a better view on the corpus callosum.

with fibers that pass the corpus callosum. Thus, a purely boundary-based segmentation
method cannot distinguish them.

In Figure 7.5, we demonstrate how the segmentation results can be used to clip parts
of the surface that may occlude parts we are more interested in. Figure 7.5 (a) displays
the largest connected component of an FA isosurface, while in Figure 7.5 (b), the user has
selected the region that corresponds to the corpus callosum and the corona radiata with
the mouse and clipped all other regions to get a better view on its ventral part.

7.4.2. Coloring Regions by Representative

Once we have obtained a segmentation, it is possible to compute one tensor per region that
represents its average diffusion behavior. We determine this representative as a weighted
average of the data within the region, where the tensor at each vertex is weighted by
the sum of areas of all adjacent triangles that belong to the same region. Consequently,
a region color can be chosen based on the representative tensor and the standard XYZ-
RGB color scheme (cf. Section 2.2.5). To avoid visualizing ill-defined principal eigenvector
directions when λ1 ≈ λ2, color saturation is modulated with

√
cl.

In order to ensure expressive region representatives, we modify the termination criterion
for the segmentation: In addition to providing a threshold on the effective boundary weight
W ′, we now specify a threshold for the linear anisotropy cl of the region representative
that would result from a merge. If it is too low, we are no longer able to assign a clear
color to the resulting region. Consequently, the selected boundary is removed from the
queue without causing a merge.

Figure 7.6 (b) shows that this modification allows one to abstract from variations within
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(a) (b)

Figure 7.6.: An isosurface at cl = 0.26, seen from the front/top/right. In Subfigure (b),
the segmentated regions are colored by their representative tensor. The anno-
tations illustrate that our method has identified anatomically relevant regions.

anatomic regions, and to tell apart several anatomical units at first sight, while still
indicating their overall orientation: Again, a region has been identified that corresponds
to the internal capsule (IC). The cerebellar peduncle (CP) and the inferior fronto-occipital
fasciculus (IF) had also been segmented, but were mostly occluded in Figure 7.4. The
corpus callosum (CC) is separated from the cingulum bundle (Cing), and the region-based
cl criterion even allowed to distinguish it from the corona radiata (CR).

7.5. Conclusion and Future Work

In this work, we have suggested that the part of diffusion tensor data which is ignored
by anisotropy measures can be used to segment anisotropy isosurfaces in an anatomically
meaningful manner, effectively adding information to the visualization and allowing the
user to concentrate on parts of the surface that may be of particular interest.

We have demonstrated practical segmentation results using an efficient edge-based wa-
tershed approach, which extends methods that have been employed in the context of
geometry-based mesh segmentation. The segmentated regions have been shown to reflect
a number of anatomically distinct structures. We have used the results to provide an ab-
stracted view on the data that only shows relevant structures and their overall properties.

The isosurfaces described in this paper have been obtained by evaluating FA or cl for
each tensor in the dataset and running the standard Marching Cubes algorithm [132]
on the resulting scalar grid. This reflects current practice [257, 197], but introduces an
error: In high-curvature regions, we have observed artifacts that stem from the fact that
both FA and cl are nonlinear in the tensor values. Upsampling the tensor field helps, but
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makes isosurface extraction too slow to be practicable. In the future, this problem may be
addressed by the development of an adaptive method for anisotropy isosurface extraction.

It may also be interesting to see where the results of our method differ when applied
to high angular resolution diffusion (HARD) MRI measurements, which do not employ
the standard second-order diffusion tensor model. Different anisotropy metrics for such
data have been proposed [75, 152]. We expect that it would not be difficult to extract
isosurfaces from them and to segment those by appropriately modifying our definition of
edge weights.
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The second-order structure tensor is a common descriptor of local image structure. It is
formed by taking the outer product of the image gradient with itself, and averaging the
result over a local neighborhood. The major eigenvalue and -vector of the tensor indicate
the amount and principal direction of contrast in the neighborhood, and the eigenvalue
differences measure the degree to which the neighborhood has a clear principal direction.

The structure tensor was introduced for edge and corner detection [74] and orientation
estimation [23]. Since then, it has been applied to a wide variety of problems in image
processing and computer vision, including optic flow estimation [22], image diffusion [234],
texture segmentation [177], image inpainting [218], and image compression [81].

A structure tensor for vector- and tensor-valued images can be defined by adding the
structure tensors of the individual components. This is equivalent to an early idea by
Di Zenzo [59] for finding the dominant edge direction in a color image. In the context
of processing diffusion tensor data, structure tensors were used for edge detection [147],
active contour segmentation, and diffusion-based smoothing [69, 187].

The goal of our work [194] is to overcome the limitation of the traditional structure ten-
sor to a single dominant orientation. To this end, we generalize the second-order structure
tensor to a higher-order tensor model. This allows us to investigate the neighborhoods
around corners and junctions in greater detail, and to identify cases in which the direction
of contrast varies notably over the channels of a multivalued image.

This chapter is organized as follows: After discussing related work in Section 8.1, we
introduce our new higher-order structure tensor (HOST) along with some useful mathe-
matical tools in Section 8.2. A novel, maxima-enhancing glyph for higher-order tensors is
presented in Section 8.3, and used to visualize experimental results on 2D grayscale and
color images, as well as on 3D diffusion tensor data (Section 8.4). Finally, Section 8.5
concludes this chapter and points out directions of future research.

8.1. Related Work

Arseneau and Cooperstock [8] use structure tensors to represent more than a single orien-
tation by placing second-order tensors in discrete directional bins and deriving parameters
of a multimodal directional distribution function from them. However, they use the struc-
ture tensors only as an intermediate representation to produce a final model which is no
longer tensor-based. In contrast, our approach is an extension of the structure tensor
itself. Moreover, their work concentrates on lifting the constraint of antipodal symmetry,
a property which our approach preserves. Finally, they only present results in 2D, while
our implementation covers both the two- and three-dimensional case.
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Herberthson et al. [91] have used outer products to handle pairs of orientations. How-
ever, their approach neither generalizes to more than two directions, nor does it indicate
cases in which representing a single orientation is sufficient.

Generalizations of the structure tensor which do not aim at representing more than
a single dominant orientation include a modification to detect spiraling, cross-like, and
parabolic shapes [21], and the introduction of nonlinear local averaging [235], which led
to nonlinear structure tensors [31].

8.2. A Higher-Order Structure Tensor

8.2.1. Definition of the HOST

The standard second-order structure tensor Jρ is given by taking the outer product of the
image gradient ∇f with itself, and convolving the result with a Gaussian kernel Gρ with
standard deviation ρ:

Jρ := Gρ ∗
(
∇f ∇fT

)
(8.1)

The structure tensor representation is independent of the sign of ∇f . Thus, gradients
that have the same direction, but opposite orientation do not cancel in the convolution.
The eigenvectors and -values of Jρ describe local image structure. For example, the
principal eigenvector indicates the direction of largest contrast. However, the matrix rep-
resentation is insufficient if there is more than one dominant direction in a neighborhood:
A structure tensor Jρ which describes two orthogonal, equally strong directions will have
two equal eigenvalues and no longer indicate a principal direction.

This effect is avoided by a higher-order structure tensor Jρ, formed by repeating the
outer product. Taking the outer product of a vector v with itself l times will be written
v⊗l. It yields an order-l tensor, indexed by i1, i2, . . . , il:

(
v⊗l
)

i1i2...il
:= vi1 · vi2 · · · vil (8.2)

A structure tensor Jρ can be interpreted through its induced homogeneous form J(u),
which is defined by repeating the inner tensor-vector product of Jρ and u until a scalar is
left, as described by Equation (2.10). J(u) specifies the local contrast in a given direction
u and will thus be referred to as a contrast function.

To ensure antipodal symmetry of the homogeneous form, tensor order l is chosen to
be even. For a second-order structure tensor, J is unimodal, which reflects the fact that
it is suitable to model only one dominant direction. For higher orders, J can become
multimodal, which allows for a more accurate representation of corners, junctions, and
multivalued images.

We consider it a sensible requirement that the values of the contrast function should
remain comparable, independent of the tensor order that we use. When evaluated in
direction of the gradient, the contrast function yields the squared gradient magnitude
in the second-order case. However, taking the outer product l times would raise the
gradient magnitude to the lth power. We compensate this by scaling the gradient vector
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beforehand. Thus, an order-l structure tensor Jρ that reduces to the well-known second-
order tensor Jρ for l = 2 is given by

Jρ := Gρ ∗
(

∇f
|∇f | l−2

l

)⊗l

(8.3)

In some applications, it is beneficial to have a contrast function that gives the non-
squared gradient magnitude [29]. This can be achieved by replacing the exponent l−2

l
by

l−1
l

in Equation (8.3).

8.2.2. Generalized Tensor Trace

The second-order structure tensor trace has been used as a substitute of the squared
gradient magnitude [69]. For the higher-order case, Özarslan et al. [152] have proposed a
generalized trace operation “gentr” in 3D, which is based on integrating J over the unit
hemisphere Ω and reduces to the standard matrix trace for l = 2:

gentr(J ) :=
3

2π

∫

Ω

J(u) du (8.4)

In 2D, Ω is one half of the unit circle, and the normalization factor 3
2π

is to be replaced
with 2

π
. Since the generalized trace of an order-l tensor over R

2 equals its Fourier coefficient
al

0, we can use the results from Section A.2 to verify that

gentr(J ) = al
0 = 2

l/2∑

i=0

[J ]2i
(l − 1)!!

(l − 2i)!! · (2i)!! (8.5)

where l!! is the double factorial, i.e., the product of integers in steps of two.
In Equation (8.3), we scaled the gradient magnitude such that the maximum value of

J is invariant to the tensor order. However, maxima become narrower with increasing l,
so the generalized trace decreases with (l−1)!!

l!!
.

8.2.3. The Canonical Decomposition

Many applications of the second-order structure tensor depend on its spectral decom-
position into eigenvectors and eigenvalues (e.g., [234, 122, 218, 69, 81]). As detailed in
Section 2.1.6, the supersymmetric canonical decomposition (sCand) comes closest to the
spectral decomposition in the sense that it offers a complete decomposition of the tensor
into unit vectors ei and associated scalars λi.

Our experiments with the sCand are based on a re-implementation of the algorithm in
[47]. However, that algorithm returns unnormalized vectors vi and becomes numerically
unstable when vi aligns with the y-axis: In such cases, ‖vi‖ tends to infinity, while the
corresponding scalar λi tends to zero. We work around this problem by reconstructing
a tensor J ′ only from those vi which have a reasonable magnitude. Then, the residual

99



8. A Higher-Order Structure Tensor

Figure 8.1.: The canonical decomposition can be used to recover individual directions from
a higher-order structure tensor.

J̃ := J −J ′ can be rotated by 90◦ to obtain the remaining vi. In the array representation
from Section A.1, the rotation is performed by reversing the array and multiplying all
entries [J ]i with an odd index i by −1.

Figure 8.1 visualizes a sample result of the sCand. Even though the gradient directions
in the neighborhood of the considered pixel are too close to be resolved as individual
maxima in the contrast profile of an order-four tensor, they are well approximated by the
two largest generalized eigenvectors.

Our prototype implementation is in C, and uses routines from Lapack1 and the Nu-
merical Recipes [168]. It found the sCand of 160 000 order six structure tensors over R

2

in around 2.5 s on a 2GHz Athlon 64. Unfortunately, no algorithms are known which
compute the sCand for tensors of order l > 3 over R

3.

8.3. Glyphs for Higher-Order Tensors

The visualization of higher-order tensors has been addressed in generalized diffusion ten-
sor magnetic resonance imaging, which is introduced in Section 2.2.6. In this context,
generalized Reynolds glyphs are the only glyph-based visualization technique [149, 95].
Let S be the unit sphere (unit circle in R

2) and J the homogeneous function of the tensor.
Then, these glyphs are formed by the set of points

{J(u)u |u ∈ S} (8.6)

which depicts the value of the homogeneous form in each direction. Generalized Reynolds
glyphs have a round shape around their maxima, which makes their exact direction difficult
to see. To compensate this problem, Hlawitschka and Scheuermann [95] suggest to add
arrows that point to the maxima. In this section, we present an alternative glyph, which
indicates maxima through sharp peaks in its shape.

8.3.1. Higher-Order Tensor Glyphs with Maximum Enhancement

The diffusion ellipsoid is accepted as the standard glyph for second-order tensors, but
does not coincide with the Reynolds glyph for l = 2. Özarslan and Mareci [149] argue

1http://www.netlib.org/lapack/
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Figure 8.2.: Three structure tensors of order six, visualized with Reynolds glyphs (a) and
our new HOME glyphs (b), which visually emphasize the maxima.

that ellipsoids, written as uTJ−1u = c, do not have an obvious generalization, since it is
unclear how to define the inverse of a higher-order tensor. However, the tensor ellipsoid
can be constructed in an alternative manner, by transforming the unit sphere under the
linear mapping induced by the tensor [110]. Thus, we generalize it to higher order by
taking the inner tensor-vector product (l− 1) times, until a vector is left. In the notation
of Section 2.1.5, the surface of our glyph is given by the points

{J ·l−1 u |u ∈ S} (8.7)

We name these shapes higher-order maximum enhanced (HOME) glyphs, since they em-
phasize the maxima, at the cost of a smoother shape around the minima. Their efficiency
for the visualization of positive definite tensors is guaranteed by three properties:

1. At stationary points of the homogeneous form, the points on the Reynolds glyph
and the HOME glyph coincide. At these points, their distance from the origin equals
the value of the homogeneous form.

2. When the homogeneous form has an extremum, the distance of the shape to the
origin is extremal both for the Reynolds and the HOME glyph.

3. When the homogeneous form has an extremum, the signed curvature of the Reynolds
glyph is smaller than the one of the HOME glyph. Thus, maxima (positive curva-
ture) appear more pronounced in the HOME glyph, while minima (negative curva-
ture) are more pronounced in the Reynolds glyph.

Figure 8.2 demonstrates the stated properties by overlaying a Reynolds glyph (a, dashed
and gray in Subfigure 1) with a HOME glyph (b), and presents additional examples, both
in 2D and 3D. Unlike the Reynolds glyph, the HOME glyph in Subfigure 2 reveals at first
glance that the displayed tensor is not axially symmetric.

Since we are more interested in the maxima than in the minima of the contrast function,
we use HOME glyphs throughout this chapter.

8.3.2. Analysis of the HOME glyph

For simplicity, our formal proof is limited to the two-dimensional case. The intuition be-
hind the proof lies in the fact that, at non-stationary points, the product in Equation (8.7)
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Figure 8.3.: The Reynolds glyph (2a and 3a) preserves the angles between vectors that are
distributed uniformly over the unit circle (1). In the ellipse and the HOME
glyph (2b and 3b), the vectors are deflected towards maxima.

deflects the vector towards a maximum in the homogeneous form. This fact is the basis of
the power method for finding the largest eigenvector of a matrix, as well as its generaliza-
tion to supersymmetric tensors with a definite homogeneous form [121]. It is illustrated
in Figure 8.3 for a matrix (Subfigure 2) and a higher-order tensor (Subfigure 3).

Assume a positive definite tensor F . Given the representation of its homogeneous
form on the unit circle as a Fourier series f(φ) (Section A.2), the Reynolds glyph can be
written as a parametric curve r(φ) with φ ∈ [0, 2π). As demonstrated in Equation (2.13),
the repeated tensor-vector product F ·l−1v equals the gradient ∇F (v) of the homogeneous
form, scaled by tensor order l. We re-write this gradient in terms of f(φ) and its derivative
f ′(φ) to obtain a parametric form h(φ) of the HOME glyph:

r(φ) =

(
f(φ) cos(φ)
f(φ) sin(φ)

)
h(φ) =

(
f(φ) cos(φ) − f ′(φ) sin(φ)/l
f(φ) sin(φ) + f ′(φ) cos(φ)/l

)
(8.8)

Let kr and kh be the signed curvatures of r(φ) and h(φ), respectively. Then, the three
properties of the HOME glyph stated in the previous section are formalized as:

1. If f ′(φ) = 0, r(φ) = h(φ) and ‖r(φ)‖ = f(φ).

2. If f ′(φ) = 0, ‖r(φ)‖′ = ‖h(φ)‖′ = 0.

3. If f ′(φ) = 0 and f ′′(φ) 6= 0, kr < kh.

The first statement follows directly from Equation (8.8). The second statement involves
first derivatives of r(φ) and h(φ). In case that f ′(φ) = 0, they simplify to:

r′(φ) =

(
−f(φ) sin(φ)
f(φ) cos(φ)

)
h′(φ) =

(
−f(φ) sin(φ) − f ′′(φ) sin(φ)/l
f(φ) cos(φ) + f ′′(φ) cos(φ)/l

)
(8.9)

From Equations (8.8) and (8.9), it is easily verified that if f ′(φ) = 0, r(φ) · r′(φ) = 0
and h(φ) · h′(φ) = 0. This proves statement two. The signed curvatures kr and kh are
computed from first and second derivatives. If f ′(φ) = 0, they are given as:

kr(φ) =
f(φ) − f ′′(φ)

f 2(φ)
kh(φ) =

f 2(φ) + 3−l
l
f(φ)f ′′(φ) + 2−l

l2
f ′′ 2(φ)

|f(φ) + 1
l
f ′′(φ)|3 (8.10)
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In a first step, we show that for a higher-order structure tensor F , f(φ)+ 1
l
f ′′(φ) ≥ 0: In

an appropriate coordinate frame, the homogeneous form of a rank-1 tensor can be written
as f(φ) = λ cosl(φ) (cf. Equation (A.3)), so f ′′(φ) = λ l(l−1) cosl−2(φ) sin2(φ)−λ l cos4(φ).
Thus, the condition f(φ)+ 1

l
f ′′(φ) ≥ 0 is true for all φ when λ ≥ 0 and order l is even. By

linearity of the derivative, the same condition holds for HOSTs, since they are defined as
a convex combination of rank-1 tensors with non-negative λ. In the following, we ignore
the limit f(φ) + 1

l
f ′′(φ) → 0, where kh(φ) → ∞.

We may now omit the absolute value sign in kh, and transform Equation (8.10) to
specify the following equivalent condition for kr < kh:

1 − 2l

l2
f 2(φ)f ′′ 2(φ) +

1 − 3l

l3
f(φ)f ′′ 3(φ) − 1

l3
f ′′ 4(φ) < 0 (8.11)

For f ′′(φ) > 0, all terms in Equation (8.11) are negative, so statement three follows
directly. For f ′′(φ) < 0, we exploit the condition f(φ) + 1

l
f ′′(φ) > 0 to write f ′′(φ) =

−αlf(φ) with α ∈ (0, 1). With this substitution, Equation (8.11) holds if

lα2(−α2 + 3α− 2) + α2 − α3 < 0 (8.12)

Since α2 − α3 > 0 and l > 1, α2 − α3 < lα2(1 − α). Thus, Equation (8.12) is true if
−α2 + 2α − 1 < 0, which is verified for the given range of α using simple calculus. This
concludes the proof of statement three.

8.4. Results

We will now present some experiments to confirm that higher-order structure tensors
indeed give a more accurate representation of junctions and multivalued images. Our first
experiment uses simple junctions in synthetic grayscale images. Derivatives are calculated
by convolution with a derivative-of-Gaussian filter (σ = 0.7). After HOSTs of different
order l have been computed, their information is propagated to a local neighborhood by
convolution with a Gaussian kernel (ρ = 1.4).

Figure 8.4 shows the test images, with the position of the displayed structure tensor
marked by a cross. The results show that a HOST of order l = 4 is sufficient to represent
two edges that cross orthogonally (a), while the traditional structure tensor (l = 2) does
not distinguish any particular direction. In the non-orthogonal case (b), the traditional
model indicates a principal direction which does not correspond to any gradient found in
the image. At the same time, the HOME glyph of order four gives an impression of the in-
volved directions. Similar to the example from Section 8.2.3, the canonical decomposition
could be used to find approximations of the gradient directions, but a clear separation of
the maxima in the contrast profile requires higher order.

The second experiment is based on a natural color image. Derivatives are now calculated
channel-wise and according to the conventional generalization to multi-channel images,
the HOSTs of the red, green, and blue color channels are added. For illustration, we do
not propagate the structure information (ρ = 0) in this case and also show the gradients
of the individual color channels in Figure 8.5. Again, the structure tensor of order four
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(a) Orthogonal edges are clearly distinguished with order l = 4.

(b) For non-orthogonal edges, higher orders provide separate maxima in the homogeneous form.

Figure 8.4.: Two junctions in grayscale images and the corresponding structure tensors.
For orders l > 2, the directions of the meeting edges can be represented.

Figure 8.5.: In a color image, the channel-wise gradients may point into different direc-
tions. Higher-order structure tensors can be used to model this situation
accurately.
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(a) Diffusion tensor data (b) Order-2 structure tensors (c) Order-6 structure tensors

Figure 8.6.: The traditional structure tensors (b) from a diffusion tensor field (a) indicate
whether the gradients of the tensor channels agree (L) or not (P). Order-6
HOSTs (c) give a detailed impression of the involved directions.

gives a much better impression of the range of directions than the traditional model.
To demonstrate the feasibility of going to very high tensor orders, we also present the
representation with l = 50.

In a similar manner, we computed structure tensors from a three-dimensional diffusion
tensor dataset. In this case, both the given image data and the derived descriptors of
local structure are tensors. To reduce confusion that might arise from this fact, a detail of
the data itself is visualized with superquadric glyphs in Figure 8.6 (a), while the resulting
second- and sixth-order structure tensors are shown as ellipsoids and HOME glyphs in (b)
and (c), respectively. A large radius of the glyphs in (b) and (c) indicates a strong gradient
in the tensor field shown in (a).

In the area marked with an “L”, the traditional structure tensors in Figure 8.6 (b) have
a linear shape, and are orthogonal to the diffusion tensors in (a). This is due to the
fact that in that region, the diffusion tensors keep their orientation, but vary in shape
orthogonal to it. A bending of the fiber bundle leads to planar structure tensors in the
area marked with a “P”: The shape of the diffusion tensors still varies orthogonal to the
fiber direction, but additionally, the orientation changes along the path. Distinct peaks in
the higher-order structure tensors in (c) resolve these two different sources of variability
in the tensor data.

8.5. Conclusion and Future Work

In this chapter, we have shown how higher-order tensors can be used to represent the
average of orientations in greater detail than it is possible using traditional second-order
structure tensors. We have introduced the notions, definitions and mathematical tools
required to work with such higher-order structure tensors (HOSTs). For visualization, we
have proposed the higher-order maximum enhancing (HOME) glyph, a generalization of
the standard tensor ellipsoid, and we have formally proven three crucial properties of it
in the two-dimensional case. Our results establish HOSTs as meaningful features that
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represent the local variability of diffusion tensor fields, and HOME glyphs as a way to
visualize them effectively.

A number of interesting directions for future work fall outside the scope of this disser-
tation: In [194], we demonstrated a step towards fully integrated detection of edges and
junctions in grayscale images, based on HOSTs. Moreover, higher-order tensors hold the
potential to steer image diffusion more precisely than standard models of anisotropy [234],
and to allow for finer distinctions in structure tensor-based texture segmentation [177].
Finally, it appears worthwhile to investigate if invariants of higher-order structure tensors
[171] can help to distinguish different classes of local neighborhoods.
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9. Visual Integration of Diffusion MRI and
Structural MRI

A significant amount of research has been devoted to the development of fiber tracking
algorithms, which try to reconstruct white matter tracts from diffusion MRI data (cf.
Section 2.2.5). Moreover, several approaches have been suggested for efficient, hardware-
accelerated rendering of the resulting streamtubes [208, 172, 139, 161].

However, showing streamtubes alone is not very informative: Usually, the viewer is
interested in understanding the spatial relation of a tract to anatomical landmarks like
the gyri and sulci of the cortical surface, or to anomalies like tumors. Such anatomical
features are better captured by other measurement protocols, like T1-weighted MRI.

The contribution of our work [188] is to propose a method that puts streamlines from
DT-MRI data into context with a coregistered T1-weighted dataset, such that the spa-
tial relation between both becomes apparent. The technique is based on a data-driven
deformation of geometry and has been inspired by a method for anatomical fiber prepa-
ration, known as Klingler dissection [133]. It works automatically, but its GPU-based
implementation allows for additional, intuitive interaction.

This chapter is organized as follows: First, we give a more detailed motivation (Sec-
tion 9.1), review related work (Section 9.2), and give an overview of the steps which are
necessary to perform a virtual Klingler dissection (Section 9.3). Then, we provide details
on the use of deformed geometry for visualization (Section 9.4) and describe implementa-
tion issues (Section 9.5). Finally, we present and discuss a number of results (Section 9.6),
before we conclude the paper and point out directions for future work (Section 9.7).

9.1. Motivation

At the current state of the art, T1 data is coregistered with the diffusion dataset and the
streamlines are combined with the anatomical data using standard techniques like slice
images [185] or volume renderings with clipping boxes [146].

Slice images are the simplest way to put fiber tracts into context. However, they do
not convey the three-dimensional shape of structures in the T1 data (Figure 9.1 (a)).
Volume rendering indicates the location of the clipping plane with respect to the surface
of the brain, but hardly improves the perception of structures within the plane itself
(Figure 9.1 (b)). In fact, since we are mostly cutting through opaque structures, the
result from the volume rendering would appear very similar to Figure 9.1 (a) if we had
chosen the same viewpoint. Both methods suffer from the fact that the streamlines are
not visually connected to the T1 data. Even when the clipping plane is placed as close
as possible to the tract, the streamlines frequently appear to float in mid-air between
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(a) Fiber tracts with context from slice image (b) Context from direct volume rendering

(c) Virtual Klingler dissection (d) Example of a Klingler dissection, from [133]

Figure 9.1.: Compared to slice images (a) and direct volume rendering (b), the proposed
method (c) both relates fiber tracts more clearly to the anatomy and gives a
more plastic impression of the cut T1 volume.

the T1 rendering and the viewer, and despite the shading, their exact three-dimensional
trajectory is difficult to assess.

When looking at anatomical textbooks, we found the illustrations of white matter tracts
produced by Ludwig and Klingler [133] particularly expressive. In Klingler’s method
for fiber tract dissection, the brain first undergoes a preparation process which includes
repeated freezing to spread the fibers apart. Afterwards, it is possible to carefully scratch
away tissue from one side to follow the course of fiber bundles. This leads to a relief-like
surface in which the desired tract is naturally surrounded by its anatomical context (cf.
Figure 9.1 (d)). Our method mimics this process by deforming a cutting plane through
the T1 data, similar to the way in which the final surface in a Klingler dissection is formed
by scratching away tissue. Thus, we refer to it as “virtual Klingler dissection”.

The example result in Figure 9.1 (c) shows the superior longitudinal fasciculus in its
anatomical context: Through the deformed geometry, structures in the T1 data appear
more plastic than with standard methods. Moreover, streamlines produce a visible dent
and are rendered more transparently where they are close to the surface, which visually
connects them to the T1 rendering and supports perception of their trajectory. When
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comparing our result to the real Klingler dissection, one should bear in mind that it is
based on an MRI measurement of limited resolution, not on a photograph of a post-
mortem preparation, and that the cerebellum (at the bottom right of our image) has been
removed by Ludwig and Klingler.

9.2. Related Work

To our knowledge, our work is the first to specifically address the problem of combining
anatomical T1 data and fiber tracts from DT-MRI data in a way that makes it easy to
appreciate the relationship between both. Catani et al. [40] have presented a work with
a similar title as ours, “virtual in vivo interactive dissection of white matter fasciculi”,
but with an entirely different focus: They demonstrate how to reconstruct a number of
major fiber tracts from DT-MRI data which agree with the result of postmortem studies.
To provide context for their streamtube renderings, they employ simple slice images of
fractional anisotropy maps, derived from the DT-MRI data itself.

At the core of our method is the data-driven deformation of a surface. In computer
vision, level set methods [198, 148] are a standard tool for this task. Since there is no
need to handle topological changes in our context, we preferred a faster and simpler
approach based on displacing vertices along a vector field. In graphics, vector fields have
previously been used for mesh deformation by von Funck et al. [227]. However, their goal
is interactive modeling, not visualization, and there are significant differences in how the
vector fields are defined. Among others, their vector fields are analytically defined from a
small number of parameters, while ours rely on a sampled representation of volume data.

Deformations which mimic the effect of anatomical dissections have recently been stud-
ied by Correa et al. [48], but they have focused on illustrative visualization of single
datasets, and their method is based on volume deformation, while ours works on explicit
geometry.

The relation of our deformation approach to standard methods like isosurfacing [132]
and direct volume rendering [62] will be discussed in detail in Section 9.4.1.

9.3. Principles of Virtual Klingler Dissection

In this work, we assume that the fibers of interest have been extracted using any of
the established tractography methods and are given as input. The tracts shown in our
experiments have been generated by the tensorlines algorithm [237]. To put them into
context with anatomical T1 data, our method takes the following steps:

1. Cut the brain along a plane which is aligned with the streamlines.

2. Deform the plane such that streamlines behind it are revealed and that it adapts to
features in a coregistered T1 data set.

3. Volume texture the plane with the T1 data and render the streamlines on top of it,
using variable transparency to convey their proximity.
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(a) Artifacts in a surface at
integration time t = 40.

(b) Same setting with
threshold on total resistance.

(c) Schematic illustration of the situa-
tion in (a) and (b).

Figure 9.2.: Pushing a surface through structures like skull and blood vessels can lead to
shading artifacts (a) which are avoided by limiting the total resistance (b).

These three steps execute fully automatically in less than a second and in many cases, they
already yield a satisfactory rendering. However, our implementation additionally allows
the user to modify the result, both by adjusting parameters and by direct interaction with
the surface.

9.4. Visualization by Data-Driven Surface Deformation

Inspired by the way in which surfaces evolve in the course of a dissection, we suggest
a novel metaphor for volume visualization, in which the volume is thought to possess
mechanical resistance. When the initial cutting plane is moved in some direction, the
spatially varying resistance deforms the geometry. Similar to direct volume rendering
(DVR), in which a transfer function assigns optical properties like color and opacity to
materials in the volume, the resistance of the material is defined as a function of the data.
Details on the specific transfer function used in a virtual Klingler dissection will be given
in Section 9.5.2.

From a scalar resistance measure r ∈ [0, 1], we define an effective velocity v, parallel
to the original surface normal, at which a massless particle may traverse the volume. Its
magnitude is given by ‖v‖ = 1−r. Thus, it is dual to the resistance, just like transparency
is dual to opacity in DVR. Formulating the problem in terms of a velocity field allows
us to employ a standard tool for flow visualization: One way to visualize a 3D flow is to
release a surface into the fluid at some instant, to let it move with the flow, and to observe
the evolution of the resulting time surface with time t. Our deforming geometry is given
as such a time surface, with the velocity defined by the transfer function.

Like an undeformed cutting plane, the final surface is textured with the local values
of the volume. However, this only results in an expressive rendering when the shape of
the generated surface has a clear connection to its texture. After large integration times,
when the surface has been pushed through significant structures, this may no longer be
the case: Figure 9.2 (a) presents a closeup of a human head, in which the surface was
shaped by its way through skin, skull, and blood vessels. Since the resulting features are
not related to the displayed brain tissue, they appear as shading artifacts.
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(a) (b)

Figure 9.3.: Unlike a simple 2D embossment filter (a), our method reveals structures be-
hind the original plane (b).

To avoid this problem, we limit the total resistance which a surface point may overcome,
i.e., a point on the time surface is stopped when the integral

∫ s

0
r(u) du along its path

reaches a threshold θr. We have fixed this resistance threshold empirically at θr = 0.7.
Figure 9.2 (b) demonstrates that the threshold avoids the artifacts by stopping the surface
on the skin layer. Figure 9.2 (c) illustrates the integration process in both cases: Crossed
out vectors denote velocities which are ignored because of the threshold.

9.4.1. Relation to Standard Methods

Even though the deformation process creates geometry from volumetric data, our method
is more closely related to direct volume rendering [62] than it is to surface extraction
methods like isosurfacing [132]. It is the goal of surface extraction to reconstruct the
geometry of some object of interest, like the contour of an organ or a tumor. Thus, ren-
dering the extracted shape alone already provides an expressive visualization. In contrast
to this, our deformed geometry is only used to select and shade a part of the volume.
Note that this process does not simply result in an improved shading of the original plane
(which could be achieved using bump mapping or 2D image filters), but reveals parts of
the volume which are behind it (cf. Figure 9.3).

It deserves further discussion whether introducing geometry which does not correspond
to a boundary in the volume improves its visualization or rather leads to a false perception
of shape. The effectiveness of a Klingler dissection does not suffer from the fact that the
resulting surface is shaped by the hands of an anatomist rather than a natural boundary
in the living brain. However, a dissection is created by an expert, while our surface
deformation happens automatically, based on properties of the volume. In this respect, a
more suitable analogy is sandblasting an object which is composed of different materials:
Since softer materials erode faster than harder ones, this turns a planar surface into a
relief. Even though the evolving surface is not a natural boundary, we can expect its
shape to reflect the structure of the object.
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Experimentally, we found the resistance threshold described in the previous section es-
sential for obtaining artifact-free results. Interestingly, this threshold creates a theoretical
link to thin slab volume rendering [248]. Optical models for direct volume rendering typ-
ically include an absorption term which attenuates light intensity I(s) depending on a
spatially varying extinction coefficient τ(u) and distance s [136]:

I(s) = I0 · e−
R s

0
τ(u) du (9.1)

Assume we volume render the slab from which we created the deformed geometry using
an orthographic projection perpendicular to the slab and using our resistance term r(u)
as the extinction coefficient τ(u). Then, the distance s at which we stop the surface
deformation because of the resistance threshold,

∫ s

0
r(u) du = θr, coincides with the point

at which transparency in the volume rendering reaches T (s) = e−θr . In particular, the
selected threshold θr = 0.7 corresponds to transparency T = 0.5. This means that in
the limit, our deformed geometry converges to a surface of constant accumulated opacity.
It is interesting to note that even though such surfaces have so far not been extracted
explicitly, previous work [175] has demonstrated how the points of accumulated opacity
A = 0.95 can be used to separate meaningful layers in certain types of data.

However, this insight only establishes a similarity to volume ray casting, not an equiv-
alence: Our surface deformation is much faster than a full evaluation of the volume
rendering integral, since the integration does not have to be performed per-pixel and does
not involve a lighting computation in each step. Also, the visual appearance differs, as
observed in Figure 9.1 (c): Since we do not perform a compositing, the surface has a clear
appearance, while the volume rendering looks more blurry. Moreover, the lighting based
on the normal of the surface produces a plastic impression, while the volume rendering
has a flat look, which is typical of interfaces to clipping geometry, due to the fact that
correct lighting in such areas needs to employ the normal of the geometry rather than the
gradient of the volume [238].

9.4.2. Mesh-based Implementation

When the surface is represented as a triangular mesh, it is deformed by considering its
vertices as massless particles and letting them move with the flow v, as described by
Equation (2.36). We performed numerical integration both using fixed stepsize Euler
integration and an adaptive fifth-order Runge-Kutta scheme [168], set for 0.5% accuracy
in the final result. In our experiments, both methods achieved similar efficiency and visual
results. To speed up the computation, we also implemented a GPU solver similar to the
one described by Krüger et al. [124].

In strongly deformed regions, it can become necessary to refine the sampling of the
mesh. In order to decide whether an edge should be split, we define an edge weight w.
Let x1,2 be the endpoints of an edge with normals n1,2. Then,

w =
‖x1 − x2‖

max(n1 · n2, 0.5)
(9.2)
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9.4. Visualization by Data-Driven Surface Deformation

(a) Grid of equilateral triangles (b) Result with rectangular grid (c) Result with grid in (a)

Figure 9.4.: Compared to a rectangular grid, the sampling scheme in (a) achieves compa-
rable quality with less vertices. (c) uses 14% less vertices than (b)

Taking into account normals results in a smoother shading, while the maximum operator
avoids infinite refinement around sharp features. All edges whose weight w is larger than a
threshold θs are split, in decreasing order of w. Like von Funck et al. [227], we split edges
on the undeformed mesh, and integrate the new vertices along the vector field. After five
rounds of refinement, we collapse all edges in M ′ whose weight is below a second threshold
θc (e.g., θc = 0.2 · θs) to remove triangles which are no longer needed.

In our implementation, mesh refinement is performed on the CPU, based on a directed
edges data structure [36], and rendering is done with the fixed-function graphics pipeline.
However, numerical integration is still accelerated by the GPU. In this case, each vertex is
rendered to an off-screen buffer as a point, and the results are read back to change vertex
positions in the CPU-based data structure.

9.4.3. Implementation as Height Field

Since we are only considering planar starting geometry in this work and restrict ourselves
to deformations in orthogonal direction, the results can alternatively be represented as
height values over the original surface. It is possible to store the height field as a texture
in graphics memory and to use vertex buffers along with the programmable vertex units
of modern GPUs to rapidly transform it into textured geometry [137].

Regular grids simplify implementation, but rectangular grids introduce a bias towards
interpolation artifacts along the diagonals. To achieve a homogeneous sampling, we use
a grid that consists of equilateral triangles in both the mesh-based and the heightfield
implementation (cf. Figure 9.4). In order to represent the heightfield as a rectangular
matrix, we use the following formulas.

Given a slice of na × nb data points that we would like to sample with edge length l,
we create a matrix of dimensions ma ×mb, where

ma =

⌈
na − 1

l
+

1

2

⌉
+ 1 mb =

⌈
nb − 1√
3/4 · l

⌉
+ 1
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Slice Size Vertices fps GPU fps CPU
93 × 116 49 648 / 27 120 36.2 / 13 .3 6.0 / 7 .3
256 × 156 103 680 / 44 521 18.5 / 7 .8 2.6 / 3 .7
256 × 256 170 112 / 66 998 11.7 / 6 .7 1.7 / 2 .4

Table 9.1.: Surface deformation and rendering can be done in real time. Results of the
mesh-based approach are in italics

Then, the coordinates (x, y) corresponding to matrix entry (i, j) are given by

x = clamp
[0,na−1]

{
l · (i− 0.5) if j even

l · i if j odd

y = clamp
[0,nb−1]

√
3/4 · l · j

If ma 6= ⌈(na − 1)/l⌉ + 1, this formulation leads to degenerate triangles along the right
boundary, which could be removed by discarding entries (ma − 1, j) for odd j. However,
given that they do not contribute to the final rendering, it is safe to ignore them.

Table 9.1 compares the performance of both implementations on a 2 GHz Athlon 64
with a GeForce 6600 graphics board. Reported timings include surface deformation to
integration time t = 10 (which was used for all presented examples), normal estimation,
and rendering on a 1300 × 1000 viewport. Results of the mesh-based approach are given
in italics, those of the height field are in normal print. In the GPU-based implementation,
the user may change the starting geometry and observe the modified final result in real
time.

Since the height field implementation currently does not involve a refinement step, it has
to employ a much finer sampling to avoid shading artifacts. However, our results indicate
that the overhead from remeshing and GPU–CPU communication clearly outweigh the
reduced vertex count when the GPU is used for integration. When all processing is done
on the CPU, using an adaptive mesh is slightly more efficient.

9.5. Implementing the Individual Stages

9.5.1. Finding a Suitable Cutting Plane

The initial cutting plane should be well-aligned with the streamlines to provide good
context. Moreover, physicians are very much used to looking at axis-aligned slices, so
cutting planes which are close to an axis-aligned view appear more natural to them and
should be preferred.

Given an evenly-spaced discretization of the streamlines, we can reduce them to their
vertices to reduce the problem of finding an initial cutting plane to the standard task
of fitting a plane to a point cloud. However, the given streamlines will not in general
be closely aligned to a plane, so we need to employ a robust estimator which is tolerant
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(a) (b)

Figure 9.5.: Our robust estimator (b) is less likely to propose unusable views than a simple
least squares approach (a).

against gross outliers. In computer vision, random sample consensus (RANSAC) [73] is
a popular tool for such tasks. It repeatedly uses a minimum set of random samples to
parameterize the model (i.e., three points in case of a plane), estimates the quality of the
fit by counting the number of points that are within a predefined distance to the resulting
model, and stores the best result. Once a sufficiently good initial estimate has been found,
the least squares problem is solved on the inlier points only.

This simple procedure relies on the fact that it will sooner or later draw three inliers
from the point cloud and can use the resulting plane to filter out outliers. Moreover, it
easily allows us to integrate the preference for axis-aligned views by evaluating planes by
a score S = C · maxi |n · ei|, where C is the number of points near the plane, n is the
surface normal, and ei are the axes. To ensure interactive response, we let RANSAC run
for a fixed period of time (0.5 s) and use the best result so far.

Figure 9.5 presents an example where our modified robust estimator is crucial for ob-
taining a useful result. In Subfigure (a), a tractography of the inferior fronto-occipital
fasciculus and the uncinate fasciculus is shown in context of a plane which has been cho-
sen based on a simple least squares fit on all vertices. The tract is visible, but an expert
would find the specific plane, which cuts diagonally through parts of the ventricle (red
arrow) and through a part of the opposite hemisphere (yellow arrow) confusing rather
than helpful. In contrast, the result of our robust estimator in Subfigure (b) is more
closely aligned to a standard sagittal view. If the user is still not entirely satisfied with
the suggested plane, she may move and rotate it manually.

9.5.2. Deforming the Geometry

Deformation of the original cutting plane follows two goals: First, the surface should be
retracted when streamlines are in its vicinity. This is akin to the way an anatomist would
follow the course of a fiber tract in a Klingler dissection: It reveals fibers which would
otherwise be occluded and introduces dents in the surface which give visual cues about the
immediate proximity between T1 data and streamlines. Second, a surface whose curvature
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enhances the appearance of features in the anatomical data is preferred over a flat one.
To pursue the first goal, a voxel-wise streamline density ρ is derived from the given

tracts. It is approximated by normalizing the length of each streamline segment by the
volume of one voxel and counting it towards the density of the voxel which contains the
midpoint of the segment. The resulting field is convolved with a narrow Gaussian kernel
to ensure a smooth deformation. Resistance r = 1 should be assigned to ρ(u) = 0, while r
should tend to zero for ρ(u) → ∞. This is accomplished by taking the difference of unity
and the scaled arc tangent of ρ(u).

A second transfer function g is used to take influence of the T1 data into account. Our
implementation lets the user define g as an arbitrary piecewise linear function of scalar
value f(u), but all demonstrated results use a simple linear mapping of f to [0, 1]. The
combined resistance r(u), which is used to deform the surface within the framework of
Section 9.4, allows it to move when either of the individual terms indicates low resistance:

r(u) = g (f(u)) ·
[
1 − 2

π
arctan (λ · ρ(u))

]
(9.3)

To obtain a meaningful quantity, the absolute streamline density ρ(u) has to be nor-
malized by the seed point density ρs, which is an arbitrary parameter in fiber tracking.
Additionally, it depends on the distance of the surface to surrounding fibers how much it
has to deform to reveal them. The scaling parameter λ takes care of both facts. Consider
the streamline vertices in some corridor around the surface and let σ be their standard
deviation from the surface. Then, the following choice of λ reveals streamlines within 3σ
in areas where ρ(u) = ρs:

λ =
1

ρs

tan

(
π

2

3σ

3σ + θr

)
(9.4)

If the user is not entirely satisfied with the deformation, she can alter the suggested
settings of g and λ. Moreover, the surface can be further deformed interactively, by clicking
and moving the mouse over it. In this case, integration is continued with resistance
threshold θr disabled, but resistance r still in effect. To keep the deformation local,
integration time t decreases with distance from the surface point below the mouse pointer.
For example, this intuitive tool allowed us to transform Figure 9.6 (a), where the automatic
deformation had failed to reveal a small part of a tract in a region of low streamline density,
to Figure 9.6 (b), which resolves this problem, within a few seconds.

9.5.3. Distance Cueing

Depth cueing is a standard computer graphics technique which supports depth perception
by blending object colors with the background, depending on the distance from the viewer.
We adopt this idea to visually connect the streamlines with the T1 surface by blending
them with the surface when they come close to it. This is done by assigning an opacity
value which decreases linearly with distance to the surface when it is less than a threshold
θd = 5 mm.
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(a) (b)

Figure 9.6.: In some cases, the T1 surface may occlude part of a fiber tract even after
deformation (a). Such problems are easily resolved by a local, interactive
deformation (b).

The approximate distance of a point to the surface is found by computing the orthogonal
distance to the initial plane and subtracting the interpolated height value from the height
field representation. If a mesh representation is used, it is first converted into a height
field by rendering it to an off-screen buffer and reading back the OpenGL depth buffer.

9.6. Results and Discussion

The cutting planes suggested by our program have been used without modification in
Figures 9.5 (b), 9.6, 9.7, 9.8, and 9.9. To test the robustness of the estimator, we tried
it on two highly non-planar inputs. In both cases, it successfully ignored part of the
streamlines to produce a result which was at least sensible for the rest of them: For fibers
from the corpus callosum, which has a saddle-shaped geometry, the estimator suggested a
plane that provides good context for the left half (Figure 9.7) and clearly shows how the
tract passes above the ventricle and projects to the cortical surface. In a tractography of
both cingulum bundles, the estimator chose the vertices of the right bundle as inliers and
generated suitable context for them. In both cases, a least squares approach produced a
result near the mid-sagittal plane, at a high distance to almost all streamlines.

Within this project, our experience with the novel visualization metaphor suggested in
Section 9.4 has been encouraging. With the resistance threshold θr enabled, we have not
observed any cases in which the deformed geometry would have introduced artifacts or
a false perception of shape, and even though the interpretation as a surface of constant
opacity only holds when viewed in perpendicular direction, we found that the surface
can be rotated without losing its expressiveness. For example, Figure 9.8 shows that
changing the viewpoint can help to understand how the cingulum bundle runs over the
top of the corpus callosum (red arrow). Note that such an exploration is not limited to
the framerates reported in Table 9.1, since it does not involve a re-integration. For direct
comparison, Subfigure (c) presents a clipped volume rendering from the same viewpoint.

The resistance term suggested in Equation (9.3) proved effective for our application. In
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Figure 9.7.: Despite the non-planar shape of the corpus callosum, fitting a cutting plane
produces a sensible result.

(a) Frontal view on the cingulum
bundle

(b) Rotated view on the same
surface

(c) Clipped DVR for comparison

Figure 9.8.: Rotating the created geometry interactively (from (a) to (b)) supports the
spatial impression. Due to its flat appearance, rotating a clipped volume
rendering is less helpful (c).
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(a) Deformation based on fibers
only

(b) Deformation based on T1

data only
(c) Proposed combined method

Figure 9.9.: Deforming the cutting plane based on streamline density (a) or T1 value (b)
alone is less effective in conveying their relation than a combination (c).

particular, we found the combination of a streamline-based and a T1-based resistance to
be superior to a deformation which only depends on one of the input datasets. Figure 9.9
illustrates this by showing results based on streamline density (a) and T1 value (b) only,
as well as the proposed combined term (c).

The specified defaults for the scalar transfer function g and the streamline density
weight λ were appropriate in most cases. Only in Figure 9.9 (c), they failed to reveal a
small portion of the tract, which was easily fixed interactively (cf. closeup in Figure 9.6).
Overall, our framework produces usable results automatically, but makes it easy for the
user to refine them to her liking.

9.7. Conclusion and Future Work

Understanding the spatial relation of streamlines from DT-MRI to anatomical structures
in T1 data is an important aspect in the visual analysis of fiber tracking results. In this
work, we proposed a fused visualization method, in which both types of data interact to
reveal their spatial relation. We presented an efficient implementation and results on four
different fiber tracts in the human brain. Our results have been validated by a domain
expert. Additionally, a physician who is working with DT-MRI data, but not affiliated
with our team has confirmed that our renderings convey an impression of the relative fiber
positions, while standard methods fail to connect the streamlines to their context.

Part of our contribution lies in the way in which established methods, like RANSAC or
depth cueing, are modified and combined to solve a specific problem. However, the data-
driven surface deformation, which is at the core of our method, is a novel visualization tool
in itself. Despite initial doubts about the appropriateness of creating “artificial” geometry
for visualization, the valid and expressive results achieved in our experiments support the
arguments which are in favor of such an approach. We are confident that the method
from Section 9.4 can help to create more plastic renderings in other situations where the
flat appearance caused by clipping geometry may be undesired.
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To improve the virtual Klingler dissection further, it would be interesting to consider
non-planar starting surfaces to fit the complex geometry of some neuronal pathways even
more closely.
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Fiber tracking reconstructs the pathways of nerve fiber bundles through an integration
process that requires repeated estimation of a principal fiber direction from the measured
data. In this dissertation, such tractography methods were used to define topological
features (probabilistic tracking, Chapter 3) and to visualize likely nerve fiber pathways
directly (deterministic tracking, Chapters 5 and 9).

It is a well-known limitation of the diffusion tensor model that it can only be used to
estimate fiber directions in voxels that contain a single predominant bundle. The mul-
timodal orientation distribution functions (ODFs) of q-ball and spherical deconvolution
methods offer more flexible models to capture more complex configurations. Prior to our
work, fiber tracking in ODF fields used ODF maxima to estimate fiber directions.

The contribution of our work [189] is to point out that in order to get reliable results,
extraction of fiber directions from ODFs has to be treated explicitly as an inverse prob-
lem. We propose to model estimation of k individual tracts from an ODF as a rank-k
approximation of its higher order tensor representation. Based on this model, we develop
a practical algorithm that addresses the inverse problem and demonstrate that it produces
much better results than simply using ODF maxima.

The chapter is organized as follows: Section 10.1 provides a more detailed motivation,
and Section 10.2 discusses related work. Section 10.3 explains our choice of rank-k approx-
imations for addressing the fiber extraction problem and presents the resulting algorithm.
Finally, Section 10.4 demonstrates the advantages of our approach both on synthetic and
real data, before Section 10.5 summarizes our results and discusses possible directions for
future work.

10.1. Motivation

When a voxel contains a single coherent tract, the diffusion tensor model [13] has proven
sufficient to infer the dominant fiber direction. Unfortunately, in cases of crossing, touch-
ing, fanning or bending fiber configurations, the diffusion tensor may become degenerate
(i.e., have two larger eigenvalues of similar magnitude, such that the principal direction
is ill-defined) or have an apparently well-defined principal direction which is no longer
aligned with any real fiber direction (cf. Figures 10.1 (a) and (b)). Such problems are
estimated to affect around one third of all white matter voxels [18].

To gain more information about such voxels, techniques with a higher angular resolution
have been proposed. Two of them are q-ball imaging [219] and spherical deconvolution
[213], which use a more flexible orientation distribution function (ODF) to indicate mul-
timodal fiber distributions. An overview of these methods and a comparison to the more
traditional diffusion tensor model is given in Section 2.2.
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Figure 10.1.: Both DT-MRI and ODF maxima may provide misleading estimates of the
underlying fiber structure. Decomposing ODFs in higher-order tensor rep-
resentation results in much more reliable estimates of fiber crossings.

Orientation distribution functions are continuous functions on the sphere. In many
cases, it is desirable to extract discrete principal directions from them. In visualization, the
most common application which relies on such directions is fiber tracking [85, 96, 199], but
they also play a role in assessing the accuracy of reconstruction schemes [213, 92, 249, 58],
as well as for visualization through glyphs [95, 58] and color maps [199].

As a simple ad-hoc solution, it has become common to treat ODF maxima as approx-
imate principal directions. However, when adding peaks of finite width in linear models
like q-ball and spherical deconvolution, they will generally interfere. Figure 10.2 uses two
simple one-dimensional examples to illustrate the resulting effects: In Figure 10.2 (a), the
maxima of the sum are shifted with respect to the original peaks. The distance is marked
by the red line segments in the plot on the right. In Figure 10.2 (b), the weaker maximum
is masked by the stronger one in the sum.

Consequently, there are many situations in which the number and orientation of ODF
maxima deviate from the real tracts: This is demonstrated in Figure 10.1 (a), which shows
a q-ball of a synthetic 65◦ fiber crossing for which inferring principal directions from ODF
maxima underestimates the included angle by approximately 10◦. Reducing the angle to
55◦ (Figure 10.1 (b)) even leads to a single maximum, which is not aligned with any of
the fiber directions. In this case, the direction estimated from the q-ball profile is not
better than the one from traditional DT-MRI. Such effects are known [213] and have been
demonstrated in high detail [249].

Our work is founded on the observation that extracting individual fibers from an ODF
is an inverse problem of its own: Given the sum of an unknown number of peaks, the
task is to obtain a set of peaks whose sum approximates the observed ODF. Clearly, this
problem does not have a unique solution. For example, from the ODF in Figure 10.1 (b)
alone, it is not clear whether the voxel contains two (or more) crossing tracts or only a
single one which causes a broad peak, e.g., because of fanning structures. On the other
hand, it has been demonstrated that even a multimodal ODF does not necessarily indicate
multiple tracts, but may be due to strong bending [219].
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(a) + =

(b) + =

Figure 10.2.: Adding peaks of finite width may shift (a) or mask (b) original maxima.

In this chapter, we demonstrate that even though this problem has no unique solution,
a plausible one can be found by making some simple assumptions about the number and
shape of single fiber peaks. In particular, we address the case of few crossing bundles,
which are assumed to each cause a narrow peak in the ODF. We do this by converting the
spherical harmonic series which is commonly used to describe ODFs into a higher-order
tensor representation and approximating it with a set of rank-1 tensors, which model the
individual peaks.

In synthetic test cases, our method yields more accurate results than a simple max-
imum extraction (cf. Figures 10.1 (a) and (b)). In real data, it provides plausible and
reproducible results. For example, Figure 10.1 (c) presents a q-ball from a voxel in which
transcallosal fibers are known to intersect the corona radiata [85]. Unlike a maximum
search, our method estimates two fiber bundles, whose orientations agree with the ex-
pected directions.

10.2. Related Work

Several previous works [2, 220, 123, 20, 159, 18] have used k-tensor models to resolve cross-
ing fiber configurations. Similarly, Bayesian inference was used to estimate the parameters
of a mixture of Bingham distributions [108]. In both cases, the measured signal is mod-
eled directly, using several second-order tensors. Our work differs from this conceptually
in that we extract discrete directions from pre-computed q-ball or spherical deconvolu-
tion models. Moreover, we build on different mathematical methods, since we use rank-k
higher-order tensors to approximate existing models. In practice, our approach proved
to deal reliably even with three-fiber crossings (cf. Sections 10.4.3 and 10.4.5), while no
k-tensor models have been presented which can estimate more than k = 2 crossing tracts.

Our method is based on a higher-order tensor decomposition. In the context of diffusion
tensor processing, higher-order tensors have previously been analyzed by Basser and Pa-
jevic [14] using spectral decomposition and by Kindlmann et al. [113] based on invariance
gradients and rotation tangents. However, both works are concerned with fourth-order
covariance tensors that arise from the DT-MRI model and do not address HARDI.
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Part of the related work was developed in parallel and was not available at the time
we submitted our own approach [189]: The work by Bloy and Verma [26] is similar to
ours in that it uses higher-order tensors to model ODFs. However, it employs a different
generalization of eigenvectors to higher-order tensors, namely, the Z-eigenvectors from
Equation (2.14). This work essentially describes an alternative way to compute the sta-
tionary points of the ODF, so it shares the fundamental problems of maximum extraction
that will be discussed in the remainder of this chapter.

The method by Yeh et al. [247] does not employ higher-order tensors, but is similar to
our own approach algorithmically: In both cases, fiber tracts that have been identified
are subtracted out for further analysis. Unlike their approach, our algorithm iterates the
optimization once the desired number of tracts has been found. Our experiments indicate
that this step improves results even further. However, the extended abstract [247] does
not provide enough information to reproduce the described experiments and to perform
a more detailed comparison.

Jayachandra et al. [101] have proposed to treat fourth-order diffusion tensors as en-
domorphisms on the space of second-order tensors. They use an approach equivalent to
the one in [14] to find six eigenvalues and corresponding second-order “eigentensors” of
these linear maps and claim that each of them represents a separate fiber compartment.
However, the only fiber tracking experiment presented in [101] reconstructs a tract that
was previously found by standard tractography on second-order tensors. When we im-
plemented the method and tested it on synthetic data with a single dominant direction,
the principal eigenvector of the largest eigentensor indeed coincided with the direction of
the tract. However, we were not able to resolve the simple 90◦ two-fiber crossing shown
in Figure 2.7, and [101] does not present any quantitative results that would demonstrate
the ability of this method to estimate crossing fiber tracts.

10.3. Tensor Approximation for Inferring Fiber Directions

Section 10.3.1 will introduce the fundamental idea of our approach, and the formal model
used to separate individual fiber contributions. Then, Section 10.3.2 describes how to find
rank-1 tensor approximations, which is an important task within our method. Finally,
Section 10.3.3 provides the complete algorithm and a listing in pseudocode.

10.3.1. Rank-1 Tensors as Fiber Terms

The homogeneous form T (v) of a symmetric order-l rank-1 tensor

T (s,u) = s · u ⊗ · · · ⊗ u︸ ︷︷ ︸
l terms

(10.1)

defined from a scalar s and a real unit vector u provides a sharp, non-oscillating, non-
negative, axially symmetric peak of height s at u. Its sharpness grows with order l,
reflecting the higher angular resolution provided by tensors of higher order. We choose
symmetric rank-1 tensors as suitable and computationally convenient models of the narrow
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peaks into which we would like to decompose the ODF. It is safe to make this choice, since
other analytic, heuristic, or empirical models of a single fiber ODF can be converted to
the assumed rank-1 tensor model in a simple preprocessing step. Examples of this will be
given in Sections 10.4.1 and 10.4.2.

The best rank-1 approximation T̃ (s,u) of a tensor T in the sense of minimizing the
residual norm ‖T − T̃ (s,u)‖ is given by the vector u which maximizes the absolute value
of its homogeneous form T and the scalar s = T (u) [53]. For second-order tensors, this
corresponds to the principal eigenvector and -value. In this sense, using rank-1 tensors as
fiber models is a generalization of the traditional way of interpreting second-order diffusion
tensors. In the higher-order case, the current practice of selecting ODF maxima can be
interpreted as finding an optimal fit for each tract independently from the others, and the
bias caused by this in case of crossing fibers can be considered a consequence of the fact
that the sum of k non-orthogonal, locally optimal rank-1 approximations generally does
not yield an optimal rank-k approximation [121].

The idea behind the proposed method is to improve a fiber estimate by refining the
corresponding rank-k tensor approximation of the ODF. This takes into account the in-
terference between non-orthogonal peaks, which is ignored by simple maxima extraction.
Unfortunately, there are no methods which find the best rank-k approximation for tensors
of order l > 2, and there even exist tensors which do not possess an optimal rank-k approx-
imation (cf. Section 2.1.7). Moreover, for tensors over R

3, no algorithms exist to compute
the canonical decomposition into a minimal number r of rank-1 terms (cf. Section 2.1.6).

Despite these obstacles, we demonstrate that even potentially suboptimal rank-k ap-
proximations allow for a much improved interpretation of ODFs, and we propose a stable
and efficient algorithm to compute them.

10.3.2. Finding Rank-1 Approximations

Computing the best rank-1 approximation to a higher-order tensor is equivalent to max-
imizing the absolute value of its homogeneous form on the unit sphere. For this task,
there exists a generalization of the power method for finding the largest eigenvector of
a matrix [53]. Unfortunately, its supersymmetric variant is only guaranteed to converge
for tensors whose induced homogeneous form is either non-negative or non-positive [121].
While q-ball ODFs are non-negative by definition, neither the residuals which occur in
our algorithm nor results from spherical deconvolution have this property.

Therefore, we employ a gradient descent technique with Armijo stepsize [7], as described
in [229]. Even though a similar fixed stepsize algorithm has previously been used for fiber
tracking in q-ball data [96], the adaptive stepsize proved critical to guarantee convergence
in our experiments.

10.3.3. A Practical Algorithm to Resolve Crossings

The goal of our algorithm will be to approximate the higher-order tensor representation of
the ODF with an optional isotropic part and several rank-1 terms which represent individ-
ual fiber peaks. A small approximation residual will account for noise and factors outside
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the model. The isotropic part is needed in case of q-ball data to capture the “ambient”
part of the diffusion, which cannot be assigned to any specific fiber compartment. For
spherical deconvolution data, it may be omitted.

The proposed algorithm works iteratively: Initially, the full input ODF is assigned to
the residual R. Any subsequent step reduces the residual norm ‖R‖, until convergence
is reached. The isotropic part of R is found by computing the mean of its homogeneous
form, µ = mean(R), and multiplying it with the isotropic tensor I whose homogeneous
form is identically one. Since the spherical harmonic Y 0

0 is a constant function, closed
formulas for both µ and I are found from the matrix that relates spherical harmonic
coefficients to tensor components (cf. Appendix A.3).

The key part of the problem is to find a rank-k approximation of R, where k is the
desired number of fiber tracts Fi. For this, our algorithm does an iterative local optimiza-
tion, which repeatedly optimizes each rank-1 term, while keeping all others fixed. When
adding a new term, this involves a rank-1 approximation approx(R) of R, as described
in Section 10.3.2. To improve an existing rank-1 term Fi, an approximation of R + Fi

is sought. In this case, we start a gradient descent at the previous optimum u, denoted
refine(u,R + Fi). This procedure is repeated until the residual norm no longer changes
significantly. The final result may not be an unconstrained optimum, but is locally opti-
mal in the sense that it cannot be improved by more than some small ǫ by changing any of
the terms individually. Experimental results indicate that this weak notion of optimality
is sufficient to provide a remarkable enhancement over simple maximum extraction, which
does not take into account interference between fiber terms at all.

It is non-trivial to decide how many fibers one should look for in a given ODF. Previous
authors [3, 108, 18] have approached this with computationally costly statistical methods.
To allow for a faster tracking process, our algorithm employs a simple heuristic that was
found effective in noisy synthetic data: A rank-(k + 1) approximation is accepted if it
reduces the residual norm to at least θnorm ∈ [0, 1] times the residual norm of the rank-
k approximation (i.e., its contribution to explaining the ODF in terms of fiber peaks is
reasonably large) and if the ratio maxi(‖F (n)

i ‖)/mini(‖F (n)
i ‖) of the largest to the smallest

fiber term is below a second threshold θratio (i.e., the smallest fiber term is not assumed
to be noise). Otherwise, we output the previous rank-k approximation and terminate the
algorithm.

Based on the experiments in Section 10.4.4, we set θratio = 4 for the transition from a
single-fiber to a two-fiber model and θratio = 3 for going from two to three fibers. θnorm was
fixed empirically at θnorm = 0.9 for synthetic data, θnorm = 0.98 for real data. Additionally,
the user may specify a maximum number Fmax of fiber tracts. For easier reproduction,
Table 10.1 summarizes the algorithm as annotated pseudocode.

10.4. Results

First, we will concentrate on experiments on synthetic data, which allow us to validate
our method against ground truth. On synthetic data, we contrast q-ball reconstruction
(Section 10.4.1) with spherical deconvolution (Section 10.4.2), and confirm that our algo-
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Input and Parameters

Oin orientation distribution function to be analyzed
kmax maximum number of fibers to extract

Output

F̂i final fiber term i
Important variables

F (n)
i fiber term i at inner iteration n

u
(n)
i vector part of F (n)

i

k current number of fiber terms
R,R(n) current residual, residual before inner iteration n

Constants

I isotropic tensor (homogeneous form identically one)
ǫ small scalar value greater than zero

R := R(1) := Oin; k := 1; n := 1;
repeat // outer iteration

repeat // inner iteration

if Oin is a q-ball ODF then

R := R− mean(R) · I; // improve isotropic estimate

end

for i := 1 . . . k do // improve all k fiber terms

if F (n)
i is defined then

F (n+1)
i := refine(u

(n)
i ,R + F (n)

i );
R := R + F (n)

i −F (n+1)
i ;

else

F (n+1)
i := approx(R);

R := R−F (n+1)
i ;

end

done

n := n+ 1; R(n) := R;
until ‖R(n)‖ > (1 − ǫ) · ‖R(n−1)‖ // test convergence

if accept(F (n)
i ) then // accept k fiber terms

for i := 1 . . . k do // store output candidates

F̂i := F (n)
i ;

done

k := k + 1;
end

until k > kmax or not accept(F (n)
i )

Table 10.1.: Pseudocode of the proposed algorithm for estimating fiber tracts. All function
names are explained in the text.
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(a) SNR0=40 (b) SNR0=20

Figure 10.3.: In a q-ball model (l = 4) of a two-fiber crossing, our approximation (black)
estimates fibers with less bias and over a far wider range than maximum
extraction (red).

rithm reliably reconstructs three-fiber crossings (Section 10.4.3) and remains stable under
varying volume fractions (Section 10.4.4). Then, we turn to a real dataset, and demon-
strate that tensor approximation gives clear advantages over maximum extraction for fiber
tracking (Section 10.4.5).

10.4.1. Synthetic Q-Ball Data

We have generated synthetic diffusion-weighted MRI measurements S(g) according to
Equation (2.20), with an apparent diffusivity function d(g) that results from two Gaussian
compartments with equal volume fractions and fractional anisotropy FA = 0.87. This
model is commonly used to simulate crossing fiber populations for validation purposes
[219, 92, 249]. As measurement parameters, we selected 60 gradient directions based on
electrostatic repulsion [107] and a b-value of b = 3 000 s/mm2 (as in [213, 92, 58]).

Rician noise at two levels (SNR0 = 40 and SNR0 = 20) was added to the signals S(g).
Note that SNR0 refers to the signal-to-noise ratio in the unweighted data. The resulting
SNR in diffusion-weighted images is lower and depends on the exact gradient direction
and fiber setup. For example, in a simple one-fiber experiment, SNR0 = 40 leads to an
effective SNR between 22 (perpendicular to the fiber) and 0.25 (along the fiber). Starting
from 90◦, we decreased the angle between the simulated tracts in steps of 5◦, until our
method failed to resolve them reliably. For each fiber configuration and each noise level,
we took 1 000 samples.

In a first experiment, we estimated q-balls of order l = 4 from the synthetic data, using
the analytic solution of the Funk-Radon transform and Laplace-Beltrami regularization
with smoothing parameter λ = 0.004 [58]. For comparison with the approximation results,
we computed the discrete maxima of the resulting ODFs using a refined icosahedral tesse-
lation of the sphere and improved their accuracy via gradient descent (cf. Section 10.3.2).
In case of more than two maxima, we selected the largest ones. In the approximation, we
set kmax = 2. The included angle of the estimated fibers was computed and compared to
the ground truth.
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(a) before sharpening (b) after sharpening

Figure 10.4.: Larger bias in a q-ball model of order l = 6 indicates that rank-1 tensors are
a less suitable peak model. A heuristic sharpening reduces the problem.

Figure 10.3 presents mean and standard deviation of the reconstruction error for max-
imum finding (red, circles) and tensor approximation (black, crosses). As previously re-
ported [249], maxima exhibit a clear bias starting at around 80◦, which is greatly reduced
in the approximation results. Moreover, the approximation reliably reconstructs crossings
far beyond the point at which the individual maxima have merged. This can be explained
by the similarity of the approximation to a deconvolution: Effectively, the approximation
finds a discrete set of delta distributions whose convolution with the kernel defined by the
homogeneous form of a rank-1 tensor approximates the q-ball.

The effective angular resolution of analytic q-ball imaging is affected both by the mea-
surement process and the reconstruction [92]: The angular resolution of diffusion measure-
ments is limited by the employed b-value. Additionally, truncating the spherical harmonic
expansion introduces a point spread function in the reconstruction, which becomes nar-
rower for increasing order l. If the latter effect dominates, it should be appropriate to
decrease the width of the assumed fiber peak, as is done when modeling it as an order-l
rank-1 tensor. Unfortunately, the results on q-balls with order l = 6 (SNR0 = 40) in
Figure 10.4 (a) suggest that this is not the case: Compared to Figure 10.3 (a), the bias
of the approximation is much higher, indicating that an order-6 rank-1 tensor is a less
suitable model of a single fiber peak than the wider order-4 rank-1 tensor.

As proposed in Section 10.3.1, we can reduce this bias by mapping a more suitable
model M s to the model Ma assumed by our algorithm. This is done by deconvolving
the ODF with M s, followed by a convolution with Ma. In the spherical harmonic basis,
this is a simple operation: An axially symmetric model M is described by a single scalar
value mh per harmonic order h and the result of convolving it with a spherical harmonic
series with coefficients cj is given by c′j = mh · cj, where h is the harmonic order of cj (cf.
Appendix A.3).

As a proof of concept, we let M s be the order-4 rank-1 tensor, which gave usable results
in the previous experiment. Ma is the order-6 rank-1 tensor. Then, the values ma

h and ms
h

are found as the spherical harmonic coefficients cj of the corresponding rank-1 tensors.
The resulting conversion factors mh = ma

h/m
s
h are given as mh = [5/7, 5/6, 105/77, 1] for

h = [0, 2, 4, 6], respectively. Since ms
6 = 0, we do not perform a deconvolution on harmonic

131



10. Higher-Order Tensors for ODF Analysis

(a) SNR0=40 (b) SNR0=20

Figure 10.5.: Compared to Figure 10.4 (b), spherical deconvolution with order l = 6 re-
duces bias of the approximation method (black) further.

order h = 6. Figure 10.4 (b) shows that this heuristic sharpening reduces the bias both
for the approximation and for maximum finding.

From this experiment, we conclude that reliably extracting fibers from q-ball ODFs
generally requires explicit modeling of the single fiber response, e.g., via an additional
deconvolution step. Since using an empirical estimate of the appropriate deconvolution
kernel (as in [58]) would be conceptually very similar to spherical deconvolution, we will
concentrate on the latter technique in the remainder of this work.

10.4.2. Spherical Deconvolution

The similarity between tensor approximation and spherical deconvolution which has been
discussed above does not imply that one could replace the other. Existing methods for
spherical deconvolution yield a continuous ODF, and we will show that approximating
it by rank-1 terms has advantages over taking maxima when discrete directions are de-
sired. On the other hand, it has been emphasized that continuous fiber distributions hold
more information than just the principal directions (e.g., evidence on the amount and
orientation of fiber spread) [213] and there have been initial attempts to exploit it [199].

For our experiments, we have implemented spherical deconvolution as described in [213].
When setting the response function R, one explicitly specifies the shape of the peak that
will result from the deconvolution of a training sample. For this, Tournier et al. use a
truncated spherical harmonic representation of a delta distribution (cf. appendix of [212]).
As an alternative, we employed the peak described by a rank-1 tensor, whose spherical
harmonic coefficients cj are found as above.

Since they are non-oscillating, rank-1 peaks give smoother ODFs. Their non-negativity
reduces the undesired non-physical negative lobes. They also produced best results in
combination with our tensor approximation, which explicitly assumes the rank-1 model.
When finding ODF maxima, the optimal peak shape depended on tensor order: At order
l = 6, the ringing in the truncated delta peak leads to a bias which oscillates for varying
crossing angles, but remains tolerable over a wider range. For order l = 4, the ringing is
so strong that a rank-1 tensor gives more accurate results also for maximum finding.

132



10.4. Results

(a) order l = 4, SNR=40 (b) order l = 6, SNR=40 (c) order l = 6, SNR=20

Figure 10.6.: Three-fiber crossings are reliably resolved by decomposing spherical decon-
volution ODFs, even at low orders and under higher levels of noise.

To be as fair as possible to both methods, presented results use rank-1 peaks for max-
imum extraction at l = 4 and for tensor approximation, but truncated delta peaks for
maximum finding at l = 6. Figure 10.5 presents results from spherical deconvolution of
the same data as above, with l = 6. Again, the approximation (black) exhibits less bias
and is applicable in a wider range than maximum extraction (red).

10.4.3. Three-Fiber Crossings

Resolving crossings of three fiber bundles has proven difficult for many previous ap-
proaches: Tuch [220] reported that k-tensor estimation becomes unstable for k = 3.
Bergmann et al. [20] discuss general k, but only present results for k = 2. Both Kreher et
al. [123] and Peled et al. [159] explicitly restrict themselves to the two-fiber case.

To investigate this more difficult case, we generated data from three Gaussian fiber
compartments. The respective principal axes were chosen such that their endpoints form
an equilateral triangle and any pair of them includes angle α. Again, α was decreased
gradually, starting from 90◦. All other measurement parameters were chosen as above.
ODFs were reconstructed using spherical deconvolution with orders l = 4 and l = 6.

Figure 10.6 shows that the rank-k approximation remains stable for k = 3 and allows one
to resolve three-fiber crossings even at low orders and relatively small angles (SNR0 = 40).
At the higher noise level (SNR0 = 20, l = 6), it remained possible to reliably reconstruct
three-fiber crossings down to α = 40◦ (Figure 10.6 (c)).

In all our experiments, we have found that under low noise (SNR0 = 40), models of order
l = 6 could reliably represent angles which were impossible to reconstruct from noisier
data (SNR0 = 20). From this observation, we conclude that under realistic measurement
conditions, noise rather than model complexity will be the limiting factor for angular
resolution already at order l = 6.

10.4.4. Estimating Volume Fractions and Fiber Number

To test the stability of our method under varying volume fractions, we fixed a two-fiber
crossing at 60◦ and gradually decreased the volume fraction of the weaker tract, until
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(a) Error in estimated VF (b) Error in estimated angle

Figure 10.7.: Under varying volume fractions (VF), ODF approximation (black) recon-
structs the weaker tract over a wider range than maximum finding (red).

SNR0 = 40 SNR0 = 20

Fiber count estimated by our heuristic

1 2 3 1 2 3
1 tract 1000 0 0 998 2 0
2 tracts 0 1000 0 0 999 1
3 tracts 0 0 1000 0 1 999

Number of above-average ODF maxima

1 2 ≥ 3 1 2 ≥ 3
1 tract 1000 0 0 992 8 0
2 tracts 163 837 0 203 797 0
3 tracts 88 458 454 89 504 407

Table 10.2.: In a fiber detection experiment, our heuristic proved to be a more reliable
indicator of fiber number than above-average ODF maxima.

reconstruction failed (spherical deconvolution, SNR0 = 20, l = 6). Both the relative
magnitude of maxima and the relative magnitude of the fiber terms, ‖Fweak‖/(‖Fweak‖ +
‖Fstrong‖), gave usable estimates of relative volume fractions (cf. Figure 10.7 (a)).

While maximum extraction found the weaker fiber in less than 50% of the cases already
for ratio 0.3 : 0.7, the approximation still worked below 0.2 : 0.8. However, the standard
deviation of the estimated angle became so high that we do not report it for smaller
values (Figure 10.7 (b)). A three-fiber crossing at 50◦ with one dominant tract at ratio
0.6 : 0.2 : 0.2 was still correctly reconstructed by the approximation in 85% of the cases.

In a final experiment on synthetic data, we validated the heuristic which determines the
fiber number in our algorithm (cf. Section 10.3.3). Classification was tested on 1 000 voxels
each with a single fiber, two fibers, and three fibers, respectively. Directions were chosen
uniformly at random such that all included angles were above 45◦, all volume fractions
were equal. Under these conditions, our classification proved reliable, even under noise
(Table 10.2). For comparison, we specify the number of ODF maxima whose magnitude
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is above the ODF mean, which was taken as an estimate of the fiber number in previous
works [57].

The estimation of both volume fractions and the number of fiber compartments is more
challenging in the presence of fiber spread in real data. However, it is reassuring that the
approximation improves upon maximum extraction also in this respect.

10.4.5. Improvement in Fiber Tracking

We tested our algorithm on the real-world dataset described in Section 1.2. At the em-
ployed b-value (b = 1 000 s/mm2), only very few crossings are resolved as individual max-
ima in unsharpened q-ball data, so we used filtered spherical deconvolution for a fair
comparison of the approximation method against maximum extraction. As in [213], a
DT-MRI model was first estimated and the average fractional anisotropy (FA) of the 300
voxels with highest FA was computed. Based on this, the deconvolution kernel R was set
from the synthetic signal of a prolate tensor with the same FA, using noise attenuation
vector β = [1 1 1 0.6] (cf. [213]).

In a first experiment, we tried to track the lateral transcallosal fibers (TF) that run
through the corpus callosum (CC) (cf. Figure 10.8 (c)). It is known that DT-MRI trac-
tography (Figure 10.8 (a)) only captures the dominant U-shaped callosal radiation (CR)
[228]. The ability to find the lateral fibers with high angular resolution imaging has previ-
ously been demonstrated using simple streamline tracking along the most collinear ODF
maximum on high b-value diffusion spectrum data [85] and using probabilistic tractogra-
phy on sharpened q-balls [58].

We have tried to reproduce the tract using a deterministic higher-order tensor tracking
algorithm, similar to [95]. However, we additionally allowed for tract splitting in cases
where a second maximum was found within 30◦ of the current tracking direction. Since q-
ball estimation, spherical deconvolution, and the conversion between spherical harmonics
and tensor coefficients are all linear operations, one may equivalently interpolate diffusion-
weighted images, spherical harmonic coefficients, or tensor components. For efficiency, we
used component-wise trilinear interpolation of the tensor field before extracting maxima.

With seed points in the corpus callosum, the lateral fibers were not found when following
ODF maxima (Figure 10.8 (b)). When using approximation results instead, the tract could
be reconstructed (c). A visual comparison of maxima (e) to approximation results (f)
reveals that the latter separates the diverging transcallosal fibers earlier and reconstructs
their crossing with fibers from the internal capsule more reliably (cf. ellipses in (f)), which
facilitates tracking. In all figures, a slice of co-registered T1 data is shown for context.

Figure 10.9 confirms that this result can be reproduced along a large part of the corpus
callosum. Here, only fibers which leave a corridor of ± 20 mm around the mid-sagittal
plane have been colored to visually emphasize the transcallosal fibers. Note that the
results include a part of the inferior fronto-occipital fasciculus (in green, most notable
in (a)), which gets connected to the tractography of the corpus callosum through partial
voluming effects.

The low number of parameters in order-4 models makes them particularly attractive for
experiments with a relatively low number of measurements. Due to the limited measure-
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(a) Tractography from DT-MRI (b) Same from ODF maxima

(c) Same with approximation (d) ODF profiles

(e) ODF maxima (f) ODF approximation

Figure 10.8.: Tensor approximation (c) allows a deterministic tracking method to recon-
struct the transcallosal fibers (TF) from seeds in the corpus callosum (CC).
This is neither achieved by a DT-MRI tractography (a), nor by following
maxima in the spherical deconvolution ODFs (b).
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(a) Tracts from DT-MRI (b) Tracts from ODF maxima (c) Tracts from ODF
approximation

Figure 10.9.: Tractography of the full corpus callosum, shown from above. Only the ap-
proximation result (c) reliably includes transcallosal fibers.

ment time feasible in clinical practice, there has been some interest in resolving crossing
tracts in such settings (e.g., [20, 159]). Figure 10.10 illustrates the advantages of tensor
approximation for order l = 4. It presents 4×4 voxels from a coronal slice of the three-fiber
crossing between cortico-spinal tract (blue), transcallosal fibers (red), and superior longi-
tudinal fasciculus (green). Since many peaks have merged (cf. the ODF profiles in (a)),
the extracted maxima in (b) miss one or two of the crossing tracts in most voxels. In
comparison, the approximation in (c) reconstructs them more reliably, allowing all three
tracts to be tracked through the crossing region (e), while the red transcallocal fibers are
mostly blocked at the crossing when using ODF maxima (d). To avoid visual clutter,
tracts have been terminated when leaving a small region of interest.

In a final experiment on real data, we have seeded the tractography within the decus-
sation of the superior cerebellar peduncle (dscp), a location in the brainstem where parts
of the superior cerebellar peduncle (scp) cross to the opposite hemisphere. Due to partial
voluming, this region also contains a part of the adjacent corticospinal / corticopontine
tract (cst/cpt). Figure 10.11 compares results of maximum tracking and tensor approx-
imation in a view from posterior / superior. Again, the approximation makes tracking
through this complex configuration more reliable. In particular, a part of the cst/cpt is
reconstructed.

10.4.6. Efficiency

In our experiments, the runtime of the approximation method was on the same order as
the maximum search, despite the better results. For example, decomposing all 254 578
ODFs in the real-world dataset took 10.5 s for l = 4, 18.5 s for l = 6, while maxima
extraction took 9.5 s and 23.9 s, respectively, on a regular 2 GHz workstation. Tracking
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(a) ODF profiles (b) Maxima (c) Approximation

(d) Tracts from maxima (e) Tracts from approximation

Figure 10.10.: Tensor approximation allows for tracking through the triple crossing of
cortico-spinal tract (blue), corpus callosum (red) and superior longitudinal
fasciculus (green) even at b = 1 000 and l = 4.

(a) Tracts from maxima (b) Tracts from approximation

Figure 10.11.: Reliable tracking through the decussation of the superior cerebellar peduncle
(dscp) requires tensor approximation (l = 6).
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typically took longer with the approximation, due to the higher number of fibers which
were found (e.g., 1.2 s for Figure 10.8 (b) vs. 1.8 s for Figure 10.8 (c)). These results are
obtained when taking 321 samples on the hemisphere to extract discrete local maxima and
refining them using gradient descent. To initialize the rank-1 approximations, we found a
much coarser sampling sufficient, since we are not interested in obtaining all local maxima.
In experiments on a synthetic 60◦ crossing, accuracy hardly increased when using more
than 10 samples on the hemisphere for initializing the gradient descent. To leave a safety
margin, our current implementation employs 30 isotropic samples.

10.5. Conclusion and Future Work

In many visualization methods for q-ball and spherical deconvolution data, finding the
directions of crossing fibers from a continuous orientation distribution function (ODF) is
a crucial step. In this chapter, we have shown that taking into account the interference
between the signals from different tracts by approximating the ODF as a sum of individual
fiber peaks provides estimates of much higher accuracy than the previous practice of
extracting maxima.

Previous authors have proposed to go to high harmonic orders (up to l = 12) in spherical
deconvolution, to reduce bias in fiber estimates, and to represent close tracts by individual
ODF maxima. Since this increases the number of model parameters above the number
of measurements which are typically available, it requires a non-linear, constrained ODF
reconstruction, which involves additional, heuristic parameters [212]. In contrast, we have
demonstrated that the angular resolution of q-ball or spherical deconvolution models is
not reached when crossing fibers are no longer separated by individual maxima. Rather,
a subsequent approximation step reliably reconstructs fibers over a considerable angular
range, at greatly reduced bias. In our synthetic experiments, angular resolution was
bounded by assumed measurement noise rather than model resolution already for order
l = 6.

Addressing the problem of separating crossing fibers via tensor approximation has been
motivated by the great utility of the eigenvector decomposition in DT-MRI. While higher-
order tensors have previously been considered as an alternative to spherical harmonics in
the context of diffusion imaging [149, 152, 95], the proposed use of rank-1 tensors and
rank-k tensor approximation is new. It provides a useful way to formalize the problem
and allowed us to find an efficient algorithm for crossing fiber estimation, which draws
on existing techniques for rank-1 approximation. It is our hope that the link between
the analysis of orientation distribution functions and recent efforts in multilinear algebra
(e.g., [46, 54, 229]) will become even more useful as more results become available in this
interesting area of research.

Evaluating the algorithm against ground truth in synthetic data has shown that it re-
solves crossing fibers more effectively than existing methods and experiments on real data
have given plausible results. However, several aspects of the inverse problem in diffusion-
weighted imaging remain challenging: In many cases, it is difficult to find the correct
number of fibers in a voxel and to tell crossings from diverging or bending configurations.
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Moreover, low-rank approximations are affected by noise, since they solve an underdeter-
mined inverse problem. As future work, one might try to derive formal guarantees for
the quality of the approximation obtained by our algorithm, to quantify the confidence
of fiber estimates, and to explore both coherence over spatial neighborhoods and prior
knowledge to increase it.

140



11. Conclusion

11.1. Contributions

This dissertation has contributed a variety of methods for the feature-based visualization
of DW-MRI data. In the feature definitions, the emphasis was on applications of diffusion
imaging in neuroscience:

• Probabilistic tractography is widely used in neuroscience [119, 17, 6, 18, 45], and
methods for visual analysis and illustration are needed. Chapter 3 presents one of
the first approaches to visualizing the results of probabilistic tractography.

• Based on edge detectors like the ones discussed in Chapter 6, segmentation algo-
rithms like the one from Chapter 7 provide a tool for the quantitative analysis of
DW-MRI data. In the past, they have been used both as an alternative to fiber
tracking [104, 84], and to segment the thalamic nuclei [242, 105].

• The virtual Klingler dissection in Chapter 9 was developed in cooperation with a
domain scientist, modeled on an anatomical fiber preparation technique [133], and
is currently being extended for practical use [196].

• Estimating fiber directions from high angular resolution diffusion imaging, as it is
done in Chapter 10, is currently an active topic of research in the medical imaging
and neuroscience communities [2, 220, 213, 123, 20, 108, 159, 212, 18, 247].

11.1.1. Improvements over Previous Work

Even though we concentrated on developing novel concepts, our research has also inte-
grated and improved upon several previous works:

• The applicability of standard tensor topology [56, 93, 254, 255] to data from DT-
MRI has been explored in Chapter 3. To the best of our knowledge, Chapter 4
presents the first application in which degenerate lines in a tensor field have a clear
interpretation, namely, as boundary curves of extremal surfaces.

• Chapter 4 clarifies the topological properties of height crease surfaces, which have
been ignored in previous works [63, 115, 178, 209, 157].

• In Chapter 5, DT-MRI streamsurfaces [251, 204, 223] have been shown to be mathe-
matically ill-defined and their extraction was shown to be unstable. Planarity ridge
surfaces have been proposed as a replacement to illustrate regions of planar diffusion.
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• As part of Chapter 6, the invariant gradients framework [113] has been reformulated
and extended. Moreover, the Log-Euclidean edge detector [9] has been analyzed and
a source of artifacts has been corrected.

• As a consequence of Chapter 10, the insight that finding the directions of fiber
bundles from an orientation distribution function (ODF) should be treated as an
inverse problem has replaced the belief that these directions can simply be found by
localizing ODF maxima [85, 249, 212, 96, 26, 58].

11.1.2. Relevance Beyond DW-MRI

The visualization of data from DW-MRI was the starting point and the clear focus of our
work. However, some of our contributions are also relevant outside of this field:

• To the best of our knowledge, Chapter 3 presents the first fuzzy topological visu-
alization which conveys the degree of uncertainty to the user. This could give an
impulse to integrating uncertainty in other fields in which topological methods are
used.

• The crease surface definition studied in Chapter 4 can be applied whenever one
would like to extract a surface along which a given function takes on large values.
Existing applications outside medical image analysis include flow visualization [178]
and digital geometry processing [209].

• The watershed-based algorithm for mesh segmentation in Chapter 7 can be used
whenever it is possible to specify edge weights that indicate whether or not the
adjacent vertices should be grouped together.

• The higher-order maximum enhancing (HOME) glyph from Chapter 8 can be used
for all positive definite supersymmetric higher-order tensors.

• The higher-order structure tensor (HOST) from the same chapter has the potential
to be used for image diffusion and texture segmentation. The algorithm for low-
rank approximation of higher-order tensors in Chapter 10 could also be used to
extract discrete principle directions from HOSTs in R

3, for example to implement
higher-order tensor voting [142].

11.2. Future Work

Possible directions of future research have been identified at the end of the individual
chapters. The topics on which we plan to concentrate fall into two categories: The
processing and visualization of HARDI data, and the use of higher-order tensors in a
range of applications which includes, but is not limited to, diffusion imaging.
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11.2.1. HARDI Processing and Visualization

Chapter 10 has established the low-rank approximation of higher-order tensors as a way
to obtain more reliable streamline visualizations from q-ball and spherical deconvolution
data. One of our future goals will be to extend this idea to a point at which it can be used
for quantitative studies in neuroscience and medicine. Beside the mathematical problems
discussed in Section 10.5, we will address the minimum requirements which higher-order
tensor models impose on data acquisition, and perform a careful comparison to alternative
methods for the analysis of high-angular resolution data. We consider it important that
these results are brought to the attention of domain scientists by publishing them outside
the visualization community.

Existing visualization research has concentrated on the DT-MRI model. At the same
time, domain scientists have developed an increasing interest in HARDI, and in combining
diffusion measurements with other imaging modalities, like structural MRI or functional
MRI (fMRI). In the future, we plan to develop visualization methods that will support the
understanding of large-scale structures in HARDI data, and help to see relations between
different types of data. We expect that feature extraction strategies like the ones presented
in Chapters 3, 5 and 9 of this dissertation will be particularly successful in dealing with
the high information density involved in these tasks. In addition, we plan to increase our
emphasis on methods for interactive exploration.

11.2.2. Higher-Order Tensors in Computer Vision

Second-order structure and image diffusion tensors play a central role in a number of image
processing and computer vision tasks, including filtering and segmentation. In Chapter 8,
we have demonstrated that higher-order tensors can provide a more detailed description of
local image structure, both for processing multi-valued data, and at junctions and corners.
We will look into using higher-order tensors to define a scale space which better preserves
relevant image structures. The results of this research can be used for scale space analysis
of features like crease surfaces (Chapter 4) in HARDI data, but at the same time, they
will be useful for general types of images and volume data.

With the prior work on invariant gradients [113] and our own contribution on the use
of eigenvalue derivatives (Chapter 6), the structure of boundaries in DT-MRI fields is
now well understood. We plan to extend these approaches to investigate different types
of boundaries in HARDI data, and work towards establishing HARDI segmentation as a
suitable alternative to fiber tracking in cases where quantitative results are desired.
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A. Homogeneous Forms and Fourier Series /
Spherical Harmonics

This appendix describes three details which are relevant to the practical implementation
of the methods in Chapters 8 and 10. Section A.1 pertains memory-efficient storage of the
coefficients of a supersymmetric tensor, while Sections A.2 and A.3 show how to relate
homogeneous forms to Fourier series and spherical harmonics, respectively.

A.1. Efficient Representation of Supersymmetric Tensors

An order-l tensor based on an n-dimensional vector space has nl components. Storing them
is very memory-consuming already for moderate l. However, supersymmetry reduces the
number of independent channels to N =

(
n+l−1

l

)
, which means merely linear growth for

n = 2 (N = l + 1) and quadratic growth for n = 3 (N = (l + 1)(l + 2)/2).
We store the non-redundant components of a tensor T in a zero-based linear array

with elements Ti, sorted in lexicographic order (in R
3, [T1111, T1112, T1113, T1122, . . .]). Let

νi,k ∈ {0, 1, . . . , l} denote the number of times k ∈ {1, 2, . . . , n} appears as an index of the
i-th element. The multiplicity of element i, denoted µi, is the number of times it appears
as a component of the original tensor. For n = 2, µi =

(
l

νi,1

)
, for n = 3, µi =

(
l

νi,1

)(
l−νi,1

νi,2

)
.

In this notation, the homogeneous form from Equation (2.10) can be evaluated as

T (v) =
N−1∑

i=0

µiTiv
νi,1

1 v
νi,2

2 · · · vνi,n

n (A.1)

A.2. Tensors in R
2 and Fourier Series

Consider a Fourier Series, truncated after order l:

f(φ) =
1

2
a0 +

l∑

k=1

ak cos(kφ) +
l∑

k=1

bk sin(kφ) (A.2)

Setting ak := bk := 0 for odd k leaves a (l + 1)-dimensional function space. For n = 2,
Equation (A.1) can be rewritten in polar coordinates:

T (φ) =
l∑

i=0

Ti

(
l

i

)
cosl−i φ sini φ (A.3)
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Let us regard Ti as coefficients and
(

l
i

)
cosl−i φ sini φ as basis functions. We will now show

that these basis functions span the same space as the truncated Fourier Series. The proof
is by induction on order l and constructive in the sense that it implies a recursive method
to find the change-of-basis matrix.

Let {fk} denote the basis functions of a truncated Fourier Series in which only even
multiples of φ are allowed:

fk :=





0.5 if k = 0

cos((k + 1)φ) if k odd

sin(kφ) if k even (k 6= 0)

Likewise, tl
k is the k-th basis function of an order-l tensor:

tl
k :=

(
l

k

)
cosl−k φ sink φ

For l = 0, both the Fourier Series and the tensor basis represent constant functions and
f0 = 0.5t0

0. Assume that the functions that can be represented using {fk} with k ≤ l are
equivalent to the functions represented by {tl

k}. Further, assume that we know how to
express the Fourier basis in terms of the tensor basis. Then, we can show that the same
assumption also holds for l + 2: Observe that

cosl−i φ sini φ =
(
cos2 φ+ sin2 φ

)
cosl−i φ sini φ

= cosl+2−i φ sini φ+ cosl−i φ sini+2 φ

and that the latter functions are proportional to functions in {tl+2
k }. Thus, we can express

the first l+ 1 Fourier basis functions in terms of {tl+2
k } by replacing each occurence of tl

k

in their known representation by

tl
k =

(l + 2 − k)(l + 1 − k)

(l + 2)(l + 1)
tl+2
k +

(k + 2)(k + 1)

(l + 2)(l + 1)
tl+2
k+2

It remains to be shown how to express fl+1 and fl+2 in terms of {tl+2
k }. For this, we use

trigonometric identities for multiple angles:

fl+1 = cos((l + 2)φ) =

l/2+1∑

i=0

(−1)i

(
l + 2

2i

)
cosl+2−2i φ sin2i φ =

l/2+1∑

i=0

(−1)itl+2
2i

fl+2 = sin((l + 2)φ) =

l/2∑

i=0

(−1)i

(
l + 2

2i+ 1

)
cosl+1−2i φ sin2i+1 φ =

l/2∑

i=0

(−1)itl+2
2i+1

For reference, Table A.1 presents the relations for l = 2 and l = 4.
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l = 2 a0 = T0 + T2 a2 = 1
2
T0 − 1

2
T2 b2 = T1

l = 4 a0 = 3
4
T0 + 3

2
T2 + 3

4
T4 a2 = 1

2
T0 − 1

2
T4 b2 = T1 + T3

a4 = 1
8
T0 − 3

4
T2 + 1

8
T4 b4 = 1

2
T1 − 1

2
T3

Table A.1.: Relation of Fourier coefficients and tensor components for orders l = 2 and
l = 4. A method to compute these relations for general l is given in the text.

A.3. Tensors in R
3 and Spherical Harmonics

Spherical harmonics form an orthonormal basis for complex functions on the unit sphere,
much like the Fourier series offers an orthonormal basis over an interval in Cartesian space.
The spherical harmonic Y m

l for order l and phase factor m ≤ l is given as

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ)eimφ

where Pm
l is an associated Legendre polynomial and i is the imaginary unit. Since ODFs

are real-valued and exhibit antipodal symmetry, we employ the restricted basis used in
[57]. For h = 0, 2, 4, . . . , l and m = −h, . . . , 0, . . . , h, j := (h2 + h+ 2)/2 +m− 1 and

Yj :=





√
2 · Re(Y m

h ) if −h ≤ m < 0

Y 0
h if m = 0√
2 · Img(Y m

h ) if 0 < m ≤ h

(A.4)

where Re and Img denote real and imaginary parts, respectively. For a spherical harmonics
series up to even order l, this results in (l + 1)(l + 2)/2 terms.

Via their homogeneous forms T (v), higher-order tensors T can be used to provide
an alternative representation of functions on the sphere. It is equivalent to spherical
harmonics in the sense that any function T (v) in the form of Equation (2.10) can be
re-written as a linear combination of spherical harmonics, T =

∑
j cjYj, with Yj from

Equation (A.4), and vice versa [149]. A matrix that relates Ti1i2...il to cj is found by
writing v in spherical coordinates and solving

cj =

∫ 2π

φ=0

∫ π

θ=0

T (v(θ, φ))Yj(θ, φ) sin θ dθ dφ

symbolically for each j, which is simplified by software like Maple or Mathematica.
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