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Abstract

This thesis presents techniques and algorithms for the effective exploration of
volumetric datasets. The visualization techniques are designed to focus on user
specified features of interest. The proposed techniques are grouped into four chap-
ters namely feature peeling, computation and visualization of fabrication artifacts,
locally adaptive marching cubes, and comparative visualization for parameter
studies of dataset series. The presented methods enable the user to efficiently
explore the volumetric dataset for features of interest.

Feature peeling is a novel rendering algorithm that analyzes ray profiles along
lines of sight. The profiles are subdivided according to encountered peaks and
valleys at so called transition points. The sensitivity of these transition points is
calibrated via two thresholds. The slope threshold is based on the magnitude
of a peak following a valley, while the peeling threshold measures the depth of
the transition point relative to the neighboring rays. This technique separates the
dataset into a number of feature layers.

Fabrication artifacts are of prime importance for quality control engineers for
first part inspection of industrial components. Techniques are presented in this the-
sis to measure fabrication artifacts through direct comparison of a reference CAD
model with the corresponding industrial 3D X-ray computed tomography volume.
Information from the CAD model is used to locate corresponding points in the vol-
ume data. Then various comparison metrics are computed to measure differences
(fabrication artifacts) between the CAD model and the volumetric dataset. The
comparison metrics are classified as either geometry-driven comparison techniques
or visual-driven comparison techniques.

The locally adaptive marching cubes algorithm is a modification of the marching
cubes algorithm where instead of a global iso-value, each grid point has its own
iso-value. This defines an iso-value field, which modifies the case identification
process in the algorithm. An iso-value field enables the algorithm to correct biases
within the dataset like low frequency noise, contrast drifts, local density variations,
and other artifacts introduced by the measurement process. It can also be used for
blending between different iso-surfaces (e.g., skin, and bone in a medical dataset).

Comparative visualization techniques are proposed to carry out parameter
studies for the special application area of dimensional measurement using indus-
trial 3D X-ray computed tomography. A dataset series is generated by scanning
a specimen multiple times by varying parameters of the scanning device. A
high resolution series is explored using a planar reformatting based visualization
system. A multi-image view and an edge explorer are proposed for comparing
and visualizing gray values and edges of several datasets simultaneously. For fast
data retrieval and convenient usability the datasets are bricked and efficient data
structures are used.





Kurzfassung

Diese Arbeit beschäftigt sich mit Algorithmen und Techniken zur effektiven Ex-
ploration von volumetrischen Daten. Die Visualisierungstechniken sind mit dem
Fokus auf benutzerdefinierte Merkmale entwickelt worden. Die vorgestellten
Techniken sind in vier Kapitel eingeteilt: Feature Peeling, Berechnung und Darstel-
lung von Produktionsfehlern, lokal adaptives Marching Cubes Verfahren, und
vergleichende Visualisierung für Parameterstudien von Datensatzreihen.

Feature Peeling ist ein neuer Darstellungsalgorithmus, der auf der Analyse
von Sichtstrahlprofilen basiert. Die Strahlenprofile werden bei sogenannten Über-
gangspunkten also bei Hochpunkten und Tiefpunkten unterteilt. Die Empfind-
lichkeit dieser Übergangspunkte wird mittels zweier Schwellwerte kalibriert. Der
Steigungsschwellwert basiert auf der Länge des Vektors, der einen Tiefpunkt und
den darauffolgenden Hochpunkt verbindet. Der Peeling-Schwellwert bestimmt
die Tiefe des Übergangspunktes im Verhältnis zu den Übergangspunkten der
benachbarten Sichtstrahlen. Durch diese Technik kann ein Datensatz in eine Reihe
von Merkmalsebenen zerlegt werden.

Produktionsfehler sind für die Qualitätskontrolle bei der Erstinspektion einer
industriellen Komponente von primärer Wichtigkeit. In dieser Arbeit werden
Techniken zum direkten Vergleich eines CAD-Modells mit einem 3D Röntgen
Computertomographie-Scan präsentiert. Informationen aus dem CAD-Modell
werden verwendet, um korrespondierende Punkte im Volumen zu identifizieren.
Anschließend werden verschiedene Vergleichsmetriken ausgewertet, um Unter-
schiede (Produktionsfehler) zwischen dem CAD-Modell und dem Volumen zu
messen. Die Metriken können entweder global (geometry-driven) oder lokal
(visual-driven) ausgewertet und angezeigt werden.

Der lokal adaptive Marching Cubes Algorithmus ist eine Modifikation des ur-
sprünglichen Marching Cubes Verfahrens, bei dem anstatt eines globalen Isowertes
ein Isowert pro Voxel verwendet wird. Das dadurch definierte Isowertfeld modi-
fiziert den Klassifikationsschritt des ursprünglichen Algorithmus. Das Isowertfeld
ermöglicht die Korrektur von systematischen Messabweichungen im Datensatz,
wie zum Beispiel Rauschen mit niedriger Frequenz, Kontrastverschiebungen, lokale
Dichteveränderungen, etc. Außerdem kann der Algorithmus verwendet werden,
um verschiedene Isoflächen (z.B. Haut und Knochen in einem medizinischen
Datensatz) miteinander zu verschmelzen.

Für den speziellen Anwendungsbereich der 3D Messung mittels industriellem
Röntgen Computertomographen werden im Rahmen dieser Arbeit vergleichende
Visualisierungstechniken vorgeschlagen. Durch das wiederholte Abtasten eines
Messkörpers mit veränderten Messparametern wird eine Datensatzreihe erzeugt.
Im Rahmen dieser Arbeit wurde ein Visualisierungssystem entwickelt, das sich
der planaren Reformattierung bedient. Dieses System kann verwendet werden um
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eine hoch aufgelöste Datensatzreihe zu explorieren. Eine Mehrbildansicht und
ein Werkzeng zur Kanteninspektion werden zur Verfügung gestellt, um mehrere
Datensätze gleichzeitig miteinander vergleichen zu können. Die Datensätze sind in
Blöcke unterteilt, um mit effizienten Datenstrukturen schnell auf die Volumendaten
zugreifen zu können und eine hohe Benutzerfreundlichkeit zu gewährleisten.
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1961: The purpose of computing is
insight, not numbers.
1997: The purpose of computing
numbers is not yet in sight.

Richard Wesley Hamming

1
Introduction

The concept of X-ray imaging was introduced by an Italian radiologist Alessan-
dro Vallebona in the early twentieth century [82]. This was one of the
first methods proposed to look inside opaque objects. Plenty of machines

such as computed tomography (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET), and ultrasound have been invented since then to help
professionals plan surgery, perform nondestructive testing (NDT) of industrial
components, search for oil, locate fish schools and examine the proper development
of fetuses etc. All the above devices produce a volumetric dataset as an output as
opposed to a 2D image generated from X-ray imaging.

These machines are used on a daily basis in the fields of medicine and industrial
manufacturing. Radiologists and doctors use them for diagnosis like finding defec-
tive positioning of a body part, treatment planning like marking regions for therapy,
and intra-operative support like monitoring life critical structures etc [59]. Quality
control engineers capitalize on them by performing NDT, first part inspection, and
measurement of internal features.

In most cases, the output of a scanning device is a raw dataset which is
composed of scalar values. Each scalar value describes the specimen at a distinct
spatial location in terms of the scanning technique employed. For example, a
medical CT uses Hounsfield units to define the densities of the specimen, MRI
measures the content of hydrogen atoms and ultrasound records the reflected echo
of sound waves to calculate distances and densities of the tissue. A 3D dataset
produced by such scanners can be very large and complex to be of any value in
its raw format. The purpose of scanning is not to produce meaningful numbers in
a high quantity but to be able to get insight into the specimen and to be able to
deduce reliable results efficiently.

Communication of information to a target user can be carried out efficiently
and in a focused manner by harnessing the qualities of the perceptual system
of the user. Human beings have the capacity to combine vision, visual clues,
and multiple viewpoints into a single 3D image [69]. The pre-attentive property
of vision is the processing of displayed data even before a focused attention is

1
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(a) 3DCT (b) MRI

Figure 1.1: (a) Rayscan 250XE industrial 3D X-ray computed tomography device [74]. (b) three
tesla clinical magnetic resonance imaging scanner [81].

achieved. A visualization task capable of utilizing pre-attentive vision can be
solved in merely 200 to 250 milliseconds. A large amount of visual information
can be processed by the brain instantly [24]. Visualization techniques can exploit
the human perceptual system for better and faster communication of voluminous
data.

Visualization techniques can be applied to transform large and complex datasets
into clear and easy to understand expressive images. The user may have the
ability to control the display parameters and to interact with the rendered images.
Visualization can reduce the time taken to understand data, to find trends, and to
extract valuable conclusions from the dataset. We will discuss various visualization
techniques for CT and MRI datasets in the rest of the thesis.

1.1 Computed Tomography

The first commercial CT machine was produced in 1972 by considerably enhancing
the X-ray imaging methodology [82]. A CT produces a series of 2D X-ray atten-
uation measurements, which are used to mathematically reconstruct a 3D grid
of scalar values (voxels) corresponding to the spatial densities of the specimen.
The voxel values in CT are generally calibrated and are called Hounsfield units or
density values. In case of an industrial 3D X-ray computed tomography (3DCT)
scanner the values are not calibrated and are thus called gray values (figure 1.1(a)).
The energy of the X-rays used in CT is directly related to their penetration power
and their harmful affects on the patients. 3DCT scanners use higher energy X-rays
and produce higher resolution volumetric datasets compared to CT machines
engineered for scanning patients.

Volumetric datasets obtained from a CT are prone to a range of artifacts such
as contrast drifts, beam hardening, streaking artifacts, scattered radiation, and
ring artifacts. A contrast drift is a slow change in the density values of a given
material during the course of scanning. Beam hardening is a common artifact in
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(a) Beam hardening (b) Streaking artifacts

Figure 1.2: (a) shows the beam hardening artifact. The gray-value profile of the red ray is plotted
below the image. The gray values are higher near the edges and decrease with an increase in
penetration length. (b) streaking artifacts are visible as bands of gray values inside and outside
the material. The dataset was recorded by taking 90 projections in a single 360 degree turn of the
rotary plate.

3DCT. Materials with a greater ability to absorb X-rays result in lower gray values
in the center of the material (figure 1.2(a)).

Streaking artifacts are bands of gray values produced due to, e.g., insufficient
sampling of the specimen. Figure 1.2(b) shows a slice of a dataset affected by
streaking artifacts. Scattered radiation is caused by the deflection of X-rays.
Neighboring detector pixels of the CT can be inhomogeneous due to the rotation
of the dataset on a rotary plate. This results in ring artifacts.

1.1.1 General Visualization Techniques for CT

Over the years a lot of visualization techniques have been proposed to visualize
CT data. Initially the aim was to develop a basic system that can visually represent
large volumetric datasets. This was achieved to a considerable degree through
direct volume rendering (DVR) and multi-planar reformatting (MPR), i.e, 2D
planar slices of the data taken at arbitrary angles. Afterwards some researchers
started working on application specific visualization algorithms. The intention
was to further automate 3D volume exploration and processing and to make it
robust.
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1.1.2 Application Specific Visualization Techniques for CT

DVR renders a volumetric dataset by modulating the scalar values with a user
specified transfer function (figure 1.3(a)). The user can interact with the transfer
function and the updated image appears in the viewport. DVR is a basic technique
for volume visualization. It is neither aware of the features inside the dataset,
nor does it take into account the application specific goals of performing volume
rendering. It treats a dataset as a cluster of scalar values, no matter if the dataset
is a human brain, a car engine, or a tooth.

The parameters of DVR change according to the type of the dataset and
the goals of the user. A doctor operating upon a complex fracture is primarily
interested to view the bones. Skin and arteries far away from the fracture are
irrelevant. A quality control engineer may be only interested in ensuring that the
piston of an engine does not have any cracks. It is important to propose innovative
visualization techniques and algorithms that are tailored for specific application
areas.

Techniques like cut-away views, ghosted displays and exploded views are
proposed to adapt DVR to importance driven visualization [8, 77]. A good
viewpoint for a feature of interest can be automatically evaluated [40, 76]. Users
can store, visualize, and compare their workflows and the rendered images [67].
The production quality of an industrial part is evaluated by comparing the surface
model extracted from its 3DCT volume with the corresponding computer aided
design model (CAD) [28] (figure 1.3(c)). Datasets from dual energy 3DCT can be
combined to minimize artifacts and to maximize contrast between features [26].
Figure 1.3(b) shows a rendering of a segmented human head using style transfer
functions [9]. In this thesis we propose four innovative visualization systems for
CT datasets. The presented algorithms visualize the volume data on the basis of
the features that are of interest for the user. Specific user goals were considered
while designing the techniques (section 1.3).

1.2 Magnetic Resonance Imaging

The origin of MRI can be traced back to 1930 when Isidor Rabin discovered the
fundamentals of the magnetic behavior of protons. The first MRI image was
produced in 1973 [81]. MRI uses a magnetic field to measure the hydrogen content
of a specimen. Due to the use of a magnetic field in the scanning process, MRI
can only be employed to scan objects that cannot be magnetized and that contain
hydrogen. MRI is primarily operated in the medical field (figure 1.1(b)).

MRI datasets have high spatial resolution but they are prone to high frequency
noise and low frequency noise. High frequency noise affects image clarity and low
frequency noise alters the signal intensity globally. The noise makes it difficult to
apply contemporary 3D visualization techniques like DVR on MRI data. Multi-
planar reformatting (MPR) is a commonly used method to inspect MRI data for
diagnosis.
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(a) hydrogen dataset (b) CT head

(c) 3DCT specimen

Figure 1.3: (a) DVR of the hydrogen dataset. (b) feature weighted rendering of a human head
using a multi-dimensional style transfer function [9]. (c) comparison between a surface model and a
CAD model of a 3DCT specimen [28].
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Figure 1.4: MPR pipeline. The intersection between a bricked volume and a cutting plane is
calculated. Later interpolation is performed to generate images.

(a) Brain (b) Knee

Figure 1.5: (a) and (b) show MRI slices from the brain and the knee respectively [81].

Visualization Techniques for MRI:

Generally, in the first stage, MPR divides a monolithic volume into bricks (fig-
ure 1.4). The bricks which intersect a user placed cutting plane are loaded into
the main memory and then an interpolation method is employed to calculate an
image. Figures 1.5(a) and (b) display slices from an MRI brain dataset and an MRI
knee dataset respectively.

Rezk-Salama and Kolb present an opacity peeling technique for visualizing
MRI datasets [64]. They argue that DVR for MRI requires classification due to
overlapping scalar values assigned to different tissues. Classification is a time
consuming process that may require considerable user interaction. Their method
is automated and is tailored for time critical scenarios like intra-operative support.
Opacity peeling uses opacity to classify datasets. Layers of data are peeled off
depending on the accumulated opacity along the rays in a DVR environment.
Opacity peeling is a view dependent technique. Figure 1.6 shows an MRI head
dataset rendered using the opacity peeling technique. Bone and skin are peeled
off to reveal the brain.
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Figure 1.6: Brain uncovered from an MRI head dataset using opacity peeling [64].

1.3 Scope of the Thesis

This work is an attempt to strengthen feature specific volume visualization. A
feature is a property or an object in a dataset which is of prime importance for
analysis and decision making. The proposed techniques are designed to meet the
following guidelines:

• Features of interest are identified in an application area.

• Innovative visualization algorithms are proposed.

• Parameters which require user interaction are minimized.

• Utility and usability of the presented algorithms is established.

In chapter 2 feature peeling is proposed to peel off layers of data from MRI and
CT datasets to reveal underlying structures [48]. Layers are identified by casting
view dependent rays and processing the encountered scalar values. The visualiza-
tion of MRI data is enhanced. The technique also speeds up the exploration of
CT and MRI datasets. The user does not have to perform the laborious task of
specifying a transfer function. Instead just two thresholds need to be specified.
The algorithm is compared with the opacity peeling technique [64]. Figure 1.7
shows an MRI head dataset with skin and bone peeled off. The brain surface is
clearly visible.

3DCT datasets are often used for first part inspection of industrial components.
The inspection is typically carried out by extracting a surface of the volume data and
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Figure 1.7: A rendering of a human head scanned with MRI. The skin and bone is peeled off and
the brain surface is clearly visible.

Figure 1.8: An industrial specimen color coded to show differences between its 3DCT volume
and the corresponding CAD model.
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then comparing the extracted surface model with the CAD model of the specimen.
Fabrication artifacts are the most interesting features in such a comparison. They
directly influence the production quality of an industrial component. The two step
process of comparison is error prone and time consuming (chapter 3). A direct
comparison between a CAD model and the corresponding 3DCT volume can be
performed interactively [47]. It avoids artifacts introduced by the surface extraction
process and it reduces the number of user specified parameters. Figure 1.8 shows
a surface model of an industrial component. The dataset is color coded after
performing a direct comparison between its 3DCT volume and the corresponding
CAD model.

The surface extraction from a volumetric dataset is an error prone task. The
errors are introduced either due to the extraction process or due to bias in the
dataset. Surface extraction algorithms have considerably improved since the
marching cubes algorithm [44] was developed in 1987. Not enough work, however,
has been done to remove bias in the datasets. Bias in the scalar values might occur
due to various CT artifacts and can severely affect the shape of various features
in the specimen. The surface model of a specimen can be enhanced by using
iso-value fields (chapter 4). The techniques presented in this thesis are useful
in various other scenarios as well like smooth blending of multiple surfaces [20].
Enamel and dentine are both parts of a tooth but have different densities. In
figure 1.9 iso-surfaces of enamel and dentine are both stitched together into one
triangular mesh using an iso-value field.

Comparison of datasets is a usual task for professionals working with 3DCT. The
comparison is performed to inspect and compare artifacts in different datasets (chap-
ter 5). Artifacts are features of interest in such an application scenario. The users
want a system which is able to highlight artifacts efficiently and which can handle
multiple large datasets [46, 63]. Two studies are presented to show the affect of
the proposed system on the workflow of domain specialists. Four slices from
different datasets are compared in figure 1.10. The color coding displays the
relative difference between the scalar values of the datasets in the sectors and the
reference dataset displayed in the central circle (220 kV).
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Figure 1.9: Locally adaptive marching cubes is utilized to generate a surface model of a human
tooth dataset.

Figure 1.10: Comparison of four 3DCT datasets. The 220 kV dataset is the reference dataset. All
the other datasets are color coded by computing the local difference between their scalar values and
the scalar values of the reference dataset.



Great works are performed, not by
strength, but by perseverance.

Samuel Johnson

2
Feature Peeling

Transfer functions are used in 3D visualization to assign user defined optical
properties to a volumetric dataset based on scalar values. The specification
of the optical properties should be able to highlight defective tissues or

features that are of interest for a particular medical or industrial study. This is
a non-trivial task and often requires considerable time and expertise to achieve
desired results. While one might be able to set up a system which can be reused
for several patients, this is not always possible.

Magnetic Resonance Imaging (MRI) datasets are more difficult to handle than
and are quite different from Computed Tomography (CT) datasets. Hounsfield
numbers give a good and patient independent indication of the tissue types in
CT. In contrast, the variance of tissue response between different patients in MRI
datasets is too large to use pre-defined transfer functions for the detection of
features. Transfer function specification has to be performed every time a new
MRI dataset is generated. This fact makes transfer function specification a difficult
and time consuming task.

Additionally, MRI typically contains a considerable amount of noise that makes
it harder and more challenging to produce insightful visualizations. There is high
frequency noise that affects the clarity of the images and there is low frequency
noise that slowly changes the intensity of a signal. 3D visualization techniques
are rare for MRI datasets and often medical personnel use manual exploration of
the datasets through slice-based inspection (MPR).

We propose a novel rendering technique that identifies interesting features
along viewing rays based on a ray profile analysis. For each particular view
point, the algorithm allows the user to browse through the layered features of
the dataset (see section 2.2). This technique can be used without specifying any
transfer function and henceforth is suitable for time critical applications. Further,
we include a de-noising step to be able to deal with MRI datasets. We successfully
apply this technique to a variety of medical and synthetic datasets (section 2.4).

This work aims at similar goals as the work of Rezk-Salama and Kolb [64]. We
intend to show the entire dataset to the user, in a layered manner without putting

11
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effort in setting up a complicated transfer function. We detail the differences as
well as the relationship to other work in the next section.

2.1 Related Work

In volume rendering, transfer function specification is the main tool for the user to
define optical properties. The transfer function guides the user to detect features
in a volumetric dataset. The 1D transfer function is the simplest example which
maps scalar values to opacity and color. More effective, but complex transfer
functions that require user training and experience have been proposed.

A number of interesting enhancements, meant to give the user insight into the
data, have been developed for the 1D transfer function. Simple histograms [7],
the contour spectrum [2], and Laplacian-weighted histograms [56] have been
suggested. Potts and Möller [58] investigate the usage of a logarithmic scale that
eases transfer function specification.

Multi-dimensional transfer functions [34] have been introduced which assign
optical properties based on data values but also first and second derivative infor-
mation thereof. Kindlmann and Durkin [32] automate the generation of a transfer
function. They use the relationship between scalar values and their first and
second order derivative to highlight boundaries in the dataset.

Kniss et al. [35] describe how probing and clipping can enhance the under-
standing of the features that exist in a dataset. Patel et al. use innovative moment
curves to specify feature aware transfer functions [55]. Bergner et al. [4] use a
spectral representation of colors instead of the RGB model to enhance details and
to allow an effective exploration of datasets. Transfer function specification is
also tailored specifically to the visualization of medical datasets by making use of
metadata [12].

Gao and Shen [18] efficiently extract isosurfaces for a given viewpoint. They
divide the dataset into spherical partitions and store these in a binary tree designed
for fast access. They propose a method for extracting a single iso-surface and thus
their technique is not generally applicable to CT and MRI based medical datasets.

Höhne et al. [29] extend the Marr-Hildreth segmentation operator to 3D. They
apply their technique in a view-independent manner. The work requires correction
of errors through user input and produces a segmentation of the dataset as
output. In our approach, we do not intend to perform segmentation but instead
want to reveal features in a view-dependent manner. As we neither require
human intervention nor any pre-processing of the entire dataset, our technique
is interactive and we can control the level of peeling in real-time. A detailed
description of volume graphics techniques and their applicability to medical
visualization is given by Engel et al. [17].

While most of these techniques require user intervention, it would be preferable
to cut this step from the visualization process to provide a quick insight into the
dataset. This is the idea of the opacity peeling approach of Rezk-Salama and
Kolb [64]. It allows a layered browsing of the dataset. The layers are defined
through accumulated opacity and basically all the information in the dataset is
visible. As the layers are based entirely on visibility (as opposed to features),
objects of interest might be split and distributed among several layers. Instead of
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Figure 2.1: A ray profile showing three features as prominent density peaks. Features are marked
with ovals and vertical lines show the transition points. Transition points split a ray profile into
different layers.

peeling different layers of opacity, we propose to do an analysis of ray profiles and
split the rays not according to opacity thresholds, but rather at possible feature
transition points.

2.2 Feature Peeling

Along a ray in a dataset, we find valleys, peaks, and homogeneous regions. Areas
of interest are, by default, regions where the data field is changing. If there
are detectable transitions from one tissue to another, then these transitions will
be present in regions with changing data values. These transitions can be very
useful and the transition points are the places where interesting features inside
the dataset start or end. Whether we wish to look at objects occluded by others or
want to search for a disorder inside a single organ, such transitions will help us to
explore and to locate information fast and easily.

A ray cast through a medical dataset produces a ray profile based on the scalar
values encountered. This ray profile is used by various techniques in a specific
way to generate images. For example, direct volume rendering (DVR) performs
front to back or back to front compositing along the ray profile. Considering a
linear ramp as an opacity transfer function, peaks in the ray will contribute most to
the volume rendering integral. Averaging on the other hand calculates an average
of all the scalar values encountered by a ray, as is common in X-Ray rendering or
Fourier volume rendering [49].

Maximum intensity projection (MIP) only displays the highest peak in a ray
profile [43, 52, 65]. Similarly, local maximum intensity projection (LMIP) [66]
searches for the first peak above a specified threshold along the ray.

In figure 2.1, a ray profile with three features is shown. These features
are prominent density peaks in the ray profile as compared to the rest of the
profile. Feature peeling is separating these features into different layers by locating
transition points between them.

We present a high level explanation of feature peeling in figure 2.2 by a 2D
illustration. We use three concentric circular layers shown at the top left of
figure 2.2 as dataset. A ray is also shown, which passes through the center of the
dataset. The ray profile and the transition points corresponding to the ray are
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Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Figure 2.2: Three concentric layers of a dataset are shown at the top left of the figure. A ray is
depicted in the dataset and the corresponding ray profile is drawn below. Small marks on the ray
profile are shown which depict the transition points. On the right we show the first three layers
that will be generated from this dataset as a result of feature peeling.

drawn below the dataset. The first three transition points of the ray are depicted
with a square, a rectangle and a circle respectively. These transition points mark
the start of features. On the right we show the first three resulting layers from the
current view point. The example in figure 2.2 illustrates the importance of finding
transition points that are representative of the features in a dataset.

2.2.1 Locating Transition Points

The search for the transition points is based on the first and second derivatives of
the ray profile. Local minima, i.e., locations along the ray where the first derivative
is zero and the second derivative is positive are considered as the transition points.

The number of transition points can vary from ray to ray based on the number
of features along a ray and the amount of noise present. In the case of MRI datasets,
a large number of transition points might be present due to high frequency noise.
We remove high frequency noise by using a low pass filter. This will smooth the
profile, remove the transition points that exist because of noise, and enhance the
transition points that are representative of the dataset.

Low frequency noise in the MRI datasets may also generate false transition
points. These transition points are removed by calculating the slope between
the transition point and the local maximum of the peak immediately following
the transition point. If the slope is less than some user specified threshold, it is
discarded and the search for another transition point is carried on from the local
maximum onward. We call this threshold slope-threshold henceforth.
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Figure 2.3: The gray circle shows the local minimum and the gray square shows the first local
maximum after this local minimum. The dashed line depicts the slope-threshold. The slope between
the local minimum and the local maximum is shown by a dashed arrow.

Figure 2.3 illustrates the usage of the slope-threshold. A local minimum and a
local maximum are depicted as a circle and a square respectively. The dashed
line shows the slope-threshold specified by the user. A dashed arrow depicts the
calculated slope. This local minimum will not be considered a transition point
as the slope between the local minimum and the local maximum is below the
slope-threshold.

Figure 2.4(top) shows an original ray profile from an MRI head dataset. High
frequency noise is visually recognizable. Transition points for this ray profile
are shown in figure 2.4(center) as vertical lines, calculated after removing high
frequency noise. Arrows point at the local minima that are the result of low fre-
quency noise and which are discarded using the slope-threshold. Figure 2.4(bottom)
shows a slice from the MRI dataset with a line indicating the ray whose profile
is given in figures 2.4(top) and 2.4(center). The slope-threshold was set to 1.0 (45
degrees).

2.2.2 Relevance Across Neighboring Rays

The transition points are generated with no input from neighboring ray profiles.
This may subdivide the volume data into non-smooth feature layers because of the
difference in depths of the transition points of neighboring rays. Figure 2.5 shows
three neighboring rays and their first and second transition points. A dashed curve
is drawn by connecting the first transition points of all the three rays. Similarly,
the dotted curve connects the second transition points of the rays. The distance
from the start of a ray to the location of the transition point along the ray is called
transition depth. The transition points have variable transition depths in all the
rays shown.

The part of the dataset that lies between its boundary and the dashed curve in
figure 2.5 is called layer 1. Similarly, data between the dashed curve and the dotted
curve is called layer 2 and so forth. We cannot expect constant transition depths
across neighboring rays as the main point of feature peeling is to generate images
from the individual irregular feature layers. In order to accommodate inaccuracies
of our de-noising procedure, we however, want to avoid large changes in the
transition depths from one ray to its neighbors. This is achieved by assigning each
transition point an importance or a relevance value that is based on its similarity
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Figure 2.4: Original ray profile of an MRI dataset (top) shows a lot of high frequency noise. The
profile is filtered with a median low pass filter (center). Vertical lines depict the transition points
and arrows indicate the local minima skipped based on the slope-threshold. At the bottom a slice
from the MRI dataset is shown and the horizontal line indicates the path of the ray.

Figure 2.5: Three rays with position x-1, x and x+1 are shown. A dashed curve is drawn by
connecting the first transition point of each of the three rays. It shows an interface between layer 1
and layer 2. A dotted curve shows an interface between layer 2 and layer 3 and is drawn by
connecting the second transition points of all the rays.
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to corresponding transition points in the neighboring rays. This will help to
interactively control the level of peeling, i.e. to specify how many layers will be
generated.

According to equation 2.1 we calculate the importance value Ipxy of a transition
point by taking the absolute difference between the transition depth depthx,y at
the current ray profile x, y and the average of the transition depths in the 3× 3
neighborhood of the ray x, y. Finally we subtract the normalized absolute difference
from 1.0. The normalized absolute difference is computed by dividing the absolute
difference by depthmax. The maximum transition depth depthmax can be set
individually for each view-point or it may also be set globally, i.e., equivalent to
the diagonal of the bounding box of the dataset.

Ipxy = 1.0− [

∣∣∣∣∣depthx,y −
1

∑
i=−1

1

∑
j=−1

depthx+i,y+j

9

∣∣∣∣∣ /depthmax] (2.1)

where 0 ≤ depthu,v ≤ depthmax

The importance value ranges from close to zero to one with zero being the
lowest importance and one being the highest importance for a transition point.
Transition points with a low importance are potential jumps in a layer and should
be discarded. Similarly, the user can also control the level of peeling (i.e., number
of layers) by means of a user specified threshold, called peeling-threshold. Transition
points with importance less than the peeling-threshold are ignored by the algorithm.

Listing 1 shows the high level pseudo code for finding transition points using
feature peeling. A function, which locates a transition point on a ray for a given
layer is presented. We also show the pseudo code for finding a given layer by
opacity peeling in Listing 2. Opacity peeling only takes visibility into consideration
and is therefore insensitive to features. It performs front to back compositing
until the accumulated opacity is above a certain threshold called T_high and the
opacity for the current ray position has dropped below a threshold called T_low.
Feature peeling on the other hand produces layers where each layer corresponds
to a feature in the dataset.
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Listing 1: Pseudo code of feature peeling for calculating transition points on a single ray. A transition
point for a given layer is calculated on the basis of user specified thresholds.

lowPassFilter() /* filters a location using a user specified filter */
sampVol() /* returns a scalar value from a 3D dataset */
calSl() /* returns slope between the parameters */
calImp() /* returns an importance value for a transition point */

LocateTransitionPoint(layer, rayPos)

counter = 0 /* counts number of feature layers */

LocalMinFd = false /* local minimum found or not*/

nextVal = lowPassFilter(sampVol(rayPos))

while (NotEndofRay)

curVal = nextVal

nextVal = lowPassFilter(sampVol(rayPos + 1))

slope = calSl(curVal, nextVal)

if ((slope>0)&&(LocalMinFd == false))

LocalMinFd = true, LocalMin = rayPos

else if ((slope<0)&&(LocalMinFd == true))

LocalMax = rayPos

slope = calSl(sampVol(localMin),curVal)

if (slope>slope_Threshold)

IPxy = calImp (localMin)

if (IPxy>peeling_Threshold)

if (counter == layer)

return LocalMin

else

counter++

LocalMinFd = false

rayPos = rayPos++

Listing 2: Pseudo code of opacity peeling. Features might be split among opacity layers.

FrontToBackComp() /* performs front to back compositing */
T_high /* threshold for the accumulated opacity */
T_low /* threshold for the opacity at current ray position*/

LocateLayerPostion (layer, rayPos)

accOp = 0 /* accumulated opacity */

curOp = 0 /* opacity at current ray position */

counter = 0 /* counts number of opacity layers */

while (NotEndofRay)

FrontToBackComp()

if ((accOp>T_high)&&(curOp<T_low))

if (counter == layer)

return accOp

else

counter++, accOp = 0

rayPos = rayPos++
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2.3 Implementation and Performance

We implemented feature peeling on an AMD Athlon, 2.1 GHz CPU and an NVidia
GeForce 6600 graphics board. Feature peeling is generic with respect to rendering.
The separate layers can be rendered for example with DVR, MIP, LMIP. The images
that we show in this chapter are generated by using DVR. We have used a median
low pass filter of width five for de-noising in all of our test cases.

The result images are computed by controlling just two sliders. One slider
specifies the slope-threshold and the second slider controls the peeling-threshold.
Both of these thresholds affect the number of layers that are generated by the
feature peeling algorithm. Figure 2.6(a) shows the number of layers generated
from an MRI head dataset by using various combinations of these thresholds. The
resolution of the head dataset is 256× 256× 109.

There is no change in the number of layers produced by feature peeling when
the slope-threshold is zero and the peeling-threshold is between 0 and 0.96. There is
a sharp decline in the number of layers produced through feature peeling when
the slope-threshold is set to the lowest value of zero and the peeling-threshold is
changed from 0.96 to 0.98. On the other hand, there is not a significant change in
the number of layers when the slope-threshold is set to a high value of 20 and the
peeling-threshold is changed from 0 to 0.98.

(a) MRI head dataset

(b) CT hand dataset

Figure 2.6: These graphs show the number of layers produced from (a) an MRI head dataset and
(b) a CT hand dataset for different combinations of the peeling-threshold and the slope-threshold.
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This shows that by assigning a low value to the slope-threshold the number
of layers does not vary uniformly by changing the peeling-threshold. For a high
slope-threshold the number of layers that can be produced by manipulating the
peeling-threshold is limited.

Figure 2.6(b) shows the number of layers generated by different combinations
of the slope-threshold and the peeling-threshold for a CT hand dataset. The dataset
has a resolution of 244× 124× 257. The variance in the number of layers with
respect to the thresholds is similar as witnessed in figure 2.6(a). However, the
variance in the number of layers is less than in figure 2.6(a) as there are fewer
features in the hand dataset.

The slope-threshold can also affect how features show up in an image. The
user can interactively change the value of the slope-threshold for each layer accord-
ing to the requirements. Figure 2.7(a) shows the first layer of the carp dataset.
Figure 2.7(b) and (c) both show the second layer of the carp with different slope-
thresholds. In figure 2.7(b) we observe that noise and parts of the spinal cord
are partially occluding the swim bladder of the carp. An increase in the slope-
threshold can fade away the spinal cord and noise and display a clear view of the
swim bladder as in figure 2.7(c). The swim bladder is visually highlighted by a
rectangle.

We measure the performance of our system using an MRI head dataset. We
also compare our results with an implementation of opacity peeling. Table 2.1
shows the rendering speed of feature peeling and opacity peeling for four different
layers of the head dataset. Opacity peeling produces layers through direct volume
rendering. In order to extract a certain layer, all the layers on top of that layer
have to be rendered as well. Feature peeling defines layers based on the ray
profile analysis and requires less computation to identify a feature layer. The
slope-threshold was set to 1.0 (45 degrees) and the peeling-threshold was set to 0.965.
The image resolution was 512× 512.

The performance decreases with an increasing number of layers. The frame
rate is dependent on the depth of the transition points and also on the number
of local minima being skipped. Therefore, the rendering time must increase to
visualize layers of larger depth.

Table 2.1: This table shows the performance of feature peeling. Column 2 shows the rendering
speed in frames per second if only the slope-threshold is used to decide if a local minimum will be
considered a transition point. Column 3 shows the rendering speed for different layers when both
thresholds are calculated. The last column shows the performance of opacity peeling.

Slope-threshold Slope-threshold and Opacity
only peeling-threshold peeling

Layer1 8.2fps 7.8fps 4.3fps
Layer2 6.1fps 5.9fps 3.6fps
Layer3 5.6fps 5.2fps 2.3fps
Layer4 5.2fps 4.8fps 2.0fps
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(a) Layer 1

(b) Layer 2

(c) Layer 2

Figure 2.7: First layer of the carp is shown in (a). (b) and (c) display the second layer of the
carp with different values for the slope-threshold. The slope-threshold is 1.3 and 7.0 for (b) and (c)
respectively.
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2.4 Results

We show results by using two MRI datasets (head angiography and head) and
two CT datasets (present and hand). We also show the variance in the transition
depth across the layers produced by feature peeling and compare the results with
opacity peeling.

Figure 2.8 shows an MRI angiography dataset divided into two layers. Fig-
ure 2.8(a) shows the direct volume rendering of the dataset without feature peeling.
A lot of high frequency noise is present and thus the veins are not clearly visible.
Figure 2.8(b) shows the first layer of the MRI dataset, generated through feature
peeling. All the high frequency noise is filtered out and we have a clear view to
the veins. However, two veins of approximately the same shape are present in the
area marked with an oval. The vein that is covering the other vein is removed in
figure 2.8(c), to reveal the hidden vein by showing the second layer. Figure 2.8(d)
again shows the first layer rendered through feature peeling after slightly rotating
the dataset. Both the veins can now be seen to have almost the same shape.

(a) DVR (b) Layer 1

(c) Layer 2 (d) Layer 1

Figure 2.8: DVR of an MRI dataset (head angiography) is shown in (a). The first layer of the
dataset is given in (b). Two veins with approximately the same shape exist in the region marked
with an oval. The vein that occludes the other one is peeled away in layer 2 (c). Both veins are
visible in (d). The slope-threshold is 3.0 and the peeling-threshold is 0.4.
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Figure 2.9 shows six layers of the present dataset: the complete present as
it looks from the outside (2.9(a)), the inner box (2.9(b)), the snow globle (2.9(c)),
the St. Stephan’s Cathedral (2.9(d)), the platform and the hidden towers of the
St. Stephan’s Cathedral (2.9(e)) and the mouse (2.9(f)) are all distinctively visible
in separate layers.

In figures 2.10(a) to 2.10(c) and 2.10(e), we show four layers of an MRI head
dataset. The first layer in figure 2.10(a) shows the outer layer, the second layer in
figure 2.10(b) shows the brain surface, the third layer in figure 2.10(c) uncovers the
eyeball and reveals parts of the ventricles and the fourth layer in figure 2.10(e) shows
the corpus callosum, inner parts of the ventricles and the right eye. Figure 2.10(d)
and 2.10(f) show the third and fourth layers of the same dataset produced using
opacity peeling. Ventricles and corpus callosum are for example less recognizable
in figure 2.10(d) and 2.10(f) compared to figure 2.10(e).

Figures 2.11(a) and 2.11(b) show the second and the third layer of a hand
dataset produced by opacity peeling. Figure 2.11(a) shows bones and some parts
of the veins. The third layer in figure 2.11(b) skips large parts of the veins, making
it difficult to visualize them. Zoom-in highlights the region where veins have been
skipped.

Figures 2.11(c) and 2.11(d) show the second and the third layer of the hand
dataset generated using feature peeling. The second layer in figure 2.11(c) peels
off the upper bone and shows some veins and the lower part of the bone. The
third layer in figure 2.11(d) removes bone to show occluded veins and arteries.

Figures 2.12(a), 2.12(b) and 2.12(c) display the standard deviations for the
second, third and fourth layer of the head dataset using both feature peeling and
opacity peeling. Feature peeling consistently produces lower variance on the layer
boundaries as compared to opacity peeling. Opacity peeling is concerned with
visibility irrespective of feature boundaries, while feature peeling separates the
volume data along smooth feature interfaces. We have used a slope-threshold of
value 1.0 to generate these graphs.

2.5 Conclusion

This chapter introduces feature peeling, which for a selected view-point enables
browsing of volumetric data in feature layers. It has shown promising results
for MRI datasets, which are hard to visualize using traditional 3D visualization
techniques. While feature peeling requires the specification of two thresholds
(a slope-threshold as well as a peeling-threshold), we believe that these thresholds
can remain constant over a large number of patient studies. However, this needs
further investigation. Further, a more thorough test needs to be done on the
influence of the de-noising method. Currently we are simply using a low pass
median filter. It is possible that a bi-lateral filtering in combination with Gaussian
smoothing or similar approaches might improve the coherency of transition points.

It will be interesting to investigate if we can use feature peeling to dynamically
select view positions. We would like to detect the regions inside the dataset
where the data field is changing most rapidly. The algorithm can then calculate
an optimal viewing position for these regions and perform feature peeling. This
could provide a separate view for almost every feature of the dataset.
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(a) Layer 2

(b) Layer 3

(c) Layer 4

Figure 2.12: The variance in the transition depth of a layer for feature peeling as well as for
opacity peeling is shown for three layers. (a) shows variation of depth in the second layer of the
MRI head dataset. (b) and (c) show results for the third and the fourth layers respectively. The
legend includes ranges of standard deviations into which the transition points were categorized.





Generosity is giving more than you
can, and pride is taking less than
you need.

Kahlil Gibran

3
Computation and Visualization of

Fabrication Artifacts

Comparison of two almost identical datasets is very important for the continu-
ously rising demands of quality control in industrial engineering. Recently
much work has been done in the area of mesh comparison. A high number

of vertices and edges are hard to process in real-time due to the limited processing
power available in hardware. This initiated research to simplify mesh datasets
in such a way that the rendering speed is increased while the mesh distortion is
limited. Distortions introduced through mesh simplification led to research on
mesh comparison.

In the manufacturing industry, it is necessary to produce industrial components
as close as possible to the computer aided design model (CAD) of the part.
Engineers use CAD tools like AutoCAD, Pro Engineering etc. for designing. The
CAD model is considered to be the ground truth during the manufacturing process.
To verify the accuracy of the production process, manufactured components are
scanned with an industrial 3D X-ray computed tomography (3DCT) machine. The
volumetric dataset obtained from the 3DCT scan is then compared to the CAD
model of the part. The comparison between the two datasets is supposed to clearly
identify erroneous regions.

The comparison process uses various methods to measure differences between
the two datasets. The differences present between the CAD model and the
volume data are the result of fabrication, measurement, and surface reconstruction
artifacts. We are primarily interested in detecting the fabrication artifacts as
these are introduced in an industrial part during the production phase. The goal
of the comparison process is to minimize all post-production artifacts so that
the differences measured between the datasets mainly correspond to fabrication
artifacts.

Datasets of industrial components, unlike medical datasets, mostly consist of
materials with distinctive density values. There is a high signal to noise ratio
and the interfaces in the volume data are easy to detect. For this reason the most

29
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(a) CAD (b) 3DCT scan

(c) Iso-surface mesh

Figure 3.1: (a) CAD model of test-part-1 (CAD model: 200, 000 triangles, volumetric dataset:
561× 559× 436 voxels). (b) direct volume rendering of the scan of test-part-1. (c) iso-surface mesh
extracted from the volumetric dataset in (b).

common method for first part inspection is to generate an iso-surface mesh from
the 3DCT scan and to compare it with the CAD model. In various cases this is not
the ideal approach: First, the generation of a mesh from the 3DCT dataset requires
a surface extraction algorithm. Industrial components have sharp edges and
corners and therefore a lot of surface reconstruction artifacts are introduced [37].
Second, mesh generation for a given iso-value is not interactively possible during
the comparison process. Therefore, the need to do a comparison with a higher or
lower resolution mesh will lead to a delay in the examination process. Third, a
3DCT dataset goes beyond a CAD model and has information about the interior
of the mechanical part as well. Losing this information limits the examination
possibilities of the 3DCT dataset.

Figure 3.1 shows a CAD model in (a), direct volume rendering (DVR) of the
3DCT scan in (b) and an iso-surface mesh extracted from the 3DCT scan in (c). In
figure 3.1(c), all the internal information of the volumetric dataset is lost. Areas
marked with black rectangles in figure 3.1(b) and 3.1(c) are shown as zoom-ins.
We observe surface reconstruction artifacts in figure 3.1(c).

In this chapter we present a novel approach to perform a comparison directly
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between the CAD model (which is the ground truth) and the volumetric dataset
obtained from the 3DCT scan. We calculate the difference between the CAD
model and an interface of the volume data and also compare the relative surface
smoothness. We show that the differences we measure represent fabrication
artifacts (section 3.3). The uncertainty of the measurement process is also evaluated
and presented to the user.

Color coding, glyphs, ray profiles, and 3D box plots are provided for visual-
ization and the results are also displayed quantitatively. The proposed method
is implemented on the Graphics Processing Unit (GPU). It provides interactive
comparison and visualization. We successfully avoid reconstruction artifacts by
comparing the CAD model directly with the volume data. Delays in the exam-
ination process are also avoided by embedding the complete comparison and
visualization pipeline in a single system.

3.1 Related Work

Large numbers of triangles are inefficient to render and also hard to stream over a
network. Subsequently, algorithms are proposed to simplify meshes [13, 73]. Mesh
simplification distorts the original shape to some extent and therefore techniques
are proposed to measure the differences between the two meshes.

Metro [14] is a general tool designed to compare two surfaces. One of the
surfaces is scan converted to a set of points and then the distance between each point
and the other surface is measured. Aspert et al. [1] propose to use the Hausdorff
distance for measuring differences which is computationally and memory wise
efficient. Pichon et at. [57] propose to use the gradient of the Laplacian equation to
locate corresponding points on the two surfaces. The corresponding points are then
used to measure distances between the surfaces. They argue that the Hausdorff
distance fails to consider the variation in shape. We calculate uncertainties in the
datasets to compensate for the shape variations.

A variety of metrics and visualization techniques are proposed by Zhou and
Pang [85] to measure mesh differences and present the information visually. The
combination of metrics and visualization methods intends to help users test and
calibrate various mesh simplification algorithms and find what suits their specific
requirements.

Turk presents an algorithm [73] to create multiple levels of detail from a
given iso-surface mesh. Samples are randomly distributed over the surface and
subsequently a relaxation process spreads them uniformly. In the final step the
user can choose a surface from a discrete set of surfaces to perform comparison.
The generation of a surface model and variance comparison are two separate
processes. The method proposed by Turk can be used to avoid delays in the
variance comparison process by generating multiple surface models with different
levels of detail in advance.

Weigle and Taylor [80] investigate visualization methods for distance and local
shape comparison. Their study shows that glyphs are better in conveying deviation
information between surfaces than color coding alone. They use intersecting
surfaces with known alignment for their study.
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The above mesh comparison techniques do not need registration. As the
simplified mesh is extracted from the original mesh, both meshes are perfectly
aligned. In the case of a CAD to a 3DCT dataset comparison, where both datasets
originate from a separate process, there is a need to perform registration. We
have included an iterative closest point algorithm [5, 54] for dataset registration.
A survey of registration algorithms specific to medical datasets is provided by
Wang et al. [45].

There has been some recent work on the variance comparison between a CAD
model and a 3DCT dataset. These methods however introduce a preliminary
step to the variance comparison process, where an iso-surface mesh is generated
from the 3DCT dataset. Heinzl et al. [28] propose a technique for generating a
feature preserving mesh from a 3DCT dataset. They use filtering to suppress
noise and a watershed segmentation to create a binary dataset. In the final step a
surface model is created using elastic surface nets, which is then used for variance
comparison. There is a whole body of work in the area of surface extraction,
which is considered to be out of scope for the work in this chapter.

Geomagic Qualify [61] is a well-known software product, used for quality
control in industrial engineering. A CAD model and an iso-surface mesh of the
volumetric dataset are inputs to this tool. It uses a point-set to point-set or a
best fit alignment algorithm for registration and then performs distance analysis
between the two datasets. Results are presented as a color coded surface. Methods
for extracting an iso-surface mesh from a volumetric dataset [26, 28, 38, 78] have
to be used in a preprocessing step for performing comparisons using Geomagic
Qualify. Geomagic Qualify works independently from the surface extraction
process and therefore assumes no reconstruction artifacts during the comparison
process, although such errors are introduced in the pre-processing step.

3.2 Computation & Visualization

Our comparison system is divided into geometry-driven and visual-driven analysis
techniques. Geometry-driven techniques provide an overall visualization of the
differences between the CAD model and the volumetric dataset. Visual-driven
techniques are used on top of the geometry-driven comparison techniques for a
user guided analysis and for obtaining precise quantitative information.

An overview of the system is shown in figure 3.2. The Iterative Closest
Point (ICP) algorithm performs rigid registration and produces a transformation
matrix as output. The output matrix transforms the CAD model (moving dataset)
through translation and rotation to closely orient it to the 3DCT dataset (fixed
dataset). Registration is not the major scope of our work. We performed it with
high accuracy (see section 3.3.1) using a well known algorithm in a semi-automatic
way. Fully automatic registration techniques have not been investigated but might
be applied.

Both types of comparison, i.e., geometry-driven and visual-driven comparison
techniques (figure 3.2), query the registered CAD model for the necessary informa-
tion but work completely independent from each other. The results of the query,
i.e., meta data from the 3DCT dataset and the chosen visualization technique, are
used to compute quantitative data and to produce images.
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Figure 3.2: System overview. Geometry-driven comparison techniques color code the datasets and
render glyphs. Visual-driven comparison techniques provide localized information about differences.

Geometry-driven comparison techniques consist of a distance analysis and a normal
analysis. The distance analysis calculates the differences between the CAD model
and an interface in the volumetric dataset as Euclidean distances. It also measures
the uncertainty of the measurement process. The normal analysis precisely locates
differences in curvature and compares the surface smoothness of the two datasets.

We provide a ray-profile analysis and a magic lens as building blocks of the visual-
driven comparison. The ray-profile analysis visually presents the data and differences
at a user specified location and also displays the information quantitatively. The
magic lens extracts the differences between datasets at a user specified neighborhood
and displays them using glyphs, i.e., box plots

3.2.1 Geometry-Driven Comparison

Distance and normal analysis methods require for each surface point on the CAD
model, the specification of a corresponding point in the 3DCT dataset. Starting
from a surface point we have to locate the corresponding point in the volumetric
data. The search direction is approximately along the surface normal. In high
curvature areas the search should be extended to nearby directions as well to
ensure robustness.

Consider the blue rectangle and the gray object in figure 3.3(a) to be a CAD
model and a volumetric dataset respectively. Black spheres represent surface
points. A pair of red and green lines originating from each surface point indicates
the conical space in which we search for a corresponding point in the volume data.
The space is larger for surface points in high curvature regions (see the surface
point at the corner in figure 3.3(a)).

For each triangle of the CAD model we evaluate the facet normal and the
three vertex normals. The angle between the facet normal and each of the vertex
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Figure 3.3: (a) pairs of red and green lines depict the space in which we search for each surface
point (black sphere) on the CAD model (blue rectangle) a corresponding point in the volume
data (gray object). (b) double cone representing the search space in 3D. A density profile and the
first derivative of a density profile are illustrated in (c) and (d) respectively.

normals is computed and the maximum of the three angles (called search-angle
henceforth) is stored. The search-angle indicates the local curvature of the CAD
model. In areas of high curvature, a large search-angle will be calculated whereas
the search-angle will approach zero in planar areas of the CAD model.

In figure 3.3(b) we indicate the search-angle as a red arc between the facet
normal (black arrow) and one of the vertex normals (green arrow) of the blue
triangle. Using the search-angle we can construct a double cone with the opening
angle set to be twice the search-angle. The double cone is depicted in figure 3.3(b)
with the apex placed on the surface of the triangle. We then extract the spatial
locations and the normal vectors for a set of uniformly distributed surface points
on the triangles of the CAD model. At each surface point the apex of a double
cone is placed and the cone axis is oriented along the surface normal. A triangle
therefore bisects the double cone at its apex (figure 3.3(b)). We call the nappe
of the double cone that lies in front of the triangle as outside nappe, while the
nappe on the back of the triangle is called inside nappe. The double cone defines
a region in which we can search for an interface point in the volumetric dataset.
An appropriate interface point found inside the double cone will be associated
with the surface point of the triangle for further computations.

In order to search for an interface point in the volume data, we start from the
surface point and traverse the volume data along several rays distributed inside the
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double cone. The rays originate from the surface point and are directed towards
the two bases of the double cone. The density profile of each ray is used to
identify the interface point as the position with highest gradient magnitude (first
derivative is a maximum/minimum and the second derivative is zero). The
gradient magnitude at a spatial location must be greater than a user specified
threshold for that location to be considered an interface point. Thresholding is
necessary to filter out small changes in gradient magnitude which do not represent
an interface. We also apply a median filter to the density values to reduce noise.
Among all the considered rays the interface point with minimum distance to the
surface point is stored for further processing. The rays are distributed in concentric
circles in the base of the double cone. The density of the rays is kept almost
constant by taking more rays in the outer circles compared to inner circles.

A density profile of a ray is illustrated in figure 3.3(c). The graph of the first
derivative of such a density profile is drawn as the blue curve in figure 3.3(d).
The dashed brown line shows a threshold for the first derivative. The first peak or
valley with absolute derivative value above the threshold is considered an interface
point in the volumetric dataset. The interface point is indicated by a red cross in
figures 3.3(c) and (d).

As we find an interface point in the volumetric dataset, we store its spatial
location, the nappe (inside or outside) in which the interface point was found,
and the gradient. The information extracted from the CAD model and the 3DCT
dataset provides all the required parameters to evaluate the metrics for the distance
analysis and the normal analysis.

Distance Analysis:

The computationally intensive step of finding for each point on the CAD model
a corresponding interface point in the volume data has already been done. The
distance analysis shows the difference between the datasets as Euclidean distances.
We compute the differences between the spatial locations on the CAD model and
their corresponding interface points in the 3DCT dataset. We also have information
about the nappe of the double cone in which the interface point was found. Using
this information we color code the dataset for distance analysis.

Figures 3.4(a), (b), and (c) show test-part-1, test-part-2, and a synthetic dataset
respectively. The test-parts are rendered using the distance analysis with distances
measured in millimeters. The distance has positive sign if the interface point is
found in the inside nappe of the double cone.

Figure 3.4(d) shows test-part-3 rendered using our distance analysis technique.
We render distance glyphs on the zoom-in of the user specified area (black
rectangle). The arrow of the distance glyph is aligned with the normal vector
of the surface and the diameter of the disc is proportional to the diameter of
the base of the double cone. The color of the disc indicates if the difference was
found in the inside nappe (yellow), outside nappe (blue) or no difference was
recorded (white).

So far we only consider the minimum distance between the CAD model and
the interface of the volumetric dataset for distance analysis. The technique does
not take the interface shape into consideration. The results have uncertainty in
high curvature regions which needs to be highlighted. For a double cone the
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(a) Test-part-1 (distance analysis) (b) Test-part-2 (distance analysis)

(c) Synthetic dataset (distance analysis) (d) Test-part-3 (distance analysis)

Figure 3.4: (a) test-part-1, (b) test-part-2 (CAD model: 152, 054 triangles, volumetric dataset:
408× 351× 355 voxels), (c) synthetic dataset (CAD model: 11, 424 triangles, volumetric dataset:
256 × 256 × 256 voxels) and, (d) test-part-3 (CAD model: 25, 880 triangles, volumetric dataset:
329× 527× 181 voxels) rendered using distance analysis. The image resolution is 512× 512.

difference between the minimum and maximum distance from the CAD model
to the volume data will be larger in high curvature regions compared to planar
areas. Therefore the difference between the minimum and the maximum distance
serves as the uncertainty value of the measurement process.

To determine uncertainty we look for the maximum distance from the surface
point to the interface in the volume data. The search for the maximum distance
is conducted in the neighborhood of the ray along which the minimum distance
was found. The neighborhood for searching the maximum distance has a radius
of one voxel. We choose this radius, as the search space should be smaller than
the smallest feature in the dataset. Any feature less than the size of a voxel is not
detectable in the volumetric dataset anyway.

Figure 3.5(a) illustrates the uncertainty measurement process. Let us assume
that the closest interface point was found along the ray which starts from the
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(a) Overview (b) Test-part-3
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Figure 3.5: (a) the maximum distance to the interface point is searched in the neighborhood (brown
cone) of the ray (cone vertex to black sphere) along which the interface point was recorded.
(b) uncertainty rendering for a zoom-in of test-part-3. A dotted and a dashed oval highlight areas
of high curvature and rough surface respectively.

surface point (cone vertex) and extends towards the black sphere depicted on the
base of the cone. In the neighborhood around this ray (brown cone), we search
for an interface point with maximum distance to the surface point. The difference
between the minimum and the maximum distance from the surface point to the
interface in the volume data is considered the uncertainty of the measurement
process.

The uncertainty in case of test-part-3 is shown in figure 3.5(b). It becomes
apparent that areas of high curvature or high surface roughness, which are
highlighted using a dotted and a dashed oval respectively, have higher uncertainty.

Normal Analysis:

Normal analysis is proposed as an efficient method to compare surface smoothness.
Normal analysis compares the orientation of the normal vectors extracted from the
CAD model with the gradients obtained from the 3DCT dataset. The angle between
the normal vector and the gradient indicates the difference in the curvature of the
CAD model and the interface of the 3DCT dataset. Normal analysis is easy and
efficient to compute given that the surface points and the corresponding interface
points are already evaluated.

The type of difference shown by a normal analysis may pass undetected by a
distance analysis. Consider the black plane in figure 3.6(a) to be part of the CAD
model with the normal vector indicated by a black arrow. The interface of the
volume data (blue plane) overlaps the CAD model in the area marked with a red
oval. The distance analysis will report no difference in such a case. However, there
is a difference in the orientation of the two datasets as the normal vector and the
gradient do not point in the same direction. Such differences can be emphasized
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Figure 3.6: (a) normal analysis emphasizes differences in orientation. (b) test-part-1 rendered using
normal analysis. The zoom-in shows roughness at the top of test-part-1.

using a normal analysis. The Normal analysis will report a constant difference along
the entire surface in this example.

Figure 3.6(b) shows test-part-1 rendered using the normal analysis. The Nor-
mal analysis detects differences at edges and rough surfaces. As the volumetric
dataset is generated from an industrially manufactured part, it does not match
the smoothness and exactness of the CAD model, especially at the edges. The
zoom-in in figure 3.6(b) shows that the top of test-part-1 is quite rough. The color
scale can be changed dynamically by the user.

3.2.2 Visual-Driven Comparison

Visual-driven comparison techniques are grouped into ray-profile analysis and magic
lens displays. Ray-profile analysis displays the differences between the datasets both
as 2D plots and as quantitative numbers. A magic lens is used to zoom-in/out of
the dataset and to view the differences graphically.

A ray-profile display is generated by plotting the first derivative of the density
values encountered along the ray in the volume data. The peaks and valleys in
the graph show the interface points. The location of the surface point is marked
on top of the graph. The horizontal difference between the interface point and
the surface point in the plot shows the local difference. This provides precise
information about the differences in the datasets.

Figure 3.7 shows two ray profiles generated for positions on test-part-3 marked
with black crosses. The vertical red lines depict the points on the CAD model.
The blue graph shows the first derivatives of the density values encountered by
the ray, along which the interface point in the volume data was found. The peaks
in the blue graphs are the edges detected in the volume data. The horizontal
distance between a peak and a red line indicates the local difference between the
datasets.

In the ray profile in figure 3.7(left), we observe that the surface point (red
line) and the interface point (peak) overlap and thus there is very little difference
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Figure 3.7: Two ray profiles are extracted for the locations marked with crosses on test-part-3.
The horizontal differences between the red line (surface point) and the peaks in the graph (interface
points) depict the dataset differences.

between the two datasets. The ray profile in figure 3.7(right) however shows
a difference between the CAD model and the volumetric dataset as there is a
horizontal difference between the red line and the nearest peak. Our system
reported a difference of 0.2 mm.

A ray profile shows the distance at one specific position. The next approach
shows differences in a small local neighborhood. A magic lens can provide a precise
graphical view of the differences by means of 3D or 2D box plots (figure 3.8). The
box plots are rendered in a user specified area. Each box plot shows the minimum,
the maximum, the mean, and the standard deviation of the differences between the
two datasets at each local neighborhood. Additionally, 3D box plots are oriented
along the normal vectors of the CAD model. The diameter of a 3D box plot is
directly proportional to the base of the double cone in which the interface point
was searched. 3D box plots therefore encode distance values, uncertainty, and the
dependent variables (normal vector and the base of the double cone) whereas 2D
box plots only encode the distance values and the uncertainty of the measurement
process (figure 3.8(a) and (b)).

Figure 3.9(a) shows 3D box plots over a user specified area (black rectangle)
on test-part-3. 3D box plots similar to white planar discs indicate no difference
in the minimum, maximum, and the mean distances recorded between the two
datasets. The measurement is most certain in areas where “flat” 3D box plots are
rendered.
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(a) 3D box plot (b) 2D box plot

Figure 3.8: (a) diameter of a 3D box plot depicts the base of the double cone. (b) 2D box plot has
a constant diameter.

3D box plots are less suited for a relative comparison as they are differently
oriented along surface normals. 2D box plots make a relative comparison in a
user specified area easier (figure 3.9(b)).

3.3 Results

We implemented a prototype on a Pentium 4, 3.4 GHz CPU and an NVidia
GeForce 8800 graphics board. We used C++ and OpenGL/GLSL as programming
language. The system renders the volumetric data and the CAD model side by
side in a volume view and a surface view. We maintain a central queue for the
events performed in all views. An operation initiated in one view also pushes
an event into the central event queue and releases a signal. The other view pops
the event from the queue and executes it. We implement first-come, first-serve
scheduling for the central queue.

3.3.1 Artifacts and Errors

An industrial 3D X-ray computed tomography includes fabrication artifacts and
measurement errors. Fabrication artifacts are introduced during each step of the
manufacturing process whereas measurement errors are caused by the 3DCT
machine. Additionally, two kinds of errors are generated by the software that is
used to process the 3DCT scan. Surface reconstruction artifacts are introduced
while extracting an iso-surface mesh from the volumetric dataset. Registration
errors are caused by the registration algorithm.

Quality assurance engineers are primarily interested in measuring the fabrica-
tion artifacts. To accurately compute the fabrication artifacts, errors caused by the
software should be minimized. We perform registration with high accuracy and
unlike other contemporary techniques avoid surface reconstruction artifacts.

We evaluate the iterative closest point (ICP) registration algorithm by perform-
ing registration 20 times between test-part-3 and a feature preserving mesh [28]
of test-part-3. We use a feature preserving mesh for testing purposes so that
the fabrication artifacts and the measurement errors are minimized and we can
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(a) 3D box plots

(b) 2D box plots

Figure 3.9: (a) and (b) show box plots over a user selected area. The user can interactively switch
between 3D box plots and 2D box plots.
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Figure 3.10: Mean square error produced by point-set to point-set registration on test-part-3 (size:
60× 100× 30 mm).

monitor just the registration error. We measure the mean square error between the
mesh and the test-part-3 (see figure 3.10) and record an average registration error
of 0.0152 mm. The registration algorithm converged in 3.5 iterations on average.

Experiment number 18 produced a high error compared to the rest of the
experiments. The ICP registration algorithm requires user interaction and the
large error in experiment 18 is due to a bad specification of control points. The
maximum fabrication and measurement artifact found in test-part-3 is 1.93 mm
and the mean difference recorded is 0.27 mm. Thus the average registration error
introduced by the ICP algorithm is considerably lower than the mean and the
maximum fabrication artifacts in the dataset.

Reconstruction artifacts are introduced while extracting a mesh from a volumet-
ric dataset. We use a synthetic dataset with known fabrication artifacts to evaluate
our technique. Measurement and registration errors are not present in a synthetic
dataset. This provides a good opportunity to analyze just the effect of surface
reconstruction artifacts. Figure 3.11(a) shows a CAD model of a cube dataset
and 3.11(b) shows a volume dataset with known fabrication artifacts. Fabrication
artifacts are marked with an oval. The CAD model consists of 12,288 triangles and
the volume data has a resolution of 256× 256× 256 voxels.

We generated a feature preserving mesh [28] of the volumetric dataset and
compared it with the CAD model using Geomagic Qualify (figure 3.11(c)). Surface
reconstruction artifacts are visible in the differences shown by both zoom-ins. A
difference is also reported at the vertical edge of the mesh (lower zoom-in) even
though there should be no difference. The differences at vertical edges are purely
caused by surface reconstruction artifacts and are not present in the dataset (see
figure 3.11(b)). Figure 3.11(d) shows the comparison using our system. Our system
correctly calculates no difference on vertical edges (lower zoom-in). The fabrication
artifacts in the volumetric dataset are also reported correctly (upper zoom-in). The
color coding is smooth and we do not observe any reconstruction artifacts.

The comparison of the maximum and average differences evaluated by Geo-
magic Qualify and our technique is given in table 3.1. Our method calculates the
differences very close to the ground truth. Geomagic Qualify reports the maximum
difference close to the ground truth but the average difference has a large error.
Reconstructing a mesh from the volume data introduces artifacts distributed over
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(a) Triangular mesh (b) Volume data
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(d) Direct comparison using volume data

Figure 3.11: (a) triangular mesh. (b) volume data with known fabrication artifacts. Artifacts are
highlighted with an oval. (c) comparison between the CAD model and a feature preserving mesh
of (b). (d) direct comparison between a triangular mesh and the volume data (our approach).
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the entire mesh. This is why the average error reported by Geomagic Qualify is
very small compared to the ground truth. As we avoid reconstruction artifacts,
our calculations are more accurate.

Table 3.1: Maximum and average difference reported by Geomagic Qualify and our system.
Absolute difference is shown and the unit of measurement is voxel distance.

Ground truth Geomagic Our technique
Maximum 8.485 7.95 8.91
Average 3.42 0.195 3.51

3.3.2 Performance and Evaluation

The earlier solutions proposed for comparison are divided into two major steps.
For instance, Heinzl et al. [28] propose a robust surface detection pipeline for
effective comparison. First, they extract a feature preserving mesh from the volume
dataset. The mesh extraction part consists of a four step pipeline. In the first three
steps, an anisotropic diffusion filter, a gradient filter, and a watershed segmentation
are in turn applied to the volume dataset. In the final step constrained elastic
nets are used. The mesh is then compared to the CAD model using some existing
tool like Geomagic. We combine the entire comparison and visualization process
into a single, interactive system. Table 3.2 shows the runtime performance of our
system, in comparison to the robust surface detection pipeline [28] and Geomagic.

The bottle neck in earlier methods has been the surface extraction process. Due
to parameter tweaking the surface extraction took very long as opposed to the
actual comparison process. Our method is more automated and requires much
less user interaction. A screen shot of our system is shown in figure 3.12.

Distance glyphs and the 3D box plots are additional visualization techniques for
showing differences and uncertainties. Two domain experts who have used various
mesh comparison systems in their professional capacity tested the usefulness of
our visualization techniques. They were both quite interested in using distance
glyphs and 3D box plots to visualize differences as compared to color coding
alone. They acknowledged that they acquired more valuable information about
the surface (surface normal), the measurement process (base of the double cone),
and the differences using distance glyphs and 3D box plots. Showing glyphs in a
user specified area is one of the features which the users are missing in conventional
tools. The experts also appreciated the idea of showing the uncertainty of the
measurement process along with the distance analysis. The robustness of the
registration algorithm was satisfactory to them.

Table 3.2: Comparison of the performance of our system.

Test-part-1 Test-part-3
Distance analysis (our method) 0.051 sec 0.033 sec
Robust surface detection pipeline 10.23 min 4.58 min
Distance analysis (Geomagic) 9.31 sec 8.51 sec
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3.4 Conclusion

We have presented a variance comparison system that compares a CAD model
directly to the 3DCT scan of specimens, especially in the preproduction phase and
for first part inspection of new industrial products. We avoid intermediate steps for
data enhancement and surface extraction. Two sets of tools, namely geometry-driven
and visual-driven techniques provide comprehensive comparison opportunities.
The system is implemented on graphics hardware and all the proposed methods
work in real-time.

Future work might expand the toolset by plugging in more volume visualization
and exploration techniques. For instance, feature extraction methods like region
growing and 2D histograms can help inspect the concealed structures within
the 3DCT data [31]. We use a semi-automatic algorithm for registration. We
achieve high accuracy but fully automatic registration techniques can be further
investigated. Feature-based registration algorithms can be modified to register a
CAD model to a volumetric dataset.

Figure 3.12: Comparison system.





If you think in terms of a year,
plant a seed; if in terms of ten
years, plant trees; if in terms of 100
years, teach the people.

Confucius

4
Locally Adaptive Marching Cubes

The extraction of a constant density surface from a dataset (contouring) is
used in many disciplines. In medical environments it has opened new
ways for radiologists and physicians to visualize and interact virtually with

the human body. In metrology (the science of measurement) industrial 3D X-ray
Computed Tomography (3DCT) scanners are used for specimen measurements
and NDT.

The most well-known algorithm for extracting a polygonal representation (e.g.,
set of triangles) of a constant density surface (iso-surface) from a 3D dataset is
marching cubes and was published by Lorensen and Cline in 1987 [44]. The
marching cubes algorithm works with the divide and conquer principle. The
volumetric dataset is divided into cells and the iso-surface within each cell is
calculated. It uses a global threshold called iso-value to determine the interior
and exterior of the iso-surface in each cell.

A volumetric dataset often is subject to biases. Such biases can be low fre-
quency noise, contrast drifts, local density variations and other artifacts intro-
duced by the measurement process. Examples are noise-induced streaks, aliasing,
beam-hardening, scattered radiation effects, cupping etc. [26]. When performing
contouring on a biased dataset with a global iso-value the result may not be
satisfactory. The iso-surface may contain holes, thinned regions, or regions where
volume is added. An iso-value field where every vertex has its own iso-value
enables the contouring algorithm to compensate for flaws. We want to locally
modify the iso-value and with it the surface in those regions of the dataset where
measurement errors would cause an unsatisfactory surface to be generated. Ad-
ditionally an iso-value field supports blending between various iso-surfaces by
linearly interpolating between iso-values.

The locally adaptive marching cubes algorithm modifies the marching cubes
algorithm and allows the specification of an iso-value field. The modifications
to the marching cubes algorithm include a slightly different case identification
process and a changed computation of intersections between the surface and cell
edges. Marching cubes uses linear interpolation to compute intersections. In the

47
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modified algorithm we intersect two general line segments that are defined by
two density values and two iso-values.

In the following we list some related work on iso-surface correction. Then
we provide a brief overview on the marching cubes algorithm and present our
modifications to transform it into the locally adaptive marching cubes algorithm. In
section 4.3 we present a reference application that supports the specification of
iso-value fields on volumetric datasets. Another application visualizes the surface
in the interior of a single cell. We conclude by discussing simple and more complex
iso-value fields on various volumetric datasets.

4.1 Related Work

Common approaches to correct iso-surfaces are either to modify the input dataset
and perform contouring with a global iso-value or optimize the iso-surface after
generation.

Heinzl et al. [26] use Dual Energy Computed Tomography (DECT) and image
fusion to reconstruct a dataset before extracting an iso-surface. As input images
they use a high-energy macro focus image, which is blurry but less affected by
artifacts, and a low-energy micro focus image, which is precise but artifact-prone.
The overall structure of the specimen is taken from the low precision dataset while
the sharp edges are derived from the high precision dataset. For contouring, a
local surface extraction approach is used. First an iso-surface is extracted from the
dataset, which describes the real surface in good approximation. In the next step
the iso-surface is corrected by moving each surface vertex along the direction of the
surface normal until the gradient magnitude in the volume reaches a maximum.
The gradient magnitude is computed from the low energy dataset.

Kobbelt et al. [38] developed an extended marching cubes algorithm to com-
pensate for aliasing artifacts at sharp features of the extracted surfaces. First, their
algorithm detects those grid cells that are intersected by a sharp feature of the
surface. Then it computes additional sampling points that lie on the feature and
inserts them into the mesh. Additional sampling points are retrieved from a local
distance field and its gradient.

Matyas et al. [50] present an automated contouring approach with locally
changing iso-values to determine anatomic branching structures. They first segment
the dataset and determine the appropriate iso-value in each segment. Iso-values
do not vary continuously but in discrete steps, which requires to blend together
the extracted iso-surfaces of the segments. They named the resulting surface
“metasurface”.

Šereda [79] proposes local transfer functions to adapt to locally modified data
values in the dataset. A transfer function (TF) is used to transform density values
into optical properties such as color and opacity. Typically a global TF is defined.
In his work he discusses how the definition of TFs can be automated and how
local TFs produce better results on datasets with local data variations.
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4.2 Locally Adaptive Marching Cubes

In the following subsections we first briefly describe the marching cubes algorithm
and then present the necessary modifications to transform it into our locally adaptive
marching cubes algorithm.

4.2.1 The Marching Cubes Algorithm

The algorithm [44] subdivides the volumetric dataset into cubical cells and pro-
cesses each of them separately. To identify the triangulation of the iso-surface
inside a cell, the density value at each vertex is compared with the global iso-value
to check if the vertex lies inside or outside the iso-surface. The possible triangu-
lations of a cell are stored in a case lookup table. There are 256 possible cases,
which can be reduced by topological and rotational symmetry to 15 cases. In the
original algorithm there exist ambiguous cases where more than one triangulation
is possible. This can lead to holes in the iso-surface. A method to overcome this
problem is the asymptotic decider [53]. A simple solution adds six additional cases
to the case table to avoid holes [69]. After retrieving the triangles for a case from
the lookup table, the positions where the triangle vertices lie on the cell edges
have to be calculated. Roughly four steps are performed for each cell:

1. identify the appropriate index case

2. look up triangles in the case lookup table

3. interpolate intersection points along the cell edges

4. compute surface normals for triangle vertices (required for shading)

4.2.2 The Modified Algorithm: Support of Iso-Value Fields

Our locally adaptive marching cubes algorithm uses one iso-value per cell vertex
instead of a single global iso-value. Each cell has eight iso-values, one at each
vertex of the cube. Trilinearly interpolating these varying iso-values produces a
continuous iso-value field. This alters how the index cases are identified and also
how the intersection points along the cell edges are calculated.

In the case identification process the marching cubes algorithm compares every
cell vertex value to the global iso-value. In the modified algorithm every vertex
has its own iso-value to which the cell vertex value is compared. It is then decided
whether the vertex is considered to be zero or one in the index, i.e., inside or
outside. The remaining part of the case identification process is similar to the
original algorithm.

The marching cubes algorithm uses linear interpolation to interpolate trian-
gle vertices along the edges. Since both vertices of an edge have now different
iso-values, the intersection point of two arbitrary line segments has to be calcu-
lated (figure 4.1).

We assume that the line segment of density values is defined by the two cube
vertices V1 and V2 and the line segment of iso-values is defined by I1 and I2. In the
following x corresponds to the spatial position along an edge and y corresponds
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(a) Linear interpolation (b) Arbitrary line intersection

Figure 4.1: (a) linear interpolation in the original algorithm. (b) arbitrary line intersection in the
modified algorithm. The dashed line (red) depicts iso-values and the solid line (blue) shows density
values. In (a) the slope of the iso-value line is always zero. In (b) it can have any value.

to density values or iso-values. Line equations are of the form Aj · x + Bj · y = Cj,
j = 1, 2. Vx

j refers to the x-component of Vj.
We assign:

A1 = Vy
2 −Vy

1

B1 = Vx
1 −Vx

2

C1 = A1 ·Vx
1 + B1 ·V

y
1

A2, B2 and C2 are derived in the same way from I1 and I2.
When solving our linear system:

A1 · x + B1 · y = C1 (4.1)

A2 · x + B2 · y = C2 (4.2)

we get:

x =
C1 · B2 − C2 · B1

A1 · B2 − A2 · B1

y =
C2 · A1 − A2 · C1

A1 · B2 − A2 · B1

If A1 · B2 equals A2 · B1 the lines are parallel and do not intersect. Even if an
intersection point between the two lines exists, it may not lie on the line segments
themselves. Hence we have to check if the intersection point lies between the line
segment’s endpoints:

min(Vx
1 , Vx

2 ) ≤ x ≤ max(Vx
1 , Vx

2 )

It is sufficient to check only the x-values of one line segment to decide if the
intersection point is valid since the line segments are correlated (see figure 4.1).
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4.3 Implementation

We implemented the algorithm with the proposed changes and created two basic
applications to show the algorithm’s possibilities. One application (Locally Adaptive
Marching Cubes, figure 4.2) allows the specification of iso-value fields on volumetric
datasets. The second one (Cube Insight) visualizes the interior of a single cubical
cell using trilinear interpolation.

The graphics and visualization part of the applications is handled by The
Visualization Toolkit (VTK) [68]. Using VTK for the reference applications has
several advantages. First, the toolkit is popular in the visualization community
and is open source. Second, an implementation of the marching cubes contouring
filter is already available and can be easily modified.

Figure 4.2: Locally Adaptive Marching Cubes allows the specification of iso-value fields on
volumetric datasets. It is possible to specify homogeneous iso-value fields, fields with linear iso-
value gradients in coordinate directions, and isotropic 3D Gaussian distributions of iso-values
centered at specific sampling points of the dataset.
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(a) Gaussian distribution (b) Linear gradient

Figure 4.3: (a) isotropic Gaussian distribution added to a homogeneous iso-value field. (b) linear
gradient in x-direction with range [0.3, 0.7].

The generation of iso-value fields requires user interaction. There exist various
possibilities to alter the iso-value field. Our application supports fields with linear
iso-value gradients and isotropic 3D Gaussian distributions of iso-values centered
at specific sampling points of the dataset (figure 4.3).

4.4 Results

We now discuss several iso-value fields on various volumetric datasets. First, we
show how iso-value fields impact the appearance of simple objects. Then we
present a biased dataset and discuss how the surface can be corrected with our
method. Furthermore we show how our technique supports blending between
different iso-surfaces and discuss how the surface inside a cell is modified when
iso-values at the cell vertices are altered.

4.4.1 Simple Objects

In figure 4.4 the volume is a Euclidean distance transform of a sphere. The distance
transform is generated by computing the Euclidean distance of each sample point
from the center of the dataset. Distance transforms of simple objects like a sphere
are well suited to show how different iso-value fields change the appearance of
the surface. Continuous iso-value modifications must lead to continuous changes
in the surface of the sphere (bulges and dents). Since we have a distance field,
increasing iso-values lead to an increased sphere radius, decreasing iso-values lead
to a decreased radius of the resulting surface. In figure 4.4a the iso-value field is
divided into two halves, one with a lower and one with a higher iso-value which
leads to two half-spheres. Figure 4.4(b) shows the sphere with a more complex
iso-value field. Gaussian distributions of standard deviation 5 have been added to
a homogeneous iso-value field at three locations and one Gaussian distribution
has been subtracted from it. This leads to three bulges and one dent in the surface.
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(a) Sphere dataset (b) Sphere dataset

Figure 4.4: The data is a Euclidean distance transform of a sphere (resolution: 64× 64× 64). In
(a) the iso-value field is divided into two halves. In (b) a homogeneous iso-value field has been
modified with a Gaussian distributions of standard deviation 5 at four locations.

Modifying the iso-value field in such a way can be considered as digitally painting
in the 3D iso-value field, where the brush is given by the Gaussian distribution.
Various extensions and variations to this painting metaphor and brush types are
easily conceivable.

4.4.2 Correcting the Iso-surface of a Biased Volumetric Dataset

The specimen depicted in figure 4.5 has severe scattered radiation and beam
hardening artifacts in the area of the drill holes and also at the rectangular milling.
The iso-surface in figure 4.5(a) shows several errors especially at the smaller hole
where the geometry of the object is changed. Given that there exists an iso-value
field where the surface is appropriate in that area of the dataset, it is possible to
correct the surface with our method. The iso-value field is modified in those areas
where flaws are present. To assure a continuous transition between iso-values
an isotropic 3D Gaussian distribution is used. Figure 4.5(b) shows the resulting
surface. Several Gaussian distributions of various kernel sizes have been subtracted
from the homogeneous iso-value field of value 0.65. The flaws at the drill holes
and at the corners of the milling are thus corrected.

The approach described here requires user interaction to generate the iso-value
field. The user introduces his knowledge about the object geometry into the
process. One can think also of automated approaches to surface correction using
iso-value fields. By generating special (e.g., data-dependent) iso-value fields the
information that corrects artifacts can be passed to the extracting algorithm as
input instead of changing/correcting the extracted surface afterwards.
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4.4.3 Blending Between Iso-surfaces

Linear gradients in iso-value fields can be used to blend between different iso-
surfaces in one processing step. The interpolation of iso-values in a dataset region
leads to a continuous transition between iso-surfaces. In figure 4.6 a CT hand is
shown. A linear iso-value gradient in the x-range [0.25, 0.6] with the iso-value
range [0.15, 0.4] is used to visualize the surface of skin on one half and the surface
of bones and veins on the other half of the dataset. A contrast medium has been
injected into the veins, since there is almost no difference between their density
value and the density value of bone. In the result image it becomes visible how
the skin gets thinner, dissolves and then exposes the bones in a smooth way.

In figure 4.7 a human tooth is depicted which roughly consists of the enamel
(top part of the tooth) and the dentine (bottom part of the tooth). We assume
that the enamel should be visualized with an iso-value of 0.7. With that value it
is not possible to visualize the dentine because it starts to dissolve at iso-values
greater than 0.6 (figure 4.7(a)). A solution for this problem could be to generate
iso-surfaces for the dentine with iso-value 0.5 and for the enamel with iso-value
0.7 and then combine both iso-surfaces. With our method this is not necessary. A
linear iso-value gradient in the z-range [0.7, 0.75] with iso-value range [0.5, 0.7]
can be used to visualize the entire tooth in one processing step (figure 4.7(b))
without the need to combine two generated iso-surfaces.

4.4.4 Surface in the Interior of a Cell

Figure 4.8 shows the surface in the interior of a cell for three index cases. Generally
modifications of iso-values result in the movement of intersection points on the
cell edges. There can also be topology changes and the index case might change
as well. Increasing the iso-value at the circled vertex in figure 4.8(a) alters the
index case. An opening in the surface appears. In figure 4.8(b) the index case is
not changed, but intersection points are moved. First both “wings” of the surface
have equal height. After increasing the iso-value at the circled vertex, one “wing”
is lower than the other. The modification of the iso-value in figure 4.8(c) connects
both components of the surface and changes its topology while leaving the index
case unchanged.

4.5 Conclusion

This chapter describes locally adaptive marching cubes, a modification of the marching
cubes algorithm. It allows the usage of an iso-value field instead of a single global
iso-value. Iso-value fields are generated by user specification and are independent
from the volume data. Surfaces are extracted, which are a continuous blend
between various iso-surfaces. The necessary modifications to the algorithm are
simple. First, the case identification process has to be altered since we now have
a different iso-value for each cell vertex. Second, when finding the intersection
points of the surface with the cell edges, we now have to compute the intersection
of two line segments. Modifications of iso-values can impact the surface in the
interior of a cell in three ways. First, the modification of iso-values can change the
index case as in figure 4.8(a). When the index case is not changed, the modification
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Figure 4.6: A human hand (resolution: 244 × 124 × 257) with linear blending between the
iso-surfaces of skin and bone.
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(a) Enamel (b) Complete tooth

Figure 4.7: A human tooth dataset (256× 156× 161). (a) generated with a global iso-value of 0.7,
only the enamel part of the tooth is displayed. (b) an iso-value field with a linear gradient in the
z-range [0.7, 0.75] is used to blend between the iso-surface of the dentine part and the iso-surface of
the enamel part of the tooth.

of iso-values moves intersection points of the surface with the cell edges as in
figure 4.8(b). There can also be topology changes as in figure 4.8(c).

Locally adaptive marching cubes can be used for the correction of iso-surfaces with
flaws like low frequency noise, contrast drifts, and local density variations. The
iso-value field is appropriately modified in those regions of the dataset where flaws
are present. Our technique also supports blending between different iso-surfaces
by specifying iso-value gradients in the iso-value field. This is useful when the
entire dataset can not be visualized with one global iso-value, or when different
iso-surfaces should be visualized in different regions of the dataset. Blending
between iso-surfaces normally requires to first extract all iso-surfaces and then
combine them in an additional processing step. Our algorithm supports blending
directly in the contouring process.

Two reference applications have been presented. One application allows the
specification of iso-value fields and of volumetric datasets. A second application
visualizes the interior of a single cell. Possibilities to enhance our system include
improving the user interface and improving the process of defining modifications
to the iso-value field. When correcting iso-surfaces with flaws due to artifacts
there may be automated ways to specify the iso-value field.
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(a) (b) (c)

(1)

(2)

(3)

(4)

(5)

Figure 4.8: Visualization of the surface in the interior of a cell for three index cases. (1) depicts the
index case. A cell vertex marked with a dot indicates that the density value exceeds its iso-value.The
surface intersects those edges where one vertex is marked with a dot while the other one is not.
(2) and (3) show the case from two different viewpoints while (4) and (5) show corresponding views
where the iso-value of a vertex is modified. Vertices with modified iso-values are circled. Density
values are set to 0.1 for non-marked vertices and are set to 0.25 for marked vertices. The iso-values
are set to 0.15.
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5
Comparative Visualization for Parameter

Studies of Dataset Series

Industrial 3D X-ray Computed Tomography (3DCT) is a radiographic method
to locate and measure volumetric details of industrial components. A 3DCT
scanner produces a 3D grid of gray values (voxels) corresponding to the spatial

density of the specimen. The voxels are typically stored with either 16 bit or 32 bit
precision. Contemporary volumetric datasets typically have a high resolution and
are quite large. A 3DCT dataset is not calibrated and is more prone to artifacts
than a conventional radiography [30].

3DCT is used in industry for NDT and for first part inspection. Application
areas include the automotive, aeronautic, electronic, and leisure industry, as well
as many other industrial fields. Quality-control engineers compare the volumetric
datasets scanned using a 3DCT with the design specifications of the industrial
components, in order to evaluate the precision and accuracy of the production
pipeline.

A wide variety of 3DCT scanners have been introduced since the first computed
tomography (CT) machine was produced in 1972. Microtomography (MicroCT) [16]
and Nanotomography (NanoCT) devices were produced in 1982 and 2005 respec-
tively. The basic principle of data acquisition in MicroCT and NanoCT is the same
as in early CT machines. The main difference is the size of the focal spot in the
X-ray source and the size of the detector pixels. The size of the focal spot is in
micrometers and nanometers in MicroCT and NanoCT respectively. A low energy
micro focal spot has smaller penetration length but it results in higher resolution
volumetric datasets. On the other hand, using a high energy macro focus X-ray
source better captures the structure of the specimen as it has a higher penetration
length. The resolution of the dataset however, is lower than the one produced
by a low energy micro focus X-ray source due to the larger focal spot. Lately,
dual energy CT devices have been introduced to combine the advantages of high
energy and low energy X-ray sources [62].

59
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Table 5.1: Various dataset series and their specifications. The number of datasets
varies from series to series. The voxel size is isotropic.

Dataset series, Dataset No. of Series Voxel
parameter varied resolution datasets size size
voltage 1000× 1000× 882 5 8.21 GB 122 µm
no. of projections 1000× 1000× 882 6 9.86 GB 136 µm
current 856× 856× 882 6 7.22 GB 122 µm
integration time 800× 800× 882 5 5.26 GB 136 µm
filter plates 848× 848× 882 15 17.72 GB 122 µm
mean value dataset 1000× 1000× 882 3 4.93 GB 136 µm

3DCT machines provide a large parameter space which has to be explored and
specified before performing a CT scan. These parameters can severely influence the
quality of a dataset depending on the material and the geometry of the specimen.
The parameters which can be manipulated include voltage, current, integration
time, number of projections (attenuation measurements), thickness and alloy of
the X-ray filtering plates etc.

Unfortunately the parameters cannot be changed in real-time with live feedback
from the 3DCT as a typical 3DCT scan takes approximately 30 to 45 minutes. The
volumetric dataset is then examined to see if it meets the user’s requirements. In
case the volumetric dataset is not up to the user’s expectations, the parameters
are changed and the whole process is repeated again. This is a very costly
procedure. It is therefore highly interesting for the 3DCT users to study the
changes induced in the volumetric datasets by the parameter variations. It helps
to predict those parameter settings which will introduce the least amount of
artifacts in the volumetric dataset of a given specimen. We present an innovative
comparative visualization system for the study of 3DCT parameters. Our system
can be used for the comparative visualization of dataset series produced by a wide
variety of imaging devices. In this chapter we specifically describe our experiments
using 3DCT datasets.

We visualize the 3DCT datasets in collaboration with our company partners. A
dual source HWM Rayscan 250XE device (voxel size: ≥ 5 microns, 225keV micro
and 450keV macro focus X-ray source) is used to generate CT datasets. A dataset
series is generated by varying a single parameter over the entire parameter range.
Table 5.1 gives information on the various dataset series that were used to test and
evaluate our techniques. All the datasets in a series were generated in a single
scan session without removing the specimen from the 3DCT device. The datasets
in a series are thus perfectly aligned and there is no need for registration.

Some of the parameters in table 5.1 have a known behavior. For example
the X-ray source voltage may induce cupping at high penetration lengths due
to beam hardening. Beam hardening is caused by high attenuation of X-rays
moving through long stretches of highly absorbing materials. These so called high
penetration lengths result in lower gray values in the center of the object. It may
become hard to differentiate between different materials in such a scenario. Not
enough projections in a single 360 degree turn of the rotary plate or insufficient
X-ray source current may result in streaking artifacts. Streaking artifacts are bands
of low or high gray values due to insufficient sampling. A mean value dataset is
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produced by measuring each projection image multiple times and evaluating a
mean projection image. A mean value measurement is supposed to improve the
signal-to-noise ratio of the volume data but it increases the time and cost of each
scan.

The huge amount of data produced by a 3DCT makes it difficult to provide
interactive comparison and 3D visualization for the volumetric datasets (table 5.1).
The amount of main memory in the latest computer systems has increased consid-
erably but the memory in the graphics hardware remains the bottleneck. Graphics
hardware is crucial for interactive rendering of the volumetric datasets. We have
a varying number of 3D datasets for every parameter and the amount of data
that needs to be processed is rather large. Efficient management of the data and
interactive rendering is however possible through planar reformatting, i.e., 2D
planar slices of the data taken at arbitrary angles.

3DCT users are familiar with planar reformatting based systems for a long
time. Many commercial tools like VGStudio MAX [78], which are used by 3DCT
professionals, are designed using planar reformatting. Planar reformatting is
fast and easy to use and our planar reformatting based system is scalable with
the number of datasets in a series. Scalability can be a hard issue to resolve
in 3D. 3D visualization has occlusion issues and also 3D visualization does not
provide as much detail as we can extract using planar reformatting. The use of
3D visualization therefore reduces the advantage gained through the use of latest
MicroCT machines.

The differences between the datasets of a series do not typically show up as
distortions in shape. The differences are in terms of variable gray values caused
by diverse parameter settings. This variability in datasets is better captured and
analyzed in 2D. Planar reformatting suits our design requirements as it provides
interactive and detailed exploration, comparison, and visualization of large dataset
series.

We propose two techniques for comparative visualization in this chapter. The
multi-image view allows the simultaneous viewing and comparison of the entire
dataset series. The edge explorer provides comparative visualization of edges in
a dataset series. Our system automatically scales according to the number of
datasets under active comparison. We use efficient algorithms and data structures
for fast retrieval of data from the main storage device.

5.1 Related Work

The simultaneous display of multiple datasets is an interesting topic in many fields.
In the medical domain datasets from different modalities are first registered and
then visualized by the radiologists for diagnosis. The aim of multi-modal visualiza-
tion is to render different parts of a volume using the modality which best captures
the respective object part [10]. Kniss et al. combine segmentations resulting from
multiple algorithms into one probabilistic space for visualization [36].

In fields like weather simulation and sociology, the users are also interested in
the simultaneous display of multiple parameters. There has been a whole body of
work on techniques for the simultaneous visualization of multiple parameters [70].
Kirby et al. combine multiple values in a 2D flow image for a simultaneous
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display [33]. Laidlaw et al. use ellipsoids and brush strokes of varying intensity to
visualize tensor images [42]. Ebert et al. use blobby objects for the simultaneous
rendering of multiple parameters [15]. The blobby objects are 3D shapes and
therefore the technique is prone to occlusion issues. Taylor uses color coding and
orientation of simple shapes to visualize multiple datasets on a single surface [72].

Data is either replicated or fused in space for a concurrent display of parameters.
Urness et al. introduce color weaving for flow visualization [75]. Gossett and
Chen present the fusion of multiple parameters through color blending [21]. Hagh-
Shenas et al. carried out a comparison of blending and weaving techniques [23]
for visualizing multiple parameters. They find weaving to be better suited for
conveying information. The weaving pattern’s ability to convey information
however reduces considerably when the number of parameters exceeds four.
Healey and Enns propose to vary color and texture attributes for the simultaneous
display of multiple parameters [25].

Miller proposes to display parameters side by side in attribute blocks [51]. His
work is in the spirit of weaving patterns. Attribute blocks have a well defined
structure and therefore the technique seems to be scalable with the number of
parameters. These systems are however not specifically designed for the exploration
of differences between datasets at a voxel level.

As our work focuses on planar reformatting, research on image comparison is
of interest in this context. Gesú and Starovoitov propose a distance function for
comparing images [19]. The difference between images is computed as a single
number. Yang et al. [83] use the Hausdorff distance and the normalized gradient to
evaluate the similarity between images. A survey of image comparison metrics and
algorithms is provided by Zhou et al. [84] and Radke et al. [60]. Image comparison
research has mainly focused on producing a similarity metric for images without
focusing on visualization techniques. Visualization provides important spatial
information about the differences between images.

Interactive rendering of multiple volumes is a challenging task. The amount
of memory available in graphics hardware is limited. Grimm et al. [22] propose
bricking and an efficient addressing scheme for large datasets that do not fit into
the main memory. Kohlmann et al. [39] describe a bricked volume layout for
planar reformatting based exploration of large medical datasets. Our implementa-
tion is based on the results achieved by Grimm et al. and produces interactive
visualizations of large dataset series.

It is necessary to study the impact of our research on the workflow of the
domain specialists. Kosara et al. [41] and Bartz et al. [3] provide a thorough
description on the dynamics of user studies in computer graphics. We collect
feedback from domain specialists for verifying the utility and robustness of our
methods.

5.2 Comparative Visualization

We introduce two novel techniques for comparative visualization in this chapter,
namely multi-image view and edge explorer. Furthermore, we also propose a variety
of tools for user interaction.
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Figure 5.1: SPECT and MR slices displayed in a checkerboard pattern [71].

The natural choice for comparing two slices or images will be to either dis-
play them side by side or to display them in a single checkerboard display. The
checkerboard display has been previously used for multi-modal datasets. For
example Stokking et al. [71] display single photon emission computed tomogra-
phy (SPECT) and magnetic resonance (MR) images in a checkerboard arrangement.
The checkerboard may be used to simulate the transparency effect and to verify
the registration of the datasets (figure 5.1).

We have a varying number of datasets to compare and visualize. The checker-
board display handles just two datasets and is unsuitable for our purposes (fig-
ure 5.2(a)). For the evaluation of a dataset series, a representation is needed which
scales with the number of datasets. Attribute blocks can be used for simultaneously
displaying multiple parameters or datasets [51]. The plane is thereby tiled with a
rectangular cell pattern, where a cell is a square dedicated for displaying a specific
parameter. We intend to perform comparative visualization and attribute blocks
may not be ideal for our specific goal.

We want a scheme that is space filling and has a regular pattern like a checker-
board. A regular pattern is quite important for the user. It helps him to get
acquainted with the spatial arrangement and to comfortably make use of it in
everyday work. If the above two conditions are enforced, no cell of an attribute
block shares a border with every other cell when the number of datasets being
visualized is more than three (figure 5.2(b)). In such a case it is not possible to com-
pare datasets across cell boundaries. Attribute blocks were specifically designed
for parameter visualization. The structure of the attribute blocks therefore seems
less scalable for comparative visualization. We want a visualization mechanism
where multiple datasets can be displayed and compared easily.



64 Comparative Visualization for Parameter Studies of Dataset Series

(a) Checkerboard pattern (b) Attribute blocks

(c) Base tile pattern for multi-image view (5 datasets)

Figure 5.2: (a) checkerboard pattern for two datasets. (b) attribute blocks with four
cells. No cell shares edges with all other cells. (c) multi-image view for comparative
visualization.

In the multi-image view the idea is to divide the plane into circles rather than
squares. A circle can be easily divided into multiple, equally sized sectors where
each sector displays a specific dataset of the series. Circles however are not space
filling. A good approximation to a circle, which also tiles the plane, is a hexagon.
So we divide our screen into tightly packed hexagons, where the user can control
the size and location of the hexagons.

Each hexagon has a circle in the middle and is divided into multiple sectors
as shown in figure 5.2(c). Corresponding slices of the datasets from a series are
displayed in each sector of the hexagon and in the central circle. The dataset
which is displayed in the circle is called the central dataset. All other datasets are
compared and visualized with respect to the central dataset. The central dataset is
neighboring every other dataset in the series. Every hexagon provides a concurrent
view into multiple datasets. We name our custom designed hexagon a base tile.
The tiling of the plane with space filling base tiles is called multi-image view.
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5.2.1 Multi-image View

At the beginning of the evaluation, the first dataset in a series is used as the central
dataset. The rest of the datasets are initially assigned to the sectors of the hexagon
in a clockwise orientation. The central dataset always displays the gray values of a
planar reformatted slice of the corresponding dataset. The sectors of the base tile,
which are compared to the central dataset either show gray values or color coded
deviations. Deviations are calculated by computing the local difference between
the gray values of the central dataset and the datasets in the sectors. The result is
color coded according to a user provided color scale. The rendering mode, i.e.,
showing either gray values or deviations, can be switched in real-time.

Borland and Taylor present an interesting report on the use of different color
scales [6]. They show that a rainbow color map lacks the perceptual ordering
necessary for interpreting a color scale. We however choose the rainbow spectrum
as the default color scale for the multi-image view due to two reasons. First, our
company partners have been using the rainbow color scale for a long time and
they are comfortable with its usage. Second, we have positive and negative values
to display in the multi-image view. There is no uni-directional perceptual ordering
in our scale and therefore we require multiple colors to show zero, positive values
and negative values. We use the black body radiation spectrum for the edge explorer.
The user has the freedom to set the color scale in our implementation.

Several other interaction possibilities are provided for effective comparison. For
example, the placement of the datasets in the base tile is crucial for a comparative
visualization. The user can rearrange the sectors in which the datasets are displayed
by a simple drag and drop operation. The central dataset can also be interactively
selected and changed by the user. Color coded deviations rendered in the sectors
are updated according to the new central dataset. A legend helps the user to keep
track of the current allocation of sectors to the datasets.

Any dataset, which is not interesting for the analysis or is an outlier can be
removed from the comparison process. The number of sectors in each base tile will
be reduced and rearranged by the system accordingly. A honeycomb frame of
lines for visual distinction between the base tiles and to distinguish between sectors
can be rendered over the result image. The transparency of the honeycomb is
user controlled. The base tile pattern can be shifted freely over the plane with live
update of the images. This uncovers otherwise hidden portions of the inspected
slices. Small shifts allow a detailed comparison of the datasets across sector
boundaries. Also, the size of the base tiles can be interactively controlled.

The user can choose to display just a single base tile instead of the space filling
arrangement of multiple base tiles as in the multi-image view. The size and location
of the single base tile is user specified. It is used for probing the dataset series and
tracking artifacts. We found the use of a single base tile to be highly interesting for
professionals when we evaluated our methods.

Figures 5.3 and 5.4 show the voltage dataset series. There are four datasets
in the voltage series (150 kV, 180 kV, 210 kV and 220 kV), each recorded with
16 bits per voxel. We also use low-level fusion-techniques like a multi-scan fusion
algorithm [27] to generate a fused dataset from the dataset series. Figure 5.3 shows
a rendering of the gray values in a multi-image view. The fused dataset is the central
dataset. We can observe differences in gray values of the datasets near object edges.
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Figure 5.3: Multi-image view of the voltage dataset series rendered using gray
values. An image of the specimen and the slice position is shown in the top left
of the image.

Observe the difference between the 150 kV and the 210 kV datasets indicated by
two pairs of blue arrows. The difference between the datasets however is not
detectable in the center of the specimen (highlighted by a pair of red arrows).

In some cases one may not be sure whether the absence of differences between
the datasets is real or due to our inability to visually differentiate between the
shades of gray. Also, at the moment we are visually comparing gray values of
spatially different locations and therefore only the border regions between sectors
are interesting. In this case one can switch to render deviations.

We compute deviations in the sectors of the base tile by evaluating the local
difference between the gray values of the dataset in the sector and the gray values
of the central dataset. The sectors are then color coded differentially with respect to
the central dataset. This makes the visualization more expressive and the solution
is robust (figure 5.4(a)). Neighboring sectors in the tiling show deviations from
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adjacent but different parts of the underlying dataset slices. This can be ameliorated
by interactively shifting the base tile.

We observe in figure 5.4(a) that the differences between the datasets are well
pronounced in base tiles which are in the lower half of the image and at the outer
edges of the dataset (bright red and blue regions). The differences between the
datasets are not clearly recognizable in areas of high penetration length (highlighted
by a black dotted rectangle). This is due to beam hardening artifacts. All the
voltages under study are affected by beam hardening. The dataset measured with
150 kV acceleration voltage of the X-ray source has higher contrast between air and
material and thus produces stronger outer edges. This is obvious as the 150 kV
dataset has higher gray values (red sectors) over the entire slice compared to all
other datasets (green and blue color coding). Hence, a low voltage is better suited
to capture edges at low penetration length. The fused dataset looks very similar
to the dataset recorded with 180 kV as the corresponding sectors are mostly green.
Our system reported the mean and the maximum difference between the fused
and the 180 kV dataset as 238 and 1948 units. The gray values range from 0 to
65535 units in the voltage series.

The datasets measured with 210 kV and 220 kV seem to produce almost the
same result. We can compare these datasets by making one of these datasets the
central dataset. We drag the 220 kV dataset into the central dataset position. We
also remove the fused dataset from the analysis. The number of sectors in the
base tile automatically reduces from four to three (figure 5.4(b)). Although the
difference between these two datasets is small, still the 210 kV dataset produces
slightly higher gray values (sectors with reddish yellow and green color coding).

The grid of base tiles can be interactively switched to a single base tile. This
somewhat corresponds to a single multi-faceted magic lens. The user can control
the size and location of the single base tile and can probe specific regions of the
dataset series. This is particularly helpful for comparative visualization of areas
severely affected by artifacts. We can thus determine the datasets which contain
the least artifacts. Quantitative data, e.g., mean and maximum deviations are only
displayed for the area covered by the single base tile.

A comparative visualization can be difficult to interpret when the central dataset
has a high variation in gray values or has a lot of salt and pepper noise. This is
apparent when analyzing the dataset series with the varying number of projections.
The number of projections dataset series has six datasets with 90, 270, 360, 720, 990,
and 1440 projections for a single 360 degree turn of the rotary plate. If the number
of projections is too low, the volumetric dataset computed from these projections
has streaking artifacts due to undersampling (figure 5.5(a)). Figure 5.5(b) shows
a multi-image view where the dataset with 90 projections is taken as the central
dataset. We observe streaking patterns emerging in all the sectors of the base tiles.
The patterns contain blue and red colors showing high variation in gray values
of all the datasets. These patterns may have emerged due to two reasons. First,
all the datasets are affected by streaking artifacts. Second, only the central dataset
is affected by streaking artifacts. It is important to determine if the patterns are
appearing due to a bad selection of the central dataset.

We use a simple method to quickly determine the homogeneity of the slices
and visualize it using a multi-image view. For homogeneity rendering we color
a pixel based on the following conditions: If the gray value of a pixel is within
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(a) Planar reformatting

(b) Multi-image view

Figure 5.5: (a) slice from the dataset with 90 projections (Pj). The slice position is
shown in the top left of the image. (b) multi-image view. The dataset with 90 Pj is
the central dataset.
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(a) Homogeneity rendering

(b) Multi-image view

Figure 5.6: (a) Homogeneity rendering depicts the local variation of gray values
within a slice. (b) multi-image view for the number of projections series. The dataset
measured with 1440 Pj is the central dataset.
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a certain range of the gray values in its 8-neighborhood, the pixel is rendered
green. If the difference between the gray values of a pixel and its neighbors in
the 4-neighborhood is within a predefined limit, it is colored yellow. Otherwise
the pixel is colored red. This provides a quick overview of the amount of gray
value variation in a slice. Homogeneity rendering (figure 5.6(a)) shows the central
dataset (90 projections) to be the most in-homogeneous one. It is therefore not a
good choice to be used as a central dataset. Figure 5.6(b) is rendered by taking
the 1440 projections dataset as the central dataset. We conclude that the streaking
artifacts are greatly reduced when the number of projections is increased from 90
to 270. Streaking artifacts are even more reduced when the number of projections
is increased to 720. A further increase in the number of projections does not have
a considerable impact on the dataset quality.

5.2.2 Edge Explorer

Edge detection is an important topic in 3DCT as it is useful for segmentation, feature
identification, feature selection, etc. Edges are blurred in a scanned volumetric
dataset due to various artifacts like beam hardening, geometric blur due to the focal
spot of the X-ray source or scattered radiation. Our company partners consider
edge quality as a strong indication of scan quality. The edge explorer is designed to
provide an overview of the edges in an entire set of slices or images. The edge
information for a specific slice of the entire dataset series is thereby condensed
into a vertical and a horizontal histogram. The histograms basically count outlier
edges which are present in some dataset but not in some other. This guides the
user to problematic areas on a slice. Furthermore the edge explorer includes a
zoom-in functionality for a detailed inspection of a specific edge throughout the
entire dataset series.

The edge explorer uses either the Sobel or the Canny edge detection algo-
rithm [11]. The choice is based on the user preferences. The Sobel edge detector is
faster than the Canny edge detector. It only requires the manipulation of a single
threshold for edge detection whereas the Canny edge detector has two thresholds.
The Canny edge detector provides better results in all our experiments. Two
images are produced as a result of an edge detection algorithm. First, a binary
image is generated which specifies the edges detected in an image. Second, the
edge strength computed by the algorithm is returned as an RGB image.

Edge detection is performed on a slice of the central dataset and the result is
displayed on the screen (figure 5.7). Edge detection is also performed on the other
datasets in the series and the results are stored for further processing. As we have
edge information from all the datasets we can easily test if an edge is present or
not in all the datasets at a particular position in an image. Also we can compare
the strength of the edges in different datasets.

We show two graphs with violet background in figure 5.7. The vertical graph
has yellow bars and is displayed on the right of the image. The horizontal graph is
plotted above the image and has red bars. We scan the rows of the slices between
the two vertical yellow lines on the image and count the number of locations
where an edge is present in one dataset but not in some other dataset. The number
of such locations found in a row is shown on the vertical graph as a bar. Similarly
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Figure 5.7: Edge explorer for the voltage series.

we scan the columns between the horizontal red lines and plot the result on the
horizontal graph. Both graphs can be scaled separately.

The vertical and horizontal lines can be moved by the user with live update
of the histograms. User interaction and the combined information from the two
histograms help to find areas where edges are missing in some of the datasets. In
figure 5.7, long bars on the horizontal graph (highlighted by a green ellipse) show
an area where edges are missing in some of the datasets. The information from
the vertical graph (dark blue oval) can be used to further localize the problematic
area on the slice.

We also have a zoom-in tool in our edge explorer. The user selects a location on
the image for zoom-in. The normal vector of an edge at that location (if an edge
is present) or the gradient of the gray values automatically determines if the edge
information is shown in a horizontally or vertically elongated rectangle. If the
gradient direction is close to the horizontal axis, the zoom-in is given as a vertical
rectangle. If the gradient direction is close to the vertical axis, the zoom-in is given
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(a) Zoom-in

(b) Zoom-in

Figure 5.8: (a) zoom-in of all the datasets in a user selected area. Zoom-ins are
displayed side by side for comparison. (b) zoom-in of central drill hole.

as a horizontal rectangle. Otherwise a square is chosen for the zoom-in. Further
shapes can easily be added to the zoom-in tool based on the gradient direction.

Figure 5.8(a) shows a zoom-in using a vertical rectangle. The zoom-in shows
each dataset of a series in a separate window. The edge strength in the zoom-in
region (outer edge) is color coded according to the black body radiation spectrum.
As we found out earlier by analyzing figure 5.4(a) the outer edge in the 150 kV
dataset is the best pronounced. The 150 kV dataset captures the outer edges best
but it is affected most severely by beam hardening. The zoom-in of the edges at a
high penetration length (central drill hole) shows the datasets with 210 kV and
220 kV voltage to produce the strongest edges (figure 5.8(b)).
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We conclude that the choice of the voltage is dependent on the penetration
length of the specimen. In case of a dual energy CT machine, the low voltage
setup must be used to analyze the outer edges of the specimen whereas the high
voltage setup will be better to explore the inner parts of the component. We
compare the robustness of investigating edges using multi-image views and the edge
explorer in the next section.

5.3 User Feedback and Results

We have proposed two visualization techniques namely multi-image view and edge
explorer for the comparative visualization of multiple datasets. Salient features of
the multi-image view are:

• Concurrent viewing of multiple datasets.

• Efficient comparative visualization.

• Scalable with the number of datasets.

• Interaction tools for enhanced usability.

• Single base tile for user guided analysis.

Salient features of the edge explorer are:

• Designed specifically for comparing edges.

• Exploration of missing edges and comparison of edge strength.

• Histograms for fast localization of problematic areas.

• Interaction tools for enhanced usability.

We collected feedback on our system in collaboration with company partners
to evaluate the robustness and practical value of the proposed visualization
techniques. We conducted two evaluations of the system. In the first evaluation
the methods are compared to the current workflow of the domain specialists. In
the second evaluation we ask the same domain specialists to compare multi-image
view with attribute blocks.

The users who participated in the evaluation were domain specialists working
professionally with 3DCT. Table 5.2 shows how often they work with 3DCT, their
professional experience in handling 3DCT data, the maximum number of slices
they have compared, and the type of comparison they have performed. The type
of comparison can be a quantitative comparison, a qualitative comparison, or a
combination of both.
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Table 5.2: Profiles of the domain specialists who participated in the evaluation.
User 2 has never compared slices. User 3 and user 4 have experience of comparing
more than three slices.

Works Professional Maximum slices Comparison
with 3DCT experience compared type

User 1 everyday 4.5 years 2 combination
User 2 everyday 0.5 years Nil -
User 3 everyday 3.0 years ≥ 4 quantitative
User 4 everyday 4.0 years ≥ 4 quantitative

5.3.1 First Evaluation - Workflow Comparison

In the first evaluation (questionnaire provided in Appendix A) we gathered the
feedback in four parts. In the first part we obtained information from the users
about their professional experience with 3DCT and the comparison of multiple
datasets (table 5.2). In the second part, we explained the respective techniques and
afterwards the users performed a sequence of tasks with our software prototype.
They were provided with assistance in completing the tasks. This part was meant
to familiarize them with the system.

In the third part, they were given five tasks to accomplish with our system.
We measured the time they took to complete each task. The users were asked
several forced-choice questions (FCQ) after each task. In the fourth part, we did a
short interview (FCQs and anectodical feedback) about our techniques and the
earlier workflow they used to compare multiple datasets.

The users do not have a standardized workflow to compare 3DCT datasets.
Typically, they load all the datasets into VGStudio MAX [78]. Then the correspond-
ing slices from the datasets are extracted. Afterwards, the slices are compared
either visually, using VGStudio MAX, and/or quantitatively using Matlab. A
workstation with a huge amount of RAM is required to perform the comparison of
large dataset series. Our work provides a standardized workflow for comparative
visualization.

The five tasks that the users performed in the evaluation were:

1. Use multi-image view to find the dataset that best preserves the edges.

2. Use edge explorer to find the dataset that best preserves the edges.

3. Mark areas on a slice (middle slice in axial direction) where the variation
between the datasets is minimal and maximal.

4. Find the dataset(s) which has the fewest beam hardening artifacts.

5. Find the dataset(s) which has the most and the fewest streaking artifacts.

The voltage series was used for the first four tasks. The last task was performed
on the number of projections series. The reason for taking a different dataset series
in the last task was that streaking artifacts vary considerably with the number
of projections. The information regarding which parameter was varied in the
dataset series was hidden from the users to ensure that they could not employ
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their insider knowledge while completing the tasks. User 3 and user 4 were given
task 2 before task 1.

Both the techniques presented in this chapter (multi-image view and edge explorer)
allow a successful comparison of the edges in the volumetric datasets (table 5.3).
Edge explorer is specifically designed for comparing edges and therefore it gives a
better performance as compared to a multi-image view. It took the users 3 minutes
on average to find the dataset that preserves the edges best with the edge explorer
whereas the average time using the multi-image view was 5.6 minutes.

Task 3 shows the ability of the multi-image view to convey spatial information
about the deviations present in the dataset series. The users were also able to
detect and compare streaking artifacts in a dataset series with ease. Finding the
dataset with the smallest amount of beam hardening took the longest amongst all
the tasks.

Compared to their earlier workflow, the users indicated the biggest advantages
of our technique to be the ability to see and compare multiple slices in a single
image and the good performance of the implemented system. Loading large
monolithic volumes is very time consuming. The users felt that each of the
above tasks would have taken them approximately 30 minutes using their earlier
workflow. User 3 and user 4 suggested that gray value histograms should also be
incorporated in the system. They are used to them from their previous workflow.

Table 5.4 shows the subjectively expressed impact that our system has on the
quality and speed of comparative visualization for the domain specialists. Choices
that the user could select from were: greatly improves, somewhat improves, no
impact, somewhat deteriorates, greatly deteriorates, and do not know. User 2 had
no prior experience of comparing multiple datasets and is therefore not included.

5.3.2 Second Evaluation - Multi-image View vs. Attribute Blocks

There is a large body of work on the visualization of multiple parameters. Fields
like weather simulation and anthropology for example require the simultaneous
display of multiple parameters. Spatial fusion techniques like color blending [21]
and space-sharing methods like color weaving [75] and attribute blocks [51] are
common for such applications. Attribute blocks have a structured approach
compared to color weaving. All the parameters are displayed side by side in every
attribute block on the plane. In the following a comparison between attribute
blocks and the multi-image view is discussed. We slightly modify the attribute
blocks to show color coded deviations with respect to one reference dataset.

We propose a set of interaction tools for comparative visualization. In order
to make a fair comparison between the two methods we provided the domain
specialists with a set of images to complete four tasks. By providing just images
we separate the effect of user interactions from the visual impact of the base tiles.
The purpose of this evaluation is to compare the structure of the hexagonal base
tile of the multi-image view with the rectangular base tile of the attribute blocks.
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Table 5.4: Overall impression of our technique on the users. The users rated the
impact of our system on the quality and speed of comparing multiple datasets.

Impact on User 1 User 3 User 4
quality greatly improves somewhat improves somewhat improves
speed greatly improves greatly improves greatly improves

We ask the professionals to complete the following tasks:

1. Find the dataset that best preserves the edges.

2. Mark areas on a slice of the voltage series where the variation between the
datasets is minimal and maximal.

3. Mark areas on a slice of the projections series where the variation between
the datasets is minimal and maximal.

4. Find the dataset(s) which has the most and the fewest streaking artifacts.

The feedback was collected from the users through FCQs and open ended
questions (questionnaire provided in Appendix B). Each task was performed with
both the techniques. User 1 and user 2 tested multi-image view first to complete
the tasks whereas user 3 and user 4 tested attribute blocks first. The time taken to
complete the tasks using multi-image view is considerably less than the time spent
using attribute blocks (table 5.5).

All the users appreciated the idea of having a reference dataset in the center.
They felt that it was very helpful for the comparison. User 1 and user 3 were
of the view that the base tiles of the multi-image view are a lot better than the
base tiles of the attribute blocks. The other two domain specialists felt that the
structure of the base tiles of the multi-image view is only a little bit better than
that of the attribute blocks. All agreed that given the interaction tools and the
efficient memory management of our tool, it is much more practical for their work
compared to attribute blocks.

The domain specialists mentioned that a major advantage of the multi-image
view is that it displays each dataset in a sector with a unique shape. It was easy
for the users to track and locate the individual datasets in the image. In the
attribute blocks all the parameters were displayed in squares and hence the users
had to refer to the legend more often. The main advantage of the attribute blocks
was that it was relatively easy to learn and use. User 1 also mentioned that the
attribute blocks could become confusing with an increasing number of datasets.

Figure 5.9 compares our method with an implementation of attribute blocks.
Hagh-Shenas et al. found that the robustness of color weaving deteriorates when
the number of datasets is more that four [23]. Therefore we have excluded color
weaving from the evaluation and just comparemulti-image viewwith attribute blocks.
Figure 5.9(a) shows a slice from the voltage series. We perform a comparative
visualization of the voltage series using a multi-image view in figure 5.9(b). The
210 kV dataset is the central dataset. The 150 kV and 180 kV datasets produce red
and reddish yellow colors respectively. They contain gray values higher than the
210 kV dataset. We easily notice that the differences between the datasets are well
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pronounced near the edges, compared to the inner part of the specimen. The
150 kV dataset has the highest contrast between material and air. All the datasets
are neighboring the central dataset. The base tile structure is easily scalable as we
add or remove datasets from the active comparison process.

Figure 5.9(c) shows the voltage series rendered with attribute blocks. The
210 kV dataset is displayed in gray. The other cells render the differences between
the 210 kV dataset and the respective dataset of the cell. Space-sharing techniques
like the attribute blocks are specifically designed for the simultaneous display of
multiple parameters. Attribute blocks are scalable for displaying more datasets but
they seem less suitable for comparison of multiple parameters. Attribute blocks
have a grid like structure (figure 5.2(b)) and hence they are not specifically designed
for comparisons across sector boundaries. For multi-image view we propose a set of
tools and interaction techniques to support the comparison process. Our method
provides a direct comparison of the datasets. The differences between the datasets
are apparent by just a fast visual inspection. Furthermore our system is purpose
built to efficiently process large and high resolution dataset series (section 5.4).

5.4 Implementation and Performance

We implemented a prototype on a Pentium 4 3.4 GHz CPU and an NVidia
GeForce 8800 GTS graphics board. The datasets to visualize are quite large (ta-
ble 5.1). In a pre-processing step each volume of the dataset series is subdivided
into equal-sized rectangular sub-volumes (bricks). Each element of a brick is a list
containing a gray value from each dataset of the series. Brick fetching is fastest
when the brick size is about 64 KBytes [22]. The pre-processing step dynamically
chooses brick dimensions so that the brick size is close to 64 KBytes. We only
fetch those bricks into memory that are required for rendering.

To speed up the overall performance of the application we also implemented
pre-fetching of the bricks. We have three threads in our application. The first
thread runs in the background and loads those bricks into main memory that
might be needed in the near future. Based on the orientation of the slice and
the direction of navigation, we can calculate the next set of bricks that may be
required. The second thread which has the highest priority is responsible for
fetching those bricks that are needed for rendering the current multi-image view.
The second thread will only be executed when the currently required set of bricks
has not already been fetched into memory. The third thread performs rendering
of images and handles user interaction with the system.

Based on the available storage in the system we keep three sets of bricks in
memory. These sets of bricks are in the order of importance: first, the set required
for rendering the current multi-image view, second, the next set of bricks required in
the future, and third, the set of bricks most recently used. The performance of our
system is given in table 5.6. The timings shown include fetching the data from the
main storage and rendering. We observe approximately a 26% performance drop
for the axial case because of bricking. We gained about 61% and 21% rendering
speed-up by bricking in the sagittal and the coronal cases respectively. The loss in
performance in the axial case is due to the optimal alignment of the monolithic
volume with the slicing direction.
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Table 5.6: Performance: Average time (in milliseconds) required for rendering a
gray value slice using a monolithic volume (i.e., non-bricked), a bricked volume,
rendering a multi-image view, and rendering an edge explorer.

multi-image view edge explorer
slice monolithic bricked (bricked) (bricked)
axial 19 24 26 29
sagittal 90 35 38 44
coronal 35 28 31 36

5.5 Conclusion

We have presented two visualization techniques for the comparative visualization
of multiple datasets. A multi-image view helps the user to track artifacts and also
provides interaction tools to find datasets that have a better contrast or stronger
edges. The edge explorer is specifically designed for simultaneously visualizing
edges and edge strengths in a dataset series.

We use bricking for efficient memory management and threading for pre-
fetching of the bricks. We take advantage of the graphics hardware to achieve a
considerable rendering speed-up. Our system is interactive and works by loading
only those parts of the datasets that are required for rendering. We are therefore
able to perform comparative visualization on large dataset series. The system has
been evaluated by domain specialists for 3DCT. They found our techniques quite
helpful for their work. Our techniques are generic and seem applicable for dataset
series from other imaging devices as well.



Learning without thought is labor
lost; thought without learning is
perilous.

Confucius

6
Summary and Conclusion

The idea of assisting users to efficiently and to easily deduce valuable results
from data is an inherent part of visualization. The user requirements and
the purpose of performing the visualization have to be considered during

the design and development of a visualization algorithm. The users are often not
well acquainted with all the parameters that are used in an algorithm. The usability
of a technique usually declines with an increase in the number of parameters that
the user has to interact with. The parameters can be reduced to a feasible number
if the visualization techniques are application specific and if they are designed
according to the user requirements.

The user is often concerned about a specific feature in a volumetric dataset. We
design techniques that are tuned to visualize these features of interest. The rest
of the data is considered to be context information. Feature centric visualization
techniques are robust and focused. They require less user interaction, the visual-
ization is more expressive and objective, and the software design is customized
for the target users.

Feature Peeling:
Peeling layers of data is a successful attempt to efficiently search for features
inside a volumetric dataset. The user is no more required to specify a
transfer function or to perform laborious segmentation. Instead, two linear
parameters can be set to generate feature layers. The user can browse through
the layers in real-time. Our algorithm is particularly useful in time critical
medical scenarios, in using contemporary volume visualization techniques
for MRI data, and in exploration of volumetric datasets.

It will be interesting to monitor the variability of the two linear parameters
with respect to different types of datasets. We believe that these parameters
will not require intense interaction when used for a single type of dataset,
like MRI.
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Computation and Visualization of Fabrication Artifacts:
3DCT datasets are prone to various artifacts. The fabrication artifacts are
interesting for the engineers while the errors introduced by the measurement
machine and by the post processing software are detrimental. They negatively
affect the accuracy with which fabrication artifacts can be concluded. We try
to separate the fabrication artifacts from the reconstruction artifacts which are
introduced by the surface extraction algorithm. A single system to execute the
entire pipeline for the computation and visualization of fabrication artifacts
is proposed.
The research system suggested in this thesis is already in use by our company
partners. They particularly appreciate the idea of rendering box plots in a
zoom-in of a user specified area of interest. In the future the measurement
errors might be taken into account while calculating the fabrication artifacts.
The measurement errors can be incorporated into the visualization pipeline
as uncertainties. This however requires a comprehensive study on the
measurement errors.

Locally Adaptive Marching Cubes:
Measurement errors affect the shape of the objects inside a volumetric dataset.
The shape is modified due to bias in the scalar values. This is corrected
by introducing an iso-value field in the marching cubes algorithm. The
algorithm can also be used to stitch together iso-surfaces or to generate a
surface model that has a smooth transition from one feature of interest to
another. We have tested this method on various medical and industrial
specimens and the results are promising.

Comparative Visualization for Parameter Studies of Dataset Series:
The thesis describes a planar reformatting based technique for comparative
visualization of volumetric datasets. The method is also applicable for
comparison of images. The proposed system has been developed in close
collaboration with our company partners. We conducted two evaluations to
study the utility and robustness of our algorithms.
Comparison of multiple datasets is an important task for the 3DCT domain
experts. They perform it regularly in their professional work. The continuous
increase in the precision, the resolution, and the size of the 3DCT datasets
makes comparative visualization an emerging topic. There is demand for
efficient and high quality comparisons but the limited main memory in CPUs
and GPUs is a bottle neck. Comparative visualization will be an interesting
field for further research in the future.

The work presented in this thesis provided immense opportunities for learning
and critical thinking. Four software systems have been developed as a proof of
concept for the research results that we present. Latest graphics hardware and
shading languages have been used to achieve real-time performance. Most of the
work has been completed in collaboration with our company partners. This gave
us a chance to evaluate our work with the help of domain experts, to use latest
microCT and NanoCT devices, and to set research goals that make a difference in
the work of professionals.



The least flexible component of any
system is the user.

Lowell Jay Arthur

A
Questionnaire for First Evaluation

A.1 General Questions

Question 1.1: How often do you work with Industrial CT?
� At least once a year � At least once a month
� At least once a week � At least once a day
� Never

Question 1.2: How much experience do you have with Industrial CT?
_______________ months

Question 1.3: Have you ever compared multiple slices?
� Yes
� No (Please go to Section A.2: Tasks)

Question 1.4: How do you compare multiple slices?
� I compute quantitative measures like “difference of images” using MAT-
LAB etc
� I use a specialized software to visualize the differences between the slices
Please name the software: _______________

Question 1.5: Does your comparison provide spatial information?
� Yes
� No
� Do not know
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A.2 Tasks

Please use the provided software to answer the following questions:

Task 2.1: Which dataset preserves the edges best? (use multi-image view)
� Dataset 1 � Dataset 2
� Dataset 3 � Dataset 4
� Do not know

Task 2.2: Which dataset preserves the edges best? (use edge explorer)
� Dataset 1 � Dataset 2
� Dataset 3 � Dataset 4
� Do not know

Task 2.3: Mark areas in a given slice where all the datasets
� have almost similar grey values
� have most variation in grey values

Task 2.4: Which dataset in the areas of high penetration depth:
� has minimal beam hardening artifacts?

� Dataset 1 � Dataset 2
� Dataset 3 � Dataset 4
� Do not know

� has maximal beam hardening artifacts?
� Dataset 1 � Dataset 2
� Dataset 3 � Dataset 4
� Do not know

Task 2.5: Which dataset: (You can select multiple choices)
� has least streaking artifacts?

� Dataset 1 � Dataset 2
� Dataset 3 � Dataset 4
� Dataset 5 � Dataset 6
� Do not know

� has most streaking artifacts?
� Dataset 1 � Dataset 2
� Dataset 3 � Dataset 4
� Dataset 5 � Dataset 6
� Do not know
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A.3 General Questions about the Technique

Question 3.1: Will you like any change in the hexagonal structure?
� No
� Yes. Please mention _________________________________________
_____________________________________________________________

Question 3.2: Will you like any additional interaction techniques to be incorpo-
rated in the system?
� No
� Yes. Please mention _________________________________________
_____________________________________________________________

Proceed further only if you answered yes to Question 1.3 in Section A.1:

Question 3.3: Approximately how much time will it take you to complete Task
2.1 using your earlier work flow?
� Time: _______________ minutes
� Do not know

Question 3.4: Approximately how much time will it take you to complete Task
2.3 using your earlier work flow?
� Time: _______________ minutes
� Do not know

Question 3.5: Approximately how much time will it take you to complete Task
2.4 using your earlier work flow?
� Time: _______________ minutes
� Do not know

Question 3.6: Approximately how much time will it take you to complete Task
2.5 using your earlier work flow?
� Time: _______________ minutes
� Do not know

Question 3.7: Will multi-image view and edge explorer improve the quality of the
work flow of comparing multiple datasets?
� Greatly improve � Unchanged
� Somewhat improve � Do not know
� Somewhat deteriorate
� Greatly deteriorate

Question 3.8: Will multi-image view and edge explorer increase the speed of the
work flow of comparing multiple datasets?
� Greatly increase � Unchanged
� Somewhat increase � Do not know
� Somewhat reduce
� Greatly reduce
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Question 3.9: What is the biggest advantage that multi-image view and edge explorer
has over your earlier work flow?
� There is no advantage
� The biggest advantage is: ____________________________________
_____________________________________________________________

Question 3.10: What is the biggest advantage of your earlier work flow over multi-
image view and edge explorer?
� There is no advantage
� The biggest advantage is: ____________________________________
_____________________________________________________________

Open ended discussion follows ...



One is alone, two are eleven.

Pakistani Proverb

B
Questionnaire for Second Evaluation

B.1 General Questions

Question 1.1: How often do you work with Industrial CT?
� At least once a year � At least once a month
� At least once a week � At least once a day
� Never

Question 1.2: How much experience do you have with Industrial CT?
_______________ months

Question 1.3: Have you ever compared multiple slices?
� Yes
� No (Please go to Section B.2: Tasks)

Question 1.4: How do you compare multiple slices?
� I compute quantitative measures like “difference of images” using MAT-
LAB etc
� I use a specialized software to visualize the differences between the slices
Please name the software: _______________

Question 1.5: Does your comparison provide spatial information?
� Yes
� No
� Do not know
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B.2 Tasks

We intend to compare the structure of the base tile of the multi-image view (MV)
with the base tile proposed in attribute blocks (AB).

Task 2.1.1: Which dataset preserves the edges best? (use MV)
� Dataset 1 � Dataset 2
� Dataset 3 � Dataset 4
� Do not know

Task 2.1.2: Which dataset preserves the edges best? (use AB)
� Dataset 1 � Dataset 2
� Dataset 3 � Dataset 4
� Do not know

Question 2.1 Which base tile looks better for comparing the edge strengths in a
set of slices?
� MV is a lot better � No difference
� MV is a little better � Do not know
� AB is a little better
� AB is a lot better

Task 2.2.1: Mark areas in the two given slices where all the datasets
� have almost similar grey values (use AB)
� have most variation in grey values (use AB)

Task 2.2.2: Mark areas in the two given slices where all the datasets
� have almost similar grey values (use MV)
� have most variation in grey values (use MV)

Question 2.2 Which base tile looks better for recognizing uniform areas?
� MV is a lot better � No difference
� MV is a little better � Do not know
� AB is a little better
� AB is a lot better

Task 2.3.1: Which dataset: (You can select multiple choices)
� has least streaking artifacts? (use MV)

� Dataset 1 � Dataset 2 � Dataset 3
� Dataset 4 � Dataset 5 � Dataset 6
� Do not know

� has most streaking artifacts? (use MV)
� Dataset 1 � Dataset 2 � Dataset 3
� Dataset 4 � Dataset 5 � Dataset 6
� Do not know
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Task 2.3.2: Which dataset: (You can select multiple choices)
� has least streaking artifacts? (use AB)

� Dataset 1 � Dataset 2 � Dataset 3
� Dataset 4 � Dataset 5 � Dataset 6
� Do not know

� has most streaking artifacts? (use AB)
� Dataset 1 � Dataset 2 � Dataset 3
� Dataset 4 � Dataset 5 � Dataset 6
� Do not know

Question 2.3 Which base tile is better for comparing streaking artifacts?
� MV is a lot better � No difference
� MV is a little better � Do not know
� AB is a little better
� AB is a lot better
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B.3 General Questions about the Two Techniques

Question 3.1 Will MV improve the quality of the work flow of comparing multiple
datasets?
� Greatly improve � Unchanged
� Somewhat improve � do not know
� Somewhat deteriorate
� Greatly deteriorate

Question 3.2 Will AB improve the quality of the work flow of comparing multiple
datasets?
� Greatly improve � Unchanged
� Somewhat improve � do not know
� Somewhat deteriorate
� Greatly deteriorate

Question 3.3 Will AB increase the speed of the work flow of comparing multiple
datasets?
� Greatly increase � Unchanged
� Somewhat increase � do not know
� Somewhat reduce
� Greatly reduce

Question 3.4 Will MV increase the speed of the work flow of comparing multiple
datasets?
� Greatly increase � Unchanged
� Somewhat increase � do not know
� Somewhat reduce
� Greatly reduce

Question 3.5: Does it help to have the reference dataset in the neighborhood of
all the rest of the datasets in the series?
� Yes
� No

Question 3.6 Which of the following best describes the comparison of the hexag-
onal base tile used in MV and the rectangular base tile proposed in the AB?
� MV is a lot better � No difference
� MV is a little better � Do not know
� AB is a little better
� AB is a lot better

Question 3.7: What is the biggest advantage that AB has over MV?
� There is no advantage
� The biggest advantage is: ____________________________________
_____________________________________________________________

Question 3.8: What is the biggest advantage that MV has over AB?
� There is no advantage
� The biggest advantage is: ____________________________________
_____________________________________________________________
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Open ended discussion follows ...
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