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Abstract

One of the key problems of augmented reality is the tracking of the camera position and
viewing direction in real-time. Current vision-based systems mostly rely on the detection
and tracking of fiducial markers. Some markerless approaches exist, which are based on
3D line models or calibrated reference images. These methods require a high manual
preprocessing work step, which is not applicable for the efficient development and design
of industrial AR applications.
The problem of the preprocessing overload is addressed by the development of vision-based
tracking algorithms, which require a minimal workload of the preparation of reference
data.
A novel method for the automatic view-dependent generation of line models in real-time
is presented. The tracking system only needs a polygonal model of a reference object,
which is often available from the industrial construction process. Analysis-by-synthesis
techniques are used with the support of graphics hardware to create a connection between
virtual model and real model.
Point-based methods which rely on optical flow-based template tracking are developed
for the camera pose estimation in partially known scenarios. With the support of robust
reconstruction algorithms a real-time tracking system for augmented reality applications
is developed, which is able to run with only very limited previous knowledge about the
scene. The robustness and real-time capability is improved with a statistical approach for
a feature management system which is based on machine learning techniques.
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1. Introduction

1.1. Augmented Reality

Augmented Reality (AR) deals with the combination of real world images with computer
graphics. In contrast to Virtual Reality, where the user is totally immersed into a virtual
environment, in Augmented Reality the real environment is still perceived and additional
virtual objects are overlaid into the user’s field of vision. Azuma [3] defines an augmented
reality system with the following characteristics: Virtual and real world are combined, the
system is capable of handling interaction in real-time and the registration between real
and virtual data has to be carried out in three dimensions. The real-time capability of an
augmented reality system is a differentiation to technologies where real and virtual data
are synthesized off-line, like in the movie post-production. In contrast thereto augmented
reality systems require that the 3D alignment of virtual objects into the real world is
performed in real-time.

A very common approach for an augmented reality system is to analyze a digital camera
image to estimate the camera position and viewing direction and to overlay this image with
additional virtual information. Head-mounted displays (HMDs) are widely used devices
for augmented reality applications. Video-see-through devices consist of a camera and a
display, on which the augmented camera image is shown. See-through displays consist of a
semi-transparent screen, where the augmented image is overlaid directly on the real world
image. Since the development of display technology is not in the state that an ergonomic
and comfortable use is possible, many AR-applications have been implemented on tablet
PCs, ultra-mobile PCs or PDAs.

A variety of augmented reality applications exist. A high potential of Augmented Re-
ality covers the field of industrial maintenance, where a technician is supported with
instructions which are directly overlaid in the technician’s field of view. With such an AR
maintenance system an unskilled worker is able to perform complicated repairs of motor
engines, control units or other technical equipment. Other applications are in the field
of architecture, tourism and entertainment, where virtual and real worlds are mixed in
outdoor scenarios. Virtual constructions of buildings can be placed into real city skylines
or an ancient ruin can be augmented with virtual reconstructions of a temple. Further-
more, in TV live broadcasts, like sport events, augmented reality technologies are used to
superimpose additional information to clarify special situations for the viewer.
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1. Introduction

1.2. The Tracking Challenge

One of the most relevant problems in current research regarding augmented reality is the
robust registration of a virtual model into the real scene. For a correct overlay of a virtual
augmentation into an image, the camera position and viewing direction, also called the
camera pose, must be known. The estimation of the camera pose is denoted as tracking.
The tracking for augmented reality applications has a number of requirements. It must
be able to work in real-time with a sufficient update rate and the precision must be high
enough that the virtual model is not misplaced in the real image. Furthermore, the user
should not observe any latency when moving around, i.e there should be no time lag and
the estimated camera pose should always match the current frame. When the user is not
moving, the camera pose must be stable and no jitter should be observed.
A wide range of tracking technologies can be used for the camera pose estimation. If the
object, which shall be tracked, consists of several parts, which are physically connected
with measurable joints, these measures can be used to track the movements of the object.
Such mechanical tracking techniques are integrated into devices like augmented reality
telescopes ore movable screens. Electromagnetic sensors can be a good choice for tracking
an instrument in a predefined field of activity, but have the disadvantage that metallic
objects can disturb the tracking significantly. With inertial sensors like gyroscopes or
accelerometers the relative motion variation of an object can be estimated. Hybrid track-
ing systems combine the features of several different sensor sources, e.g. a mixture of
vision, inertial or electromagnetic devices. For outdoor applications GPS receivers are a
possibility for a rough position estimation, but the accuracy is often too low for a precise
registration.
A widely used technique for the estimation of a camera pose is optical tracking. Since for
most augmented reality applications a camera image is already available, no additional
sensors are needed. With computer vision approaches the complete camera parameters are
estimated by analyzing the images of the observing camera. Digital cameras are consumer
products and are available for very cheap prices. A simple camera can be therefore one
of the most inexpensive tracking devices. Another benefit of optical methods is that it
might be possible that no costly preparations of the working environment need to be made
as for the electromagnetic tracking. However, the development of computer vision-based
tracking systems, which are able to robustly compute the camera position and viewing
direction out of an image sequence, is a very complex problem, since the requirements for
augmented reality applications are quite demanding. A considerable amount of research
is carried out nowadays in the area of vision-based tracking, but no complete systems,
which fulfill all the needs of AR applications, have been developed so far.
To simplify the optical tracking problem, fiducial markers have been used, because the
detection of specially designed markers can be carried out robustly in real-time. Such
fiducial-based tracking methods have been widely used, but in many scenarios they are
not applicable, because the preparation of the scene with markers is very intricate and
sometimes not possible at all.
To avoid the manual positioning of markers, a tracking system must be able to use only
natural features which occur in the scenario. With reference images a natural feature-
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1.3. Contributions and Overview

based tracking is possible, but the calibration of reference images is a too complex prepro-
cessing step for the straightforward creation of industrial AR applications. Thus a high
demand exists for a fully automatic tracking system which is able to work in real-time
with a minimal previous knowledge of the scene.

1.3. Contributions and Overview

The goal of this thesis is the development of a real-time computer vision-based tracking
system which fulfills the requirements of augmented reality applications. In the first part
of this thesis line-based tracking approaches which rely on a given geometric model are
investigated and further developed. Novel rendering methods are developed to create a
tracking system, in which computer graphic techniques are used to create a connection
between polygonal 3D models and edge-based tracking algorithms. The second part dis-
cusses the tracking of point-based image features and the reconstruction of the feature
geometry. The key idea is to develop a tracking system which gathers all information
which is needed for the continuous tracking during runtime. After observing and tracking
the scene for a sufficient time a feature map is created which is then used for a camera
pose estimation under strong illumination and aspect changes. With the support of ma-
chine learning algorithms a sophisticated feature management system is developed, which
results in an overall both robust and efficient tracking framework.
In Chapter 2 the relevant computer vision basics are discussed and the mathematical
notations are introduced. The perspective camera model, on which most of our algorithms
rely, is presented, and the state-of-the-art methods for robust camera pose estimation are
shortly described.
Chapter 3 provides an overview of fiducial-based tracking methods.
The edge-based tracking approaches, which are implemented and further developed for
our tracking system, are described in Chapter 4. The standard approach of tracking a
given 3D line model is often denoted as the RAPiD tracker. This method is based on
the orthogonal search for gradient maxima along search lines at control points on the
projected model edges.
We extend this method in that way that both on-line and off-line information is used
to increase the robustness and convergence behavior of the tracking system. The model
geometry is combined with the visual appearance of an edge in the camera images and an
adaptive learning method is used to create a most general multiple appearance represen-
tation of the control points of a model edge. A visibility test for self-occluding edges of the
regarded object is carried out with the support of modern graphics hardware. We evalu-
ate the algorithm and demonstrate that our system outperforms other purely line-based
tracking systems in robustness. The tracking method and the results of our approach are
presented in [118].
Since line models are rarely given, the methods of Chapter 4 are not very user friendly,
because a 3D line model has to be created in such a way that it represents strong image
edges in the regarded scene. Polygonal models in the VRML format are often given and

3



1. Introduction

(a) (b)

Figure 1.1.: A virtual model (a) and a real model (b) of an industrial object. The task
of the tracking algorithms is to align the virtual model on the real model
correctly.

can be exported from the industrial construction and design process easily. Such a virtual
model and the real model is shown in Figure 1.1.
In Chapter 5 we present a novel tracking method which uses rendering techniques to
align a virtual model onto the real model in an image by using contour-based tracking
algorithms. Our main contribution for this problem is a real-time edge model generation,
in which a 3D edge model is created on the fly with only those edges which are visible
for a predicted camera pose at an adequate level of detail in every frame. Parts of the
algorithm are implemented on graphic shader hardware to increase the performance of the
creation process. A two-stage tracking method that uses image and object information is
used for a more stable handling of large camera movements. With the tracking approach
presented in Chapter 4 it is possible to track any non-textured industrial object with only
a given polygonal model. In contrast to other methods it is possible to track objects which
mostly consist of silhouette edges from any viewing direction. The complete description
and evaluation of the algorithm is published in [120].
If a scenario consists of well textured planar surfaces, point-based tracking methods are a
more suitable choice to create a markerless tracking system. The detection and tracking of
point features is discussed in Chapter 6.1. The main focus of the chapter is the optical flow
based template alignment. We improve the template tracking with an approach, in which
the scale invariance is increased by representing feature points with multiple templates of
different scale levels. The tracking results are demonstrated with applications like poster
trackers or tracking algorithms where a polygonal 3D model is used for the acquisition of
3D coordinates.
In Chapter 7 the tracking in unknown scenarios and the reconstruction of scene geom-
etry is discussed. We present a system, in which feature points which do not belong to
known parts of the scene are reconstructed and refined on-line for the further continuous
camera pose estimation. Not only 3D coordinates, but also surface normal vectors are
reconstructed and used for a precise prediction of lost or occluded feature points. Many
parts of this tracking algorithm are described in [12].
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1.4. Publications

In dynamic scenes with occluding objects many features need to be tracked for a robust
real-time camera pose estimation. An open problem is that tracking too many features
has a negative effect on the real-time capability of a tracking approach. In Chapter 8.1
a feature management method is proposed which performs a statistical analysis of the
ability to track a feature and then uses only those features which are very likely to be
tracked from a current camera position. Thereby a large set of features in different scales
is created, in which every feature holds a probability distribution of camera positions
from which the feature can be tracked successfully. As only the feature points with the
highest probability are used in the tracking step, the method can handle a large amount
of features in different scales without losing the ability of real-time performance. Both the
statistical analysis and the reconstruction of the features’ 3D coordinates are performed
online during the tracking and no preprocessing step is needed. A description of the
complete system is published in [119].
The derivation of different motion models for the optical flow-based template alignment
with and without illumination compensation is presented in Appendix A.

1.4. Publications

The majority of the work described in this thesis has been peer-reviewed and presented
at conferences. This is a list of the publications derived from this work:

• Wuest, Harald; Wientapper, Folker; Stricker, Didier: Adaptable Model-Based
Tracking Using Analysis-by-Synthesis Techniques. In Proceedings of Com-
puter Analysis of Images and Patterns (CAIP), 2007.
• Koch, Reinhard; Evers-Senne, Jan-Friso; Schiller, Ingo; Wuest, Harald; Stricker,

Didier: Architecture and Tracking Algorithms for a Distributed Mobile
Industrial AR System. In Proceedings of the 5th International Conference on
Computer Vision Systems (ICVS), 2007.
• Becker, Mario; Bleser, Gabriele; Pagani, Alain; Stricker, Didier; Wuest, Harald:
An Architecture for Prototyping and Application Development of Visual
Tracking Systems. In Proceedings of IEEE 3DTV-Conference: Capture, Trans-
mission and Display of 3D Video, 2007.
• Wuest, Harald; Pagani, Alain; Stricker, Didier: Feature Management for Effi-
cient Camera Tracking. In 8th Asian Conference on Computer Vision (ACCV),
2007.
• Webel, Sabine; Becker, Mario; Stricker, Didier; Wuest, Harald: Identifying Dif-
ferences Between CAD and Physical Mock-ups Using AR. In Proceedings
of the Sixth IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR), 2007.
• Wuest, Harald; Stricker, Didier: Tracking of Industrial Objects by Using CAD
Models. In Journal of Virtual Reality and Broadcasting 4 (JVRB), 2007.
• Bleser, Gabriele; Wuest, Harald; Stricker, Didier: Online Camera Pose Esti-
mation in Partially Known and Dynamic Scenes. In Proceedings of the
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Fifth IEEE and ACM International Symposium on Mixed and Augmented Reality
(ISMAR), 2006.
• Wuest, Harald; Stricker, Didier: Robustes Kamera-Tracking für industrielle
Anwendungen im Bereich der Erweiterten Realität. In 1. Internationales
Symposium Geometrisches Modellieren, Visualisieren und Bildverarbeitung, Stutt-
gart, 2006.
• Wuest, Harald; Stricker, Didier: Tracking of Industrial Objects by Using CAD
Models. In 3. GI-Workshop der Fachgruppe Virtuelle Realität und Augmented
Reality, 2006.
• Wuest, Harald; Vial, Florent; Stricker, Didier: Adaptive Line Tracking with
Multiple Hypotheses for Augmented Reality. In Proceedings of the Fourth
IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR),
2005.
• Becker, Mario; Bleser, Gabriele; Pagani, Alain; Pastarmov, Yulian; Stricker, Di-

dier; Vial, Florent; Weidenhausen, Jens; Wohlleber, Cedric; Wuest, Harald: Visual
Tracking for Augmented Reality: No Universal Solution but Many Pow-
erful Building Blocks. In 2. GI-Workshop der Fachgruppe Virtuelle Realität und
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6



2. Computer Vision Basics

2.1. Camera Models

In order to understand the imaging process, in this section the standard pinhole camera
model is introduced. Although in recent years other camera models like omni-directional
cameras have received more attention, because of their wider field of view, the pinhole
camera model is appropriate for most cameras which are used for tracking in augmented
reality scenarios.

2.1.1. Perspective camera

The principle of the pinhole camera is very old. Basically such a camera consists of a box
with a small pinhole at one side, which is the optical center, and a projection plane on the
other side. The image on the projection plane is formed by light rays which pass from an
object through the pinhole. Thereby an upside-down image is created. For the perspective
camera model the mirrored image plane in front of the optical camera center is regarded
as the projective plane. In figure 2.1 the projection of a 3D point M = (X, Y, Z)T onto
a 2D point m = (x, y)T in the image plane is depicted.
The 3D point M = (X, Y, Z)T is expressed in the Euclidean world coordinate system
(Wc, ~xw, ~yw, ~zw), and the projected 2D point in the image coordinate system (~u,~v).
If m̃ = (x, y, 1)T and M̃ = (X, Y, Z, 1)T are the homogeneous coordinates of m and M ,
the projection can be described by

sm̃ = PM̃ , (2.1)

where s is a scale factor and P a 3 × 4 projection matrix. This equation shows that
the projection of a point M̃ to the 2D image point m̃ is linear in projective space.
The projection matrix P is defined up to a scale factor and therefore has 11 degrees of
freedom. These degrees of freedom consist of 6 extrinsic parameters, which describe the
orientation and the translation of the camera, and 5 intrinsic parameters, which depend
on the internal parameters of the camera, such as the focal length f .
To separate the intrinsic parameters from the extrinsic parameters, the projection matrix
P can be decomposed as

P = K
[
R|t

]
, (2.2)

where K is a 3× 3 calibration matrix, which depends on the intrinsic parameters of the
camera. The 3× 3 rotation matrix R represents the orientation of the camera coordinate
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Figure 2.1.: Model of the perspective camera. M is a 3D point, and m its 2D projection
onto the image plane.

frame, and the vector t is a 3-dimensional translation from the origin of the world frame
into the origin of the camera frame.
A homogeneous 3D point M̃ can therefore be projected to a homogeneous 2D point
m̃′ = (m̃′x, m̃′y, m̃′z)T = sm̃ by the following equation:

m̃′ = K
[
R|t

]
M̃ (2.3)

The Euclidean image coordinates m = (x, y)T can be computed by homogenizing m̃′:(
x
y

)
=
 m̃′x
m̃′z
m̃′y
m̃′z

 (2.4)

Intrinsic parameters

The upper triangular transformation matrixK represents the transformation from a point
in the camera coordinate system to a homogeneous point in the image plane. The matrix
K is also called camera calibration matrix and depends on 5 parameters. It can be written
as

K =

fu s u0
0 fv v0
0 0 1

 , (2.5)

8



2.1. Camera Models

where fu = kuf̆u and fv = kvf̆v represent the focal length of the camera in terms of pixel
dimensions. The values of the normalized focal length are here denoted as f̆u and f̆v and
the factors ku and kv are the number of pixels per unit distance in the ~u and ~v directions
respectively. If all pixels are square, which is mostly the case with modern CCD cameras,
then fx is equal to fy. The principal point c = (u0, v0)T represents the image coordinate
of the intersection of the principal axis and the image plane. Similarly, u0 = kuŭ0 and
v0 = kvv̆0 are represented in terms of pixel dimension, where ŭ0 and v̆0 are the coordinates
of the principal point which are normalized to the image dimensions ku and kv. Usually
the principal point c is very close to the center of the image. The parameter s, which is
known as the skew parameter, is 0 in most of the cases regarding modern cameras. It is
only non-zero, if the directions ~u and ~v are not perpendicular.

Often is is useful to express the camera calibration matrix K independently from the
image dimensions. For example, if an algorithm uses different levels of an image pyramid,
image planes of different resolutions are needed to project a 3D point. The normalized
camera calibration matrix

K̆ =

f̆u s̆ ŭ0

0 f̆v v̆0
0 0 1

 , (2.6)

which is independent from the image dimensions, is related to the camera calibration
matrix K by the following equation:

K =

ku 0 0
0 kv 0
0 0 1

 K̆ (2.7)

Extrinsic parameters

The 3× 4 matrix
[
R|t

]
represents the Euclidean transformation of a homogeneous point

M̃ from the world coordinate system (Wc, ~xw, ~yw, ~zw) to the camera coordinate system
(Cc, ~xc, ~yc, ~zc).

A 3D point M can be transformed to the camera coordinate system by

Mc =
[
R|t

]
M̃ = RM + t. (2.8)

Both the rotation matrix R and the translation vector t depend on 3 parameters each.
These 6 extrinsic parameters which define orientation and the position of the camera are
often referred to as camera pose. The main task of the tracking methods is to estimate
these extrinsic camera parameters.

Since the optical center of the camera C in the world coordinate system is transformed to
the origin of the camera coordinate system, the equation 0 = RC+tmust hold. Therefore
the optical center of the camera in world coordinates can be calculated by C = −RT t.

9
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2.1.2. Lens Distortion

The projective camera model is an ideal model of the pinhole camera. In practice, however,
a significant radial distortion can often be observed, especially if the camera has a wide
field of view. To model such an effect, a 2D deformation of the image can be used to
compensate the radial distortion. A very common model can be described as follows. Let
m̆ = (x̆, y̆)T be the normalized image coordinates of the undistorted point m = (x, y)T
and m̆d = (x̆d, y̆d)T the corresponding normalized coordinate of the distorted pointmd =
(xd, yd)T . The relation between undistorted normalized and the undistorted observed
image coordinates can be described as

m = c+
(
ku 0
0 kv

)
m̆, (2.9)

where c is the principal point in the image coordinate system and ku and ku are the image
dimensions. For distorted coordinates the same relation holds.
If m̆ = (x̆, y̆)T is the normalized undistorted point in the image plane, and m̆d = (x̆d, y̆d)T
is the corresponding normalized distorted point, then the distorted point can be approx-
imated with:

m̆d = 1 + dradial(m̆) + dtangential(m̆). (2.10)

The radial distortion can be expressed as

dradial(m̆) = (k1r
2 + k2r

4 + k3r
6 + ...)m̆, (2.11)

where r =
√
x̆2 + y̆2 and the factors k1, k2, ... are the radial distortion coefficients. In most

of the cases, two radial distortion coefficients are enough to model the radial distortion
sufficiently.
The tangential distortion, which was introduces by Brown [14], can be computed by

dtangential(m̆) =
(

2t1x̆y̆ + t2(r2 + 2x̆2)
t1(r2 + 2y̆2) + 2t2x̆y̆

)
, (2.12)

where t1 and t2 are the tangential distortion coefficients. Often the tangential distortion
is neglected, because its influence is not very significant.
For many computer vision-based tracking algorithms, an input image is undistorted with
some given distortion parameters. Then the projective camera model is applied on the
undistorted images. To undistort an image efficiently, a lookup table can be used, which
stores for every pixel in the undistorted image the position of the corresponding pixel in
the distorted image.
Software packages like [45] or [13] exist, which use images of a reference grid to calibrate
a camera and estimate both the intrinsic parameters and the radial distortion coeffi-
cients. Another method [25] to estimate the radial distortion coefficients uses the fact
that straight lines in the real world always need to be straight lines in a projective im-
age. Thereby the distortion parameters are estimated by minimizing the deviation of
straightness.
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2.1.3. Camera Pose Parameterization

For the camera pose estimation, the extrinsic camera parameter matrix
[
R|t

]
needs to be

parameterized, so that it only depends on a minimum amount of degrees of freedom. As
the 3-dimensional translation vector t represents 3 degrees of freedom of the camera pose,
the parametrization is straightforward. As the 3× 3 matrix R consists of 9 elements, but
only depends on 3 degrees of freedom, the parametrization of R is more difficult to do
well.

To ensure that the rotation matrix R represents a rotation in R3, all the column vectors
must be of unit length (3 constraints) and they must be mutually orthogonal (3 more
constraints). The fact that detR = 1 results from these constraints.

Several parameterizations of a rotation matrix in R3 exist which are useful for different
purposes. An extensive description about different parameterizations of a ration matrix
can be found in [106]. We describe the parametrization with Euler angles, quaternions,
and the axis angle representation of a rotation in the the following sections.

Euler Angles

An Euler angle is the rotation around one of the coordinate axes. The rotation matrix R
can be composed by the three rotations around all coordinate axes. If α is the rotation
around the x-axis, β around the y-axis and γ around the z-axis, the rotation matrix R
can be computed by

R =

1 0 0
0 cosα sinα
0 − sinα cosα


cos β 0 − sin β

0 1 0
sin β 0 cos β


 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 . (2.13)

The major drawback of using Euler angles is the fact that one rotation parameter gets
lost, if two of the three rotation axes align. This problem is known as gimbal lock. Since
the singularities occur typically for angles at π/2, it is not always possible to limit the
legal range of rotation. Another drawback is that the interpolation between Euler angles
produces poor results, because all three axes are interpolated separately. An advantage
of Euler angles is the fact that they can provide an easy interface in the form of three
different sliders, i.e. for virtual reality authoring tools.

Quaternions

A quaternion q is a hyper complex number that can be written as q = qx+ qyi+ qzj+ qwk
with i2 = j2 = k2 = ijk = −1. Quaternions form a ring in a four dimensional vector
space, which is closed under the multiplication operator. A unit quaternion

q̃ = cos
(
θ

2

)
+ ω sin

(
θ

2

)
(2.14)

11
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with ‖q‖ = 1 can be used to represent a rotation in R3 around the unit vector ω by
the angle θ. The rotation of a point x ∈ R3 can be carried out by using the quaternion
multiplication

rotate(x) = q ◦ x̃ ◦ q̄, (2.15)

where ◦ is the quaternion multiplication operator, q̄ the conjugate of q and x̃ is the vector
x extended with a zero scalar component. The major advantage of the rotation repre-
sentation with a quaternion is that it overcomes the problem of singularities. Therefore
quaternions are widely used for smoothly interpolating between rotations.
A problem, however, is that the rotation representation with a quaternion is over-param-
etrized, since a rotation in R3 has only 3 degrees of freedom. If some target function is
minimized over the quaternion parameters, it has to be ensured that ‖q‖ = 1 with an
additional constraint. Solving optimization problems with the use of unit quaternions is
therefore a computational overhead and an increase in code complexity.

Exponential map

The representation of a rotation with the exponential map, also known as axis angle
representation, parameterizes the rotation matrix R by a 3D-vector ω = (ωx, ωy, ωz)T .
The axis around which the rotation is performed is given by the direction of ω and the
angle of the rotation is represented by θ = ‖ω‖.
The exponential map owes its name to the fact that the rotation matrix R can be repre-
sented by the following infinite series expansion on an exponential:

R = exp(Ω) = I + Ω + 1
2!Ω

2 + 1
3!Ω

3 + ... , (2.16)

where Ω is the skew-symmetric matrix

Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (2.17)

With the help of the Rodrigues’ formula the rotation matrix R can be computed by

R = exp(Ω) = I + sin θ
θ

Ω + 1− cos θ
θ2 Ω2. (2.18)

The advantage compared to the quaternion representation is that the rotation is repre-
sented by only three parameters and no additional constraint is needed during an iterative
optimization. Singularities are only at angles of 2nπ with n = 1, 2, 3, .... Luckily these
singularities can be avoided by restricting the angle θ = ‖ω‖ in the range of −π to +π.
As the exponential map representation is not over-parametrized and has only singularities
in a region of the parameter space, which can easily be avoided, it is the most practical
parametrization of a rotation matrix for the purpose of camera pose estimation.
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2.2. Camera Calibration

2.2. Camera Calibration

The idea of camera calibration is to estimate all the parameters of a camera model. Here
it is not assumed that intrinsic parameters of the camera are known. The problem of
estimating only the external camera parameters is denoted as camera pose estimation
and is described in the next section.
A very common approach to estimate all elements of the whole projection matrix

P =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 (2.19)

of a perspective camera is the DLT algorithm [1]. This method solves a linear system of
equations, which relate a set of 3D coordinatesMi = (Xi, Yi, Zi)T and their corresponding
projected 2D points mi = (xi, yi)T in the image. Each correspondence results in two
linearly independent equations:

xi = p11Xi + p12Yi + p13Zi + p14

p31Xi + p32Yi + p33Zi + p34
(2.20)

yi = p21Xi + p22Yi + p23Zi + p24

p31Xi + p32Yi + p33Zi + p34
(2.21)

If p is a vector of all coefficients of P , the equations can be rewritten in the form Ap = 0,
where A is a 2n× 12 matrix and n the number of correspondences of 3D coordinates and
2D image points. The elements of the projection matrix P can be computed by using a
singular value decomposition of A. At least n = 6 correspondences are necessary to solve
the system of equations. The internal and external parameters can be extracted from
P by using a QR decomposition, which results in an upper triangular matrix K and an
orthonormal matrix R.
The results of a linear method like DLT is often used as initialization for a further refine-
ment with a non-linear iterative minimization method like Levenberg-Marquard, which is
described in Section 2.3.3.
Many calibration tools use any kind of calibration pattern for the detection of 2D points in
an image. The Camera calibration Toolbox for Matlab [13] or OpenCV [45] use a check
board pattern to detect very precise 2D points and to create 2D/3D-correspondences.
ArToolKit uses centroids of circular features. Another option to create a set of 2D/3D
point correspondences is the usage of fiducial markers, as described in Chapter 3.
For a precise intrinsic calibration often many images of a calibration pattern are used.
Thereby the estimation of the intrinsic camera parameters K and the extrinsic camera
parameters of every single picture [R|t]j is formulated as one problem, which is solved
iteratively by a non-linear minimization.

2.3. Camera Pose Estimation

If the intrinsic parameters are known, the calibration process is reduced to estimating the
extrinsic camera parameters, which are also denoted as the camera pose. With a given set
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of n correspondences between 3D world coordinates and 2D image points, the six degrees
of freedom of the camera pose shall be estimated. This problem is often referred to as
the Perspective-n-Point (PnP) Problem. It is also possible to use the DLT algorithm for
estimating only the extrinsic parameters by simply multiplying the estimated P -matrix
with K−1, i.e. [R|r] ∼ K−1P , but the results are not very stable, since the problem is
over-parametrized.
The problem of estimating the camera pose has been extensively studied in the literature.
The methods can be classified into two categories, into iterative and non-iterative ap-
proaches. Whereas the non-iterative methods are often used to estimate the pose without
any prior knowledge, i.e. for the camera pose initialization, purely iterative methods need
a first guess of extrinsic camera parameters. These iterative methods are widely used for
a refinement step of the camera pose or a frame-to-frame tracking.

2.3.1. Iterative Methods

All the iterative methods [62, 65, 24] usually define an error function depending on a
given camera pose and minimize these error functions iteratively. The error function can
be either defined in image space or object space. Many image space methods minimize
the squared projection error over the extrinsic camera parameters R and t:

[R|t] = arg min
[R|t]

=
n∑
i

‖f(M i)−mi‖2, (2.22)

where f is a function depending on [R|t] which projects a 3D point into the image space.
Non-linear minimization methods as described in section 2.3.3 are then used to find a
solution.
Lu et al. describe a method in [65] which uses the following error minimization in object
space:

[R, t] = arg min
[R|t]

=
n∑
i

‖(I − Vi)(RMi + t)‖2, (2.23)

where Vi is the observed line-of-sight projection matrix defined as:

Vi = mim
T
i

mT
i mi

. (2.24)

The authors showed that their method is very accurate and computationally efficient
compared to other iterative algorithms.
A very popular way to solve the pose estimation problem was presented by DeMenthon
and Davis [24]. Their method, called POSIT, first computes an approximate solution by
solving a linear system using the scaled orthographic projection model, then the camera
pose is iteratively refined. A problem of this approach is that it cannot be applied when
the points are coplanar. In [83] a similar approach is described, which handles the coplanar
case. However, these two cases have to be explicitly distinguished.
SoftPOSIT [21] is another interesting method which not only handles the extrinsic camera
parameters estimation, but also the determination of the correspondences. This can be
useful for problems, where the connection between 3D points and 2D points is ambiguous.
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2.3.2. Non-iterative Methods

The non-iterative approaches rely on first estimating the depth and the 3D positions MC
i

of a feature point in the camera coordinate system. Then the rotation R and translation
t from the world coordinate system to the camera coordinate system can be easily re-
tained from aligning the points Mi on MC

i with a closed-form solution [43]. Non-iterative
methods usually have a high complexity, which means that they are only fast for a small
number of correspondences n, but become very slow for a larger n. To overcome this
problem a very efficient and accurate non-iterative algorithm was developed by Moreno
et al. [30]. Their central idea is to express the n 3D points as a weighted sum of four
virtual control points and solving in terms of their coordinates. Thereby the complexity
is reduced to O(n).
As non-iterative methods do not rely on any initial guess, they are often used to compute
an initial estimate of the camera pose. Iterative methods are more accurate and can be
taken to refine the estimation result.

2.3.3. Non-linear Minimization

Often the error function which is minimized iteratively to estimate a camera pose is of
a non-linear nature. This is also the case, when the camera rotation is parameterized
with the axis/angle representation as described in Section 2.1.3. Non-linear minimization
methods are then necessary to compute an accurate estimate of the camera pose.
Let g(p) be the error function which depend on the extrinsic camera parameter vector
p. All the algorithms start with an initial estimate p0 and find a minimum by iteratively
updating the camera pose by

pi+1 = pi + ∆i, (2.25)

where ∆i is an update difference of the camera pose, which decreases the value of the
error function g in every iteration.

Newton’s Method

The Newton’s method, also called Newton-Raphson method, is an algorithm for finding
roots of a real-valued function. It relies on a Taylor expansion of the function g:

g(p+ ∆) ≈ g(p) + Jg(p)∆ + 1
2∆THg(p)∆, (2.26)

where Jg(p) is the Jacobian and Hg(p) the Hessian of g. A minimum of g can be found,
where the deviation of the right hand side of the above equation vanishes, i.e.

Jg(p) +Hg(p)∆ = 0. (2.27)

The difference of an iteration step can be computed by

∆ = −(Hg(p))−1Jg(p). (2.28)
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The Newton method has a quadratic convergence when it is close to a solution, however,
it can fail to converge if the initial value is too far from the true minimum. Another
drawback is that the computation of the Hessian Hg is often expensive and sometimes
not possible.

Gauss-Newton Algorithm

The Gauss-Newton method is an algorithm for finding local extrema of a function. It
does not require the computation of a Hessian matrix. However, this method can only be
used for optimizing a squared error function.
The difference of an iteration step can be written as

∆ = −(JTg (p)Jg(p))−1Jg(p)Tg(p) = −J+
g (p)g(p), (2.29)

where J+
g is the pseudo-inverse of Jg.

The Gauss-Newton method can be regarded as an approximation of Newton’s method,
especially if the values of ‖g(p)‖ are small.

Gradient Descent

The Gradient descent, also denoted as method of steepest descent, is a minimization
method, where in every iteration a step into the direction of the negative gradient is
performed. The increment ∆ of an iteration can be computed by

∆ = −αJf (p), (2.30)

where α is the step size, which is set to be a small constant in the simplest case. The
algorithm always converges, but it can take many iterations to converge toward a local
minimum.

Levenberg-Marquardt

The Levenberg-Marquard method is a slight modification of the Gauss-Newton method.
The increment of the estimated parameter vector can be estimated by

∆ = −(JTg (p)Jg(p) + λI)−1Jg(p)Tg(p). (2.31)

The additional term λI is used to stabilize the convergence behavior. If the error function
is decreased, the value λ is reduced and the inclement is accepted. Otherwise the value λ
is increased. This makes the algorithm more robust, but results in a slower convergence.
For many non-linear least square problems the Levenberg-Marquardt method is widely
used, because it is more robust, but has a similar convergence speed to the Gauss-Newton
method.

16



2.3. Camera Pose Estimation

2.3.4. Robust Estimation

Occlusions, reflections or small changes in a scene can often result in tracking failures
of single image features. If such features are not tracked or detected correctly, there
is always a presence of ambiguous or very inaccurate 2D/3D-correspondences. These
spurious measurements will have a great influence on the estimated camera pose, if purely
the squared projection error of all correspondences is minimized. Therefore a detection
of outliers of incorrect measurements is indispensable for a robust pose estimation. Two
widely used methods to reduce the influence of false measurements are the M-estimators
and RANSAC.
The M-estimator method is more accurate, but an initial estimate is required. The
RANSAC approach does not need an initial guess, but results are less precise.

M-estimators

With the robust estimation technique called M-estimators, it is possible to reduce or
neglect the influence of spurious data in a least-squares minimization problem. Instead
of minimizing the squared residuals ∑i r

2
i , the error function to be minimized is replaced

by ∑
i

ρ(ri), (2.32)

where ρ is the so-called estimator function. The estimator function must be symmetric,
continuously differentiable and and it must have a unique minimum at zero. A description
of several estimator functions can be found in [122]. One of the widely used estimator
functions for robust camera pose estimation [112] is the Tukey estimator [111], which is
defined by

ρTuk(x) =


c2

6 [1− (1− (x
c
)2)3] if |x| ≤ c

c2

6 if |x| > c ,
(2.33)

where c is a threshold, which is usually chosen with respect to the standard deviation of
the data. In figure 2.2 the Tukey estimator function is plotted together with a least-square
estimator for comparison.
The effect of the Tukey estimator is that very small residuals are handled in a leased square
sense and all values x > c do not have any influence on the minimization result. These
very large residuals can be regarded as outliers and are therefore completely rejected.
Instead of applying the estimator function of the projection error, it is also possible to
implement the robust estimation as an iterated re-weighted least-square minimization.
Details on how to compute the weights can be found in [122].

RANSAC

Another method for robust estimation called RANSAC was first presented by Fischler and
Bolles [29]. From an observed set of data a smallest possible subset of samples is randomly
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selected and used to estimate the model parameters. Then it is tested, if a certain amount
of the other points also fits to the model. For a robust pose estimation this means
that randomly four 2D/3D-correspondences are selected and a linear method like [24] or
[83] is applied to estimate a camera pose. All other 3D points of the correspondences
are then projected with that camera pose into the image, and it is tested how many
correspondences exist which have a smaller re-projection error than a certain threshold.
Such correspondences are called inliers. All other correspondences, where the re-projection
error is too big, are called outliers. If the amount of inliers is not big enough, a camera
pose is estimated with another random subset of correspondences and it is tested again
how many inliers exist. This process is iterated until the amount of inliers exceeds a
threshold or if a maximum number of iterations is reached. The RANSAC method is
usually slower and less accurate than the M-estimators method, but the advantage is
that no initial estimate of the pose is needed. If the RANSAC method has been applied
successfully, the pose can be refined by applying a non-linear method on all inliers.
PROSAC [18] is derivative of RANSAC, where the selection of the samples for a subset
is not performed randomly, but by some quality measure of the correspondences. Top
rated samples are selected with a much higher probability. The benefit of PROSAC is
a performance increase, because much less iterations are needed, until enough inliers are
found. The quality of a correspondence can be determined by the tracking or detection
success of previous frames.

2.3.5. Bayesian Tracking

Camera pose estimation can also be performed with a probabilistic method called Bayesian
estimation [31]. A Bayes filter estimates a dynamic system’s state recursively over time
using incoming noisy observations. For a Bayesian camera tracking the state st describes
a probability distribution of the estimated camera pose. It can be simply the position
and the orientation of the camera or, in addition, variables such as the translational and
angular velocities.
The state probability density p(st) is conditioned on all available sensor data z0, ...,zt
available at time t:

p(st) = p(st|z0, ...,zt) (2.34)
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Figure 2.2.: Graph of the Tukey estimator function ρTuk(x) with c = 1.
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The observations z can be for example image feature locations or measurements of an
inertial sensor. A propagation rule for the state probability density can be written as

p(st) = p(zt|st)p(st|z0, ...,zt−1)
p(zt|z0, ...,zt−1)

. (2.35)

As the state can be assumed to be a Markov process, the true state st only depends on
the previous state st−1 and the term p(st|z0, ...,zt−1) can be estimated by

p(st|z0, ...,zt−1) =
∫
p(st|st−1)p(st−1)dst−1. (2.36)

Equation (2.36) can be regarded as a prediction step, which applies the motion model
on the previous camera pose probability distribution p(st−1). The update step of the
filter, which corrects the predicted estimate using the sensor measurements, is described
by equation (2.35).
The camera pose distribution can be represented by a Gaussian, a mixture of Gaussians
or a set of particles. Using a Gaussian distribution for the camera pose probability leads
to the Kalman filter, which is only able to handle a single hypothesis for the camera pose.
A mixture of Gaussians or a particle filter can represent the camera pose with a more
general distribution, but with the disadvantage of much higher computational costs.

Kalman Filter

The Kalman filter is a widely used tool for camera pose estimation and the fusion of
several measurement sources [42, 11]. A very detailed introduction to the Kalman filter
can be found in [7] or [115]. Here only a very coarse outline of the Kalman Filter is
presented.
For the linear case the measurements zt, such as image feature positions, are related to
the state st by

zt = Cst + vt, (2.37)

where the matrix C represents a linear transformation relating the measurements to the
state. The vector vt stands for the measurement noise.
The prediction step of the Kalman filter computes the a priori state estimate s−t and its
covariance matrix S−t by

s−t = Ast−1, (2.38)
S−t = ASt−1A

T +Q, (2.39)

where A is the state transition matrix describing the dynamic of the model and the matrix
Q represents the process noise covariance. The prediction step corresponds to equation
(2.36) of the Bayes filter.
The a posteriori state estimate st and its covariance matrix St are estimated by the
following update step:

st = s−t +Gt(zt − Cs−t ), (2.40)
St = (I −GtC)S−t , (2.41)
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The Kalman gain Gt determines the amount of influence of a measurements and is com-
puted by

Gt = S−t C
T (CS−t CT +R)−1, (2.42)

where the covariance matrix R represents the measurement noise.
The relation between measurements like image feature positions and the state, i.e. the
six degrees of freedom of the camera pose, is, however, not linear for a fully projective
camera model.
Therefore equation (2.37) has to be replaced by

zt = c(st,vt) (2.43)

with the non-linear function c. Linearizing this function by its first order Taylor approxi-
mation leads to the Extended Kalman Filter (EKF). The update step can then be written
as

st = s− +Gt(zt − c(s−t ,0)), (2.44)
St = (I −GtJc)S−t , (2.45)

where the Kalman gain Gt is computed by

Gt = S−t J
T
c (JcS−t JTc + JvRJ

T
v )−1. (2.46)

The matrices Jc and Jv are the Jacobians of the function c with respect to the state s
and the measurement noise v respectively. Usually the identity matrix is taken for the
Jacobian Jv.
The linearization can be regarded as one iteration step of the Gauss-Newton iterative
minimization. To increase the accuracy of the measurement update step, the equations
(2.44) can be applied iteratively several times. This method is denoted as the Iterated
Extended Kalman Filter.
Another method to increase the accuracy in a non-linear system it the Unscented Kalman
Filter [51]. The mean and the covariance of a Gaussian distribution are here represented
by a minimal set of carefully chosen sample points. These sample points are propagated
through the true non-linear system and result in a posterior mean and covariance with a
much higher accuracy than the Extended Kalman Filter.
With the aid of the Kalman filter several measurement sources can be fused into the
estimation of the camera pose [42]. It is possible to make predictions of the camera
pose, if measurements are not available due to occlusion or strong motion blur. With the
prediction step it is also possible to compensate the latency of the computation time of
the whole camera pose estimation, which is necessary for real-time see-through augmented
reality applications.
However, only one hypothesis is considered with the the Kalman filter, which can be an
insufficient representation of the camera pose probability distribution in ambiguous cases.
A possible solution is the use of multiple weighted Kalman filters, where the probability
distribution can be regarded as a Mixture of Gaussians [15].
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Particle Filter

Particle Filters, also known as Sequential Monte Carlo methods, are a more general ap-
proach to estimate a probability distribution of a dynamic system’s state. The probability
distribution is here represented by a set of weighted particles. Isard et. al. [46] presented
a method called Condensation, which uses a particle filter for tracking contours. Ap-
proaches exist, in which particle filters are taken to estimate the camera pose using point
features [87] or line features [55].
No linearization of the function, which relates the state and the measurements, is needed.
This makes the particle filters a very general method, which is easy to apply on any
non-linear function. However, a major drawback are the computational costs, since many
particles are needed for a sufficient representation of a distribution. Therefore in many
real-time applications the Kalman filter is preferred, if it can be assumed that the distri-
bution is of a Gaussian nature.
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3. Marker-Based Tracking

The main problem of a camera based pose estimation is the detection of image features
and the creation of correspondences between 2D image features and their 3D coordinates.
If enough such 2D/3D correspondences exist, the camera pose can be easily estimated
with techniques described in section 2.3. To simplify the feature detection process and
the creation of 2D/3D correspondences, artificially designed fiducials, also called markers,
are used. These markers must be able to get detected easily with basic image process-
ing algorithms, and they must also carry some information, which makes it possible to
uniquely distinguish them among each other. The exact 3D position of every fiducial
point has to be known to create the correspondences between 3D coordinates and image
features.
A marker can be designed to detect only a single feature point in an image or to de-
tect a planar region, which in most cases is a square, where the four corners are taken
as image feature points. As such a planar marker can be used to create four 2D/3D
correspondences, it is possible to estimate a camera pose with a single planar marker.

3.1. Point Fiducials

As point fiducials can be easily detected with a high subpixel accuracy, they have been
widely used to track objects, human bodies or interaction devices. Active and passive
point fiducials can be distinguished. Active markers are self-emitting light sources, which
require some external power supply, whereas passive markers are detected only by reflected
or scattered light.

3.1.1. Active Point Fiducials

Light Emitting Diodes (LEDs) have a high brightness intensity in contrast to the rest of
the scene and can therefore be easily spotted in a camera image. Often infrared LEDs
are used, because they are not visible by the user and do not interfere with other light
sources. Furthermore, CMOS sensors used in consumer cameras are very sensitive to
infrared light, which makes IR-LEDs easy to detect.
The HiBall Tracker [116] is an inside-out tracking system for virtual and augmented
reality applications, where arrays of infrared LEDs are used to estimate the position and
orientation with high accuracy and high performance. Another widely used inside-out
tracking system is the controller of the Nintendo Wii, which uses an infrared camera in
the controller to track an array of IR-LEDs.
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Outside-in tracking systems like the one presented in [68] use a stereo camera setup where
3D positions of LEDs are reconstructed by epipolar constraints and then used to estimate
the orientation and position of a head-mounted display or an interaction device.
If colored LEDs are used, it is possible to take the colors to distinguish between the
different LEDs. A far more sophisticated method is to encode the ID of an infrared LED
by frequency or amplitude modulation [79].

3.1.2. Passive Point Fiducials

Passive point markers do not depend on any power supply and are therefore less intricate
for setting up a tracking system. A widely used method is to create markers with retro-
reflective materials [90] and to use a directed infrared ring flash to illuminate the scene.
Due to their reflective material properties, the fiducials stand out from the rest of an
image taken with an infrared camera and can therefore be detected easily. By minimizing
the epipolar constraints in two camera images the 3D position of such a fiducial point can
be calculated. The asymmetric composition of several markers on an interaction device
makes it possible to estimate its position and orientation in the 3D scene. Tracking
systems based on this method are commercially available from companies like Advanced
Realtime Tracking or Vicon. A similar approach for detection 2D positions in an infrared
image is also used for finger tracking on a multi-touch screen [36].
Passive point fiducials can also be detected in the visible range of light. The many fiducial
designs among others include black and white concentric circles [72], coloured concentric
circles [17] and circular ring codes [78]. Another interesting marker design was presented
by Bencina and Kaltenbrunner [9]. They segment an image into a tree of alternating black
and white regions which encodes the ID of a marker. With their approach not only the
position but also the 2D orientation of the marker in an image can be detected. These
markers are used for detecting objects on a table based interactive surface.

3.2. Planar Square Fiducials

The benefit of using planar markers is that not only one 2D position of the marker center
is detected, but the four corners of a marker square. With four correspondences it is
possible to estimate the pose of a calibrated camera with only a single marker. The
detection process of a marker can be split into two steps: The extraction of the four
corners of a marker square and the detection of a marker ID.

3.2.1. Marker Square Extraction

ARToolkit [52] is a very popular library for detecting planar markers. It is freely available
and was therefore widely used to create AR applications. The marker fiducials consist of a
black border on a white background containing a black/white image. To detect a marker,
first the input image is binarized, and this thresholded image is then used to detect the
black border of a marker with a contour following algorithm. If closed loops of contours
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are detected, a shape analysis of these contours is performed to identify square-like shapes.
Therefore the four corner points are extracted approximately by searching for points on
the contour with the furthest distance to a given other point. A more precise sub-pixel
position is computed by the intersection of lines fitted through the contour segments of
the marker edges.
A drawback with the binarization is that a fixed global threshold does not always result
in a clear image, from which the black border of a marker can be extracted. To solve
this problem, the threshold can be adapted to the brightness of a region of interest in the
video image [84]. In [78] a method to extract marker contours in scenes with non-uniform
lighting is presented, where a threshold is not applied on the image itself, but on the
gradient of a logarithmic contrast enhanced image. Thereby markers can be detected
both in very bright and very dark regions of an image with the same threshold.

3.2.2. Marker Identification

In [52] the interior of a marker consists of a black/white image template. If the four
corners of the marker border have been detected, the homography H can be estimated
that maps the image template coordinates m̃t on the camera image coordinates m̃′ by

m̃′ = H ∗ m̃t. (3.1)

A correlation with the template image and the corrected interior of the marker image is
performed and tested if the two images coincide. Because the detection must be rotation
invariant, the template image is rotated in 90ř steps and then also correlated with the
extracted marker image.
Instead of a template image, Fiala [28] used a black/white 6 × 6 pattern to describe
a unique marker ID. He uses digital coding theory with techniques of checksums and
forward error correction. Markers with such an identification code have a better inter-
marker confusion rate than ARToolkit.
A similar tracking library for PDAs and smartphones called ARToolKitPlus [114] was
presented by Wagner. He also uses a binary code similar to [28] for the detection of the
marker ID.
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4. Edge-Based Tracking Methods

Although fiducial marker can be detected and tracked reliably and augmented reality
applications can be created very easily with software packages like ARToolKit, in many
scenarios, especially in industrial setups, the preparation of a scene with artificial markers
can be very intricate or sometimes not possible at all. For scenarios like industrial main-
tenance or outdoor environments a tracking method should only rely on natural features
like contours, straight lines or distinct points. In recent years there has been a lot of
research interest in the area of markerless tracking. The markerless tracking methods
can be categorized in model-based methods and model-free methods. The model-based
methods rely on some 3D knowledge of the scene, whereas model-free methods only use
information for the camera pose estimation, which is gathered during the tracking. In
this chapter the model-based methods are described.
Model-based methods can either rely on a 3D line model or a polygonal model. With
a given 3D line model, edge-based tracking algorithms are often used. A textured 3D
model or simply a reference image can be used for texture-based tracking methods. A
given 3D polygonal model can also be used to estimate the depth of a detected feature
point. A benefit of using a model is that the tracking cannot accumulate drift, and the
camera pose is always estimated in the coordinate system of the given model. Placing
virtual augmentations in the real scene is therefore easy, because they can be set up in
the coordinate system of the reference model.
The very first tracking approaches all rely on edges, mostly because in contrast to texture-
based methods, they are computational less expensive, and are therefore able to run in
real-time on standard hardware of the nineteen-nineties. Edges are also very stable to a
wide variety of transformations, illumination changes and reflecting materials and are thus
a good choice for tracking industrial scenarios, where not many planar textures objects
exist. The edge-based tracking methods can be split into two categories: The first group
of approaches first extracts lines and then fits a given 3D model to the extracted lines.
The other methods do not explicitly extract line features, but search for image gradient
maxima along lines perpendicular to a regarded edge.

4.1. Explicit Line Extraction

The methods described in this section all rely on extracting line or contour features in an
image and then match these features to a given model to detect an object or estimate the
camera pose, with which the image was taken.
Lowe [63] presented an approach where not only the camera pose but additional param-
eters of the given 3D model can be estimated. To extract line features in the image, first
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a Laplacian filter is applied on a special hardware board and zero crossings are analyzed
to detect edges in the image. A Canny hysteresis thresholding is performed to create a
8-connected list of edge points. The resulting contour is split into straight line segments
by applying a scale invariant recursive subdivision algorithm. Probabilities of a match
between model edges and extracted lines are calculated according the their perpendicular
distance, relative orientation and model covariance. These probabilities are then used to
guide the search for a best match of image lines and model edges. When correspondences
between 2D lines and 3D lines are established, the camera pose and the model parameters
are updated by the result of a Gauss-Newton minimization of projected model edges and
image lines.
Gennery [32] also uses a Sobel-like hardware edge detector to compute an edge map. A
Kalman filter which models the position, orientation, linear velocity and angular velocity
of the camera is used to predict a projection of the 3D model in the image. Matches
between detected 2D lines and predicted projections of 3D lines are created by a search at
control points on an edge along the vertical or horizontal direction, whichever is closer to
the perpendicular. Detected measurements are weighted according to their quality, which
originates from the distance and the orientation deviation.
A generic 3D vehicle model parameterized by 12 length parameters was used in [57] to
detect and track moving vehicles in an image sequence. Line segments of detected image
edges and projected model lines are described by their position, length and orientation.
The mahalanobis distance between extracted segments and model segments is computed
to find a closest match. A Levenberg-Marquard minimization is used to estimate the
model parameters and the camera pose iteratively, until a stable solution is found.
A similar approach was presented by Ruf et. al. [94] to control a robot arm. Predictions
are made by joint angle measurements from the robot. In addition to the tracking an
on-line calibration of the kinematic chain is performed.
In [58] the extraction of line features is performed with a Hough transform. Predictions
and updates of the moving object’s state are also done with a Kalman filter. To speed
up the detection process, the extraction of lines in an image is limited to the uncertainty
region of the predicted model lines.
A solution for the simultaneous determination of the camera pose and line correspondence
was presented by David et. al. [20]. Their method relies on the soft assignment of corre-
spondences called SoftPOSIT, which was first presented in [21] for point correspondences.
The camera pose can here be determined not by non-linear minimization, but by solving
a linear system of equations.

4.2. Line Model Registration

One of the first model-based 3D tracking systems called RAPiD, was presented by Harris
[38, 37]. His system was the first to be able to run in real-time. The tracking method
is computationally very efficient, because the explicit line feature extraction is avoided,
and the image is only examined where edges are expected to be found. A Kalman filter,
which represents the six degrees of freedom of the parameters, i.e. the position and the
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Figure 4.1.: Principle of the orthogonal search for gradient maxima. At the control points
mi on the projected line a search for gradient maxima along the normal
direction ~ni is performed. If a point qi on a gradient image edge is found,
minimizing the distance to a parallel line through this point is used to estimate
the camera pose.

orientation of an object, is used to predict the new position of an object in the current
image. At control points along a projected edge in the image a local search for gradient
maxima along a one-dimensional search line is performed. The direction of the search
line is perpendicular to the projected direction of the regarded model edge. The RAPiD
system only searches in horizontal, vertical and diagonal directions for computational
efficiency. When the first gradient maxima which is bigger than a predefined threshold, is
found on the search line, this 2D point is regarded as a point of the edge on which the line
model shall be aligned. In Figure 4.1 the principle of the perpendicular search is pointed
out. With the measured differences between the image edges and projected model edges,
the camera pose is updated by minimizing these errors.

Many modern model-based tracking methods still rely on the principles of RAPiD, be-
cause the overall computation is much more efficient than the explicit extraction of line
segments. The model-based tracker developed in this thesis also uses the techniques of
one-dimensional search at control points to create correspondences between 2D edges and
3D model lines.

For each frame, the pixel values on the search line for a considered point are obtained
in two distinct steps. Similar as presented in [19], first the image is filtered at all pixel
positions on a perpendicular search line with a 2D anisotropic Gaussian mask, whose
major axis is axially parallel to the regarded edge. The pixel values are thereby smoothed
only in the direction parallel to the edge and the variation of the pixel values along the
search line is kept sharp. This filtering helps to make the search for gradient maxima
robust against image noise without blurring the intensity values along the search line. To
save computational costs, the Gaussian filter masks are precomputed for 180 angles. That
mask whose major axis is most parallel to the projected edge is always taken into account.
The smoothed pixel values on the search line are computed with subpixel accuracy. Then
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the gradient is computed along the search line. Instead of using large precomputed filter
masks as described in [19], we take advantage of the separability of the filter and first
do a one-dimensional Gaussian smoothing parallel to the projected edge and then use a
mono-dimensional convolution of the simple filter mask

(
−1 0 1

)
on the search line to

compute the gradient with the obtained smoothed pixel values.
Maxima of the gradient on the search line can now be used as 2D measurements for the
projected control points of a model edge. Either the largest gradient maximum within a
certain search space can be considered as the desired 2D feature, or the closest maximum
larger than a certain threshold.
Let Pp be a function which projects the points M i, which have been sampled along
the edge of the 3D line model into the 2D image points mi. The image points can be
calculated by

mi = Pp(M i), (4.1)

where p is the extrinsic camera parameter vector on which the projection function P
depends. If mi is the 2D position of a gradient maximum, the error to be minimized for
the camera pose estimation can be described as

e =
∑
i

∆(mi, qi), (4.2)

where ∆ is the distance function between the projected sample point mi and the line
through the edge feature point qi in the image. The line through qi is parallel to the
projected line of the line model. The distance function can be written as:

∆(mi, qi) = ((qi −mi) · (ni))2, (4.3)

where ni indicates the 2D normal vector of the projected line. With respect to the
aperture problem, here only the normal distance is regarded as a reprojection error of 3D
model lines and image edges.
The camera pose is estimated by

p = arg min
p

∑
i

∆(Pp(M i), qi). (4.4)

A Levenberg-Marquardt minimization as described in Section 2.3.3 is used to estimate
the extrinsic camera parameter vector p.

4.3. Robust Camera Pose Estimation

However, because of ambiguities and false measurements, minimizing only the distances
of control points to gradient maxima does not lead to a very stable pose estimation. False
measurements, which can originate from occlusion, shadows, textures or edge ambigui-
ties, have a high influence on the least-squares optimization result. Therefore a special
treatment of outliers is indispensable for a robust camera pose estimation.
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Armstrong and Zisserman [2] presented a RAPiD-like approach with a more robust pose
estimation. Their method uses RANSAC [29] to detect outlying control point measure-
ments. For a geometric primitive randomly chosen control points are evaluated and it
is tested, how many other control points would fit into the solution. This process is
repeated several times and the solution with the most support is finally adopted. All
outlying control points are deleted and the camera pose is only computed by minimizing
the reprojection error of the remaining control points.
As presented in [26] or [69] robust estimation of a camera pose can also be done by
using M-estimators. An iterative re-weighted least squares solution is used to decrease
the influence of outliers. Simon and Berger [102] present a robust method for tracking a
known model of three-dimensional curves. The Huber [44] estimator function is applied
on the error function of a local curve and outliers are rejected. In a second stage all
remaining correspondences are used to estimate the pose again together with a global
estimator function.
In our implementation [118] we use the Tukey estimator function [111] directly applied
on the projection error for a robust outlier detection. This estimator function is also used
in [113] for a robust camera pose estimation.
With the Tukey estimator function ρTuk the error to be minimized can be described by

e =
∑
i

ρTuk(∆(mi, qi)). (4.5)

Due to the nature of the Tukey estimator function as described in Section 2.3.4, outliers are
rejected directly during the minimization and have no influence on the pose estimation
result. Therefore the tracking system gets more robust against occlusion, shadows or
falsely detected edge points.

4.4. Multiple Hypothesis Tracking

In many edge-based tracking approaches [2, 26, 69, 19] the largest gradient maximum
within a certain search space is considered as the desired 2D feature. Another approach
would be to take the first maximum larger than a certain threshold as the corresponding
2D point. However, it is never guaranteed that a nearby gradient maximum corresponds
to the regarded edge.
A method to improve the tracking accuracy was presented by Berger et al. [10] In their
approach the perpendicular distance of the search space is decreased by one pixel after ev-
ery iteration step of the minimization process. The amount of outliers is thereby reduced,
since the possible distance to the next nearby edge is decreased during the iterations.
They showed that the minimization is less prone to local minima and false matches and
that their method benefits from an increase in convergence and accuracy.
Vacchetti et al. [112] use not only one image edge point as measurement, but allow
multiple hypotheses for potential edge-locations. During the orthogonal search not only
the largest gradient maximum is taken as a point on the image edge, but several gradient
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Figure 4.2.: Detection of multiple hypotheses of 2D points of a gradient edge. mi are
the control points on the projected line. The points qi,j are several detected
gradient maxima on the perpendicular search line. The gradient image is
underlaid to visualize image edges.

maxima larger than a threshold are used as detected 2D edge feature points. During
the minimization process, only the most probable hypothesis is taken into account for
the distance measurement. The authors showed that considering multiple hypotheses
prevents a wrong gradient maximum from being assigned to a control point on a line of
the 3D model.
Figure 4.2 illustrates the detection of several hypotheses on the perpendicular search line.
For every control pointmi several hypotheses of 2D points on an image edge are detected.
Correspondences between a 3D control point M i of a model line and multiple 2D edge
feature points qi,j are created. In [112] the estimator function ρ∗Tuk(∆1, ...,∆n) for multiple
error measurements is defined as

ρ∗Tuk(∆1, ...,∆n) = min
j
ρTuk(∆j), (4.6)

where n is the number of hypotheses and ∆j is the distance of a point m to the jth

hypothesis of a detected 2D point on an image edge. If qi,j is the jth hypothesis for the
ith sample point, the estimation error using multiple hypotheses can be computed by

e =
∑
i

ρ∗Tuk(∆(mi, qi,1), ...,∆(mi, qi,n)). (4.7)

As the estimator function ρTuk(∆) is non-decreasing for all ∆ ≥ 0, the error can also be
written as

e =
∑
i

ρTuk(min
j

∆(mi, qi,j)). (4.8)

Such a computation of the projection error e is more efficient, since the estimator function
ρTuk needs to be evaluated only once. Using this equation as the error function for the
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Figure 4.3.: Estimator function with multiple hypotheses at the positions ∆1 = −5, ∆2 =
−3 and ∆3 = 2. Only the hypothesis which is closest to the current position
of the control point is used as an error measure.

non-linear minimization guarantees that the hypothesis which has the closest distance to
the projected sample point is always used. Falsely detected edge points do not have a
negative influence as long as a hypothesis of the correct edge point also exists.
Figure 4.3 shows an example of the estimator function using multiple hypotheses. Only
the hypothesis is used as an error measure in every iteration step of the minimization.
Other hypotheses which are further away from the current estimate do not have any
influence.
As large displacements shall be tracked, the search space must not be too small. But the
more distinct gradient maxima are on a search line, the more hypotheses are collected, and
the more distances have to be calculated during the non-linear minimization process. The
computation costs have to be taken into account for a real-time performance, and therefore
in our implementation we use a fixed number of hypotheses for each sample point. Only
the g most distinct gradient maxima are considered as potential 2D feature points. In our
implementation we achieve good results with a maximum number of hypotheses of g = 5.

4.5. Visibility Test

A central question in model-based tracking is to determine all visible lines of the model
from a given camera position. A static line model can only be assumed, if all lines of a
model are visible in every camera frame. This can be the case if a wall in an office or the
front of a building is tracked. However, in many scenarios an object shall be tracked from
different viewing positions and many lines of the 3D model can be occluded by the object
itself. Trying to find correspondences for occluded model lines leads to false matches,
which disturbs the pose estimation. Therefore it is necessary to select only the control
points which are visible.
The RAPiD approach [37] requires a pre-processing of the models to determine visibility
of control points from various camera positions. Drummond [26] uses a technique, where
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Figure 4.4.: Illustration of the visibility test. Control points which do not affect the depth
buffer will not be used for tracking.

the visibility of control points is determined by rendering the model with the predicted
camera viewing parameters. The 3D model is represented by a binary space partition
tree, where each node consists of a plane and a list of edges. With an in-order-scan
of the tree and the aid of a stencil buffer the model is rendered with only the visible
edges for a given camera viewpoint. Correspondences between visible 3D control points
and 2D measurements of the closest image edge are then determined by performing a
perpendicular search at every projected control point.

To create a representation of a 3D model in such a binary space partitioning tree is,
however, a complex preprocessing step. Nowadays polygonal surface models, which were
created in the design process, are often available. These models can be used to carry out
a visibility test for 3D edges. A possible solution to perform a visibility test is to carry
out an intersection test between a ray starting from the 3D camera position and passing
through the projected control point in the image plane and a 3D model of the tracked
object. If the intersection point is not close to the 3D control point, this point is declared
not visible. The main disadvantage of this method is that it is only fast enough for a
small number of visibility tests. With complex 3D models and several hundred sample
points, this intersection test becomes rapidly unsuitable for real-time tracking.

A much faster approach to carry out a visibility test is to render the scene on the GPU
of modern graphics hardware and to test if control points on the 3D model are displayed
or not. Testing the color of a pixel in the frame buffer with glReadPixels is rather slow.
A much better solution is to use the GL extension OCCLUSION_TEST_HP. This extension
tests, if drawing a set of geometries modifies the depth buffer. If the depth buffer is not
modified, the drawn geometry is not visible. In our implementation, a VRML model of
the tracked object is rendered off-screen with regard to the current camera pose into a
p-buffer. Every sample point on the 3D line model is then drawn into the same p-buffer
and the occlusion test is carried out. In order to visualize the result, the p-buffer can
be copied into a texture and the texture can be drawn into a frame buffer. Figure 4.4
shows an example of a VRML model with all sample points of the line model drawn. The
perpendicular search for gradient maxima is performed for visible sample points only. All
other points are ignored.
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The main advantage of this method is that it is really fast, since the visibility test is
computed in hardware.

4.6. Texture-Based Edge Tracking

An edge of an object or an object boundary is often assumed to be observed as a high
gradient in the image. Therefore many line-based tracking methods rely on interpreting
image gradients as object edges. However, some edges especially of textured objects do
not result in high intensity changes in the image, and gradient-based methods are then
not able to detect the edge of an object.

To overcome this problem, Shahrokni et al. [99] presented a method where object bound-
aries in the image are detected with texture segmentation techniques. Instead of using
edge gradients to detect a contour in the image, they propose an algorithm based on a
Markov Model to detect the transition of one texture to another on the search line. It is
shown that with this texture segmentation method the tracking of textured materials in
cluttered backgrounds produces more stable results than using gradients.

Kemp et al. [54] use a similar method to find points of texture change on a one-dimensional
search line. However, they consider multiple hypotheses of texture change points as
measurements and demonstrate the improvements by this technique.

Reitmayr [89, 88] uses another method to detect edges by their textured appearance. A
given scene is rendered with the predicted camera pose and contours are extracted in the
rendered image. At control points on the contours a line of pixel intensities is extracted
on a line orthogonal to the current contour direction. In the current video frame a one-
dimensional search for these edge points is performed by applying a normalized cross
correlation along the search line. With the aid of a rendered model it is always possible
to extract features in the rendered image with the correct appearance and scale. The
correlation between two pixel intensity lines therefore produces good detection results. A
drawback of this method is the fact that a photorealistic model must be given.

If no textured model is given, correlation-based techniques can be nevertheless useful for
more accurate tracking results. In our model-based tracking system [120] we use the
appearance of an edge in a previous frame to support finding the correct edge point in
the current frame. This can be regarded as an prediction step.

An optical flow-based prediction for line segment matching is also presented by Chiba
and Kanade [16]. They use a hierarchical optical flow estimation technique to predict
the motion of line segments. Whereas they compute the optical flow in two dimensions,
we only perform a one-dimensional search on a line perpendicular to the current edge.
Furthermore, we do not only predict the 2D position of lines but also the camera pose and
the 3D position of control points on an edge, which will be helpful for further processing,
like testing the visibility.
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(a) (b)

Figure 4.5.: Prediction of the control points. (a) After a successful tracking step a one-
dimensional line of pixel intensities is extracted. (b) In the proximate frame
the edge point is detected by a normalized cross correlation along the search
line.

4.7. Correlation-Based Camera Pose Prediction

If a line model is given and used to track an object by a gradient-based approach, the
projected lines must always be in proximity of the image edges, because the search method
described in Section 4.2 is only a local search method. The convergence towards local
minima can be avoided if the initial camera pose used for the minimization is a very close
approximation to the real camera pose. Therefore a prediction of the camera pose from
frame to frame is very beneficial for the convergence behavior.

In [120] we presented a method where the camera pose is predicted by using the appearance
of an edge. As correspondences between 3D contour points and 2D image points exist, if
the previous frame was tracked successfully, these correspondences can be used again to
make a prediction of the camera pose in the current frame. Therefore the control points
of the 3D edges are projected into the current image with the camera pose of the previous
frame. A one-dimensional perpendicular search is performed, but instead of looking for
gradient maxima, the point which is most similar to the 2D point in the last frame is
regarded as the wanted 2D point. So if the tracking in the previous frame was successful,
a one-dimensional window on every control point in the direction of the contour normal
is extracted out of the previous image and a normalized cross correlation is performed
along the one-dimensional scan line in the current image. For every 3D control point the
point with the highest correlation result is regarded as the corresponding 2D image point.
Figure 4.5 illustrates this process of predicting control points.

Because of shadows or bad lighting conditions it can happen that a projected control point
is located in a very homogeneous area of the image. In such cases the correlation window
will not contain distinct structures. Therefore we first test for all extracted correlation
windows, if strong enough gradients exist, and use only those correspondences for the
pose estimation.

The calculation of the camera pose is done by a Levenberg-Marquard minimization as
described in Section 2.3.3. Only one hypothesis is used as a measurement, because ambi-
guities of falsely detected points are very rare.
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The one-dimensional correlation technique to detect edge points always needs an exact
representation of the visual appearance of a model edge. This can be achieved by rendering
a photorealistic model or by extracting the appearance of an edge feature directly in an
image video image. Extraction and detection of a correlation window, however, only
works if the appearance is very similar. A whole sequence would be hard to track with
such a method, because the appearance of an edge changes dramatically if the viewing
direction, the scale and or illumination differs too much. Therefore a purely correlation-
based detection of edge points is mostly suitable for a frame-to-frame prediction.

4.8. Validating the Tracking Success

After the pose estimation by minimizing the projection error with the Levenberg-Mar-
quardt method, it is desirable to know, if the tracking step was successful or if the tracking
failed. A very straightforward method is to check if the average projection error is smaller
than a given threshold. Thereby outliers have to be considered and only the error inliers
have to be analyzed. This method gives some rough estimate if the minimization of the
projection error converges.
To decide if the tracking was successful or the alignment of a line model onto an image
failed, we analyze the image gradient at the position of control points after the pose
estimation. In an extra step all the control points which were used for the pose estimation
are projected into the image again with the newly estimated pose, and the image gradient
is analyzed at these 2D positions. One method to verify that a control point lies on
an image edge is to check if the gradient intensity at that position is big enough that
it can be regarded as an image edge. Another value which can be used to determine
the tracking success is the direction of the image gradient. If the line direction of a
projected control point is similar to the direction of the image gradient at the projected
2D position, this control point can be regarded as aligned correctly. As a measure for the
tracking success the average aberration between image gradient directions and direction
of the corresponding projected lines can be taken into account. A mixture of analyzing
the gradient intensity and the gradient direction also produces good results in validating
the tracking success.
If a textured appearance of a control point is given for a line-based tracking as described
in Section 4.6, these one-dimensional lines of pixel intensities can also be used to validate
the pose estimation. By analyzing the sum of square differences of the pixel intensities,
it can be decided if the tracking step of a single control point was successful of if the
tracking failed. For illumination invariance a simple lighting compensation is performed
before the intensity comparison.
Any of these validation methods can be used for a semi-automatic model-based initializa-
tion. In [12] we used such a method to initialize a feature point based tracking system. A
line model is projected with given camera parameters into the image, and the user has to
move the camera, so that the virtual line models get close to the object in the image. If
the image edges are close enough to the projected model lines, so that they lie inside the
search space of the control points, the pose can be correctly estimated. If the validation
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step proclaims a tracking success, the tracking system is regarded as initialized with the
current camera pose.

4.9. Adapting the Visual Appearance

If the appearance of an edge is not given, it can be still useful to take the visual properties
of an edge into account for tracking lines or contours.
However, the appearance of an edge changes, if an object is viewed from different viewing
directions and different distances. Figure 4.6 demonstrates the necessity of handling
multiple appearances of an edge. From different viewing positions or by the rotation of
the object itself, the perpendicular lines of pixel intensities at the same control point look
very different.
Tsin et al. [110] presented an online learning approach of intensity patterns to establish
correct correspondences between points on the model edges and edge pixels in an image.
They borrowed some ideas from keypoint recognition techniques with randomized trees
[60]. In their system small segments of intensity patterns are used as descriptors. These
descriptors are taken to train a randomized forest, which is then used to find the correct
edge pixels on a search line by classification.
In [118] we modeled the multiple appearances of an edge with a mixture of Gaussians,
which represent the pixel intensities of a line of an edge control point. Considering the
visual edge properties of only the last frame will not lead to good detection results, since
the appearance of an edge can change when the camera or the object is moved. A possible
idea is to apply a temporal low pass filter on the edge pixel intensities, so that their state of
appearance becomes more stable over time. Unfortunately, the edge of an object does not
necessarily look the same in every frame of an image sequence. The visual perspective, the
lighting conditions and the background are many factors that can cause the appearance of
an object edge to change considerably. It is therefore necessary to describe the properties
of an edge with a multi-appearance model.
Condensation [46] is an effective but costly method to maintain a probability density over
time. As the number of control points to be tracked is rather high, the condensation
algorithm will be computationally very costly and it is therefore not suitable for real-
time tracking. A compromise between accuracy and complexity is to use a mixture of
Gaussians with a fixed number of distributions.
We used the ideas of Stauffer and Grimson [104], who used a Gaussian mixture model to
represent a background model with multiple appearances. We did not apply this method
on a background image, but on every intensity pattern of an edge control point. Several
hypotheses of an edge are maintained by this filter, and the most probable one is always
used for detection.
An edge’s visual property is represented by a multidimensional Gaussian distribution. In
our implementation we simply used the pixel values of the correlation window as variables
of the Gaussian. The dimension m of the distribution is therefore equal to the size of the
correlation window.
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Figure 4.6.: Necessity of using multiple visual appearances. In all images the extracted
line of pixel intensities looks different.

A Gaussian distribution consists of a mean µ, a variance σ2 and a weight ω. The weight
ω is a measure which represents what portion of data from previous frames is taken into
account by this Gaussian. To avoid a costly matrix inversion, variances are calculated
separately for every dimension of the Gaussian distribution. Edge property values are
therefore treated independently from each other.
The probability of observing the current edge feature x at time t is

P (xt) =
m∑
i=1

ωi,t ·G(xt, µi,t, σi,t), (4.9)

where G is the Gaussian probability density function.
To update the mixture model with a current value, every measured edge property xt is
checked against the existing m Gaussian distributions. A match is defined if the mea-
surement is within 3 standard deviations of the distribution. If none of the distributions
is a match to the current measurement, the mean of the least probable distribution is
replaced by the current measurement. The variance σ2 of this distribution is initialized
with a high value, the weight ω is set to a low one. The Gaussian with the highest ω

σ
is

interpreted as the most probable distribution.
The weights of the m distributions at time t can be computed by

ωi,t = (1− α)ωi,t−1 + αMi,t, (4.10)

where α is the learning rate and Mi,t is 1 for the matched distribution and 0 otherwise.
The parameters for the matched distribution are updated as follows:

µt = (1− β)µt−1 + βxt (4.11)
σ2
t = (1− β)σ2

t−1 + β(xt − µt)2, (4.12)
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Algorithm 1 Adaptive line tracking algorithm
1: for all lines l of the 3D line model do
2: determine the number of n control points depending on the length of the projected

line
3: carry out the visibility test for control sample points and store the visible points in

the set Vl
4: for all points Mi in Vl do
5: project 3D point Mi it into the image plane
6: search for gradient maxima along the edge normal and consider every maximum

larger than a certain threshold as an hypothesis for an edge point
7: for all possible edge points do
8: calculate the similarity with the most probable distribution of the adapted edge

properties
9: end for

10: end for
11: end for
12: for all points of V do
13: take only the hypothesis with the highest similarity as match and calculate the

camera pose by non-linear minimization
14: end for
15: for all points of V do
16: append the g most significant gradient maxima to the list of possible hypotheses
17: apply the minimization again with the estimated pose of the previous step as initial

guess
18: end for
19: for all points of V do
20: update that appearance model which is most similar to the current control point
21: end for

where β = c · α is a second learn rate depending on the learn rate α. The learn rate α is
controlled by the accuracy of the pose estimation. Good estimates set the learn rate to a
higher value, whereas unconfident ones result in an update step with a smaller learn rate.

A significant advantage of this method is that a dramatic visual change of an object
edge in the image, e.g. when viewing an object from a totally different direction, does
not destroy the existing state of appearance. The original edge property remains in the
mixture of Gaussians. When the camera is turned back to an earlier position, the previous
visual properties of an edge still exist with the same µ and σ2 but with a lower ω, and will
quickly become the most probable distribution again. Another benefit is that occlusions
do not disturb the adapted edge properties too much, since it is likely that different
looking edges are assigned to different distributions.

To clarify the adaptive line tracking algorithm with multiple hypotheses the high-level
pseudocode for processing one frame of an image sequence is pointed out in Algorithm 1.

40



4.10. Selection of Control Points

4.10. Selection of Control Points

The number of control points has a significant influence on the robustness and the runtime
of the tracking system. The more control points are used, the more stable the pose
estimation result gets. However, every control causes additional computational costs
and decreases the performance of the tracking system. Selecting a suitable number of
control points can therefore be regarded as a tradeoff between robustness and real-time
performance. In addition the correspondences between 3D control points and image edge
points should be distributed evenly over the current image to result in a robust pose
estimation. If fixed sample points on the 3D line model are used, the density of their
projection in the image is not uniformly distributed. The length of the projected lines
depends on the perspective of the camera and on the distance to the considered object.
The number of sample points should therefore depend on the length of the projected line
and not on its length on the 3D model. If a tracking method only detects gradient maxima
on a search line as described in Section 4.2, uniformly distributed control points can be
created on the projected line. We achieved good result by creating a control point after
every 10th pixel on the projected line.
However, if an adaptive approach as in Section 4.9 is used, the edge properties of a control
point must always belong to the same point of the tracked object in order to justify the
adaptive appearance filter algorithm. To overcome this problem we computed control
points along the line of the 3D model and projected only a subset of these control points
into the current image. The size of the subset of projected control points is determined
by the length of the projected line.
As the control points shall be evenly distributed, they are numbered on the 3D line in a
tree-like recursive way as illustrated in Figure 4.7.
The first n control points are then used to calculate 2D/3D-correspondences, where the
number n can be computed by

n = length of the projected line
control point density . (4.13)

With such a numbering it can be guaranteed that the selected control points are always
evenly distributed along the projected line.
Figure 4.8 shows two images of the same object with different distances of the camera to
the object, and therefore with different numbers of control points.

Figure 4.7.: The recursive numbering of the control points causes that the subset of the
first n points is more evenly distributed.
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(a) (b)

Figure 4.8.: Two images of the same tracked object showing that the control points are
always evenly distributed. The number of control points depends on the
length of the projected line.

4.11. Evaluation of the Line Tracking Methods

Image sequences of several scenes were recorded and used as input for different tracking
methods. The camera pose was initialized either manually or by detecting markers. In
the first experiment, an object in a static camera sequence of 949 frames was tracked with
different approaches: single hypothesis (Ma), multiple hypotheses (Mb), single hypothesis
with the adaptive method (Mc), and finally multiple hypotheses with the adaptive method
(Md) as described in the algorithm of Section 4.9.

If method Ma is used, many sample points are assigned to false edges. False correspon-
dences lead to an inexact pose estimate and eventually to the loss of the track. Using
method Mb significantly improved the tracking results, as the line model sticks much
better on the object in the image sequences. However, when fast motion occurs, the
estimated pose is always several frames behind the real camera pose. It also sometimes
happens that the minimization process is stuck in a local minimum, thus not leading to
the desired result. Method Mc, that uses only the most likely hypotheses with regard
to the previous measurements, produces better results during large movements, but still
has problems if other edges are near the line to be tracked. False correspondences lead
to a bad adaptation of the edge properties and quickly cause the edge filter to learn
wrong properties of the edge. If method Md is applied, the problems described above
are avoided. The camera pose is estimated correctly during the whole sequence. Taking
into account multiple hypotheses makes the edge filter much more likely to be updated
with the properties of the correct edge. Therefore, the adapted state is more accurate
and leads to a better result in finding the most probable gradient maximum. Figure 4.9
illustrates the results of the four tracking methods described above.

Since the computational complexity is higher for Md, it is slightly slower than the other
ones. On a 2.8 GHz Pentium IV, it needs about 60 milliseconds for an iteration step with
an image size of 640x480 pixels, whereas Mb takes about 50 milliseconds on average for
the image sequence.
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(a) (b)

(c) (d)

Figure 4.9.: Results of the different tracking methods: (a) the single hypothesis method
loses the track at frame 451, (b) the multiple hypotheses method fails at frame
428, (c) the adaptive method fails at frame 462, (d) the adaptive approach
with multiple hypotheses stays on track during the whole sequence.

In another experiment, the indoor environment of an office building was tracked with
both Mc and Md (see Figure 4.10). Again, it can be observed that fast movements
are handled much better by the adaptive algorithm. With the non-adaptive approach,
tracking sometimes fails, because too many wrong 2D/3D-correspondences are used for
the pose estimation.
Figure 4.13 shows the result of our adaptive line tracking algorithm in an industrial
scenario. The camera path can be tracked successfully throughout the sequence as long
as enough parts of the object are visible in the camera image, where lines in the manually
created line model are available. Only when the camera turns away from the scene, the
tracking fails.
To measure the run-time as a function of the number of sample points, another object was
tracked from different distances. As seen in Section 4.10, the number of sample points
depends on the length of the projected lines, and therefore on the distance between the
camera and the tracked object. This means that an iteration step of the tracker needs
more computational time when the object is close to the camera and less time when it is
further away. Figure 4.11 shows an object tracked from different distances and a scatter
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(a) (b)

Figure 4.10.: Tracking the office sequence with the non-adaptive (a) and the adaptive
method (b).

plot illustrating the run-time of an iteration step versus the number of used sample points.
The sample point density was chosen so that the distance between two adjacent search
lines was at least 10 pixels. To increase the frame rate of the tracking, the sample point
density can be decreased. However, if the sample point density is too small, the estimated
6 degrees of freedom of the camera start jittering. The tracking algorithm needs about
50 milliseconds on average for an iteration step, which means that it can run at a frame
rate of about 20Hz.
If some parts of an object are occluded, it is still possible to estimate the camera pose
(see Figure 4.12). Due to the robustness towards outliers of the Tukey estimator function,
the estimated pose is correct even with a certain amount of outliers. If a higher occlusion
proportion is expected, the Tukey constant c of equation (2.33) can be set to a lower
value. The Tukey constant shall not be too small though, otherwise tracking results
become unstable and start jittering. If there is very little or no occlusion, the Tukey
constant can be set to a higher value.
The adaptive approach, which tries to maintain the visual appearance of a line control
point, improved the tracking robustness by using only the most probable edge for every
sample point during the first minimization step, so that the pose estimation does not get
stuck in local minima. After the first minimization, the resulting 6 degrees of freedom lie
around the desired minimum of the error function. The way through many local minima
caused by multiple hypotheses is thereby avoided. A uniform distribution of sample points
leads to a balanced set of 2D/3D correspondences and keeps the computation costs low.
Finally, using multiple hypotheses helps to find the correct edge out of many possible
gradient maxima in the image and leads to more accurate measurements that are used
for learning the visual properties of an edge.
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Figure 4.11.: Scatter plot of the run-time versus the number of sample points used for
tracking.

Figure 4.12.: Tracking an object with occlusion. The markers are only used for
initialization.
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Figure 4.13.: Tracking the engine hood of a car with the adaptive line tracking method.
The line model is manually created.
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5. Line Tracking Based Analysis by
Synthesis Techniques

Three-dimensional line models which are needed for a line-based tracking system as de-
scribed in Section 4 are usually never available. The CAD models which are created
in the industrial engineering process do not consist only of those lines, which are useful
for tracking, but of much very detailed geometry, which does not have any properties in
common with object edges seen in a video image. Polygonal models of industrial objects
often exist and can be of advantage if an object shall be detected or tracked in an image
sequence. The challenge is to find a good connection between the geometric data of an
object and its visual appearance in an image.
Some existing line-based tracking systems used rendering techniques to obtain a set of
control points for a given camera viewing direction. Drummond and Cipolla [26] present
an approach that is based on identifying edges in a rendered CAD model. They use a
model represented by a binary space partitioning tree to render object edges with correct
visibility.
A method of extracting line features out of a textured scene is described by Reitmayr
[89]. He extracts contours in a rendered image and uses the texture information at control
points to find these edges in a video image.
Roston [91] uses another interesting approach for generating contours of silhouette edges
of an object on the fly. He models the objects to be tracked with implicit surfaces and
calculates the apparent contours for a given camera viewing position analytically. This
method can be fast enough for real-time tracking if the objects have a limited complexity.
For our purpose this method is, however, unfeasible, because the geometry of industrial
objects is never represented by implicit surfaces, and the creation of such implicit shapes
would be a very tough preprocessing step.
An offline generation of a contour model was presented in [86]. Several rendered images
with different lighting conditions and camera viewing directions are used to create 3D
clouds of contour points. Connected 3D contours are then created with the Euclidean
Minimum Spanning Tree algorithm. This method requires a huge amount of computation
time of several hours and the quality of resulting contour models is rather poor.
In this thesis we present a model-based approach which generates a 3D line model out of
a surface model of an object and uses this line model to track the object in the image. For
the line model generation a polygonal model of the object is rendered with a predicted
camera pose and contours are extracted by analyzing discontinuities of the z-buffer and
the normal buffer or by detecting edges in the frame buffer. The generated 3D line model
is projected into the current image and the extrinsic camera parameters are estimated
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by minimizing the error between the projected lines and strong maxima of the image
gradient.

5.1. Line Model Generation

In order to ensure the robustness and accuracy of the line tracking algorithm, the set
of lines of the model should be congruent as best as possible with the set of image line
features or high gradient points. Model lines abundant in the image as well as cluttering
image line features not contained in the model may degrade the performance of the tracker.
However, it is a difficult task to obtain a perfect congruency, as many high gradient points
in the image arise from shadows, reflections of smooth surfaces or changes in surface color.
Therefore, the main objective of the line model generation step should be to acquire many
good candidates of lines that are most likely to be visible in the image, as well, while
preserving an affordable amount of computational costs.
In many line-based tracking systems [118, 92] the 3D model used for tracking is made up
of geometric three-dimensional lines. The line model has to be provided once in advance
and usually has to be constructed manually. It remains basically unmodified throughout
the whole tracking procedure. By performing a visibility test under the current viewing
direction, lines hidden by the object itself are ignored. In contrast thereto our approach
uses a polygonal surface model stored in a VRML file. Often such models are already at
hand and can be provided by our partners as their creation is part of the manufacturers’
engineering process of the object to be tracked. Our tracking algorithm performs an
analysis of this surface model during each iteration step in order to extract a reliable,
view-dependent line model. The computational time is kept to a minimum by making
use of rendering standard graphics hardware.
One possible approach for the line model generation is to render the scene and to ex-
tract 2D-line features from the synthetic image in just the same manner as for the line
feature extraction of the real images of the camera. We then can include model lines
corresponding to high gradient points in the images resulting from changes in color or
intensity. However, when working on tracking systems for industrial augmented reality
applications, we experienced that the material properties of the models provided, such as
textures or colors, are rarely modeled correctly or do not exist at all. Thus they usually
do not contain valuable information which can be used for the line model generation.
Furthermore, it is essential to know the illumination conditions exactly or at least to have
an accurate estimation of them.
In contrast thereto, one approach for the real-time line model generation presented here
is based only on the geometric properties of the object. It is related to the silhouette
generation of polygonal models for the purpose of non-photorealistic rendering: Isenberg
et. al. [47] describe methods which create silhouettes of a model in both object space and
image space. Object space methods analyze the normal vectors of triangles in relation
to the camera viewing direction. Image space methods render the scene and analyze
the output of the rendered images. Whereas object space methods can produce curves
with much higher precision, they come along with higher computational costs. Image
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space methods are computational less expensive and can be implemented by using pixel
shading hardware as presented in [76]. Hybrid algorithms which combine the advantages
of both image space and object space methods exist [82]. As real-time performance is an
important criterion in our application we use only an image space method as detailed in
[81].
By focusing solely on the geometric properties of the models, usually more reliable line
models can be obtained. A common assumption is that model edges normally are also
visible in the image as high gradient points, since adjacent surfaces with different orienta-
tion usually have a different brightness under illumination. Building upon this basic idea
our algorithm creates a view-dependent line model as follows:
First the surface model is rendered with the predicted camera pose. To keep sampling
artefacts as low as possible, the near and far clipping planes are adjusted to exactly
match the bounding volume of the object. In a second step an edge map is created
by analyzing discontinuities in the z-buffer or normal-buffer. Two types of edges are
of interest: step edges (also called C0 edges), which correspond to a surface partially
occluded by another one, and crease edges (C1) as the locations of two adjacent surfaces
with different orientation. For the purpose of their detection we present and discuss
several filtering methods detailed in the Subsections 5.1.1 and 5.1.2. Another method for
extraction edges out of the frame-buffer is described in section 5.1.3.
The last step consists of extracting the 3D-lines of the edge map by means of a Canny-like
edge extraction algorithm. A 3D contour in the world coordinate system is computed by
un-projecting every pixel in the edge map with the information stored in the z-buffer
and applying an inverse transformation of the current camera rotation and translation
parameters. For the visualization a recursive subdividing algorithm splits the 3D contours
into straight line segments. The tracking approach described in Section 4 needs only
control points and the direction of the 3D contour at the control points. During the
contour following of the edges in the edge map these control points are generated directly
and used as input later on for the registration step.

5.1.1. Edge Map Generation using the Depth Buffer

Discontinuities in a z-buffer image are changes in depth and can be regarded as a point
on an edge of an object according to the given camera viewing direction. Having rendered
the surface model with the predicted camera pose, a second order differential operator
is applied on the z-buffer image to generate an edge image. As one approach in our
implementation we use the following simple 2D Laplacian filter mask in order to find
points belonging to silhouette edges:

0 -1 0
-1 4 -1
0 -1 0

For silhouette edges the Laplace operator returns a high absolute value both on the object
border and on the neighboring pixel in the background. When the value of a pixel in the
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(a) (b) (c) (d)

Figure 5.1.: 3D Line extraction using discrepancies in the z-buffer. (a) shows a z-buffer
image. (b) illustrates an edge image obtained by a Laplacian Filter. (c) and
(d) show the generated 3D line model of different views.

Laplace image is positive, the regarded pixel is located on that side of an edge which is
further in the depth. When the Laplace filter results in a negative value, the regarded
pixel lies on that side of an edge which is closer to the near plane. Since we are interested
in the 3D coordinates of pixels, which are located on the edge of an object and not on a
background surface or the far plane, we only consider pixels as a silhouette edge which have
a negative response of the Laplacian filter. Therefore, it can be guaranteed that silhouette
pixels are actually located on the rendered object. At strong depth discontinuities the
Laplace filter produces only a one pixel thick contour, which is very desirable for the
contour following later on.

For the purpose of the line model generation, other edge detection filters like the Sobel
filter, as suggested in [95], do not lead to good results, since C0 discontinuities are more
than one pixel thick and it cannot be distinguished on which side of a silhouette a pixel is
located. Another problem with first order differential operators like the Sobel filter arises
due to the fact that pixels on a very steep surface are all regarded as edge pixels.

Figure 5.1 illustrates z-buffer images of some objects, the resulting edge maps and the
generated line model from two different viewing positions. Here the threshold applied on
the Laplace filtered z-buffer image is chosen, so that not only the silhouette edges but
also the crease edges are generated. If objects are built by cube-like geometric primitives,
then crease edges can be generated if the Laplace threshold is set to a very low value.
As finding a good threshold depends on many factors like the distance of the object to
the camera or the distance between the near and the far plane, it is almost impossible to
produce a clear edge map of crease edges for different models or different camera viewing
positions with a fixed threshold. Therefore the z-buffer method is mostly suitable for
finding silhouette edges.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2.: Edge map generation: (a) shows a rendered object and (b) the depth buffer
of that object. (c) illustrates the silhouette edges. The normal map is shown
in (d) and the edges of the normal map in (e). The combined edge image can
be seen in (f).

5.1.2. Edge Map Generation using the Normal Buffer

If the threshold which is applied on the Laplacian filtered depth buffer image is small
enough, it is also possible to detect crease edges with the method described in the previous
section. In [12] only the depth buffer was used to generate an edge map of both crease and
silhouette edges. However, due to the nonlinear nature of the z-buffer, such a threshold is
not easy to define, and the quality of the edge image soon gets very poor, if the threshold
is chosen too small. Another disadvantage of only using the z-buffer is that for crease
edges the value returned by the Laplace operator also depends on the viewing angle of
the camera.

A far more promising approach is the additional extraction of edges of the normal map as
described in [47]. A normal map is a buffer which instead of the (r, g, b) color components
consists of the (x, y, z) coordinates of the surface normal vectors at each pixel. In [41]
a method is described, which creates a normal map by placing several light sources of
different color on the axes of the camera coordinate system. Nowadays graphics hardware
offers more direct ways to create a normal map. In our implementation we simply use
a fragment shader which transforms the surface normal n into the camera coordinate
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system and puts it into the range between 0 and 1 by( r
g
b

)
= 1

2
(
MNn +

( 1
1
1

))
, (5.1)

where MN is the 3 × 3 matrix which transforms the surface normal from the world co-
ordinate system into the camera coordinate system. To extract edges out of the normal
map, simply for every pixel the angle between neighboring normal vectors is calculated
and tested, if it exceeds a predefined threshold. Thereby an edge image is created which
represents changes in surface orientation.
Figure 5.2(d) and (e) show a normal map of a rendered scene and the resulting crease
edge image. The z-buffer and the edges resulting by a Laplacian filtering are also shown
in (b) and (c). A combined edge map which includes both silhouette and crease edges
can bee seen in Figure 5.2(f).
The whole process of creating an edge image is done on the graphics hardware with two
rendering passes. In the first pass the scene is rendered into a texture, whereas the normal
vectors are stored in the (r, g, b) color components and the depth is stored in the alpha
channel of the texture. In the second pass a fragment shader creates the combined edge
map and stores the edge image in only one color channel. The depth information is
thereby stored in the intensity value of that pixel. Only one color channel has to be read
back from the graphics hardware into the main memory, which is another performance
advantage compared to an edge extraction on the CPU [89], where all four channels would
have to be read back, if the normal map was used as well.

5.1.3. Edge Map Generation using the Frame Buffer

In high detailed scenes with lots of triangles the edge map obtained by geometrical prop-
erties like the depth or the surface orientation gets very fuzzy and the resulting contours
are not very distinct. If material properties of an object exist or the scene is textured,
edges can also be extracted out of the frame-buffer. Edges in an image are then assumed
to represent material boundaries.
In order to make the edge map generation independent from any light source and the
viewing direction, the scene is rendered only with ambient lighting. The gradient of the
frame buffer is computed with the simple mask

[
−1 0 1

]
in the x- and y-directions. The

edge extraction with a Sobel filter produces thicker lines, which is not beneficial, since
the contour following works best with a one pixel thick edge. Smoothing in any direction
like the Sobel filter does, is not necessary, since the rendered image does not contain any
noise.
Again the edge image is created in two rendering passes. In the first pass the scene is
rendered with ambient lighting into a texture and the z-buffer value is stored in the alpha
channel. In the second pass the image gradient of the (r, g, b) image is calculated. Pixels
which are on the far side of a silhouette edge are detected as described in Section 5.1.1
and suppressed in the edge image. Thereby it can be guaranteed that all edge pixel are
located on the object, which is necessary for getting the correct 3D coordinates. The
depth value of all edge pixels is stored in only one color channel, which is read back for
further processing. Figure 5.3 shows the generation of material boundary edges.
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(a) (b)

(c) (d)

Figure 5.3.: Generation of an edge image with material properties. The image is rendered
with only ambient lighting (a) and edges are extracted with a first order
differential operator (b). The 21

2D edge image which is read back from the
GPU (d) consists of the depth values of the z-buffer.

5.2. Experimental Evaluation

In Algorithm 2 the method we used for evaluating the line model generation is described.
A prediction step as described in Section 4.7 was used to make the tracking system more
capable of handling large camera movements. The first camera pose is defined by the
user. It must be close to the real camera pose, so that the registration of the generated
line model can be successful. The generation step produces a line model which is only
used for visualization and a set of 3D control points, which are used for tracking. If the
registration step fails, no camera pose prediction is performed in the proximate frame. All
images are undistorted with given radial distortion parameters, before they are processed
by the algorithm.

5.2.1. Evaluation of Synthetic Image Sequences

All the tests are done on a Pentium 4 with 2.8GHz and a ATI Radeon 9700Pro graphic
card. To evaluate the robustness and the accuracy, the algorithm is tested on a synthetic
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5. Line Tracking Based Analysis by Synthesis Techniques

Algorithm 2 Tracking with generated line models
1: if the previous frame was tracked successfully then
2: Create correspondences between the 3D control points of the last generated model,

and the 2D points obtained by the correlation along the line perpendicular to the
regarded edge.

3: Predict camera pose by minimizing the re-projection error of the correspondences.
4: end if
5: Generate a new line model to the predicted camera pose.
6: Apply the line model registration.
7: if the registration was successful then
8: Extract a one-dimensional window of pixel intensities at every control point.
9: end if

image sequence first. A virtual model of a toy car is rendered with a predefined camera
path, where the camera moves half around the model and back again. The images, which
are rendered with a resolution of 512 × 512 pixels, and the very first camera pose are
used as input for the tracking method. Only z-buffer edges are regarded for this test for
the line model generation. After every processed frame the 6 degrees of freedom of the
estimated camera pose are stored and compared with the ground truth data. In Figure
5.4 these values are plotted separately for every parameter. It can be observed that there
is always a small error, but the method is capable of tracking the camera path throughout
the whole synthetically generated sequence correctly.

The difference of the values between the real and the estimated camera pose are shown
in Figure 5.5. Euler angles in radians are used to represent the three parameters of the
camera rotation.

In Table 5.1 the mean error and the standard deviation of every component of the extrinsic
camera parameters can be seen. As for most parameters the error alternates around 0,
the mean of the z-component of the translation error is clearly above 0. This means that
the estimated camera pose is always further away or that the tracked object in the image
seems smaller than it really is. The reason for this fact is that the extracted silhouette
edges are always on the object and the gradient edges in the image have their peak between
the object border and the background pixel. Therefore the extracted silhouette edges have
an error of half a pixel which mostly affects the z-component of the camera translation.
By analyzing the standard deviations it can be seen that the uncertainty of the camera

parameter mean error standard deviation
x −0.0148 0.1182
y −0.0462 0.1068
z 0.5608 0.3335
α 0.0003 0.0259
β −0.0022 0.0163
γ −0.0031 0.0229

Table 5.1.: Average error and standard deviation of the extrinsic camera parameters.
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Figure 5.4.: Comparison of the estimated pose and the ground truth of the camera path.

z-direction is significantly larger than the other dimensions. The mean rotation error in
radians is 0.0217, which is an average rotation error of 1.242 degrees.
The computational costs of the individual steps are shown in Table 5.2. Retrieving the
depth buffer from the GL system requires a major part of processing time. Better per-
formance might be able with newer hardware like PCI Express boards. The creation of
correspondences in the prediction step is also very time-consuming, which mostly can be
attributed to the normalized cross correlation with sub-pixel accuracy. Together with the
image acquisition and visualization the system runs with a frame-rate at 20Hz.
Both the accuracy and the runtime of the tracking highly depends on the resolution of the
rendered image, which is used to generate the 3D line model. A comparison of the image
resolution and the runtime is shown in Table 5.3. With an increasing image resolution
a more detailed 3D line model can be extracted and therefore the result of the pose

prediction step time in ms
create correspondences 10.46
predict pose 2.12
tracking step
render model / read depth buffer 12.94
extract edges 6.84
create correspondences 8.10
estimate pose 2.42
total time 42.88

Table 5.2.: Average processing time of the individual steps.
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Figure 5.5.: Error between the estimated and the real camera pose of a synthetic image
sequence. In (a) the components of the camera translation error are plotted,
(b) shows the rotation error as the difference of Euler angles.

resolution std. dev. (trans/rot) runtime in ms
384× 384 0.2499 / 0.0267 31.74
512× 512 0.1862 / 0.0217 42.88
768× 768 0.1420 / 0.0241 81.28
1024× 1024 0.0981 / 0.0116 120.41

Table 5.3.: Comparison between image resolution, the average standard deviation of the
error and the runtime.

estimation gets more precise. As expected the runtime increases, since not only a larger
image has to be analyzed in the line model generation step, but also more control points
on the contours are extracted and used in the tracking step. To reduce the processing
time in the tracking step, the minimum distance between extracted control points can
be increased, which would lead to a smaller number of correspondences between control
points on the extracted 3D contours and maxima of the image gradient. The length of
the edge search and the termination criterion of the minimization also have an influence
on robustness and runtime. Altogether the proper choice of the thresholds is a tradeoff
between the performance and the accuracy and robustness.

The same sequence of the virtual model of a toy car is used to compare the geometry-
based approach with the method using material boundaries as edges. Again the result
of the pose estimation is stored and compared with the given ground truth data. It is
analyzed how both the results of the edge map generation with geometry edges and with
material edges affect the camera pose estimation.

Figure 5.6 shows the error of the 6 extrinsic camera parameters for the different line model
generation methods. For this particular example it can bee seen that the method using
material edges produces more accurate results. However, this is not surprising, since this
method produces a clearer edge map, if correct material properties are given. Again the
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Figure 5.6.: Comparison of the error between the estimated and the real camera pose of
geometry edges (a) and material edges (d). In (b) and (c) the error of the
geometry edges are plotted, (e) and (f) show the error by using the material
edges.

error of most of the parameters alternates around 0, except the camera z-translation,
which is clearly above 0. It seems that the estimated camera is further away from the
tracked object. As already discussed, the reason for this artefact is that the extracted
silhouette edges of the image are are not between the object and the background, but on
the object, which produces an error of half a pixel.
An analysis of the processing time is carried out to compute the average computational
costs for every individual step. The results are shown in Table 5.4. The difference to
the processing time analysis of Table 5.2 is that this time the edge map generation is
performed on the GPU with the aid of fragment programs.
Only one 8 bit buffer holding the edge map with the depth information encoded in every
pixel is read back from the graphics card to the main memory, which is a significant
processing time benefit compared to [89], where both frame-buffer and depth-buffer need
to be accessed. Compared to the method, with an edge map generation on the CPU,
which required 19.78 milliseconds in total, the approach using the pixel shader only needs
10.90 milliseconds. When a 16 bit depth buffer is used, about 1.9 additional milliseconds
are needed for reading back the GL buffer. However, for this synthetic test sequence no
significant positive effect on the accuracy of the pose estimation can be observed.

5.2.2. Evaluation of Real Image Sequences

The algorithm is tested on several image sequences showing different objects. In the first
sequence the tracking approach is tested with an industrial production line. The 3D model
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prediction step time in ms
create correspondences 11.42
predict pose 2.39
tracking step
render model / create edge map 3.98
read GL buffer 6.92
create correspondences 8.56
estimate pose 3.10
total time 36.37

Table 5.4.: Average processing time of the individual steps using the edge map generation
on the GPU.

Figure 5.7.: Tracking an industrial production line.

consists only of geometric data and no material properties. The edges used for tracking
are generated with the combined z-buffer and the normal-buffer method as depicted in
Figure 5.2. After initializing the first camera pose manually, it is possible to estimate the
correct camera pose throughout the whole sequence. Occluded edges do not appear in
the line model, since a new line model is generated in every frame. In Figure 5.7 some
frames of this sequence are shown.
In another sequence as shown in Figure 5.8, a model of several pipes was used as an object
to be tracked. Again no correct material properties exist, which makes the frame-buffer
method inapplicable, and only the geometry-based approach is used. As pipes do not

Figure 5.8.: Tracking a pipe model.
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Figure 5.9.: Tracking a toy car by using the frame-buffer approach.

consist of many crease edges, almost all extracted contours are part of the silhouette of
the model, which means that the z-buffer method provides the most usable edges in this
case. A few pipes of the virtual model do not exist in the real model, but the line model
registration is robust enough for a successful tracking through the whole sequence. In
such a scenario it is indispensable to create a new line model in every frame, since the
position of silhouette edges change, when the camera is moved around the object.

The frame-buffer method is evaluated by tracking the toy car, whose edge map generation
is shown in Figure 5.3. The model and a frame of the sequence can be seen in Figure 5.9.
Both the method based on geometry and the one based on appearance are tested. For
this sequence the frame-buffer based line models produced tracking results with a more
accurate camera pose and less jitter. This is not surprising, since the synthetic image
sequence has already pointed out that the line model generated by material edges is of a
higher quality and produces better tracking results.

All the sequences are tested without the prediction step as well. If large movements,
especially fast rotations of the camera occur, the registration step does not produce correct
results. The parameters of the camera pose get stuck in local minima and the overall
tracking fails. Therefore a rough estimation of the camera pose is really necessary to
handle fast camera movements.

5.3. Conclusion

In this section a flexible tracking method was presented, which is able to track an object
with a given polygonal model by generating 3D contours on the fly and aligning these
contours on the image gradient. Our method never runs into any scaling problems, since
a line model is generated in every frame with an adequate level of detail. A major
improvement is the ability of tracking occluding edges and silhouette edges of objects
like tubes or pipes. The advantage of this model-based approach is that no drift can be
accumulated during the tracking, since through the model a very significant connection
between the virtual and the real world exists. Furthermore, the method is very invariant
to lighting changes. No preprocessing steps like the generation of a line model or the
calibration of reference images is necessary. Depending on the scene, a method for the
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line model generation has to be chosen. If correct material properties exist, the frame-
buffer method produces slightly better results. For large camera movements, a prediction
of the camera pose for the model generation helps that the pose estimation converges in
the proximate frame. If not enough significant edges of the generated line model appear
in the image, the tracking gets very unstable. Problems also occur in highly detailed
scenes, where the generated line model consists of too many contours, which have only
small commonalities with edges in the image.
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6. Detection and Tracking of Point
Features

6.1. Tracking vs. Detection

If a scenario consists of textured planar surfaces, point-based tracking methods have been
widely used with success for object or camera tracking. In this chapter we assume that
a point cloud of 3D points exist. Every point has a unique descriptor, which represents
the appearance of the point. In a tracking step correspondences between 3D points and
2D image points are found and the re-projection error is minimized with respect to the
camera pose parameters.
This chapter focuses on the detection and the tracking of image points, which is solely
a 2D problem. Point-based tracking methods can be classified into two categories. The
first group of approaches are local search methods which track a point in the proximity of
an area, where the point is assumed to be. A reasonable prediction of its 2D position is
necessary to find a point successfully. If the regarded point is located beyond the search
space, it usually cannot be found. The other category of approaches does not really rely on
tracking points but on detecting them in an image. The difference is that no prediction of
the position needed for a local search is necessary, and the point with its feature descriptor
can be found in the whole image. This problem is known as wide baseline matching.
In practice the point-based tracking methods relying on a local search are usually used for
the tracking of feature points from frame to frame, because they are computationally more
efficient than wide baseline matching methods. The tracking by detection approaches are
often used for initializing a tracking system, since no previous knowledge about the camera
pose is needed.
For a robust detection, matching and tracking of points, the feature point descriptor
should be invariant to lighting changes, and different transformations like rotation or
scale.

6.2. Interest Point Detection

The detection of interest points is both needed for a frame-to-frame tracking and a match-
ing of points, which are extracted in two different images. The requirements for the
properties of an interest point detector are very similar in both cases. The area around
the point should be textured, so that a significant description of the patch is possible.
The points should be different from each other, because ambiguities would perturb the
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matching process. A very important criterion is that the detection should be repeatable,
which means that the detector should cope noise, illumination changes or aspect changes.
Especially for feature point matching it is important that points are located reliably and
the detected position does not jitter. For real-time tracking systems, the detection of
feature points should be able in an affordable amount of computation time.
Many corner detectors rely on a very similar manner to extract corner features. First
a function is applied on the image and computes the corner strength at every pixel.
Thresholding the corner strength results in an image where only pixel positions with a
strong corner-ness remain. Finally a non-maxima suppression discards all the positions
in the image, where the corner strength function does not have a local maximum.
A very popular method is the Harris corner detector [39], which relies on the analysis of
the autocorrelation matrix

H =
( ∑

I2
x

∑
IxIy∑

IxIy
∑
I2
y

)
(6.1)

computed at each image location. The elements of H sum over a window of the image
gradients, where Ix and Iy are the first derivatives of the image intensity in x and y
direction. The window function can be a simple square or circular window. Weighting
the derivatives with a Gaussian window function helps to make the detector more robust
against noise, but come along with a higher computational effort. Harris defined the
corner strength by

c = |H| − κ(traceH)2, (6.2)

where κ has to be determined empirically. In the literature values in the range from
0.04 to 0.15 have been reported as suitable. The corner strength c can be regarded as a
measure of image curvature.
Shi and Tomasi [100] used the smallest of the eigenvalue λ1 and λ2 of H as corner strength
function:

c = min(λ1, λ2) (6.3)

They argued that under affine transformation this function of the corner strength is a
more accurate measure. They also showed that image locations with two high eigenvalues
can be tracked reliably under affine deformations.
The SUSAN corner detector [103] uses a circular mask for detecting corner features.
Lowe [64] used a DoG (Difference of Gaussians) filter to estimate the corner strength of
image points. Scale invariance of the detector is achieved by applying the convolving
kernel at different resolution levels of an image pyramid. Keypoints of low contrast are
rejected if the ratio of the eigenvalues of H is too large and represents a strong gradient
in only one direction.
Mikolajczyk and Schmid [73, 74] developed an affine invariant interest point detector,
which is based on the Harris corner detector. First the approximate position and the scale
are extracted by a multi-scale Harris detector. Then an iterative procedure converges to
a stable point and shape, which is invariant under affine transformation.
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A descriptor called Maximally Stable Extremal Regions was presented by Matas [70].
Instead of regarding corners as interest points regions of uniform intensity, extracted by
a watershed algorithm, are taken as image features and matched across different images.
Lepetit and Fua [59] presented a very simple and efficient method to extract corner fea-
tures by considering the intensities along a circle centered on each candidate point. If the
intensity of two diametrically opposed pixels on this circle is approximately the same, the
regarded point at the center is not considered as an interest point. The corner strength
needed for a the non-maxima suppression is computed by an approximation of the Lapla-
cian of Gaussian.
A similar but and very efficient approach called FAST (Features from Accelerated Segment
Test) was presented by Rosten and Drummond [92]. Their method analyses the intensity
values on a circle of 16 pixels surrounding the corner point. If at least 12 contiguous
pixels are all above or all below the intensity of the center by some threshold, this point
is regarded as a corner feature. In [93] a machine learning approach is used to determine
some pixel position for an acceleration of the detection test. For reasons of efficiency we
use the FAST feature detector in our implementation.

6.3. Wide Baseline Matching

If significant points are detected in an image, a description of these feature points has
to be extracted. With these feature descriptions a matching between feature points in
different images can be performed. A descriptor is composed of pieces of information
which are gathered in the neighborhood of the detected point, therefore they are denoted
as local descriptors. A database of feature points together with their descriptors can be
used to detect and identify objects. In general the descriptor consists of a feature vector
of several dimensions. In the matching process the distance between different feature
vectors is then used as a matching criterion.
For the purpose of camera-based tracking, wide baseline matching techniques are often
used to initialize a tracking system with the aid of some reference data, which can be
calibrated reference images or photorealistic 3D models.

6.3.1. Local Feature Descriptors

Numerous local feature descriptors exist and all of them have to fulfill some requirements
for a successful matching. A local descriptor must be distinct to avoid ambiguities during
the matching process. Furthermore, it must be invariant under various transformations.
Depending on the application, the feature descriptor is required to be invariant under
rotation, scale or a full affine transformation.
A common technique is to use the Normalized Cross Correlation (NCC) of image in-
tensities of a patch that is extracted at the feature position. If the mean intensity is
removed and the standard deviation is set to unit length it is equivalent to using the Sum
of Squared Differences (SSD) of two extracted patches. Such a descriptor is invariant to
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lighting changes, but not invariant to transformations like rotation or scale. Therefore it
is mostly used for matching points between two consecutive frames. In [22] such a method
is used for the tracking of point features.
Rosten [92] describes the feature vector with image intensities on a circle around the
interest point, the same circle which was used for the feature detection.
A feature vector can also be composed by several image filter responses. Schmidt and
Mohr [96] use relatively high order image derivatives, where each is rotationally invariant.
Therefore the whole feature descriptor is also invariant to rotation transformations.
Feature point matching with an intensity spin image representation was presented by
Johnson [50]. A spin image consists of a two-dimensional histogram, where one dimension
is the distance from the center and the other dimension the pixel intensity. This descriptor
is also rotationally invariant.
Spacial frequency techniques like the Fourier-Mellin transform were used by Stricker [105]
to achieve rotation invariance.
Lowe [64] introduced a descriptor called SIFT (Scale Invariant Feature Transform). His
idea is to describe an image patch by a histogram of image gradient direction. Rotation
and scale invariance is achieved by extracting the descriptor at a canonical scale and
orientation. The patch is quantized in a 4 location grid and the gradient direction is
quantized into 8 orientations. This leads to a feature vector of 128 elements.
Ke and Sukthankar [53] claimed that this description vector size is larger than necessary.
They perform a Principal Component Analysis (PCA) on all the extracted feature vectors
and only the top 20 basis vectors are taken as descriptor.
Another variation of SIFT is presented by Mikolajczyk and Schmid [75]. Their method
called GLOH (Gradient Location Orientation Histogram) computes a gradient histogram
on a log-polar location grid with three bins in radial direction. With 17 location bins and
16 bins of the quantized gradient orientations a histogram with 272 bis is created. The
dimensionality is also reduced by a PCA to a description vector of 128 elements.
Grabner et. al [34] speed up the detection process of SIFT features by using an integral
image for scale space computation.
SURF (Speeding Up Robust Features) is another method presented by Bay et al. [8],
which also takes advantage of an integral image for speeding up the detection and ex-
traction of a feature point. The approach is similar to SIFT, but instead of gradient
orientation histograms the sum of Haar wavelet responses in horizontal and vertical di-
rection is calculated on a 4× 4 grid of subregions of the patch.
A comparison between different descriptors is carried out by Mikolajczyk [75], and he
concludes that SIFT-based descriptors perform best.

6.3.2. Feature Matching Strategies

For most of the feature descriptors the Euclidean distance is used as a similarity measure
to create matches. Comparing every feature descriptor of one image with every feature
descriptor of another image has a computation complexity of O(n2).
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Algorithms like kd-trees do not provide any speedup if the dimensionality of a feature vec-
tor is too high. Lowe [64] proposes a Best-Bin-First alternative, which is an approximate
in the sense that it returns the nearest neighbor in feature space with high probability.
Rosten [92] sorts the feature vectors by their mean intensity. A binary search is performed
first to find the feature vector with the closest mean, followed by a linear search for the
feature with the smallest SSD. An early exit strategy speeds up the matching process by
discarding a match if the maximum SSD error is exceeded during the computation of the
sum.

6.3.3. Classification Techniques

Lepetit et al. [61] treat the wide baseline matching of keypoints as a classification problem,
where each class corresponds to a feature point. A set of image patches of a point under
various different transformations is used as a training set for this supervised learning
technique.
In [61] the dimensionality of the image patches is reduced by a PCA and the view sets of
each feature are clustered using k-means. A nearest neighbor classifier is used to match
a feature point of another image. The speed of the system was improved by taking ran-
domized trees as a weak classifier [60]. A feature is then detected by combining the
classification results of all the trees. The method is very fast and robust against illumina-
tion changes and various transformations. However, the classifier has to be trained with
all the transformations which the system is supposed to detect. A complex preprocessing
is required to train the system, since the computational burden is shifted to a training
phase.
An online version to learn randomized lists for reinitializing the camera tracking is pre-
sented by Williams et al. [117]. The classifier is trained during the tracking in an extra
thread, which runs in the background, and after the camera tracking gets lost, the tracking
is initialized by recognizing the keypoints by classification.

6.4. Optical Flow-Based Tracking

Optical flow is the apparent motion of gray value structure in consecutive images. The
estimation of the optical flow is based on the assumption of intensity conservation over
time. If I(x, t) is the intensity value at the image position x at time t and d the motion
translation vector, this assumption can be expressed as

I(x, t) = I(x+ d, t+ dt). (6.4)

In 1981 Lucas and Kanade [66] proposed one of the most popular methods for the local
estimation of optical flow. Many image alignment techniques nowadays rely on their
principle of minimizing image intensity differences. A solution for the displacement vector
d is estimated by minimizing the residue error defined by

ε =
∑
x

[I(x+ d, t+ dt)− I(x, t)]2. (6.5)
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An iterative Newton-Raphson style algorithm is performed to solve this minimization
problem. As this optical flow estimation approach is a local search method, the conver-
gence radius is very limited. To achieve a higher possible range, where image points can be
tracked successfully, the Lucas and Kanade algorithm is often applied on several levels of
an image pyramid. With this coarse-to-fine technique the convergence range is duplicated
with every level of the image pyramid level. The image borders have to be handled with
special care, and the intensity difference must only be summed up on areas in the image,
which are visible in both image frames. A window function, e.g. a bell-like Gaussian
function, can be used to give pixels in the middle of an image patch more influence than
pixels near the border of the regarded area.
Whereas in the original approach the optical flow estimation was used for image registra-
tion, Tomasi and Kanade [108] use the same approach for tracking point features from
frame to frame. This approach, however, only calculates the translation vector at an
image point. The tracking of feature points from frame to frame is prone to considerable
drift and has therefore only limited capabilities for a robust camera pose estimation.

6.5. Template-Based Tracking

Shi and Tomasi [100] extend the method of Lucas and Kanade for affine image trans-
formations. A quadratic patch is extracted around a feature point when it is observed
first and then it is used as a reference template. They also address the problem of the
detection of feature points which can be tracked stably under the affine transformation
model. In regions where image structure exists in only one direction the full optical flow
cannot be estimated. This problem is known as the aperture problem. Shi and Tomasi
argue that image structure has to be present in all image directions and therefore use
an interest point detector as already described in Section 6.2, where the smallest eigen-
value of the structure matrix has to be significantly large. This tracking method where
a template patch is tracked under an affine transformation model is also denoted as the
Kanade-Lucas-Tomasi (KLT) tracker in the literature.
A more general algorithm for tracking a template in a gray value image is presented by
Hager and Belhumeur [35]. A geometric warping function g(x;p) is used to represent
more general warps than simple translations. They also switch the role of the template
and the image for efficiency reasons and call this method the inverse additive approach.
The efficiency benefit results from the shift of computation from the tracking step to the
pre-processing step. If I(x, 0) = T (x) is the reference template and g(x;p) the warp
function of an image point x with the parameter vector p, the error to be minimized for
the forward additive approach is written as

ε =
∑
x

[I(g(x;p)− T (x)]2. (6.6)

To optimize this expression, the parameter increment ∆p is iteratively estimated by
minimizing

ε =
∑
x

[I(g(x;p+ ∆p)− T (x)]2, (6.7)
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where after every iteration the parameter vector is updated by p← p+∆p. The algorithm
stops if ∆p is insignificantly small or a maximum number of iterations has been reached.
The inverse additive algorithm simply switches the role of the image I and the template
T .
A compositional approach of Shum and Szeliski [101] iteratively estimates an incremental
warp g(x,∆p) by minimizing

ε =
∑
x

[I(g(g(x;∆p);p))− T (x)]2, (6.8)

with respect to ∆p. The warp function is updated with g(x,p)← g(x,p) ◦ g(x,∆p).
Baker and Matthews [5] introduce another method denoted as the inverse compositional
approach for tracking an image template. They approximately minimize

ε =
∑
x

[T (g(x;∆p))− I(g(x;p))]2, (6.9)

with respect to ∆p. After every iteration the update of the warp function is computed
by g(x,p)← g(x,p) ◦ g(x,∆p)−1.
Baker and Matthews show that this inverse compositional method is capable of handling a
more general set of warps, especially homographies, whereas the inverse additive approach
of Hager and Belhumeur can only be used with affine warps. The inverse compositional
approach is the most general and efficient method and is therefore most commonly used
nowadays.
To solve the minimization problem of equation (6.9) a first order Taylor expansion is
performed and results in

ε =
∑
x

[T (g(x;0)) +∇T ∂g
∂p

∆p− I(g(x;p))]2. (6.10)

Solving for ∆p yields

∆p = H−1∑
x

[
∇T ∂g

∂p

]T
[I(g(x;p)− T (x)] , (6.11)

where the Hessian matrix H is computed by

H =
∑
x

[
∇T ∂g

∂p

]T [
∇T ∂g

∂p

]
. (6.12)

The Jacobian ∂g
∂p

is evaluated at (x,0). The efficiency of the inverse compositional algo-
rithm comes from the fact that the Hessian matrix H does not depend on the parameter
vector p. Therefore it is constant during the iterations and the matrix H−1 can be pre-
computed. However, if the intensity values of the template T or the size of the area are
changed during the minimization, the Hessian must be re-computed. The template must
be therefore always fully located inside the image and cannot be changed so that efficiency
benefits of the algorithm pay off.
More detailed deviation for different warp functions are given in Appendix A. Another very
detailed explanation and comparison of these different template-based tracking methods
can also be found in [6].
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6.5.1. Illumination Compensation

If planar patch features are tracked with a long lifetime, severe illumination changes can
occur. This happens because a patch is viewed from a different viewing direction and the
lighting changes or simply because a camera controller is auto adjusting the shutter or
the gain of the camera. Therefore in most real-life scenarios it is indispensable to regard
changes of illumination.
Tommasini et al. [109] use a photometric normalization with a zero mean SSD residual
computation to make the tracking more robust against lighting changes. They also add
a robust rejection rule to detect tracking failures.
Another method for illumination compensation described by Hager and Belhumeur [35]
uses a set of illumination basis images, which are all captured under different illumination.
An additional parameter per basis image is used to describe the contribution of every basis
image to the current image.
Zhu el al. [123] achieve lighting invariance by minimizing the differences of normalized
gradient images instead of intensity discrepancies.
A precise photometric model for a transformed template patch is presented by Jin et
al. [49]. They extend the Shi-Tomasi tracker by two additional illumination parameters.
With the contrast compensation factor λ and the brightness correction δ they minimize
the following error function with respect to ∆p:

ε =
∑
x

[λI(g(x;p+ ∆p) + δ − T (x)]2 (6.13)

However, this forward additive formulation has a lack of efficiency, since the Hessian
matrix H needs to be recomputed in every frame.
Zinßer et al. [124] combine the benefits of the more efficient inverse compositional ap-
proach with the additional illumination parameters presented by [49]. This leads to
minimize the error function which is given by

ε =
∑
x

[λ̃T (g(x;∆p)) + δ̃ − (λI(g(x;p)) + δ)]2, (6.14)

where λ̃ and δ̃ are the incremental changes of the illumination parameters. The values λ
and δ are still those parameters that T (x) = λI(g(x;p)) + δ holds.
Again the first-order Taylor expansion around the identity warp g(x,p) is used to ap-
proximate this error function:

ε =
∑
x

[λ̃T (g(x;0)) + δ̃ + λ̃∇T ∂g
∂p

∆p− (λI(g(x;p)) + δ)]2. (6.15)

This equation can be rewritten in matrix form by

ε =
∑
x

[h(x)T q − (λI(g(x;p)) + δ)]2 (6.16)

with
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h(x) =
(
∇T (x)∂g

∂p
T (x) 1

)T
(6.17)

q =
(
λ̃∆pT λ̃ δ̃

)T
(6.18)

The size of the vectors h(x) and q is 2 elements larger than the number of parameters of
the vector p.
Finally by solving the least squares problem of equation (6.16) the parameter update
vector can be computed by

q =
(∑

x

h(x)h(x)T
)−1 (∑

x

h(x)λI(g(x;p)) + δ)
)
. (6.19)

Since the vector h(x) is independent from all parameters (p, λ, δ) and the current image
I, the inverse of the matrix composed of the dyadic products of h(x) can be precomputed
for every feature and then be re-used in every frame.
After every iteration the contrast parameter λ is updated with λ← λ

λ̃
and an update of the

brightness parameter δ is computed by δ ← δ−δ̃
λ̃
. An example of an affine transformation

model as it is presented in [124] can be found in Appendix A.

6.5.2. Drift Prevention

Tracking only the translation of a feature point is very fast, since the image border
handling is easy and the computation of the inverse of the 2× 2 matrix H is simple. But
as the estimation of the displacement vector can never be absolutely accurate, tracking
only the translation of a point will produce feature drift. Therefore it is necessary to take
the intensity values of the initial patch into account to track the feature and to monitor,
whether the feature point kept its visual appearance. A template-based illumination
invariant method as described in the previous section prevents the accumulation of drift,
since the reference template is never changed. However, there are also some disadvantages,
if only a reference template is used. For a successful alignment a complex model like the
affine illumination invariant algorithm of Jin et at. [49] is necessary. Because of the
high dimensionality of the parameter space such methods can easily run into convergence
problems. If the initial parameter values are not close enough to the solution, the Newton-
Raphson iterations do not converge, especially if brightness and contrast are estimated
as well. It is also difficult to determine the borders of a warped patch, if it is not totally
inside the image.
Zinßer et al.[124] use a two-stage approach to solve this problem. Pure translation from
frame to frame is estimated first, then this translation vector and the affine and illumi-
nation parameters of the previous frame are used to initialize the minimization of the
discrepancy of the initial patch and the current frame. This method has a much higher
rate of tracking successes since the feature position is already almost correct, when the
reference template is aligned. In our implementation we achieved good results with 5
levels of a Gaussian pyramid for tracking the translation from frame to frame and only
one pyramid level to track the initial patch with the affine illumination invariant method.
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6.6. Improvements

6.6.1. Multiresolution Tracking

If the scale of the warp function g(x;p) does not change significantly during the track-
ing, the initial patch, which was extracted from the lowest image pyramid level, usually
converges during the minimization. However, if the scale gets too small or too large, sam-
pling errors of the image intensities become too large and the patch registration may not
converge. To avoid this problem, we propose an approach which uses patches of different
resolution levels for tracking. When a feature occurs first, a patch window is cut out of
the image pyramid at every pyramid level. For the affine brightness invariant patch regis-
tration, we always select the patch which has the most similar resolution to the predicted
warp.
For an affine model we use the determinant of the affine transformation A as a scale
measure. If l shall be the resolution level of the patch to be selected for registration, the
following inequality must hold:

t ≤ 2l|A| < 2t, (6.20)

where t is a threshold which defines the decision boundary between two resolution levels.
For the affine image registration a patch of the resolution level l has to be warped with
the matrix A′ = 2lA. In our implementation we choose t = 0.8, so the norm of the affine
transformation A′ of a patch is always between 0.8 and 1.6.
If a feature becomes too small during the tracking, a patch with a lower resolution, which
was extracted from a higher image pyramid level, is used.
A patch of higher resolution, which was extracted from a lower image pyramid level,
should be used, if the scale of the affine transformation becomes too large. Since patches
with a resolution higher than the bottom image of the image pyramid do not exist from
the beginning of the feature track, the stack of patches has to be extended with patches
of higher resolutions during the tracking. If the scale of a patch is more than twice as
large as the initial warp, then, presuming the feature has been tracked successfully in the
current frame, we insert a new patch of the regarded point at the bottom of the patch
stack. The new patch is extracted using the current warp and brightness parameters and
the new warp function is scaled appropriately. With the affine invariant model the affine
matrix is simply multiplied by 0.5. This is necessary, since all patches of a feature need
to have the same basis of transformation parameters. This approach enables the back-
matching under a strong increase of scale. With back-matching we denote the procedure
of comparing the current tracked image patch to an initial reference patch, which was
acquired when the feature was seeded.
An illustration of a single tracked feature with the affine illumination invariant method
is presented in Figure 6.1. A frame of a test sequence is shown together with 4 resolution
levels of the patch template. Here we use the two-stage approach with the affine illumi-
nation invariant model, which is described in Section 6.5.2. In Figure 6.2 the regarded
patch in different frames is illustrated. The first row (a) simply shows the feature point
in the current frame, i.e. the patch which is extracted for the frame-to-frame optical flow
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(a) (b)

Figure 6.1.: Example of tracking a single patch. In (a) the stack of reference templates
in different resolution can be seen, (b) shows a frame of the test sequence
together with the tracked patch. In this frame the second resolution level is
used.

(a)

(b)

(c)

(d)

Figure 6.2.: Illustration of the lighting invariance patch tracking with multiple resolution
levels. In (a) the patch in the current frame is drawn, (b) shows the extracted
affine invariant regions, (c) the extracted patches with the additional illumi-
nation compensation and in (d) the reference templates of the currently used
resolution level are shown for comparison.
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6. Detection and Tracking of Point Features

(a) (b)

Figure 6.3.: The residue vs. the scale of the affine warping matrix. (a) shows the results
of the single-scale, (b) of the multi-scale approach.
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Figure 6.4.: The average error vs. the scale of the affine warping matrix.

estimation. In the second row (b) the affine invariant region of the feature in the current
frame can be seen. The extracted patches with the affine model and illumination com-
pensation can be seen in (c) and for the comparison the reference template of the used
resolution level in row (d).

To evaluate the approach, we captured a sequence with strong changes in scale and plotted
the intensity residuals against the scale of the affine warping matrix for every tracked
feature point. Figure 6.3 shows that the errors produced by the single-resolution approach
become larger especially for a decreasing scale. The reason for this is that sampling
errors grow significantly if a patch is warped into a very small region. Using the multi-
resolution approach, patches corresponding to higher image pyramid levels are selected
if the predicted warping is too small, and therefore the error does not increase for affine
transformations of a smaller scale.
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Figure 6.4 shows the average residue of a successfully tracked feature according to its
scale. It can be clearly seen that the average error of all tracked features is smaller for
the multi-scale approach, which makes it much easier to distinguish, whether a feature
has been tracked successfully or whether the tracking step has failed.
If a feature cannot be tracked successfully, its position is predicted as described in Section
7.4. Thus, temporarily lost features have a good chance to be tracked again in the
succeeding frames.

6.6.2. Updating the Template

Updating the template is often avoided because small alignment errors can accumulate
and the template might drift away from the initially extracted patch. However, the initial
patch is not always the best visual representation of a surface, since reflections, shadows
or strong camera noise can result in a poor representation of an extracted patch.
Segvic et al. [98] use a running average Gaussian estimation of every pixel’s gray value of
the image area which the template is aligned with. Thereby the template is not compared
directly with the intensity values of the current image, but with a temporarily smoothed
image region. Due to this noise suppression the residual error is reduced, but the original
template remains untouched.
Matthews et al. [71] propose a strategy, in which the template is updated if the parameter
difference of the warps from the initial template and the current template is smaller than
a given threshold. Thereby the reference template is replaced by the current region of
the image if the parameters of the alignment to the initial patch do no differ significantly
from the warp parameters to the current template.
In our system we propose a method which does not replace the whole reference template,
but updates the template image by calculating an incremental intensity mean for every
pixel. To avoid drift, an update is only performed if the alignment was successful, i.e. if
the SSD between reference patch and current patch is small enough.
If C(x) is the number of measurements, which contributed to calculate the mean intensity
of a pixel, the incremental mean can be computed with

T (x) = 1
C(x) + 1 [(I(g(x;p)) + C(x)T (x)] . (6.21)

After updating a pixel of the template the value C(x) is incremented by 1. Every pixel
of the reference patch needs its own contribution counter C, because it is not guaranteed
that the whole patch can always be updated. This might happen, if the whole patch does
not lie completely inside the image, which is often the case especially on higher image
pyramid levels. With this update method is is not only possible to refine intensity values
of the initially extracted patch, but also to extend areas of a patch which could not be
initialized, because parts of it were outside the image, when the feature was observed first.
Since the contribution of the current image intensities gets lower with every update, the
influence of the first images never gets lost and drift is avoided.
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If the camera does not move, applying an update of the template in every frame may
not lead to the desired results, since a feature is always observed from the same viewing
direction and reflections might incorporate into the reference template of the patch. We
only perform an update if a significant amount of camera translation has occurred since
the last template update. Thereby it is guaranteed that the input for an update step is
the appearance of a patch of a different viewing position.
A disadvantage of updating the template is that the intensity gradients and the inverse of
Hessian matrix, which is needed for the alignment process, needs to be recomputed after
every update.

6.6.3. Robust Image Alignment

If intensity discrepancies are added over a whole patch area as in equation (6.13), it is
assumed that the patch is completely planar, that there are no occlusions and that there is
a global linear change of illumination. Neither of these assumptions is always true in real
life scenarios. Patches are not always totally part of a planar surface, areas of the scene
can be occluded by interacting persons or by other objects, and spotlights or reflections
cannot be modeled by a global linear lighting model.
Therefore the detection of outliers during the template tracking is worth considering.
Hager and Belhumeur [35] use a robust estimator function for the detection of occlusions.
They modify the error function by solving a robust optimization problem of the form

ε =
∑
x

ρ(I(g(x;p)− T (x))), (6.22)

where ρ is one of a wide variety of robust estimator functions [122]. Instead of the
estimator function ρ the same problem can also be expressed with a weighting matrix
M(x). The authors also used morphological operators to remove outliers of the weighting
matrix and showed that with this robust optimization approach a more stable tracking
is possible under partial occlusion of the template. An evaluation of different estimator
functions has been carried out by Theobald et. al. [107].
Baker and Matthews [4] also used a weighting matrix for a more stable and more efficient
minimization. Stability comes from only taking pixels with a high confidence into account,
and efficiency results from the fact that computation costs can be reduced if only the most
reliable pixels are selected.
They also present an iteratively re-weighted least squares algorithm for the inverse com-
positional approach With the weighting matrix M(x) the problem can be expressed by

ε =
∑
x

M(x)[T (g(x;∆p))− I(g(x;p))]2. (6.23)

Solving for ∆p yields

∆p = H−1∑
x

M(x)
[
∇T ∂g

∂p

]T
[I(g(x;p)− T (x)] , (6.24)
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where the matrix H is computed by

H =
∑
x

M(x)
[
∇T ∂g

∂p

]T [
∇T ∂g

∂p

]
. (6.25)

After every iteration the weighting matrix M(x) is estimated according to the current
residual.
The drawback of this iteratively re-weighted approach is the loss of efficiency. If the
weights are re-estimated in every iteration, the matrix H−1 cannot be precomputed any
more, but must also be calculated in every iteration.
Ishikawa et al. [48] avoid the re-computation of the whole Hessian by subdividing the
image into a grid of blocks and pre-compute Hessian for every grid element. Blocks of
outliers are determined and the sum is only calculated over valid block elements. This
approach is more efficient, since the sum over every block element can be pre-computed.
The iteratively re-weighted least squares approach is only beneficial, if really large tem-
plates are tracked, e. g. a whole face of a person as in [35]. For the purpose of tracking
feature points for camera pose estimation, it is more advantageous to use smaller tem-
plates, because many industrial scenarios seldom consist of large planar surfaces, and if
patches are smaller, more features can be tracked with the same computational costs.
Therefore in our tracking system we use a larger set of small templates and reject a feature
patch completely if the tracking has failed. For efficiency reasons we rather recomputed
the weights only after a successful tracking step, because the inverse of the H-matrix only
needs to be calculated once per frame and not in every iteration of the feature tracking
step.
To achieve lighting invariance we integrate a weighting matrix into the illumination in-
variant method of the inverse compositional approach. The term to minimize for the
robust alignment can then be written as∑

x

M(x) [(λT (g(x;∆p)) + δ − I(g(x,p))]2 . (6.26)

The parameter update can be similarly computed as in Section 6.5.1. With the vector
h(x) of equation (6.17) the new parameter vector q can be computed by

q =
(∑

x

M(x)h(x)h(x)T
)−1 (∑

x

M(x)h(x)λI(g(x;p)) + δ)
)
. (6.27)

Our goal for a robust feature tracking is not to track a template under partial occlusion
and extreme lighting variation, but to acquire a valid area of the patch, which is a stable
representation of the patch, and to use only those areas for the alignment. If some areas
of a template, for example, are not part of the planar surface, these pixels should always
be regarded as outliers and not contribute to the template alignment.
With a given weighting matrix M(x), which assigns every pixel an influence value for the
minimization result, the computation of the parameter vector increment is only slightly
more expensive.
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(a)

(b) (c)

(d) (e)

Figure 6.5.: Illustration of the mask generation. In (a) the scenario can be seen, (b)
shows the currently extracted patch feature, (c) the incremental mean, (d)
the variance and (e) the mask of the patch.

(a)

(b) (c)

(d) (e)

Figure 6.6.: Another example of the mask generation in an industrial scenario. Again the
current patch (b), the incremental mean (c), the variance (d) and the mask
of a patch (e) can be seen. The mask clearly distinguishes pixels from the
planar surface from the background.

To simplify the computation we do not use a weighting matrix, but a binary mask to
select the pixels, which are taken into account for the feature tracking. Pixels where the
value of the binary mask is 0 are not regarded at all. The overall computational cost can
therefore be decreased if a binary mask is used and many pixels are masked out.

A binary mask can also be used to integrate only over those areas of a patch which are
located inside of an image. If a patch is extracted out of an image, it happens especially
at higher pyramid levels that the template is not completely located inside the current
image, and some parts do not contain any valid intensity information. By setting the mask
values M(x) of these pixels to 0, only valid pixels are taken for the template tracking.
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6.6.4. Template Mask Generation

With a patch mask M(x) it is possible to minimize the intensity discrepancy between
only those pixels of an image and a patch which are really part of the planar surface. The
acquisition of such a mask M(x) is described in this section.
Sometimes an extracted patch does not always lie totally on a planar surface. Pixels which
are not part of the surface are not a useful contribution for the alignment step. For the
acquisition of a high quality template it is desired to generate a mask for a patch which
selects only those pixels which really lie on the planar surface of an object. Our approach
for the generation of a template mask relies on the analysis of the intensity variance of a
pixel. Similar to the incremental mean computation, the update of the intensity variance
S2(x) of a pixel can be approximated by

S2(x) = 1
C(x) + 1

[
((I(g(x;p))− T (x))2 + C(x)S2(x)

]
. (6.28)

To decide if a pixel is used for the tracking step, a mask M(x) is created by

M(x) =

1 if S2(x) < c,

0 otherwise.
(6.29)

A good value for the threshold c depends on the camera noise and must be chosen exper-
imentally.
In Figure 6.5 a single reference template, its incremental mean, the variance and the
generated mask are shown. After moving around the camera for a while, the variance
of areas which are not part of the patch feature’s plane increases significantly and the
patch mask clearly represents only the planar part of the template. Another example is
illustrated in Figure 6.6.
With such a generated template mask it is possible to detect only the truly planar regions
of a patch, and only those areas of a patch can be taken into account for the template
alignment which clearly belong to a planar surface.
This only works if the surroundings of the patch which are not part of the surface do not
consist of homogeneous areas. If this were the case, the intensity variance of a pixel would
be small and those pixels would not be masked out.
However, if the surroundings are homogeneous, e.g. consist of a white wall in the back-
ground or completely black holes in a surface, they do not have a large effect on a mis-
alignment of a template patch.

6.7. Camera Tracking Applications with Point Features

6.7.1. Poster Tracker

An easy way to set up a markerless augmented reality application is simply to replace the
artificial marker with a more natural marker like a well textured poster. If a reference
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(a) (b)

(c) (d)

Figure 6.7.: Tracking a poster with partial occlusion. In (a) the reference image is shown,
in (b) a current frame of a camera image can be seen. The tracked template
patches are overlaid in image (c), where the colors green and red indicate
tracking success and failure respectively. In (d) a virtual augmentation is
placed in the camera image.

image is known, and the geometry of the reference image, i. e. the four 3D coordinates of
the poster corners, is given in the world coordinate system, all virtual 3D information can
be modeled in the same coordinate system as the reference image for a correct overlay of
the augmentation onto the camera image. Therefore the creation of an AR-application
with reference images can be similar in complexity to the use of planar fiducials.

To track a planar poster we created a system which uses several methods at different
stages of the tracking process. As for the most markerless tracking systems, the prob-
lem of estimating the camera pose is divided into an initialization phase and a tracking
phase. The main difference is that for the initialization no prior information about the
camera pose is given as in the tracking step, where the camera parameters of the last
frame are always known. With a given reference image the problem of initializing the
camera tracking can be regarded as a wide baseline matching of feature points between
the reference image and the current camera image. Of the many methods described in
Section 6.3 we chose the keypoint classification technique with randomized trees to create
correspondences between image pairs. By assuming that the reference image is located
in the z-plane of the world coordinate system, the 3D coordinates of all detected feature
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(a) (b) (c)

Figure 6.8.: Tracking a poster with large scale and aspect changes. In (a) the current
camera image can be seen. The tracked template patches are overlaid in (b)
and in (c) an augmentation demonstrates that the camera pose is estimated
correctly.

points are also known. With these 2D/3D-correspondences the extrinsic parameters of
the camera can be estimated.

After the successful initialization of the camera pose feature points are projected into
the current image with the camera pose obtained from the initialization step and then
tracked from frame to frame with a template-based approach. Patches are extracted from
the reference image at several levels of an image pyramid and aligned with the current
video image. To increase the robustness and convergence range, the feature points are
first tracked from frame to frame with a simple optical flow translation estimation. This
2D position is then used to initialize the iterative template alignment of every feature
patch. The affine motion model with illumination compensation is used for the template
tracking. After every tracking step it is tested with a sum of squares distance check, if
the tracking of a feature has been successful. Features where the tracking failed are not
taken for the camera pose estimation. Lost features are predicted with the successfully
estimated camera pose of the current frame. Thereby it is possible that lost features can
be tracked again, if they are visible in the camera image. An outline of our poster tracking
algorithm can be found in Algorithm 3.

In Figure 6.7 a frame of a simple poster tracker application is illustrated. The poster is
partially occluded and it can be seen that occluded features are not tracked successfully,
but remain at the locations where they are expected, because they are predicted with the
camera pose, which is estimated with the correctly tracked features.

Figure 6.8 shows another tracking example, where a postcard is used as a reference image.
Two frames of a sequence show that the multiscale template-based tracking approach is
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Algorithm 3 Tracking with a reference image

Initialization:
1: Extract keypoints in reference image
2: Generate randomized trees for keypoint classification
3: Extract patches from reference image in several resolution levels

Tracking:
1: if camera pose is not valid then
2: Extract keypoints in current camera image
3: Classify keypoints with randomized trees
4: Estimate camera pose
5: end if
6: Reproject invalid template features with current camera pose
7: if last frame was tracked successfully then
8: Predict 2D feature position with optical flow estimation
9: end if

10: Track template patch with affine model and illumination compensation
11: Estimate pose with all successfully tracked features

capable of handling different scales and that the reference image can be tracked under
large aspect changes. If the reference image is observed with a very flat viewing direction,
an increasing number of features, where the tracking fails, can be observed. However,
the tracking range of the template alignment is much larger than the possible camera
positions, where the tracking system initializes successfully.

6.7.2. Texture-Based Tracking with Polygonal Models

For augmented reality application with industrial scenarios, CAD models of the objects,
which shall be tracked, are often created in the manufacturing process. These CAD model
can be a useful support for the tracking of these objects or the observing camera. The
edge-based tracking method described in Section 5 is one possibility to track an object
with a given polygonal 3D model. If a model consists of long distinct edges, very good
tracking results are achieved with this method. However, using only the edge information
can result in a poor tracking quality if no distinct geometry edges exist in every visible
area of a 3D model.
Texture-based tracking methods are another possibility to estimate the object’s movement
and can be very beneficial if the visual appearance on an object consists of significant
image structure. If tracked 2D point features shall be used to estimate the extrinsic
parameters of a camera, it is necessary to know the 3D coordinate of every point. Only
with correspondences between 2D image points and 3D coordinates of these points, the
camera pose can be computed by minimizing the projection error.
Since we regard only 3D models without visual properties as material colors or textures
here, the visual information of a feature point cannot be obtained from the model, and
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6.7. Camera Tracking Applications with Point Features

must be taken out of the camera image. However, with the given 3D model geometry it
is possible to acquire the 3D information of a tracked 2D feature point in the image.

Acquisition of 3D Coordinates

One possibility to get the 3D coordinate of an image point is to use rendering techniques
as presented by Vacchetti et al. [113]. Their idea is to assign a unique color to each
triangle of the model. After rendering the model with the same resolution as the camera
image, the color at the position of every tracked 2D feature point is used to index the
triangle of the model, which corresponds to the 2D image point. The triangle spans a
plane and the intersection point of the view ray from the camera position through the
feature position in the image can be computed, which results in the 3D coordinate of the
feature point. A similar approach for the acquisition of 3D coordinates is used in [85].
The positive fact of this method is that the 3D position can be calculated very precisely,
if the model is very detailed.
A much more direct way to compute the 3D coordinate, where no extra color coding
is necessary, is to use the depth buffer of a rendered image. Reitmayr et al. [89] use
this depth buffer method to acquire the 3D coordinates of line control points, which are
extracted of a rendered image. After rendering a model with the current camera pose,
the z-buffer is read back from the graphics hardware. At every 2D feature position the
3D coordinate in the camera coordinate system can be computed with the given value of
the z-buffer. If zB is the value of the OpenGL z-buffer in the range between 0 and 1, the
z-value zC in the camera coordinate system can be computed by

zC = 1
(2zB − 1)n−f2fn + f+n

2fn
. (6.30)

The values f and n are the distances to the near and the far plane respectively, which
were used for rendering the model.
With the intrinsic camera parameter matrix K and the extrinsic camera parameters R
and t, the homogeneous image point m̃ = (x, y, 1)T can be transformed into the 3D
position M

M = R−1(zCK−1m̃− t). (6.31)

The 3D point M is here given in the world coordinate system. For a best possible depth
resolution, the near and far planes are set in such a way that the bounding volume of the
object lies exactly between the clipping planes.
The z-buffer method has the advantage that for a large amount of feature points the 3D
coordinates can be determined with very little computational costs. A drawback of the
rendering-based approaches is that the frame buffer or the depth buffer has to be read
back. Since most graphic cards have a very poor performance in transferring data back
to the main memory, this step is the main bottle neck of the approach.
Another method for the acquisition of a 3D coordinate of a given 2D feature point is
to use ray casting techniques. An intersection test of the camera viewing ray with the
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model geometry results in the 3D position of an observed feature point. This intersection
test can be very fast, especially if a model consists of a hierarchy of many bounding
volumes. If only the 3D position of very few feature points is demanded, using such
geometric intersection tests can be more efficient than rendering the whole model and
reading back a whole rendering buffer. However, with many feature points, rendering
techniques can help to reduce the computation time. Depending on the complexity of the
model and the number of feature points, there is always a break-even point, where either
the ray intersection or the rendering method is more efficient. With geometric models of
industrial scenarios we experienced that the acquisition of 3D coordinates with the depth
buffer has the better performance.
If the camera pose is known, features can be extracted out of an image and corresponding
3D coordinates can be obtained with the 3D model geometry. Vacchetti et al. [113] use
a set of calibrated reference images together with the model geometry to acquire 2D/3D
correspondences between image points and model points. With calibrated reference im-
ages the initialization of the camera tracking can be performed by matching feature points
between the reference image and the current camera image. Since the 3D coordinate of a
feature in the reference image is known, the matched feature in the current frame can be
associated with the same 3D coordinate, and with the resulting 2D/3D correspondences
the camera pose of the current frame can be estimated.
However, the calibration of reference images is an inconvenient pre-processing step, which
is not applicable for many high level AR application developers. To avoid the use of
reference images, we initialize our tracking system with the edge-based techniques as
described in Section 5, where a line model is generated out of a polygonal model and then
aligned with the image gradient. With a correctly initialized camera pose 2D features are
extracted out of the current camera images and the 3D coordinate is obtained with the
given polygonal model.
New features are extracted in areas of the current image, where features do not exist yet,
if the number of successfully tracked features falls below a lower bound. We experienced
that the minimum number of 30 features is a good compromise between robustness and
real-time capability. The whole tracking method is outlined in Algorithm 4.
The tracking method is tested with a small industrial object. The polygonal model of
the object which is used for the tracking setup, can be seen in Figure 6.9(a). The frame,
where the tracking is initialized, is shown together with the overlaid line model in Figure
6.9(b). In this particular example a manually created line model is used to initialize the
tracking. In Figure 6.10 the KLT features, which have obtained a valid 3D coordinate
from the model geometry, can be seen. Features which have not been tracked successfully
are colored red. On silhouette edges of the object and on the reflecting plexiglass surfaces
for some of the features the tracking fails. The virtual augmentation which is rendered
with the estimated camera pose is overlaid on the images, which is shown in Figure 6.11.
An industrial scenario, where augmented reality could be a very beneficial support for
maintenance, is the engine hood of a car. We also tested our tracking method for such
a scenario with the tracking method described in Algorithm 4. The polygonal model of
the regarded engine, the extracted line model and the initialization frame are shown in
Figure 6.12. Again the line model is just used to estimate the very first camera pose and
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(a) (b)

Figure 6.9.: In (a) the polygonal model of an industrial maintenance scenario is shown.
Only the geometry of the model is used for the determination of the feature’s
3D position. In (b) the frame of the sequence is shown, where tracking is
initialized with a line model. For this scenario the line model is created
manually.

Figure 6.10.: All KLT-features which are located on the object are used for the camera
pose estimation. Features where the tracking has failed are colored red.

Figure 6.11.: A virtual augmentation is rendered with the estimated camera pose onto the
camera image. If enough KLT-features can be tracked, the virtual arrows
are always overlaid correctly in the scene.
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Algorithm 4 Point-based tracking with a polygonal model
1: build image pyramid of current image
2: if current pose is not valid then
3: try to initialize tracking with line based method
4: else
5: for all features which are located inside the previous image do
6: estimate feature translation from previous frame to current frame
7: estimate full affine transformation with illumination compensation from reference

patch to current frame
8: end for
9: compute camera pose with all successfully tracked features

10: end if
11: if estimated camera pose is valid then
12: project all lost features into the image with the current camera pose
13: if number of successfully tracked features is smaller than a lower bound then
14: detect new feature points in areas of the image, where no feature exists yet
15: for all newly detected feature points do
16: extract patches at feature position at all levels of the current image pyramid
17: end for
18: acquire 3D coordinate of the feature with the given polygonal model
19: end if
20: end if

the camera tracking is continued by tracking KLT feature points. The camera is moved
steadily around the engine, and the scene is observed under a variety of different viewing
positions and different scales. Throughout the whole sequence the camera pose can be
estimated correctly. If the number of successfully tracked features is limited, slight jitter
can be observed. The results of the KLT feature tracking step is visualized in Figure 6.13.
Some frames of the regarded sequence with additional virtual information are shown in
Figure 6.14. As augmentation three simple arrows pointing to some area of interest are
overlaid.

Using the Line Model for Drift Prevention

Our point feature tracking algorithm itself does not drift, since the alignment of the
reference template is always the final step of the feature tracking methods. However, the
acquisition of the 3D coordinates is not free of errors, and these errors have an influence
on the further estimation of the camera pose. If new features are extracted and their 3D
coordinates are obtained from the model geometry, the errors of the feature positions and
3D coordinates are accumulated. Therefore the tracking method of Algorithm 4 is not
drift free.
Since the 3D geometry of the extracted line model, which is used for the initialization, is
static, the line tracking algorithm does not produce any drift. This benefit can be used
to eliminate drift, if the line model initialization step is inserted into the feature point
tracking algorithm. The most reasonable time when the line model tracking should be
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(a) (b) (c)

Figure 6.12.: Semi-automatic initialization with a polygonal model. In (a) the rendered
polygonal model is shown, in (b) the extracted line model and in (c) the
frame in which the tracking is initialized can be seen.

Figure 6.13.: Visualization of the KLT feature tracking. The line model is only used for
initializing the first camera pose.

called, is before the extraction of new KLT features, because then it is guaranteed that the
virtual model is correctly aligned with the model in the image. The error of the feature
points is not accumulated, because the camera pose which is estimated with other feature
points is not used for the acquisition of 3D coordinates. However, a drawback of using
the line tracking method to prevent drift is that the whole tracking system does not run
at constant speed, because every time when new features are extracted, a slowdown of
the frame rate can be observed.

6.7.3. Reinitialization with SIFT Features

If the scene is completely occluded or the user looks away from the object of interest for a
short time, the KLT features cannot be tracked any more and the camera pose estimation
fails. If only the semi-automatic initialization with the line model is used, the user is
forced to re-initialize the tracking by moving the observing camera to the position, where
the line model can be aligned successfully. A more sophisticated and user-friendly method
is the acquisition of calibrated reference images during the tracking and the use of these
images for a wide base line matching algorithm to re-initialize the camera tracking. In
our tracking system we used the SIFT descriptor for this purpose. A similar approach is
implemented in the distributed mobile AR system, which was presented in [56].
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Figure 6.14.: Tracking of a motor engine. The arrows are rendered with the camera pose,
which is obtained from the KLT-feature tracking.

For this re-initialization step the tracking system collects a set of calibrated reference
images during the successful tracking. A valid camera pose is stored together with the
extracted SIFT features of the regarded camera frame. Since the 3D coordinates can be
obtained from the model geometry, a set of 2D/3D correspondences is created for every
captured reference frame. If the tracking is interrupted, the re-initialization algorithm
is called with the proximate image frame. SIFT features are extracted from the current
camera image and matched to the 2D/2D correspondences to one of the reference views.
With the matches new correspondences of 3D coordinates and 2D points in the camera
image are created and used to calculate the camera pose. A new reference image and a
corresponding camera pose are stored only if no reference image with a similar camera
pose exists. By analyzing the histograms, the reference images are ordered according to
similarity, and only those which resemble the current camera image are used in decreasing
order of similarity for the re-initialization of the camera pose.
With this re-initialization module, the user of the AR system can turn the observing
camera away from the scene, and as soon as known parts of the scenario appear in the
camera image again, the tracking is reinitialized without requiring any user interaction.
Matching techniques like the classification of feature points with randomized trees can
only be used for the initialization and not for the re-initialization, since the generation
of the trees is a time-consuming processing step. Therefore such approaches are only
applicable, if the generation of classification trees is moved in a preprocessing step.

6.8. Conclusion

Point feature tracking techniques can contribute to very beneficial solutions for the camera
pose estimation problem. We implemented a tracking system, where optical flow based
methods and template tracking approaches are used for the frame-to-frame tracking. We
improved the template-based tracking by considering multi-resolutions of reference tem-
plates, which results in the to possibility to track a feature robustly under a variety of
different scales. Furthermore, we developed an update method and a template mask
generations method to increase the stability of the template alignment.
These feature tracking approaches were used to create a camera tracking system with a
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given model geometry. Simple models like planar posters, but also complex industrial
scenarios can be tracked with our method.
Wide baseline matching algorithms are used for the initialization and re-initialization of
our tracking system. For some scenarios we used a line model for the very first estimation
of the camera pose, but continued to track with point features. This can be helpful, if
the scene consists of textured structures, in which point features can be tracked reliably.
The use of point features instead of only line features is an essential improvement to lead
to a more stable behavior of large displacements. Since template-based features can be
aligned with greater robustness and precision, the overall tracking is more stable and less
jitter can be observed. However, if a scene hardly consists of distinct point features, like a
collection of pipes, point-based methods might not produce as good results as line-based
methods.
Future work in the area of point-based tracking will be a more efficient implementation of
the tracking algorithms directly on the graphics hardware. Since the architecture of GPUs
provides excellent parallel computation units, such approaches could result in higher frame
rates with large image resolutions.
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7. Tracking in Unknown Scenes

7.1. Introduction

If augmented reality applications shall be created with scenarios, where not the complete
model geometry is known, the tracking algorithms described in the previous chapter are
not applicable. Since with those methods 3D coordinates can only be gathered at image
positions which correspond to a given model, the camera tracking can only work if parts
of that model are visible. However, there is an urgent demand for a tracking system that
can estimate the camera pose in a scene, where only limited or even no reference geometry
is given. With such a system the camera tracking could continue, even if the reference
object is not visible in the camera image any more.
Since the 3D position of a feature cannot be taken from a given model geometry, the only
choice is the reconstruction of 3D coordinates from corresponding image points in multiple
views. With two or more views a 3D point can be reconstructed by triangulation, if the
camera parameters, i.e. projection matrices, are known. Structure from motion (SFM)
techniques allow the simultaneous determination of 3D points and projection matrices
in each view. Such methods are used widely in photogrammetric application like the
reconstruction of virtual reality models [125] or the determination of the camera motions,
also denoted as match moving. Commercial products for the estimation of the camera
path of a video stream exist1, and are mainly used in cinematography for post-production
and special effects. For those purposes the sequences can be processed off-line and the
amount of computational workload is not critical. Such methods are not applicable for
augmented reality applications since for the seamless integration of virtual objects into
video streams, the camera pose has to be estimated in real-time.
But nevertheless structure from motion techniques can be used for the online estimation
of the camera parameters. This chapter handles the real-time reconstruction of scene
geometry with the intent to use the reconstructed geometry for further continuous camera
tracking. First the reconstruction of feature points is discussed, furthermore an approach
for the reconstruction of surface normals is presented. The reconstructed scene geometry
is then used for the prediction of lost feature points.

7.2. Online Reconstruction of Point Features

By analyzing the relation between multiple views and the correspondences between image
feature points, the scene structure and the camera motion between the different views can

1see http://www.realviz.com
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be retrieved. The typical structure from motion approach is first to estimate the camera
motion, then reconstruct an initial estimate of the feature positions and finally refine both
camera parameters and feature positions. If no previous knowledge of the scene exists,
the camera motion between two image frames can be calculated with epipolar constraints,
i.e. the estimation of the essetial matrix and the decomposition into camera rotation and
camera translation. If some correspondences between image points and 3D coordinates
exists in both images, the camera pose can also be estimated by minimizing the projection
error.

If the camera parameters are known for all regarded views, the 3D positionM of a feature
point can be reconstructed by triangulation [40]. The classical approach is the solution
of the following least squares problem

M = arg min
M

∑
i

‖mi − fi(M )‖2 , (7.1)

where fi is the projection function, which projects the 3D pointM into the image of the
ith view, and mi is the observed feature point in the image frame i. A linear solution
can be calculated by singular value decomposition and optionally refined with a nonlinear
method like Levenberg-Marquardt.

The whole reconstruction process is usually carried out in a sequential way, where the
camera parameters are computed between consecutive views. The estimates of the pro-
jection matrices of all views and the reconstructed 3D points of all features can be refined
with a bundle adjustment. An iterative non-linear optimization method is used to min-
imize a weighted sum of all projection errors with respect to the feature positions and
camera parameters.

Another very promising approach is the simultaneous localization and mapping (SLAM),
where a map is built incrementally with the simultaneous estimation of the current camera
pose. Statistical methods like the extended Kalman filter or particle filters are used to
keep track of the feature positions and the camera state. A complete SLAM system for
tracking a monocular camera for augmented reality applications is presented by Davidson
[23]. A benefit of such filtering techniques is that other devices like inertial sensors can
be incorporated into the tracking process. However, a drawback is that the method gets
computationally very complex with an increasing number of features.

In [12] we present a system, where the consequent error propagation of the SLAM approach
is combined with robust and efficient traditional SFM and pose computation methods.
The difference to a full SLAM system, which maintains a huge covariance matrix with the
correlation of all features and the camera pose, is the decoupling of scene reconstruction
and pose estimation. This strategy makes the system more flexible with the insertion
and deletion of features and more efficient with a larger number of feature points. The
triangulation is implemented as a pseudo-RANSAC procedure to increase robustness es-
pecially against wrong feature localizations. If a 3D feature is visible in the current image,
its 3D position and covariance is updated with the new measurement using the extended
Kalman filter measurement update, which reduces uncertainty over time.
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7.3. Reconstruction of Surface Normals

For a robust tracking system it is desired that lost features can be used for the tracking
once again, after they have been occluded or moved out of the image frame for a certain
time. Therefore unsuccessfully tracked features need to be predicted so that the local
search can be carried out successfully in the proximate camera image. If a planar template
is used to track a single point, such as the KLT feature tracker or a homogeneous image
alignment, not only the feature position but also the warp function needs to be predicted.
A correct prediction of the warp function is only possible if the true surface normal vector
of the template is known. A rough approximation can be made by assuming that the
surface normal is equal to the viewing direction of the camera in that image frame, when
the feature is observed for the first time. With a reconstruction of the true surface normal
a more precise prediction of the warp is possible.
A method of reconstruction the surface orientation of a planar region is presented by
Molton et al. [77]. They estimate the surface normal by a gradient-based image align-
ment technique where the parameters of the normal vector are used as the degrees of
freedom during the minimization of intensity differences. Our method is similar to the
one presented by Favaro et al. [27], where an extended Kalman filter is used to iteratively
refine the estimate of the surface normal orientation.

7.3.1. Relation between Camera Motion and Image Transformation

If we consider two camera frames, where (R0, t0) and (R1, t1) are the extrinsic camera
parameters of the first and the second camera respectively, the world coordinates of a 3D
point Mw are transformed into the two camera coordinate systems by

M c0 = R0Mw + t0 (7.2)
M c1 = R1Mw + t1. (7.3)

Substituting Mw in the second equation leads to the transformation of a point from the
first camera coordinate system to the second camera coordinate system, which can be
computed by

M c1 = R1R
T
0 (M c0 − t0) + t1

= (R1R
T
0 )M c0 + (t1 −R1R

T
0 t0). (7.4)

For the rotation difference ∆R and the translation difference ∆t we get

∆R = R1R
T
0 (7.5)

∆t = t1 −R1R
T
0 t0 (7.6)

and the equation (7.4) can be rewritten as

M c1 = ∆RM c0 + ∆t. (7.7)
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If nw is a unit normal vector of a plane P in the world coordinate system, this normal
vector can be transformed into the coordinate system of the first camera by

nc0 = R0nw. (7.8)

Now, if nc0 is the plane normal with respect to the first camera pose and d is the distance
from the plane to the optical center of the first camera, then for all points M c0 on the
plane P the equation

nTc0M c0 = d (7.9)

must hold. The distance d can be calculated by d = nTc0Xp with any 3D pointXp located
on the plane P .
Substituting equations (7.9) into equation (7.7) leads to

M c1 = ∆RM c0 + ∆tnc0
TM c0

d

= (∆R + ∆tnc0T
d

)M c0. (7.10)

The linear transformation of a 3D point on the plane P from the first camera coordinate
system into the second camera coordinate system can also be described by

M c1 = HM c0, (7.11)

where

H = ∆R + ∆tnc0T
d

(7.12)

denotes a homography mapping form M c0 ∈ R3 to M c1 ∈ R3.
With the intrinsic camera matrix K, the point M c in the coordinate system of a camera
can be transformed into image coordinates by

sm̃ = KM c, (7.13)

where s is a factor representing the scale ambiguity and m̃ the homogeneous point in the
image.
If m̃0 = 1

s0
KM c0 is the homogeneous point in the first camera image and m̃1 = 1

s1
KM c1

is the homogeneous point in the second camera image, the relation between m̃0 and m̃1
can be denoted as

m̃1 ∼ KHK−1m̃0, (7.14)

where ∼ indicates equality up to a scale factor.
The homography HI , which maps a homogeneous image point on the plane P from the
first to the second camera image can be written as

HI = λKHK−1. (7.15)
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This homography HI is the transformation which is, for example, estimated with an
iterative image alignment method as the one presented in Section 6.5.
In order to compute H from the image homography HI , the scale factor λ has to be
determined. The image homography HI can be transformed into the camera coordinate
system by

HL = K−1HIK. (7.16)

If the relation between HL and the motion parameters of the camera (R,t) and the struc-
ture parameters (n,d) is written as

HL = λH = λ(∆R + ∆tnT
d

), (7.17)

then the scale factor λ can be computed by

|λ| = σ2(HL), (7.18)

where σ2(HL) is the second largest singular value of HL. The proof can be found in [67],
p.135.
By assuming that the normal vector ñc0 = dnc0 is non-unit, the value d of equation (7.17)
can be neglected, and the normal vector must satisfy the following equation

( 1
λ
HL −∆R) = ∆tñTc0. (7.19)

Transposing and multiplying this equation with ∆t results in the least squares solution
for ñc0:

ñc0 = 1
∆tT∆t(

1
λ
HL −∆R)T∆t. (7.20)

Then the unit normal nc0 and the scale factor d can be determined by normalizing ñc0.
Since this equation computes the normal vector nc0 in the coordinate system of the first
camera, it must be transformed into the world coordinate system by

nw = R−1
0 nc0. (7.21)

Now the vector nw can be regarded as a measurement of the surface normal, which will
be used for a robust estimation of the surface orientation.

7.4. Feature Prediction

If an image feature is occluded or cannot be tracked because of reflections, these feature
points needs to be predicted so that the local search of the template-based tracking can be
successful. With no proper prediction the starting point for the iterative image alignment
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would be further away from the solution and the chances for convergence are getting lower
with every frame, at which the tracking of this feature failed. Moreover, feature points
which move out of the camera image and are not visible in the current frame any more
should not be discarded. If the camera moves back and an already reconstructed feature
point gets visible again, this points needs to be predicted so that the feature tracking step
can be carried out correctly.
The most straightforward method for feature prediction is to use the camera pose of
the last frame, assuming that the pose estimation was successful. A more sophisticated
approach is to use a Kalman filter with a kinematic motion model. With such a filter the
current camera pose can be extrapolated for a proximate camera frame, which results in
a more precise prediction. If other input devices like an inertial sensor are integrated into
the tracking system, they can also be used to provide a more accurate prediction of the
camera pose.

7.4.1. Image Position Prediction

If the approximate camera pose is known, it can be used to predict all feature points,
where the tracking step failed in the last frame. Predicting the position of a template
is fairly simple. If M is the reconstructed 3D point, the image position of this feature
can be estimated by projecting the point M into the image with the current camera
parameters. With the intrinsic camera matrix K the homogeneous image position m̃′ can
be computed with

m̃′ = K(RM + t), (7.22)

where the camera rotation and translation used for the prediction is given by R and t.

7.4.2. Warp Prediction

If a warp shall be predicted in the image, the 3D geometry of the template needs to be
available. A simple approximated method for predicting an affine warp is to use the unit
vectors of the affine transformation. When a feature is detected for the first time, it is
assumed that the initial captured patch is observed from an orthogonal direction of the
patch plane, and the 2D unit vectors of the affine transformation are un-projected with the
3D position of the regarded feature point. This yields two vectors which approximately
describe the orientation of the template in 3D space. If offline models are used, e.g. a
reference image of a poster, these 3D unit vectors of the affine transformation can be
determined exactly.
For a prediction of an affine warp with a given camera pose, the 3D unit vectors can also
simply be projected into the image, and the affine warp can be derived from the projected
unit vector.
For a more accurate tracking of templates in camera images with a wide field of view,
the warp function can be modeled with a homography. A homography correctly models
the transformation of a plane for a perspective camera projection. In equation (7.12) it

94



7.4. Feature Prediction

can be seen that the surface normal of a plane is related to the homography mapping
of a template between two images. If a surface normal of a template is reconstructed or
given from a 3D model, this normal vector nw can be used to predict the homography.
Together with the 3D position Mw and the relative camera rotation ∆R and relative
camera translation ∆t, the homography of an image patch can be calculated.
Since the equation

d = nTc0M c0 = nTc0(R0Xp + t0) (7.23)

must be satisfied for any point Xp on the plane P , the predicted homography H̃ can be
calculated by

H̃ = ∆R + ∆tnTc0
nTc0(R0Mw + t0)

. (7.24)

Since we are interested in a prediction of a warp function in the image coordinate system,
the homography H̃ has to be projected into image space. For this homography, which
transforms a point in the image of the first camera to the second camera, we get

H̃I ∼ KH̃K−1. (7.25)

The homography H̃I describes the transformation from a template in the initial camera
image to the current camera image.
If a feature is initialized at the 2D image position p = (px, py)T the homography which
represents the current warp of the template is initialized with

H0 =

1 0 px
0 1 py
0 0 1

 . (7.26)

To obtain the homography in the image of the current camera pose, H̃I has to be trans-
formed by the initial homography H0. Finally the prediction of the homography in the
current camera image can be computed by

H∗ = H̃IH0. (7.27)

The undefined scale factor of H∗ can be eliminated by normalization with the last element
of H∗. With the warp parameters of H∗ the iterative template alignment with a projective
warp function is initialized.

7.4.3. Prediction of the Illumination Parameters

Since the illumination can change significantly if the feature has not been observed for a
long time, the illumination parameters also need to be predicted. This is very important
for the convergence behavior, because if the illumination parameters are too far away
from the solution, the whole iteration process is likely to diverge.
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If µt and µ0 are the mean intensity values of the current and the initial patch, and if σt
and σ0 are their standard deviations respectively, then the contrast λ and brightness δ
can be predicted by

λ =σt
σ0

(7.28)

δ =µt −
σt
σ0
µ0. (7.29)

The predicted illumination parameters λ and δ describe the illumination correction of a
patch, which is extracted out of the current image, that T (x) = λI(g(x;p)) + δ holds.

7.5. Experimental Evaluation

7.5.1. Tracking in Partially Known Scenes

We evaluated the tracking system with the integrated reconstruction of feature points on
several image sequences. In the first sequence, as illustrated in Figure 7.1, the camera
pose estimation is tested with a desktop scenario. A toy truck is used as a reference object
and the tracking system is initialized with a generated line model of the toy truck. At the
beginning the extrinsic camera parameters are set in such a way that the projection of the
generated line model is in the center of the image. If the projected lines are close enough
to the real object in the image, the line model is aligned and the first point features
are initialized both on the model and on other areas of the image. During the point
feature tracking phase the line model is just used for augmenting the scene. After the
tracking is initialized, the camera pose is estimated by using only point features on the
object, since these are the only points with a known 3D coordinate. Other features are
detected, triangulated and refined during the further tracking. When the camera moves
away from the truck, it is still possible to estimate the camera pose correctly. After the
truck reappears in the image, features obtained in previous tracking steps are re-acquired,
and no drift is visible in the augmentation.
For a clearly arranged visualization of the different steps of the tracking system we com-
posed a result video with four image frames, which all point out different properties of
the tracked features. In Figure 7.1 such an arrangement is illustrated.
All the four images represent the state of all the current features at the same time step.
In image (a) the results of the 2D feature tracking step with KLT features is visualized.
The green rectangles are successfully tracked features, for the red ones the tracking failed.
Mostly features which are located on object borders differ too much from the initially
extracted template and can thus not be tracked successfully.
In (b) the 3D model of the reference object is shown from a different point of view together
with the 3D covariances of the reconstructed feature points, which are represented by
ellipsoids. It can be observed that the features have an initially high uncertainty along
the viewing direction of the camera. While moving the camera through the scene, the
feature positions are refined with an extended Kalman filter. The uncertainty of the
feature positions is thereby decreased, which is visualized by shrinking ellipsoids.
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(a) (b)

(c) (d)

Figure 7.1.: Illustration of the feature tracking and reconstruction process. All images
represent the states of the features at the same camera frame. In (a) the
results of the 2D feature tracking step are pointed out. In (b) the reference
object and the 3D covariances of the reconstructed feature points are shown.
Figure (c) illustrates a projection of the 3D covariances in the image plane.
Features with a high absolute value of the covariance are colored red, features
with a small uncertainty are colored green. In (d) the original image is aug-
mented with the line model of the reference object and a virtual character
standing on the table.
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Figure 7.2.: Tracking results showing the ability of handling occlusion and even the total
removal of the object from the scene.

Image (c) of Figure 7.1 illustrates the same uncertainty regions of the feature points as
a projection in the image plane. The absolute value of the uncertainty is color coded in
that way that the color value is shifted with increasing precision from red to green.

Finally in (d) the original image is overlaid with the line model with which the tracking
was initialized and an additional virtual character standing on the table. The purpose of
this frame is to evaluate, if the camera pose is estimated properly and that virtual objects
are always placed correctly in the scene.

Figure 7.2 shows the tracking results of another sequence of the same scenario with an
image size of 320x240 pixels. This time the initialization object is occluded and removed
from the scene. Since enough other features have been triangulated and refined success-
fully, it is still possible to keep tracking. The line model, which is used for augmentation,
sticks at the same position in the real world.

In another sequence an industrial control unit is used as a reference object. In Figure 7.3
some frames of this sequence can be seen. Again the tracking is initialized with a line-
model, which is generated out of a given VRML-model. After the initialization feature
points are extracted in the whole image, but only those points which are located on the
known geometry can be used instantly for the camera tracking. The other features are
triangulated and refined when the camera is moved through the scene. Again it can be
observed that due to the refinement process the uncertainties of the reconstructed feature
points shrink during the tracking. When a person moves into the scene, some feature are
occluded and the 2D tracking step for these features fails. In the first column of Figure 7.3
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(a) (b) (c)

Figure 7.3.: Tracking results demonstrating the robustness against occlusion. In (a) the
KLT features are shown, in (b) the covariances of the reconstructed features,
and in (c) the feature with their 2D unceratinties can be seen.

all those occluded features are colored red. Since enough valid 2D features are available
in every frame, the pose can be estimated successfully despite the occlusion.

7.5.2. Runtime Analysis

We analyzed the processing time needed for tracking and reconstruction on a Pentium
IV with 3 GHz. The results are shown in Table 7.1. The time for processing one frame
strongly depends on the number of features in the current field of view. In this sequence
on average 28.5 features were used for the tracking in every frame and 38.81 milliseconds

2D registration + pose estimation reconstruction
Avg. 28.84ms 9.97ms
Min. 10.55ms 4.15ms
Max. 67.63ms 32.86ms

Table 7.1.: Average, minimum and maximum time in milliseconds, which is needed for
processing one frame of the truck sequence.
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(a) (b)

Figure 7.4.: In (a) a frame of the image sequence is shown together with the tracked
template patches. In (b) the reconstructed 3D patched and their surface
normal direction are drawn. The blue rectangle illustrates the corresponding
plane of the feature.

were measured for the total time needed for 2D feature registration, pose estimation and
reconstruction. The feature map contained 38.4 features on average.
For the acquisition of the images and the rendering of some virtual objects some additional
processing time is needed. Altogether the system can handle frame rates up to 20Hz, when
a reasonable number of features is used for tracking.

7.5.3. Surface Normal Reconstruction

For the evaluation of the reconstruction of surface normals a sequence of a desktop scene
is used. The camera tracking is initialized with a reference image and a randomized
trees keypoint classification. The tracking is tested with both updating the template and
keeping the template as it is when it was captured at its first appearance. With both
methods the camera can be traced throughout the whole scene.
To analyze the quality of the surface normal reconstruction the 3D patches together
with their normals are rendered. In figure 7.4 a frame of the image sequence and the
reconstructed planar patches together with their surface normal directions are shown.
At the beginning when a feature is observed first, the normal vector points towards the
camera position, but when the camera is moved around the scene, the estimate of the
normal vectors converges towards the true orientation of the surface normal direction of
a feature. At some points where only a poor alignment of a template patch is possible,
i.e. on edges or object borders, the reconstructed normal cannot be estimated correctly.
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8.1. Introduction

Tracking texture-based point features is a widely used technique for the estimation of
the camera pose. If a limited set of planar template patches is tracked successfully in an
image sequence, the extrinsic parameters can be computed robustly in real-time. These
approaches are very promising if the feature points are located on well textured planar
regions. However, in industrial scenarios objects often consist of reflecting materials and
poorly textured surfaces, where feature tracking approaches like the KLT-tracker have a
constricted success rate. Because of spotlights or occluding objects the area of camera
positions where a feature point has the same visual appearance can be very limited.
Increasing the number of features can help to ensure a robust camera pose estimation,
but as the 2D feature tracking step makes up a large amount of the computation time,
the overall tracking performance gets very poor. Thus the number of features has to
be limited, because tracking too many features has a negative effect on the real-time
capability of a tracking approach. A choice for a reasonable number of features can be
therefore regarded as a tradeoff between real-time capability and robustness.
Using only a subset of those features which are visible from a given viewpoint can avoid
this problem. If a feature map consists of many features, not all feature have the same
prospect of tracking success for a given camera position. For example, partially occluded
features or features which are observed under a strong aspect change have a lower chance
to be tracked successfully than other features. The difficulty of a sophisticated choice of
a subset of feature points is to select those features which are most likely to be tracked
from a given camera viewpoint and therefore are the best candidates for a robust camera
pose estimation.
Najafi et al. [80] present a statistical analysis of the appearance and shape of features from
possible viewpoints. In an offline training phase they coarsely sample the viewing space at
discrete camera positions and create cluster groups of viewpoints for every model feature
according to similar feature descriptors. Thereby a map is created which gives information
about the detection repeatability, accuracy and visibility from different viewpoints for
every feature. During the online phase this information is used for a selection of good
features.
We present a method for a feature management which does not rely on any preprocessing,
but performs an online estimation of the tracking probability of every feature. The ability
to track a feature is observed during the runtime and a distribution of camera positions
of tracking successes and tracking failures is created. These distributions are represented
by a mixture model with a constant number of Gaussians. A merge operation is used to
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keep the number of Gaussians fixed. The resulting tracking probability, which not only
models the visibility but also the robustness of a feature, is then used to decide which
features are most suitable to be tracked at a given camera position. The robust camera
pose estimation is solved by using the Levenberg-Marquardt minimization and RANSAC
outlier rejection. An evaluation demonstrates the quality of the probability distribution
and the benefit of the computation time.

8.2. Feature Tracking and Map Management

For a reasonable feature map management, a single feature must be able to be tracked
as long as possible. Therefore the 2D feature tracking must be invariant to deformations,
illumination and scale. We used the template-based approach, which is described in
Section 6.5 with an affine warp function and an additional brightness correction. To
improve the convergence behavior of the template alignment the tracking is performed in
two steps as presented in Section 6.5.2. Pure translation from frame to frame is estimated
first on several levels of the image pyramid, and then the template patch is iteratively
aligned at the resulting image position of the first stage.

With such a tracking system, the tracking of feature points is invariant under deforma-
tions because of the affine warping model and invariant against illumination changes. An
additional scale invariance is realized by maintaining a set of templates of several reso-
lution levels. This method extracts a template patch in different resolution levels of the
image pyramid and always selects that patch which has the most similar resolution to the
predicted affine transformed patch. If the desired resolution of the patch does not exist,
it is extracted out of the current image after a successful tracking step.

A feature is regarded as tracked successfully if the iterations of the alignment converge
and the discrepancy of the template and the extracted image patch at the current feature
position is smaller than a given threshold. Successfully tracked features are reconstructed
by triangulation and further refined by an Extended Kalman Filter as described in Section
7.2.

The functions of the feature management are the extraction of new features, the estimation
of the feature tracking probability, the selection of good features for a given camera
position and the removal of features which are not of any use for further tracking. The
whole management shall be an incremental process which runs in real-time and only uses
a limited amount of memory. The tracking probability of a feature is denoted as the
probability if a feature is able to be tracked successfully at a given camera position. In
the following section the sequential estimation of this probability is described.
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8.3. Tracking Probability

8.3.1. Probability Density Estimation

As the rotation around the camera center does not have any influence on the visibility of
a point feature, if the feature is located inside the image, only the position of the camera
in world coordinates is regarded as a useful information to decide whether a feature is
worth tracking. What is known about the ability to track a feature at a given camera
position are the observations of its tracking success in previous frames. The problem
of modeling a probability distribution p(x) of a random variable x, given a finite set
x1, . . . ,xN of observations, is known as density estimation. A widely used nonparametric
method for creating probability distributions are Kernel density estimators. To obtain a
smooth density model we choose a Gaussian kernel function. For a D-dimensional vector
x the probability density can be denoted as

p(x) = 1
N

N∑
n=1

1
(2πσ2)D/2 exp

(
−‖x− xn‖

2

2σ2

)
, (8.1)

where N is the number of observation points xn, and σ represents the variance of the
Gaussian kernel function in one dimension.
Every observation of a feature belongs to one element of the class C = {s, f}, which simply
holds the information whether the tracking step was successful (s) or the tracking failed (f).
The probability density of the camera position is estimated for every element of the class
C separately. Let p(x|C = s) be the conditional probability density of the camera position
for successfully tracked features and p(x|C = f) the conditional probability density for
unsuccessfully tracked features. The marginal probability of tracking successes is given
by p(C = s) = Ns

N
and for tracking failures by p(C = f) = Nf

N
, where Ns and Nf are

the number of successful and unsuccessful tracking steps respectively, and N is the total
number of observations.
The probability pt(x) if a feature can be tracked at a given camera position x is estimated
with

pt(x) = p(C = s|x). (8.2)

When applying the Bayes’ theorem, the tracking probability can be written as

pt(x) = p(x|C = s)p(C = s)
p(x)

= p(x|C = s)p(C = s)
p(x|C = s)p(C = s) + p(x|C = f)p(C = f)

= p(x|C = s)Ns

p(x|C = s)Ns + p(x|C = f)Nf

. (8.3)

The estimation of probability densities by using Equation (8.1), however, has the major
drawback that with an increasing number of observations the complexity for storage and
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computation is increasing linearly with the number of observations, which is not feasible
for an online application. Our approach for the density estimation is based on a finite set
of Gaussian mixtures.
The use of mixture models for an efficient computation of clusters in huge data sets has
already been addressed. In [97] the Iterative Pairwise Replacement Algorithm (IPRA) is
proposed, which is a computationally efficient method for conditional density estimation
for very large data sets where kernel estimates are approximated by much smaller mix-
tures. Goldberger [33] uses a hierarchical approach to reduce large Gaussian mixtures to
smaller mixtures by minimizing a KL-based distance between them. Zhang [121] presents
another efficient approach for simplifying mixture models by using a L2 norm as distance
measure between the mixtures. Zivkovic [126] presents a recursive solution for estimating
the parameters of a mixture with a simultaneous selection of the number of components.
We use a method which is similar to [97], but instead of clustering a large data set we use
the method for an online density estimation with a finite mixture model. A mixture with
a finite number of Gaussians is maintained for both the successfully and unsuccessfully
tracked features. Now we regard the multivariate Gaussian mixture distribution of the
successfully tracked features, which can be written as

p(x|C = s) =
K∑
k=1

ωkN (x|µk,Σk) with
K∑
k=1

ωk = 1, (8.4)

where µk is the D-dimensional mean vector and Σk the D × D covariance matrix. The
mixing coefficients ωk = Nk

Ns
hold the information how many observations Nk have affected

this Gaussian k. The probability distribution p(x|C = f) is defined in the same way.
Together with Equation (8.3) the tracking probability for a given camera position can be
estimated.
The mixture model is built and maintained as follows. Depending on the tracking success,
an observation is assigned to a class C, which means that either the distribution p(x|C =
s) or the distribution p(x|C = f) is updated. First for every observation a Gaussian kernel
function is created where every kernel can be regarded as a Gaussian of the mixture model.
If the maximum number of mixtures K is reached, the two most similar mixtures are
merged and a new Gaussian is created by taking the kernel function from the proximate
observation.

8.3.2. Similarity Measure

A similarity matrix is maintained where the similarity of all Gaussians among each other
is stored.
Scott [97] defined the similarity measure between two density functions p1 and p2 as

sim(p1, p2) =
∫∞
−∞ p1(x)p2(x)dx

(
∫∞
−∞ p

2
1(x)dx

∫∞
−∞ p

2
2dx)1/2 . (8.5)

Equation (8.5) can be considered as a correlation between the two densities.

104



8.3. Tracking Probability

If p1(x) = N (x|µ1,Σ1) and p2(x) = N (x|µ2,Σ2) are normal distributions, the similarity
measure can be calculated by

sim(p1, p2) = (2D|Σ1Σ2|1/2)1/2

|Σ1 + Σ2|1/2 exp(∆) (8.6)

with

∆ = −1
2(µ1 − µ2)T (Σ1 + Σ2)−1(µ1 − µ2). (8.7)

This equation follows from the fact that
∞∫
−∞

N (x|µ1,Σ1)N (x|µ2,Σ2) = N (0|µ1 − µ2,Σ1 + Σ2). (8.8)

The two Gaussians for which the similarity measure of Equation (8.5) is smallest are used
for the merging step which is described in the next section.

8.3.3. Merging Gaussian Distributions

The merge operation of the two most similar Gaussians is carried out as follows. Now
we assume that the ith and the jth component are merged into the i′th component of the
mixture. Since a mixing coefficient represents the number of observations which affect
a distribution, the new number of observations is Ni′ = Ni + Nj, and therefore ωi′ is
updated by

ωi′ = ωi + ωj. (8.9)

The mean of the new distribution can be calculated by

µi′ = 1
Ni′

Ni′∑
n=1
xn = 1

Ni′
(
Ni∑
n=1
xn +

Nj∑
n=1
xn)

= 1
Ni′

(Niµi +Njµj) = 1
ωi′

(ωiµi + ωjµj). (8.10)

After the mean is computed, the covariance Σi′ can be updated as follows

Σi′ = 1
Ni′

Ni′∑
n=1

(xn − µi′)(xn − µi′)T

= 1
Ni′

Ni′∑
n=1
xnx

T
n − µi′µTi′

= 1
Ni′

(
Ni∑
n=1
xnx

T
n +

Nj∑
n=1
xnx

T
n )− µi′µTi′

= 1
Ni′

(Ni(Σi + µiµTi ) +Nj(Σj + µjµTj ))− µi′µTi′

= 1
ωi′

(ωi(Σi + µiµTi ) + ωj(Σj + µjµTj ))− µi′µTi′ . (8.11)
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After the merge operation, the jth component can be used by a new observation to rep-
resent a new Gaussian. It can be regarded as a Kernel estimate with a Gaussian kernel
function. For a new observation, the camera position is assigned to xj and the covariance
is set to σ2I, where I is the identity matrix and σ determines the size of the Parzen
window. The parameter σ affects the smoothness of the resulting mixture model and
must be chosen with respect to the world coordinate system. If, for example, the camera
position vector is given in centimeters, with σ = 5, a convincing probability distribution
can be created for an indoor camera tracking. The weight ωj is initialized with ωj = 1

Nc
,

where Nc is the number of observations of the assigned class.

8.4. Feature Population Control

8.4.1. Feature Selection

Features which have a precisely reconstructed 3D coordinate have no need for any re-
construction or refinement step. If we know that such features are not very likely to be
tracked from the current camera position, it is probably not of any use for the pose esti-
mation and it can be disregarded for a tracking step. Features which do not have a valid
3D coordinate are selected for the tracking step in every case, because it is important that
a feature point gets triangulated fast, and an exact 3D position is reconstructed, so that
the feature will be beneficial for the camera pose estimation.
Before the tracking step all features which have not been tracked successfully in the last
frame are projected into the image with the last camera position in order to provide a good
starting position for the features in the iterative alignment. The tracking probabilities of
all features which are located inside the current image are calculated with Equation (8.3)
and the features are sorted by their probability in descending order. Now the feature
tracking is applied on the sorted list of features until a minimum number of features has
been tracked successfully. In our implementation we stop after 30 successfully tracked
features with a valid 3D coordinate, which should be enough for a robust pose estimation.
The benefit of this approach is that the total number of tracked features is kept at a
minimum if most of the features are tracked successfully, but if there are lots of tracking
failures due to occlusion or strong motion blur, as many features as needed are tracked
until a robust camera pose estimation is possible.

8.4.2. Feature Extraction

Most point-based feature tracking methods use the well known Harris Corner Detector
[39], which is based on the eigenvalue analysis of the gradient structure of an image
patch. Another simple but very efficient approach called FAST (Features from Accelerated
Segment Test) was presented by Roston et al. [92]. Their method analyses the intensity
values on a circle of 16 pixels surrounding the corner point. If at least 12 contiguous
pixels are all above or all below the intensity of the center by some threshold, this point is

106



8.5. Experimental Results

regarded as a corner feature. For reasons of efficiency we used the FAST feature detector
in our implementation.
To avoid too many features and overlapping patches, a new feature is only extracted if no
other feature points exist within a minimum distance to this feature in the image. New
features are extracted if the total number of features with pt(x) > 0.5 for the current
camera position x falls below a given threshold.

8.4.3. Feature Removal

In order to decide if a feature is valuable for further tracking, a measure of usefulness has
to be defined. If the tracking probability pt(x) for any camera position x is smaller than
0.5, a feature can be regarded as dispensable. The correct computation of the maximum
of pt(x) with the expectation maximization algorithm for every feature is computationally
too expensive.
When µk,s are the Gaussian means of the mixture model representing successfully tracked
features, we approximate the maximum of the tracking probability by evaluating pt at all
positions µk,s by the following equation:

pmax ' max
k

pt(µk,s). (8.12)

If pmax < 0.5 holds, then no camera position exists where this feature is likely to be
tracked, and it can be removed from the feature map without the concern of losing valuable
information.
If a feature point gets lost and the 3D coordinate of that feature has not been reconstructed
yet, this feature is removed as well, because without a valid 3D coordinate it is not possible
to re-project the feature back into the image for further tracking.

8.5. Experimental Results

To evaluate if the tracking probability distribution of a single feature is estimated correctly
the following test scenario is created. The camera pose is computed by tracking a set of
planar fiducial markers, which are located in the x/y-plane. A point feature is extracted
manually on the same plane. In Figure 8.1(a) some frames of this sequence can be seen.
When the camera is moved around, the point feature gets lost while it is occluded by an
object, but it is tracked successfully, when it gets visible again. The Gaussian mixture
model is visualized in Figure 8.1(b) by a set of confidence ellipsoids, which are drawn
in blue and red for p(x|C = s) and p(x|C = f) respectively. The number of Gaussians
is limited to 8 for each mixture model in this particular example. In Figure 8.1(c) the
probability distribution pt(x) in the x/z-plane together with the Gaussian means is shown.
It can be seen that the camera positions where the point feature was visible or occluded
is correctly represented by the mixture model of tracking successes or tracking failures
respectively. The probability distribution clearly illustrates that the tracking probability
falls to 0 at camera positions where the feature is occluded.
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(a) (b) (c)

Figure 8.1.: Probability density map of camera position for a single feature. In (a) some
frames of the test sequence are shown. (b) visualizes the Gaussian mixture
models of camera positions where the feature has been tracked successfully
(blue) and where the tracking failed (red). In (c) the tracking probability in
the x/z-plane can be seen.
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(a) (b)

Figure 8.2.: Feature tracking and pose estimation results of a test sequence showing an
industrial scenario. The green rectangles represent the successfully tracked
features, red symbolizes tracking failures and orange features have been dis-
abled due to a too small tracking probability.

An image sequence showing an industrial scenario is used for the further experiments.
Two frames of the sequence can be seen in figure 8.2. The tracking of planar patches is
very difficult in this sequence, because the regarded object does not consist of many well-
textured planar parts, which is assumed for the template-based feature tracking. Many
features can only be tracked from a limited viewpoint area, and therefore only a subset
of all available features can be tracked successfully in most of the image frames.
In order to evaluate the quality of the tracking probability estimation, all available features
are used as an input for the tracking step and it is observed whether the features compared
to their tracking probability are tracked successfully or not. In Figure 8.3 histograms are
plotted which show the number of successfully and unsuccessfully tracked features with
their corresponding tracking probability. It can be seen that the major part of features
with a high tracking probability has been, indeed, tracked successfully.
An analysis of the processing time is carried out on a Pentium 4 with 2.8GHz and a
firewire camera with a resolution of 640×480 pixels. The average computational costs for
every individual step are shown in Table 8.1. Without the feature extraction, the tracking
system can run at a frame rate of 20Hz.
If no feature selection is performed, on average 93.9 features are used in the feature
tracking step, and only 49.0% of all features can be tracked successfully. The average
runtime of the tracking step is at 64.36 milliseconds. With the selection of the most
probable features, on average only 48.94 features are analyzed per frame in the tracking
step. The success rate of the feature tracking is at 83.0% and the mean computation time
is lowered to 29.08 milliseconds with no significant difference of the quality of the pose
estimation.
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Figure 8.3.: Histograms of successfully and unsuccessfully tracked features with their cor-
responding tracking probability.

prediction step time in ms
build image pyramid 10.53
feature selection and tracking 29.08
pose estimation 2.74
update feature probability 1.94
reconstruct feature points 5.53
extract new features 5.93
total time without feature extraction 49.82

Table 8.1.: Average processing time of the individual steps of the tracking approach.
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8.6. Conclusion

We have presented an approach for real-time camera pose estimation which uses an effi-
cient feature management to store many features and to track only those features which
are most likely to be tracked from a given camera position. The tracking probability for
every feature is estimated online during the tracking and no preprocessing is necessary.
Features which are only visible in a limited area of viewpoints are only tracked at those
certain camera positions and ignored at any other viewpoints. Even if they are occluded
for a long time, reliable features are not deleted, but kept in the feature set as long as
a camera position exists from which the feature can be tracked successfully. Not only
the visibility, but also the robustness of a feature is represented by the tracking probabil-
ity. Tracking failures due to reflections or spotlights at certain camera positions are also
modeled correctly.

111



8. Feature Management

112



9. Conclusion

9.1. Summary

In this thesis computer vision-based tracking techniques have been developed, which aim
at the creation of augmented reality applications with minimal requirements for the prepa-
ration of reference data.

Edge-based tracking methods have been used to create a tracking system, where a given
3D line model is used as a reference object and the camera pose is estimated by aligning
the line model onto the image gradient. The state-of-the-art approach has been extended
with an adaptive method, which learns the edge’s visual appearance by creating a set of
multiple appearances of every control point of the edge model. This on-line information,
which is gathered during the successful tracking, helps to improve the robustness of the
edge-based model tracker especially for large camera movements.

To avoid the manual creation of a line model, a method for the automatic generation of
contour models was developed. With a given polygonal model the 3D contours are created
in real-time with the support of pixel shader graphics hardware. The extraction of the
line model was directly integrated into the edge-based model tracking, and a system was
created which is able to align a virtual model onto a real model at high frame rates. The
presented two-stage approach first tracked an image edge from frame to frame and then
performed the 3D model registration. The result was an edge-based tracking system which
is able to track very poorly textured objects and even scenarios where only silhouette edges
can be used as distinct features. The usability aspects of this method are very high and
outperform other generation techniques which have been proposed recently.

The development of point-based tracking systems led to promising results for the marker-
less camera pose estimation. Texture- based tracking methods like the template alignment
with various warp functions have been investigated and improved to establish robust point-
based tracking algorithms. Additional scale invariance was achieved with the acquisition
of template patches of multiple resolution levels and the selection of that resolution during
the tracking step which is most appropriate in the current camera image. It was experi-
mentally shown that such tracking methods can be used for the successful estimation of
the camera pose, if the geometry of the scene is known.

Reconstruction algorithms were developed and a point feature based tracking system was
created, which is able to learn features in parts of the image with unknown scene geometry.
Not only the 3D coordinates, but also the surface normal directions were reconstructed
and a map of features was created, which makes the tracking system more stable, the
longer a scene is observed.
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To counteract the problems of real-time capability if the feature map becomes too large, a
novel feature management system was developed. With a statistical analysis of the ability
to track a feature which is carried out during the runtime of the tracking, it is possible to
select only a limited subset of all features which are visible from a given camera viewing
position. The resulting tracking system is able to estimate the camera pose with an equal
quality but with much less demand for processing time.

9.2. Future Work

Although many difficulties of the camera pose estimation could be solved with methods
presented in this thesis, there are still many open problems. A variety of possibilities exist
to improve the current state of our tracking system.
The problem of the re-initialization is totally disconnected with the current feature track-
ing system. A combination of the local search and a wide baseline matching could help to
create a re-initialization module which can be better integrated into the whole tracking
process. The possible solution could be the integration of the randomized tree classifier
directly with the KLT patches.
Another possibility for future improvements could be the reconstruction of line features
and the integration of line features into a feature map. Poorly textured scenarios might
be handled better if additional lines are tracked and reconstructed during runtime.
The whole implementation could be improved by shifting pixel related computation onto
the graphics hardware. The tracking of KLT feature with the support of pixel shaders
might be a good option to save processing time.
The feature management system has the disadvantage that dynamic scenes are not mod-
eled correctly by the system. An extension of the approach is necessary so that the system
is beneficial for non-static scenes.
Furthermore, the integration of other sensors, like inertial devices or GPS receivers, could
be a reasonable improvement of the robustness of the tracking system.
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Appendix A.

Derivations of the Inverse
Compositional Image Alignment
This appendix describes the computation of the intensity based image alignment which
is presented in Section 6.5. The equations of the parameter update for several different
motion models are derived.
The inverse compositional approach of Baker and Matthews [5] minimizes the following
error function with respect to ∆p:

ε =
∑
x

[T (g(x;∆p))− I(g(x;p))]2, (A.1)

where T (x) is the template, I(x) the current image and g(x;p) a warp function with the
warp parameters p. Substituting T (g(x;∆p)) with its first-order Taylor expansion and
setting the derivatives of equation (A.1) with respect to all parameters ∆p of to zero,
results in the linear system:

H∆p = b, (A.2)

with

H =
∑
x

[
∇T ∂g

∂p

]T [
∇T ∂g

∂p

]
(A.3)

b =
∑
x

[
∇T ∂g

∂p

]T
[I(g(x;p)− T (x)] . (A.4)

The values of ∇T = (Tx, Ty) are the image gradient of the template in x- and y-direction.
The Jacobian ∂g

∂p
consists of the partial derivatives of the warp function g and is evaluated

at p = 0, i.e. with those parameters which represent the identity warp. For better
readability, we introduce the vector h(x), which is defined by

h(x) =
[
∇T ∂g

∂p

]T
. (A.5)

The matrix H and the vector b can then be written as

H =
∑
x

h(x)h(x)T (A.6)

b =
∑
x

h(x)It, (A.7)
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Appendix A. Derivations of the Inverse Compositional Image Alignment

where It = I(g(x;p))−T (x) is the difference between the warped image and the template.
If H is invertible, the parameter increment ∆p can then be computed by

∆p = H−1b. (A.8)

The warp function can now be updated by

g(x,p)← g(x,p) ◦ g(x,∆p)−1. (A.9)

With this update of the warp function the new parameter vector p can be computed.

A.1. Translation

For the purely translational case, the warp function can be expressed by

g(x;p) = x+ p, (A.10)

where p =
[
t1 t2

]T
is the translation increment in x- and y-direction. Since the Jacobian

of equation (A.10) is ∂g
∂p

=
(

1 0
0 1

)
, the vector h(x) can be computed by h(x) =

[
Tx Ty

]T
.

For the matrix H and the vector b we get

H =
∑
x

[
T 2
x TxTy

TxTy T 2
y

]
(A.11)

b =
∑
x

[
Tx
Ty

]
It. (A.12)

After computing the parameter increment by ∆p = H−1b, the parameter vector p can
simply be updated by

p← p−∆p. (A.13)

A.2. Scale

If changes in scale are regarded additionally to the translation, the warp function can be
written as

g(x;p) = sx+
(
t1
t2

)
, (A.14)

where s is the scaling factor. With the parameter vector p =
[
t1 t2 s

]T
and with the

Jacobian

∂g

∂p
=
[
1 0 x
0 1 y

]
(A.15)
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A.3. Rotation

the vector h(x) can be computed by

h(x) =
[
Tx Ty xTx + yTy

]T
. (A.16)

The matrix H and the vector b are calculated by

H =
∑
x

 T 2
x TxTy xT 2

x + yTy
TxTy T 2

y xTx + yT 2
y

xT 2
x + yTy xTx + yT 2

y (xTx + yTy)2

 (A.17)

b =
∑
x

 Tx
Ty

xTx + yTy

 It. (A.18)

With ∆p =
[
t̃1 t̃2 s̃

]T
= H−1b the inverse warp with the warping parameters ∆p are

calculated by

g(x;p)−1 = 1
s
x− 1

s

(
t1
t2

)
. (A.19)

The warp composition g(g(x; ∆p)−1;p) results in the following update of the warp pa-
rameters:

p =

t1t2
s

←
t1 −

s
s̃
t̃1

t2 − s
s̃
t̃2

s
s̃

 (A.20)

A.3. Rotation

A warp function which consists of a translation and a two-dimensional rotation can be
written as

g(x;p) = R(θ)x+
(
t1
t2

)
, (A.21)

with the rotation matrix

R(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (A.22)

If the parameter vector is defined as p =
[
t1 t2 θ

]T
, the Jacobian of the warp function

is
∂g

∂p
=
[
1 0 −x sin(θ)− y cos(θ)
0 1 x cos(θ)− y sin(θ)

]
. (A.23)

Evaluating the Jacobian at p = 0 yields

∂g

∂p
=
[
1 0 −y
0 1 x

]
. (A.24)
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With the vector h(x) =
[
Tx Ty −yTx + xTy

]
the approximated Hessian H and the

vector b can be computed by

H =
∑
x

 T 2
x TxTy −yT 2

x + xTxTy
TxTy T 2

y −yTxTy + xT 2
y

−yT 2
x + xTxTy −yTxTy + xT 2

y (−yTx + xTy)2

 (A.25)

b =
∑
x

 Tx
Ty

−yTx + xTy

 It. (A.26)

The inverse function of the warp defined in equation (A.21) can be written as

g(x;p)−1 = R(−θ)x−R(−θ)
(
t1
t2

)
. (A.27)

With the parameter increment ∆p =
[
t̃1 t̃2 θ̃

]T
the update of the warp parameters can

be calculated by

t =
(
t1
t2

)
← t−R(θ − θ̃)t̃ =

(
t1 − (cos(θ − θ̃)t̃1 − sin(θ − θ̃)t̃2)
t2 − (sin(θ − θ̃)t̃1 + cos(θ − θ̃)t̃2)

)
(A.28)

θ ← θ − θ̃. (A.29)

A.4. Affine Transformation

The full affine model uses, in addition to the translation vector t, a 2× 2 affine transfor-
mation matrix A. The affine warp function can be expressed as

g(x;p) = Ax+ t =
(

1 + a1 a2
a3 1 + a4

)
x+

(
t1
t2

)
. (A.30)

With the parameter vector p =
[
t1 t2 a1 a2 a3 a4

]T
the Jacobian is computed by

∂g

∂p
=
[
1 0 x y 0 0
0 1 0 0 x y

]
(A.31)

With the vector h(x) =
[
Tx Ty xTx yTx xTy yTy

]T
the matrix H can be computed

by

H =
∑
x



T 2
x TxTy xT 2

x yT 2
x xTxTy yTxTy

TxTy T 2
y xTxTy yTxTy xT 2

y yT 2
y

xT 2
x xTxTy x2T 2

x xyT 2
x x2TxTy xyTxTy

yT 2
x yTxTy xyT 2

x y2T 2
x xyTxTy y2TxTy

xTxTy xT 2
y x2TxTy xyTxTy x2T 2

y xyT 2
y

yTxTy yT 2
y xyTxTy y2TxTy xyT 2

y y2T 2
y


. (A.32)
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A.5. Affine Model with Illumination Correction

If the inverse of the affine incremental warp function is given by

g(x; ∆p)−1 = Ã−1x− Ã−1t̃, (A.33)

the composed warp can be calculated with

g(g(x; ∆p)−1;p) = A(Ã−1x− Ã−1t̃) + t. (A.34)

For the update of the translation vector we get t ← t − AÃ−1t̃ and the affine matrix is
updated by A ← AÃ−1. With the updated A and t the new warp parameters p can be
calculated.
To simplify the update step it can be assumed that for small parameter updates g(x;p)−1 ≈
g(x;−p) holds. The affine warp can then be updated with A← AÃ and the translation
vector with t← t+At̃. Although is is a rough approximation, this update strategy works
surprisingly well and avoids the inversion of the warp function.

A.5. Affine Model with Illumination Correction

In Section 6.5.1 the template alignment with illumination compensation for a general
warp function is discussed.
For the affine model as described in [67], the vector h(x) of Equation (6.17) can be
computed with

h(x) =
[
Tx Ty xTx yTx xTy yTy T 1

]T
, (A.35)

and for the matrix H we get

H =
∑
x



T 2
x TxTy xT 2

x yT 2
x xTxTy yTxTy TxT Tx

TxTy T 2
y xTxTy yTxTy xT 2

y yT 2
y TyT Ty

xT 2
x xTxTy x2T 2

x xyT 2
x x2TxTy xyTxTy xTxT xTx

yT 2
x yTxTy xyT 2

x y2T 2
x xyTxTy y2TxTy yTxT yTx

xTxTy xT 2
y x2TxTy xyTxTy x2T 2

y xyT 2
y xTyT xTy

yTxTy yT 2
y xyTxTy y2TxTy xyT 2

y y2T 2
y yTyT yTy

TxT TyT xTxT yTxT xTyT yTyT T 2 T
Tx Ty xTx yTx xTy yTy T 1


. (A.36)

The illumination parameters λ and δ are independent from the warp parameters and can
be updates as described in Section 6.5.1 for all warp functions. The parameters of the
warp function, though, depend on the illumination parameter λ. For one iteration the
linear solution is represented by the vector

q =
(
λ̃∆pT λ̃ δ̃

)T
, (A.37)

with the warp parameter increment ∆p and the illumination parameters λ̃ and δ̃. By
regarding these equations it can be seen that the elements of the vector q which correspond
to the warp parameter vector ∆p have to be divided by λ̃, before the warp parameters
can be updated just as in the model without the illumination compensation.
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A.6. Homography

Let C be the projective transformation defined by

C =

1 + p3 p4 p1
p5 1 + p6 p2
p7 p8 1

 . (A.38)

The parametrization is chosen in that way, that the elements of the parameter vector
p =

[
p1 p2 p3 p4 p5 p6 p7 p8

]T
represent similar transformations as in the models

with pure translation and the full affine warp.
The warp function representing this homography can be written as

g(x;p) = 1
p7x+ p8y + 1

(
(1 + p3)x+ p4y + p1
p5x+ (1 + p6)y + p2

)
. (A.39)

Computing the Jacobi matrix of this function yields

∂g

∂p
= 1
p7x+ p8y + 1

1 0 x y 0 0 −x((1+p3)x+p4y+p1)
p7x+p8y+1

−y((1+p3)x+p4y+p1)
p7x+p8y+1

0 1 0 0 x y −x(p5x+(1+p6)y+p2)
p7x+p8y+1

−y(p5x+(1+p6)y+p2)
p7x+p8y+1

 , (A.40)

and for the evaluation at p = 0 we get

∂g

∂p

∣∣∣∣
p=0

=
(

1 0 x y 0 0 −x2 −xy
0 1 0 0 x y −xy −y2

)
. (A.41)

With the vector h(x) =
[
Tx Ty xTx yTx xTy yTy −x2Tx − xyTy −xyTx − y2Ty

]T
the approximated Hessian is calculated by

H =
∑
x

h(x)h(x)T . (A.42)

If C̃ is the homography of the solution vector ∆p, then the update of the warp function
is given by the warp composition

C ← CC̃−1. (A.43)

After homogenizing C and subtracting the identity matrix, the new warp parameters p
are obtained.
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