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Abstract
This thesis proposes a novel approach for automated 3D speech anima-

tion from audio. An end-to-end system is presented which undergoes three
principal phases. In the acquisition phase, dynamic articulation motions are
recorded and amended. The learning phase studies the correlation of these
motions in their phonetic context in order to understand the visual nature of
speech. Finally, for the synthesis phase, an algorithm is proposed that carries
as much of the natural behavior as possible from the acquired data to the
final animation.

The selection of motion segments for the synthesis of animations relies on a
novel similarity measure, based on a Locally Linear Embedding representation
of visemes, which closely relates to viseme categories defined in articulato-
ry phonetics literature. This measure offers a relaxed selection of visemes,
without reducing the quality of the animation.

Along with a general hierarchical substitution procedure which can di-
rectly be reused in other speech animation systems, our algorithm performs
optimum segment concatenation in order to create new utterances with natu-
ral coarticulation effects.

Kurzfassung
In dieser Arbeit wird ein neues Verfahren zur automatischen Erzeugung

audio-basierter 3D Sprechanimation vorgeschlagen. Ein komplettes System
wird vorgestellt, welches in drei Phasen arbeitet. In einer ersten Phase der
Datenaufnahme werden dynamische Artikulationsbewegungen aufgenommen
und ergänzt. In einer zweiten Lernphase wird die Korrelation dieser Bewe-
gungen in ihrem phonetischen Kontext untersucht, um die visuelle Natur des
Sprechens zu verstehen. Schliesslich wird für die Phase der Synthese ein Algo-
rithmus vorgeschlagen, welcher so viel vom natürlichen Verhalten wie möglich
aus den aufgenommenen Daten in die endgültige Animation überträgt.

Die Auswahl von Bewegungssegmenten zur Synthese der Animationen be-
ruht auf einem neuartigen Ähnlichkeitsmaß, welches auf einer Locally Linear
Embedding Repräsentation von Visemen beruht und eng verwandt mit Kate-
gorien von Visemen, wie sie in der Literatur über Artikulationsphonetik de-
finiert sind. Dieses Maßermöglicht eine erweiterte Auswahl von Visemen ist,
ohne die Güte der Animation zu verringern.

Neben einem allgemeinen Hierarchischen Substitutionsverfahren welches
unmittelbar auch in anderen Sprechanimationssystemen verwendet werden
kann, führt unser Algorithmus eine optimale Segment-Konkatenation durch,
um neue Äusserungsformen mit natürlichen Koartikulationseffekten zu erzeu-
gen.





vii

Summary

Automated speech synthesis based on video footage has shown impressive
results. Such high quality results are obtained by the analysis of articulation
motions captured at high frame-rates. While these high frame-rates have been
provided by video camera setups for quite some time now, the extension of
such approaches to 3D has only become possible in recent years with the
availability of dynamic 3D scanners. This extension to 3D models is important
not only because it relieves the synthesized animation of a single visualization
viewpoint constraint, but also because it facilitates the transfer of speech
to different identities. The direct transfer of 2D algorithms to 3D remains
an open problem that is challenging because the increase of dimensionality
presents a more complex process of articulation and has to be considered
more thoroughly.

In a learning-based framework, novel animations are synthesized by the
concatenation of recorded motion segments available in a database. To this
end, an algorithm performs a selection of segments that match a novel audio
track and strives at providing smooth continuity over the selected sample
sequence. This continuity is essential, as it reduces the necessary interpolation
that distorts the behavior in the final outcome. Increasing the size of the
database augments the chances of finding smoothly continuous segments but
also demands extremely large storage space.

In this thesis, a new behavioral study of articulation is performed which
takes advantage of the redundancy in the database: by observing the behavior
of the mouth for the different phonemes (phonetic sound units), our system
proposes a similarity measure that defines which additional motion segments
can be used for phonemes to which these motion segments are not associated
in the original corpus.

In a hierarchical substitution procedure, the selection process retrieves an
enhanced list of valid segments over a small corpus. Minimal interpolation
guarantees the production of expressive and natural speech with rich coarti-
culation effects. Unlike common rouping of phonemes defined in articulatory
phonetics, our method proposes a graded similarity among visemes which re-
laxes the selection process to larger sets without loss of expressiveness in the
produced animation.
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Zusammenfassung

Die auf Video basierende automatische Sprechsynthese hat in den vergan-
genen Jahren beeindruckende Ergebnisse gezeigt. Solche Resultate höchster
Qualität werden erhalten durch die Analyse von Artikulationsbewegungen,
die mit hohen Bildfrequenzen erfasst werden. Während diese hohen Bildfre-
quenzen von Videokameras bereits seit einiger Zeit geliefert werden, ist die
Erweiterung solcher Verfahren auf 3D erst in den letzten Jahren, mit der
Verfügbarkeit dynamischer 3D Scanner, möglich geworden. Diese Erweiterung
auf 3D Modelle ist wichtig, nicht nur weil sie die synthetisierte Animation
von der Beschränkung auf einen einzigen Visualisierungswinkel befreit, son-
dern auch weil es die Übertragung der Sprache auf verschiedene Identitäten
erleichtert. Die auf Video-Datenbanken durchgeführten Techniken haben sich
allerdings auf 3D Modellen als weniger leistungsfähig erwiesen, da die Zu-
nahme an Dimensionalität einen komplexeren Artikulationsprozess impliziert,
welcher genauer betrachtet werden muss.

In einem lernbasierten Verfahren werden hier neuartige Animationen syn-
thetisiert durch Aneinanderreihung von in einer Datenbank verfügbaren Be-
wegungssegmenten. Zu diesem Zweck führt ein Algorithmus eine Auswahl von
Segmenten durch, die einen neuen Audiosignal entspricht, und darauf abzielt,
eine glatte Kontinuität über die gewählten Segmente zu liefern. Diese Konti-
nuität ist wesentlich, da sie die notwendige Interpolation reduziert, welche das
Verhalten im Endergebnis verzerrt. Die Vergrösserung der Datenbank erhöht
zwar die Wahrscheinlichkeit, direkt kontinuierliche Segmente zu finden, ver-
langt aber auch extrem grossen Speicherplatz.

In dieser Arbeit wird eine Untersuchung des Artikulationsverhaltens durch-
geführt, welche die Redundanz in der Datenbank ausnützt. Indem es das Ver-
halten des Mundes bei den verschiedenen Phonemen (phonetischen Tonein-
heiten) beobachtet, schlägt unser System ein Ähnlichkeitsmass vor, das de-
finiert, welche Bewegungssegmente für Phoneme verwendet werden können,
obwohl sie diesen im Originalkorpus nicht zugeordnet sind. In einem hierarchi-
schen Substitutionsprozess stellt das Auswahlverfahren eine erweiterte Liste
gültiger Segmente über einen kleinen Korpus auf. Eine minimale Interpolati-
on garantiert die Erzeugung ausdrucksvollen und natürlichen Sprechens mit
differenzierten Koartikulationseffekten. Im Gegensatz zur üblichen Gruppie-
rung der Phoneme, wie sie in der Artikulationsphonetik definiert ist, schlägt
unser Verfahren eine graduelle Ähnlichkeit unter den Visemen vor, welche
den Auswahlprozess aus grösseren Mengen ermöglicht, ohne einen Verlust an
Ausdrucksfähigkeit der erzeugte Animation zu bewirken.
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as they are, Grzegorz Krawczyk for reminding me that the only way is forward,
Lukas Ahrenberg for his enthousiastic moods but also Timo Stich, Kristian
Hildebrand and Kaleigh Smith.

Because my time as a PhD student will as well always be associated to the
social life I acquired during those years, I am grateful to Christoph Vetter,
Monika Haberer, Uli Ludat, Heiko Wanning, Valérie Quilez, Heiko Wanning
and David Schuler for the complicity and laugths we shared and will share in
the future.

A very special acknowledgment goes to Vlad Tanasescu, because, even
with the great distance, we have been through this together and I wish he all
the best in the years to come.

Finally, my heart goes to the loving support of my family, Mum, Dad,
Sabine et Fabienne and the closeness that we are all able to share.





Contents

Part I Introduction

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 3D Acquisition Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Data Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Face Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Face and Expression Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Simulation of Coarticulation . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Segment Concatenation Approaches . . . . . . . . . . . . . . . . . 24
2.5.4 Viseme Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Part II Background

3 3D Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 A Structured-Light Based Scanner . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Structured-Light Encoding and Phase Shifting . . . . . . . . . . . . . . 36

4 Data Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1 Linear Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . . . . . . . . 46



xiv Contents

5.3 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . . 48
5.4 PCA in a Multidimensional Morphable Model (MMM) . . . . . . . 49
5.5 Multidimensional Scaling (MDS) . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Nonlinear Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Isometric Feature Mapping (Isomap) . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Locally Linear Embedding (LLE) . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Part III Learning Visemes and Articulations

7 Data Acquisition and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 65
7.1 3D Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Hole Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Semi-Automatic Teeth and Tongue Removal . . . . . . . . . . . . . . . . 71

7.3.1 Teeth and Tongue Detection . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3.2 Teeth and Tongue Removal . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Building a Viseme-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.1 Tracking the Marker-Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.1.1 Rigid Head Alignment and Data Conversion . . . . . . . . . . 85
8.2 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.3 Multistage Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.3.1 The Iterative Optical Flow Algorithm . . . . . . . . . . . . . . . . 89
8.4 A Morphable Model for Articulation . . . . . . . . . . . . . . . . . . . . . . . 91

8.4.1 Weighted PCA (WPCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.4.2 Sound Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.4.3 Projecting the Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.5 Expression Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.6 Reanimating Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Face and Articulation Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.1 Head Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.2 Importing Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Contents xv

Part IV Speech Synthesis

10 A Nonlinear Model as a Similarity Measure for Visemes . . . 117
10.1 Locally Linear Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10.1.1 Data Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.1.2 The LLE Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10.2 A Measure for the Similarity of Visemes . . . . . . . . . . . . . . . . . . . . 124
10.3 Inclusion and Substitution Rules for Visemes . . . . . . . . . . . . . . . . 128

11 Finding the Optimal Triphone Concatenation . . . . . . . . . . . . . . 131
11.1 Concatenation of Triphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
11.2 Finding the Optimal Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.1 Phoneme Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.2 Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Part V Discussions and Conclusions

13 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.1 Improving the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
13.2 LLE in a Speech Synthesis Frame Work . . . . . . . . . . . . . . . . . . . . 148
13.3 Perception Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
13.4 Comparison to Other Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 150

14 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

15 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
16.1 The Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
16.2 Teeth Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
16.3 An Alternative for the Concatenation Cost . . . . . . . . . . . . . . . . . 167
16.4 Map Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171





Part I

Introduction





1

Introduction

Facial Animation in movie productions has reached an impressive level of
realism today. Such great results are usually obtained by directly mapping
articulations from a real actor to 3D face models. While this approach gen-
erates highly realistic and expressive animations, it is extremely tedious and
requires actors to perform complete scenarios inside a motion capture system.
In order to simplify and accelerate this process, a number of automated tech-
niques have been proposed. For learning-based approaches, the largest work
investment is put into building a knowledge database of accurate and high
quality captures in order to maximize the amount of information that can be
transferred from the real data to the synthesized animation. The synthesis is
then usually produced very rapidly.

Dynamic scanning techniques which today show increasing availability are
an excellent choice for capturing face motions. This novel type of acquisition,
however, bears specific problems: dynamic approaches generally lose on geo-
metric quality, and automated algorithms can thus easily become error-prone.
The goal in this work is to create a robust approach for analyzing such data,
and to implement a complete animation system that exploits the advantages
of these new dynamic measuring devices, while dealing properly with the lower
quality of the provided data.

The quality of the original data can be greatly improved in a preprocessing
step. The acquisition system used in this work, provides only partial recovery
of the recorded face: holes in the face geometry have to be detected and
filled, but also the teeth and the tongue cannot be acquired properly and
need to be cut out. A semi-automatic algorithm is implemented that allows
to interactively remove teeth and tongue over long data sequences in little
time. Manual removal would be too cumbersome, and large corpora would
take several days to handle.
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For the synthesis of speech, automated approaches for video-based ani-
mation have, recently, reached impressive levels of realism. The results are,
however, difficult to transfer to other identities and the approaches are usu-
ally applied to faces which have little rotation movement. A three-dimensional
approach solves these two problems: the viewing direction is free, and 3D face
models can be more easily adapted to further identities. Furthermore, speech
synthesis procedures for video-based systems have shown to be less suitable in
their extensions to 3D; the articulation process has thus to be analyzed more
thoroughly.

The process of articulation is a complex one. Defining a unique mouth
configuration for each phoneme is not sufficient, as the shape is dependent on
many parameters (phonetic context, expression, mood, persons, etc.). Speech
animation, in general, is facing two key challenges: (1) produce photo-realistic
images in each frame (spatial domain), and (2) produce realistic motion se-
quences (temporal domain). In order to address both of these challenges, we
carry out a learning-based approach and analyze streams of 3D scans of talk-
ing faces and facial expressions.

In a morphable model framework, the succession of the recorded 3D frame
produce high dimensional curves that describe the articulation motions. The
frames are labelled with their associated phoneme observed during the record-
ing process. In order to synthesize novel animations, motions are selected ac-
cording to the targeted phonetic context. In a novel sentence, each phoneme
is considered with its two adjacent phonemes (forward and backward), and
the phonetic consistency is ensured by picking, from the database, curve seg-
ments that are associated with the same phonemes. Two problem arise: first,
by selecting segments from the original data, one cannot ensure a smooth
continuity in the target animation. Hence, segments must not only consider
the phonetic context, but also the segments’ suitability for concatenation.
Secondly, the number of possible combinations of three consecutive phonemes
is too large to be recorded, without even considering that several segments
with the same combination would be required to offer better suitability for
concatenation. Hence, a database cannot offer all desired segments, and sub-
stitution rules have to be defined in order to select segments associated to
different phonemes that best match the required one.

For defining substitution rules, the process of articulation has to be an-
alyzed, and the correlation of the mouth deformations with their phonetic
context understood. A linear representation of the data does not provide a
good representation for the interpretation of the articulation phenomenon. In
this work, we propose to interpret the visemes involved in the process of speech
in a nonlinear reduced form: using a locally linear embedding of the original
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recorded data, clusters of visemes associated with the different phonemes can
be better separated, and we derive a novel similarity measure for visemes.

Hence, our speech animation system relies on two different representations
of the data: first, a principal component analysis gives a linear low dimensional
representation of the data, which enables a pragmatic morphing framework
for the synthesis of novel animations. The second representation is a nonlin-
ear reduction, which serves for a behavioral analysis of speech. This analysis
derives a general hierarchical procedure for substitutions which designates
motion segments which can be used for phonemes which they are not origi-
nally associated with. Moreover, the procedure is inherent to the process of
articulation and does not rely on the data structure involved in the system; it
can, hence, be used for other segment concatenation-based animation systems.
The concatenation problem is simultaneously addressed. Our selection proce-
dure offers a list of candidate segments for each query. By then combining the
lists, the final animation is generated by selecting the segments that offer the
smoothest concatenation, ensuring that little interpolation is required in the
synthesis. This ensures that most of the original coarticulation information
from the original data is transferred to the final animation.

Aside from the speech synthesis system, this work also proposes an exten-
sion that enables the transfer of articulation to novel face identities. Moreover,
a set of expressions are included which, added atop the generated animation,
increase realism in the final animations.

Outline

The thesis is divided into 5 parts. The present Part I gives the introduction
and situates the work in the current state of the art of automatic speech ani-
mation. The section on related work covers various topics such as acquisition
techniques, face models in relation to their applications, and more thoroughly
investigates analyses on articulation.

Part II is devoted to the exposition of the underlying theoretical and tech-
nical aspects involved in this work, in order to better separate them from the
contributions of this thesis. Chapter 3 describes how dynamic 3D acquisition
is obtained by combining structured-light approaches to phase-shifting tech-
niques. Chapter 4 exposes the optical flow algorithm proposed by Blanz [14],
which integrates a correlation-based approach into a coarse-to-fine framework.
The rest of the second part (Chapters 5 and 6) offers a short survey on dif-
ferent dimension reduction paradigms; both linear and nonlinear models are
presented and, in particular, Locally Linear Embedding (LLE), which we use
for the viseme analysis, is introduced.
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In Part III, the knowledge database is constructed. Original articulations
are recorded and the provided meshes amended in Chapter 7. After the data
is registered, a viseme representation is built in the form of an articulation
morphable model (Chapter 8). Chapter 9 sets the model into correspondence
with a morphable model of face identities (Blanz [14]), which allows both the
completion of missing face surface of the dynamic data and the transfer of
articulations to novel faces.

In Part IV, the procedure for the synthesis of novel animations is estab-
lished. The geometrical variations of the face are observed in a nonlinear rep-
resentation using a LLE (Chapter 10), and a similarity measure for visemes is
proposed. This measure indicates which visemes are most suitable for substi-
tutions when the database cannot provide ideal samples. Chapter 11 exposes
the procedure used for the construction of novel animations. The database is
queried for adequate samples that match a novel audio track, and an optimum
combination is sought. Chapter 12 concludes the fourth part by comparing the
viseme hierarchy deduced by the similarity measure to popular classifications
and by commenting the generated animations.

The last part of the thesis proposes some improvements on the acquisition
side and discusses the validity of a nonlinear representation of visemes in
a speech modeling system(Chapter 13). Outlines on the directions of future
investigations are given in Chapter 14 and the final conclusions are drawn in
Chapter 15.

Contributions

In the different fields dealt with in the present work, the main contributions
are:

• the dynamic 3D acquisition of speech and the registration of a large corpus
of articulations;

• the reliable and efficient amendment of noisy and incomplete data, in-
volving hole filling, smoothing, and semi-automatic mouth detection for
removing inconsistent teeth and tongue information. An approach to face
completion is also proposed;

• an extension to optical flow techniques that grasps large deformations over
multiple long sequences by combining an absolute matching with a relative
one;

• a weighted principal component analysis (WPCA) for the generation of a
multidimensional morphable model (MMM) for articulations;

• a framework for finding correspondence between multiple MMMs allowing
face completion and articulation transfers to novel faces;
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• an intuitive LLE representation of the visemes involved in the speech pro-
cess for large corpus sets;

• an similarity measure for visemes which is inherent to speech thus inde-
pendent of the structural model of the system;

• a substitution rule for optimum viseme selection, and a substitution graph
inherent to speech, thus, reusable for novel segment-based speech anima-
tion systems;

• an optimization paradigm for animation synthesis which ensures optimum
selection of articulation motion segments providing realistic animations.





2

Related Work

Building a complete speech animation system requires to undergo many dif-
ferent steps that touch different fields such as computer graphics, computer
vision or image processing. While these fields relate to how the data or the
information held inside it is processed, understanding speech articulation is
yet another different field on its own respect. In a learning-based approach,
the system presented in this thesis first integrates data acquisition (2.1) and
data registration (2.2). Through the registration, a face model can be built
(2.3) on which different speech animation techniques (2.5) can be implemented
producing different, yet, realistic animations

In this chapter, published work in these different fields is discussed. Due to
their different natures, these aspects are investigated separately as each can
relate to different domains of research. This chapter is thus separated into
four main sections that discuss the aforementioned fields.

Section 2.4 of this chapter discusses work on face and expression transfer.
While the goal of this field is different from speech animation, the approach
and the necessary setup are in many aspects similar and are thus relevant to
the present work.

2.1 3D Acquisition Techniques

While there exist many 3D modeling software systems for creating three-
dimensional structures or recreate real object, 3D-scanning remains important
because it captures the true nature of the object. The precision offered by
acquisition systems reveals details that would be tedious to model or that
would not be accurately created by an artist. Also, phenomena that cannot
be a priori simulated are required to be recorded first in order to be analyzed.
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Basically, the important aspect of data acquisition is to acquire the knowledge
of a structure (static) or a behavior (dynamic) that one wants to understand.

Data acquisition is a fastidious and computationally expensive task but is
probably the most sensitive part in the setup of a system. The reward one
gets from the cost of acquisition, is that this task is performed a single time
and once the knowledge is acquired, the observed phenomenon can be recre-
ated or simulated, avoiding further acquisitions. Therefore, when selecting a
technology for data acquisition, not only the structural quality has to be ob-
served, but more importantly, the retrieved data has to reflect best the actual
information that is intended to be observed.

Many different techniques exist to record three-dimensional data, all are
based on a two-dimensional acquisition interface, mostly in the sense of a
camera. Some approaches use a single 2D acquisition interface and map de-
formations to 3D models (Chuang & Bregler [34] or Pighin et al.[99]). The
depth that cannot be recorded is difficult to reproduce on 3D models and has
to be simulated. While this approach is suitable for certain applications, it fails
to capture all the information that can be acquired. Thus, these approaches
somewhat compromise realism. In a static model context, Pighin et al.[101],
Goto et al.[52] or Georghiades[50] use multiple photographs to recover true
three-dimensional face shapes; Guenter et al.[54] in a dynamic context achieve
3D reconstruction from 6 synchronized video cameras by tracking a large set
of marker points.

In the 3-dimensional domain and for data-driven approaches, while acqui-
sition can still be done in two dimensions and retargetted to 3D models, recent
work shows that the tendency is to move towards 3D acquisition setups. The
way the acquisition is performed is heavily dependent on the targeted model.
Muscular structured models (with early works from Waters[135]) will require
tracking many marker points so that the behavior of the distinct muscles
can be precisely analyzed (Sifakis et al.[115, 116]), while geometry deforma-
tion analysis deals with precise data registration. In any case, high quality of
the acquisition is required to allow good analyzes. Volumetric approaches of
faces can also be performed using magnetic resonance imaging (MRI) as used
by Sifakis et al.[115]. These scans bring good muscular information but are
strictly limited to static acquisition.

For dynamic approaches with a high temporal resolution, several acqui-
sition techniques exist such as a multiple cameras setups with stereo algo-
rithms or additional techniques that exploit the temporal coherence (Zhang
et al.[141]). To reduce the number of cameras, Pighin et al.[100] or Sifakis
et al.[115] record a single view of an animated face, track a set of prede-
fined feature-points on the subject and fit a previously acquired generic face
model to the video by applying deformations on it (Fig. 2.2). Brand [21] and
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(a) (b)

Fig. 2.1. Static 3D scanners The two 3D scanners perform static acquisitions.
The Minolta scanner (a) is placed in front of the object; the laser browses the object
while a 2D camera records the contact points. The Cyberware scanner (b) rotates
around the face of the recorded subject while the laser browses the face vertically at
different rotation angles. The Cyberware scanner generates a complete scan around
the face whereas the Minolta scanner only records the surface visible from its view-
point. For both setups, the subject must not move during the acquisition process.

Chai et al.[29] acquire the knowledge of the mouth deformation from a two-
dimensional source.

Active approaches to surface acquisition illuminate the recorded object
with a light point or a light code that is recorded and triangulated. Most
common scanners are based on retrieving surface locations by triangulation
(see Section 3.1). Static laser-based acquisition has found applications like in
the works from Blanz et al.[18, 16] (Fig. 2.1), where face geometries are cap-
tured. The same triangulation principle has since been extended to structured-
light systems (Wolf [137]) that allow dynamic acquisition, see Song Zhang et
al.[143] or Li Zhang et al.[141]. While dynamic techniques are usually static
techniques at high frame rate, Zhang et al.[141] additionally exploit temporal
coherence over the recorded mesh to improve the final quality. Figure 2.2 il-
lustrates the basic setup behind triangulation on which many 3D-acquisition
approaches are based. The setup for a laser scanner consists of a laser beam
and a camera (Fig. 2.2 left). After calibration, the respective distance between
the the source of the laser and the eye of the camera is known. The camera
observes the contact point of the emitted beam onto the object. If the emission
angle is known and the highlighted pixel on the camera’s viewport is detected,
the exact position of the impact can be computed in three-dimensional space
by triangulation (see Section 3.1 for more detail on the triangulation compu-
tation).

While this technique is very precise, the acquisition time is long as the
laser has to cover the whole surface and the camera has to capture each
recored point with a single frame. This approach is thus only suited for static
recordings. A much faster method is derived by using structured-light (Fig. 2.2
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Fig. 2.2. Structured-light triangulation The triangulation technique determines
the 3D location of the impact of a laser beam by knowing both the emitted angle
and the observation angle (left). Structured-light techniques propose to detect more
impacts simultaneously by encoding the emission (right). (Section 3.1 discusses such
techniques in more detail.)

right). Instead of using a laser beam, a projector is used that illuminates the
whole object. The projector works as a dual component to the camera and
thus projects a grid of pixels on the object. For the camera (or the system) to
be able to attribute the corresponding projected pixels to the correct impact
on the recorded surface, an encoding has to be performed on the projected
grid. On that aspects, techniques differ, but usually, a sequence of a few pat-
tern permits an accurate decoding (Section 3.2 discusses this in more detail).
In that way, within a few frames, the whole object can be recorded. The ac-
quisition rate lies in the order of several 10s of frames per second depending
on the system.

2.2 Data Registration

In the previous section, we described common scanning technologies but omit-
ted to discuss the output format of the recorded data. This format is directly
dependent on the technology used for the acquisition and does not reflect the
nature of the recorded object. Generally, for scanners with fixed positions like
the Minolta laser scanner from Figure 2.1 or dynamic scanners, this format is
deduced from the two-dimensional interface. For the Cyberware scanner from
Figure 2.1, for instance, the resolution is determined by the number of rotation
steps performed by the scanner around the face multiplied by the resolution
of the vertical scans performed by the laser. In both cases, the data comes as



2.2 Data Registration 13

depth maps, however, the first type of scanners will produce coordinates in
Euclidean space while the second generate polar coordinates.

Standard procedures, particularly for static recording, perform remeshing
in order to compress, smooth or even to represent the data with a structure
that better follows the characteristics of the obtained topology [49]. Other
procedures aim at fitting the acquired data to a model [71] or to put them
into correspondence [18]. The correspondence process, or registration, is there
to match the data to a global mesh in order to find a one to one vertex
mapping from the new data to the model.

With dynamic acquisition, the data output consists of a collection of inde-
pendent meshes taken at several time intervals. This means, that the generated
vertices are not attached to the surface over time but rather fluctuate with the
underlying deformation in the same way a ping-pong ball behaves on agitated
water. Edge & Hilton[44] use their acquisition data as a 3D Video. To recreate
animations, 3D video segments are stitched together smoothly, thus circum-
venting the registration problem. To be able to study actual deformations,
the different 3D-frames however have to be put into correspondence so that
every location on the recorded surface is tracked and its exact displacement
of each of them is known.

For 2D videos, the approach is to align the faces over time and define a
segmentation over the face. In such a manner, different parts of the face can
be synthesized separately and assembled in the new video. Such techniques
have been proposed in Video Rewrite by Bregler et al.[22] or Ezzat et al.[47]
who coupled it with optical flow techniques.

Fig. 2.3. 2D deformations mapped to a 3D model Here, 3D deformations are
acquired from multiple camera setups. Stereo algorithms perform correct associa-
tions of marker points over the different video streams and deduce their location in
the Euclidean space. The displacements of the marker points are then mapped to a
3D face model.
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Before high quality 3D scanners were available, a simple solution for track-
ing face deformation was to track marker points on two or more simultaneous
video footage and reapply their displacement to a 3D face model (see Fig. 2.3).
To record deformation with a static 3D scanner in combination with 2D videos,
the subject is recorded with marker points on specific locations on his face
which are detected in the 3D reconstructions. With the use of two or more
standard calibrated video cameras, the subject is then recorded performing
expressions or speech and the displacement of the maker points are tracked on
the video. These deformation can be mapped to the three-dimensional model
and the three-dimensional deformation can be reconstructed. This approach,
while it performs reliably, lacks in precision as only the maker points are
truthfully mapped and a morphing algorithm has to be performed on the rest
of the mesh. The advantage with this approach, is that the deformations are
obtained directly and the registration process is circumvented: this approach
directly records deformation instead of surfaces (Guenter et al.[54]).

In a similar manner, and without the need of a 3D scanner, this approach
can be used to record a 3D face based on a single 3D face mesh. If the marker
points on the recorded face correspond to the ones on the 3D model, mea-
surements on the footage or pictures can be used to deform the 3D model to
best match the recorded face. By extension, 3D models can also be deformed
to match a set of photographs. This approach was performed by Pighin et
al.[100, 101] or by Parke[97] who directly painted a mesh structure on a face
which allowed direct registration.

When it comes to structured-light dynamic 3D scanners, data registration
is the central problem in retrieving information after the acquisition process.
Some approaches use optical flow techniques (see Section 4.1) which have
proven to be reliable for small deformations in an absolute one-to-all frame
registration. Large deformations can be tracked in a relative one-to-next reg-
istration but the accuracy diverges over long sequences. There exist several
known optical flow techniques which we discuss in more detail in Section 4.1.
A new registration approach addresses the divergence problem in Section 8.3.

Optical flow based registration has been performed by Blanz et al.[18].
They address the problem that optical flow may produce unreliable results in
smooth regions where the similarity of adjacent pixels is large. They couple a
relaxation technique that produces smooth results in a coarse-to-fine approach
(see also Vlasic et al.[129]). Zhang et al.[141] use the temporal coherence of
the data to retrieve missing information in a frame from subsequent frames.
To address the problem of large deformation which optical flow techniques
fail to track, Blanz et al. propose to group similar visemes into batches within
which optical flow computes the correspondence. The different batches are
then registered in a bootstrapping method involving user interaction.
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An alternative to optical flow is to use Radial Basis Functions (RBF).
The RBFs align and deforms the recorded face to match a generic face model.
Work from Cao et al.[27] or Kim & Ko[74] learn deformations by tracking
marker points in 3D which they reapply to their 3D face model. Because only
the maker points can be tracked accurately, the rest of the surface is deformed
by warping vertices accordingly to the surrounding markers (see Section 8.1).
Joshi et al.[69] proposed a Blend Shape technique that addresses this warping
problem and was used in Mood Swings (Wang et al.[133]) or by Chuang &
Bregler [34]. Kalberer et al.[73] avoid the warping by matching the whole 3D
face shape instead of maker points. Using RBFs, Noh & Neumann are able to
transfer expressions by computing mapping functions between different face
models. Zhang et al.[145] adapt a physically-based model to 3D acquired scans
in a hierarchical refinement of surface subdivisions, fitting first globally and
then locally.

2.3 Face Models

Face animation covers many research fields in contemporary computer graph-
ics. All these fields have to deal with high quality and accuracy. The reason
is that the structure of the face or its behavior is extremely integrated in
the sensitivity of people as it is the body part with which humans interact.
Therefore, any structure or behavior that deviates from their plausible na-
ture are quickly disturbing to the observer. The way faces are modeled in the
different fields of face animation depends on the applications the simulation
or the reconstruction are required for. This section concentrates on the be-
havioral aspect of this reconstruction and discusses the most common models
that appear in recent literature.

Parametric Models

The modeling of faces is roughly divided in three general groups: the first
group consists of deformable meshes by a given number of parameters. Poses
and expressions are then described by these parameters. In 1974, Parke &
al.[96] developed the first face animation system on a Silicon Graphics ma-
chine. Their model, which was originally controlled with less than 10 param-
eters was further developed and refined to about 60 parameters by Cohen &
Massaro[35] with a parametrically controlled polygon topology synthesis tech-
nique. Their model was used to simulate coarticulation based on dominance
functions to determine the mutual influence among visemes. Cohen & Mas-
saro additionally implemented a parametric tongue as did Parent et al.[95]
and King & Parent [75] in a similar framework.
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In the last few years, the MPEG-4 standard for facial animation[94] got
popular. It defines a facial animation parameter (FAP) set that closely re-
lates to muscular models. The FAP offers a set of parameters that ensures
realistic representations of talking heads for applications such as facial ex-
pressions, emotions, and speech animation. Beskow & Nordenberg [12] and
Eisert et al.[45] generated a MPEG-4 compatible model for learning-based
frameworks.

Muscular Models

A second group of face models, which is related to parametric models, de-
composes the face into a muscular structure and analyzes the behavior by
retrieving the muscle activations in order to reproduce them. The animation
parameters here become the muscle activation triggers. Early work from Wa-
ters[135] make an analysis of the muscles involved in articulation and their
effect on the skin.

Physically-based methods have to defined interaction models between the
muscles and the facial tissues in order the provide quality skin animation by
only controlling the muscles. Terzopoulos & Waters[124] describe a tetrahedral
mesh model that deforms under physical constrains. Applied to CG generated
face geometries they are able to generate expressive facial emotions.

In a different approach Head Shop, a physically-based face model developed
by Kähler et al.[70], adapts a muscular model to static face scans. Feature
points are defined on the scan and the muscular model adapts to the new
shape through refinement and warping methods. Albrecht et al.[3] employed
the Head Shop model to generate speech-synchronized facial animations.

Sifakis et al.[115] extend the muscular model by combining it with a qua-
sistatic finite element mesh to produce realistic reactions of the skin under the
dependency of the muscles. A great advantage of their model is that the facial
behavior can easily be set in interaction with external physical elements. In
their following speech simulation paper [116] they are able to deform animated
speech by interacting with lollipops of different shapes.

Where Choe & Ko[33] circumvent skin simulation by involving hand-
generated muscle actuation basis, Zhang & Sung [144] further extend the mass-
spring system by using non-linear springs in order to simulate the viscoelas-
ticity of the skin.

Finally, Tang et al.[113] propose a reduced muscle model. The muscles are
constructed with B-splines (NURBS) each featuring several control points.
Their model learns the activation parameters by observing lip movements
from video to which they match the feature-points.
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Learning-based Models

A radically different approach to face models consists by representing only
the apparent part of the face, namely its surface or the skin. This represen-
tation results from scan-based acquisition techniques which only capture the
topological aspect of the face. The advantage of learning-based face models
is that the faces can be either represented in their three-dimensional form or
in a two-dimensional cylindrical projection where the geometry is interpreted
as depth maps. This two-dimensional representation permits analyses using
image processing techniques. Hence, approaches used for video animation can
be directly adapted to three-dimensional models in particular for data regis-
tration.

In their speech animation framework, Edge & Hilton[44] record 3D video
with a face capture rig working with IR cameras for shape acquisition and
standard cameras for the texture. They do not register the data as their
goal is to synthesize animation with the original subject. Their approach uses
video-textures[111] (based on a Hidden Markov Model) which consists in con-
catenating video segments and deformation tracking is unnecessary.

For learning articulation and expression deformations, Kalberer et al.[71,
72] tracked marker points with a 3D scanner and mapped the observed dis-
placement to a parametric face. In this case, no shape in acquired but only
motions.

A more versatile and now popular shape model is based on a Multidimen-
sional Morphable Model (MMM) (Jones & Poggio[68]) introduced by Vet-
ter & Poggio[102, 128] as Linear Object Classes. MMM is a statistical lin-
ear compression process that generates a low-dimensional representation of
high-dimensional data which Section 5.4 presents in more details. Blanz [18]
presented a MMM for 3D faces in which 200 faces where registered. The low-
dimensional representations allows the controls of shape and texture variations
to produce morphings between different heads. There exists a wide range of
applications of such models. Facial animation can be included in the model
while keeping the facial identify deformation separated from speech or ex-
pression deformations. Such techniques have been used by Vlasic et al. and
Blanz et al.[16] to transfer expression from one person to another. In a sim-
ilar manner, Wampler et al.[132] learn shapes and expression from different
individuals. While these two latter works acquired the data simultaneously,
Blanz et al.[16] are able to learn viseme in a second pass by matching the
required deformations on the MMM. Further applications to MMM are face
identification from photographs by fitting the MMM to two-dimensional im-
ages (Romdhani et al.[104] and Huang et al.[63]) or in a similar scenario, faces
can be exchanged in photographs once the MMM is fitted [15].
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DeCarlo et al.[37] construct morphologically plausible faces based on face
anthropometry (the science dedicated to the measurement of human face).
These measurements are taken from a set of measurements, which become
the constraints for an surface optimization reconstruction problem solved us-
ing variational modeling. This model offers the advantage that, for instance, if
the anthropometric relation between the skull and the face geometry is known,
novel face shapes can be generated with automatically adapted physical struc-
tures. While such an approach is powerful for modeling faces, its principles
are ill-suited for animation purposes.

2.4 Face and Expression Transfer

A field that is closely related to speech animation is expression animation or,
how it is often associated with, expression transfer. Expressions synthesis also
requires great accuracy in order to recreate genuine feelings or sensations. The
particularity, is that the different regions of the face involved in expressions
deform unsynchronized and expressions can be combined but must be done
so in non-linear manners (see Deng and Neumann[43]). While the aspects
observed for expressions against speech synthesis are fundamentally different1,
their general setup for acquisition or face modeling is closely related.

The notion of transfer applies more to expression than to speech. While
the ultimate system should combine both aspects, expressions are controlled
in a different manner (see Section 8.5), they are rather meant to be applied
atop speech. In expressions, the behavior is learned from real persons and
is applied directly onto a face model. For instance, Buck et al.[23] transfer
expression changes from a video to a hand-drawn face; while these expressions
might also involve visemes (in the sense of speech) these are not treated as
such, but rather just like further expressions. For that reason, this aspect is
referred to as expression transfer (see also work from Pyun et al.[103] for real
time applications). Automatic speech generation systems on the other hand
regenerate articulations and do not aim at a direct reproduction of recorded
articulations but as a synthesis process.

A direct approach to expression transfer is to record expression visemes
with a 3D dynamic scanner and to reproduce them directly on to the recorded
face model. Blanz et al.[16] use such an approach. They project a 3D face
model onto a photograph (the face shape is already learned from that pho-
tograph) and by morphing through the visemes, they are able to reanimate

1 Investigations considering expressions syntheses try to reproduce recorded ex-
pressions on novel faces, whereas speech investigations tend to learn a behavioral
process in order to recreate novel animations.
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images. In the 3D domain, Noh & Neumann[90] propose a registration sys-
tem to make several face models compatible through an automated heuristic
correspondence algorithm. With this process, they are able to clone geometry
deformations available for a source face to any target face. Note, similar work
was done by Fratarcangeli et al.[48] in which they made the model compatible
to the MPEG-4 standard (see 2.3).

In a dynamic framework, expression movements are recorded with a 3D
dynamic scanner and reproduced onto the recorded face model. In Spacetime
faces, Zhang et al.[141] propose a temporal coherent dynamic 3D scanner
and learn expression parameters in order to reproduce them. They are able to
reproduce expressions with great realism as they observe them over time. This
is, expressions do not correspond to a typical face configuration but rather
an evolution of deformations over time, e.g. the mouth reaches “happiness”
while the eyes are only half way to their targeted shape. For instance, in his
early work, Parke[97] recorded several expressions as single visemes and was
able to morph between them using a cosine interpolation. While this process
generates smooth transitions, the natural unsynchronized progression of the
face components that generate the face movement is lacking, an aspect that
can be understood as a counterpart to coarticulation to expressions.

Expressions and speech can be seen as two statistically independent
sources observed simultaneously. Generally, to be separated, the mixture of
such signals have to be observed by at least as many captors as there are
signals under different conditions (the Cocktail Party example). In facial an-
imation, the approach is usually to record repeated utterances with different
expressions. Once these utterances are aligned over time it becomes possible
to separate the expression component from the speech component. Mathemat-
ical tools for such purposes are for instance Independent Component Analysis
(ICA) used by Kalberer et al.[71]. In their approach, the use a dynamic 3D
scanner to record a subject and match the acquired face deformations to a
generic face model using Radial Basis Functions (RBF). The components are
then separated from the model. ICA was also used by Cao et al.[26], their sys-
tems offers an interface to intuitively edit expressions and speech separately.

Another tool to operate separation is to use a bilinear model (Tenen-
baum & Freeman[123]). Chuang & Bregler [34] use this approach to factorize
and control speech and emotion in image-based motion capture data to more
effectively retarget facial motions to another 3D face model. They weight sub-
sets of morph target that belong to different facial expressions to convey more
emotion than single emotion vectors would produce. The idea is to learn the
characteristics of expressions in relation to speech from a set of training data
and to retarget these expression models to new animations.
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For separating expressions from speech, Wampler et al.[132] also use a
multilinear model but use tensors in order to learn face variations instead of
shapes over different individuals. While their speech synthesis bases on an
anime-graph (see Section 2.5.3), learned expressions are transferred to novel
animations according to the generated articulations.

Vlasic et al.[129] use a similar multilinear model to separate identities,
expressions and visemes. Their statistical model is then the automatically
adapted to novel video sequences and enables the control of a 3D face model
from from any individual though a two-dimensional interface using optical flow
techniques. Earlier work on video controlled face animation was performed
by Chai et al.[29] where the tracking was performed through feature point
detection on the video. Also Zhang et al.[142] transfer expressions from images
to 3D models but require user input to assign feature points.

In order to control expressions on a synthesized animation, Deng and
Neumann[43] propose to an isomap-based (see Section 6.2) user interface.
While speech and expressions are learned from real data, expressions are de-
scribed along in a low-dimensional manifold on which all points correspond to
valid face expressions. Dynamic programming is used for building a motion-
sequence from the database that reflects the user’s selection along the manifold
and that has a predefined emotion and smooth transitions.

Wang et al.[134] perform a slightly different separation. Their goal is to
obtain a generic expression movement from the several individuals and sep-
arate it from the style of specific subject. A bilinear model is used but in
this case it is performed on a dimensionally reduced representation of the mo-
tion curves. For the dimension reduction, they use Locally Linear Embedding
(LLE) (see Section 6.3) to better visualize the one-dimensional manifold along
which expressions deform.

Finally, Face Poser [79], an expression modeling system developed by Lau
et al. offers an interactive way for designers to generate realistic expressions.
The system is constructed on a statistical model based on a real data training
set. The user is first offered a neutral face shape on which he can sketch
deformations; the system deform the specified region and the rest of the face
adapts accordingly.

2.5 Speech

Automatic speech animation is the central aspect of this thesis. Natural ar-
ticulation is a really complex behavior which has been analyzed for over a
century. This behavior has to be understood in order to be expressed into
algorithms and reconstructed.
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Speech as a phenomena, is observed from many sides. Phonetics focus
on the produced sounds and classify phonemes according to their spectral
properties. The first separation divides phonemes into vocals2 and consonants.
While this separation is related to the classification in the alphabet (vowels
and consonants), vocals, as opposed to alphabetical vowels, also include for
instance phonemes like /W/ (cow). Moreover, letters can have several way of
pronunciation depending on the lexical context they are in (kid, high) or when
in combination with another letter (swing, cash). The phonetic separation
thus differs from the one from the alphabet. As a matter of fact, different
letter can even be pronounced the same way (rough, f inal). Another aspect
in speech is the way sounds are produced. In a similar manner, the physical
pronunciation has a direct impact on the produced sound, however, similar
movements can produce many distinct phonemes and similar phonemes can
be pronounced with different mouth configurations. In reality, many parts of
the body are involved in the pronunciation process. The field of articulatory
phonetics[13] focus on this aspect and reveal that a specific phoneme always
requires specific body parts to be active. In some cases, the mouth for instance
is not a mandatory component in the process and its shape has thus little effect
on the output sound. Vocals for instance are heavily dependent on the shape
of the mouth as it modulates the air flow coming straight out through the
larynx. Articulatory phonetics divide phonemes according to the components
involved in the pronunciation, the unitary articulation elements are referred
as places of articulation [78]. The perceived appearance of the phonemes can
however only be noticed by the shape of the mouth and the movement of
the tongue. The configuration of these two elements are known as visemes
and are understood in some extent as the visual counterparts of phonemes.
Hence, while articulatory phonetics give a complex but complete classification
of phonemes, visemes can be divided in a less restrictive classification which
correspond to a higher level classification of the places of articulations.

2.5.1 Simulation of Coarticulation

A primary approach to generate speech is to select an average viseme for each
phoneme and generate speech animation by linearly interpolate between them
in synchronization with an audio file. In reality, the visemes that are produced
during articulation are strongly dependent in the phonemes that preceded or
that are following and particularly if the uttered phoneme does not require the
involvement of the mouth. This effect on the mouth of the phonetic context is
known as coarticulation. Coarticulation actually encapsulates two phenomena:
the influence of phonetic context but also the articulation movement between

2 In phonetics, ’vocals’ are also called ’vowels’.
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two phonemes. This effect was studied on different aspects (Section 2.5.1) and
has been modelled statistically (Section 2.5.2).

The two articulation aspects encapsulated in coarticulation are considered
separately in order to generate novel animations. First, to generate realistic
transition motions between two uttered phonemes motion segments are re-
trieved from recorded animation and concatenated in order to produce smooth
animations (Section 2.5.3). The segmentation approach ensure that the natu-
ral transition information is reproduced in the final animation. Secondly, the
study of the viseme dependency on its phoneme context can be analyzed in
order to classify visemes 2.5.4. This classification allows valid substitutions
rules that widen the segments selection in a concatenation framework.

An early analysis on coarticulation was performed by Cohen & Massaro[35]
where they applied Löfqvist’s gestual model [81] as a general framework for
visual speech synthesis. Their model goes beyond keyframe interpolation in
order to model the interaction between subsequent phonemes. Dominance
functions that control how the influence of each phoneme slowly increases
before the phoneme is actually heard, and how it decreases slowly afterwards.
Due to the overlap of dominance functions, phonemes interact and produce a
smooth motion sequences. Recently, this approach was used in muscular-based
approaches by Albrecht et al.[3] and Scott & Richard [75] or in an MPEG-4
framework by Beskow & Nordenberg [12] or Eisert et al.[45].

A behavioral study of articulation focuses on the visemes interactions and
their relative role importance in speech. Visemes are taken from real data in
their best matching phonetic context. The concatenation of two successive
sequences is performed by following the acquired motion curves and blending
accordingly to the respective dominance functions. The dominance function
approach has proven to be reliable and so far the best model for simulat-
ing coarticulations (Parent et al.[95] Beskow & Nordenberg [12]) but remains
computationally expensive and complex due to the many articulation param-
eters involved. In their discussion on Issues with Lip Sync Animation, Parent
et al. propose to circumvent the coarticulation computation by using motion
segments from real data animation which already contain the coarticulation
information. Ideally, the highest quality is obtained by finding segments span-
ning long sequences of phonemes to ensure realism. This concatenation ap-
proach had been already used by Bregler et al.[22] where they introduced
triphones concatenation as a framework to generate realistic 2D animations.
This approach, which we use in this thesis, is discussed in Section 2.5.3.

Pelachaud et al.[98] perform a different analysis of coarticulation. They
consider that vowels have a more important impact on articulation than con-
sonants. Their modeling follows a forward-backward rule: visemes are defined
at phoneme occurring time positions. When the viseme is followed by a vowel,
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the forward rule applies and adjusts the transition position towards that vowel.
If the consonant is preceded by a vowel, a similar but inverse backward rule is
applied. This rules are however adapted according to the phonemes involved
in the transitions and their mutual relations. These relations are defined by a
phoneme grouping determined by the visemes deformability and their context
dependency.

In a similar but simplified model Wang et al.[133] suggests to produce coar-
ticulation by selecting target phonemes, the ones that have stronger impact
on articulation, and adapt preceding phonemes that them.

2.5.2 Statistical Methods

There exist a large diversity of statistical methods for simulating speech ani-
mation. This section mentions the four of the most successful methods which
use Markov models, machine-learning techniques.

Probabilistic Methods

Several methods model speech as a Hidden Markov Model (HMM). This model
is well suited to perception-based phenomena where the actual states in a
Markov model have to be probabilistically determined through observations.
The parallel with speech is directly obtained: uttered phonemes are the ob-
served phenomena and the visemes are the states to be found. With a sequence
of observations, the Viterbi algorithm finds the most probable matching se-
quences of states.

In Voice Puppetry [21] by Brand, the observed phenomena is speech and
expressions from an audio track. The presented system finds from a database
of pose parameters the best pose sequence to match the audio signal and
generates a new corresponding animation. Here, the approach is applied to
video face model (2D) but can easily be extended to three-dimensional models.
The parametric model is learned from real data.

Ma et al.[83] segment a large corpus of markers into syllables and concate-
nate them for new utterances. They take novel phoneme sequences from audio
tracks as observation and find the best matching syllable concatenation from
their database. Following the Markov model, this graph-based method ensures
to keep the coarticulation information that is contained in the stored motion
segments. Differently, Brand ensures coarticulation by generating transition
movements following the high-dimensional curved manifold described by the
acquired data.
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Machine-Learning

In video speech animation, great results have been achieved with high re-
alism. In particular, Ezzat et al.[47] use a regularization based on machine-
learning techniques. In a learning-based approach visemes are represented by
a Gaussian distribution in a high-dimensional vector space based on principal
component analysis (PCA). The distribution is centered around the average
appearance of the viseme, and varies according to the variation found in a
database of samples. For finding the motion trajectory for a new utterance, a
regression algorithm computes a smooth curve that passes as close as possible
to the centers of the visemes, relative to the variance of the viseme cluster. In
a refinement step of the training of the system, the viseme clusters are shifted
and deformed in order to obtain trajectories that are as close as possible to
those in a training set. In this model, coarticulation is due to the smoothness
of the curve and a statistical representation of the variance of each viseme.
On continuing work, Chang & Ezzat [30], are able to keep generic speech in-
formation and relearn articulation from another person using a mush smaller
training corpus.

These approaches were recently extended to 3D in the work of Kim and
Ko[74]. In that paper, Kim and Ko argue that the regularization approach
can generate movements that are too mechanical when used with three-
dimensional face models. They address that problem by combining a data-
driven approach. While this allows a reduction in the size of the database, the
authors claim that where the machine learning takes over the data model, the
results look less natural.

2.5.3 Segment Concatenation Approaches

As discussed above, producing coarticulation based on dominance functions
generates realistic and smooth results; this approach however, is complex and
computationally costly. Moreover, it suits best parametric face models and
is incompatible with statistically-based face models. While statistical motion
approaches try to reinvent coarticulation movements another popular way
to attack this problem is to consider that the coarticulation information is
directly available in the recorded corpus. The goal is to transport as much as
possible of this information from the acquired data to the output animation.

Segments concatenation approaches truncate the original information in
motion segments and associate them with the phonemes they correspond to.
Under this consideration, several segmentation frameworks have been pro-
posed which divide the original in different motion units: syllables [95, 35],
visyllables, animes or triphones.
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Visyllables

In the same way visemes are related to phonemes, visyllables relate to sylla-
bles. This segmentation method is well justified as the unit measure considers
sequences of phonemes and thus holds coarticulation information. Syllables
are islands of phoneme sequences isolated by pauses or silences; this is par-
ticularly noticeable in slow speech. On pauses, the mouth tends to return to
its neutral position and therefore, the extremities of a visyllable segment hold
less coarticulation information.

Visyllables were proposed by Kshirsagar & Magnenat-Thalmann[76] in
2003 as visual elements of speech, instead of visemes or triphones (see below).
The authors present a system that learns visyllables from marker point data,
transfers them to Facial Movement Parameters (FMP), and uses these for
animation. In speech synthesis, visyllables are stitched together, and boundary
mismatches are corrected.

The syllabic approach was used by Ma et al.[83] (they don’t use the term
visyllable though) where they segment a large corpus of marker data into
syllables and concatenate them in a new graph-based approach.

Animes

Cao et al.[27] proposed an Anime-Graph, which combines visual and speech
information in a single data structure, and use a greedy search algorithm for
generating new utterance in a real-time capable framework. Unlike the static
visemes, animes capture the entire motion during a phoneme and are stored
in a database and labeled with their corresponding phoneme. The motion seg-
ments are first normalized over time and then compared. Similar motion are
clustered and a single prototype for each cluster is kept while it is associated
with all the different phoneme labels it includes. This procedure not only re-
duces the size of the database but offers new concatenation possibilities. The
original anime succession information is also preserved and after clustering,
each anime is connected to several further animes that ensure smooth tran-
sitions (see Fig. 2.4). Finally, the clustering generates an Anime Graph that
captures the context dependencies of individual instances of phonemes. By
selecting animes with an appropriate context from the graph, the algorithm
synthesizes animation with coarticulation effect.

The viseme substitution problem is addressed in one direction: an anime
can be associated to several phonemes. That is, in a new animation synthesis
phonemes are matched only to motion segments with which they were asso-
ciated in the original corpus. In this thesis, this problem is addressed in both
ways: for a given phoneme valid substitutions to motion segments are sought
that were not attributed to that phoneme in the original recorded corpus.



26 2 Related Work

Fig. 2.4. Construction of an Anime-graph An Anime is a motion segment
labeled with its associated phoneme. In a first step, animes are connected according
to the original recorded sequences (left). Animes are then compared and clustered
by similarity (right); a single motion prototype is kept for each cluster (reducing
database size) but the original connections remain, thereby transforming the original
sequence in an anime graph. (illustration after Cao et al.[27])

This is possible because the general “behavior” of the phoneme is similar to
the one of the selected curve. In their following work, Cao & al.[28] extended
their speech model by including expressions that they separated from speech
by an Independent Component Analysis.

In recent work, Kim & Ko[74] coupled anime-graphs with the regulariza-
tion techniques from Ezzat & al.[47]. Where the anime-graph only guarantees
weaker transitions, the coarticulation is obtained through machine-learning
techniques. The combination of both approaches ensures realistic animations
even with a small data corpus. Wampler et al.[132] also use an Anime-based
graph algorithm, but rely on a bilinear model for separating expression and
speech.

Triphones

In 1997, Bregler et al. introduced the usage of triphones for speech synthesis.
Triphones are sequences of three consecutive phonemes. The term is inter-
changeably used is the phonetic or in the visual domain. In their paper Video
Rewrite[22], they present a triphone concatenation framework for the synthe-
sis of two-dimensional (or video) speech animations. Triphones present the
great advantage that they hold all the coarticulation information around the
their central phoneme that is the transition motion from and to the preceding
and the following phoneme.

In a data-driven approach, they address the problem of database size by
grouping specific visemes together to simplify the lookup process and higher
the matching of segments to a novel sentence. This grouping is based on Owens
& Blazek [91] viseme classification which the following section 2.5.4 discusses
in further details.

For generating novel animations, triphones are stitched together in an
overlapping fashion (see Fig. 2.5). To match a audio file, triphones are selected
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according to two criteria: one is the similarity of the triphone in the database
to the triphone required for the animation. If any of the required triphones
are not found in the database during speech synthesis, alternative triphones
are selected according to a viseme clustering; visemes may be replaced if
they belong to the same viseme class. The second criterion controls transition
smoothness by minimizing the difference between the connected, overlapping
ends of the triphones. In this thesis, this approach is extended by presenting
a data-driven rule for triphone selection by a general statistical analysis of
visemes and an application to 3D faces (see Chapter 10).

2.5.4 Viseme Classification

The introduction of this section on Speech Synthesis briefly presented the fields
of phonetics and articulatory phonetics. As exposed, articulatory phonetics is
closely related to visual speech animation while phonetics focuses on the audio
aspect of speech. Addressing viseme clustering is the kernel of this thesis; a
brief outline of the methods used to obtain such classifications concludes this
chapter.

From the several body components involved in speech (see Fig. 2.6), only
the lips and the tongue have a visual impact and play a role in visual ani-
mations. The teeth are also necessary but their importance is secondary as
they work in correlation with the tongue. Typically, for vocals, the air is di-
rectly propelled out of the lungs and only the lips are involved in the sound
modulation. Each vocal has thus a typical mouth configuration which can be
viewed as a viseme with restricted degrees of freedom. Therefore, each vocal is
clustered separately. In their 1983 paper, Montgomery & Jackson[87] investi-
gate characteristics of vowels. Their results are used by Kalberer et al.[73] for
building a viseme-space. The rest of the thesis restrains to the classifications
of consonants.

For consonants the analysis is more complex. While visemes can be log-
ically classified according to the body components involved in the speech
process, Owens & Blazek [91] perform a perceptual analysis. On a videotape
without sound, they present series of vocal-consonant-vocal (VCV) syllables
involving four vowels and 23 consonants. Hearing-impaired subjects are asked
to guess which consonant is uttered between the vowels. Viseme groups are
then determined by the cross-correlation of confusions. Indeed, when two con-
sonants form similar visemes they are likely to be confused in their observa-
tion.

By performing this experience on several subjects, a correlation table is
drawn and after defining a correlation threshold, the classification is obtained.
In their paper, Owens & Blazek [91] compare their classification with results
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Fig. 2.5. The principle of triphone-based synthesis The triphone-based ap-
proaches are divided into two parts: learning phase and synthesis. In the learning
phase, 3D data is acquired along with audio speech information. The recorded an-
imation is segmented according to the successive phoneme occurrences. Triphone
segments are stored in a database and labelled with their associated phonemes. For
the synthesis, the successive phonemes from a novel audio track indicate the se-
quence of the triphones that have to be selected from the database. From several
candidates, the sequence that performs the smoothest concatenation is selected and
new animation segments are produced by morphing along the selected triphone.

from Binnie et al. Walden et al.. While the resulting clusters slightly differ,
the correspondences validate their approach. The obtained classification is
given in Section 12.1.
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Fig. 2.6. The body components involved during speech From the illustrated
components, only lips and tongue are visible for the observer. The lungs are missing
in the illustration.

The classification given by Owens & Blazek has become a standard clas-
sification and is often used for viseme substitutions for speech synthesis. Bre-
gler et al.[22] use this classification (see Section 2.5.3). Kalberer et al.[73] use
the same classification for consonants and Montgomery & Jackson’s[87] for
monophthongs (a “pure” vowel sound, with an almost fixed articulation as
opposed to diphthong). Their coarticulation model is based on a limited set
of phonemes that appear to be visually more important than others, such as
vocals and labial consonants.

The MPEG-4 standard viseme classification is derived from it (they
grouped visemes that are originally separated). Yau & al.[139] use the stan-
dard MPEG-4 classification for speech recognition from video sequences; they
deviate from standard substitution approaches by focusing on distinguishing
articulations for consonants without taking the actual pronounced phoneme
into account. Beskow & Nordenberg [12] build a system that synchronizes
speech and expressions dependently and rely on the MPEG-4 standard. Dif-
ferently, Kshirsagar et al.[77] use motion capture data to estimate facial ani-
mation parameters defined on the same standard.

The approach presented in this thesis, derives a rule for viseme substi-
tution starting with no a priori knowledge of viseme similarities. These are
automatically deduced through a statistical analysis of the data and give a
quantitative similarity measure that relaxes the selection rule of viseme group-
ing.
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Background
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In this part, we introduce the technical and theoretical aspects considered
throughout the thesis and also discuss some alternatives. We present these
aspects in detail here, so that the following Parts III (Learning Visemes and
Articulations) and IV (Speech Synthesis), in which we build the system, can
be understood and directly validated. It also allows us to better separate the
contributions of our work from the underlying theory.

This part is divided as follows: in Chapter 3, the theoretical aspects of the
dynamic 3D scanner we used for recording facial animations is presented. In
Chapter 4, we present the optical flow techniques used to register the data.
Chapters 5 and 6 give an introduction to dimensionality reduction techniques
which we use for the analysis of the data. From these two chapters, the first
one presents the linear eigendecomposition performed by Principal Compo-
nent Analysis (PCA) (Section 5.3) and its application to Multidimensional
Morphable Models (Section 5.4). We then present Multidimensional Scaling
in Section 5.5, as a connection to nonlinear methods. Section 6.1 generalizes
PCA to a nonlinear reduction technique known as KernelPCA, and finally,
we present two popular reduction techniques used in speech and expression
analyses: Isomap in Section 6.2 and Locally Linear Embedding in Section 6.3.
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3D Data Acquisition

Section 2.1 already gave an overview on different 3D acquisition techniques.
This chapter explains in more detail the techniques involved in the system
used in this work for the dynamic acquisitions. The next section describes
the triangulation reconstruction theory. Its extension to structured-light based
scanners is presented in Section 3.2 along with phase shifting techniques which
increase the resolution of the captured geometry.

The setup of the prototype scanner used in this thesis along with some
software characteristics and its structure data is later described in Section
7.1.

3.1 A Structured-Light Based Scanner

Laser scanners use the triangulation process to recover three-dimensional ge-
ometries. Referring to Figure 3.1, suppose the distance b between the camera
C and the laser P is known (via calibration). The laser beams a ray with an
angle α and the impact on the object is observed on the camera’s viewport.
The location on the viewport indicates the angle β with which the camera
observes the impact. Because the laser and the camera are synchronized, the
system knows the three parameters b, α and β and can recover the depth h
of the object at the impact location:

h = b
sin α sinβ

sin(α + β)
(3.1)

Laser scanners retrieve the whole geometry of the object by running the
beam over a defined vertical and horizontal angular range. This process re-
quires several seconds and is thus well suited for static acquisitions. The pro-
cess can be accelerated if, for instance, two laser beams are used; the camera,
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Fig. 3.1. The triangulation process for a typical laser-based 3D scanner
Knowing the distance b between the camera C and the laser P , the observation angle
β in the camera’s viewport and the projection angle α, the depth h of the object at
the impact location can be computed. (figure after Wolf [137])

however, will not be able to make the distinction between the two observed
impacts. By using different laser colors, a light encoding is performed which
solves the problem.

On the same principle, structured-light based acquisition technique use
an encoding based on the projection of line patterns. Bouguet & Perona[19]
showed such a technique in its simplest form: using only a desk lamp and a pen-
cil, a video footage of the shadow of the pencil traversing a three-dimensional
object is sufficient to recover a geometric structure. By using a more sophis-
ticated setup, better acquisition can be obtained. Structured-light scanners
propose to encode light by projecting a set of line patterns over a short se-
quence (5 in the present case). The lines are projected through a LCD panel
at different resolutions (see Figure 3.3). This fast encoding technique allows
to acquire geometries at a higher speed; if such patterns are projected at a
high frame rate (about 200 Hz), a moving object can be considered to be at
rest over a sequences of 5 shots, hence, producing full geometry recovery at a
fifth of the camera/projector frame rate, i.e., at 40Hz in the present case.

The rest of this Section describes the theory behind structured-light encod-
ing. The matter concerning the proper acquisition procedure is later discussed
in Section 7.1.

3.2 Structured-Light Encoding and Phase Shifting

In this project a structured-light relies dynamic 3D scanner is used which
bases on a phase shifting technique (see Wolf [137]). In accordance with the
forementioned paper, in the following the phase does not refer to the complex
component of light but to levels of grey in the gradient from black (−π) to
white (+π) in a sinusoidal intensity pattern.
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The encoding for structured-light works as follow: 7 line codes are pro-
jected in sequence with different resolution. These codes are shown in Figure
3.2. After the line codes are projected, the camera can attribute a bit sequence
to each of the pixels of the viewport and the system knows the association to
the projector angles which are thus converted to line codes.

Fig. 3.2. Structured-light and phase-shifting encoding Seven different line
patterns are successively projected on the recorded object which provides a binary
encoding of the projecting angle. While this encoding divides the recorded surface
into 128 segments only, the resolution can be increased by combining a phase shift
technique. By projecting sinusoidal patterns, an almost infinitesimal resolution can
be obtained. (figure after Wolf [137])

By projecting only black and white codes, the sequence shown in Figure
3.2 divides the projected area into 27 = 128 line regions which would provide
a low horizontal resolution reconstruction of the object. In order to increase
that resolution, the phase shifting techniques proposes to project sinusoidal
patterns (patterns 4 to 7) so the phase variation can be measured across the
lines (see Fig. 3.3 for an illustration of varying line pattern projections) and
provides an almost infinitesimal resolution. The sinusoidal pattern is obtained
by slightly defocusing the lens of the projector which has a minimal impact
on the first three patterns.

While such a step provides full 3D reconstruction for a static object by
projecting only 7 patterns, the system can be further accelerated and perform
better for deformable objects. If relatively small deformations are assumed,
the projection of the three first patterns can be performed only once. The
final system demands that the object remains at rest at the beginning of the
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Fig. 3.3. Three light patterns (or line codes) on a static model Here, no
phase-shifting is used. (illustration taken from Pagès[92])

acquisition in order to first perform a full reconstruction (7 patterns). Once
this information is recorded, only the sinusoidal patterns are projected and
rather than performing full reconstructions, only depth variations are tracked.
Figure 3.4 illustrates such a deformation. In the viewing direction of the cam-
era, a pixel has an original reconstructed depth value of z. A deformation is
tracked in parallel to the viewing direction with a velocity v that produces a
surface displacement ∆z over two successive timesteps n and n + 1. On the
projection plane P , ∆z is seen as a ∆x displacement along the line pattern
to which a shift in phase ∆ϕ is associated. According to this phase shift, ∆z
is then found.

The scanner first performs a global reconstruction and then detects varia-
tions locally assuming relatively slow deformations. This decreases the neces-
sary recording frames to 5 (4 for the sinusoidal pattern, 1 code-free projection
to retrieve the texture). With the camera and the projector running at 200Hz,
the reconstruction rate is 40Hz. This increase of speed, however, comes at a
cost. In a speech animation scenario, the opening of the mouth induces abrupt
jumps in depth from the lips to the teeth. Such a case produces a non contin-
uous phase shift which prevents a correct association to the line patterns. The
results show depth measurement errors which makes it impossible to retrieve
the shape of “suddenly appearing” components (see Section 7.1).



Fig. 3.4. Depth variations detection through phase-shifting Relatively small
deformation velocities can be tracked by the phase shift they induce. The depth
variation ∆z produces a phase shift ∆x along the projected pattern, hence the gray
value changes on the recorded surface. (figure after Wolf [137])
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Data Registration

Section 2.2 gave a review of popular approaches to data registration and
mentioned different optical flow techniques. The optical flow algorithm used in
this thesis uses, in combination, the approach proposed by Lukas and Kanade
in 1981 [82] and the one by Bergen et al.[10] in 1992. This combination, used
by Blanz [14], works with a pyramidal approach and offers two variants: one
uses a Gaussian downsampling, the other a Laplacian downsampling. The next
section gives the theory behind this approach and serves as the foundation of
the extensions we performed to it in order to reduce divergence over long frame
sequences with large deformations. This extension is presented in Section 8.3.

4.1 Optical Flow

The concept of Optical Flow refers to the displacement map between two
images (Neumann[89]), typically from a video sequence where the time vari-
ation is relatively small; to each pixel in the first image, a velocity vector is
attributed that indicates its displacement to the next image. The optical flow
is a popular tool for data registration, as displacements or deformations from
recordings can be deduced from its interpretation [38].

Consider for example a rotating sphere of uniform color; as no geometry
or pattern variation can be perceived, such a phenomenon cannot be captured
by optical flow techniques. For scenarios where displacement is perceivable,
solving the optical flow is still not trivial and two known problems have to be
addressed. Ideally, the displacement of a pixel in an image is recovered upon
the postulate that its intensity remains constant from one frame to the next:

dI

dt
= 0 (4.1)
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This is, however, in general, not the case for acquired data as illumination
conditions change over the scene which affects the visual aspect of objects.
Another problem is known as the aperture problem. Suppose a vertical homo-
geneous pole is recorded but its extremities are not visible from the camera.
If the pole moves in a plane parallel to the camera’s viewport, only the lat-
eral displacement can be detected; optical flow techniques are unable in such
a case to recover vertical movements until one of the extremities becomes
visible. There are three general ways to address the aperture problem (see
Singh[117] or Barron et al.[5] for a survey):

gradient-based approaches assume the conservation of image intensity. Nagel [88]
solves the aperture problem, using second order intensity variations; Horn
& Schunck [60] induce smoothing constraints;

correlation-based approaches (Marr & Poggio[85]) use the surrounding infor-
mation of pixels. Lucas & Kanade[82] run a correlation window to look for
the best match of a patch around the pixels; Bergen et al.[10] propose a
downsampling framework that reports displacements measured in a lower
resolution image version back to the original. These last two methods are
used in this work and are discussed in more detail below;

spatiotemporal energy-based approaches: Heeger [59] takes advantage of the
relation of the spatial and temporal frequencies with the velocities of a
moving stimulus. In the spectral domain, displacements are defined over
a plane on which the stimulus is tracked.

The founding optical flow approach used in this work is described by
Blanz [14]. A short introduction is given here, the reader is, however, invited
to refer to the forementioned thesis for a more rigorous description and ex-
planatory illustrations. An extension to this optical flow approach is described
in Section 8.3.

Optical flow techniques are usually applied to 2D data. To extend such
techniques to 3D face data, face models are projected into a cylindrical repre-
sentation where the projection axis traverses the head vertically in the middle.
With such a projection, the data can be observed as a two-dimensional tex-
ture:

R(h, φ), G(h, φ), B(h, φ) (4.2)

and a two-dimensional depth map

r(h, φ) (4.3)

Hence, the optical flow tracks colors intensities for the texture and depth as
“intensities” for the geometry. The intensities observed in these conversions
to time variant 2D images are described as
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I(x, y, t), x ∈ {1, . . . , w}, y ∈ {1, . . . , h}, t ∈ R (4.4)

Knowing the intensities in a reference image at t0, their displacement is
found by computing the optical flow with the following constraint:

I(x(t), y(t), t) = I(x(t0), y(t0), t0) (4.5)

Lucas & Kanade[82] address the aperture problem by observing a square
window around the pixels and finding a gradient that best matches the whole
square. The displacement of the square is then reported to the central pixel.
This approach gives a vector field that provides a first estimate but is subject
to local extrema. This is solved by combining this approach in a coarse-to-fine
framework as proposed by Bergen et al.[10]. This method consists in smooth-
ing the images with a low-pass filter to reduce the amount of high-frequency
information. This process corresponds to a downsampling of the images (usu-
ally by powers of 2) and by taking a weighted amount of neighboring intensities
in the low resolution representation. By performing this downsampling step
several times, a pyramidal hierarchy of the images is obtained. A first iteration
of the Lucas & Kanade flow computation is performed at the bottom of the
pyramid (lowest resolution image) and the flow field is reported to the image
above. The flow is then refined by running the optical flow a second time.
This step is performed until the top of the pyramid is reached.

The approach proposed by Bergen et al. solves the aperture problem
for edge features, for instance, but is still unsatisfactory for low contrasted
surfaces; typical examples for face models are the cheeks of the forehead.
Blanz [14] proposes a further relaxation step: the vector field obtained by the
previously described technique is coupled to a mass-spring system in a grid
model matching the pixel distribution of the images. Each displacement vector
is connected to its four neighbors. Reliable vectors are fixed (sharp contrasted
features) and the others automatically adapt to these constraints. With this
process, a smooth optical flow is produced between all images. Note that this
smoothing process is particularly desired for scenarios like processing face im-
ages when deformations have an impact on large regions. Applications focus-
ing on tracking small displacements (e.g., following a car in a video sequence)
would avoid such a step.

A further point that needs to be discussed here is the filter used for the
coarse-to-fine downsampling in the approach from Bergen et al.. A Gaussian
pyramid is obtained by performing a low-pass filter which produces a blurred
version of the image. Another option proposed by Peter J. Burt and Edward
H. Adelson[24] is to use a Laplacian pyramid which corresponds to a high-
pass filter. The Laplacian reduction can be directly obtained by computing
the Gaussian downsampling and subtracting it to the original image. The
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Laplacian pyramid keeps the high frequencies of the images, that is, the optical
flow tracks sharp features (lips, face edge) rather than color intensities. Section
8.2 discusses the results after applying both types of filters. It turns out that
a Laplacian pyramid works better for matching different face identities with a
common expression, whereas a Gaussian pyramid is preferred when matching
a single face with different expressions.
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Dimension Reduction

Performing a dimension reduction on a dataset serves multiple purposes. First,
the original data structure of a set might not be well representative of the ex-
periment; if the correlation is great among observed variables, the phenomenon
is likely to have a lower inherent dimensionality than the one provided in the
observation. These reduction techniques can thus lower the dimensionality of a
problem and better reflect the actual behavior that is to be analyzed. A second
aspect is the fact that the produced representation gives a compressed form of
the original data which facilitates computations and offer better portability.

While reduction methods are all based on eigendecompositions, there ex-
ist two major categories. The first concerns Linear reductions, they perform
linear transformations and projections of the dataset. The basis of the low-
dimensional space indicates the orthogonal variation directions of the data
which are ordered in accordance to the decreasing magnitude of their asso-
ciated variances. By taking the most important components, a cumulative
information variation can be computed which indicates what percentage of
the original variation is kept. Generally, the remaining components represent
small fluctuations inside the data and by ignoring them, the reduction also
performs as a noise filter.

The second category concerns nonlinear reduction and is discussed in the
following Chapter 6. Measurements of nonlinear phenomena require high-
dimensional spaces to be represented but they often evolve on a curved man-
ifold of lower dimensionality which cannot be unfolded in a linear approach.
Linear reductions are thus ill-suited for that purpose as they fail at giving an
intuitive observation (these aspects are further discussed in Chapter 6).

The remainder of this chapter is dedicated to linear methods, SVD (Section
5.2), PCA (Section 5.3) and their application to Morphable Models (Section
5.4) which is used throughout this thesis. Section 5.5 describes MDS which



46 5 Dimension Reduction

can perform both linear and nonlinear reduction and give a good introduction
to Chapter 6.

5.1 Linear Methods

Linear dimension reduction approaches have been well investigated and and
their applications are multiple. This section gives a brief overview of two
approaches, namely Principal Component Analysis (PCA) (Section 5.3) and
Multidimensional Scaling (MDS) (Section 5.5).

PCA performs a Singular Value Decomposition (SVD) (Section 5.2) on a
data matrix X in order to retrieve the principal variance directions of the
covariance matrix C of X. Multidimensional Morphable Models (Section 5.4),
which are based on PCA, are flexible model representations which are used
throughout this thesis.

The second linear reduction method, MDS, shows a different approach that
provides similar results as PCA but can also perform nonlinear reduction. By
an example, nonlinear approaches are introduced which are then discussed in
the next chapter.

An important property of linear methods is that they not only offer data
compression, but can also serve as noise reduction processes. Indeed, the infor-
mation component in a signal is generally greater than the noise component;
removing the components associated with the lowest weights (singular- or
eigenvalues) ensures the removal of unwanted disturbances. Naturally, the re-
maining components are biased by the acquired noise but capture well the
relevant information.

On another level, because these methods are all based on eigenvalue ex-
traction of the data, they provide the inherent dimensionality of an observed
phenomenon if the latter has a linear nature. This aspect is discussed in Chap-
ter 6, where a survey of nonlinear methods is given.

5.2 Singular Value Decomposition (SVD)

Suppose a matrix A ∈ C
m×n is given that describes a linear transforma-

tion in C
n. Such a transformation can be decomposed into three consecutive

“simple” transformations: an alignment (rotation), a stretching and a hang-
ing (second rotation) as illustrated in Fig. 5.1. The Singular Value Decom-
position (SVD) decomposes the transformation matrix into three matrices
A = (hanger)(stretcher)(aligner) or

A = UΣV ∗ with U ∈ C
m×m, Σ ∈ C

m×n, V ∗ ∈ C
n×n (5.1)
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Fig. 5.1. The decomposition of a linear transformation From left: the first
rotation performs an alignment. The unit circle is then stretched to becomes a ellipse
and a second rotation brings the circle to the final state.

and V ∗ is the conjugate transpose of V . If only real numbers are considered,
Equation 5.1 becomes

A = UΣV T (5.2)

In the example of the unit circle, the purpose of the first rotation (the
alignment) is not clearly shown. The image of the unit circle through A is
a rotated ellipse with its two main axes. In the pre-image, these axes are
already orthogonal but they are not necessarily aligned to the basis of the
original space. The first rotation precisely aligns these axes to the basis in
order to perform the stretching. The stretching is performed along the axis of
the basis by a single coefficient for each axis; this is visible in the matrix Σ
which is a diagonal matrix. The values σi, i ∈ {1, . . . , n} are the singular values
of A, and the shared square roots of eigenvalues of AAT and AT A; they are
furthermore given in decreasing order. In Equation 5.2, U and V hold the left
and the right singular vectors, respectively, of A or the eigenvectors of AAT

and AT A. The multiplication by a matrix with its transpose is a symmetric,
matrix and therefore, the eigenvectors in U and V form distinct orthonormal
basis.

If A is a singular matrix (does not have an inverse), a projection occurs
along at least one of the basis axis. It is thus not possible to recompute the
pre-image though the transform. This means that at least one of the singular
values is zero (∃i ∈ {1, . . . , n}|σi = 0). (A pseudo-inverse A+ matrix can be
computed: if A has full column rank, then A+ = (AT A)−1AT .)
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5.3 Principal Component Analysis (PCA)

The goal of Principal Component Analysis (PCA) is to perform a statistical
analysis of a distribution of samples in a high-dimensional space by providing
a basis that better describes the data.

Suppose an experiment is performed m times and each time a set of n
measurements is gathered. The measurements (variables) of each experience
form an n-dimensional vector xi. If n is high and the intrinsic dimensionality
of the observed phenomena likely to be much smaller, it becomes interesting to
look for a simpler representation. The reduction in dimensionality is possible,
when the number of parameters that influence the phenomenon is smaller
than the number of variables. By observing the correlation of the n variables
over the m experiences, the number of influencing parameters l can be found.

If two observed variables x and y are correlated (they vary in accordance
to each other and cov(x, y) > 0), they are likely to be described by a single
variable. In a similar idea, by analyzing the correlation of all variables against
each other (cross-correlation), the dimensionality of the observation space can
be reduced to the inherent dimensionality of the phenomenon.

This dimension reduction process is performed by an analysis of the co-
variance matrix1

C =
1

m
X̄X̄T , C ∈ R

n×n (5.3)

which contains all the correlation information of the sampled vectors xi; X̄ is
the n × m matrix containing all the sample vectors from which the average
vector x̂ is subtracted (centering of the data).

Presently, the samples are observed in a n-dimensional space. If their dis-
tributions follow a Gaussian process, a PCA produces a new orthogonal basis
along the successive most important variation directions of the data. The axes
of such a basis are the eigenvectors of the covariance matrix and the distribu-
tions follow the standard deviations σi,∈ 1, . . . , n.

As presented in the previous section, the SVD of a matrix A provides the
eigenvectors and the eigenvalues of the matrix AT A. Hence, by performing an
SVD on X̄

X̄ = UΣV T (5.4)

the columns of U give, ordered after the decreasing magnitude of their asso-
ciated eigenvalues, the eigenvectors of X̄X̄T which up to a coefficient 1

m
is

1 In general, if the samples represent only a subset of a population, the fraction
uses (m − 1) instead of m; the results come closer to the standard deviation
measured on the whole population. In this thesis, we consider the acquired data as
a representation of a full population of 3D samples and use m in the computation.
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the covariance matrix of X̄. The eigenvalues on the diagonal of Σ give the
distribution of the data along the eigenvectors. By computing the cumulative
ratio

g =

∑l

i=1 diag(Σ)i
∑N

i=1 diag(Σ)i

(5.5)

the information gathered along the l first components can be measured.
The l first eigenvectors ui and their associated variance σ2

i give a repre-
sentation of the data with a lower dimensionality (l << n). It is generally
admitted that the remaining (n − l) components reflect the noise gathered
during the measurements. Therefore, the PCA not only reduces the dimen-
sionality of a problem but also performs as a noise filter.

Recall that the low-dimensional representation only describes the varia-
tions of the data. In order to reproduce the original samples, the variations
must be added to the average sample x̂ that was previously subtracted from
the xi.

5.4 PCA in a Multidimensional Morphable Model
(MMM)

A Multidimensional Morphable Model (MMM) is a flexible model for repre-
senting and synthesizing objects of a common class. The model is based on a
set of m acquired prototypes. In a class, objects must offer similar characteris-
tics or features (usually shape and/or texture); for instance, a set of cars [68],
of faces [18], of teeth [17] and so on. The principle is based on first matching
the common features of a set of objects in a registration step. For each of the
acquired prototype i, a vector si describes the list of n selected features.

The construction step of the morphable model performs a Principal Com-
ponent Analysis (Section 5.3) on the registered data. The average vector ŝ is
subtracted from the samples x = s − ŝ.

In order to analyze the variance of the data, all vectors xi, i ∈ {1, . . . , n},
are combined to a data matrix X and the diagonalization of the covariance
matrix

C =
1

m
XXT (5.6)

is computed by a Singular Value Decomposition (Section 5.2) X = UΣV T .
The principal components ui are the columns of the matrix U .

The PCA gives a representation of lower dimensionality l. In order to get
the coordinates of the original prototypes in the PCA space, each vector xi is
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projected onto the components uk, k ∈ {1, . . . , l}. The shape is then recovered
by adding the average vector ŝ.

Besides the fact that morphable models offer a low-dimensional model that
performs a data compression of large datasets, their applications are multiple.
For instance, as it is going to be the case in this thesis, a morphable model
permits the synthesis of novel shapes: an infinite set of shapes can be generated
by morphing along the components ui:

s′ =

l
∑

k

akuk (5.7)

where the coefficients ak ∈ R can take any values.
Blanz et al. have also proposed a fitting technique that allows the recon-

struction of shapes. By using the available knowledge in the database, the
optimum coefficients ak can be found to matches shapes that are incomplete.
This has applications for reconstructing teeth geometry [17] or to generate
three-dimensional face shapes from 2D images [16].

5.5 Multidimensional Scaling (MDS)

In 1952, Torgerson[125] introduced Multidimensional Scaling (MDS) as a tool
for retrieving low-dimensional representations of high-dimensional data. This
method has the advantage that is can apply as a linear as well as nonlinear
reduction.

MDS is based on relative measures among the samples (distances); the
samples are thus reference free and analyzed by their (dis)similarities. This
dissimilarity measure is described by distances between all sample pairs, which
can be a metric (satisfying the triangular inequality) or a subjective judgment
mapped to a grading scale. The dissimilarity measures δij , the composing
elements of the distance matrix D, between two samples i and j must follow
the three following rules:

δij ≥ 0 (5.8)

δii = 0 (5.9)

δij = δji (5.10)

and a dissimilarity is a metric if in addition

δij ≤ δik + δkj (5.11)

This last rule is typically lost when the perceptual measures are performed.
The distances are then combined in a matrix D which is symmetric, positive,
and the diagonal is null (distance matrix).
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In Section 5.3, the Principal Component Analysis is described by perform-
ing a Singular Value Decomposition (SVD) on the centered data metric X̄ to
find the eigenvectors of the covariance matrix C (Eq. 5.3). The principle does
not absolutely require a covariance matrix but can also be performed on a
correlation matrix (normalized covariance matrix) or a dot-product matrix
(neither centered nor normalized). Because the distance matrix D is not posi-
tive semi-definite (see Abdi [1]) it is not suited for an eigendecomposition. The
first step in MDS is to transform D to an equivalent dot-product matrix (see
Yang et al.[138]).

The dot-product matrix B is computed as a Gramian matrix: a matrix H
is constructed with its elements

hij = δij −
1

n
. (5.12)

H subtracts the average of each row i and each column j from δij ; the average
distance over the whole matrix D is again added. B is then given by

B = −
1

2
HD2H. (5.13)

Finally an SVD decomposition is performed on B as for the PCA. In
analogy to the cumulative ratio computed for the PCA (see Eq. 5.5), MDS
computes the residual variance r by summing up the remaining (n− l) eigen-
values. The “MDS stress” r quantifies the information left along the remaining
components.

If the distance matrix D is based on Euclidean distances, the decomposi-
tion produces exactly the same results as the PCA does. We next introduce
by an example how MDS can perform a nonlinear reduction.

Connecting Cities

We give here an example of an application of MDS using a Matlab implemen-
tation from Slaney & Covell [118]. Depending on the nature of the distances
(similarities) in the matrix D, MDS performs either a linear or a nonlinear
reduction.

Consider the the table of aerial (straight) distances between several cities,
in this example Switzerland (see Appendix 16.4 top of table). MDS can re-
cover the relative positions of the cities as a two-dimensional set of coordinates.
Figure 5.2 illustrates the output (white crosses) mapped back on the real lo-
cations (green circles). The given distances fit naturally in a two-dimensional
plane and the locations are thus recovered perfectly. The output is a relative
reconstruction; the axes in the novel representation are meaningless and the
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Fig. 5.2. An example of a linear and a nonlinear application of MDS The
figure gives a map of Switzerland and its principal cities (green dots). MDS computes
a distribution of data based on a distance matrix. Here, the results for two matrices
are obtained; first, with a distance matrix composed of real geographic distances,
where MDS places the cities exactly on their real locations (white dots). The second
scenario takes road distances in the matrix which reflect perceived distances for a
driver. Due to the mountainous topology of the country, some cities require longer
travel distances and are thus perceived further away than they really are. With
that matrix, MDS places these cities accordingly (black dots). The second output is
centered on Zurich. (figure by the author, MDS Matlab implementation by Slaney
& Covell [118])

locations are correct up to a Euclidean transformation. A linear transforma-
tion is necessary, in order to match the output to the original map.

Consider now the measuring of road distances connecting the cities (see
Appendix 16.4 bottom of table). Typically, these would be the perceived dis-
tances between the cities for a driver. By the topological nature of Switzer-
land, some cities require a large detour to be reached by car and are thus
perceived further away than they actually are. The triangular inequality is
lost and the graph connecting the distances can only be represented in a
higher-dimensional space. The driver, however, still likes to see the distances
in a plane, and we thus look for a mapping of the graph to a lower-dimensional
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space where the distances between the cities reflect as much as possible the
relative perception.

MDS performs exactly the same way for this kind of problem, only the de-
sired output dimensionality needs to be specified. Again, Figure 5.2 illustrates
the new mapping (black crosses). With the output centered on Zurich, one
can see how cities like Sion or Lugano are perceived much further away than
they really are, but such a representation much better reflects the perceived
distances for a driver. The perceived topology of Switzerland is thus signifi-
cantly different from the geography and thus follows a nonlinear deformation
in order to match the perception.

This extension to MDS is the key to the growing interest in nonlinear
reductions. In a linear representation, data can be really hard to interpret,
and its intrinsic structure can be left unnoticed. If the nature of the data
lies on a curved manifold, a nonlinear approach can produce a more intuitive
representation.
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Nonlinear Dimension Reduction

Algorithms for nonlinear dimension reduction are currently an extremely hot
topic: while these approaches enjoy great success, they still are often disputed
as to the nature of the structure they produce; indeed, these structures can
vary from one technique to the other on a same set of samples. The other
point of controversy is based on the fact that these techniques always assume
that the samples lie on a low-dimensional curved manifold which is difficult
to visualize in a linear reduction approach. While these reduction techniques
always provide a reconstruction, the assumption of a manifold cannot always
be proven. However, nonlinear reduction techniques have proven to be a suc-
cessful tool in several applications and often offer a better alternative to linear
techniques.

(a) (b) (c)

Fig. 6.1. Unfolding The Swiss Roll This example shows the nonlinear reduction
process on points sampled along a curved manifold. In a Euclidean representation (a)
two points that lie far apart on the manifold are located close to each other, which
does not well represent the nature of the data. Isomap generates a graph based
on sample adjacency (b) which is unfolded in a lower-dimensional representation
(c). This representation better reflects the nature of the original data. (Taken from
Tenenbaum et al.[121]
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The idea of performing a nonlinear dimension reduction on a set of data,
is to detect the curved manifold on which the data is distributed and to unfold
it to a lower-dimensional representation that better reflects its inherent global
coordinate system. Figure 6.1 illustrates such a process. In this example, the
sampling points along a “Swiss roll” are shown in a Euclidean representation.
With such a visualization, two points that lie far apart on the manifold are
located close to each other, which does not reflect the real nature of the data
(a). Here, using Isomap (see below), an adjacency graph is built by connecting
each sample to its closest neighbors (b). The graph is then unfolded to get
the two-dimensional representation of the manifold (c). As one can see, this
representation better reflects the actual distance between the two samples.
(In general, the path connecting the samples if found by seeking the shortest
path on the graph.)

This chapter discusses some of the existing nonlinear techniques. In the
previous chapter, PCA was presented as a linear reduction technique that
performs an eigendecomposition of a covariance matrix. In fact, the decompo-
sition can be performed on different matrices (the requirement is that these
matrices are positive semi-definite). The first section of this chapter (Section
6.1) discusses this aspect by introducing KernelPCA a nonlinear generaliza-
tion of PCA. In fact, most nonlinear techniques are variants of KernelPCA.

Two important techniques are then discussed. Section 6.2 presents Isometric
Feature Mapping (Isomap) and Section 6.3 Locally Linear Embedding (LLE).
These two approaches differ by how the samples are considered with respect
to the manifold. Isomap performs a global reduction that reflects the original
distances between all the samples, whereas LLE performs a local reduction
which only guarantees local invariance.

In this thesis, speech articulation samples are analyzed using LLE. We give
here a brief summary of both of the latter approaches as they become popular
tools for expression and speech analysis [67, 140]. Further techniques can be
found in a good survey on most of the linear and nonlinear techniques by
van der Maaten[127]. In particular, Brand [20] recently introduced Manifold
Charting : this techniques, which is quite different from the forementioned
ones, consists in computing linear models locally on the manifold and realign
them in a lower representation.

An important point to mention about these low dimensional nonlinear
representations, is that the space they describe is only defined on the loca-
tion of the samples, intermediate positions can only be approximated by a
combination of adjacent samples. On that aspect, Bengio et al.[7] offer an ex-
tension to most of the nonlinear reduction techniques which allows to locate
new samples in the manifold representations without having to recompute the
eigendecomposition.
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6.1 Kernel PCA

Section 5.3 presented the PCA eigendecomposition of a covariance matrix
in order to perform a linear reduction. As mentioned in Section 5.5, such
decompositions can be performed on matrices of different nature (correlation
or dot-product matrices). KernelPCA [112, 8] proposes to use a kernel matrix,
the nature of which is defined according to the desired analysis [127]. By
defining a kernel function

ki,j = κ(xi, xj) (6.1)

the kernel matrix K is constructed and centered according to Equation 5.12.
The reduction then follows the steps of MDS.

If k is a linear kernel, the reduction is equivalent to PCA; a dot-product
kernel performs just like MDS. In fact, KernelPCA is a nonlinear generaliza-
tion of PCA (see also Williams[136]). In the appendix of their paper, Schölkopf
et al.[112] present a set of kernel selections according to the applications.

Dimensional Augmentation

KernelPCA can also be used to separate data in a higher-dimensional space, it
is thus not always referred to as a dimension reduction technique. For instance,
by taking

k : R
2 → R

3

(x1, x2) 7→ (x1, x2, x
2
1 + x2

2) (6.2)

the samples distant from the origin are mapped higher in the third dimension
and can be separated by a plane from the samples close to the origin.

6.2 Isometric Feature Mapping (Isomap)

Isomap (Tenenbaum et al.[121]) is another eigendecomposition based reduc-
tion technique; but instead of using measured distances, it estimates the
geodesic distances along the low dimensional manifold. The dimensionality
of the manifold needs, however, not to be known a priori and is automatically
found by the algorithm, which make this approach really powerful.

Isomap is based, like MDS (Section 5.5), on relative measurements and
employs a distance matrix. In order to retrieve the geodesic distances, the
distance matrix is transformed in two steps: first, a binary adjacency matrix
is generated that gives the connections of each sample to its closest neigh-
bors. The adjacency condition can be defined either by a k-number rule (the
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k closest samples are selected) or by an ε-distance threshold (all neighbors
lying closer than ε are selected). The second step computes the geodesic dis-
tances between all samples by cumulating the distances traversed on the graph
derived from the adjacency matrix (Dijkstra’s shortest path). A second dis-
tance matrix is generated which contains all the pairwise geodesic distances.
If the adjacency condition is robust, no shortcuts occur in the graph1 and
the manifold can be unfolded by performing MDS on the geodesic distances
matrix.

Isomap presents two problems. First, because MDS works with pairwise
distances between all n samples, computing the Dijkstra shortest path between
all of them is very expensive (O(n3)). The problem can be reduced by choosing
a subset of m samples (landmarks) and perform the MDS reduction on them
[36]. The shortest distances between them are, however, still computed on the
dense graph but the complexity reduces to O(m2n).

(a) (b) (c) (d)

Fig. 6.2. Conformal mappings: data generated on a plane and conformally warped
to a fish-bowl shape (a); note the dense sampling around the rim. Isomap fails to
recover the geometry due to its violated assumptions (b); Conformal Isomap (c) and
LLE (d) both recover the original data. (figure and caption taken from Ihler [65].)

Isomap retains the local distance between the samples, but also the angles
and is thus well suited for unfolding manifold like the Swiss-Roll example[65].
However, the second problem is a direct consequence to this isometric nature
of the Isomap reduction. The fish-bowl example illustrated in Figure 6.2 shows
the conformal mapping to a fish-bowl of data generated with homogeneous
distribution on a plane. The mapping produces a denser distribution along
the rim (a) which constrains the expandability of that region for the Isomap
(b). de Silva & Tenenbaum[36, 126] propose conformal Isomap (or C-Isomap)
that adds invariance to local scale by only considering the relative angles. The

1 If the low-dimensional manifold folds together, a weak adjacency criterion could
connect two samples that lie far apart on the manifold. See Saxena et al.[110] for
a variant to Isomap that increases robustness to shortcuts.
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behavior of conformal Isomap (c) is very similar to LLE (d) which is presented
in the next section.

Note: the “Connecting Cities” example given in 5.5 is similar to the per-
formance of Isomap. Taking the road distances between the cities is similar
to considering geodesic distances.

6.3 Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) proposed by Roweis and L. Saul [105, 108] is
a different approach to dimensionality reduction than the techniques discussed
so far. LLE is a local nonlinear technique as it is based on local reconstruc-
tions. In the algorithm, only the connections between adjacent samples are
considered, inducing a sparse matrix which accelerates the eigendecomposi-
tion.

The Algorithm

The algorithm takes m n-dimensional input vectors xi. The assumption is
that a sample xi and its k neighbors2 xj form a linear patch in the low-
dimensional manifold so that xi can be approximated by a linear combination
of its neighbors: xi ∼

∑k

j wi,jxi. The weights wi,j are chosen so that for each

patch they sum up to one:
∑k

j wi,j = 1. They are found by minimizing the
reconstruction errors E(W ) as a constrained least square problem [109]

E(W ) =
∑

i

|xi −
∑

j

wi,jxj |
2 (6.3)

xi is hence projected in a hyperplane defined by its neighbors3. The n × n
weighting matrix W is a sparse matrix, as wi,j = 0 when xj is not adjacent
to xi.

The last step of the algorithm is to find yi the image of xi in the global
internal coordinate system of the manifold. In the image space, the weights
should remain the same in order to preserve local invariance of the samples
relatively to their neighbors. This is solved by minimizing a second error

2 Similarly to Isomap, the neighbors are selected according to either a k-number
rule or an ε-distance criterion.

3 With k neighbors selected and assuming k < n, the dimensionality d of the
hyperplane on which xi is projected is smaller than k (d ≤ k − 1); this condition
is extended to the manifold, as LLE performs an unfolding of that projection
space. When LLE is computed, setting d above k generates additional dimensions
in which show no information.
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function Φ(Y ) similar to Equation 6.3 but this time the weights are fixed and
the embedding coordinates are optimized:

Φ(Y ) =
∑

i

|yi −
∑

j

wi,jyj |
2 (6.4)

In the minimization, a target dimensionality l is attributed to the size of the
embedded vectors yi. Moreover, this minimization, which has a unique global
minimum, is performed without the knowledge of the input vectors and the
embedding is thus found only from the weight information.

The minimization is performed by solving an n × n eigendecomposition:
Equation 6.4 is rewritten in a quadratic form Φ(Y ) =

∑

ij mij(yi ·yj) with mij

defining a cost matrix M . By constraining the translation, the rotation, and
the scaling degrees, the low-dimensional embedding is found by performing an
eigendecomposition of the matrix M . The global internal coordinate system
of the manifold is then defined by the l + 1 eigenvectors associated with the
lowest eigenvalues (Rayleitz-Ritz theorem in Horn & Johnson[61]). In fact,
the lowest eigenvector is also discarded as it correspond to the free translation
mode of the embedding associated with the eigenvalue 0; the dimensionality
of the embedding is finally l.

LLE versus Isomap

LLE is similar to Isomap as both are based on a graph representation of the
low-dimensional manifold. In both cases, the graphs are derived from neigh-
borhood connectivity. Isomap, however, only uses the graph representation in
an intermediate step and recomputes geodesic distances between all pairs of
samples. The LLE thus performs the eigendecomposition on a sparse matrix
and, as a consequence, the embedding is retrieved much quicker. The fish-bowl
example in Figure 6.2 also shows that because LLE retains only local scaling
of the samples, the variation of sample density over the manifold does not
prevent it from retrieving a correct embedding.

However, LLE reconstructs samples as a weighted linear combination of
their neighbors and, unlike Isomap[122], the embedding does no reflect the
original distances between the samples. This last aspect is one of the main
differences in the outputs generated by local and global nonlinear techniques.
Moreover, Isomap is able to detect the inherent dimensionality of the manifold,
whereas the LLE requires the user to take guesses. Usually, this implies that
the process has to be run several times with different parameters until a correct
embedding is found.



Part III

Learning Visemes and Articulations
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In this part of the thesis, we set up an articulation model based on real
data acquisitions. This model will permit the analysis of speech articulation
in Part IV in order to recreate natural animations.

In his thesis, Blanz [14] proposed a morphable model for face identities.
This model, based on the acquisition of 200 faces, allows to morph between
original faces, but also permits to define novel faces in a high dimensional
face-space. In our work, a similar approach is undertaken; but instead of con-
sidering identities, our model bases on face deformations associated to speech.
While the face acquisitions in Blanz’ model are performed with a static scan-
ner, articulation motions are, here, captured using a high-speed dynamic scan-
ner. The articulation model will thus not only permit the generation of face
shapes (visemes), but also, by extension, the generation of face animations.

The different steps involved in the construction of such a model are detailed
in the next chapter. In Section 7.1 of the first Chapter, an actor is recorded
with the dynamic 3D scanner which produces, with a frame rate of 40Hz, a
collection of 3D face meshes or a “3D video” sequences. However, the face ge-
ometries delivered by the scanner cannot be directly studied. Indeed, the face
coverage of the recordings is only partial and varies over the sequences. Also,
the presence of holes and noise makes the data difficult to be analyzed. For
instance, the geometry of teeth and tongue cannot be captured, resulting in
erroneous reconstructions inside the mouth cavity. In Sections 7.2 and 7.3, we
describe how the original data is amended by removing the structure of teeth
and the tongue, how we smoothly filled the holes and reduced the acquisition
noise (see Figure 6.3 for an example).

Fig. 6.3. Data preprocessing Detail of the mesh obtained from the scanner with
holes and residues of the projected line pattern (D), reconstruction with tongue and
teeth information removed, holes filled and geometry smoothed (E), reconstruction
with average texture (F).
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Once the data is cleaned, we register all recorded sequences to obtain a
general mesh consistency over all recorded 3D frames. Indeed, 3D frames gen-
erated by the 3D scanner are sequences of independent meshes where vertices
do not correspond to the same location on the face over the time. Two ap-
proaches are undertaken: the first one (Section 8.1) tracks marker-points in
order to perform a pre-warp over the data so that large deformations relative
to a reference frame can still be captured by the optical flow (Section 8.2). In
the second approach (Section 8.3), an adapted optical flow technique is used
which combines an absolute with a sequential matching. The second method
proves to give better accuracy for the registration.

After registration, we analyze the variations in the geometry over the set
of the 3D frames and build a Multidimensional Morphable Model (MMM) for
articulation (Section 8.4) which offers a spatial representation of visemes.

We have already recorded sound simultaneously with the data. By per-
forming a phonetic alignment (Section 8.4.2), we label each frame with its
associated phoneme. By projecting the 3D frames onto the viseme-space, we
can then define clusters of visemes and already generate simple animations
(Section 8.6).
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Data Acquisition and Preprocessing

7.1 3D Acquisition

Fig. 7.1. The dynamic 3D scanner setup Both the high-speed camera (pink)
and the projector (black) are fixed on a horizontal bar. The control device (orange
box) keeps these two elements synchronized, and the data is acquired by the com-
puter on a frame grabber directly from the camera. The chair is equipped with two
metallic bars which reduce head motion during the acquisition.
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The dynamic 3D scanner setup by ABW1 consists in a high speed greyscale
camera with a resolution of 640 × 480 pixels and a projector that emits the
structured-light onto the model (see Section 3.1 for details on structured-
light based scanners). As depicted in Figure 7.1, the camera (pink) and the
projector (black) are fixed on a horizontal bar and both components aim at a
point which is about 40cm from the bar and corresponds to the center of the
recorded frustum. This frustum is about the size of an average face, about a
30cm cube. The control device (orange box) ensures synchronization between
both elements and is controlled by a computer. Frames captured by the camera
are directly sent to the computer’s frame-grabber with a frame-rate of 200 Hz.

The acquisition interface on the computer offers a live camera view in
order to ensure the right positioning of the subject. A test 3D frame can
be captured to verify the quality of acquisition. The user can then define
the recording length in frames (at 40 Hz) of a dynamic sequence. While the
camera records with 200 Hz, 5 consecutive frames are necessary to generate
a 3D model; hence, the output 3D frame rate is of 40Hz. To proceed with
acquisition, the user enables recording and a first high pitched beep is heard.
From this moment on, the recorded subject has to remain still for a full second
before it can start speaking. This pause is required in order for the system to
build a first reliable depth image which serves as reference for constructing
the following ones. The ending of the recording generates a second beep. The
two emitted beeps are later necessary to synchronize the audio track which is
recorded on a separate system.

In this thesis two corpora were recorded. In a first attempt to learn only the
degrees of freedom of the mouth, a relatively small corpus was recorded. For
undertaking a triphone-based speech synthesis system, a larger corpus became
necessary and a second corpus was recorded. The first corpus consists of the
11 long sentences (1933 frames, about 48 seconds) given in Appendix 16.1; the
second of 116 sentences (17142 frames, about 7 minutes 8 seconds) consisting
of the sentences from the first session plus a second set of long sentences
and a set of short sentences (see Appendix 16.1). The second session contains
also separately recorded expressions. All sequences are recorded beginning
with a neutral face to facilitate the registration over the different sequences.
Regarding the processing time, the reconstruction algorithm needs about 2
hours to generate 10 seconds of 3D animation, that is 9,6 hours for the first
corpus and about half a week for the second. The following table gives these
values:

1 ABW GmbH, Siemensstraße 3, D-72636 Frickenhausen, http://www.abw-3d.de
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Session 1 Session 2
nb sentences 11 116
nb frames 1933 17142
animation time 48 sec 7 min 8 sec
reconstruction time 9.6 hours 3.5 days

After reconstruction, each 3D frame captured by the scanner is a depth
field parameterized by the camera pixel coordinates (u, v). More specifically,
we obtain 3D coordinates x(u, v) at discrete steps of (u, v), along with a
greyscale texture and a binary array for the mask, indicating which pixel is a
valid depth estimate and which is not. With this parameterization, the texture
information (8 bits) reflects the actual image taken by the camera. Each pixel
is associated with a 3D vertex where the mask (8 bits) gives it as valid (0 for
valid and 1 otherwise). If the pixel is valid, the X,Y and Z coordinates are
stored in 3 further arrays (32 bit floats). Hence, for a single 3D frame, the
scanner delivers 5 arrays. In Figure 7.2, two 3D frame examples are shown by
their texture, mask and Z arrays.

Two problems arise from this acquisition technique. First, the mask indi-
cates regions inside the recorded area which are not valid: holes lie with the
recored geometry. This problem arises because both camera and projector do
not have the same alignment. The projector casts shadows onto the face that
are visible by the camera and symmetrically the camera cannot capture all
the lit surface as occlusion occurs. Such a scenario is typically seen around the
nose: one side is invisible to the camera while the other side is shadowed by the
nose. The second problem is the fact that the geometry of teeth and of tongue
cannot be reconstructed correctly. Indeed, the structured-light projects lines
onto the surface which are tracked during the reconstruction process. When
the mouth is open, the lips cast a circular shadow around the teeth which
prevents the algorithm from making the correct association between the lines
inside the mouth and the ones on the skin. Also, the phase-shifting technique
(Section 3.2) is best suited for capturing undulating depth variations such as
deforming skin surface. When the mouth opens, the inside of the mouth ap-
pears abruptly which results in a sudden jump in depth which can be wrongly
interpreted. The effect of these two problems generates extremely noisy recon-
structions of the teeth and the tongue, as Figure 7.3 illustrates. Sections 7.2
and 7.3 address these two issues: holes are filled according to the surround-
ing geometry and the teeth and the tongue are removed in a semi-automatic
framework and filled with a concave surface matching the lip contour.

An attempt to reconstruct the teeth and the tongue was made by matching
the recorded model to the face morphable model from Blanz et al. [14]. Since
this model considers full faces, it does not offer the same resolution on the area
of the mouth. By converting the recorded frames to that morphable model, the
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Fig. 7.2. The data structure The 3D scanner delivers a total of 5 arrays of data
for each frame. This figure shows three of these arrays (columns) for two different
frames (rows), namely the texture, the mask and the Z coordinates. Note that the
mask gives invalid pixels inside the surface of the recorded face.

shape of the mouth cannot be reliably restituted (see Section 9.1). The path
is thus not further investigated. Appendix 16.2 presents some of the obtained
results.

Finally, for the recording, the subject wears 50 white marker points
(Figs. 7.2 and 7.3). These markers serve two purposes. First, they help the
optical flow correspondence in the registration process, particularly for low
contrasted areas like the cheeks or the forehead. Secondly, before the registra-
tion, a rigid alignment of the faces is performed which is based on a subset of
these markers.
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Fig. 7.3. The recorded 3D shape The face geometry delivered by the scanner
presents two problems: holes are present over the recorded surface, and the geometry
of both teeth and tongue cannot be accurately retrieved.

7.2 Hole Filling

Because some regions cannot be reconstructed by the dynamic scanner, the
given face geometries carry holes which have to be filled according to the
surrounding topology. Doing so improves the quality of the original data and
is required for the statistical analysis of the face deformations.

The approach undertaken is similar to binomial kernel smoothing (Marc-
hand & Marmet [84]). The process fills the holes linearly and the geometry is
adapted iteratively in the same manner one would fill a hole with clay and
smooth out the geometry with the thumbs. The algorithm first fills a hole
horizontally with respect to the array representation of the data. The fill-
ing is performed through a linear interpolation between two opposite vertices
relatively to the hole.

The smoothing behaves like a Binomial filter. It convolves the data with
normalized coefficients with a kernel size defined by the user (9 in our case).
The convolution is performed on the first derivative of the vertical and hori-
zontal geometry curves and affects only the filled vertices. As a result, at each
iteration, the flat filling is “pushed” out until it composes a smooth reconstruc-
tion (see Fig. 7.4). The filter is applied to the derivative because, in that way,
the geometry adapts much faster to the topology; also, filtering around a local
maximum of a function does not produce a smooth continuation which would
be visible if applied directly on the surface. Using the derivative circumvents
that problem.

Figure 7.4 illustrates such a local reconstruction on a sinusoidal curve. The
reconstructed geometry is represented by a red curve and the derivative by a
green curve. At the beginning the derivative of the linear filling is zero. Each
iteration smoothes the derivative from which the geometry is reconstructed.
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10 iterations are sufficient to produce decent smoothing and are performed
horizontally and vertically, alternatively.

pixel index

original geometry

1st iteration

2nd iteration

5th iteration

10th iteration

1st iteration

2nd iteration

5th iteration

10th iteration

original derivative

HOLE

Fig. 7.4. Hole filling and smoothing Holes inside the geometry are filled and
smoothed with a binomial-kernel-based filter. In an iterative process, the linearly
filled geometry is adapted to the surrounding topology upon reconstruction of a
smooth first derivative along the vertical and horizontal geometry curves with re-
spect to the array representation of the data.

The same type of filter is used to smooth out the noise from the acquisi-
tion. Indeed, residues of the projected pattern from the structured-light based
scanner produce thin undulations on the surface of the skin, also visible in
Figures 6.3-D and 7.5-left. Because these undulations are direct residues of
light encoding of structured-light based acquisition, they propagate along the
horizontal axis in the data arrays. Hence, a horizontal smoothing is performed
with a smaller kernel size (5 in our case) and two filter passes are sufficient
to reduce that artifact and do not affect the overall face topology: notice,
in Figures 6.3-E and 7.5-right, how the details of the eyes and eyebrows are
conserved.

The following section shows how the data inside the mouth cavity is re-
moved. After removal, the hole inside the mouth is filled and smoothed by the
same process as described above. However, the topology adaptation discussed
in the beginning of this section is not applied to that region so that the mouth
cavity is modelled with a purely concave surface matching the inside border
of the lips.
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Fig. 7.5. Hole filling and scanning residues smoothing This figure illustrates
how the holes in the original recorded data (left) can be filled and adapted to the
surrounding topology (right). This adaptation is obtained by smoothing the filling
with a binomial kernel. The same procedure is performed on the full geometry in
order to remove the residual noise from the acquisition. The smoothing is able to
keep the details of the eyebrows and of the eyelids.

7.3 Semi-Automatic Teeth and Tongue Removal

The geometry of the reconstructed teeth and tongue is chaotical and inconsis-
tent from one frame to another. Hence, this region is removed and is filled with
a concave surface like the one illustrated in Figure 6.3-F. Because of the size
of the data, removing the inside of the mouth by hand would be too tedious
and inconsistent from one frame to the other. A semi-automatic algorithm is
proposed which simplifies the extraction of the mouth cavity.

The idea behind the algorithm is to detect the edges of the lips by using
the information given by the texture, the depth map (Z coordinates) and the
mask in order to detect and isolate small continuous portions of the surface
and to distinguish them from the larger face and lips surface. The algorithm
segments the recorded surface and keeps only the largest area. In order to
ensure that small segments, particularly around the eyes and the eyebrows,
remain intact, the user specifies in the first frame a region in the data array
that encloses the mouth over the whole sequence. Restricting the area of
processing also accelerates the detection process.

The approach is decomposed into two main steps. First, the mask and
the depth information are used in combination to setup the data for edge
detection. In a dilate-erode approach, the edges are then transformed into a
closed form which is necessary for the segmentation. Section 7.3.1 presents
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the edge detection principle and Section 7.3.2 describes how the segmentation
takes place.

7.3.1 Teeth and Tongue Detection

In order to be able to properly detect small regions on the recorded mesh,
the mask and the depth information is used in combination. As can be seen
in Figure 7.2-center and -left, the mask already holds a lot of information
regarding the edges. The Z-array brings, however, a good complement: the
upper teeth are well connected to the lips, hence the mask shows no invalid
vertex between them. However, the depth map has the information of abrupt
discontinuities on the geometry. These discontinuities are marked according
to a user given threshold which, beside the restricted processing area, is the
only parameter to control the detection algorithm.

Once the edges inside the mask are merged with the discontinuities of
the depth information (see Fig. 7.9-top), a dilation/erosion technique (see
[32, 51, 55, 58, 66, 120] for related literature) is implemented in order to
connect the edges and segment the data. First, dilation thickens the edges until
they connect, and then erosion makes them thinner again while keeping the
connections. These two complementary techniques have to be applied carefully
in order not to be degenerative (see Fig. 7.7). In the following paragraphs, both
techniques are presented separately.

Dilating

Dilation works on two image arrays: the source ms and the destination md.
In the present case, these image arrays are defined by a rectangular region on
the data to process.

A square patch of size n×n (n odd, usually n ∈ {3, 5}) traverses ms; every
time the center pixel of the patch falls onto an edge pixel, all the pixels from
md that lie under the patch at the corresponding coordinates are marked as
edges. This process is performed on two separate arrays so as to avoid newly
marked edge pixels to be recognized as original edge pixels.

Depending on the needs and the data, the size of the patch can be ad-
justed and the process can be performed iteratively. Figure 7.6 (red), shows
an example of such a process on a simple curve. Figure 7.7 (red), shows a simi-
lar example on a slightly smaller loop-shaped curve where the dilation process
fills the loop; this particular case is to be avoided, as it leads to a degenerative
erosion as described below. The size of the patch and the number of passes
have thus to be carefully selected to get optimal results. In the present case,
a patch of size 5 × 5 was used with a single pass.
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dilate

erode

erode erode erode

Fig. 7.6. Ideal dilation/erosion scenario The missing pixel to close the σ-
shaped edge is retrieved by first expanding the edges with a single pass and shrink
back in two passes. Note that performing more erosion passes would make the tail
disappear which leads to information loss. By superimposing the original edge map
with the one obtained after this process, no information loss occurs.

erode

dilate

erode erode

Fig. 7.7. The degenerative dilation/erosion scenario If a loop is filled by the
dilation process, eroding will fail at retrieving the original shape of the edges and
the trace disappears.

Eroding

The eroding process can be intuitively seen as the inverse procedure to dila-
tion. The algorithm starts with the image array md from the dilation process
and generates an eroded image array me. Again, a square patch of an odd
pixel size traverses md. The most straitforward approach would be to mark a
pixel as an edge in me whenever the patch in md is fully covered with edge
pixels. This scenario is however degenerative for multiple passes: edges get
thinner and finally disappear as the patch can no longer be fully covered (see
Fig.7.7).
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To prevent the algorithm from removing thin edges, a different consider-
ation over the patch is conducted: an edge pixel in the center of the patch is
reported to me, if inside the patch in md, edge pixels divide the patch into 2
or more zones (see Fig. 7.8).

one zone

two zones

cleared

kept

Fig. 7.8. The non-degenerative erosion scenario For the erosion process to be
non-degenerative, an edge pixel is cleared only if the remaining edge pixels inside
the patch fail to divide the patch in at least two distinct zones.

With a minimum size of 5 × 5 pixels, it ensures that an edge line can-
not be cancelled and the edges converge to a thickness of one or two pixels
(Figure 7.8). However, extremities of edges still regress. To circumvent this
regression, in a final step the resulting edges are merged with ms to recover
lost edges during the dilate/erode process.

As mention before, a typical degenerative scenario is depicted in Figure 7.7.
When dilation is performed with a patch of large dimension, loops get filled
and after a few iterations the edge shape disappears. Still, by performing only
a few eroding steps, the degenerative effect can be controlled.

As an illustration to the dilation/erosion process on the mouth region,
Figure 7.9 shows the results for a small region on a frame of the original data.
One can see how small segments of edges get connected to form a continuous
edge.

7.3.2 Teeth and Tongue Removal

In the previous section, we showed how closed edges can be drawn onto the
data arrays to delimit the teeth and the tongue from the rest of the face. The
edges separate the surface and the different segments need yet to be identified.
Only the largest segment is kept as it corresponds to the skin and the lips but
the remaining segments are removed. The algorithm works in four steps:
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original

dilated

eroded

Fig. 7.9. Edge completion on face data The process of dilating and eroding
is performed on the edge information obtained by the combination of the mask
information and the depth information. Edges are expanded until they connect and
then shrunk in a non-degenerative fashion to produce a continuous edge.

1. the expanded edge image (me + ms) is run line by line, attributing a
unique number (ID) to continuous line segments;

2. column-wise connected line segments are merged and get a common ID;
3. for each ID associated with a segment, the number of vertices is summed

up to get its area in pixels;
4. the segments with the smallest area are discarded.

In the following, these four steps are described in more detail.

1. Detect Line-Wise Neighbors

Referring to Algorithm 1 (see below), the array is traversed line by line; a
counter count is set to 0. The counter is increased every time a new line is
started or a sequence of edge pixels is crossed. Edge pixels are marked as −1.
Valid pixels are marked with the current value of the counter (Fig. 7.10-A).
A table area keeps track of the number of pixels marked for each count index.
Each time a pixel is attributed to an index, the status of the neighbor pixel on
the previous line is verified. If not an edge pixel, a link is created between the
index of the current pixel and the index of this neighboring one in the lower
line (Figure 7.10-B). This information is necessary to later group the indices
that correspond to vertically adjacent pixels to attribute them to a common
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segment. Note that every index is also linked to itself; this is useful for the
second step.

Algorithm 1: island removal - PHASE 1: pixel counting

global: : segments[w × h]

local: : pixels[w × h], area[]

edge ← true;
count ← 0;
init(area, 0);
for pix←0 to w×h do

are we on an edge pixel? ;
if is edge pixel( segments[pix]) then

pixels[pix] ← -1;
edge ← true;
continue;

end
if not, do we come from an edge pixel? ;
if edge = true then

we start with count incremented by 1 ;
edge ← false;
count++;
pixels[pix] ← count;
area[count]++;

else
the value of the pixel is the same as the preceding ;
pixels[pix] ← count;
area[count]++;

end
If the neighbor pixel on the previous line is not an edge, the region
attributed to the current count is the same as the one attributed to
the upper pixel, and we link the two indices;
if is edge pixel( pixels[pix-w]) then

create link(pixels[pix], pixels[pix-w]);

end

2. Join Connected Line Segments

The second step of the segmentation process is to identify the different regions
(segments). For visual verification of the segment detection, a different colors
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Fig. 7.10. The first three steps of the segmentation algorithm Common
indices are attributed to neighbor pixels horizontally (A); indices of vertically con-
nected line segments are linked (B); linked line segments receive a common color
and their area is computed (C).

is attributed to the different regions, and a color map is generated for the
different indices. A common color is attributed to pixels with a common index
or is they are vertically adjacent (Fig. 7.10-C). Referring to Algorithm 2, a
color table of the size of count+1 that was reached in the Algorithm 1 is
created, all values initialized to −1; the value colors[0] holds a color counter.
The list of Links generated by the Algorithm 1 is then traversed, and for each
link the color attributed to the two connected indices (source and pit) are
compared. Four scenarios can occur:

• for both indices, no colors are attributed: give the color value
colors[0] to both entries in the color table and increment the color value;

• both indices have the same color value attributed: do nothing;
• only one of the indices has a color value attributed: set the color

entry of the unattributed index to the value of the color for the attributed
one;

• the color value entries for the indices differ: set the color value for
all entries with the same color value as the second index in the link to the
color value of the first index in the link.

Once the color table is generated, a different color is attributed to the de-
tected segments (Figure 7.10-C). The segmentation performed over the whole
face for a small sequence is illustrated in Figure 7.11.

3. & 4. Getting the Size of the Segments

Finally, the different areas are summed up according to whether they share
the same color, and the smallest regions are discarded, i.e. they are marked
as invalid in the mask array (see Algorithm 3, below).
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Algorithm 2: island removal - PHASE 2: color map generation

alloc(colors, count+1);
init(colors, -1);
for i←0 , nbLink do

if ( then ¬is valid(link[i])) continue ;
source -1, pit -1 ⇒ set both ids to a common new color ;
if colors[link[i].source] = colors[link[i].pit]and colors[link[i].source]
== -1 then

colors[link[i].source] ← colors[0];
colors[link[i].pit ] ← colors[0];
colors[0]++;
continue;

source A, pit A, ⇒ do nothing ;
if colors[link[i].source] = colors[link[i].pit]and colors[link[i].source]
!= -1 then

continue ;

source A, pit B, ⇒ set all ids with color B to color A;
if colors[link[i].source] != -1 and colors[link[i].pit ] != -1 then

b ← colors[link[i].pit];
for id←0, count do

if colors[id]=b then colors[id] ← colors[link[i].source];

end
continue ;

source -1, pit A, ⇒ set source color to A;
if colors[link[i].source] = -1 then

colors[link[i].source] ← colors[link[i].pit];
continue ;

source A, pit -1, ⇒ set pit color to A;
if colors[link[i].pit] == -1 then

colors[link[i].pit] ← colors[link[i].source];
continue;

end

The segmentation results are demonstrated in Figures Figures 7.11 and
7.12. The first figure illustrates the segmentation effect on the data arrays for
two different frames. In the second figure, the precision and the consistency
of the segmentation along the lips can be observed.

Note: in the second corpus, the white lipstick on the recorded subject
was made thicker which results in a better contrast. Upon the definition of a
color threshold, the edge information from the texture turned out to be richer
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Fig. 7.11. Face segmentation for teeth detection In this animation sequence,
different color are attributed to the different segments. The tone variation from one
frame to the other is due to the different numbers of segments detected and is of no
consequence; segments are removed according to their relative area size.

Algorithm 3: island removal - PHASE 3: summing up area and delete
small ones

alloc(area sum, colors[0]);
init(area sum, 0);
sum up areas by colors;
for i←1, count+1 do area sum[colors[i]] +← area[i];
for pix←0, w×h do

if is edge pixel(mark[pix]) then
if area sum[colors[pixels[pix]]] < areathresh then

mask[pix] ← 1;

end

than the one from the depth map. The data from the second session was
thus processed with a combination of the texture and the mask information
which gave much better results and even accelerated the mouth segmentation
process.
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Fig. 7.12. Performance of the semi-automatic segmentation and removal
of the teeth and the tongue The lower line shows the restricted area on which
the algorithm removes data from texture, mask and Z coordinates arrays.

Fig. 7.13. Sample frames of the final sequence after automatic teeth and
tongue removal
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Building a Viseme-Space

In this section we show how speech information is retrieved from the recorded
corpus. Up to this point, the data is stored as a sequence of independent face
meshes, the number of vertices varies from one mesh to the other. The 3D
meshes are first geometrically aligned to cancel head movements. In order
to understand articulation, one has to study the actual deformation of the
face during that process. Hence, the statistical analysis needs to focus on the
deformation of the face rather than on its geometry. For that purpose, a corre-
spondence between the 3D frames needs to be found. The registration process
is based on optical flow techniques to remesh each sample in accordance with
a reference frame by aligning topological and textural features of the meshes.

In a first attempt, optical flow is run on both the texture and the depth im-
age (Z-coordinates) form the original data arrays (Section 8.2). A pre-warping
(Section 8.1) is performed by tracking marker-points in order to improve the
outcome of the optical flow. However, the registration shows imperfections
along the face borders as these vary along with the head movements in the
recording phase. To circumvent this border effect, the 3D meshes are projected
onto a cylindrical representation (Section 8.1.1). This representation extracts
a two-dimensional texture map and a depth map on which the optical flow
is run. In this representation, the face geometry is flattened which solves the
border problems. Moreover, the registration on the face topology turns out to
be more reliable.

In the recoding sessions, a chair was provided with a metallic bar system to
reduce head movement during articulation (Fig. 7.1). However, these sessions
lasted several hours and several sequences were recorded. The position of the
face from one sequence to the next is thus significantly different which is
problematic when the registration is performed over all sequences. Also, in
the second corpus, articulations are emphasized and the original optical flow
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implementation is not able to track the deformations accurately anymore. The
optical flow is thus modified and a multi-stage approach is presented (Section
8.3).

Once the original meshes are correctly registered and the head movements
canceled, the data is understood as a long single sequence of vertices displace-
ments or face deformations. Because of the high dimensionality of this data,
a Principal Component Analysis (PCA) is performed over a representative
subset of the whole sequence in order to capture the most important defor-
mations of the face (Section 8.4). This reduction gives 50 components along
which the reference model can be deformed and, by combination, all original
face shapes can be reconstructed with high accuracy. This PCA transforma-
tion serves also the purpose of data compression. The 50 principal components
describe a low-dimensional face space onto which all registered frames can be
projected and represented by a 50-coordinates point.

During the acquisition sessions, speech was recorded and synchronized with
animation. This audio track is decomposed into a sequence of phonemes with
their associated position in time (Section 8.4.2); hence, each 3D frame has a
correspondence to a phoneme. With that information, a statistical model of
visemes can be associated for each of the different phonemes from which a
first animation framework is derived (Section 8.6).

Aside from speech acquisition, a set of expressions is recorded which can
be represented as single deformation vectors outside the morphable model
(Section 8.5). Later, when animations are synthesized, the vectors bring ex-
pressiveness to the speaking character.

From now on, the following notation is used: phonemes are written with
slashes, e.g. /AH/, /B/ or /K/, and visemes are written with vertical bars,
e.g. |AH|, |B| or |K|. /SIL/ corresponds to the “silence phoneme”.

The work presented in this part has been published in the Proceedings of
Pacific Graphics 2006 [4].

8.1 Tracking the Marker-Points

About 50 white marker-points are painted with make-up on the face of the
subject. These markers serve two purposes: first, they help the optical flow
in performing a more reliable registration in low-contrast surfaces like the
cheeks or the forehead. White lipstick also helps for a better registration but,
in general, it produces a better segmentation of the lips for removing the teeth
and the tongue (Section 7.3). The second purpose of the marker points is that
specific markers offer precise information of the position of the head. Section
8.1.1 shows how these markers are used in order to perform a global rigid
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alignment of the faces over the whole sequences. This alignment is necessary
for an optimum outcome of the optical flow.

For the tracking of the marker points, a template-matching algorithm is
implemented. The user places square patches of 10 × 10 pixels over each
marker. The algorithm stores the texture information inside those patches
and superimposes them on the next frame. It then matches this pattern in a
neighborhood of 20×20 pixels around the location in the previous frame. The
matching is performed by minimizing the squared distance of the pixel color
value over the neighborhood. This approach gives a precise and reliable way
to track the markers over each sequence (see Fig. 8.1-A).

As low-contrast markers are more difficult to track a spring system is
incorporated to the tracking algorithm: in a first run, the algorithm tracks
all markers; the user then selects the erroneous patches and links them by a
spring to surrounding correct markers (Fig. 8.1-B). The tracking is performed
a second time. This combination of a spring system with a pattern-matching
technique shows sufficient accuracy. The tracked motions are then smoothed
out over each sequence to remove remaining jittering artifacts.

Fig. 8.1. The different steps for computing the correspondence from the
first mesh of a sequence to the rest Square patches are placed over marker
points. The software then tries to track all markers over the sequence (A). Patches
which cannot accurately track markers are then linked to neighboring patches by a
spring, so that their relative position also influences the tracking (B). Fixed points
around the face are added in order to perform the pre-warp over the whole face
(C). Finally, the patches are connected to form a triangle mesh (here only partially
completed) which defines the triangular morphing area over the rest of the vertices
(D).

For matching the sequences among them, a reference frame is selected
from the corpus. The first frame of each sequence is then superimposed to
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that reference frame and corresponding marker-points are manually aligned
(see Figure 8.2).

Once all marker-points are tracked and their correspondence is determined
over the different sequences, the data images are morphed by triangulation so
that the marker points match the locations in the data arrays of the reference
frame. For that purpose, additional markers are placed along the image border
which remain at constant position over the sequences (Fig. 8.1-C) and the
triangle web on which the morphing performs is defined by hand (Fig. 8.1-D).

Fig. 8.2. Pre-warp initialization by matching marker points Within a stream
of scans, the marker-points are tracked automatically by template-matching. To
initialize the correspondence of these markers over different sequences, the first frame
of each sequence is superimposed to a selected reference frame and the markers are
aligned manually (red lines).
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8.1.1 Rigid Head Alignment and Data Conversion

For rigid alignment, a set of marker-points is selected from the forehead, from
the nose and from feature-points around the eyes, so that the movements of the
jaw have no influence on the final orientation of the head. These marker points
are selected on regions where the skin does not slide over the bone structure
and which thus give a correct information of the orientation of the skull.
Based on these marker-point coordinates, the faces are aligned in orientation
and scaling via 3D-3D Absolute Orientation (see Haralick & Shapiro[56]).

The rigid alignment has no impact on the data structure. In the array
representation, to each pixel, 3 coordinates and a texture value are attributed.
The rotation affects directly the coordinate values but does not require any
resampling of the acquired data.

8.2 Optical Flow

In the data registration process, a dense point-to-point correspondence on the
recorded meshes is established in order to transform the stream of indepen-
dent face meshes into a stream of deformations, relative to a reference mesh.
A reference head is selected with a slightly opened mouth from one of the
sequences.

For the correspondence algorithm, the definition of shape and texture vec-
tors are expressed in terms of image coordinates u, v of the scanner camera
(Section 7.1). The algorithm relies both on structures in shape (z(u, v)) and
in texture (g(u, v)). In shape, the depth coordinate z(u, v) would vary along
the cheeks towards the left and right edge of the scan, due to the curved struc-
ture of the cheeks. However, the curvature is quite uniform, and so it is more
appropriate to use a quantity for shape matching that does not vary along
the cheeks. Experiments have shown that curvature as defined in differential
geometry does not improve the quality of the correspondence (Blanz [18]). On
our data, the quality is best if the z-coordinate is replaced by the radius rel-
ative to the vertical axis of the head, which varies little along the cheek, and
is less sensitive to the noise of the scanner than differential quantities:

r(u, v) =
√

x2(u, v) + y2(u, v). (8.1)

With this, we represent scans as combined arrays

I(u, v) = (r(u, v), g(u, v))
T

. (8.2)

In an extension of the optical flow algorithm of Bergen & Hingorani [11], the
minimum of the cost function
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E(∆u,∆v) =
∑

u,v∈R

∥

∥

∥

∥

∆u
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∂u
+ ∆v

∂I(u, v)

∂v
+ ∆I

∥

∥

∥

∥

2

, (8.3)

with a norm ‖I‖
2

= r2 + g2 (8.4)

is found in each point u, v, where R is a 5 by 5 neighborhood of u, v. This
optimization is performed in a coarse-to-fine sequence on a Gaussian or a
Laplacian pyramid (see blow) of r(u, v) and g(u, v). After each step, a relax-
ation algorithm smoothes the displacement field ∆u(u, v), ∆v(u, v) in regions
with low contrast [18].

The displacement field ∆u(u, v), ∆v(u, v) allows to sample the surface of
each scan in correspondence with the reference head, and to form shape and
texture vectors by concatenating the 3D coordinates and grey values of all
sampled vertices i = 1...n:

s = (x1, y1, z1, x2, . . . , xn, yn, zn)T , (8.5)

t = (g1, g2, . . . , gn)T . (8.6)

The optical flow algorithm is strongly affected by the edges of the recorded
surfaces. Due to the natural head movements of the recorded model, the edges
vary over time. For this purpose, after the the faces are aligned rigidly and
before optical flow is computed, all raw data is cropped automatically: first, a
common mask is defined as the intersection of all the individual valid surface
points in the cylindrical representation. This mask is then used for cropping
the scans.

Gaussian versus Laplacian Pyramid Types

As described above, in order for the registration process to generate a con-
sistent optical flow on regions with low contrast, a pyramidal sequence of
down-sampling steps is performed. This down-sampling follows a Gaussian
smoothing by weighting neighbor pixels values into the down-sampling. The
Gaussian smoothing performs a low-pass filtering on the intensity maps. An
alternative is to use a Laplacian pyramid which performs a high-pass filtering.
The Laplacian down-sampling is directly obtained by subtracting the low-pass
filtered version of a map to the original map.

For computing the correspondence of faces of different individuals Blanz [14]
shows that a Laplacian pyramid performs better; indeed, the Laplacian pyra-
mid highlights sharp features of the face, as high-pass filtering performs an
edge detection over the shape and texture vectors. The variation of skin color,
for instance, is thus ignored. In the present case, the correspondence is per-
formed on the same individual with varying expressions. The use of a Gaussian
pyramid shows to produce slightly more robust tracking of the deformations.
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Two further parameters are involved in the optical flow process. The com-
puted flow is a combination of both the flows computed from both the shape
vectors and the texture vectors. With the attribution of respective weight
coefficients wr and wg to these flows, their respective influence in the final
flow is controlled; however, best correspondence is found by attributing equal
weights with respect to the typical varaition (amplitude) found in r and g
respectively. Finally, the depth of the pyramidal process can be chosen. In-
creasing the depth improves the robustness of the flows but induces additional
processing time. For the small corpus, a single down-sampling iteration shows
to be sufficient. For the second corpus which contains larger deformations, 3
iterations are necessary.

8.3 Multistage Optical Flow

The optical flow process presented in Section 8.2 performs an absolute match-
ing: a reference frame is selected from which a flow is computed against
all other frames. A relative approach computes the flow between successive
frames, the matching from any frame to the reference frame is then obtained
by the inverse composition of the flows. The relative approach has the advan-
tage that it can easier track deformations over long sequences, as these are
small from one frame to the next. However, while the composition of several
relative flows over long sequences does not imply an important increase of
computation, it induces problematic accumulating errors (measurement and
rounding errors).

While the absolute approach is sufficient for tracking deformations in the
first corpus, it fails for the second one in which articulations are more pro-
nounced. In his thesis, Blanz [14] proposes to group similar images in batches
and to compute absolute correspondence within each of these. In a bootstrap-
ping framework, these batches are then connected involving user interaction.
This approach works well, but is only well suited for small corpora of frames.
In the present case, it is difficult to define a distance threshold to separate the
data into separate clusters.

The problem of computing reliable optical flow correspondence over the
corpus is multifold:

1. the frame sequences are too large for a relative matching approach;
2. absolute matching is too weak to grasp large mouth deformations;
3. face positions are different from one sequence to another (there are 116

sequences);

The method proposed in the next section takes advantage of the independence
on the data scale of absolute matching while retaining the flexibility of relative
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matching. Also, it requires little user interaction for computing precise flows
over several large sequences.

Fig. 8.3. Pre-alignment of different 3D sequences The head position varies
significantly among the different sequences which demands an adaptation step for
the optical flow in order to find good correspondence between them. First, a neutral
reference face is chosen from the first sequence, and from each of the remaining
sequences, a similar sample is selected. These samples are then superimposed on
the reference face and manually pre-aligned. The displacement vector serves as a
constant flow direction which provides a first estimate for the deformation.

An absolute flow matching any frame fi to the reference frame fref can
be found by induction (see next section). For any frame fi, the absolute flow
Fi→ref has to be found which matches fi to the reference frame fref . If Fi→ref

is known, the absolute flow matching the next frame fi+1 to fref can be
approximated by the composition of Fi→ref with the relative flow F(i+1)→i.
The approximation is then corrected in a second pass. The absolute flow
matching fref+1 to fref is the relative flow F1→0.

The problem for connecting the different sequences is solved as follows:
for the reference frame fref , a face configuration is selected which is the most
likely to occur in each sequence: mouth slightly open, neutral expression.
The user selects from each sequence k the most similar frame fk. Each fk

is then visually superimposed on fref (see Fig. 8.3) and the user performs a
pre-alignment of the faces. From the displacement given by the alignment a
constant flow FpreK is deduced which is combined with the flow approximation
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discussed above. The next section presents the iterative approach in more
details.

8.3.1 The Iterative Optical Flow Algorithm

The multi-stage optical flow proposes a sequential pre-warping that improves
optical flow registration by using the temporal coherence of the data; an iter-
ative algorithm (Algorithm 4, below) takes for each frame the absolute flow
computed for the previous frame, and pre-warps the current frame with it.
The pre-warp is thus much closer to the reference frame and the absolute flow
can be computed.

Fig. 8.4. The multistage optical flow The different flows computed in the multi-
stage procedure. Absolute and relative warping are combined in order to track im-
portant face deformations over long and disconnected sequences. Black arrows show
the computed flow between two frames which are then applied for back-warping (red
arrows). Each frame fi is first warped to fk, the local reference frame of a sequence,
before it is finally warped to fref the global reference frame.

The difficulty in matching sequences with substantial face variations of face
orientations and carrying important mouth deformations to a single reference
frame resides in three aspects:
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1. the head position varies from one sequence to the other; hence, two frames
with similar mouth shape have a different information distribution inside
the data array structure;

2. large mouth deformations cannot be tracked with the original optical flow
approach;

3. a relative frame-to-frame flow approach introduces cummulated rounding
errors.

The multi-stage algorithm addresses these three aspects:

1. a global constant flow is generated for each sequence as a raw alignment
to the reference frame (see Fig. 8.3);

2. a relative flow is used in order to track large mouth deformations;
3. an approximation is used that combines the advantages of an absolute (two

steps) flow to the reference frame while using the temporal coherence of
successive frames.

Figure 8.4 illustrates the algorithm: from the first sequence, a reference
frame fref is chosen with a slightly open mouth. This shape is preferred
to a closed mouth shape as the mouth cavity is already visible. Also, it is
preferable to select a shape where the teeth are not visible, in order to avoid
mis-registration between the teeth and the lips for frames where teeth are not
visible. A sample frame fk from the K = 116 sequences is then selected which
is visually similar to the reference.

To compute the flow for matching fk to fref , we proceed in two steps: first,
a hand-generated constant flow FpreK is used that describes a translation in

the data array (see Fig. 8.3) and back-warps fk to f
(1)
k . f

(1)
k is now a first

approximation of fref and we compute the flow FK matching f
(1)
k to fref , the

product of which is f
(2)
k .

Note that for the local reference frame fk, two warping processes are nec-
essary to compute FK . Nevertheless, even though warping processes are not
additive in general1, one is constant here (and we are neglecting border ef-
fects), so the previous warping processes can be performed in a single pass by

taking the warping function FpreK + FK . Thus, fk is warped to f
(2)
k and we

obtain the correspondence of fk to fref .
For the remaining frames of the sequences a flow Fk→i is sought that first

warps frame fi to fk; this is however difficult if fi differs too much from fk.
The temporal coherence (strong similarity of subsequent frames) comes here
in handy: a flow F(i−1)→i is computed from frame fi−1 to fi, and by combining
all relative flows in Fi, we can reach back to fk from any frame. However, the

1 for two flows R and S and an image a, (S ◦R)(a) 6≡ (R + S)(a)
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farther fi gets from fk in the sequence, the more error is cummulated in Fi.
To circumvent this problem the following approximation is used:

Fi ∼ Pi = Fi−1 + F(i−1)→i. (8.7)

Pi is an approximation because of the addition performed to circumvent flow
combinations. This approximation allows a direct warping of fi to fk. With

Pi, fi is warped to f
(1)
i . To correct the error introduced by the approximation,

a new flow Fk→i is computed to match f
(1)
i to fk as f

(2)
i .

With the condition

Fk = 0 (8.8)

we can compute

P1 = F0 + F0→1 (8.9)

F1 = Fk→1 ◦ P1 (8.10)

...

Pi = Fi−1 + F(i−1)→i

Fi = Fk→i ◦ Pi

Back-warping f
(1)
i with Fk→i gives f

(2)
i , the correspondence of fi to fk. Finally

f
(2)
i is warped to fref as f

(3)
i . The final algorithm is given in Algorithm 4.

The successive iteration of the approximation given in Eq. 8.7 generates
local rotational errors along the edges of the mesh. This is corrected by slightly

smoothing f
(1)
i with a Gaussian blur. The smoothing cancels the error and

the relaxation step from the original optical flow (Section 4.1) reproduces
consistent warping when computing Fk→i.

Figure 8.5 presents and discusses the results obtained by the multistage
optical flow over a set of selected frames.

8.4 A Morphable Model for Articulation

The core of the learning-based approach is to find statistical correlations in
the training dataset that distinguish natural motion from random noise. The
morphable model approach (see Section 5.4) captures such correlations auto-
matically. The goal in our data analysis is to define and analyze clusters of
visemes. This is done in a low-dimensional representation which is obtained
by a principal component analysis (PCA - Section 5.3).

PCA finds the directions of the greatest variance of the vectors, and pro-
vides an orthogonal basis of the linear span of examples. With this basis, every
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Algorithm 4: multistage optical flow on a sequence k

global: : FpreK , FK

local: : Fi

fref ← load ref frame();
init(Fi, 0);
Frames are equalized due to luminosity variations in the scans;
get equalize(fref);
fk ← load frame(k);
equalize(fk);
we omit the equalization step in the following ;

The loop has to be performed a second time for i←k-1 to 0 ;
for i←k+1 to nbFrames do

fi−1 ← load frame(i-1);
fi ← load frame(i);
F(i−1)→i ← Lucas-Kanade(fi−1, fi);
Pi ← Fi + F(i−1)→i;

f
(1)
i ← Bilinear-warp (Pi, fi);

Fk→i ← Lucas-Kanade( fk, f
(1)
i );

f
(2)
i ← Bilinear-warp (Fk→i, f

(1)
i );

f
(3)
i ← Bilinear-warp (FpreK + FK , f

(2)
i );

Fi ← F(i−1)→i) ◦ Pi;

end

face can be transformed into a low-dimensional vector. For numerical reasons,
the PCA is calculated only on about 200 frames, that is, for the corpus every
tenth frame was taken, for the second every 100th. From the PCA the first
50 PCs are retained each time. It turns out that for mouth movements, the
most important deformations are already defined by the 10 to 15 first com-
ponents, the next ones are necessary for bringing realism to the movement,
whereas after the 50th component, mainly measurement noise is reflected. On
a set, PCA is performed once on the shape information and once on the tex-
ture, though the latter is not necessary as the texture does not change over
time. However, the average texture given by the PCA is taken for animations,
as the remaining artefacts from the scanner (vertical lines) are cleared out.
Moreover, mapping the texture of the average face onto the rest of the data
is a good way to verify the quality of the registration by testing whether the
texture of the eye or of the lips always fit to the topology of the shape.

By applying a PCA on the whole shape of the face model, eye movements
are also captured and bias the generated components which should only reflect
mouth deformations. The following section addresses that problem.
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Fig. 8.5. The Optical Flow Mapping of Faces to the Reference Face The
multistage optical flow algorithm matches all frames from multiple and large se-
quences to the reference frame (frame 1). Columns original show the face as it is
recorded with each pixel associated to a vertex. To get the correct vertex associ-
ations with the reference frame, the original frames are morphed to the reference
frame with the flow found by the algorithm. The mapping columns show the result
of the morphing. Ideally, all frames in the mapping columns look alike. Note how the
face orientations vary from one frame to the other, and the importance of the mouth
deformations. The algorithm finds a correct matching for every frame. Frame 7602:
when the eyes are completely closed, the algorithm cannot find a correct mapping.

8.4.1 Weighted PCA (WPCA)

In the principal components at this point, there is a significant contribution
of the movement of the eyes because the actors blinked during the recording



94 8 Building a Viseme-Space

process. To solve this problem, a modified version of PCA is developed which
weights regions on the surface differently according to their relevance as to
the phenomenon that has to be analyzed. This Weighted PCA (WPCA) is
performed only on a chosen segment of the surface, but still produces principal
component vectors that apply to the entire face. Unlike a trivial version that
would set the displacements of the eye region to zero in all frames, this method
retains all degrees of freedom of the morphable model, and retains correlations
across face regions that may be present in the data (see Figure 8.6).

Fig. 8.6. Weighted PCA computation When the Principal Component Analysis
(PCA) is computed over the whole face, important components may be biased by
eye-blinking. To circumvent this, a wheigted approach is developed which produces
principal components on the whole face but considers only the variance of the mouth.
Note that if the eye movements were correlated with the movements of the mouth,
this method would have retained it automatically.

Throughout the rest of this thesis, shape vectors are considered after sub-
tracting their average, x = s − s̄. In order to analyze the variance on the
mouth, each data vector xi, i = 1...m, is transformed to a reduced vector
x̃i that contains only the vertex coordinates of the mouth region. Combining
these to a data matrix X̃, the diagonalization of the covariance matrix can be
computed

C̃ =
1

m
X̃X̃T =

1

m
ŨW̃2ŨT (8.11)
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by a Singular Value Decomposition of the data matrix: X̃ = ŨW̃ṼT . The
principal components ũi are the columns of the matrix Ũ, and these can be
rewritten in terms of the data vectors, using the matrices Ṽ and W̃:

ũi =
∑

j

1

w̃i

ṽjix̃j . (8.12)

With the same linear weights, the principal components are mapped to the
original vector space:

ui =
∑

j

1

w̃i

ṽjixj . (8.13)

Unlike ũi, the vectors ui do not form an orthogonal basis, and they differ
from a PCA computed on the original data directly, even though they span
the same subspace.

Figures 8.7 and 8.8 illustrate for both corpora the average head or the
origin of the PCA-space and the deformations along the first four PCs. The
deformations are amplified by a factor 3, so that the consistency can be re-
viewed and the deformations better visualized.

To get the representation in the viseme-space, all recorded faces are pro-
jected onto the basis defined by the 50 first PCs (Section 8.4.3). By doing
so, the projection of all recorded sequences produce a cloud of points around
the origin of the viseme-space. Clusters of visemes can be defined according
to the phoneme they are associated to, i.e., the phoneme that was uttered
during each of the frames. By synchronizing the sequences with the recorded
audio (Section 8.4.2), all frames can be labelled and the clusters can be drawn
(Figure 10.1 shows such a representation along the first three components).

8.4.2 Sound Synchronization

To associate audio speech to articulation movements, audio is recorded along
with the 3D data. As described in Section 7.1, when the scanner initiates the
acquisition, the computer generates a beep tone which is captured on the same
audio track as the speech. The same happens when the acquisition terminates.
These audio signals are important, as the audio recording is initiated before
the actual 3D recording, and they allow the alignment of the 3D sequences
with the audio track. The length of a recorded sequence is of about 10 sec-
onds but we only want to retain the sequence where the actual articulation
takes place. With the sound aligned, frames containing speech information are
retained interactively (see Fig. 8.9) by cropping out the sequences where no
movement is performed. Our interface allows a visual exploration of the data
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Average head

PC1 (-3σ2, 3σ2) PC2 (-3σ2, 3σ2) PC3 (-3σ2, 3σ2) PC4 (-3σ2, 3σ2)

Fig. 8.7. PCA for the small corpus The top picture shows the average head.
The four columns then show the result of shifting the average face by +3 or -3
standard deviations along the first four principal components.

by showing the audio curve along with the animation. By moving the mouse
over the audio curve, the animation window is updated with the correspond-
ing frame which allows a precise trimming of the data of interest, from where
the mouth starts to open before the phoneme is actually heard to when it
finally closes.

In order to identify visemes in the PCA-space, each frame has to be labelled
by the phoneme that was uttered when it was recorded. To make the phoneme
association with the recorded frames, the phonemes from the audio track are
detected and a textual representation of the phoneme sequences along with
their time location is required. The Sphinx Group [106] at Carnegie Mellon
University has developed a web-based client for speech recognition that offers
such a speech-to-phoneme time decomposition. A piece of software is installed
on the local computer which decomposes the audio based on a dictionary that
is obtained from the web interface. The generated data comes in the form of
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Average head

PC1 (-3σ2, 3σ2) PC2 (-3σ2, 3σ2) PC3 (-3σ2, 3σ2) PC4 (-3σ2, 3σ2)

Fig. 8.8. PCA for the large corpus The top picture shows the average head.
The four columns then column show the result of shifting the average face by +3 or
-3 standard deviations along the first four principal components

a list of phonemes, each associated with a time duration interval (beginning
and ending) as 0.01 sec.

The time unit is converted to the proper frame rate of the recorded corpus
(40Hz), which shows that phonemes span between two to eight consecutive
frames. This frame span is important, as it reflects one part of the coartic-
ulation information: the transition movement from one viseme to the other.
Hence, longer spans hold more information. However, the second half of the
coarticulation information, namely the viseme itself or the mouth shape within
its context, is available within every frame. In the rest of this thesis, visemes
are considered as the first shape of such a span. This is discussed later in
Chapter 10.
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Fig. 8.9. Our interface for sound synchronization The original 3D sequence
is aligned according to the the beep tones which insures an exact matching with the
audio track. The user then selects the subsequence of frames to be retained (bottom
panel): the waveform shows the position of the speech information, the visualization
window is updated as the user moves the cursors so that these can be accurately
placed before the start and after the end of the articulation movements. The lower
panel highlights in black the frames which are retained.

8.4.3 Projecting the Sequences

This section presents the last step in building the viseme-space. Each 3D frame
is labelled with its associated phoneme and is projected onto the basis of the
viseme-space constructed in Section 8.4.1. While the projection is performed
following the Gram-Schmidt projection algorithm, one has to recall that the
basis was computed on a sub-region of the face shape, and that the basis of
the viseme-space is not orthogonal. The projection has thus to be performed
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silence dArk (/AA/) catCH (/CH/) liFt (/F/)

chiCKen (/K/) Serve (/S/) yOU (/UW/) doVe (/V/)

Fig. 8.10. A subset of visemes The audio track allows to associate each 3D
frame to a phoneme. Here, the average shape is shown for a set of phonemes. Note
that the white lipstick is only drawn on the outer edge of the lips and can give the
impression that the mouth is not completely closed even when it actually is.

along the considered mouth region. Hence, the projection of a face vector
x is achieved by retrieving the reduced vector x̃, and calculating the scalar
product

ak = ũk · x̃ (8.14)

Then,

x =
∑

k

akuk (8.15)

By projecting the whole corpus onto the basis, the positions for all the faces
in the space are obtained. A table is built in which each phoneme is listed
along with its different corresponding frame numbers; each list then describes
a cluster of visemes for a specific phoneme2. A first approach to generate new
animations is proposed in Section 8.6 which takes a single viseme shape for

2 We obtained 44 different visemes corresponding to the phonemes /AA/ (48),
/AE/ (45), /AH/ (62), /AO/ (34), /AW/ (21), /AX/ (155), /AXR/ (31), /AY/
(38), /B/ (38), /CH/ (17), /D/ (114), /DH/ (71), /DX/ (8), /EH/ (63), /ER/
(26), /EY/ (60), /F/ (41), /G/ (30), /HH/ (41), /IH/ (92), /IX/ (66), /IY/
(104), /JH/ (21), /K/ (89), /L/ (85), /M/ (68), /N/ (174), /NG/ (25), /OW/
(46), /OY/ (9), /P/ (56), /R/ (114), /S/ (98), /SH/ (14), /T/ (196), /TH/
(18), /UH/ (20), /UW/ (43), /V/ (38), /W/ (62), /Y/ (23), /Z/ (89), /ZH/ (1)
and /SIL/ (559), for the silent viseme. The numbers in parenthesis indicate their
occurrences in the corpus.
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each phoneme. These visemes are taken as the average face inside each cluster.
Figure 8.10 illustrates the average viseme in some of the clusters for the first
corpus.

8.5 Expression Vectors

The registration of the data gives a dense point-to-point matching over the
recorded sequences. By selecting a reference frame and subtracting it to the
other frames, the shape sequence becomes a deformation sequence which dic-
tates how the reference shape varies over the time.

The PCA generates the viseme-space basis by successively selecting the
variance of these deformations. By combining the deformations along the gen-
erated components, each of the shapes can be accurately reproduced. Because
the data on which the viseme-space is built does not include face expres-
sions they are hardly available in that context; this means that recorded face
expressions cannot be projected into the viseme-space.

During the recoding of the second corpus, a separate set of faces was
acquired which represents typical face expressions such as happiness, disgust,
fear, or sadness. While these shapes are not included in the PCA, they can
be registered to match the reference face of the speech sequences. Hence, by
subtracting the reference frame, a displacement vector field is deduced for
each of these expressions which can be added to any 3D frame and affect the
expression during the speech. In order to be able to register the expression
shapes which have strong dissimilarities with the reference frame, the motion
from a neutral face to the desired expression was recorded. The registration of
the most expressive frame is then obtained by the method proposed in Section
8.3.

Because of their nature, the expression shapes are dissociated from the
articulation morphable model, they are referred to as deformation vectors or
expression vectors. Figure 8.11 illustrates three of the four recorded expres-
sions; the disgust expression was left out as it is similar to sadness.

These expression vectors are used atop the speech synthesis process. This
means, when a new articulation animation is created, the vectors are pro-
gressively applied onto the generated 3D frames, thereby adding realism and
expressiveness to the animation. However, this approach to face expression
does not compete with expression transfer frameworks like Spacetime faces
by Zhang et al. [141] which learn expressions and their evolution over time.
Indeed, natural expression evolves; the expression of the eyes for instance
appears usually before the mouth expression.

There are two ways the expression vectors can be applied to animation.
The first one is to use the expression frame as a fixed face shape (a viseme). A
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Fig. 8.11. Expression vectors Along with the speech corpus, expressions are
recorded. The articulation space computed by the PCA does, however, not span the
space of such expressions. The expressions vectors are still registered according to
the rest of the data, but are taken as deformation vectors relative to the reference
face. For new animations, expressions are added atop the generated faces to add
realism and expressiveness.

synthesized 3D frame vector is then weighted with the expression which lets
the face point glide towards the expression. This approach, however, quickly
cancels the articulation component in animations. The second approach, the
one used in this thesis, is to take the expression vector flow as a relative defor-
mation to the reference frame that is added atop the synthesized 3D frames.
With this approach, the expressions have to be added carefully, as strong ar-
ticulation, combined with strong expressions, can generate exaggerated face
configurations which lack realism. However, soft application of expressions
turns out to produce nice and realistic results.

8.6 Reanimating Faces

With the current state of the system as built up to now, a simple animation
synthesis can already be performed which shows reasonable results (Bargmann
et al.[4]). The goal is to generate an animation from a novel audio speech. The
new animation has first to be synchronized to the audio which is thus first
decomposed into a textual form as a phoneme list associated with their frame
occurrence. To this end, the Sphinx software [106] from Section 8.4.2 is used.
Again, each phoneme spans several consecutive frame (a slot). Here, to the
first frame of each phoneme slot, the average face of the associated cluster is
selected to ensure correct phoneme alignment. By performing this over the
whole sentence, a series of succession of points is defined in the viseme-space.
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The animation is then produced by morphing between these points to fill the
remaining frame and simulate the transition effect of coarticulation. Instead
of a linear morph between the average faces, these visemes are first weighted
(or influenced) by the neighbor visemes in order to get a context influence of
the visemes.

Let ai denote the coordinates of the original average viseme corresponding
to the phoneme attributed to the ith slot of the phoneme list. An adapted
context dependent viseme a′

i is created as a weighted linear combination of ai

and the neighbors in the sequence. The weights are attributed as follows:

a′
i = 0.1 · ai−1 + 0.5 · ai + 0.3 · ai+1 + 0.1 · ai+3 (8.16)

The weights sum up to 1 and the heaviest weight is put on the succeeding
frame while keeping some influence from the previous frame i−1. An influence
of the i + 3 frame is included to increase influence on future phonemes as the
lips tend to aim at the next phoneme to be uttered. Equation 8.16 simulates
the context dependence of visemes, i.e., the shape taken in a phonetic context.
The transition aspect is considered next.

According to this process, all a′
i, 0 ≤ i < N , of the N slots are interpolated

linearly. The synthesis is generated at a frame rate of 100Hz, the frame rate
generated by the Sphinx software. As animations run at 25 fps, 4 subsequent
frames are combined to produce a motion-blur effect that gives a more realistic
touch to the animation, where strong lip displacement during each camera shot
becomes visible. Figure 8.12 shows a sequence of snapshots from a synthesized
animation. The results are discussed in Section 13.4.

From here, several approaches can be taken for speech synthesis. The ap-
proach presented by Ezzat & al. [47] defines smooth curves over the viseme
clusters that produce realistic animations in 2D. The clusters are modelled by
a Gaussian distribution in a PCA-space. The distribution is centered around
the average appearance of the viseme, and varies according to the variation
found in a database of samples. For finding the motion trajectory for a new
utterance, a regression algorithm computes a smooth curve that passes as
close as possible to the centers of the visemes, relative to the variance of the
viseme cluster. Kim and Ko [74] applied this principle to 3D data. They ar-
gue, however, that this approach sometimes generates movements that are too
mechanical when used with three-dimensional face models. Better results are
obtained by combining Ezzat ’s method with a data-driven approach.

The following part of this thesis attacks the speech synthesis problem on a
new front. It bases on a triphone-based approach that was proposed by Bregler
et al. [22], to simulate realistic coarticulation transitions, but the visemes are
selected according to their context in a new selection technique.



Fig. 8.12. Simple Animation Synthesis By taking the average face shape of
every viseme cluster, simple animations can already be synthesized. The visemes
are selected and synchronized according to phonemes occurrences in an audio track.
The articulation is achieved by a weighted interpolation between the visemes. On
this face model, the white lipstick is only applied on the border of the lips, which
gives the impression that the mouth is not fully closed when it actually is. (See
Section 13.4 for further discussions.)
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Face and Articulation Transfer

Multilinear Morphable Models (MMM) give a low-dimensional representation
of high-dimensional structures. For geometric shapes, the space associated
with the MMM spans all possible combinations of elements in a set of reg-
istered data. In this thesis, such a MMM was built on a set of articulating
face shapes (Section 8.4.1). Blanz [14] has built a MMM which spans a space
of individual neutral faces (identity space) based on a set of 200 different
heads. These 200 samples are sufficient to acquire the knowledge of charac-
teristic shapes of most Caucasian individuals which then permits, in a fitting
approach (Blanz & Vetter [18]), to approximate novel faces from 3D scans or
even photographs Blanz et al.[16].

This Chapter puts the viseme and the identity MMMs in relation to ad-
dress two problems:

1. the 3D scans of the visemes show only partial coverage of the face but the
identity MMM builds full head shapes. Putting both MMM in relation
can complete the missing information in the viseme MMM;

2. the viseme MMM performs on a single identity, the one of the recorded
actor. A correspondence between both MMMs permits to transfer the
articulations to different face shapes.

These two aspects are addressed in the two following Sections 9.1 and 9.2,
respectively. The two aspects work in opposite directions: for completing the
viseme shapes, the model is converted to the identity MMM and the data
structure is altered. For transferring articulation, identities are imported to
the viseme MMM. Theoretically, both problems can be solved both ways,
however, due to technical constraints, we opted for these approaches.
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9.1 Head Completion

Fig. 9.1. Face completion of the viseme model The viseme face model
shows only partial coverage of the face. By fitting the data to a MMM of iden-
tities (Blanz [14]), the missing information can be reconstructed. For that purpose,
the viseme model is converted into the identity model in a cylindrical projection
(left) and the fitting process finds a best match mapping. However, the identity
MMM cannot reconstruct mouth shapes, as it spans a face space of neutral ex-
pressions. The converted viseme face is thus pasted onto the reconstruction, and
a hybrid shape is obtained (right). The geometry shows smooth transitions at the
edges, and the texture can easily be replaced. This procedure has to be performed
over all frames of the viseme model and is thus computationally costly.

The acquired face shape from the dynamic 3D scanner shows only a partial
coverage of the face. To obtain a full head completion of the geometry, the
missing data can be learned from an identity MMM developed by Blanz [14]. In
this model, shapes and textures are described in a cylindrical data structure.
The first step is to transform the viseme data to correspond to the identity
data. By defining corresponding feature points on selected single samples from
both MMMs, the viseme sample is rigidly aligned (orientation and scale) to
the identity sample. This alignment ensures a compatible cylindrical projec-
tion and the viseme data is transformed from a 640x480 pixels to a 512x512
pixels data structure (refer to Fig. 9.1-left). An iterative optimization algo-
rithm (Blanz & Vetter [18]) fits the viseme sample to the neutral sample from
the identity MMM. The fitting produces a best approximation to the viseme
sample, given the information acquired from different identities. Because the
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identity MMM is based on neutral faces, the mouth shape from the visemes
cannot be reconstructed and the viseme shape is thus pasted onto the recon-
structed model. The generated head is a hybrid combination of the the identity
model and the available viseme shape with the structure parameterization of
the identity MMM (Fig. 9.1-right).

The results show that the transition along the border of the viseme shape
to the full head is smooth and the original viseme sample sees its geome-
try reliably completed. However, the underlying head model fitting a specific
viseme is not suited for all the viseme database as the shape along the viseme
edges varies with the articulation. This fitting process, which requires a few
minutes, has thus to be performed for each of the viseme samples which has
shown to be an extremely time consuming task for more than 17’000 samples.

Another aspect has to be considered: the fitting process generates a novel
head shape for each of the viseme samples. By the correlation of the face
features, in order to match different face shapes, different heads are produced
with different ear shapes, for instance. This problem is addressed by progres-
sively smoothing the geometry of the generated head towards the back to
the neural face of the identity MMM which guarantees to keep the smooth
transition between the two superimposed face geometries while providing con-
sistency over the completion.

Fig. 9.2. Relative data structure size of the different MMMs and lip
coverage The data arrays of both viseme corpora have a size of 640 × 480 pixels
(left and center), against 512 × 512 for the identity MMM (right). While these
resolutions are comparable, the identity MMM has a full face coverage, and less
pixels are available for lip information (red region). Hence, by converting the viseme
MMM to the identity MMM, articulation information is lost.

Transforming the data structure of the viseme model shows another issue.
Figure 9.2 illustrates the disposition of the data in the array structure of
the corpus of the first recording session, the second corpus, and the array
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structure for the identity MMM, respectively. While the size of the structures
are comparable, the identity MMM focuses on the full surface of the face,
hence reducing the mouth region to a small set of pixels and losing important
information about its shape. As is discussed in the following part of this thesis,
it is important that the mouth structure keeps as much information as possible
in order to perform an optimal analysis. Hence, this direction of conversion of
the data was abandoned.

9.2 Importing Identities

Fig. 9.3. Importation of novel identities to the viseme model Novel iden-
tities can be imported from the identity MMM. The mapping obtained in Figure
9.1 is reused backwards and applied to the vertices available in the viseme model.
Knowing the mapping function and the deformation vector matching the neutral
faces of both MMMs, a morphing in the identity- space can be reproduced in the
viseme MMM and novel faces can be reconstructed (here the actor Orlando Bloom
and President J.F.Kennedy).

Section 8.6 already exposed a first approach to generate articulation an-
imations. As has been shown, the animation is performed on the original
recorded face. The model can, however, be extended to different faces by defin-
ing a mapping between the viseme and the identity MMM. In the previous
Section, such a mapping has been performed in one direction (see Fig. 9.1).
This mapping can be reused backwards in order to import faces from the
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identity MMM to the present model (see Fig.9.3). However, the mapping is
only performed partially as only the face surface captured by the dynamic
scanner is available1.

identity MMM viseme MMM

Sref
Ftransfer- Sviseme

Fmorph

?
Snovel

Fnovel

@
@
@
@
@@R

Vref

F ′

morph

?
Vnovel

mapping¾

back
mapping-

Fig. 9.4. Transferring a morphing function from the identity MMM to
the viseme MMM The reference face from the viseme MMM is mapped to the
identity MMM where the morphing function Fmorph is first computed. Fmorph is
then mapped back to the viseme MMM in order the get F ′

morph which performs the
desired morphing from Vref to Vnovel.

In order to perform the correct morphing in the viseme MMM and obtain
the novel face, the neutral face from the viseme MMM is transferred to the
identity MMM where using the mapping function from the previous section
and the morphing function Fmorph is computed. Using the back-mapping func-
tion, the morphing function F ′

morph for the viseme MMM is retrieved. F ′
morph

is similar to Fmorph but performs only on the partial geometry available in
the viseme MMM. The procedure works as follows (refer to Fig. 9.4): in the
identity MMM the morphing function which transforms the neutral face shape
Sref to a novel shape Snovel is known:

Snovel = Fnovel(Sref ) = Sref + ∆Snovel (9.1)

The neutral shape of the viseme-space Vref is mapped to the identity-space
as Sviseme using the fitting algorithm developed by Blanz [14]. The morphing
function from Sref to Sviseme performs

1 An approach to reconstruct the face entirely is to export the faces to the identity
MMM where they would be completed and to transfer them back to the viseme
model. However, as Figure 9.2 illustrates, the completion information cannot fit
in the actual data structure which would require to be reconstructed. While this
is possible, this path was not pursued.



110 9 Face and Articulation Transfer

Sviseme = Ftransfer(Sref ) = Sref + ∆Stransfer (9.2)

with

∆Stransfer = Sviseme − Sref (9.3)

and the direct morphing function is found:

Snovel = Fmorph(Sviseme) = (Fnovel ◦ F−1
transfer)(Sviseme)

= Sviseme + ∆Smorph (9.4)

with

∆Smorph = ∆Snovel − ∆Stransfer (9.5)

To get the novel face shape Vnovel in the viseme-space, Fmorph is adapted
as F ′

morph which only retains the transformation for the vertices on the viseme
shape:

Vnovel = F ′
morph(Vviseme) = Vviseme + ∆Vmorph (9.6)

with ∆Vmorph deduced from ∆Smorph through the back-mapping.
The transfer shows modest results. Rounding errors in the mapping and

residual noise in the 3D scans affect substantially the novel face. Animation
also shows that speech cannot be transferred to a novel face directly; indeed,
the shape of the mouth differs from one person to the other, and affects the
lips in unnatural manners. Figure 9.5 shows the resulting transfer on the first
small viseme corpus. Inconsistencies arise at the edge of the face shape where
the registration is less precise. Indeed, the edges correspond to where the
acquisition direction is tangential to the skin and depth measurements are
more sensitive. These measurement errors are visible on the imported face
shape.



Fig. 9.5. Identity importation example A face shape from the identity MMM
is imported to the first viseme model (small corpus). Only the coverage of the viseme
model can be imported and acquisition errors on the edge are reproduced on the
imported model.





Part IV

Speech Synthesis
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Articulation in natural speech is a process which is difficult to model as
it depends of many parameters. Speech is the most widely used means of
communication for human interaction, and therefore, the brain is trained and
highly skilled for detecting correct articulation movements. Hence, while being
a complex process, in the eye of the observer any behavior that deviates from
natural speech is disturbing and immediately noticed.

The movements performed by the mouth depend on many parameters. Dif-
ferent persons have different ways of speaking which, combined with different
moods, span a large catalogue of manners of speech. The speech information
we gathered in the previous part focuses on a neutral but well articulated
manner of speech of a single person. The speech model we presented in that
fourth part makes abstraction of the manners of speech (global influences) but
focuses on the interaction of visemes taken in their phonetic context. From
this point of view, local influences depend less on the actor and allow the
development of a general model for the synthesis of neutral speech.

In Section 2.5 we explained how phonemes are produced by the modula-
tions of the air stream propelled out of the lungs. Several components of the
body perform these modulations, but their involvement is not always visible
from the outside of the body. Some phonemes require also more effort to be
produced than others, in consequence of what, the shape the mouth takes
during the production of a phoneme is not only dependent on that phoneme,
but also, and actually at a high level, on the surrounding ones. In short, the
face shape or the viseme is highly dependent on the phonetic context it is
taken from.

The viseme context dependency induces the concept of coarticulation (see
Section 2.5.1) which is twofold: (1) for a given phoneme, the associated viseme
is not unique, and (2) for natural articulation, the movement of the mouth
should be observed, rather than a single viseme (see Triphones on page 26).
The movement which we have to learn from the dynamics of the mouth starts
at a point in time before the phoneme begins to be heard, and ends at a point
in time after it ceased to be heard, when it leaves already towards the next
shape.

We already stored these two aspects of coarticulation in the speech
database. The duration of a phoneme spans several frames, and for each
phoneme, the viseme sequence from the previous phoneme to the next, which
is referred to as triphones, is kept. Triphones are composed of a succession
of three phonemes (or visemes) and the two motion segments in between. A
triphone composed of the phonemes /A/, /B/ and /C/ is written |A,B,C|
and represents the animation segments rather than the visemes |A|, |B| and
|C| which are three single 3D face shapes.



116

The use of triphones is a common approach in speech synthesis and has
been used in works from Bregler et al.[22] where it has been applied to 2D ani-
mation segments. The triphone approach produces a novel animation by pick-
ing motion segments from a database which matches the phoneme sequence
of a novel audio file. While there may exist several candidates in the database
for a desired phoneme sequence, the triphones are selected in a manner that
guarantees the smoothest transitions in the new sentence. If good concatena-
tion is found, the interpolation process alters the original motion only slightly
and ensures that the original coarticulation is reproduced in the synthesis,
thus giving natural movements.

The difficulty resides in the selection process. In the English language,
there are 44 different phonemes2 (see footnote on page 99). If a database
held all possible phoneme combinations for triphones, the minimum number
of necessary triphone samples would be 442 · 43 = 83′248, still offering only
a single sample of each. The number of triphone samples available in our
database is, however, 2484 and includes repetitions.

The key to the selection problem resides in the fact that several phonemes
can be associated to similar visual behaviors. In the filed of articulatory pho-
netics such viseme classifications have been defined for quite some time now:
one of these classification was presented in the work of Owens & Blazek [91]
in 1985 and became a standard classification. These classifications, however,
resolve the problem only partially: while the number of necessary triphone
samples is reduced, it still occurs that combinations are missing or that only
a few samples are offered. If the number of samples to pick from is too small,
chances are that heavy interpolation is required to smooth trajectories which
cancels the natural coarticulation information.

In this part, we directly address the selection problem: by performing a
nonlinear analysis of the articulation data, we derive a measure of similarity
between visemes which gives a graded degree of substitution preferences; when
the database is queried for a specific triphone and this one is not available,
we provide triphone candidates with are the most similar to the requested
one. Moreover, combined with an interpolation cost, our measure permits the
selection of motion segments originally associated with different phonemes, if
they offer a better concatenation, but natural articulation is still preserved.

In the following, most of the illustrations refer to the analysis or the results
obtained from the second recording corpus with the larger dataset. Compar-
isons with the smaller corpus are explicitly mentioned.

2 For the French language, for instance, only 39 phonemes exist, from which Benôıt
& Le Goff [9] consider only 32.
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A Nonlinear Model as a Similarity Measure for
Visemes

The viseme-space generated by the PCA in Section 8.4.1 gives a first repre-
sentation of the data. Visemes are represented by points in a 50-dimensional
space which makes it difficult to visualize. It is, however, possible to observe
the distribution of the visemes in a three-dimensional representation, as il-
lustrated in Figure 10.1. An interactive user interface was developed for that
purpose: the user can freely select which component of the viseme-space basis
should be represented and observe the clusters separately. In this Figure, the
clusters for a few phonemes are represented along the three first components.
Visemes associated to the cluster (the first frame of the span of the phoneme)
are depicted by a black dot, the curves show the associated triphone segments:
blue segments indicate the coarticulation curve before the actual viseme, red
segments, the curve afterwards.

This representation is interesting, as it shows the actual behavior of the
mouth during speech. Indeed, subsequent frames in the recorded corpus have
only little differences; in the viseme-space, their locations lie close together.
An articulation movement, hence, describes a smooth curve.

These curves, however, show that the mouth moves freely and that for a
specific phoneme, the coarticulation curves can be highly uncorrelated. More-
over, by observing the central visemes of these triphones in the space, their
location cannot be restricted to specific regions, and the different clusters
strongly overlap. As it is going to be presented later, the PCA space is a good
representation for generating curves to produce animations; the analysis of
the behavior or the characteristics of the different visemes is here, however,
hardly possible.

In this chapter, a nonlinear data analysis is performed which uses Locally
Linear Embedding (LLE) and generates an intuitive representation of the data
(Section 10.1). The LLE representation allows to better study the behavior
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of the mouth in relation to phonemes by defining regions in which it evolves
and others to which it is dissociated. Depending on the distributions of these
clusters, a hierarchical model is derived which gauges degrees of similarity
among the visemes (Section 10.2) and which finally dictates a substitution
rule for picking optimal triphones in the database (Section 10.3).

Note that the LLE reduction is only used for determining similarities
among visemes and their extension to triphones. All processes related to the
animation are performed in the PCA space and are discussed in the following
Chapter 11.

Fig. 10.1. The representation in the PCA space of the recorded tri-
phone curves around different phonemes The first frame of the occurrence of
a phoneme is marked as a black point. The blue and the red segments represent the
articulation movements from the preceding and to the succeeding phoneme, respec-
tively. The behavior of the mouth (curves) and the shape of the visemes (locations
of black dots) show no coherent structure and this representation is thus ill suited
for the behavioral analysis on speech.
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10.1 Locally Linear Embedding

The use of a reduced linear vector representation of mouth shapes is a logical
approach for the generation of a viseme model; morphing along the differ-
ent axes within a delimited span generates plausible shapes. However, the
way the mouth behaves during articulation draws a low-dimensional manifold
which is not perceivable in a linear representation. From the many physically
realizable visemes, many are simply not produced during speech, hence, the
space spanned by the visemes involved in the articulation process has a lower
dimension.

Chapter 6 presented different well-known nonlinear dimension reduction
techniques. The usage of Locally Linear Embedding (LLE) in this thesis is
inspired by the representations of viseme-spaces in the works of Saul & Roweis
[109] or Graf & Cosatto [53] (see Fig. 10.2). These representations show that
the low-dimensional manifold for speech has the property of a star shaped
distribution with the edges spreading towards extreme mouth configurations.
In this thesis, a study on viseme behavior enables us to characterize visemes
clusters according to their distribution on these manifolds.

Fig. 10.2. LLE use for speech animation in contemporary literature Saul &
Roweis [109] (left and center) or Graf & Cosatto [53] (right) have already associated
LLE reduction with speech data. The representations always show a star shaped
distribution of the low-dimensional manifold even when different parameters to the
reduction are given (left and center). This characteristic distribution is also produced
for the three-dimensional data studied in this thesis (see Fig. 10.5).

LLE unfolds the manifold to a low-dimensional space by keeping linearity
between adjacent samples (see Section 6.3). The degree of sample adjacency
considered in the process has a great effect on the outcome and has to be
given by the user. Moreover, LLE demands the desired dimension of the space
which the manifold should be projected to. These two parameters are of course
not available a priori. The only way to find them out, is to perform several
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trials until a convincing representation is produced. The problem arises that
these tests are computationally expensive for high-dimensional vector sets,
as the LLE reduction performs a matrix inversion and the processing time
becomes problematically long. The next Section addresses this problem by
considering only a small set of points along the lips to reduce the dimension
of the problem; the intrinsic dimensionality of the manifold is kept, as all the
necessary information of the mouth deformations is encapsulated in this set
of points. Section 10.1.2 then performs a viseme selection to reduce the size of
the data in order to process and optimize the output of the LLE algorithm.

10.1.1 Data Simplification

The problem caused by the high dimensionality of the data of the LLE process
is addressed by considering only a series of vertices along the lips. This series
of 9 vertices is selected by hand and illustrated in Figure 10.3. The three
coordinates of each of the vertices are considered which still ensures a spatial
tracking of the lips over the whole dataset and reduces the dimensions to 27.

Fig. 10.3. The 9 selected vertices retain all movement information of
the lips To address the problem of high-dimensional data processing in the LLE
algorithm, only a series of 9 hand selected vertices along the lips is considered. The
spatial deformation information of the lips is thus kept, while the data is reduced
to 27 dimensions, each vertex being represented by its three coordinates.

These selected point vectors v = (x1, y1, z1, ..., z9) ∈ R
27 taken from the

registered corpus data lie in a “dangerous” region of the face: by the very
nature of the registration, vertices can slightly slide on the surface of the face
which becomes problematic for vertices that lie on bumpy regions such as
the lips. By observing the evolution of the series over the frames, a flickering
motion is detected when these vertices slip towards the mouth cavity. This
flickering has a direct impact on the outcome of the LLE reduction and has
thus to be removed. With the aim of reducing the noise, a PCA is performed
over these vertices which gives the principal deformation components. By
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removing the last components (the noise) this flickering is eliminated. After
that process, each vector v ∈ R

27 is further reduced to a vector v′ ∈ R
8 which

still holds the important deformations of the lips. We note that in this reduced
PCA space, still no simple pattern is found in the trajectories.

The last claim is defended as follows: when one thinks of the possible mouth
configurations, several parameters have an influence on the resulting viseme, in
particular the face muscles in the region of the mouth or the tongue. However,
although all these components play an essential role, it can be observed that,
for a given configuration of the mouth, they lose all degrees of freedom (at
least for the ones that have a visual impact). This means that, for a given
viseme, all these parameters are defined and are thus strongly correlated (for
a given shape of the lips no muscle can be activated without having a visual
consequence). Because of this strong correlation, a small selection of points
can almost completely retrieve the state of all the components.

10.1.2 The LLE Computation

The problem related to the dimensionality of the original data has been ad-
dressed in the previous Section, and each of the 17142 recorded frames is
represented by a vector point v′ ∈ R

8.
Further tests performed with the LLE also showed that the data distribu-

tion over the manifold affects its outcome; a better representation is obtained
if the distribution is homogeneous. An important characteristic of the acquired
data is, that, because the samples are recorded dynamically, the distribution
of the data is strictly speaking not homogeneous. The reason is that the sam-
ples follow articulation curves and, most often, their closest neighbors are
lying on the same curve. LLE constructs a representation that is based on the
spatial relation among the samples, and to get a better representation of the
underlying manifold inside the data, one must first select a sub-set of samples
that is evenly distributed in the original space. To achieve this, the distances
between all pairs of samples are measured (Euclidean distance in the reduced
space of the vector points). By running through all the samples successively,
the algorithm checks whether a sample is closer than a given threshold k to
another sample; in that case, the sample is removed from the database. If a
sample is removed, it is not going to be present in the LLE representation.
To keep track of the removed samples, their phoneme label is associated with
their closest sample which thus has multiple labels. With increasing k, neigh-
bors lying on a common curve are slowly removed, until the threshold reaches
the average distance that separates different curves, and samples start to dis-
appear more quickly. Drawing the number of remaining samples in function
of k shows that when k reaches this critical distance, the function curve de-
creases rapidly. Figure 10.4 illustrates that behavior for both corpora. For the
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Fig. 10.4. Sample reduction curves To get a homogeneous distribution of the
data, samples that lie too close to each other are removed according to a distance
threshold k. The number of remaining samples drops steeply when the threshold
reaches the critical distance that separates the articulation curves, which is around
k = 2.5 for the small corpus (left) and k = 0, 7 for the large one (right).

small corpus, the curve breaks at k = 2, 5, for the large corpus at k = 0, 7, as
the manifold is much more dense (17142 samples against 1933). This proce-
dure makes sure that LLE is not dominated by the individual curves of closely
adjacent vectors, but by the intrinsic structure of the set of different mouth
shapes involved in articulation.

As shown in Figure 10.4, for the small corpus, the number of samples
is reduced to about 1800 and to about 16’000 for the large one. Another
problem arises: the LLE is performed on a Matlab platform which shows
memory allocation problems for datasets larger than 8000 samples. While
this is no problem for the first corpus, the second one, on the other hand, has
to be drastically reduced. The threshold is thus further increased until the
remaining number of samples reaches 7000 (k = 2, 5).

The LLE is finally computed on the reduced dataset. The best separation
of the data is obtained by selecting a neighborhood connectivity of six samples
and a target dimensionality of six in the case of the large corpus; for the smaller
corpus, these parameters are set to 4 and 4. The fact that the neighborhood
degree equals the output dimension is a known property of the LLE reduction,
as discussed in Section 6.3.

The reduction generates the star shaped representations shown in Figure
10.5; there is a clear similarity with the representations obtained by Saul &
Roweis [109] or Graf & Cosatto [53] in Figure 10.2 which demonstrated that
the nonlinear reduction produces a low-dimensional manifold that is intrinsic
to the process of articulation. This information can be retrieved indepen-
dently of the data structure used for the analysis. Section 10.2 discusses the
distribution in detail, it is, however, interesting to already point out some
of the characteristics: for the smaller corpus, a three directional star shape
is obtained, while the larger corpus gives a four directional shape. In fact,
a fifth peak can be observed but it turns out that it corresponds to a small
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Fig. 10.5. The articulation manifold representation in the LLE-space
A Locally Linear Embedding (LLE) over the recorded data shows that a low-
dimensional representation is not only intuitive but also intrinsic to mouth move-
ments. The central region of the star-shaped manifold pertains to neutral mouth
configurations. The three directions correspond to mouth shapes that are typical
for |EH|, |W |, |AW | and |I| for the larger corpus (right). For the smaller corpus
(left), the LLE representation presents only three directions since |W |, |AW | coin-
cide. These representations show great similarities to previous work illustrated in
Figure 10.2.

continuous segment on which the registration performed with less accuracy.
This segment is thus ignored in the following. Regarding the distributions,
the central region of the stars holds neutral mouth configurations; the four
directions (three for the small corpus) go towards mouth shapes that typically
correspond to |EH|, |W |, |AW | and |I|. For the smaller corpus, the |W | and
|AW | are merged.

One aspect still remains to be discussed: for the large corpus, the output
dimension is 6 which a priori makes it still difficult to visualize. The interface
developed for the analysis of LLE allows to visualize three dimensions simul-
taneously (see Fig. 10.6) which are specified by the user. In the present case,
the third dimension emphasizes the erroneous segment which spreads quite
far, while the fourth dimension better separates the four main edges of the
star. On the fifth dimension, all coordinates are zero and on the sixth, all are
equal to 1. The shape presented in Figure 10.5, hence, shows dimensions 1, 2
and 4, a good visualization of the low-dimensional manifold.
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Fig. 10.6. The user interface developed to visualize the LLE The main
panel shows the three-dimensional representation of the LLE in which all reported
samples are color coded in order to facilitate user selection. A selected viseme is
highlighted in red and the corresponding lips shape can be viewed in the the upper
panel and its frame index is displayed. On the right, the user can select a phoneme
from a list to highlight all associated frames. This option allows the visualization of
the viseme clusters (see Section 10.2).

10.2 A Measure for the Similarity of Visemes

The audio from the recorded corpus is decomposed into a sequence of
phonemes using the CMU-SPHINX algorithm [64] and gives the time interval
(or a sequence of frames) during which the phonemes are heard.

From each interval, the first frame is taken as a viseme sample and is la-
belled with the associated the phoneme. Then, for each phoneme, the distribu-
tion in the LLE representation of its visemes is investigated. (Note that while
all recorded samples are represented, only the distribution of these visemes
are considered.) The remaining frames capture the transition movements, and
are used in Section 11.1 to synthesize new sentences with realistic transition
velocities and accelerations.

The difficulty in a learning-based approach is that the natural number
of possible phoneme combinations forming triphones is too large to be pos-
sibly recorded, not considering that several samples of each triphone would
be appreciated. However, different triphones may have very similar motions:
by identifying similar triphones, a robust substitution option ensuring good
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Fig. 10.7. The LLE representation of the recorded viseme candidates
for the different phonemes The black points show all the recorded frames from
the corpus, the red squares illustrate the location of the visemes associated with
the phonemes. Their distribution defines different viseme clusters for each of the
phonemes. Note how |SIL| typically can happen with any mouth shape, unlike |W |,
for which the lips have to take a particular shape.

transitions between visemes during coarticulation is offered. Moreover, such
substitutions become even more necessary when desired triphones are not
directly available.

From the original corpus, all visemes (first occurrences of phoneme se-
quences) are mapped to the LLE representation, where their distributions
form viseme clusters. Figure 10.7 illustrates some of the different viseme clus-
ters. The different clusters vary not only in how they spread along the branches
of the star-shaped manifold, but also how they are distributed along them.
These two criteria are used to distinguish the clusters and to define a measure
of similarity.

The idea is to measure the spread of the clusters along each branch after a
chosen quantization. By taking the branches in a fixed order, the distribution
of a cluster can be described by a quadruplet that indicates how far the cluster
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extends on each branch. For instance, [2411] means that the cluster of this
viseme spreads to a quantized distance of 2 on the first branch, 4 on the
second, 1 on the third and on the fourth branch of the manifold.

Fig. 10.8. The projection process involved in the quantization of the clus-
ter distributions Five axes are defined by connecting the extremities of branches
to the origin. All samples are then projected onto their closest axis on which their
distribution is measured and a quantization is retrieved which describes the nonlin-
ear model for (or the behavior of) each viseme cluster. As discussed in Section 10.1,
the smallest axis is ignored, as it represents only a few erroneous samples and also
relaxes the substitution rule.

This model is implemented the following way: the four visemes at the
extremities of the branches are selected, they define four main axes connecting
these visemes to the origin of the LLE space (Fig. 10.8-left). All samples
are then projected onto the closest axis (Fig. 10.8-right). The quantization
is then given by the spread of the samples along the axis while weighting
them according to their distributions over the different axes (see equations
below). Weighting the spreads allows to get a more accurate description of
the behavior of the different viseme clusters: when a cluster spreads far along
several axes, their quantization is lowered to favor other clusters which spread
on less axes and let the final quantization better characterize them: the length
of each axis i is normalized to 1 and the average squared distance di of the
samples to the origin is taken. di is then weighted proportionally to the amount
of samples on that axis in proportion to the total count of visemes for the
considered phoneme.

Thus, for a cluster, if Xi is a random process describing the position of
the samples along the axis i ∈ {1, . . . , 4}:

dXi
=

1

ni

ni
∑

j=0

x2
j,i (10.1)
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Fig. 10.9. Each viseme cluster defines a distribution on the projected LLE
representation Projected along the main axes, the quantization of the spread along
each axis is computed, which, taken in a fixed order, describes the distribution by
simple quadruplets and characterizes the clusters.

where ni is the number of visemes on axis i. With N being the total number
of visemes for a specific phoneme p, the spread along the axis i becomes:

qp(i) =
ni

N
dXi

=
1

N

ni
∑

j=0

x2
j,i (10.2)

The maximum qp(i) over all phonemes in P is then normalized to Q = 6 (the
desired quantization steps1) and the remaining qp(i) are scaled accordingly.
Finally, rounding to the closest integer gives the quantization of the spreadings
along the axes. Figure 10.9 illustrates the process for the viseme clusters |G|
and |W |.

Table 10.1 gives the conversion to the quadruplet notation (triplet for
the small corpus) for each of the viseme clusters and for the two corpora.
The categorization in this table is an intrinsic statistical property of speech.
Suppose a new animation system is built: when the registration process and
the phonetic segmentation of the data are performed, this table can be directly
taken to perform the segment selection for novel animations (see Section 10.3).
The LLE analysis has not to be performed again, as these quadruplet values
are intrinsic to the process of articulation.

A first look at Table 10.1 shows correspondence between visemes2 that are
intuitively similar. For instance, the visemes for |P | have the same quadruplet
representation as the visemes for |B|. Indeed, the utterance of their associated

1 |W | is particularly concentrated on the first axis. The quantization Q is set to
6 to in order to keep a fine enough resolution to distinguish and better separate
the other viseme clusters.

2 In the following, because the distribution of a cluster reflects the “behavior” of
the visemes, the term viseme sometimes refers to the cluster as a whole rather
than to a single sample.
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Large corpus, quadruplet notation, 7 quantization steps (Q = 6)

PIT 0000 ER 1213 UW 2221
ZH 0002 JH 1312 K, T 2222
SH 0212 OY 2010 SIL 2223
CH 1011 AW 2013 G, UH 2411
AY 1022 NG 2022 IX 3031
DX 1023 EH 2023 HH 3032
Z 1032 AXR 2111 V 3112
F 1111 AA, AO 2112 OW 3211
AH 1112 P,B 2113 R 3212
AE 1122 TH, L, N, S, IY, DH 2122 EY 3331
D 1123 M 2123 Y 3312
IH 1221 AX 2212 W 6111

Small corpus, triplet notation, 4 quantization steps (Q = 3)

PIT 000 N 102 B, AA, W, L 121
IX 001 JH 103 HH 130
AXR, AW, 010 M, SH, IH 110 AX 131
TH 011 P, D, DH, DX, F, IY 210
OW 021 G, K, AE, EH, R 111 T 211
ZH, AO, ER, EY, UH, NG 100 V, CH 112 S 312
Z, AY, OY, Y 101 AH, UW 113 SIL 333

Table 10.1. The quadruplet and triplet notations for the different visemes
All phonemes are mapped to a quadruplet representation with 6 quantization steps.
PIT is defined for the neutral head (a slightly open mouth) as a general substitute
ot all visemes (0000) to prevent the substitution rule from being degenerative.

phonemes is visually identical. As opposed to /P/, /B/ has a voiced compo-
nent which has no visual impact on the face. In the table, for the smaller
corpus, |P | is a first degree substitution to |B|; large corpora insure conver-
gence of these quadruplets. Section 12.1 discusses such aspects in more detail.

10.3 Inclusion and Substitution Rules for Visemes

With the quadruplets defined for each viseme cluster, a rule for viseme sub-
stitution can be formulated. Consider two clusters |A| and |B| with a smaller
distribution along the axes for the visemes of |B|. In the quadruplet notation,
this implies that all digits of the quadruplet [B] are pairwise smaller or equal
to digits in the quadruplet [A]. This inclusion rule writes: |B| ⊂ |A|.

In the animation, unnatural movements are to be avoided. Therefore, in
this example, an instance from |B| (the smaller cluster) can replace instances
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from |A| but not vice versa. In the quadruplet notation, this means that for a
given quadruplet, a lower sum of its digits as compared to another quadruplet,
is not a sufficient criterion for being a substitution candidate.

0212
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1112

1312 2013 2022

2111

2122

2221

2411

3032

3331

6111
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Fig. 10.10. The acyclic directed substitution graph (here only a sub-set
of the total graph) The graph defines the valid visemes substitutions and their
respective substitution cost.

While the database holds candidates for every viseme, substitutions be-
come necessary when looking for triphone candidates. The number of possible
triple-viseme combinations is far too large to be fully available, hence, best
matching substitutes have to be selected. Ideally, a triphone matching the
phoneme combination is found; if this is not the case, one has to look for
similar visemes. In that aspect, visemes with the most similar distributions
are preferred and a similarity measure is defined according to a substitution
cost θ. This cost is measured as the sum of the digit differences of the de-
sired viseme to its possible substitute (e.g. [1111] has a substitution cost of 3
over [2131]). By extension, the distance of a triphone to its substitute, is the
sum of its three visemes’ distances to their substitutes. The substitution of
the central viseme in the triphone is penalized by taking twice its distance in
that sum. This substitution cost is later combined with another concatenation
cost (which favors natural transitions) to select the best suited substitution
sequences (Section 11.1).

The inclusion rule and the substitution cost describe a graph of valid sub-
stitutions (Fig. 10.10 shows a sub-graph example). The nodes hold the quadru-
plet values, the edges indicate valid substitutions according to the inclusion
rule, and are weighted with their respective substitution cost. Following the
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edges of the graph, all nodes are valid candidates. At every jump, at least
one of the digits decreases until the quadruplet |PIT | [0000] is reached. This
quadruplet is a non-viseme cluster that doesn’t spread over any axis. If PIT is
reached without having found a fitting quadruplet, the neutral face is used in
the substitution. However, experiments show that the rule is generous enough
for the substitution algorithm to never reach that state.

While the inclusion rule is transitive

|C| ⊂ |B| and |B| ⊂ |A| ⇒ |C| ⊂ |A| (10.3)

all edges in the graph cannot be deduced from the 1st degree edges (substi-
tution cost = 1):

|B| ⊂ |A| and |C| ⊂ |A| 6⇒ |B| ⊂ |C| or |C| ⊂ |B| (10.4)

Hence, all edge degrees have to be sought. A typical example, in Figure 10.10,
shows that the second degree edge between [2122] and [1112] cannot be de-
duced from single degree edges of the graph.

The graph now allows to find substitutes to triphones that are not avail-
able. For instance, suppose an instance for |AA,P,UH| is sought: the triphone
is converted into the quadruplet notation: |2112, 2113, 2411|. This triphone can
then be compared to all available triphones and the distance between all three
corresponding clusters of the two quadruplet is computed. The next chapter
exposes precisely how this selection is performed.
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Finding the Optimal Triphone Concatenation

The synthesis of speech animation starts with an audio track of a new sen-
tence. This track is chopped into overlapping triplets of phonemes (Section
8.4.2) which give the sequence of triphones required for the novel animation.
In order to account for coarticulation and to generate the most natural transi-
tions between the visemes, the triphones are selected following the substitution
rule (Section 10.3), while an optimal overlapping is provided that guarantees
smooth transitions and extracts the most out of the original movements.

The database stores motion segments of natural articulation as triphones:
these segments consist of three phoneme occurrences with two consecutive
transition movements in between. The information held in such a triphone
contains both aspects of coarticulation: the first aspect is the shape of the
central viseme in its phonetic context, the second is both, the transition from
the previous to the central viseme and the transition from the central viseme
to the next viseme (in this thesis, only the first shape over a span of frames
associated to a phoneme is considered as a viseme). For generating a new
animation, a collection of triphones is selected, and the concatenation is per-
formed by overlapping the segments (see Fig. 2.5). Because these triphones
are pulled out of their phrasal context, their combination is likely to produce
incompatible concatenations. This chapter addresses the problem of selecting
suitable triphones for maximizing the transfer of the original coarticulation
information by minimizing the necessary interpolation between the overlaps.

From a defined sequence of triphones, a list of valid substitution candidates
is picked from the database along with their associated substitution cost θ. A
concatenation cost ϕ is introduced (Section 11.1) which measures the over-
lap compatibility between triphones. Minimizing both costs over the whole
triphone sequence provides the right combination of triphones to be selected
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from which a novel animation can be constructed in the PCA viseme-space
(Section 11.2).

11.1 Concatenation of Triphones

A triphone |v1, v2, v3|, with vi as PCA vectors, is composed of a central viseme
|v2| and two neighbors |v1| and |v3|. It holds the position of the three visemes
plus the frames for the transitions |v1, v2| and |v2, v3|. When two successive
triphones |v1, v2, v3| and |w1, w2, w3| are concatenated, a curve is generated
that traverses v2 and w2, which keeps the tangentiality and the direction of
the original curve at these points (see Fig. 11.1).

α

v2

v3

w2

w1

v2

v1 v3

w3

w2

w1

Fig. 11.1. Triphone morphing The interpolated curve passes through the cen-
ter visemes v2 and w2 of both triphones |v1, v2, v3| and |w1, w2, w3| (left) while a
weighted combination of both velocities and accelerations along the original curves
a1(u) and a2(u) is provided in order to preserve the coarticulation information
(right). The normalized time is denoted by the variable u ∈ [0, 1].

First, a “quadriphone” |v1, v2, w2, w3| is generated from which only the
|v2, w2| segment is retained (Fig. 11.1-left). In the morphing algorithm, it is
important that the central visemes of the two triphones remain unaltered
regarding their position, tangent and acceleration. The transition |v2, w2| has
to be computed knowing that

• the number of frames available in |v2, v3| and in |w1, w2| is different;
• the number of frames to be generated for the new animation is dictated

by the phoneme sequence in the target audio file;
• variations in the speed of articulation between the two transitions have to

be taken into account;
• the tangent of the curve at the central visemes should remain unchanged.
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For each frame t of a candidate triphone, the original shape vector s is ini-
tially transformed into 50 PCA coefficients a = (a1, a2, ..., a50)

T . The curved
trajectory a(t) in the coefficient space can be mapped back to shape vectors
s and be rendered on the screen for reproducing the original motion.

A piecewise linear function is then used to interpolate between the discrete
time steps of the original frames. The argument t ∈ [t0, t1] of this function can
be substituted by a variable u ∈ [0, 1], u = t−t0

t1−t0
to obtain a time-normalized

function a(u) (see Fig. 11.2). If the lengths of the transition phases in two
subsequent triphones differ, this will be corrected by the substitution of t by
u.

Let the transitions |v2, v3| and |w1, w2| be parameterized by a1(u) and
a2(u), respectively. The new transition function anew(u) for |v2, v3| (Fig. 11.1-
right) is an interpolation between a1(u) and a2(u). A linear interpolation
between the two curves is given by:

anew(u) = (1 − u) · a1(u) + u · a2(u) (11.1)

However, the tangents at the central visemes would be altered. To retrieve
the tangents of the curves’ extremities, the interpolation coefficient is weighted
over time using the function

s(u) =
u2

u2 + (1 − u)2
(11.2)

and the weighted transition becomes

anew(u) = (1 − s(u))a1(u) + s(u)a2(u) (11.3)

anew(u) is then sampled with constant ∆u to generate the desired number
of frames for the new transition. Figure 11.2 illustrates the result of such a
morphing.

This section already presented the approach of the morphing even though
it has not been discussed how the selection is performed among several valid
triphone candidates (see next Section). Indeed, this selection requires a con-
catenation cost to be defined which quantifies the compatibility of two suc-
cessive triphones in terms of smoothness. By clarifying the morphing process
first, it becomes clear what that cost should represent.

A first guess would suggests that the morphing energy should be minimized
and the concatenation cost ϕ would then be defined as the integral of the
distance between the two segments:

ϕ =

∫ 1

0

‖a2(u) − a1(u)‖du (11.4)
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Fig. 11.2. Preserving original tangentiality at the central visemes When
two transitions of two different triphones are morphed, the tangentiality is preserved
by weighting the interpolation coefficient using a S-shaped weight factor s(u) in order
to ensure an optimal transfer of the coarticulation information.

It turns out that this consideration is not ideal, but rather the directions
and the location of the curves in the PCA space should be taken into account.
An attempt was performed by defining a cost function of these two parameters
which did not provide optimal concatenations (Appendix 16.3 discusses that
attempt). In fact, the best results are obtained by only considering the angle
α between the curve tangents at |v2| and |w2| and defining the cost function
as (see Fig. 11.1):

ϕ(α) = − cos α (11.5)

11.2 Finding the Optimal Sequence

Given the sequence of required triphones for a new sentence, a sequence of
triphones from the database has to be found which minimizes both the sub-
stitution cost θ and the concatenation cost ϕ.

The new sentence is decomposed into a sequence of N triphones i ∈ 1, .., N .
To compute the solution, the system provides a list of all Mi possible candidate
substitutions Ci,j in the database for each triphone i in the sentence. A graph
is constructed whose edges connect every triphone from these lists, to all
candidates in the preceding and the next list (see Fig. 11.3). Each one of the
candidates j holds a substitution cost θi,j (the distance to the requested target
triphone) and the concatenation costs ϕi,j,k for the connection of Ci,j to each
of the preceding candidate k nodes Ci−1,k. The path that minimizes the total
cost is then given by

Θmin =

N
∑

i=0

min
j∈{0,...,Mi}

min
k∈{0,...,Mi−1}

(θi,j + ϕi,j,k) (11.6)
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Fig. 11.3. Finding the optimal triphone sequence The optimal sequence of
triphone substitutions is the one that minimizes the substitution cost θ and the
concatenation cost ϕ. This optimal selection is found by computing the shortest
path on a graph generated over the triphone candidates.

A shortest path algorithm is used over the graph to find the optimal solu-
tion. Note that Θmin can be divided by the number of triphones in the sentence
to defines a measure for evaluating the quality of the animation. The mor-
phing is then performed between the selected triphones in order to generate
the final articulation curve by mapping the coefficients a(t) to shape vectors s.

Finally, after the triphones are selected and interpolated, the animation
curve in the PCA space is passed through a low-pass filter which automatically
smoothes the transitions and removes the noise present in the measured data
(see Fig. 13.1).



Fig. 11.4. Smoothing the reconstructed animation The synthesized animation
obtained by the concatenation of triphones is described by a curve in the high
dimensional PCA space. A low-pass filter is applied to the curve in order to remove
the high frequencies. This figure illustrates the coefficient variation along the first
principal component before the smoothing (left) and after (right). The filtering keeps
the global deformation and provides a smoother animation.
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Results

This chapter concludes the part dedicated to speech synthesis by discussing
the obtained results. Besides the generation of synthetic visual speech from
audio data, which is discussed in Section 12.2, the nonlinear model also gives
some insight into the intrinsic structure of natural articulation. The next
section therefore discusses and compares the empirical taxonomy of phonemes
to the standard viseme grouping in the field of articulatory phonetics (Section
12.1).

12.1 Phoneme Similarity

According to phonetics, phonemes are generated by combined activations of
body components, mainly of the lips, the tongue, the epiglottis and the larynx
(the nasal cavity is only phonetically noticeable as a consequence of the air
conducted to the nose). From these four elements, the first two have a direct
influence on the shape of the mouth, whereas the last two occur at the back
of the mouth. The epiglottis closes the aperture to the trachea to produce
phonemes like /K/ or /T/ (unvoiced), whereas the larynx has the control
over producing a voiced or an unvoiced phoneme; /K/ or /T/ become /G/ or
/D/.

Vocals /AA,AE,AH,AO,AX,AXR,AW,AY,EH,ER,EY, IH, IX, IY ,
OW,OY,UH,UW/ are all voiced phonemes with no influence of the tongue
while some air can be conducted through the nose like for /ER/ (the nasal
phonemes changes when the nose is closed); vocals only depend on the shape
of the lips and have a direct influence over the produced viseme; it is thus valid
to represent them all as distinct visemes. Regarding the consonants, some can
be visually grouped in pairs, if they are uttered in exactly the same way but
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differ only by their voiced or unvoiced nature. These groups are the /B, P/,
/G,K/, /V, F/, /ZH, SH/, /JH,CH/, /Z, S/, /D,DH,DX, T/. Regarding
the rest of the consonants, /M/, /W/, /Y/, /L/, /N/, /R/, /NG/, /TH/ or
/HH/ have different tongue positions and lip configurations; voiced or not,
they should fall into separate categories, as they produce slight differences on
the behavior of the mouth. It is one of the strengths of our system that it
determines, based on the recorded corpus, which viseme can be approximated
by which other, or how similar a phoneme is to another.

In the articulation process, some phonemes have more influence than oth-
ers. For instance, /UH/ forces the mouth to a round shape, whereas /K/
can be articulated with almost any shape, because the sound is produced at
the back of the mouth. This aspect is important to consider when generating
animations, because it dictates which visemes are to be more accurately ap-
proximated. This information is available in our database and is automatically
taken into account in our pipeline. |K| or |N | are typical examples of visemes
that can be substituted by more clusters (their associated quadruplets show
that they spread along all branches of the manifold).

Considering that we have a relatively small corpus of viseme samples (from
17’000 frames, around a fifth are taken as viseme candidates) and that the
number of occurrences of the different visemes varies massively (from a single
candidate for |ZH| to 17 for |CH| and 196 for |T |, see footnote on page 99),
both our similarity measure and viseme categories can further converge with
a larger corpus.

In this thesis, no a priori assumption of phoneme similarity is taken. It
is interesting to compare the obtained viseme groups with those found in
the literature on articulatory phonetics [91, 130]. Table 12.1, compares pop-
ular viseme associations to our nonlinear model. Numerical closeness in the
quadruplet notation indicates similar distributions or similar behavior of the
visemes. Yau et al. [139] use the MPEG-4 standard that actually comes close
to the model proposed by Binnie et al. which is discussed in Owens and Blazek
[91]. We highlight in bold face where our viseme encoding matches closely the
standard grouping. Our model matches well both classifications from Owens
and Blazek and from Walden et al. (refer again to [91]). While a greater corpus
size would make our model converge, these results provide a rigorous empir-
ical methodology for verifying the classification schemes in the articulatory
phonetics literature.

The advantage of our model against the standard viseme grouping is that
our viseme associations are less restrictive for substitutions: visemes which
have little correlation can still be considered for substitutions according to
the phonetic context they are taken into.
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Note that the literature mentioned in this section considers only conso-
nants, while vowels are mostly considered as separate visemes. Further reading
on vowel study can be found in the work by Montgomery and Jackson[87].

MPEG-4 Owens and Blazek Walden et al. Nonlinear Model
(Binnie et al.)

/P,B,M/ /P,B,M/ /P,B,M/ 2113 2113 2123

/F,V/ /F,V/ /F,V/ 1111 3112
|F | ⊂ |V |

/TH,DH/ /TH,DH/ /TH,DH/ 2122 2122

/T,D/ - - 2222 1123

/S,Z/ - - 2122 1032

- /T,D,S,Z/* - 2222 1123 2122 1032

/K,G/ - - 2222 2411

/N,L/ - 2122 2122

- /K,G,N,L/* - 2222 2411 2122 2122

- - /T,D,S,Z, 2222 1123 2122 1032
K,G,N,L/* 2222 2411 2122 2122

/CH,JH,SH/ - - 1011 1312 0212
|CH|+ |SH| ⊂ |JH|

- /CH,JH,SH,ZH/* /CH,JH,SH,ZH/* 1011 1312 0212 0002
|CH|+ |SH|+ |ZH| ⊂ |JH|

/W/ - - 6111 |W | has a specific
distribution that matched
no other viseme

/R/ - - 3212

- /W,R/* /W,R/* 6111 3212

∗ are vowel context dependent and can thus be further divided. [91]

Table 12.1. Comparison of the present nonlinear viseme model with stan-
dard viseme grouping The groups where the nonlinear viseme model closely
matches the standard grouping are highlighted in bold face. The last column also
gives clarification as to the relation of the nonlinear model to the other groups: nu-
merical closeness in the quadruplet notation indicates similar distributions or similar
behavior of the visemes. Pairwise smaller digits indicate an inclusion, hence, valid
substitutions.

12.2 Animation

To add realism to our animations, we added a few effects, some of them are
learned from our recorded data. All are key-frame controlled.
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Expressions are added in the lines of Section 8.5 in order to make the
results look more lively. The recorded expressions have open mouth config-
urations, which prevents, the mouth from closing perfectly, when they are
applied in the additive combination scheme (see Fig. 12.1).

Fig. 12.1. Animating expressions The top row shows the reproduction of the
four recorded expression vectors: disgust, fear, happiness and sadness, respectively.
The bottom row shows a close-up: the texture is unaltered over the animation, all
shadow effects are produced from the deforming geometry of the forehead.

Furthermore, eyecandies learned from the acquired data are added. The
eye-blinking movement cannot be tracked by the optical flow in the regis-
tration step, as the eye disappears during that process. Instead, the eyelid
movement was recorded from its motion associated to the direction, the actor
is looking in. This movement, besides being reassociated to the movement
of the iris (when looking up or down, Fig. 12.2-bottom), is exaggerated and
reused for simulating eye blinking (see Fig. 12.2-top). Eye movements are pro-
duced by a simple, yet effective texture displacement in the specified region
of the head mesh (Deng et al.[41]). All effects are controlled in a keyframe
architecture.

During the generation of a video (Fig. 12.3), high frequency motions are
smoothed out by a low-pass filter; we make sure to keep the cutoff frequency
above the spectral range of natural mouth movements.
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Fig. 12.2. Eye and eyelid motions The reanimation of the eyes is performed by
a texture displacement over a region defined on the mesh (top). The motion of the
eyelid is recorded from the actor and is applied for eye blinking and follows vertical
eye movements (bottom).

When a long pause occurs in the novel sentence, the pause is synthesized
by a triphone that spans many frames. The coarticulation is still learned from
short triphones and is stretched over time, and the transition during the pause
translates to a slow morphing from the last viseme of the previous sentence
to the first viseme of the next sentence. This effect is neutralized by defining
a time span limit over which the articulation should go to the neutral mouth
configuration (PIT) and restart just before the next word.

Phonemes like /P/, /B/ and /M/ are often problematic in speech syn-
thesis and dealt with separately. Indeed, their visual impact is a movement
starting from a closed mouth. The problem is that the sound is perceived
only once the mouth opens which puts the characteristic viseme before the
frame sequence associated to the phoneme. This problem is here solved by the
fact that a triphone-based approach is used and ensures the reproduction of
the tangentiality at the viseme occurrence (see Section 11.1). Furthermore if
we can guarantee smooth concatenation (minimal interpolation) in the selec-
tion process, the natural curve will be only slightly, altered and the typical
movement for these phonemes remains.

Finally, the original recorded texture is edited to remove the marker points
and add colors. The remaining white lipstick (which helped the optical flow
algorithm) is still visible on the edited texture.



Fig. 12.3. Speech animation snapshots This figure gives snapshots of a speech
animation synthesized from an audio file exerpt from the movie Blade Runner.
Speech, expressions, and eye movements progress in parallel.



Part V

Discussions and Conclusions
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In this thesis we introduced a new end-to-end setup for three-dimensional
speech synthesis. Part I settled this work in the state-of-the-art context of
speech animation regarding the different aspects involved in the building of
such a system. In Part II, we clarified the theoretical concepts necessary to
understand the approaches undertaken throughout the thesis, so that in Parts
III and IV we could focus on exposing the contributions of this work.

In this last part, Section 13 discusses the key components of the system
regarding their contributions to the field of articulation synthesis and how
they can be improved. Moreover, we comment some of the results. Section 14
presents the directions for our furture investigations which would be based on
our current system. Finally, we draw the general conclusions in Section 15.
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Discussions

This chapter first discusses problems associated with the acquisition system
and how they can be addressed if the system is rebuilt (Section 13.1). Section
13.2 intuitively validates the use of Local Linear Embedding as an analysis
tool for speech synthesis. Nonlinear reduction techniques have brought up a
controversy regarding their validity: by comparing our manifold representation
with previous work, the observed consistency of the low-dimensional manifold
structure validates the nonlinear viseme model.

While the viseme model is one part of the contributions of this thesis, the
realism of the synthesis of animation, which indirectly validates the model,
is observed in Sections 13.3 and 13.4. First, a perception test is performed in
order to quantify the global quality of the animations while the second section
compares the results against a more trivial synthesis approach (Section 8.6).

13.1 Improving the Data

The speech analysis throughout this thesis is heavily dependent on the sub-
stance the dynamic 3D scanner is capable to offer on both aspects, face cover-
age and mesh quality. A considerable amount of work was put into improving
the raw data in order to extract a maximum of the available information re-
siding inside the data (Sections 7.2 and 7.3). Since the time this work has been
initiated, several new dynamic scanner prototypes have emerged showing an
increasing popularity. For instance, the data on which the research of Edge
& Hilton[44] is based shows a full colored coverage of the face integrating
structure of the teeth.

An important drawback of the present 3D scanner is the fact that the
geometry of the teeth and the tongue could not be acquired, while both have
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an important impact on the visual recognition of speech. Therefore, in our
study, a statistical analysis of the behavior of the lips has been carried out. The
strong correlation of the lips with the tongue and the teeth ensures the validity
of the modelling undertaken. However, the availability of these components
would still increase realism in the animations considerably. Moreover, there is
another actor in the visual speech process, namely the Adam’s Apple, specific
to male subjects, which would further increase naturalness. Ideal scanners
should hence be able to include the throat in a face model.

Chapter 9 presented the way, how our face model can be completed by com-
bining the viseme morphable model to a full face identity morphable model.
A dynamic scanner that delivers full facial surface would drastically improve
the face transfer process to such a morphable model. Indeed, the face com-
pletion process would be circumvented and the problems of both importing
novel face and exporting articulations could be performed directly, as soon as
the mapping function is defined.

13.2 LLE in a Speech Synthesis Frame Work

In Chapter 6, we presented several nonlinear dimension reduction techniques.
While these have found many applications, controversial discussions arose in
regard to their validity as a means of representing underlying data structures.
First, while these techniques always generate a new representation, they can-
not certify the actual existence of a low dimensional manifold. Their usage is
hence performed under such an assumption. Secondly, which approach is best
suited for what application remains n a way a “black art”, and the selection
is often based on what history has already proven as to be.

The use of an LLE approach was inspired by the works of Saul &
Roweis[109] or Graf & Cosatto[53] which show similar structures on 2D mouth
configurations (see Fig. 10.2). As it is shown in Section 10.1.2, similar results
are obtained for our 3D data, the representation always forms a star-shaped
manifold with varying numbers of directions. This star-shaped manifold does,
however, not reflect general mouth shapes but rather a sub-set containing only
shapes involved in the speech. The extremities of the star illustrate strong ar-
ticulated visemes, while the center is populated by neutral shapes. When the
mouth goes towards an extreme configuration such as the viseme |O|, it looses
degrees of freedom due to the physical constraints such as tissue strain. More-
over, clear acoustic signals are likely to imply optimal mouth shapes in many
phonemes. That means that the space around these extreme configurations is
not densely populated, and connected to the neutral configurations only by a
single, locally one-dimensional distribution.
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The manifold for the smaller corpus differs from the one for the large cor-
pus by its number of branches (3 against 4). The similarity measure presented
in this work was developed by keeping that aspect in mind: the notation can
be adapted to the number of branches and it works as long as such typical
manifolds are produced. The star manifold was obtained for the two data
collections but also shows up for two-dimensional data. While it cannot be
theoretically guaranteed that such an outcome can always be produced, previ-
ous and present works have shown such assumptions to be valid. The fact that
the similarity model presented in this thesis is based on such an assumption
could hence be another source of controversy.

13.3 Perception Test

For evaluating the overall quality of our animations, a lip-reading test is per-
formed on 5 sentences (each with 6 syllables). A group of 14 naive persons
(none of the subjects was trained in lip-reading) is asked to associate the 5
sentences

A: “No time for coffee breaks”
B: “This is the solution.”
C: “A brand new computer”
D: “He’s usually on time.”
E: “There is no Santa Claus.”

given as text and audio, to 5 silent articulation sequences. Each subject is
allowed to listen to the audio as many times as he/she wishes in order to get

subject no 01 02 03 04 05 06 07 08 09 10 11 12 13 14

sentence A A E A B C A A A D E A A A D
sentence B B B B C A B B B B B B B C B
sentence C C C C A B C C C A D C C B C
sentence D D A D D D D E D C A D D D E
sentence E E D E E E E D E E C E E E A

correct 5 2 5 2 2 5 3 5 2 1 5 5 3 2

Table 13.1. 14 naive subjects are asked to associate 5 sentences (A to E) in their
text form to 5 animation sequences. The subjects are allowed to get accustomed to
the speech rhythm by listening the the sentences in their audio form prior to the
visualization.

accustomed to the speech rhythm. The animations are then visualized with
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only the written sentences at disposal. The subjects can repeat the visual-
izations until they find all associations. While visualizing the animations, the
subject is not allowed to listen to the audio tracks again. Table 13.1 show the
associations done by the subject and for each of them, the number of correct
matches.

The results do not show perfect associations. However, from the 14 sub-
jects, six had 5 correct matches, two of them had 3, five had 2 and one had
1 (note that 4 correct matches cannot occur, as a single permutation already
induces 2 errors). This gives us an average of 3.36 correct associations per
person with the median at 3 (see Table 13.2). A combinatorial analysis1 of
the experimental task reveals that the expected value of correct responses
per person would be 1.0 if the stimuli would convey no information at all,
i.e. if subjects would merely guess. Our experimental results are, therefore,
well above chance level, indicating that even for non-trained observers, much
of the characteristic details of visemes can be perceived and distinguished.

experimental case probabilistic case
14 experiments 140 permutations

5 correct: 6 1
4 correct: n.a. n.a.
3 correct: 2 10
2 correct: 5 20
1 correct: 1 45
0 correct: 0 44

mean: 47/14 = 3.36 1.0
median 3 1

Table 13.2. While results do not show perfect association for all of the subjects, the
average and mean value of the experiment are above those that random associations
would produce.

13.4 Comparison to Other Algorithms

We performed two algorithms comparisons. The first one compares the fi-
nal animation algorithm to the one proposed in Section 8.6, which uses the
LLE-based substitution principle on a smaller corpus. The second comparison
observes the improvement that the LLE-based similarity measure over one
that compares the viseme clusters in the PCA representation.

1 The possible combinations were found by implementing a simulation.
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LLE on the Smaller Corpus

In Section 8.6, a simple algorithm for generating animations was proposed.
At that point, the viseme model was built, but no analysis had yet been per-
formed of the behavioral aspect of speech. A naive approach was undertaken
which proposes to take the average of each cluster as a unique viseme sample
for each of the phonemes. The resulting animations (see Fig. 8.12) show coher-
ent articulations but they lack expressiveness. The synchronization of visemes
to phoneme occurrences already produces realistic effects with the articulation
movements matching the phonetics of the audio. However, by only perform-
ing a weighted interpolation between the visemes, the coarticulation effect is
missing. In particular, the plosives /P/ and /B/ of the nasal /M/ which all
start with a closed mouth, are not well simulated; because the sound produced
by these consonants occurs only once the mouth is already open, the visemes
associated to them do not illustrate the the typical burst of the lips. This
movement is thus missing in the final animations. The PCA representation of
the visemes also shows that the samples of a cluster are distributed sparsely
(Fig. 10.1), hence their average shape is likely to be close to a neutral face
shape.

The speech synthesis model presented in Part IV integrates original mo-
tion segments in the final animation. For the particular case of the plosives
and the nasal mentioned above, their characteristic articulation is included
in the motion segments they are associated to. With the large selection that
the similarity measure offers, minimal interpolation is guaranteed and these
movements are recreated in the final animations. The honest reproduction of
original segments also guarantees that strong articulations are selected, which
increases the expressiveness of the synthesized animations (see Fig. 12.3).

The animations produced from the small corpus present similar aspects
(Fig.10.3). However, because it offers less samples, the algorithm reaches the
|PIT | state in the substitution hierarchy (see Section 10.3). The consequence
is that the mouth sometimes comes to a neutral position when a phoneme
is expected to be uttered. While the animations based on the small corpus
show realistic behavior, the large corpus allows a considerable improvement
in coherence and expressiveness.

A Similarity Measure in PCA Space

As we have described in Section 10.1, the distribution of the different viseme
clusters in PCA space are difficult to classify. We propose here a simple al-
gorithm, which, instead of using the LLE-based similarity measure, compares
the clusters in their PCA representation. For that purpose, for each cluster we
consider its average viseme and measure, for each cluster pair, the Euclidean
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distance between them. Substitutions are then taken from the closest clusters
according to these distances. Unlike the LLE-based method, the substitutions
possibilities are here symmetric. While the concatenation cost remains the
same to the LLE-based synthesis, the substitution cost is given by the dis-
tances between the average visemes. The algorithm performs as follows:

1. once the triphones required for the new sentence are given, the database
is queried for suitable samples;

2. if no sample is found, the algorithm looks for triphones that combine
visemes that minimize the substitution cost;

3. like in the original algorithm, for each required triphone, lists of samples
are selected for each queried triphone and the optimal sequence is found
by minimizing both costs over the whole sentence.

Due to the symmetric substitution rule, the PCA-based triphone selection
has to be restricted. Indeed, with their associated cost, all triphone segments
in the corpus are potential substitute to each other and they all appear in
the substitution lists for each triphone (columns in Figure 11.3). With such
long lists, finding the optimal sequence becomes extremely time consuming.
The restriction can be settled in two ways: for each cluster, (1) a maximum
number K of substitution clusters or (2) a maximum substitution cost D can
be defined. As we will show, both parameters are involved in the synthesis
process.

In a first run, the PCA-based synthesis is performed by limiting only the
substitution cost D. Aside from a few artefacts, the generated animations show
comparable results with the LLE-based approach. By observing the triphone
segments involved in both syntheses, it turns out that the majority of the
segments have their central viseme taken from the desired cluster. In fact,
the two methods occasionally happen to select the exact same segments. The
reason to this, is that the substitution of the central viseme in a triphone is
penalized by a higher cost that the left and right visemes. The database has
sufficient samples for each cluster to insure that a good concatenation can
be found by selecting, in most cases, segments from the requested cluster.
Judging from the animations, while both look realistic, the PCA-based video
shows, at some points, movements that are more questionable.

We pushed the comparison further by reducing the size of the corpus in
order to increase the number of occurrences where substitutions are necessary.
Three reduction iterations are performed, each time dividing the size of the
corpus by two. At each iteration, an animation is generated for both the LLE-
and the PCA-based methods taking the substitution rules defined on the large
corpus for both methods, i.e., respectively, the quartet values are kept and the
average viseme distances are the ones computed on the full corpus.
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Reducing the size of the corpus demands an adaptation in the PCA-based
method of both parameters K and D. In the query process, if K is too small,
finding a triphone candidate is not anymore guaranteed and K must be in-
creased. However, this increase has the consequence that the lists for other
queries become again extremely large. Again, this can be corrected by re-
ducing D. For each reduction iteration of the corpus, both parameters have
to be adjusted. The LLE-based method, on the other hand, finds substitutes
without further adjustment.

Fig. 13.1. Animation curves along the first principal component for both
the LLE- and the PCA-based substitution rules with decreasing corpus
sizes Both selection method provide similar animations with the full corpus as
substitutions occur less often. By decreasing the size of the corpus, the two methods
perform different substitutions which is reflected in the synthesized animations. The
perceptual correctness in the animations is higher when the LLE-based substitution
rule is used. The reason to that is that the PCA-based rule selects triphone segments
that do not visually fit the targeted sentence.

The generated animations after each iteration, show a decrease in realism
for both methods. However, the perceptual correctness is higher for the LLE-
based approach. Figure 13.1 illustrates the variations of the first coefficient
along the first principal component in an animation sequence. For each corpus
size, the animation curves for both methods are superimposed. As it can be
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seen, already with half the corpus size, both methods select different segment
samples. In the first plot, however, one can see where the two methods used
the same segments.

Figure 13.1 only shows that the selections for substitutions differ for both
methods when the size of the corpus deceases. The correctness of the substi-
tutions can be judged by visualizing the generated animations. An important
point is that by its nature, a triphone-based synthesis approach generates an-
imations where the mouth moves in rhythm with the phoneme changes in the
audio track, which gives a first realistic impression. However, the credibility of
the animation is further increased when the selection of animation segments
is correct. A large corpus increases the chances that substitutions are found
with the central viseme corresponding to the one requested. The synthesized
animation produced by both methods show realistic behavior with slight arte-
facts for the PCA-based method. By decreasing the size of the corpus, we force
substitutions, and the two methods are more likely to produce different an-
imations. The obtained videos show that the behavioral correctness remains
better with the LLE-based substitution rule than with the one based on the
distances between the average visemes of the clusters in the PCA space. The
LLE-based substitution is thus better suited for small corpus.
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Future Work

The focus of this thesis was to find a novel approach for automatic genera-
tion of realistic articulation animations. The applications for such a system
are multiple, to cite only a few: web-based avatar animation [31], character
animations in video games [39] or even educative software [83]. The most
targeted application, however, remains the movie industry and the emerging
animation films that come to theatres, which use the highest technological
standards. While the quality achieved for speech animation in such produc-
tions show extremely realistic movements, these are directly captured and
transferred via motion capture techniques. Hence, all dialogues have to be
performed by actors which is an expensive and fastidious, yet reliable process.
Automated techniques can offer a more practical alternative, though they re-
main illusory as long as the quality is compromised. Owing to the sensibility
of the spectator to mouth articulation, the targeted realism is extremely high
and automated approaches have still a long way to go.

Adding Realism

This thesis proposed an approach to understand and simulate neutral speech
from a single actor. There is, however, not a unique manner of speech as it dif-
fers form one individual to the other. Also, expressions alter the articulation
model as do speech intonations (Brand [21]). A complete automated system
should encapsulate all these aspects in order to achieve the natural polyvalence
of speech. This polyvalence comes at the cost of extremely large acquisition
sets; several actors are to be recorded performing large sets of sentences with
different expressions. While up to this, only manners of articulations are con-
sidered, several more elements come into play which are correlated to face
animation. An animated head requires head movements [42, 25], eye motions
[40], eye expressions [41], non verbal expressions and so on.
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Nevertheless, from the the present system several paths can be followed.
First, improvements on the shape quality should be undertaken. Novel scan-
ning technologies would greatly improve the system, but would require re-
building the viseme model. Alternatives can be considered such as adding a
teeth and a tongue model. Adding teeth can be done in a straightforward
approach, as they are attached to the skull. Upon determination of locations
on the face shape which remain at rest relative to the skull, the position of
the upper and the lower jaws can by evaluated.

Regarding the separation of expression and speech, several techniques have
been briefly described in Section 2.4 (Related Work). An interesting approach
that has not yet been used in conjunction with facial animation, separates
human motion styles: Hsu et al.[62] use a linear time-invariant (LTI) [80]
model together with an iterative motion warping (IMW) in order to perform
style translations. Their model relaxes the constraints of motion alignment.
For facial animation, the recorded corpus would only require utterances of
sentences with varying expressions instead of repeating the same sentences
with different expressions, thus, reducing the size of the corpus.

A Tongue Model

A tongue model, on the other hand, requires an extension of the model. If the
correlation between the behavior of the lips and the tongue is determined, the
model can be incorporated to our viseme model associating each viseme to a
specific tongue position. However, a more thorough study would be preferred.
In our model, visemes with similar lips shape but different tongue position are
associated. An analysis capable of tracking the tongue along with the lips could
typically generate further separation in an LLE representation, producing a
star shaped manifold with more branches. It would be interesting to see how
the viseme model performs in such cases.

Speech in Expressive Context

Another way is to record the same corpus with varying expressions. Having
a neutral corpus, the expressive component can be extracted. Previous work
(Deng et al.[41]) has shown how to extract the expression components from
an audio track. In a new framework, these components could steer expres-
sion vectors over a synthesized articulation, hence offering a system which
automatically generates expressive speech animations only from audio.

A Proof of Concept

As just discussed, the options for further work are multiple. However, the
thesis exposed the dilemma of the corpus size to construct the viseme model.
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Section 10.2 presented the quadruplet notation which describes viseme clusters
and that identified in Table 10.1. We showed that by increasing the corpus,
these models would further converge and give a more exact description of
the visemes. The cluster |ZH|, for instance, consists of only a single sample
which has a direct repercussion on its quadruplet: [0002]. While this is the
only viseme with so few samples, it shows that 2500 visemes are still too few.
However, the corpus is large enough to build a similarity graph which is precise
enough to generate natural animations. The substitution rule, here, provides
a graded similarity measure which offers substitution possibilities over a small
corpus. Hence, the dilemma lies in the fact that as soon as the similarity table
is known, the corpus can remain rather small due to the high redundancy of
articulation segments, but in order to build the table, a large corpus is needed.
It would be desirable to construct a much larger corpus which ensures at least
20 to 30 samples for each cluster and to derive a definitive table. Once this
table is available, the similarity graph can be reused as-is for much smaller
corpora. As a proof of concept, we suggest to use the given table and build
a small 2D system based on a few video sequences recording only mouth
movements. The registration can model a set of displacement fields relative to
a reference frame and derive a small database of triphone deformation (along
the lines of Ezzat & Poggio[46]). The selection for novel animation should
follow the graph given in Section 10.3.
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Conclusions

This work proposes a new data-driven end-to-end system for automatic speech
animation. Based on three-dimensional face data recorded from emerging dy-
namic acquisition technologies, the system builds a Morphable Model for artic-
ulation. The geometric correspondence over the recorded frames is obtained by
a robust multistage optical flow technique, which guarantees accurate track-
ing over indefinitely long sequences with large deformations. The precision of
the correspondence is demonstrated by applying a unique texture over the
registered faces and verifying that no flickering occurs, when the original an-
imation is recomposed. At each timestep, the texture perfectly matches the
geometry which guarantees that every vertex position is consistent over the
reference.

The recoded 3D frames are projected onto the viseme-space described by
the Morphable Model. Labelled with their associated phonemes, the frames
describe smooth curves that are segmented into triphone units. This triphone
database describes articulation motions as curve segments in a 50-dimensional
viseme-space in a Multilinear Morphable Model framework. The morphable
model offers a simple, yet effective, model for generating novel animations by
morphing between selected triphones and guarantees the transfer of original
coarticulation to novel animation syntheses.

While synthetic sentences are generated in a triphone concatenation frame-
work, the novelty resides in the way they are selected. We take full advan-
tage of the dual association between phonemes and visemes: not only can a
phoneme take the visual appearance of several visemes, but visemes can be
attributed to phonemes with which there is no a priori association. The diffi-
culty is to determine, whether a viseme associated to a single phoneme in the
original corpus can be used for simulating the utterance of a different phoneme.
For that purpose, a similarity measure among visemes was developed which
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goes beyond the use of standard viseme groupings defined in articulatory pho-
netics: we propose a measure to gradualy distinguish viseme clusters and to
build a hierarchical substitution rule. Furthermore, the measure is directly ex-
tended to triphone similarities. The benefit of this approach lies in the tradeoff
between database size and realism: while a rather small corpus of real data
information is kept, realistic articulation motions are generated by finding the
optimal combination of triphones.

Another important contribution lies the use of a Locally Linear Embedding
(LLE) for a statistical analysis of the data which, by its nonlinear nature,
generates an intuitive representation for the study of viseme behavior. The
justification for using a nonlinear representation for a viseme model has also
been discussed.

Finally, the hierarchical structure of our selection method, which we de-
rived from the data, is intrinsic to the nature of mouth articulation and can
thus be reused as-is for other speech animation systems. While a larger data
corpus would increase the accuracy of the similarity measure, the system
is able to recreate realistic and expressive articulations from a rather small
amount of data.
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Appendix

16.1 The Corpus

In what follows, we give the words and sentences used for recording the cor-
pora. For the first corpus, only the set Long Sentences A was used. The second
corpus further included the Short Sentences and the Long Sentences B sets.
The Syllable Words sets were not recorded.

The sentences in these sets have the particularity that they elicit no emo-
tions from the subject. In addition, consonants occur in numerous vocal con-
texts in order to generate a wide spectrum of articulated syllables. The authors
are thankful to Tony Ezzat, Gadi Geiger and Tomaso Poggio for providing this
corpus of sentences, which they used in their work on Trainable Videorealistic
Speech Animation[47].

One Syllable Words

leaf mate ball with bee bed hair
cheat zoo hand fair spoil risk faith
ask find get dark loan sting lab
plant brunt cash boost tall knife zoom
vest nest art and lounge death bold
jaw bump park legs wrong web jam

round mail hook bird pod play coin
back roof curl yes grudge you huge
cave hide scar cube dwarf lift scale
cell plow good tea want arch this
life shell top check kid sag lack
mall all bathe deep deaf glare feet
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zip who air boil beak health boats
bead gain dam hole ring nap once
bud flesh rule veil mild trim veal
noise cat man gene growth zone call
cap pane was bang tribe badge out
name foot blur rob paint point bounce

gift dirt yacht done school howl dive
light cow view quail hill safe fell
noun cook tail wade brunch then fad
shark shock chain bid tug

Two Syllable Words

foible alive amiss garlic monkey waffle
afraid palace amaze abduct angle nourish
daisy earring loosen cushion landmark showcase
saddle gunshot downward helmet thicken leader
warship heater ramble tabloid porridge travel
tattoo magnet carving danger altar volume

assume hybrid pleasure accept teacher vibrate
never shortfall pillow insure nightmare bracket
depend intrude dermal haggle author youngest
version dagger accept knick-knack massive feedback
labor railway thereby obscure landslide narrow
around cancer dancer flower rather wealthy

canon cable pothole wander kidney chuckle
other backward fairest haircut often prolong
annoy boiler baggage halfway adopt watcher
mother themselves caress decade lavish limit
earring finger issue machine thirteen withdrew
ambush butcher asian measure aboard backup

fiber giant browser compound garbage boycott
dealer endorse agent baggage thursday upscale
midwife fusion iceberg legal hammer mishap
keyboard lady onion yearly anchor closure
mammal oilfield simmer measure barren canal
arrow obey pamper upper tasty something

treasure gateway mismatch orchard approve toothless
vision motive weatheralwaysbazaar zebra
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Short Sentences

01. I’m not happy with them. 26. Others looked sad.
02. We’ll come back to you later. 27. He opposes the Americans.
03. The meeting was frank. 28. Have a good evening.
04. You can’t stop science. 29. Eat the fish later.
05. Thank you, Diane. 30. Fifty-three percent.
06. What can he do? 31. Ken is at the courthouse.

07. Not at all, Tom. 32. It’s really a jam.
08. More news in a moment. 33. They didn’t do it.
09. We’re going to go back. 34. That is our report.
10. Another note about crime. 35. It’s a matter of money.
11. It was not the same. 36. Who will they believe?
12. Back in just a moment. 37. It was an easy job to do.

13. That’s all for tonight. 38. It was a stunning defeat.
14. I just don’t understand it. 39. But now we’re going to New York

City.
15. Time and again, he endures. 40. It could take months.
16. Good night. 41. It’s impossible.
17. Americans spend too much. 42. We’ll tell you about that later.
18. His name is Morgan. 43. The trials are the same.

19. Clear something up for me. 44. There’s much more to this.
20. It gained twenty-seven points. 45. They are two leaders.
21. Good evening. 46. It was a clear job.
22. We have a big story. 47. Just a moment.
23. Thank you very much. 48. They didn’t do their job.
24. There is no access. 49. They put up a giant tent today.
25. One juror cried. 50. We had a good meeting.

Long Sentences A

01. The birch canoe slid on the smooth planks.
02. Glue the sheet to the dark blue background.
03. It’s easy to tell the depth of a well.
04. These days a chicken leg is a rare dish.
05. Rice is often served in round bowls.
06. The juice of lemons makes fine punch.
07. The box was thrown beside the parked truck.
08. The hogs were fed chopped corn and garbage.
09. A rod is used to catch pink salmon.
10. Read verse out loud for pleasure.
11. Hoist the load to your left shoulder.
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Long Sentences B

01. Checking our top stories.
02. The fire is being allowed to burn itself out.
03. The probe will orbit the moon.
04. Temperatures will reach the single digits today.
05. Windy and rainy conditions are expected this week.
06. Snow showers are possible across the western Rockies.
07. He rushed for 112 yards.
08. He tossed in 31 points and 11 assists.
09. The government is giving workers the day off.
11. The quake was felt 150 miles away.
11. Warmer temperatures are predicted in some areas.
12. They say it would require more money.
13. This will be her second try.
14. Tokyo’s stocks fell once again.
15. The Dow is now at fifty-five points.
16. Oil prices hit two year lows yesterday.
17. Both companies declined to comment.
18. Bond prices are up slightly.
19. It flew for the first time Sunday.
20. It cost an estimated 90 million dollars.
21. It was intended to fight the Cold War.
22. Monday morning could be a major headache for commuters.
23. No new negotiations are scheduled.
24. Traffic tie-ups are expected tomorrow.
25. The statue was closed to tourists Sunday.
26. Yesterday there was a lot of rain.
27. President Clinton is scheduled to speak Monday.
28. All these challenges will require cooperation.
29. We’ve learned how to operate more efficiently.
30. Millions of people participated.
31. The party featured lots of music.
32. There was a defect in the design.
33. Mini-vans sold from 1984 through 1995.
34. The vote may be delayed.
35. He is a 44 year old lawyer.
36. Sale and transport of weapons is banned.
37. It is not clear how effective they will be.
38. The economy is now on a good track.
39. They were not directly involved in what happened.
40. I don’t think there are going to be any changes.
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41. He’s not even giving public speeches.
42. They’ve got thousands of dollars.
43. He never spoke with John about the case.
44. The Dow Jones Industrial Average lost 125 points, to close at 73.
45. At this point we have to take action.
46. Oil may be running out.
47. Doctors recommend a healthy die.
48. The 30-year bond was up more than a point.
49. Both countries will have to cooperate together.
50. It looks to be a chaotic day.
51. The fundamentals are very good.
52. They wanted a foothold in Europe.
53. He wanted it translated into his native language.
54. They assured me it wasn’t going to happen again.
55. I think she was a trustworthy person.
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16.2 Teeth Reconstruction

The dynamic 3D scanner used in this work cannot reconstruct teeth and
tongue. The identity Multilinear Morphable Model (MMM), developed by
Blanz [14], offers a reconstruction tool to recover such parts.

In a similar procedure to the one performed in Section 9.1, a 3D scan is
transferred to the identity MMM in a fitting process. The scan is first aligned
and scaled to the average head of the MMM and projected to a cylindrical
representation. Optical flow techniques find the deformations that map the
novel face shape to the model.

An interactive tool allows then to remove unwanted parts in the recon-
structed face which is used to trim the inside of the mouth cavity. In a next
step, feature points around the lips are given for the algorithm to detect the lip
borders, and the teeth and the tongue can be reconstructed. Three scenarios
are available in this software:

1. the software guesses the location of the mouth which produces different
results for each scan;

2. in addition the mouth cavity is interactively emptied to improve detection;
3. if results are not satisfactory, feature points around the lips can be se-

lected.

This process was abandoned, as we describe in Section 9.1, because the shape
of the lips is not reconstructed accurately. Figure 16.1 shows resulting exam-
ples for the three scenarios.

Fig. 16.1. Teeth reconstruction From left: the mouth as obtained from the scan-
ner, reconstruction without mouth indication, reconstruction with tongue and teeth
information removed by hand, and reconstruction with lips indication, respectively.
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16.3 An Alternative for the Concatenation Cost

Section 11.1 introduces the concatenation cost ϕ that is used to measure
the interpolation compatibility of triphones. In that section, we gave a first
proposition for the cost which consisted in using the interpolation energy
that measures the area between the two curves that need to be interpolated
(Equation 11.4). We present here, a different approach that was undertaken
before we opted for the error function in Equation 11.5.

This approach takes into account that, in the PCA-space, two successive
ideal curves evolve in the same direction with the second one located in the
continuity of the first one (in the front). In this regard, two parameters are ob-
served: the relative directions of the curves and their relative position. These
aspects are parameterized by two angles (Fig. 16.2-top center): the angle α
measures the continuity (cosα = 1: good continuity, cosα = −1: bad conti-
nuity) and the angle β masures the relative directions (cosβ = 1: parallel,
cosβ = −1: opposite directions). The table in the figure (Fig. 16.2-top right)
evaluates the outcome of the desied cost function for four scenarios (Fig. 16.2-
top left):

(a) ideally, the cosine of both angles is maximum; the curves evolve in the
same direction and the second curve lies in the continuity of the first;

(b) the second curve lies in the continuity of the first, but a change of direction
is necessary

(c) same as (b), but the second curve lies behind the first one which bears
similar interpolation cost;

d the worst case, both cosines are negative, the interpolation is associated
to the highest cost as the generated curve needs to go back to regain the
same direction.

We are thus looking for a cost function that characterizes these different
cases. According to the table, we are looking for a cost function that maps
(x, y) : [−1, 1]2 → [0, 1], with x = cosα and y = cosβ. The function should
have a minimum at (x = 1, y = 1) and a maximum at (x = 1, y = −1). For
this purpose, we tested two functions:

ϕ1 : [−1, 1]2 → [0, 1]

(x, y) 7→ −
1

4
x(y + 1) +

1

2
(16.1)

ϕ2 : [−1, 1]2 → [0, 1]

(x, y) 7→ −
1

8
sign(x)(y + 1)2 +

1

2
(16.2)

which are plotted in Figure 16.2-bottom.
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Fig. 16.2. The concatenation cost of two successive triphones looks for curves that
offer best transition. This property is described by considering the angles α and β
between the direction differences and their relative position. A quick table study
tells us when the cost function should be maximal and minimal. We opted for the
depicted function ϕ.

In the end, both functions offered similar results. However, the function
that offered the best concatenations was the one that considered only the
angle α. Hence, as already given in Section 11.1, the cost function that was
used in the process of triphone selection is:

ϕ : [−1, 1] → [0, 1]

x 7→
x + 1

2
(16.3)

with x = cosα.
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16.4 Map Distances

The example “Connecting Cities” on page 51 gives an introduction to nonlin-
ear representation of data. The example shows how distances between cities
in Switzerland are perceived differently from their actual geographical na-
ture. In that case, a nonlinear representation gives a more intuitive visu-
alization. The following table gives the geographical distance values used
in the example. The road distances are taken from http://travelguide.

all-about-switzerland.info/major-swiss-cities-population-

map-distances.html, the air distances were measured by the author on a
map.
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air distances [km]

Basel - 68 53 78 159 89 187 136 72 197 133 88 130 74 146 89 82 78 69

Bern 68 - 24 48 156 24 128 78 67 153 68 46 156 119 78 26 114 86 94

Biel 53 24 - 31 172 34 131 81 79 178 79 36 161 119 99 51 118 96 99

La C-d-F 78 48 31 - 202 39 111 66 110 199 72 14 193 149 102 71 148 127 130

Chur 159 156 172 202 - 178 264 220 93 106 201 201 63 113 177 142 90 82 92

Fribourg 89 24 34 39 178 - 102 51 90 161 44 29 179 146 66 37 139 111 120

Genève 187 128 131 111 264 102 - 51 189 213 64 99 279 248 93 128 241 211 222

Lausanne 136 78 81 66 220 51 51 - 139 183 22 51 229 197 63 80 190 161 171

Luzern 72 67 79 110 93 90 189 139 - 127 126 111 89 73 116 61 58 22 39

Lugano 197 153 178 199 106 161 213 183 127 - 161 191 162 189 122 128 164 136 156

Montreux 133 68 79 72 201 44 64 22 126 161 - 57 214 188 41 64 179 148 159

Neuchâtel 88 46 36 14 201 29 99 51 111 191 57 - 197 156 90 64 153 129 134

St. Gallen 130 156 161 193 63 179 279 229 89 162 214 197 - 64 201 150 48 68 63

Schaffhausen 74 119 119 149 113 146 248 197 73 189 188 156 64 - 187 128 24 56 36

Sion 146 78 99 102 177 66 93 63 116 122 41 90 201 187 - 60 172 138 153

Thun 89 26 51 71 142 37 128 80 61 128 64 64 150 128 60 - 117 83 96

Winterthur 82 114 118 148 90 139 241 190 58 164 179 153 48 24 172 117 - 37 20

Zug 78 86 96 127 82 111 211 161 22 136 148 129 68 56 138 83 37 - 20

Zürich 69 94 99 130 92 120 222 171 39 156 159 134 63 36 153 96 20 20 -

road distances [km]

Basel - 94 89 98 207 125 255 188 98 306 189 118 160 98 264 120 104 115 85

Bern 94 - 33 68 244 31 161 94 90 262 95 46 207 164 170 28 147 114 122

Biel 89 33 - 44 240 49 157 97 108 295 113 29 203 142 188 61 143 132 118

La C-d-F 98 68 44 - 284 65 150 90 158 330 113 22 247 186 188 96 187 182 162

Chur 207 244 240 284 - 264 390 323 142 154 300 269 92 161 245 216 130 119 122

Fribourg 125 31 49 65 264 - 128 61 121 282 64 43 238 177 139 48 178 145 153

Genève 255 161 157 150 390 128 - 67 251 371 80 128 368 307 165 176 308 275 283

Lausanne 188 94 97 90 323 61 67 - 184 304 23 68 301 240 98 109 241 208 216

Luzern 98 90 108 158 142 121 251 184 - 208 185 136 121 100 245 92 79 24 54

Lugano 306 262 295 330 154 282 371 304 208 - 281 308 245 285 207 234 254 199 229

Montreux 189 95 113 113 300 64 80 23 185 281 - 91 302 241 79 112 242 209 217

Neuchâtel 118 46 29 22 269 43 128 68 136 308 91 - 232 171 166 74 172 160 147

St. Gallen 160 207 203 247 92 238 368 301 121 245 302 232 - 81 377 235 56 97 85

Schaffhausen 98 164 142 186 161 177 307 240 100 285 241 171 81 - 316 174 31 76 46

Sion 264 170 188 205 245 139 165 98 245 262 79 166 377 317 - 159 316 269 292

Thun 120 28 61 96 216 48 176 109 92 234 112 74 235 174 159 - 171 116 146

Winterthur 104 147 143 187 130 178 308 241 79 254 242 172 56 31 317 171 - 55 25

Zug 115 114 132 182 119 145 275 208 24 199 209 160 97 76 269 116 55 - 30

Zürich 85 122 118 162 122 153 283 216 54 229 217 147 85 46 292 146 25 30 -
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