
Geometric Computing in Computer Graphics and
Robotics using Conformal Geometric Algebra

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

von

Dipl.-Inform. Dietmar Hildenbrand

aus Freudenberg/Main

Referenten der Arbeit: Prof. Dr.-Ing. Marc Alexa, Technische Universität Berlin
Prof. Dr. techn. Dieter W. Fellner, Technische Universität Darmstadt
Prof. Dr.-Ing. Dr.-Ing. E.h. Wolfgang Straßer, Universität Tübingen

Tag der Einreichung: 18.10.2006

Tag der mündlichen Prüfung: 13.12.2006

D17
Darmstädter Dissertation 2006

http://www.eg.org
http://diglib.eg.org

Contents

List of Figures . v
List of Tables . vii
0.1 Motivation . ii
0.2 Beitrag . ii
0.3 Zukunftsperspektiven . iv

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 3
1.3 Outline . 5

2 State-of-the-art 7
2.1 History of Geometric Algebra . 7
2.2 Properties of Geometric Algebra . 9
2.3 Foundations of Geometric Algebra . 10
2.4 The products of Geometric Algebra . 11

2.4.1 The outer product . 11
2.4.2 The inner product . 12
2.4.3 The geometric product . 12

2.5 Euclidean Geometric Algebra . 14
2.6 Projective Geometric Algebra . 16
2.7 The Conformal Geometric Algebra . 16
2.8 The basic geometric entities . 18

2.8.1 Points . 19
2.8.2 Spheres . 19
2.8.3 Planes . 20
2.8.4 Circles . 20
2.8.5 Lines . 20
2.8.6 Point Pairs . 21

i

2.9 Transformations and motions . 21
2.9.1 Transformations . 21
2.9.2 Rigid body motion . 24
2.9.3 Screw motion . 24
2.9.4 Interpolation of transformations 25
2.9.5 Relations to quaternions and dual quaternions 26

2.10 Conformal Geometric Algebra in computer
graphics . 26

2.11 Conformal Geometric Algebra in robotics 27
2.12 Inverse kinematics of a human-arm-like model 27
2.13 Tools for Conformal Geometric Algebra 28

2.13.1 CLUCalc . 29
2.13.2 Gaigen 2 . 32
2.13.3 Maple with Cliffordlib . 33

3 Embedding of quaternions and other algebras 35
3.1 Complex numbers . 35
3.2 Quaternions . 37

3.2.1 The imaginary units . 39
3.2.2 Pure quaternions and their geometric product 40
3.2.3 Rotations based on unit quaternions 41

3.3 Plücker coordinates . 43
3.4 Dual numbers . 47
3.5 Dual quaternions . 48

4 The role of infinity 51
4.1 Infinity . 51

4.1.1 Sphere with infinite radius . 51
4.1.2 Point at infinity . 52
4.1.3 Plane with infinite distance to the origin 53

4.2 Planes as a limit of spheres . 53
4.3 Translators as a limit of rotors . 55

5 Approximation algorithms based on Conformal Geometric Algebra 57
5.1 The inner product and distances . 58

5.1.1 Vectors in Conformal Geometric Algebra 58
5.1.2 The inner product of vectors . 59
5.1.3 Distance between points . 60

ii

5.1.4 Distance between points and planes 61
5.1.5 Distance between planes and spheres 61
5.1.6 Distance between two spheres . 61
5.1.7 Is a point inside or outside of a sphere ? 62

5.2 Approximation of points with the help of a sphere 63
5.2.1 Approach . 63
5.2.2 Distance measure . 63
5.2.3 Least squares approach . 64

5.3 Approximation of points with the help of planes or spheres 65
5.3.1 Approach . 66
5.3.2 Distance measure . 66
5.3.3 Least squares approach . 66
5.3.4 Example . 68

6 Rapid prototyping of robotics algorithms 70
6.1 The inner product and angles . 70
6.2 Inverse kinematics application . 71

6.2.1 Computation of P0 . 73
6.2.2 Computation of P2 . 74
6.2.3 Computation of P1 . 75
6.2.4 Computation of the joint angles 76

6.3 Grasping an object . 77
6.3.1 Assign points . 78
6.3.2 Compute grasping circle Zt . 78
6.3.3 Gripper circle . 79
6.3.4 Estimation of translation and rotation 80

7 Efficient inverse kinematics in Conformal Geometric Algebra 82
7.1 Optimizations based on quaternions . 82

7.1.1 Direct computation of quaternions 83
7.1.2 Efficient computation of quaternions 84

7.2 The inverse kinematics algorithm . 85
7.2.1 Compute the swivel plane . 85
7.2.2 The elbow point Pe . 86
7.2.3 Calculate the elbow quaternion Qe 87
7.2.4 Rotate to the elbow position . 88
7.2.5 Rotate to the wrist location . 89

7.3 Runtime optimization approaches . 90

iii

7.3.1 Optimizations with Gaigen 2 . 91
7.3.2 Optimizations with Maple . 95

7.4 Results . 100

8 Conclusion 102

9 Future work 104
9.1 Hardware solution . 105
9.2 Virtual kinematics . 106
9.3 Game engines . 107
9.4 Dynamics . 107

Bibliography 107

A Akademischer Werdegang 116

iv

List of Figures

1 visuelle Entwicklung eines inverse Kinematik Algorithmus iii

2 Schnitt zweier Kugeln S1 und S2 . iii

1.1 Intersection of two spheres . 2

1.2 Tutorial at the Eurographics conference 2004 2

1.3 Real-time inverse kinematics in the project ”Virtual human” ([82]) 3

1.4 Visual development and test of an inverse kinematics algorithm 4

2.1 History of Geometric Algebra and Calculus [33] 8

2.2 Rigid body motion [70] . 9

2.3 Translation of a sphere . 22

2.4 Screw motion along l [70] . 24

2.5 Interactive and visual development of algorithms 29

2.6 Visualization of a CLUScript describing motion 30

3.1 Quaternion computations in Maple . 39

3.2 Quaternion product computations in Maple 40

3.3 Plücker computations in Maple . 44

3.4 Plücker coordinates . 44

3.5 Plücker computations in Maple . 45

3.6 Dual quaternion computations in Maple 49

3.7 Dual quaternion computations in Maple 50

4.1 The point at infinity . 52

4.2 Spheres and planes . 54

4.3 From Rotation to Translation . 55

5.1 Fit of a sphere . 68

5.2 Fit of a plane . 69

v

6.1 Kinematic chain of the example robot . 72
6.2 Target point and gripper plane . 72
6.3 Computation of P0 . 73
6.4 Computation of P2 . 74
6.5 Computation of P1 . 75
6.6 Visualization of step 4 . 76
6.7 Robot Geometer grasping an object . 77
6.8 Assign points . 78
6.9 Grasping circle Zt . 79
6.10 Gripper . 79
6.11 Gripper circle Zh, grasping circle Zt and their axes Lh and Lt 80
6.12 Moving gripper circle Zh towards the grasping circle Zt 81

7.1 Rotation based on the line between two points through the origin 83
7.2 Swivel plane . 86
7.3 Compute the elbow point . 87
7.4 Use the elbow quaternion . 88
7.5 Rotate to the elbow position . 89
7.6 Rotate to the wrist location . 89
7.7 Compute the elbow point . 91

9.1 Architecture of a Geometric Algebra hardware 104
9.2 Multivector hardware representation . 105
9.3 Multivector hardware representation details 105
9.4 Virtual kinematics . 106
9.5 Elasticity based on Conformal Geometric Algebra 107

vi

List of Tables

2.1 Notations of Conformal Geometric Algebra 11
2.2 The 8 blades of the 3D Euclidean Geometric Algebra 14
2.3 The 16 blades of the 4D Projective Geometric Algebra 16
2.4 The 32 blades of the 5D Conformal Geometric Algebra 17
2.5 List of the conformal geometric entities 19
2.6 Notation of Geometric Algebra operations in Maple 33

3.1 Complex numbers in Conformal Geometric Algebra 36
3.2 Quaternions in Conformal Geometric Algebra 38
3.3 Plücker coordinates in Conformal Geometric Algebra 43
3.4 Dual numbers in Conformal Geometric Algebra 47
3.5 Dual quaternions in Conformal Geometric Algebra 48

5.1 Geometric meaning of the conformal vectors 57
5.2 The geometric meaning of the inner product of conformal vectors U and V 57

7.1 Input/output parameters of the inverse kinematics algorithm 85
7.2 Input/output parameters of the inverse kinematics algorithm 91
7.3 Computation of the shoulder quaternion 94
7.4 Input/output parameters of the inverse kinematics algorithm 96

vii

Abstract

In computer graphics and robotics a lot of different mathematical systems like vector
algebra, homogenous coordinates, quaternions or dual quaternions are used for different
applications. Now it seems that a change of paradigm is lying ahead of us based on Con-
formal Geometric Algebra unifying all of these different approaches in one mathematical
system.

Conformal Geometric Algebra is a very powerful mathematical framework. Due to its
geometric intuitiveness, compactness and simplicity it is easy to develop new algorithms.
Algorithms based on Conformal Geometric Algebra lead to enhanced quality, a reduction
of development time, better understandable and better maintainable solutions. Often
a clear structure and greater elegance results in lower runtime performance. However,
it will be shown that algorithms based on Conformal Geometric Algebra can even be
faster than conventional algorithms.

The main contribution of this thesis is the geometrically intuitive and - nevertheless
- efficient algorithm for a computer animation application, namely an inverse kinemat-
ics algorithm for a virtual character. This algorithm is based on an embedding of
quaternions in Conformal Geometric Algebra. For performance reasons two optimiza-
tion approaches are used in a way to make the application now three times faster than
the conventional solution.

With these results we are convinced that Geometric Computing using Confor-
mal Geometric Algebra will become more and more fruitful in a great variety of
applications in computer graphics and robotics.

Deutsche Zusammenfassung

0.1 Motivation

In der Computergraphik und in der Robotik werden eine ganze Reihe von unterschiedlichen
mathematischen Systemen eingesetzt wie Vektoralgebra, homogene Koordinaten, Quater-
nionen und duale Quaternionen. Jetzt scheint ein Paradigmenwechsel vor uns zu liegen,
der auf konformer geometrischer Algebra basiert, die in der Lage ist, diese unter-
schiedlichen Ansätze in einem mathematischen System zu vereinheitlichen.

Die konforme geometrische Algebra ist ein sehr mächtiges mathematisches Werkzeug.
Dank ihrer geometrischen Intuitivität und Kompaktheit ist es einfach, mit ihr neue
Algorithmen zu entwickeln. Algorithmen, die auf konformer geometrischer Algebra
beruhen, führen zu erhöhter Qualität, einer Reduzierung von Entwicklungszeit, besser
verständlichen und besser wartbaren Lösungen. Oft ist es jedoch so, dass eine klare
Struktur und größere Eleganz zu einer geringeren Laufzeit führen. Demgegenüber kann
aber in dieser Arbeit gezeigt werden, dass Algorithmen in konformer geometrischer Al-
gebra sogar schneller sein können als herkömmliche Algorithmen.

0.2 Beitrag

Die Beiträge dieser Arbeit lassen sich wie folgt zusammenfassen:

• Untersuchung von Quaternionen und anderen bekannter Algebren in Hinsicht auf
ihre direkte Verwendbarkeit in Algorithmen der konformen geometrischen Algebra

• Untersuchung der Rolle des Unendlichen in konformer geometrischer Algebra für
ein besseres Verständnis ihrer geometrischen Basis-Objekte und -Operatoren

• Algorithmen zur Approximation von Punktmengen mit Hilfe von den Basisobjek-
ten Kugel und Ebene der konformen geometrischen Algebra

• Nachweis der ”Rapid Prototyping”-Möglichkeit zur visuellen und interaktiven En-
twicklung und zum Test von Algorithmen am Beispiel der inversen Kinematik
sowie des Greifprozesses eines Roboters

• Entwicklung und Nachweis der Effizienz eines Algorithmus auf Basis der konfor-
men geometrischen Algebra am Beispiel der inversen Kinematik des Arms eines
virtuellen Charakters

ii

Figure 1: visuelle Entwicklung eines inverse Kinematik Algorithmus

Der Hauptbeitrag dieser Arbeit ist ein geometrisch intuitiver und dennoch effizienter
Algorithmus für eine Computeranimationsanwendung, und zwar die inverse Kinematik
des Arms eines virtuellen Charakters. Dieser Algorithmus basiert auf der Einbettung
von Quaternionen in konformer geometrischer Algebra, da zur Interpolation der Be-
wegung des Arms Quaternionen verwendet werden. Aus Performancegründen werden
zwei Optimierungsansätze genutzt, die dazu führen, dass die Anwendung nun drei mal
schneller ist als die herkömmliche Lösung.

Figure 1 gibt einen Eindruck von der visuellen Art und Weise, in der der Algorithmus
in der intuitiven Sprache der konformen geometrischen Algebra entwickelt werden kann.
Diese Algebra erlaubt das einfache Rechnen mit geometrischen Objekten wie Kugeln
und Ebenen, was mit Hilfe der Software CLUCalc in einem ”Rapid Prototyping”-Prozess
Schritt für Schritt umgesetzt werden kann. Ausgehend von der Berechnung des Ellenbo-
genpunktes wird der Winkel am Ellenbogen berechnet, der Arm zum Ellenbogenpunkt
rotiert und letztendlich das Handgelenk zur Zielposition bewegt. Grundoperationen

Figure 2: Schnitt zweier Kugeln S1 und S2

sind dabei Schnitte von geometrischen Objekten. Eine Kugel ist beispielsweise durch
das folgende algebraische Objekt repräsentiert

S = P − 1

2
r2e∞. (1)

iii

Dieser Ausdruck beschreibt die Kugel mit ihrem Mittelpunkt P, ihrem Radius r und
e∞, was dem Punkt im Unendlichen entspricht. Um einen Kreis Z zu repräsentieren,
müssen zwei Kugeln S1 und S2 miteinander geschnitten werden. Dies geschieht mit der
folgenden algebraischen Operation

Z = S1 ∧ S2 (2)

auf der Basis des elementaren äußeren Produkts.
Die Performancevorteile resultieren einerseits daraus, dass auf der Ebene des Algo-

rithmus direkt mit Quaternionen gerechnet wird, während bei konventionellen Ansätzen
noch eine Übersetzung von Transformationsmatrizen zu Quaternionen erforderlich ist.
Auf der anderen Seite werden zur Implementierung alternativ der Codegenerator Gaigen 2
beziehungsweise die Mathematik-Software Maple eingesetzt. Die beiden Ansätze liefern
vergleichbare Resultate. Während Gaigen 2 den Vorteil hat, dass die Eleganz der mathe-
matischen Sprache der konformen geometrischen Algebra erhalten bleibt, hat die Maple-
Lösung den Vorteil, dass der Algorithmus mit einem Standard-Compiler implementiert
werden kann.

0.3 Zukunftsperspektiven

Mit den erreichten Ergebnissen wird ”Geometric Computing auf der Basis von
konformer geometrischer Algebra” zukünftig immer stärker Einzug halten in die un-
terschiedlichsten Anwendungen der Computergraphik und der Robotik. Eine beträchtliche
Verbesserung der Laufzeit dürfte sich aus der Verwendung einer Hardware ergeben, die
sich speziell auf Berechnungen der Geometrischen Algebra konzentriert. Hierzu wird
eine Zusammenarbeit mit Forschern der Universität von Southampton angestrebt, die
bereits einen Prototypen für ein ASIC entwickelt haben. Computerspiel-Engines bi-
eten sich als ein Anwendungsgebiet an. Weitere Forschungen auf den Gebieten der
Kinematik und der Dynamik können die Robotik sowie die Computeranimationen bere-
ichern, beispielsweise auf dem Gebiet von ”Virtual Kinematics”, einem System zum
virtuellen Zusammenbau und Test von beliebigen Kinematiken.

iv

Acknowledgements
First of all I would like to thank my referees Prof. Marc Alexa, Prof. Dieter Fellner

and Prof. Wolfgang Straßer for their support of my thesis. Special thanks to my advi-
sor Prof. Marc Alexa pointing my attention to Conformal Geometric Algebra as well as
always emphasizing the importance of efficiency for the practical use of the described
technology. I would like to thank Prof. José Luis Encarnação for giving me the chance
to work in his institute and for his support of this topic, especially in establishing a
geometric computing working group in the Research Center of Excellence for Computer
Graphics in Darmstadt. Many thanks to Prof. Eduardo Bayro-Corrochano and Julio
Zamora-Esquivel for their cooperation concerning kinematics algorithms based on Con-
formal Geometric Algebra. For the best of my knowledge they are the first researchers
applying kinematics algorithms to Conformal Geometric Algebra. I would also like to
thank Dr. Christian Perwass for his support with CLUCalc. It is a pleasure for me
cooperating with him. Many thanks to Dr. Leo Dorst and Daniel Fontijne for our
successful cooperation. With the help of their tool Gaigen 2 we are now able to im-
plement algorithms faster than conventional algorithms. Furthermore, I would like to
thank Roland Martin and Dr. Eckhard Hitzer for their reviews of parts of this document
and to Thomas Kalbe [45], Yusheng Wang [83], Haidan Zhang [91], Jun Zhao [92] and
Holger Griesheimer [29] working with me as master students. Finally, I would like to
thank my wife Carola for her interest shown in my work and her support during the last
months in particular for proofreading of parts of this dissertation.

v

Chapter 1

Introduction

This chapter motivates the topic of this thesis and outlines the contribution and the
structure of the document.

1.1 Motivation

Early in the development of computer graphics and robotics it was realized that pro-
jective geometry is very well suitable to represent transformations. Now we can realize
that another change of paradigm is lying ahead of us which is based on the so-called
Conformal Geometric Algebra 1 . In computer graphics and robotics a couple of
diverse mathematical approaches like vector algebra, trigonometry, homogenous coor-
dinates, quaternions or dual quaternions are used for different applications. This is
why people, working in this area, have to learn and understand diverse approaches and
how to translate between them, for instance between rotation matrices and quaternions.
Conformal Geometric Algebra is able to unify all of these different approaches in one
easy to understand mathematical system.

While points and vectors are normally used as basic geometric entities, Conformal
Geometric Algebra provides a wider variety of basic geometric entities to compute with,
namely points, spheres, planes, circles, lines and point pairs. A sphere is simply repre-
sented by the algebraic object

S = P − 1

2
r2e∞ (1.1)

based on its center point P, its radius r and e∞ representing the point at infinity.

1Note that we capitalize ”Conformal Geometric Algebra”, since we want to distinguish this particular

algebra from other algebras that describe geometry.

1

Figure 1.1: Intersection of two spheres

To represent a circle we only have to intersect two spheres, which can be done with the
basic algebraic operation

Z = S1 ∧ S2 (1.2)

See table 2.5 on page 19 for a list of the conformal geometric entities as well as their
representations.

Spheres as basic computational entities can be used very advantageously in a lot
of applications. For instance, robots or virtual characters are typically composed of
rigid links connected to each other at joints. The possible positions of the end of each
link, assuming complete rotational freedom at the joints, is of course a sphere. In
applications like collision detection it is helpful to have an easy possibility to check
against bounding spheres. Another interesting task with spheres as basic entities is for
instance the approximation of points with the help of spheres.

At the Eurographics conference 2004 we presented a tutorial on the application of
Geometric Algebra in computer graphics. We got a lot of positive feedback, especially

Figure 1.2: Tutorial at the Eurographics conference 2004

concerning the elegance and the geometric intuitiveness of this technology. However,

2

there was also a problem in terms of the runtime performance. Now we are pleased to
present two approaches in order to implement algorithms very efficiently.

1.2 Contribution

The contributions of this thesis are specifically:

• Investigation of quaternions and other algebras with regard to the direct usage for
algorithms in Conformal Geometric Algebra

• Analysis of the role of infinity in Conformal Geometric Algebra for a better un-
derstanding of its geometric entities and operators

• Algorithms for the approximation of point sets with the help of the basic Conformal
Geometric Algebra objects sphere and plane

• Demonstration of the rapid prototyping functionality of Conformal Geometric Al-
gebra for a visual and interactive development and test of algorithms with the help
of kinematics applications of a robot

• Algorithm and proof of the efficience of an inverse kinematics application of a
virtual character based on Conformal Geometric Algebra

Figure 1.3: Real-time inverse kinematics in the project ”Virtual human” ([82])

The main contribution of this thesis is the efficient solution for the inverse kinematics
of a human-arm-like model of a virtual character based on Conformal Geometric Algebra.
We developed a new algorithm and implemented it in a virtual reality system (see
figure 1.3). It is running in real-time in the project ”Virtual human” ([82]). The

3

Figure 1.4: Visual development and test of an inverse kinematics algorithm

results are also applicable to robotics applications. Please refer to figure 1.4 for an
impression of how visual this algorithm could be developed and tested based on the
elegant and geometrically intuitive language of Conformal Geometric Algebra allowing
to easily compute with geometric entities like spheres and planes. The software tool
CLUCalc supports the rapid prototyping of algorithms step by step. Starting from the
computation of the elbow point we compute the angle at the elbow, rotate the arm to the
elbow point and finally rotate the wrist to the target position. The algorithm is based
on our inverse kinematics algorithm for a virtual character in [36], which we further
improved in [39]. For performance reasons we finally succeeded in [38] to improve the
algorithm and its performance based on two optimization approaches in a way that we
are now faster than the conventional algorithm.

Our inverse kinematics algorithm is based on the embedding of quaternions in Con-
formal Geometric Algebra. This is why we investigated how quaternions and some
other algebras are identified and handled in Conformal Geometric Algebra. For a lot
of algorithms a deeper understanding of the basic entities is helpful. A key role of our
investigation plays infinity. We will see for instance how a plane is created by infinitely
increasing the radius of a sphere. These planes and spheres can be used advantageously
for the approximation of point sets by these objects ([35]). The above mentioned rapid
prototyping of algorithms will be shown based on two robotics applications, namely the
inverse kinematics of a simple robot (see [35]) as well as a grasping approach for a robot
(see [39]). We introduced into this way of developing algorithms in [64] and [37].

4

1.3 Outline

This thesis is organized as follows:

• In Chapter 2 the state-of-the-art of Geometric Algebra and its applications in
computer graphics and robotics is presented. After a short description of the
history of Geometric Algebra, its properties, foundations and main products, we
take a look at three specific algebras. Particularly the representation of geometric
entities and the handling of transformations and motions in Conformal Geometric
Algebra are shown. Furthermore the application of Conformal Geometric Algebra
in computer graphics and robotics and the application of inverse kinematics of
virtual characters are reviewed. We also present some helpful tools for the visual
and interactive development of algorithms as well as their efficient implementation.

• Chapter 3 investigates the embedding of different mathematical systems that can
be regarded as part of Conformal Geometric Algebra. We especially look at the
handling of quaternions that we need for our algorithm in chapter 7. It is well-
known that quaternions are part of the 3D Euclidean Geometric Algebra. Our goal
is to identify and analyze them in Conformal Geometric Algebra and to realize
what their geometric meaning is. In addition to quaternions we will also look at
the identification of other mathematical systems like complex numbers, Plücker
coordinates and dual quaternions.

• Chapter 4 investigates the role of infinity in Conformal Geometric Algebra. In
order to better understand the geometric objects, that we are mainly using in
our algorithms, we investigate the limits between them, for instance the transition
between a sphere and a plane, how infinity is represented in Conformal Geometric
Algebra and how translators are a limit of rotors.

• One big advantage of Conformal Geometric Algebra is its easy handling of objects
like spheres. In computer graphics a lot of problems are related to this kind of
objects. Chapter 5 presents the approximation of points with the help of spheres
and/or planes as one important example.

• Chapter 6 presents the rapid prototyping of two robotics applications based on the
software tool CLUCalc together with a link to the corresponding sources. Rapid
prototyping means the interactive and visual development as well as the test of
the algorithms. At first, we present step by step an algorithm for the inverse
kinematics of a simple robot. The geometrically intuitive operations of Conformal
Geometric Algebra make it easy to compute the joint angles of this robot to be set

5

in order for the robot to reach its new position. The second application, grasping
of an object, shows how easy it is to develop and to visualize the algorithm of
moving a gripper to an object.

• Chapter 7 presents our inverse kinematics algorithm of a human-arm-like model
based on Conformal Geometric Algebra. Based on two optimization approaches for
the implementation of this computer animation application, we present solutions
that are three times faster than the conventional solution.

• We conclude in chapter 8 with a summary of the benefits of applying Conformal
Geometric Algebra .

• Chapter 9 presents an outline of future work, namely virtual kinematics, dynamics,
game engines and hardware support.

6

Chapter 2

State-of-the-art

In this chapter a brief introduction to Geometric Algebra and its applications in com-
puter graphics and robotics is given. After a short description of the history of Geometric
Algebra, its properties, foundations and main products, we take a look at three specific
algebras: the 3D Euclidean Geometric Algebra, the 4D Projective Geometric Algebra
and the 5D Conformal Geometric Algebra. Particularly the representation of geomet-
ric entities and the handling of transformations and motions in Conformal Geometric
Algebra are shown. We focus on the geometric meaning of the algebra. References to
more mathematical documents are given.

Furthermore the state-of-the-art of the application of Conformal Geometric Algebra
in computer graphics and robotics as well as the state-of-the-art of inverse kinematics
of virtual characters is reviewed. We also present some very useful tools for the visual
and interactive development of algorithms as well as their efficient implementation. A
more detailed discussion of specific papers will be given in the subsequent chapters.

2.1 History of Geometric Algebra

The foundation of Geometric Algebra was already laid in 1844 by the German high
school teacher Hermann Grassmann. William K. Clifford (1845-1879) introduced what
we now call Geometric or Clifford Algebra in a paper entitled ”On the classification of
geometric algebras” [17]. He realized that Grassmann’s extensive algebra and Hamilton’s
quaternions can be brought into the same algebra by a slight change of the exterior
product. With this new product, called geometric product, the multiplication rules of
the quaternions follow directly from combinations of basis vectors (more details later).
However, due to the early death of Clifford, the vector calculus of Gibbs dominated

7

Figure 2.1: History of Geometric Algebra and Calculus [33]

most of the 20th century, and not the Geometric Algebra. Please refer to a family tree
of mathematical systems according to David Hestenes in figure 2.1.

Geometric Algebra has found its way into many areas of science, since David Hestenes
treated the subject in the ’1960s. In particular, his aim was to find a unified language
for mathematics, and he went about to show the advantages that could be gained by
using Geometric Algebra in many areas of physics and geometry [32, 34].

Early in our century David Hestenes et al. succeeded in introducing the (5D) Con-
formal Geometric Algebra (see [51] and [31]). It is an extension of the 4D Projective
Geometric Algebra. Alyn Rockwood, David Hestenes and Hongbo Li hold a US patent
for the use of the conformal model ([69]). There are no restrictions for academic re-
search and educational use. However, the patent requires a license agreement with the
inventors for commercial products in the US.

8

For details on the algebra please refer for instance to the books from Hestenes [30],
Sommer [76] and Doran/Lasenby [19]. Some Geometric Algebra tutorials can be found
in [37, 64, 21, 22, 57, 41, 40, 54, 42].

2.2 Properties of Geometric Algebra

Geometric Algebra promises to stimulate new methods and insights in all areas of science
dealing with geometric properties. It treats geometric objects and operators on these
objects in one algebra. Furthermore it allows for simple, compact, coordinate-free and
dimensionally fluid formulations.

Geometric Intuitiveness

Figure 2.2: Rigid body motion [70]

A very favourable feature of Conformal Geometric Algebra is its geometric intu-
itiveness. As shown in section 1.1, spheres and circles are both algebraic objects with
a geometric meaning. To represent a circle you only have to take two spheres and to
intersect them with the help of their outer product. Another beneficial example are
rigid body motions. They are described with the help of an operator including the
relevant geometric parameters, namely the rotation axis, the angle of rotation and the
displacement (see section 2.9.3 for details).

Unification

According to table 2.4 on page 17 Conformal Geometric Algebra is based on 32 algebraic
entities, called blades. For details please refer to section 2.3. A lot of mathematical

9

systems use subsets of these 32 blades. In table 3.2 on page 38 you can see for instance
the four blades for quaternions representing the scalar part and the three imaginary
parts of quaternions. While we usually know quaternions as a special number system,
somehow mysteriously handy for computations with rotations, we will see in section 3.2,
that quaternions in Conformal Geometric Algebra have an intuitive meaning of rotation
axis and angles.

Furthermore Conformal Geometric Algebra includes also a lot of other mathematical
systems like vector algebra, projective geometry, complex numbers, Plücker coordinates
and dual quaternions. Please find details in chapter 3.

Elegance

The elegance of Geometric Algebra is well demonstrated in a ray tracing application
developed at the university of Amsterdam: 5 models of geometry are compared in this
standard graphics application. Please take note of the paper [27] and the web page [26]
for your information and download.

In particular kinematics algorithms can be expressed in an elegant way in Conformal
Geometric Algebra as will be shown in the chapters 6 and 7.

Low symbolic complexity

Expressions in Geometric Algebra normally have low complexity. As will be shown in
section 5.1, the inner product of two vectors A · B can be used for different tasks like

• the Euclidean distance between two points

• the distance between one point and one plane

• the decision whether a point is inside or outside of a sphere

2.3 Foundations of Geometric Algebra

Blades are the basic computational elements and the basic geometric entities of the
Geometric Algebra. A n-dimensional Geometric Algebra consists of blades with grades
0, 1, 2 .. n, whereby a scalar is a 0-blade (blade of grade 0) and the 1-blades are
the basis vectors (e1, e2, e3 for the 3D Euclidean Geometric Algebra). The 2-blades are
blades spanned by two 1-blades, and so on. There exists only one element of maximum
grade n. It is therefore also called the pseudoscalar. Please find a list of all the

10

• 8 blades of 3D Euclidean Geometric Algebra in table 2.2 on page 14

• 16 blades of 4D Projective Geometric Algebra in table 2.3 on page 16

• 32 blades of 5D Conformal Geometric Algebra in table 2.4 on page 17

A linear combination of k-blades is called a k-vector (also called vectors, bivectors,
trivectors ...). Furthermore, a linear combination of blades with different grades is
called a multivector. Multivectors are the general elements of a Geometric Algebra.

2.4 The products of Geometric Algebra

Table 2.1: Notations of Conformal Geometric Algebra
notation meaning alternative

AB geometric product of A and B
A ∧ B outer product of A and B A^B
A · B inner product of A and B A.B, LC(A,B)
A∗ dual of A dual(A)
A−1 inverse of A 1/A

Ã reverse of A
e0 conformal origin e0
e∞ conformal infinity einf

The three most often used products of Geometric Algebra are the outer, the inner
and the geometric product. In table 2.1 the notations of these products are listed.
We will use the outer product mainly for the construction and intersection of geometric
objects while the inner product will be used for the computation of angles and distances.
The geometric product will be used mainly for the description of transformations.

2.4.1 The outer product

Geometric Algebra provides an outer product ∧ with the following properties

Property Meaning

1. anti-symmetry u ∧ v = −(v ∧ u)
2. linearity u ∧ (v + w) = u ∧ v + u ∧ w
3. associativity u ∧ (v ∧ w) = (u ∧ v) ∧ w

11

The outer product of parallel vectors is 0.

a ∧ a = −(a ∧ a) = 0 (2.1)

This is the reason why the outer product can be used as a measure for parallelness.
Computation example:

b = (e1 + e2) ∧ (e1 − e2)

can be transformed based on linearity to

b = (e1 ∧ e1) − (e1 ∧ e2) + (e2 ∧ e1) − (e2 ∧ e2)

since a ∧ a = 0
b = −(e1 ∧ e2) + (e2 ∧ e1)

because of anti-symmetry
b = −(e1 ∧ e2) − (e1 ∧ e2)

or
b = −2(e1 ∧ e2)

2.4.2 The inner product

For the 3D Euclidean space, the inner product of 2 vectors is the same as the well known
Euclidean scalar product of 2 vectors. For perpendicular vectors the inner product is 0,
for instance e1 · e2 = 0. In Geometric Algebra, the inner product is not only defined for
vectors. The inner product is grade decreasing, e. g. the result of the inner product of
an element with grade 2 and grade 1 is an element of grade 2-1 =1. Please refer to [64]
and [37] for a mathematical treatment.

Please find detailed information on the geometric meaning of the inner product in
Conformal Geometric Algebra in section 5.1 (inner product and distances) and in section
6.1 (inner product and angles).

2.4.3 The geometric product

The geometric product is an amazingly powerful operation. It has a lot of geometric
meaning whereby the easy handling of transformations is the most important one. The
geometric product is a combination of the outer product and the inner product. The
geometric product of u and v is denoted by uv. For vectors u and v the geometric
product uv is defined as

uv = u ∧ v + u · v (2.2)

12

We derive for the inner and the outer product

u · v =
1

2
(uv + vu) (2.3)

u ∧ v =
1

2
(uv − vu) (2.4)

Computation examples:
What is the square of a vector ?

a2 = aa = a ∧ a︸ ︷︷ ︸
0

+a · a = a · a

for example
e2
1 = e1 · e1 = 1

The geometric product is not only defined for vectors but for all kind of multivectors.
Let us for example calculate the geometric product of 2 bivectors u = e1 ∧ e2 and
v = (e1 + e2) ∧ e3

uv = (e1 ∧ e2)((e1 + e2) ∧ e3)

since e1e2 = e1 ∧ e2 + e1 · e2︸ ︷︷ ︸
0

= e1 ∧ e2

uv = (e1e2)(e1 ∧ e3 + e2 ∧ e3)

= e1e2(e1e3 + e2e3)

= e1e2e1e3 + e1 e2e2︸︷︷︸
1

e3

since e1e2 = e1 ∧ e2 = −e2 ∧ e1 = −e2e1

uv = −e2e1e1e3 + e1e3

= −e2e3 + e1e3

= −(e2 ∧ e3) + e1 ∧ e3

13

Table 2.2: The 8 blades of the 3D Euclidean Geometric Algebra
grade term blades nr.

0 scalar 1 1
1 vector e1, e2, e3 3
2 bivector e1 ∧ e2, e1 ∧ e3, e2 ∧ e3 3
3 pseudoscalar e1 ∧ e2 ∧ e3 1

The inverse of a blade A is defined by

AA−1 = 1

The inverse of a vector v is

v−1 =
v

v · v
because

v
v

v · v =
v · v
v · v = 1

Divisions by algebraic objects are possible due to the fact that the geometric product
is invertible. The dual of an algebraic object is calculated with the help of its division
by the pseudoscalar. The reverse is an operator simply reversing the order of vectors
in a blade. The notations of these operations are listed in table 2.1 on page 11. Please
refer to [64] and [37] for mathematical details.

2.5 Euclidean Geometric Algebra

Euclidean Geometric Algebra includes the well-known vector algebra. It is dealing with
the 3 Euclidean basis vectors e1, e2, e3. Linear combinations of these basis vectors can
be interpreted as 3D vectors or 3D points (please find a list of all the 8 blades of the
3D Euclidean Geometric Algebra in table 2.2). The scalar product is identical with
the inner product. The Euclidean cross product of the two Euclidean vectors u and
v can also be written in Geometric Algebra form as

u × v = −(u ∧ v)e123 (2.5)

14

with e123 = e1 ∧ e2 ∧ e3 as the Euclidean pseudoscalar (blade with grade 3).
In order to prove this equation, we would like to calculate at first an expression for the
outer product of the vectors u and v

u ∧ v = (u1e1 + u2e2 + u3e3) ∧ (v1e1 + v2e2 + v3e3)

= u1v2(e1∧e2)+u1v3(e1∧e3)+u2v1(e2∧e1)+u2v3(e2∧e3)+u3v1(e3∧e1)+u3v2(e3∧e2)

= u1v2(e1∧e2)+u1v3(e1∧e3)−u2v1(e1∧e2)+u2v3(e2∧e3)−u3v1(e1∧e3)−u3v2(e2∧e3)

leading to the following equation for the outer product of the vectors u and v:

u ∧ v = (u1v2 − u2v1)(e1 ∧ e2) + (u1v3 − u3v1)(e1 ∧ e3) + (u2v3 − u3v2)(e2 ∧ e3) (2.6)

Let us now compute the expression −(u ∧ v)e123

−(u ∧ v)e123 = −((u1v2 − u2v1)e1e2 + (u1v3 − u3v1)e1e3 + (u2v3 − u3v2)e2e3)e123

= (u1v2 − u2v1)e2e1e1e2e3 + (u1v3 − u3v1)e3e1e1e2e3 + (u2v3 − u3v2)e3e2e1e2e3

= (u1v2 − u2v1)e2e2e3 + (u1v3 − u3v1)e3e2e3 − (u2v3 − u3v2)e3e1e2e2e3

= (u1v2 − u2v1)e3 − (u1v3 − u3v1)e2e3e3 − (u2v3 − u3v2)e3e1e3

= (u1v2 − u2v1)e3 − (u1v3 − u3v1)e2 + (u2v3 − u3v2)e3e3e1

= (u1v2 − u2v1)e3 − (u1v3 − u3v1)e2 + (u2v3 − u3v2)e1

leading to the equation

−(u ∧ v)e123 = (u2v3 − u3v2)e1 − (u1v3 − u3v1)e2 + (u1v2 − u2v1)e3 (2.7)

with the right side equal to the definition of the cross product

u × v = (u2v3 − u3v2)e1 − (u1v3 − u3v1)e2 + (u1v2 − u2v1)e3 (2.8)

15

Table 2.3: The 16 blades of the 4D Projective Geometric Algebra
grade term blades nr.

0 scalar 1 1
1 vector e1, e2, e3, e0 4
2 bivector e1 ∧ e2, e1 ∧ e3, e2 ∧ e3, 6

e1 ∧ e0, e2 ∧ e0, e3 ∧ e0

3 trivector e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e0, 4
e1 ∧ e3 ∧ e0, e2 ∧ e3 ∧ e0

4 pseudoscalar e1 ∧ e2 ∧ e3 ∧ e0 1

2.6 Projective Geometric Algebra

Projective Geometric Algebra is a 4D Geometric Algebra. Please refer to the list of its
16 blades in table 2.3. Based on this algebra projective geometry is a part of Conformal
Geometric Algebra. The inhomogenous point

x = x1e1 + x2e2 + x3e3 (2.9)

is transformed to a homogenous point via

X = x + e0 (2.10)

Please note that based on this mapping the origin is mapped to e0.
Vice-versa, an arbitrary homogenous point

X = wx1e1 + wx2e2 + wx3e3 + we0, w 6= 0 (2.11)

is at first scaled into the hyperplane

X ′ = x1e1 + x2e2 + x3e3 + e0 (2.12)

and afterwards projected to the inhomogenous point x = x1e1 + x2e2 + x3e3.
Please find further details for instance in [64].

2.7 The Conformal Geometric Algebra

In this document we focus on the 5D Conformal Geometric Algebra. One advantage of
this algebra is that points, spheres and planes are easily represented as vectors (grade 1

16

Table 2.4: The 32 blades of the 5D Conformal Geometric Algebra
grade term blades nr.

0 scalar 1 1
1 vector e1, e2, e3, e0, e∞ 5

e1 ∧ e2, e1 ∧ e3, e2 ∧ e3,
2 bivector e1 ∧ e∞, e2 ∧ e∞, e3 ∧ e∞, 10

e1 ∧ e0, e2 ∧ e0, e3 ∧ e0,
e0 ∧ e∞
e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e0, e1 ∧ e2 ∧ e∞,

3 trivector e1 ∧ e3 ∧ e0, e1 ∧ e3 ∧ e∞, e1 ∧ e0 ∧ e∞, 10
e2 ∧ e3 ∧ e0, e2 ∧ e3 ∧ e∞, e2 ∧ e0 ∧ e∞,
e3 ∧ e0 ∧ e∞
e1 ∧ e2 ∧ e3 ∧ e∞,
e1 ∧ e2 ∧ e3 ∧ e0,

4 quadvector e1 ∧ e2 ∧ e0 ∧ e∞, 5
e1 ∧ e3 ∧ e0 ∧ e∞,
e2 ∧ e3 ∧ e0 ∧ e∞

5 pseudoscalar e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ 1

blades). ”Conformal” comes from the fact that it handles the conformal transformations
easily. These transformations leave angles invariant (see details for instance in [19]).

The Conformal Geometric Algebra uses 2 additional basis vectors e+, e− with posi-
tive signature (e+) and negative signature (e−).

e2
+ = 1 e2

− = −1 e+ · e− = 0 (2.13)

Another basis eo, e∞ with the following geometric meaning

• e0 representing the 3D origin

• e∞ representing infinity

can be defined with the relations

eo =
1

2
(e− − e+) e∞ = e− + e+ (2.14)

These new basis vectors are null vectors

e2
o = e2

∞ = 0 (2.15)

17

Their inner product results in

e∞ · eo = −1 (2.16)

since

(e− + e+) · 1

2
(e− − e+) =

1

2
(e− · e−︸ ︷︷ ︸

−1

− e− · e+︸ ︷︷ ︸
0

+ e+ · e−︸ ︷︷ ︸
0

− e+ · e+︸ ︷︷ ︸
1

)

and their geometric product in

e∞eo = e∞ ∧ eo + e∞ · eo = e∞ ∧ eo − 1 (2.17)

or

eoe∞ = eo ∧ e∞ + e∞ · eo = −e∞ ∧ eo − 1 (2.18)

The outer product e∞ ∧ eo is often abbreviated by E.

Please find a list of all the 32 blades of the 5D Conformal Geometric Algebra in table 2.4.

2.8 The basic geometric entities

Conformal Geometric Algebra provides a great variety of basic geometric entities to
compute with, namely points, spheres, planes, circles, lines and point pairs as listed
in table 2.5. They have two algebraic representations: ’standard’ and ’direct’. These
representations are duals of each other (the superscription of ”∗” denotes the dualization
operator).

In table 2.5 x and n are marked bold to indicate that they represent 3D entities by
linear combinations of the 3D basis vectors e1, e2 and e3.

x = x1e1 + x2e2 + x3e3 (2.19)

The {Si} represent different spheres and the {πi} represent different planes. In the direct
representation the outer product ’∧’ indicates the construction of geometric objects with
the help of points {Pi} that lie on it. A sphere is for instance defined by 4 points
(P1 ∧ P2 ∧ P3 ∧ P4) determining this sphere.
In the standard representation the meaning of the outer product is the intersection of
geometric entities. A circle is for instance defined by the intersection of two spheres
S1 ∧ S2 (please refer to figure 1.1 on page 2).

18

Table 2.5: List of the conformal geometric entities
entity standard representation direct representation

Point P = x + 1
2
x2e∞ + e0

Sphere S = P − 1
2
r2e∞ S∗ = P1 ∧ P2 ∧ P3 ∧ P4

Plane π = n + de∞ π∗ = P1 ∧ P2 ∧ P3 ∧ e∞
Circle Z = S1 ∧ S2 Z∗ = P1 ∧ P2 ∧ P3

Line L = π1 ∧ π2 L∗ = P1 ∧ P2 ∧ e∞
Point Pair Pp = S1 ∧ S2 ∧ S3 Pp∗ = P1 ∧ P2

2.8.1 Points

In order to represent points in 5D conformal space, the original 3D point x is projectively
extended to a 5D vector by linear combinations of the 5D basis vectors e1, e2, e3, e∞
and e0 according to the equation

P = x +
1

2
x2e∞ + e0, (2.20)

whereby x2 is the well-known scalar product

x2 = x2
1 + x2

2 + x2
3. (2.21)

E. g. for the 3D origin (0,0,0) we get

P(0, 0, 0) = e0 (2.22)

or for the 3D point (0,1,0)

Py = P(0, 1, 0) = e2 +
1

2
e∞ + e0. (2.23)

2.8.2 Spheres

A sphere is on the one hand represented with the help of its center point P and its
radius r

S = P − 1

2
r2e∞. (2.24)

Note that the representation of a point is simply a sphere with radius zero.
A sphere can on the other hand be represented with the help of 4 points that lie on it

S∗ = P1 ∧ P2 ∧ P3 ∧ P4. (2.25)

19

2.8.3 Planes

A plane is defined by

π = n + de∞ (2.26)

whereby n refers to the 3D normal vector of the plane π and d is the distance to the
origin. A plane can also be defined with the help of three points that lie on it and the
point at infinity

π∗ = P1 ∧ P2 ∧ P3 ∧ e∞. (2.27)

Would you please notice that a plane is a sphere with infinite radius (details in chapter 4).

2.8.4 Circles

A circle is defined by the intersection of two spheres

Z = S1 ∧ S2 (2.28)

or with the help of three points that lie on it

Z∗ = P1 ∧ P2 ∧ P3. (2.29)

2.8.5 Lines

A line is defined by the intersection of two planes

L = π1 ∧ π2 (2.30)

or with the help of two points that lie on it and the point at infinity

L∗ = P1 ∧ P2 ∧ e∞. (2.31)

For example the y-axis Ly can be described by

L∗
y = e0 ∧ Py ∧ e∞ (2.32)

whereby e0 represents the origin (see equation (2.22)) and Py is the point of equation
(2.23). Please note that a line can be regarded as a circle with infinite radius.

20

2.8.6 Point Pairs

A point pair is defined by the intersection of three spheres

Pp = S1 ∧ S2 ∧ S3 (2.33)

or directly with the help of the two points

Pp∗ = P1 ∧ P2. (2.34)

2.9 Transformations and motions

Transformations and motions are easily described in Conformal Geometric Algebra
based on algebraic objects.

2.9.1 Transformations

All kind of transformations of an object o are done in Conformal Geometric Algebra
with the help of the following geometric product

otransformed = V oṼ (2.35)

with V being a so-called versor and with Ṽ as its reverse.

Rotor

The operator

R = e−
φ

2
L (2.36)

describes a so-called rotor .
L is the rotation axis represented by a normalized bivector and φ is the rotation angle
around this axis. Please note that L can be an arbitrary line and not only going through
the origin.
R can also be written as

R = cos(
φ

2
) − Lsin(

φ

2
). (2.37)

The rotation of a geometric object o is performed with the help of the operation

orotated = RoR̃.

21

Translator

In Conformal Geometric Algebra, a translation can be expressed in a multiplicative way
with the help of a translator T defined by

T = e−
1

2
te∞ (2.38)

whereby t is a vector
t = t1e1 + t2e2 + t3e3.

The application of the Taylor series

T = e−
1

2
te∞ = 1 +

−1
2
te∞

1!
+

(−1
2
te∞)2

2!
+

(−1
2
te∞)3

3!
...

and of the property (e∞)2 = 0 result in the translator

T = 1 − 1

2
te∞. (2.39)

Please find some more detailed information in [70].

Example:

Figure 2.3: Translation of a sphere

Versors do not only transform points but they are able to transform complete geometric
objects. Let us for instance translate the sphere

S = −e∞ + e0 (2.40)

with its center at the origin (see figure 2.3) in x-direction with the translation vector

t = 4e1. (2.41)

22

The translator has the form

T = 1 − 2e1e∞ (2.42)

with its reverse

T̃ = 1 + 2e1e∞. (2.43)

The translated sphere can now be computed as the versor product

Stranslated = TST̃ (2.44)

= (1 − 2e1e∞)(−e∞ + e0)(1 + 2e1e∞)

= (1 − 2e1e∞)(−e∞ − 2e∞e1e∞ + e0 + 2e0e1e∞)

= (1 − 2e1e∞)(−e∞ + e0 − 2e1e0e∞)

= −e∞ + e0 − 2e1e0e∞ + 2e1e∞e∞ − 2e1e∞e0 + 4e1e∞e1e0e∞

= −e∞ + e0 − 2e1e0e∞ + 2e1 e∞e∞︸ ︷︷ ︸
0

−2e1e∞e0 + 4e1e∞e1e0e∞

= −e∞ + e0 − 2e1(e0e∞ + e∞e0︸ ︷︷ ︸
−2

) + 4e1e∞e1e0e∞

= 4e1 − e∞ + e0 + 4 e1e∞e1︸ ︷︷ ︸
−e∞

e0e∞

= 4e1 − e∞ + e0 − 4e∞ e0e∞︸︷︷︸
−e∞∧e0−1

= 4e1 − e∞ + e0 − 4 e∞(−e∞ ∧ e0 − 1)︸ ︷︷ ︸
−2e∞

resulting in

Stranslated = 4e1 + 7e∞ + e0. (2.45)

This is a sphere with the same radius but with the translated center point

Pt = t +
1

2
t2e∞ + e0. (2.46)

23

2.9.2 Rigid body motion

A motion in 3D includes both a rotation and a translation. In Conformal Geometric
Algebra a rigid body motion is described by one operator M , a so-called motor

M = RT (2.47)

with R being a rotor and T being a translator(see section 2.9.1).
A rigid body motion of an object o is described by

origid body motion = MoM̃.

2.9.3 Screw motion

An alternative description of a rigid body motion is a screw motion that is very suitable
for the interpolation of motions. A screw motion describes a rigid body motion in a
compact form including both a rotation and translation in the direction of the rotation
axis. The screw motion of an object o is described by

Figure 2.4: Screw motion along l [70]

oscrew motion = MoM̃

with the motor
M = e−

θ
2
(L+e∞m) (2.48)

whereby

24

• L is a bivector representing an axis through the origin,

• θ is the angle of rotation,

• m is a 3D vector.

If L is zero, a pure translation is described.
If m is zero, a pure rotation is described.
Another form of the motor is

M = e−
θ
2
(l+e∞d) (2.49)

whereby (see figure 2.4)

• l = L + e∞m⊥ is a bivector representing an arbitrary axis,

• θ is the rotation angle,

• d = m‖ is a vector parallel to the axis l.

For details please refer for instance to [70].

2.9.4 Interpolation of transformations

The exponent of a motor representing a screw motion is called a twist. We assume two
transformations described by the two twists W1 and W2:

W1 = −θ1

2
(L1 + e∞d1)

W2 = −θ2

2
(L2 + e∞d2)

Interpolations between these two transformations can be described by interpolating their
twists, e. g. in a linear manner

W (t) = (1 − t) ∗ W1 + t ∗ W2 (2.50)

with the resulting motor
M(t) = eW (t). (2.51)

For t ∈ [0..1] we get
M(0) = eW1 ,M(1) = eW2 .

This kind of interpolation of transformations is comparable to Alexa [4]. Please find
more detailed information and some other interpolation approaches in [84].

25

2.9.5 Relations to quaternions and dual quaternions

There are strong relations between transformations in Conformal Geometric Algebra
and quaternions and dual quaternions.

In section 3.2 we will see that quaternions are in principle rotors with a rotation axis
through the origin.

In section 3.5 we will see that dual quaternions are in principle versors describing
for instance rotations with an arbitrary rotation axis. This is shown based on the
equivalence of the versor TRT̃ (describing a translation to the origin, a rotation at the
origin and a translation back) and a dual quaternion. This operation is especially helpful
to describe the movement of a robot at a revolute joint.

2.10 Conformal Geometric Algebra in computer

graphics

Please find hereafter some research groups working with Conformal Geometric Algebra
in the field of computer graphics.

Since about one decade, many researchers at the University of Cambridge, UK
have shown that applying Geometric Algebra in their field of research is very advanta-
geous. They started with projects more related to computer vision. In the meantime the
Cambridge engineering department as well as a company with university background are
dealing with typical computer graphics applications like mesh deformation and lighting.
Lasenby et al. and Perwass et al. present some applications dealing with structure
and motion estimation as well as with the trifocal tensor in the articles [44], [48] and
[67, 68, 66]. Some computer graphics articles using Geometric Algebra are presented
by Cameron et al. [16] and Wareham et al. [84], [85]. They use Geometric Algebra for
applications like rigid-body pose and position interpolation, mesh deformation and cata-
dioptric cameras. Geomerics [1] is a new start-up company in Cambridge specializing
in simulation software for physics and lighting which just presented its new technology
allowing real-time radiosity in videogames utilizing commodity graphics processing hard-
ware. The technology is Precomputed Radiance Transfer (PRT) based on Geometric
Algebra wavelet technology.

Dorst et al. at the University of Amsterdam, the Netherlands, are applying their
fundamental research on Geometric Algebra [23, 21, 22, 53, 54] to computer graphics.
Zaharia et al. investigated modeling and visualization of 3D polygonal mesh surfaces
using Geometric Algebra [88]. Currently D. Fontijne is primarily focusing on the efficient
implementation of Geometric Algebra. He investigated the performance and elegance

26

of five models of 3D Euclidean geometry in a ray tracing application [27] and developed
a code generator for Geometric Algebras [25]. There is a book with applications of
Geometric Algebra edited by Dorst et al. [20]. A new book will be published soon [49].

At the MPI Saarbruecken, Germany, researchers are dealing with pose estimation
and marker-less motion capture, e.g. Rosenhahn et al. [8], [7] and Kersting et al. [46].

The first time Geometric Algebra was introduced to a wider Computer Graphics
audience, was probably at the SIGGRAPH conferences 2000 and 2001 (see [57]).

2.11 Conformal Geometric Algebra in robotics

Please find as follows research groups working with Conformal Geometric Algebra in
the field of robotics.

Bayro-Corrochano et al. from Guadalajara, Mexico are primarily dealing with
the application of Geometric Algebra in the field of robotics and computer vision. Some
of their kinematics algorithms can be found in [11] for the 4D motor algebra and in the
Conformal Geometric Algebra papers [13, 14] dealing with inverse kinematics, fixation
and grasping as well as with kinematics and differential kinematics of binocular robot
heads. Books from Bayro-Corrochano et al. with Geometric Algebra applications are
for instance [10] and [12].

At the University of Kiel, Germany, Sommer et al. are applying Geometric Alge-
bra to robot vision [77], e.g. Rosenhahn et al. concerning pose estimation [70, 71] and
Sommer et al. regarding the twist representation of free-form objects [78]. Perwass et al.
are applying Conformal Geometric Algebra to uncertain geometry with circles, spheres
and conics [61], to geometry and kinematics with uncertain data [63] or concerning the
inversion camera model [65] . There is a book with applications of Geometric Algebra
edited by Sommer [76].

2.12 Inverse kinematics of a human-arm-like model

For the animation of humanoid models, inverse kinematics (IK) solutions are important
as a basic building block for path planning. The standard model for arms (and also
legs) is a seven degrees of freedom (DOF) kinematic chain.

The current standard tool for solving the inverse problem of mapping from a given
end effector state to the configuration space {θi} is due to Tolani, Goswami, and Badler
[80]. They also discuss in detail less favorable, optimization-based solutions. The im-
portance of their algorithm in computer graphics and animation can be seen from the

27

large number of uses and citations of their work (just to give a few recent examples
[74, 75, 9, 72]). Inverse kinematics in general is treated in standard text books like [73].
There are text books with a focus on human characters like [87].

Research dealing with motion of humanoids or virtual characters is often based on
Clifford Algebra, especially on dual quaternions (Perez et al. [59], [58], [81]). We will
see in chapter 3 that dual quaternions can be regarded as part of Conformal Geometric
Algebra.

2.13 Tools for Conformal Geometric Algebra

This section describes the tools we are using for the development and the implementation
of algorithms.

Due to its geometric intuitiveness Conformal Geometric Algebra can be advanta-
geously supported by tools. There are packages for the symbolic computer algebra
systems Maple [5, 6] and Mathematica [15], a package for the numerical mathematics
program MatLab called GABLE [54], the C++ software library generator Gaigen [25],
the C++ software library GluCat [50], the Java library Clados [18], GAP [89], CLUCalc
[60], NKlein [24], Clifford [79], Gaigen 2 and a stand alone program called CLICAL [52],
to name just a few.

We decided to use the software tool CLUCalc for the interactive and visual devel-
opment. For the efficient implementation of the algorithms we use the code generator
Gaigen 2 as well as the library Cliffordlib for Maple. The screenshot of figure 2.5 shows
how the computations of section 1.1 can be performed in an interactive and visual way.
With the help of the editor window you are able to easily edit your formulas and in the
visualization window you are able to see the spheres and the circle as directly visualized
results. Once developed and verified, the algorithms have to be implemented on the
target platform. This can be done very efficiently using a code generator for Geometric
Algebra computations or an approach based on Maple. In a nutshell, the development
process based on these three tools is characterized by

• the interactive and visual development and

• the efficient implementation

of geometrically intuitive algorithms based on Conformal Geometric Algebra.

28

Figure 2.5: Interactive and visual development of algorithms

2.13.1 CLUCalc

We use the CLUCalc software to interactively compute with Geometric Algebra
and to visualize the results of these computations. CLUCalc is freely available for
download at [60]. With the help of the CLUCalc Software you are able to edit and
run Scripts called CLUScripts. A screenshot of CLUCalc can be seen in figure 2.5.
CLUCalc provides the following three windows

• editor window

• visualization window

• output window

There is almost a one to one correspondence between formulas and code as for example
for the following computations of the example in figure 2.5.
The formulas

S1 = P1 −
1

2
r2
1e∞,

S2 = P2 −
1

2
r2
2e∞

and

z = S1 ∧ S2

are coded in CLUCalc as follows

29

:s1 = p1 - 0.5*r1*r1*einf;

:s2 = p2 - 0.5*r2*r2*einf;

:z = s1^s2;

Please find as follows a CLUScript describing motion according to section 2.9. In
this example we rotate the blue sphere Earth around the yellow sphere Sun located at
the origin.

Figure 2.6: Visualization of a CLUScript describing motion

_DoAnimate = 1;

This script is animated (for details please refer to the Online help of the CLU software).
The sphere Earth is continuously rotated according to a continuously changing angle.
This angle is computed depending on the elapsed time.

DefVarsN3();

angle = ((Time * 45) % 360) * RadPerDeg;

SetMode(N3_IPNS, N3_SOLID);

:Red;

:a = VecN3(0,-2,0);

30

:b=VecN3(0,2,0);

:Green;

axis = *(a^b^einf);

:axis;

axis=axis/abs(axis);

?axis;

DefVarsN3(); indicates that we are working in the 5-dimensional conformal space N3.
:Red; means that the succeeding geometric objects will be drawn in red.
:a = VecN3(0,-2,0); assigns the 5-dimensional representation of a 3-dimensional point
to the variable a according to table 2.5 on page 19. The leading colon means that this
geometric object is not only computed, but also visualized.
With the help of axis = *(a ∧ b ∧ einf); a bivector representing a line axis is
computed.
According to table 2.5 on page 19 the dual representation of a line is the outer product
of 2 points and e∞, the point at infinity (indicated in CLUCalc by the predefined value
einf).
The resulting bivector after dualization (indicated in CLUCalc by a leading ”*”) is
normalized with the help of the abs-function, visualized and printed.

:Yellow;

:Sun = e0 -0.5*einf;

:Red;

:Earth =VecN3(2,0,0)-0.125*einf;

?R = exp(-angle/2*axis);

:Blue;

:R * Earth * ~R;

Sun is centered at the origin e0 with radius r = 1 (see table 2.5 on page 19). It is drawn
as a yellow sphere.
The red sphere is used as the basis sphere for the rotation of Earth. It is located out
of the origin with half the radius of Sun.
The blue sphere representing the earth is rotated with the help of the product REarthR̃
(see section 2.9.1). The rotation operator depends on the fixed axis and the continuously

31

changing angle. For details regarding CLUScript please refer to the CLUCalc online
help [60].

The inverse kinematics algorithm, described in section 6.2, as well as the grasping al-
gorithm of section 6.3 are implemented using CLUCalc. The corresponding CLUScripts
can be downloaded from the homepage

http://www.gris.informatik.tu-darmstadt.de/~dhilden/

These example scripts show how easy it is to develop algorithms based on Conformal
Geometric Algebra.

2.13.2 Gaigen 2

With the help of the Gaigen toolkit we are able to implement algorithms and integrate
them inside our target platform. Gaigen is a C++ code generator for geometric algebras
of different dimensions. Please refer to [25] for information and download.

If runtime efficiency is a big issue we are able to use the next generation Gaigen 2
toolkit using some additional techniques in order to optimize the resulting C++ code.
The philosophy behind Gaigen 2 is based on two ideas : generative programming and
specializing for the structure of geometric algebra. Gaigen 2 takes a succinct specifi-
cation of a geometric algebra and transforms it into an implementation. The resulting
implementation is very similar to what someone would program by hand and can be
directly linked to an application.

In many types of programs, each variable does not need a linear combination of all
the 32 blades of Conformal Geometric Algebra (see table 2.4 on page 17), but has a fixed
‘specialized’ multivector type. The inverse kinematics algorithms of this document for
instance use variables with multivector types like line and sphere. If the Geometric
Algebra implementation could work directly with these leaner specialized multivector
types, performance would be greatly increased. As an implementation of this insight,
Gaigen 2 allows the user to define specialized types along with the algebra specification
and generates classes for each of them. These specialized multivector classes require
much less storage than the generic multivector, but as a result, they are of course
unable to store an arbitrary multivector type. For example, a line variable can not be
stored in a sphere variable.

Please refer to chapter 7 for some results of an inverse kinematics application opti-
mized based on Gaigen 2. The big advantage of this solution is that one can think in
geometry, and directly program in geometric elements.

32

2.13.3 Maple with Cliffordlib

With the help of Maple we are able to compute symbolically [55] and to generate very
efficient algorithms. In order to deal with the computation of geometric algebra, we use
a library called Cliffordlib, developed by Rafal Ablamowicz and Bertfried Fauser. For
download and installation hints please refer to [6, 83]. The most important operations
of the Clifford package are presented in table 2.6. For the inner product we use the left
contraction (LC) operation. Besides these main operations we also need some methods

Notation Meaning
a &c b geometric product
a &w b outer product
LC(a,b) inner product

-(a) &c e12345 dualization
reversion() reversion

Table 2.6: Notation of Geometric Algebra operations in Maple

like scalarpart() or vectorpart() for extracting the scalar or the vector part of a
multivector.

In order to use Conformal Geometric Algebra computations we have to load the
Clifford package, set the metric of Clifford algebra, set aliases to basic blades (optional)
and define e0 and e∞ as shown in the following Maple listing:

> with(Clifford);

> B:=linalg[diag](1, 1, 1, 1, -1);

> eval(makealiases(5, "ordered"));

> e0:=-0.5*e4+0.5*e5;

> einf:=e4+e5;

There is the possibility to write user specific functions like the following often needed
functions for the computation of the conformal representation of a 3D point as well as
for the computation of the dual.

> conformal := proc(x)

> local conf;

> global einf, e0;

> conf := x + 1/2 * x &c x &c einf + e0;

> RETURN(conf);

> end:

33

> dual := proc(x)

> local dual;

> global e12345;

> dual := - x &c e12345;

> RETURN(dual);

> end:

Please refer to chapter 3 for Maple computations according to the embedding of
quaternions and other algebras. See chapter 7 for some results of an inverse kinematics
application optimized based on Maple. The big advantage of this solution is that you are
able to implement it with the help of standard compilers without the need of additional
libraries.

34

Chapter 3

Embedding of quaternions and
other algebras

Vector algebra (see table 2.2 on page 14) and projective geometry (see table 2.3 on page
16) can be regarded as part of Conformal Geometric Algebra.

It is also known that for instance quaternions are part of the 3D Euclidean Geo-
metric Algebra. The goal of this chapter is to identify and analyze the embedding of
some mathematical systems in Conformal Geometric Algebra and what their geometric
meaning is. Besides the embedding of quaternions in Conformal Geometric Algebra (see
the identification in table 3.2 on page 38) we will see the identification of other math-
ematical systems like complex numbers (see table 3.1 on page 36), Plücker coordinates
(see table 3.3 on page 43) and dual quaternions (see table 3.5 on page 48).

3.1 Complex numbers

Complex numbers are linear combinations of scalars and the imaginary unit i squaring
to -1. This imaginary unit can be identified in Conformal Geometric Algebra as one of
the 2-blades e1 ∧ e2, e1 ∧ e3 and e2 ∧ e3, spanned by the three Euclidean basis vectors
e1, e2, e3. We select

i = e3 ∧ e2 = −e2 ∧ e3 (3.1)

in order to be in line with the imaginary units of the quaternions as described in section
3.2.

i2 = (e3 ∧ e2)
2 = e3e2 e3e2︸︷︷︸

−e2e3

= −e3 e2e2︸︷︷︸
1

e3 = − e3e3︸︷︷︸
1

= −1 (3.2)

35

Table 3.1: Complex numbers in Conformal Geometric Algebra
grade term blades nr.

0 scalar
︷︸︸︷
1︸︷︷︸ 1

1 vector e1, e2, e3, e0, e∞ 5

e1 ∧ e2, e1 ∧ e3,
︷ ︸︸ ︷
e2 ∧ e3︸ ︷︷ ︸

−i︸ ︷︷ ︸

,

2 bivector e1 ∧ e∞, e2 ∧ e∞, e3 ∧ e∞, 10
e1 ∧ e0, e2 ∧ e0, e3 ∧ e0,
e0 ∧ e∞
e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e0, e1 ∧ e2 ∧ e∞,

3 trivector e1 ∧ e3 ∧ e0, e1 ∧ e3 ∧ e∞, e1 ∧ e0 ∧ e∞, 10
e2 ∧ e3 ∧ e0, e2 ∧ e3 ∧ e∞, e2 ∧ e0 ∧ e∞,
e3 ∧ e0 ∧ e∞
e1 ∧ e2 ∧ e3 ∧ e∞,
e1 ∧ e2 ∧ e3 ∧ e0,

4 quadvector e1 ∧ e2 ∧ e0 ∧ e∞, 5
e1 ∧ e3 ∧ e0 ∧ e∞,
e2 ∧ e3 ∧ e0 ∧ e∞

5 pseudoscalar e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ 1

From the 32 blades of Conformal Geometric Algebra only two blades are needed for
complex numbers, namely the scalar and one bivector as indicated in table 3.1. From
a geometric point of view the imaginary unit i is representing a line along the x-axis:
Planes are represented according to equation (2.26) by their 3D normal vector and their
distance to the origin. e3 represents a plane through the origin in the direction of the x-
axis and the y-axis. A line is represented as the intersection of two planes (see equation
2.30). Therefore i = e3 ∧ e2 represents the intersection of the two planes represented by
its normal vectors e3 and e2. This results in the line along the x-axis.
Let us now investigate a rotation with angle φ around the line represented by the
imaginary unit i = e3 ∧ e2. According to equation 2.36 this rotation can be described
by the rotor R

R = e−
φ

2
e3∧e2

36

With the help of the Taylor series we write

R = 1+
−e3 ∧ e2

φ

2

1!
+

(−e3 ∧ e2
φ

2
)2

2!
+

(−e3 ∧ e2
φ

2
)3

3!
+

(−e3 ∧ e2
φ

2
)4

4!
+

(−e3 ∧ e2
φ

2
)5

5!
+

(−e3 ∧ e2
φ

2
)6

6!
...

or

R = 1− e3 ∧ e2
φ

2

1!
+

(e3 ∧ e2
φ

2
)2

2!
− (e3 ∧ e2

φ

2
)3

3!
+

(e3 ∧ e2
φ

2
)4

4!
− (e3 ∧ e2

φ

2
)5

5!
+

(e3 ∧ e2
φ

2
)6

6!
...

or according to equation (3.2)

R = 1 − (φ

2
)2

2!
+

(φ

2
)4

4!
− (φ

2
)6

6!
..... − e3 ∧ e2

φ

2

1!
+ e3 ∧ e2

(φ

2
)3

3!
− e3 ∧ e2

(φ

2
)5

5!
.....

and therefore

R = cos(
φ

2
) − e3 ∧ e2 sin(

φ

2
) (3.3)

or

R = cos(−φ

2
) + e3 ∧ e2 sin(−φ

2
) (3.4)

This means that a complex number identified by the imaginary unit i = e3∧e2 represents
a rotation around the x-axis. Identifying the imaginary unit with one of the other
bivectors squaring to −1 would mean to rotate around the y-axis or the z-axis.

3.2 Quaternions

There is a lot of literature about quaternions represented in Euclidean Geometric Al-
gebra (for instance [30], [48], [54], [64] and[43]). In this thesis, we will see how they
are embedded in the Conformal Geometric Algebra in a very intuitive way. The main
observation will be that an arbitrary line through the origin represents the rotation axis
for a quaternion if we use the following definitions for the imaginary units

i = e3 ∧ e2, (3.5)

j = e1 ∧ e3, (3.6)

k = e2 ∧ e1. (3.7)

In table 3.2 you can see the four blades for quaternions representing the scalar part and
the three imaginary parts of quaternions.
Let v be an arbitrary normalized Euclidean 3D vector

v = v1e1 + v2e2 + v3e3. (3.8)

37

Table 3.2: Quaternions in Conformal Geometric Algebra
grade term blades nr.

0 scalar
︷︸︸︷
1︸︷︷︸ 1

1 vector e1, e2, e3, e0, e∞ 5
︷ ︸︸ ︷
e1 ∧ e2︸ ︷︷ ︸

−k

, e1 ∧ e3︸ ︷︷ ︸
j

, e2 ∧ e3︸ ︷︷ ︸
−i︸ ︷︷ ︸

,

2 bivector e1 ∧ e∞, e2 ∧ e∞, e3 ∧ e∞, 10
e1 ∧ e0, e2 ∧ e0, e3 ∧ e0,
e0 ∧ e∞
e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e0, e1 ∧ e2 ∧ e∞,

3 trivector e1 ∧ e3 ∧ e0, e1 ∧ e3 ∧ e∞, e1 ∧ e0 ∧ e∞, 10
e2 ∧ e3 ∧ e0, e2 ∧ e3 ∧ e∞, e2 ∧ e0 ∧ e∞,
e3 ∧ e0 ∧ e∞
e1 ∧ e2 ∧ e3 ∧ e∞,
e1 ∧ e2 ∧ e3 ∧ e0,

4 quadvector e1 ∧ e2 ∧ e0 ∧ e∞, 5
e1 ∧ e3 ∧ e0 ∧ e∞,
e2 ∧ e3 ∧ e0 ∧ e∞

5 pseudoscalar e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ 1

The conformal representation of the Euclidean point
(v1, v2, v3) according to table 2.5 on page 19 is

P = v +
1

2
v2e∞ + eo, (3.9)

According to table 2.5 on page 19, the line through the origin eo and the point a is
described by their outer product with the point at infinity e∞

L∗ = eo ∧ P ∧ e∞. (3.10)

The dualization calculation leads to the standard representation of the line (see figure
3.1 with a screenshot of the Maple computations)

L = v1(e3 ∧ e2) + v2(e1 ∧ e3) + v3(e2 ∧ e1). (3.11)

or
L = v1i + v2j + v3k (3.12)

38

Figure 3.1: Quaternion computations in Maple

We will see in the following sections that a rotation around this axis L with an angle of
φ can be computed as the following quaternion:

Q = cos(
φ

2
) + L sin(

φ

2
). (3.13)

3.2.1 The imaginary units

For the imaginary units as defined in the equations (3.5), (3.6) and(3.7) we are able to
derive the following properties :

i2 = (e3 ∧ e2)
2 = e3e2 e3e2︸︷︷︸

−e2e3

= −e3 e2e2︸︷︷︸
1

e3 = − e3e3︸︷︷︸
1

= −1

j2 = (e1 ∧ e3)
2 = e1e3 e1e3︸︷︷︸

−e3e1

= −e1 e3e3︸︷︷︸
1

e1 = − e1e1︸︷︷︸
1

= −1

k2 = (−e1 ∧ e2)
2 = e1e2 e1e2︸︷︷︸

−e2e1

= −e1 e2e2︸︷︷︸
1

e1 = − e1e1︸︷︷︸
1

= −1

For the multiplication of i and j we get

ij = (e3 ∧ e2)(e1 ∧ e3) = e3e2e1e3 = e2e3e3e1 = e2 ∧ e1 = k

39

Accordingly
jk = i

ki = j

and
ijk = ii = −1

We recognize that the three imaginary units i, j, k are represented as the 3 axes in
Conformal Geometric Algebra. As for the imaginary unit of section 3.1 i is representing
the x-axis as well as j and k are representing the y-axis and the z-axis.

Figure 3.2: Quaternion product computations in Maple

3.2.2 Pure quaternions and their geometric product

A pure quaternion Q1 has no scalar part. Its Conformal Geometric Algebra form is

Q1 = v11(e3 ∧ e2) + v12(e1 ∧ e3) + v13(e2 ∧ e1) (3.14)

or using the definitions (3.5), (3.6) and (3.7)

Q1 = v11i + v12j + v13k (3.15)

with (v11, v12, v13) being a normalized 3D vector.

40

The geometric product of a pure quaternion Q1 and a pure quaternion Q2

Q2 = v21(e3 ∧ e2) + v22(e1 ∧ e3) + v23(e2 ∧ e1)

is according to the Maple evaluation of figure 3.2

Q1Q2 = −(v11v12 + v12v22 + v13v23) (3.16)

+(v12v23 − v13v22)(e3 ∧ e2) + (v13v12 − v11v23)(e1 ∧ e3) + (v11v22 − v12v12)(e2 ∧ e1)

which is equivalent to the product of quaternions

Q1Q2 = −(v11v12+v12v22+v13v23)+(v12v23−v13v22)i+(v13v12−v11v23)j+(v11v22−v12v12)k
(3.17)

Note : The square of a pure quaternion therefore is

Q2
1 = −(v11v11 + v12v12 + v13v13) = −1 (3.18)

3.2.3 Rotations based on unit quaternions

Rotations based on quaternions are restricted to rotations with a rotation axis going
through the origin. They can be defined as

Q = e
φ

2
L (3.19)

with
L = v1i + v2j + v3k

representing a normalized line through the origin according to the Euclidean direction
vector of equation (3.8).
This leads to the well-known definition of general quaternions

Q = cos(
φ

2
) + L sin(

φ

2
) (3.20)

Note :
With the help of the Taylor series and the property L2 = −1 (see equation (3.18))

Q = e
φ

2
L

= 1 +
L φ

2

1!
+

(L φ

2
)2

2!
+

(L φ

2
)3

3!
+

(L φ

2
)4

4!
+

(L φ

2
)5

5!
+

(L φ

2
)6

6!
...

41

= 1 − (φ

2
)2

2!
+

(φ

2
)4

4!
− (φ

2
)6

6!
...

+L
φ

2

1!
− L

(φ

2
)3

3!
+ L

(φ

2
)5

5!
...

= cos(
φ

2
) + L sin(

φ

2
)

Would you please notice that there is only a slight difference between the quaternion of
equation (3.20) and the rotor of section 2.9.1. The sign difference indicates a rotation
in different directions.

In Conformal Geometric Algebra we rotate an object o with the help of the operation

orotated = QoQ̃ (3.21)

with Q̃ being the reverse of Q,

Q̃ = cos(
φ

2
) − L sin(

φ

2
) (3.22)

which is also indicated as conjugate of a quaternion.
Please note that for φ = π the quaternion Q

Q = v1i + v2j + v3k (3.23)

represents a line through the origin and the 3D point represented by the normalized 3D
vector (v1, v2, v3) as well as a rotation with angle φ = π about this line. We will use this
property advantageously in the inverse kinematics algorithm of chapter 7.

42

Table 3.3: Plücker coordinates in Conformal Geometric Algebra
grade term blades nr.

0 scalar 1 1
1 vector e1, e2, e3, e0, e∞ 5

︷ ︸︸ ︷
e1 ∧ e2, e1 ∧ e3, e2 ∧ e3︸ ︷︷ ︸,

2 bivector
︷ ︸︸ ︷
e1 ∧ e∞, e2 ∧ e∞, e3 ∧ e∞︸ ︷︷ ︸, 10

e1 ∧ e0, e2 ∧ e0, e3 ∧ e0,
e0 ∧ e∞
e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e0, e1 ∧ e2 ∧ e∞,

3 trivector e1 ∧ e3 ∧ e0, e1 ∧ e3 ∧ e∞, e1 ∧ e0 ∧ e∞, 10
e2 ∧ e3 ∧ e0, e2 ∧ e3 ∧ e∞, e2 ∧ e0 ∧ e∞,
e3 ∧ e0 ∧ e∞
e1 ∧ e2 ∧ e3 ∧ e∞,
e1 ∧ e2 ∧ e3 ∧ e0,

4 quadvector e1 ∧ e2 ∧ e0 ∧ e∞, 5
e1 ∧ e3 ∧ e0 ∧ e∞,
e2 ∧ e3 ∧ e0 ∧ e∞

5 pseudoscalar e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ 1

3.3 Plücker coordinates

We will see in this section that Plücker coordinates can be identified in Conformal
Geometric Algebra based on the six 2-blades indicated in table 3.3.
Since Plücker coordinates describe an arbitrary line we first of all compute the line
representation. According to the Maple program of figure 3.3 this results in

L = −(a3 − b3)e1 ∧ e2 + (a2 − b2)e1 ∧ e3 − (a1 − b1)e2 ∧ e3 (3.24)

+(a2b3 − a3b2)e1 ∧ e∞ − (a1b3 − a3b1)e2 ∧ e∞ + (a1b2 − a2b1)e3 ∧ e∞

Another form is
L = (a1 − b1)i + (a2 − b2)j + (a3 − b3)k (3.25)

+(a2b3 − a3b2)e1 ∧ e∞ − (a1b3 − a3b1)e2 ∧ e∞ + (a1b2 − a2b1)e3 ∧ e∞

or
L = (b − a)e123 + [a × b] ∧ e∞ (3.26)

43

Figure 3.3: Plücker computations in Maple

resulting in
L = ue123 + m ∧ e∞ (3.27)

with u = b − a as Euclidean direction vector and m = a × b as the moment vector.
The corresponding six Plücker coordinates are

(u : m) = (u1 : u2 : u3 : m1 : m2 : m3). (3.28)

Figure 3.4: Plücker coordinates

44

Would you please notice that based on the above equations the pair (u : m) uniquely
determines the line L up to a common (nonzero) scalar multiple which depends on the
distance between a and b. That is, the coordinates may be considered homogenous
coordinates for L, in the sense that all pairs (λu : λm), for λ 6= 0 can be produced by
points on L and only L, and any such pair determines a unique line as long as u is not
zero and u · m = 0 (see [2]).

The cross product m = a× b can also be written as m = −(a∧ b)e123 according to
equation (2.5).
ue123 equals to u1e23 − u2e13 + u3e12 since

(u1e1 + u2e2 + u3e3)e1e2e3

= u1 e1e1︸︷︷︸
1

e2e3 + u2 e2e1︸︷︷︸
−e1e2

e2e3 + u3 e3e1︸︷︷︸
−e1e3

e2e3︸︷︷︸
−e3e2

= u1e2e3 − u2e1e2e2e3 + u3e1e3e3e2

= u1e2e3 − u2e1e3 + u3e1e2

According to the Maple computations of figure 3.5

Figure 3.5: Plücker computations in Maple

a line can also be described as

L = L0 + πm ∧ e∞ (3.29)

45

with L0 as a parallel line through the origin and the moment plane

πm = (P ∧ L∗
0)

∗ (3.30)

spanned by L0 and an arbitrary conformal point P on the line.

Example:
For the two Euclidean points a = (1, 0, 1) and b = (1, 0, 0) we get

u = −e3

and
m = e2

leading to the line
L = −e3e123 + e2 ∧ e∞ = −e12 + e2 ∧ e∞ (3.31)

with the six Plücker coordinates (0 : 0 : -1 : 0 : 1 : 0)

46

Table 3.4: Dual numbers in Conformal Geometric Algebra
grade term blades nr.

0 scalar
︷︸︸︷
1︸︷︷︸ 1

1 vector e1, e2, e3, e0, e∞ 5
e1 ∧ e2, e1 ∧ e3, e2 ∧ e3,

2 bivector e1 ∧ e∞, e2 ∧ e∞, e3 ∧ e∞, 10
e1 ∧ e0, e2 ∧ e0, e3 ∧ e0,
e0 ∧ e∞
e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e0, e1 ∧ e2 ∧ e∞,

3 trivector e1 ∧ e3 ∧ e0, e1 ∧ e3 ∧ e∞, e1 ∧ e0 ∧ e∞, 10
e2 ∧ e3 ∧ e0, e2 ∧ e3 ∧ e∞, e2 ∧ e0 ∧ e∞,
e3 ∧ e0 ∧ e∞︷ ︸︸ ︷
e1 ∧ e2 ∧ e3 ∧ e∞︸ ︷︷ ︸

ε

,

e1 ∧ e2 ∧ e3 ∧ e0,
4 quadvector e1 ∧ e2 ∧ e0 ∧ e∞, 5

e1 ∧ e3 ∧ e0 ∧ ε,
e2 ∧ e3 ∧ e0 ∧ e∞

5 pseudoscalar e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ 1

3.4 Dual numbers

A dual number is a number x + εy, whereby x,y are scalars and ε is a unit with the
property that ε2 = 0. In Conformal Geometric Algebra there are a lot of blades with
this property of squaring to zero, since e2

0 = e2
∞ = 0. We use

ε = e1 ∧ e2 ∧ e3 ∧ e∞ (3.32)

as used in [45] that fulfills this property for dual numbers as well as for dual quaternions
(see section 3.5). This is why we can write a dual number in Conformal Geometric
Algebra as follows

x + εy = x + e1 ∧ e2 ∧ e3 ∧ e∞y (3.33)

Table 3.4 shows the subset of the 32 blades of Conformal Geometric algebra needed for
dual numbers, namely the scalar and ε.

47

Table 3.5: Dual quaternions in Conformal Geometric Algebra
grade term blades nr.

0 scalar
︷︸︸︷
1︸︷︷︸ 1

1 vector e1, e2, e3, e0, e∞ 5
︷ ︸︸ ︷
e1 ∧ e2︸ ︷︷ ︸

−k

, e1 ∧ e3︸ ︷︷ ︸
j

, e2 ∧ e3︸ ︷︷ ︸
−i︸ ︷︷ ︸

,

2 bivector
︷ ︸︸ ︷
e1 ∧ e∞, e2 ∧ e∞, e3 ∧ e∞︸ ︷︷ ︸, 10

e1 ∧ e0, e2 ∧ e0, e3 ∧ e0,
e0 ∧ e∞
e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e0, e1 ∧ e2 ∧ e∞,

3 trivector e1 ∧ e3 ∧ e0, e1 ∧ e3 ∧ e∞, e1 ∧ e0 ∧ e∞, 10
e2 ∧ e3 ∧ e0, e2 ∧ e3 ∧ e∞, e2 ∧ e0 ∧ e∞,
e3 ∧ e0 ∧ e∞︷ ︸︸ ︷
e1 ∧ e2 ∧ e3 ∧ e∞︸ ︷︷ ︸

ε

,

e1 ∧ e2 ∧ e3 ∧ e0,
4 quadvector e1 ∧ e2 ∧ e0 ∧ e∞, 5

e1 ∧ e3 ∧ e0 ∧ e∞,
e2 ∧ e3 ∧ e0 ∧ e∞

5 pseudoscalar e1 ∧ e2 ∧ e3 ∧ e0 ∧ e∞ 1

3.5 Dual quaternions

A dual quaternion is defined by
Q = Q1 + εQ2 (3.34)

with the quaternions
Qi = si + vi1i + vi2j + vi3k (3.35)

and ε is a unit with the property that ε2 = 0.
We will see in this section that dual quaternions - as often used in robotics - can be

identified in Conformal Geometric Algebra based on the six 2-blades used for Plücker
coordinates as well as on scalars and on one 4-blade (ε = e1e2e3e∞) as indicated in table
3.5.

48

We will also see in the following that there is an geometrically intuitive relation
between quaternions and a versor describing for instance a rotation around an arbitrary
rotation axis.

The quaternions can be written in Conformal Geometric Algebra form as

Qi = si + vi1(e3 ∧ e2) + vi2(e1 ∧ e3) + vi3(e2 ∧ e1) (3.36)

With equation (3.32) we can write a dual quaternion in Conformal Geometric Algebra

Figure 3.6: Dual quaternion computations in Maple

as follows
Q = Q1 + εQ2 = Q1 + e1 ∧ e2 ∧ e3 ∧ e∞Q2 (3.37)

This can be written in the form of a linear combination of the above mentioned 8 blades.

Q = s1 − v11(e2 ∧ e3) + v12(e1 ∧ e3) − v13(e1 ∧ e2) (3.38)

+s2(e1 ∧ e2 ∧ e3 ∧ e∞) + v21(e1 ∧ e∞) + v22(e2 ∧ e∞) + v23(e3 ∧ e∞)

We will see now that there is a geometric relation between dual quaternions and a versor
describing a rotation with arbitrary rotation axis. This operation is especially helpful
to describe the movement of robot at a revolute joint.

An arbitrary rotation according to the quaternion Q1 can be described based on
a translation to the origin, the rotation Q1 at the origin and a translation back as
expressed in the versor product

TQ1T̃ . (3.39)

49

Figure 3.7: Dual quaternion computations in Maple

This equals to
V = s1 − v11(e2 ∧ e3) + v12(e1 ∧ e3) − v13(e1 ∧ e2) (3.40)

+(−t2v13 + t3v12)(e1 ∧ e∞) + (t1v13 − t3v11)(e2 ∧ e∞) + (t2v11 − t1v12)(e3 ∧ e∞)

This means that a relation between versors and dual quaternions is

s2 = 0 (3.41)

v21 = −t2v13 + t3v12 (3.42)

v22 = t1v13 − t3v11 (3.43)

v23 = t2v11 − t1v12 (3.44)

In a nutshell, there is the following relation between dual quaternions and the versor
TQ1T̃ :

TQ1T̃ = Q1 + εQ2 (3.45)

with the cross product
v2 = v1 × t

Please note that a normalization according to v2 is needed in order to handle correct
quaternions.

50

Chapter 4

The role of infinity

A key role for a deeper understanding of the basic entities of Conformal Geometric
Algebra plays infinity. Here we see how a plane is created by infinitely increasing the
radius of a sphere, how infinity is represented in Conformal Geometric Algebra and how
translators are a limit of rotors.

4.1 Infinity

In section 2.20 we could see that the conformal basis vector e0 represents the origin of
the Euclidean space (see equation 2.22).
But, what about e∞ ? We will see in this section that e∞ can be interpreted either as
a sphere with infinite radius or as a point or a plane at infinity.

4.1.1 Sphere with infinite radius

Let us at first look at a sphere with center point at the origin. According to equation
2.24 this origin sphere (p = e0) is represented as

S = −1

2
r2e∞ + e0 (4.1)

Another homogenous representation of this origin sphere is for instance its product with
the scalar − 2

r2

S ′ = − 2

r2
S = e∞ − 2

r2
e0 (4.2)

51

Based on this formula and on the fact that S and S ′ are representing the same sphere
we can easily see that an origin sphere with infinite radius is represented by e∞

lim
r→∞

S ′ = e∞

It can be shown that this is true not only for an origin sphere but also for a sphere with
an arbitrary center point.

4.1.2 Point at infinity

Let us now assume an arbitrary Euclidean point x (not equal to the origin) represented
by the conformal vector P

P = x +
1

2
x2e∞ + e0

with the Euclidean normal vector n in the direction of x

x = tn, t > 0, n2 = 1

Another homogenous representation of this point is for instance its product with the

Figure 4.1: The point at infinity

scalar 2
x2

P ′ =
2

x2
(x +

1

2
x2e∞ + e0)

52

P ′ =
2

x2
x + e∞ +

2

x2
e0

We use that form in order to compute the limit limt→∞ P ′ for increasing x. Since x = tn
we get

P ′ =
2

t2n2
tn + e∞ +

2

t2n2
e0

and since n2 = 1

P ′ =
2

t
n + e∞ +

2

t2
e0

Based on this formula and on the fact that P and P ′ are representing the same Euclidean
point we can easily see that the point at infinity for each direction vector n is represented
by e∞

lim
t→∞

P ′ = e∞

4.1.3 Plane with infinite distance to the origin

Let us consider a plane with an arbitrary distance d 6= 0 to the origin. According to
equation 2.26 this plane is represented as

π = n + de∞ (4.3)

with the 3D normal vector n. Another homogenous representation of this plane is for
instance its product with the scalar 1

d

π′ =
1

d
n + e∞ (4.4)

Based on this formula and on the fact that π and π′ are representing the same plane we
can easily see that a plane with infinite distance to the origin is represented by e∞

lim
d→∞

π′ = e∞

4.2 Planes as a limit of spheres

Spheres and planes, both, are vectors in Conformal Geometric Algebra. In this section,
we will see how a sphere S

S = s +
1

2
(s2 − r2)e∞ + e0 (4.5)

53

Figure 4.2: Spheres and planes

with Euclidean center point s and radius r degenerates to a plane as the result of a limit
process.
Depending on whether the origin lies inside or outside of the sphere the minimum
distance from the origin to the sphere is

d = r ±
√

s2 (4.6)

If the origin lies inside of the sphere

r =
√

s2 + d (4.7)

or
r2 = s2 + 2d

√
s2 + d2 (4.8)

and the sphere can be written as

S = s +
1

2
(s2 − s2 − 2d

√
s2 − d2)e∞ + e0 (4.9)

or

S = s +
1

2
(−2d

√
s2 − d2)e∞ + e0 (4.10)

With s = −tn and s2 = t2n2 we get

S = −tn − 1

2
(2td

√
n2 + d2)e∞ + e0 (4.11)

or

−S

t
= n +

1

2
(2d

√
n2 +

d2

t
)e∞ − e0

t
(4.12)

54

lim
t→∞

−S

t
= n + lim

t→∞

1

2
(2d +

d2

t
)e∞ − lim

t→∞

e0

t
(4.13)

lim
t→∞

−S

t
= n + de∞ (4.14)

which is a representation of a plane.

4.3 Translators as a limit of rotors

Here, we will see as an example how a specific translator results from a limit process of
a specific rotor. We derive the rotor from the line of equation (3.31) resulting from the
Plücker coordinates based on the two Euclidean points a = e1 + e3 and b = e1. This

Figure 4.3: From Rotation to Translation

line is equipped with a parameter s as follows

L = −e1 ∧ e2 + se2 ∧ e∞ (4.15)

in order to translate it with increasing s in x-direction.
Let us consider a rotation with angle α around this line L from point −Pt to point

Pt (see figure 4.3). Based on this rotation, described by the following rotor (see section
2.9.1)

R = cos
α

2
− sin

α

2
L (4.16)

55

we will compute the translation from point −Pt to the point Pt with parameter t > 0
translating Pt from the origin in y-direction. The sin and cos of half the angle can be
expressed as follows

sin
α

2
=

t√
t2 + s2

=

√
1

1 + (s
t
)2

(4.17)

cos
α

2
=

s√
t2 + s2

=

√
1

1 + (t
s
)2

(4.18)

since the distance between e0 and Ps is s and the distance between e0 and Pt is t. Based
on these observations we are able to describe the rotation as follows

R =

√
1

1 + (t
s
)2

−
√

1

1 + (s
t
)2

(−e1 ∧ e2 + se2 ∧ e∞) (4.19)

or

R =

√
1

1 + (t
s
)2

+

√
1

1 + (s
t
)2

(e1 ∧ e2) −
√

s2

1 + (s
t
)2

(e2 ∧ e∞) (4.20)

or

R =

√
1

1 + (t
s
)2

+

√
1

1 + (s
t
)2

(e1 ∧ e2) −
√

1
1
s2 + 1

t2

(e2 ∧ e∞) (4.21)

or

R =

√
1

1 + (t
s
)2

+

√
1

1 + (s
t
)2

(e1 ∧ e2) − t

√
1

1 + (t
s
)2

(e2 ∧ e∞) (4.22)

For s → ∞ the resulting translator is

T = lim
s→∞

R = 1 − t(e2 ∧ e∞) = 1 − te2 ∧ e∞ (4.23)

According to equation 2.39 this corresponds to a translation with the translation vector

t = 2te2 (4.24)

that we would expect for a translation from point −Pt to point Pt. Figure 4.3 visualizes
this limit process for increasing parameter s. While the green line L is moving to infinity,
the translation vector approaches more and more to 2e2 (for t = 1).

56

Chapter 5

Approximation algorithms based on
Conformal Geometric Algebra

In Conformal Geometric Algebra points, planes and spheres are represented as vectors.
Table 5.1 summarizes and details results of chapter 2. This kind of representation makes

Table 5.1: Geometric meaning of the conformal vectors
Point P = x + 1

2
x2e∞ + e0 = x1e1 + x2e2 + x3e3 + (x2

1 + x2
2 + x2

3)e∞ + e0

Sphere S = P − 1
2
r2e∞ = s1e1 + s2e2 + s3e3 + 1

2
(s2

1 + s2
2 + s2

3 − r2)e∞ + e0

Plane π = n + de∞ = n1e1 + n2e2 + n3e3 + de∞

it easy to perform tasks like grasping of objects (see for instance [91]) or ray tracing
([27]). In this chapter we solve the approximation of points with the help of a sphere
or a plane. For this application we need at first an investigation of the inner product
of conformal vectors and its geometric meaning. Table 5.2 summarizes the geometric

Table 5.2: The geometric meaning of the inner product of conformal vectors U and V

U · V plane sphere point

plane angle between planes Euclidean distance to center Euclidean distance
sphere Euclidean distance to center distance measure distance measure
point Euclidean distance distance measure Euclidean distance

57

meaning of the inner product of conformal vectors U and V as outlined in the section
5.1 for distances and in section 6.1 for angles.

5.1 The inner product and distances

The inner product of vectors in Conformal Geometric Algebra results in a scalar and
can be used as a measure for distances between basic objects. In this section, we will
see, that the inner product P · S of two vectors P and S can be used for tasks like

• the Euclidean distance between two points

• the distance between one point and one plane

• the decision whether a point is inside or outside of a sphere.

5.1.1 Vectors in Conformal Geometric Algebra

A vector in Conformal Geometric Algebra can be written as

V = v1e1 + v2e2 + v3e3 + v4e∞ + v5e0 (5.1)

The meaning of the two additional coordinates e0 and e∞ is as follows :

v5 = 0 v5 6= 0

v4 = 0 plane through origin sphere/point through origin
v4 6= 0 plane sphere/point

The multiplication with a constant k 6= 0 leads always to the same geometric object
(same as for homogenous objects in projective space).
Division by v5 6= 0 leads to

S = s1e1 + s2e2 + s3e3 + s4e∞ + e0 (5.2)

representing a sphere S with center point s and radius r

S = s + s4e∞ + e0 (5.3)

with

s4 =
1

2
(s2 − r2) =

1

2
(s2

1 + s2
2 + s2

3 − r2)

58

Points are degenerate spheres with radius r = 0.

P = s +
1

2
s2e∞ + e0 (5.4)

Note : when inserting this formula in equation (2.24) the result corresponds to the
equation (5.3).
Planes are degenerate spheres with infinite radius. They are represented as a vector
with v5 = 0

V = v1e1 + v2e2 + v3e3 + v4e∞ = v + v4e∞ (5.5)

This corresponds to the equation (2.26) if we transform it to an expression with normal
vector by dividing with |v| =

√
v2

1 + v2
2 + v2

3 6= 0

π =
v

|v| +
v4

|v|e∞. (5.6)

5.1.2 The inner product of vectors

The inner product of 3D vectors corresponds to the well-known scalar product. The 3D
basis vectors e1, e2, e3 square to 1

e2
1 = e2

2 = e2
3 = 1 (5.7)

For instance, the length of the unit normal vector of equation (2.26)

n = n1e1 + n2e2 + n3e3 (5.8)

results in

|n| =
√

n2
1 + n2

2 + n2
3 = 1 (5.9)

Because of the specific metric of the Conformal space, the additional basis vectors e2
o, e

2
∞

square to 0 and their inner product results in e∞ · eo = −1 (see section 2.7).
Based on these specific properties the inner product between a Conformal vector U

and a Conformal vector V is defined by

U · V = (u + u4e∞ + u5eo) · (v + v4e∞ + v5eo)

Let us now translate the inner product to an expression in Euclidean space

U · V = u · v + v4 u · e∞︸ ︷︷ ︸
0

+v5 u · eo︸ ︷︷ ︸
0

59

+u4 e∞ · v︸ ︷︷ ︸
0

+u4v4 e2
∞︸︷︷︸
0

+u4v5 e∞ · eo︸ ︷︷ ︸
−1

+u5 eo · v︸ ︷︷ ︸
0

+u5v4 eo · e∞︸ ︷︷ ︸
−1

+u5v5 e2
o︸︷︷︸
0

Based on the fact that a 3D vector is perpendicular to the additional basis vectors this
results in

U · V = u · v − u5v4 − u4v5 (5.10)

or
U · V = u1v1 + u2v2 + u3v3 − u5v4 − u4v5

Based on this observation we will now investigate the inner product between points,
spheres and planes.

5.1.3 Distance between points

In the case of U and V being points we get

u4 =
1

2
p2, u5 = 1

v4 =
1

2
s2, v5 = 1

The inner product of these points is according to equation (5.10)

U · V = p · s − 1

2
s2 − 1

2
p2

= p1s1 + p2s2 + p3s3 −
1

2
(s2

1 + s2
2 + s2

3) −
1

2
(p2

1 + p2
2 + p2

3)

= −1

2
(s2

1 + s2
2 + s2

3 + p2
1 + p2

2 + p2
3 − 2p1s1 − 2p2s2 − 2p3s3)

= −1

2
((s1 − p1)

2 + (s2 − p2)
2 + (s3 − p3)

2)

= −1

2
(s − p)2

We recognize that the square of the Euclidean distance of the inhomogenous points
corresponds to the inner product of the homogenous points multiplied by −2.

(s − p)2 = −2(U · V) (5.11)

60

5.1.4 Distance between points and planes

For a vector U representing a point we get

u4 =
1

2
p2, u5 = 1

For a vector V representing a plane with normal vector n and distance d we get

v = n, v4 = d, v5 = 0

The inner product of point and plane is according to equation (5.10)

U · V = P · π = p · n − d (5.12)

representing the Euclidean distance of a point and a plane. Note that the scalar product
p ·n describes the distance of a parallel plane to the origin. Its difference with d results
in the Euclidean distance from the plane to the point.

5.1.5 Distance between planes and spheres

For a vector U representing a plane with normal vector n and distance d we get

u = n, u4 = d, u5 = 0

For a vector V representing a sphere we get

v4 =
1

2
(s2 − r2), v5 = 1

The inner product of point and plane is according to equation (5.10)

U · V = π · S = n · s − d (5.13)

representing the Euclidean distance of the center point of the sphere and the plane (see
section 5.1.4).

5.1.6 Distance between two spheres

We will now compute the inner product of two spheres.

61

For two vectors S1 and S2 representing two spheres we get

u4 =
1

2
(s1

2 − r2
1), u5 = 1

For a vector S representing a sphere we get

v4 =
1

2
(s2

2 − r2
2), v5 = 1

The inner product of the two spheres is according to equation (5.10)

S1 · S2 = s1 · s2 −
1

2
(s2

2 − r2
2) −

1

2
(s1

2 − r2
1)

= s1 · s2 −
1

2
s2

2 +
1

2
r2
2 −

1

2
s1

2 +
1

2
r2
1

=
1

2
r2
1 +

1

2
r2
2 −

1

2
(s2

2 − 2s1 · s2 + s1
2)

=
1

2
(r2

1 + r2
2) −

1

2
(s2 − s1)

2

We get
2(S1 · S2) = r2

1 + r2
2 − (s2 − s1)

2 (5.14)

This means that twice the inner product of two spheres equals the sum of the square of
the radii minus the square of the Euclidean distance of the sphere centers.

5.1.7 Is a point inside or outside of a sphere ?

We will see now that the inner product of a point and a sphere can be used for the
decision of whether a point is inside or outside of a sphere.

For a vector P representing a point (sphere with radius 0) and a vector S representing
a sphere with radius r we get according to equation (5.14)

2(P · S) = r2 − (s − p)2 (5.15)

That is equal to the square of the radius minus the square of the distance between the
point and the center point of the sphere.
Based on this observation we can see that

P · S > 0 : p is inside of the sphere
P · S = 0 : p is on the sphere
P · S < 0 : p is outside of the sphere

62

5.2 Approximation of points with the help of a sphere

In this section a point set pi ∈ R
3, i ∈ {1, ..., n} will be approximated with the help of

a sphere. The inhomogenous points pi are represented as

Pi = pi +
1

2
pi

2e + e0 (5.16)

and the sphere S with inhomogenous center point s and radius r is represented as

S = s + s4e + e0 (5.17)

with

s4 =
1

2
(s2

1 + s2
2 + s2

3 − r2
2)

5.2.1 Approach

In order to solve the approximation problem we

• define a distance measure between point and sphere with the help of the inner
product.

• make a least squares approach to minimize the squares of the distances between
the points and the sphere.

• solve the resulting linear system of equations.

5.2.2 Distance measure

In Conformal Geometric Algebra points and spheres are represented as vectors. This is
why we use the inner product between points and spheres as a distance measure.
The inner product between a point Pi and the sphere S is defined by

Pi · S = (pi +
1

2
pi

2e + e0) · (s + s4e + e0) (5.18)

According to equation (5.10) this results in

Pi · S = pi · s −
1

2
pi

2 − s4

63

or

Pi · S = wi,1s1 + wi,2s2 + wi,3s3 + wi,4s4 + wi,5 =
4∑

j=1

(wi,jsj) + wi,5 (5.19)

with

wi,k =





pi,k : k ∈ {1, 2, 3}
−1 : k = 4
−1

2
pi

2 : k = 5

5.2.3 Least squares approach

In the least-squares sense we consider the minimum of the squares of the distances
between all the points and the sphere

min

n∑

i=1

(Pi · S)2 (5.20)

In order to obtain the minimum we have the following 4 necessary conditions

∀k ∈ {1..4} :
∂(

∑n

i=1 (Pi · S)2)

∂sk

=
n∑

i=1

∂(Pi · S)2

∂sk

= 0 (5.21)

With the help of

∂(Pi · S)2

∂sk

= 2(Pi · S) · ∂(Pi · S)

∂sk

and

∂(Pi · S)

∂sk

=
∂(

∑4
j=1(wi,jsj) + wi,5)

∂sk

= wi,k

we obtain

∀k ∈ {1..4} :
∂(Pi · S)2

∂sk

= 2
n∑

i=1

(
4∑

j=1

(wi,jsjwi,k) + wi,5wi,k) = 0

or

∀k ∈ {1..4} :
n∑

i=1

4∑

j=1

(wi,jwi,ksj) = −
n∑

i=1

(wi,5wi,k)

64

which is the same as

∀k ∈ {1..4} :
4∑

j=1

n∑

i=1

(wi,jwi,ksj) = −
n∑

i=1

(wi,5wi,k)

or

∀k ∈ {1..4} :
4∑

j=1

sj

n∑

i=1

(wi,jwi,k) = −
n∑

i=1

(wi,5wi,k)

The result of the least squares approach is as follows :




∑n

i=1 pi,1pi,1

∑n

i=1 pi,2pi,1

∑n

i=1 pi,3pi,1 −
∑n

i=1 pi,1∑n

i=1 pi,1pi,2

∑n

i=1 pi,2pi,2

∑n

i=1 pi,3pi,2 −∑n

i=1 pi,2∑n

i=1 pi,1pi,3

∑n

i=1 pi,2pi,3

∑n

i=1 pi,3pi,3 −∑n

i=1 pi,3

−∑n

i=1 pi,1 −∑n

i=1 pi,2 −∑n

i=1 pi,3

∑n

i=1 1


 · s =




1
2

∑n

i=1 pi
2pi,1

1
2

∑n

i=1 pi
2pi,2

1
2

∑n

i=1 pi
2pi,3

−1
2

∑n

i=1 pi
2




(5.22)
with pi,1, pi,2, pi,3 as inhomogenous coordinates of the points pi. The result s = (s1, s2, s3, s4)
represents the center point of the sphere (s1, s2, s3) and its radius in terms of r2 =
s2
1 + s2

2 + s2
3 − 2s4

5.3 Approximation of points with the help of planes

or spheres

In this section, a point set pi ∈ R
3, i ∈ {1, ..., n} will be approximated with the help

of the best approximation plane or sphere.

Plane and sphere in conformal space are vectors of the form

S = s1e1 + s2e2 + s3e3 + s4e∞ + s5e0 (5.23)

while the points pi are specific vectors of the form

Pi = pi +
1

2
pi

2e∞ + e0 (5.24)

65

5.3.1 Approach

In order to solve the approximation problem we

• use the distance measure of the previous section between point and sphere/plane
with the help of the inner product.

• make a least squares approach to minimize the squares of the distances between
the points and the sphere/plane.

• solve the resulting eigenvalue problem.

5.3.2 Distance measure

A distance measure between a point Pi and the sphere/plane S can be defined in Con-
formal Geometric Algebra with the help of their inner product

Pi · S = (pi +
1

2
pi

2e∞ + e0) · (s + s4e∞ + s5e0) (5.25)

According to equation (5.10) this results in

Pi · S = pi · s − s4 −
1

2
s5pi

2

or

Pi · S =
5∑

j=1

wi,jsj (5.26)

with

wi,k =





pi,k : k ∈ {1, 2, 3}
−1 : k = 4
−1

2
pi

2 : k = 5

5.3.3 Least squares approach

In the least-squares sense we consider the minimum of the squares of the distances
between all the points and the plane/sphere

min

n∑

i=1

(Pi · S)2 (5.27)

66

In order to obtain the minimum this can be rewritten in bilinear form to

min(sT Bs) (5.28)

with

sT = (s1, s2, s3, s4, s5)

B =




b1,1 b1,2 b1,3 b1,4 b1,5

b2,1 b2,2 b2,3 b2,4 b2,5

b3,1 b3,2 b3,3 b3,4 b3,5

b4,1 b4,2 b4,3 b4,4 b4,5

b5,1 b5,2 b5,3 b5,4 b5,5




bj,k =
n∑

i=1

wi,jwi,k

The matrix B is symmetric since bj,k = bk,j. Without loss of generality we consider only
normalized results sT s = 1. A conventional approach to such a constrained optimization
problem is to introduce the Lagrangian

L = sT Bs − λsT s,

sT s = 1,

BT = B

Necessary conditions for a minimum are

0 = ∇L = 2 · (Bs − λs) = 0

→ Bs = λs

The solution of the minimization problem is given as the Eigenvector of B that corre-
sponds to the smallest Eigenvalue. (see [28] for details)

67

Figure 5.1: Fit of a sphere

5.3.4 Example

Let us have a look on an example with 5 points.

Point x y z

p1 1 0 0
p2 1 1 0
p3 0 0 1
p4 0 1 1
p5 -1 0 1

The least squares calculation results in

S = −0.301511e1 + 0.301511e2 − 0.301511e3

−0.603023e∞ + 0.603023e0

Another representation of this object is

S = −1

2
e1 +

1

2
e2 −

1

2
e3 − e∞ + e0

This corresponds to a sphere with the center point s = (0.5, 0.5,−0.5) and the square
of the radius r2 = 2.75 (see figure 5.1).

68

Figure 5.2: Fit of a plane

Let us now change the fifth point in order that all the points are within one plane.

Point x y z

p1 1 0 0
p2 1 1 0
p3 0 0 1
p4 0 1 1
p5 -1 0 2

Now, the result is
S = 0.57735e1 + 0.57735e3 + 0.57735e∞

representing a plane according to figure 5.2.

69

Chapter 6

Rapid prototyping of robotics
algorithms

Conformal Geometric Algebra together with the tool CLUCalc support the rapid proto-
typing of algorithms, namely the interactive and visual development as well as the test
of the algorithms. This chapter shows the rapid prototyping of two robotics algorithms.
The algorithms are derived from two real applications of Cinvestav, Guadaljara for the
grasping of the robot Geometer shown in figure 6.7 on page 77. At first, we visualize the
inverse kinematics of the robot (see [35]). Second, we visualize the grasping algorithm
of the robot (see [39]). The visualization is done using CLUCalc (see section 2.13.1).
The corresponding CLUScripts can be downloaded from the homepage

http://www.gris.informatik.tu-darmstadt.de/~dhilden/

These scripts demonstrate the easy way of developing algorithms based on CLUCalc.
The figures of this chapter show the visualization of the main steps of the rapid proto-
typing process.

6.1 The inner product and angles

Kinematics calculations often need the computation of angles. This section presents
relations between the inner product of geometric objects and their angles.

Angles between two objects o1, o2 like two lines or two planes can be computed using
the inner product of the normalized direct representation of the objects.

cos(θ) =
o∗1 · o∗2
|o∗1| |o∗2|

(6.1)

70

or

θ = ∠(o1, o2) = arccos
o∗1 · o∗2
|o∗1| |o∗2|

(6.2)

Please refer to [19] for more details.
Let us derive as one example an exression for the angle between two planes based

on the observation of equation (5.10). For a vector π1 representing a plane with normal
vector n1 and distance d1 we get

u = n1, u4 = d1, u5 = 0

For a vector π2 representing another plane we get

v = n2, v4 = d2, v5 = 0

The inner product of the two planes is

π1 · π2 = n1 · n2 (6.3)

representing the scalar product of the two normals of the planes.
Based on this observation the angle θ between two planes can be computed as follows

cos(θ) = π1 · π2 (6.4)

This corresponds to equation (6.2) taking into account that the planes are normalized
and that the dualization operation only switches between the two possible angles between
planes.

6.2 Inverse kinematics application

Objects like robots or virtual humans can be modeled as a set of rigid links connected
together at various joints. These objects are described as kinematic chains.
The robot of figure 6.1 consists of 3 links and one gripper

• the 3 joint points are called P0, P1 and P2

• the 3 link distances are called d1, d2 and d3

• the distance from the last joint P2 to the ’T’ intersection of the gripper is called
d4

71

Figure 6.1: Kinematic chain of the example robot

It has 5 degrees of freedom (DOF) by means of the following 5 joint angles θ1 .. θ5 :

• θ1 : rotate robot (around Ly)

• θ2, θ3, θ4 : acting in plane π1 (blue plane in figure 6.3)

• θ5 : rotate gripper

whereby the plane π1 is defined by the origin e0, the point Py (see equation (2.23)) on
the y-axis and the target point Pt (see figure 6.2).

Figure 6.2: Target point and gripper plane

According to equation (2.27) we get

π∗
1 = e0 ∧ Py ∧ Pt ∧ e∞ (6.5)

72

Our goal is to find the joint angles in terms of a target position Pt and an orientation
of the gripper plane πt (the red plane in figure 6.2).
In Conformal Geometric Algebra, this inverse kinematics problem can be solved in a
geometrically very intuitive way due to its easy handling of intersections of spheres,
circles and planes etc.
Our approach is based on the papers [13] and [36].

For ease of use we define the gripper plane πt as parallel to the ground plane. Since
a plane can be described using equation (2.26) we get

πt = e2 + Pt,y e∞ (6.6)

whereby Pt,y is the y-coordinate of the target point Pt.
In the following steps we will at first calculate the 3 locations P0, P1, P2. Based on

these points we will be able to calculate the 5 joint angles θ1 .. θ5.

6.2.1 Computation of P0

Figure 6.3: Computation of P0

In the first step the point P0 is calculated. Its 3D representation is (0, d1, 0).
Using equation (2.20) we get

P0 = d1e2 +
1

2
d2

1e∞ + e0 (6.7)

.

73

Figure 6.4: Computation of P2

6.2.2 Computation of P2

In the second step point P2 is calculated. It is the joint location of the last link of the
robot. This means that it has to lie on the sphere St with the center point Pt and with
the length d4 of the displacement between Pt and P2 as radius. Using equation (2.24)
we get

St = Pt −
1

2
d2

4e∞ (6.8)

Since the gripper also has to lie in the orientation plane πt, we have to intersect it with
St. The result is the circle Zt (see equation (2.28))

Zt = St ∧ πt. (6.9)

Please remember that a plane is simply a sphere with infinite radius.

Since P2 also has to lie in the plane π1, the intersection of π1 with the circle Zt results
in a point pair (see equation (2.33))

Pp2 = Zt ∧ π1. (6.10)

From the mechanics point of view, only one of these two points is applicable which we
choose as our point P2. We use the following formula for extracting the two points of a
point pair Pp (see [26])

P± =
±√

Pp ∗ ·Pp∗ + Pp∗
e∞ · Pp∗ (6.11)

74

Figure 6.5: Computation of P1

6.2.3 Computation of P1

In the third step the point P1 is calculated.

Computing this point is usually a difficult task because it is the intersection of two
circles. However, using Conformal Geometric Algebra we can determine it by intersect-
ing the spheres S1 and S2 with the plane π1

S1 = P0 −
1

2
d2

2e∞, (6.12)

S2 = P2 −
1

2
d2

3e∞, (6.13)

and

Pp1 = S1 ∧ S2 ∧ π1. (6.14)

Again, we have to choose one point from the resulting point pair.

As an example for the CLUCalc implementation, please find as follows the CLUCalc
code of this step :

s1 = p0 - 0.5*d2*d2*einf;

s2 = p2 - 0.5*d3*d3*einf;

Pp1 = s1^s2^PI1;

// choose one of the two points

p1 = DissectSecond(*Pp1);

75

Figure 6.6: Visualization of step 4

6.2.4 Computation of the joint angles

At first, all the auxiliary planes and lines, that are needed for the computation of the
angles of the joints are calculated. We need

• the plane π2 (orange in figure 6.6) spanned by the x-axis and the y-axis. Since the
z-axis is perpendicular to this plane, we get

π2 = e3 (6.15)

• the (blue) line L1 through P0 and P1

L∗
1 = P0 ∧ P1 ∧ e∞ (6.16)

• the (green) line L2 through P1 and P2

L∗
2 = P1 ∧ P2 ∧ e∞ (6.17)

• the (magenta) line L3 through P2 and Pt

L∗
3 = P2 ∧ Pt ∧ e∞ (6.18)

Now, we are able to compute all the joint angles

θ1 = ∠(π1, π2) (6.19)

θ2 = ∠(L1, Ly) (6.20)

76

θ3 = ∠(L1, L2) (6.21)

θ4 = ∠(L2, L3) (6.22)

using the equation (6.2) with o1, o2 being either two lines or two planes.
In our simplified example

θ5 = 0 (6.23)

since the gripper should be parallel to the ground plane.

6.3 Grasping an object

This algorithm was derived from the algorithm for the grasping process of the robot
Geometer (figure 6.7) at Cinvestav, Guadalajara (see [39]). Here we present its rapid
prototyping using CLUCalc. The goal of our grasping algorithm is to move a gripper to

Figure 6.7: Robot Geometer grasping an object

an object, both gripper and object described by a circle.
At first we compute the grasping circle Zt of the object, second the gripper circle Zh

is estimated, third the translation and rotation for the movement is computed. The
figures of this section show the visualization of the main steps of the rapid prototyping
of this algorithm.

77

6.3.1 Assign points

First of all, we need 4 points identifying the object to be grasped. In the real application
they are taken from a calibrated stereo pair of images of the object. In order to assign
the four points we at first compute the distances between all the 4 points and the plane
spanned by the 3 other points. The point with the greatest distance da will be called
apex point xa (see CLUCalc visualization in figure 6.8). The other 3 points are called
base points xb1 , xb2 , xb3 .

Figure 6.8: Assign points

6.3.2 Compute grasping circle Zt

To compute the grasping plane πt we compute the base circle

Z∗
b = xb1 ∧ xb2 ∧ xb3 (6.24)

based on the outer product of the three base points (see table 2.5 on page 19). The
object might be grasped in the middle of it. That means, we translate the circle Zb in
the direction and magnitude of da

2
.

With the help of the translator

T = 1 +
1

4
dae∞ (6.25)

we compute the grasping circle Zt (see CLUCalc visualization in figure 6.9)

Zt = TZbT̃ (6.26)

78

Figure 6.9: Grasping circle Zt

6.3.3 Gripper circle

While the gripper circle of our simulation is computed by default (see CLUCalc visu-
alization in figure 6.11), the gripper circle of the real robot is estimated by tracking
its metallic screws. Figure 6.10 shows the position of the point Ph. We create a sphere

Figure 6.10: Gripper

with center point Ph and radius r (equal to the middle of the aperture of the gripper)
according to table 2.5 on page 19

Sh = Ph −
1

2
r2e∞ (6.27)

Now tracking two additional points a and b on the gripper we create the plane πh.

π∗
h = Ph ∧ a ∧ b ∧ e∞ (6.28)

79

(please notice that a plane is created with the help of the outer product of three points
and the point at infinity).
Finally we calculate the gripper circle as the intersection of sphere and plane

Zh = Sh ∧ πh (6.29)

6.3.4 Estimation of translation and rotation

Now, we compute the transformation needed to move the gripper circle to the grasping
circle.

The translation axis is computed easily having the centers of the circles (the center
point P of a circle Z can be easily computed with the help of a sandwich product
P = Ze∞Z).

l∗T = Ph ∧ Pt ∧ e∞ (6.30)

The distance d between the circles is d = |l∗T |. The rotation axis is computed using the

Figure 6.11: Gripper circle Zh, grasping circle Zt and their axes Lh and Lt

axes of each circle L∗
h and L∗

t (see the red lines in figure 6.11)

L∗
h = Zh ∧ e∞, (6.31)

L∗
t = Zt ∧ e∞. (6.32)

That axes Lh and Lt yield in the plane π∗
th given by

π∗
th = L∗

t ∧ (L∗
hE), E = e0 ∧ e∞ (6.33)

80

therefore the rotation axis is

L∗
r = Ph ∧ πth ∧ e∞. (6.34)

The angle θ between the two circles can be computed based on the inner product of the
two lines L∗

h and L∗
t (see CLUCalc visualization in figure 6.11).

cos(θ) =
L∗

t · L∗
h

|L∗
t ||L∗

h|
(6.35)

Once that we estimated the rotation and translation axes (see section 2.9.1),

R = e−
1

2
∆θLr (6.36)

T = 1 +
1

2
∆dLte∞ (6.37)

we are able to move the gripper circle Zh step by step (z′h) towards the grasping circle
Zt. (see CLUCalc visualization in figure 6.12).

z′h = TRZhR̃T̃ . (6.38)

Figure 6.12: Moving gripper circle Zh towards the grasping circle Zt

81

Chapter 7

Efficient inverse kinematics in
Conformal Geometric Algebra

In this chapter, we present the efficient implementation of the inverse kinematics of a
human-arm-like model. For the animation of humanoid models, inverse kinematics (IK)
solutions are important as a basic building block for path planning. The standard model
for arms (and also legs) is a seven 7 DOF kinematic chain, with 3 degrees of freedom
(θ1, θ2, θ3) at the shoulder, 1 degree of freedom at the elbow θ4 and 3 degrees of freedom
at the wrist (θ5, θ6, θ7).

The current standard tool for solving the inverse problem of mapping from a given
end effector state to the configuration space {θi} is due to Tolani, Goswami, and Badler
[80]. Our analytic solution to the inverse problem in Conformal Geometric Algebra
is an improvement of [36], and its derivation is considerably simpler than in affine or
projective geometry. Perhaps more importantly for the prospective user, our approach
also turns out to be faster, when implemented using Gaigen 2 or optimized based on
Maple.

7.1 Optimizations based on quaternions

Normally, the goal of an inverse kinematics algorithm is the computation of the joint
angles (see section 6.2). But, in our application the goal is to compute quaternions in
order to perform SLERP operations for the motion of the arm (see [86] for details on
this motion interpolation procedure). In our former approach for the application of this
chapter [36] we at first computed the angles and then the corresponding quaternions.

But, in section 3.2 we realized that quaternions can be directly handled in a Confor-

82

mal Geometric Algebra algorithm. This is the reason why we improved the algorithm
to directly and efficiently compute the needed quaternions.

7.1.1 Direct computation of quaternions

For efficiency reasons, our inverse kinematics approach directly uses quaternions in the
algorithm. This is why we avoid the effort of translating between different mathematical
systems like transformation matrices and quaternions. Here, we directly compute a
quaternion that rotates an object from one point P1 to another point P2, both points
having the same distance to the origin.

At first, we calculate the middle line Lm between the two points through the origin.
In Conformal Geometric Algebra, a middle plane of two points is described by their
difference (see [64])

πm = P1 − P2. (7.1)

We calculate the middle line with the help of the intersection of this plane and the plane
through the origin and the points P1 and P2

π∗
e = eo ∧ P1 ∧ P2 ∧ e∞, (7.2)

and get
Lm = πe ∧ πm. (7.3)

Second, in order to rotate from P1 to P2 we have to rotate around the middle line

Figure 7.1: Rotation based on the line between two points through the origin

with radius π. This results in a quaternion identical with the normalized line (see

83

section 3.2.3)

Q =
Lm

|Lm|
. (7.4)

In figure 7.1 the two points P1 and P2 are indicated by two blue spheres. They can be
transformed into each other based on a rotation around the blue middle line.

7.1.2 Efficient computation of quaternions

For efficiency reasons we use an approach to calculate quaternions without the need of
using trigonometric functions. According to equation (3.13) a quaternion describing a
rotation can be computed with the help of half of an angle and a normalized rotations
axis. For example, if L = i = e3 ∧ e2, the resulting quaternion

Q = cos(
φ

2
) + i sin(

φ

2
)

= cos(
φ

2
) + (e3 ∧ e2) sin(

φ

2
)

represents a rotation around the x-axis. The angle between two lines or two planes is
defined according to section 6.1 as follows:

cos(θ) =
o∗1 · o∗2
|o∗1| |o∗2|

, (7.5)

We already know the cosine of the angle. This is why we are able to compute the
quaternion in a more direct way using the following two properties of the trigonometric
functions

cos(
φ

2
) = ±

√
1 + cos(φ)

2
(7.6)

and

sin(
φ

2
) = ±

√
1 − cos(φ)

2
, (7.7)

leading to the formulas

cos(
φ

2
) = ±

√√√√1 +
o∗
1
·o∗

2

|o∗1||o∗2|
2

(7.8)

and

sin(
φ

2
) = ±

√√√√1 − o∗
1
·o∗

2

|o∗1||o∗2|
2

. (7.9)

The signs of these formulas depend on the application.

84

Table 7.1: Input/output parameters of the inverse kinematics algorithm
parameter meaning

Pw target point of wrist
φ swivel angle
d1, d2 length of the forearm and the upper arm

Qs shoulder quaternion
Qe elbow quaternion

7.2 The inverse kinematics algorithm

Here, we describe the inverse kinematics of the human-arm-like model step by step.
Our goal is to reach the chosen point Pw with the wrist. An arbitrary orientation of
the gripper is not investigated in this document. Additional input parameters of the
algorithm are the lengths of the arm as well as the swivel angle. Results of the algorithm
are the quaternions at the shoulder as well as at the elbow. Please find a summary of
the input and output parameters of the algorithm in table 7.1.

7.2.1 Compute the swivel plane

According to [80] we use the swivel angle φ as one free degree of redundancy.
The swivel plane is the plane rotated by φ around the line Lsw through shoulder (at

the origin) and Pw (see figure 7.2).

Lsw = (eo ∧ Pw ∧ e∞)∗ (7.10)

Note that the direct representation of a line is defined with the help of two points and
the point at infinity. The quaternion Qswivel is defined according to equation (3.13)

Qswivel = cos(
φ

2
) +

Lsw

|Lsw|
sin(

φ

2
) (7.11)

Initially, the swivel plane is defined with the help of the origin, the point Pw, the point
Pz (x = e3)

Pz = e3 +
1

2
e∞ + eo (7.12)

and the point at infinity (see table 2.5 on page 19)

πswivel = (eo ∧ Pz ∧ Pw ∧ e∞)∗. (7.13)

85

Its final rotated location is

πswivel = Qswivel πswivel Q̃swivel (7.14)

For details on computing rotations in Conformal Geometric Algebra please refer to
section 2.9.1.

Figure 7.2: Swivel plane

7.2.2 The elbow point Pe

With the help of the two spheres

S1 = Pw − 1

2
d2

2e∞

S2 = eo −
1

2
d2

1e∞

(7.15)

with center points Pw and eo and radii d2, d1 we are able to compute the circle determin-
ing all the possible locations of the elbow as the intersection of the spheres (see table
2.5 on page 19).

Ze = S1 ∧ S2 (7.16)

The intersection with the swivel plane delivers the point pair.

Pp = Ze ∧ πswivel (7.17)

and we decide for one of the two possible elbow points and call it Pe. Please refer to the
formula 6.11 for extracting points of a point pairs. Figure 7.3 shows the elbow point Pe

as the intersection of the swivel plane with the two spheres at the shoulder and at the
target point Pw.

86

Figure 7.3: Compute the elbow point

7.2.3 Calculate the elbow quaternion Qe

The elbow angle θ4 is computed with the help of the line Lse through the shoulder and
the elbow

Lse = (eo ∧ Pe ∧ e∞)∗ (7.18)

and the line Lew through the shoulder and the wrist

Lew = (Pe ∧ Pw ∧ e∞)∗. (7.19)

Based on these two lines we are able to compute the angle between them (ci = cos(θi))

c4 = cos(θ4) =
L∗

se · L∗
ew

|L∗
se| |L∗

ew|
(7.20)

according to equation (7.5).

Now, we are able to compute the quaternion Qe according to equation (3.13)

Qe = cos(θ4/2) + sin(θ4/2)i. (7.21)

It represents a rotation around the local x-axis with the angle θ4. The optimized version
of this quaternion is

Qe =

√
1 + c4

2
−

√
1 − c4

2
i, (7.22)

according to (7.8) and (7.9). This quaternion rotates the upper arm corresponding to
the angle between the two yellow lines as shown in figure 7.4.

87

Figure 7.4: Use the elbow quaternion

7.2.4 Rotate to the elbow position

At first we calculate the middle line Lm through the origin within the same distance
from the points Pe and Pze (see section 7.1.1)

Pze = d1e3 +
1

2
d2

1e∞ + eo. (7.23)

We will need this line Lm in the next step in order to rotate around this line.
To compute Lm, we use the middle plane (difference of the two points Pe and Pze)

πm = Pze − Pe (7.24)

and the plane through the origin and the points Pe and Pze

π∗
e = eo ∧ Pze ∧ Pe ∧ e∞ (7.25)

and intersect them
Lm = πe ∧ πm. (7.26)

In order to rotate the elbow towards our already computed point Pe we have to rotate
around the middle line of the previous step with angle π. This results in a quaternion
identical with the normalized middle line (see equation 3.13).

Q12 =
Lm

|Lm|
. (7.27)

Figure 7.5 shows this rotation from the z-axis Lz to the elbow point with the help of
the yellow middle line.

88

Figure 7.5: Rotate to the elbow position

7.2.5 Rotate to the wrist location

The angle θ3 (and the resulting quaternion Q3) is computed with the help of the y-z-
plane rotated by the quaternion Q12 and the swivel plane. The plane in y and z direction
(with normal vector e1 and zero distance to the origin), is computed by

πyz = e1. (7.28)

The rotated plane πyz2 results in

πyz2 = Q12 πyz Q̃12. (7.29)

Based on these two planes we are able to compute the angle between them

Figure 7.6: Rotate to the wrist location

c3 = cos(θ3) =
π∗

yz2 · π∗
swivel∣∣π∗

yz2

∣∣ |π∗
swivel|

(7.30)

89

according to equation (7.5) and we get the quaternion

Q3 = cos(θ3/2) + sin(θ3/2)k. (7.31)

It represents a rotation around the local z-axis with the angle θ3. The optimized version
of this quaternion is

Q3 = ±
√

1 + c3

2
+

√
1 − c3

2
k, (7.32)

according to (7.8) and (7.9).
Note: the sign of this quaternion depends on which side of the plane πyz2 the point Pw

is lying. This can be easily computed with the help of the inner product

πyz2 · Pw.

This quaternion rotates the arm to the wrist location as shown in figure 7.6.

The resulting quaternion for the shoulder rotation can now be computed as the
product of Q12 and Q3

Qs = Q12Q3. (7.33)

Together with the elbow quaternion Qe, we have all the information needed for the in-
terpolation based on SLERP (see [86] for details on this motion interpolation procedure)
in order to reach the target.

7.3 Runtime optimization approaches

According to the development process proposed in section 2.13, at first we developed and
simulated our algorithm visually based on CLUCalc, developed by Christian Perwass.

Then, we had to implement it on the target platform, the virtual reality system
Avalon ([90]) written in C++. Previously, inverse kinematics was implemented using
IKAN [80], a widely used C++ library.

When implementing our algorithm at first with Gaigen, the runtime benchmarks were
worse than the IKAN implementation. But when using our optimization techniques our
approaches outperformed the IKAN implementation clearly. We present two different
optimization approaches with different advantages, one is based on Maple, the other one
is based on the code generator Gaigen 2.

90

Table 7.2: Input/output parameters of the inverse kinematics algorithm
parameter Gaigen meaning

Pw pw target point of wrist
φ Sangle swivel angle
d1, d2 d1, d2 length of the forearm and the upper arm

Qs q s shoulder quaternion
Qe q e elbow quaternion

7.3.1 Optimizations with Gaigen 2

The specific technique of Gaigen 2 is described in section 2.13.2 on page 32. The following
detailed description of the inverse kinematics algorithm is offered as an explicit example
of how one can think in geometry, and directly program in geometric elements. We
present the Gaigen 2 code for the above inverse kinematics algorithm.

The goal of our inverse kinematics algorithm is to compute the output parameters
Qs and Qe based on the input parameters (see table 7.2).

compute the elbow point Pe

Please find the Gaigen 2 implementation of the equations 7.15 to 7.17 as follows :

Figure 7.7: Compute the elbow point

Sphere s1 = _Sphere(pw - 0.5f*d2*d2*einf); // einf means e∞

originSphere s2 = _originSphere(e0 - 0.5f*d1*d1*einf);

Circle Z_e = _Circle(s1^s2);

With the help of the two spheres s1, s2 with center points Pw (target point of the wrist)
and eo (shoulder located at the origin) and radii d2, d1 we are able to compute the circle
determining all the possible locations of the elbow as the intersection of the spheres.

91

For the needed geometric objects we use the following specializations:
Both, the target point Pw as well as the sphere S1 are assigned to a multivector type
called Sphere (please remember that a point in Conformal Geometric Algebra is simply
a sphere with 0 radius). Type Sphere is defined as follows:

specialization: blade Sphere(e0=1, e1, e2, e3, einf);

Type Sphere means a linear combination of basis blades with the coefficient of e0 being
1. For the second sphere S2 with center at the origin e0, we use the type originSphere:

specialization: blade originSphere(e0, einf);

since e0-0.5f* d1* d1*einf needs only the blades e0 and einf. The result of the
intersection of the spheres Ze = S1 ∧ S2 is of type Circle defined as follows:

specialization: blade Circle(e0^e1, e0^e2, e0^e3, e1^einf,

e2^einf, e3^einf, e0^einf);

Please find the corresponding Gaigen 2 implementation for the computation of
the swivel plane as follows :

originLine l_sw = _originLine(dual(e0^pw^einf));

originPlane SwivelPlane = _originPlane(dual(pz^pw^e0^einf));

Please notice that pz is defined as constant equal to e3.

quaternion SwivelRot = _quaternion(cos(SAngle/2)

+sin(SAngle/2) * (l_sw*(1.0f/_float(GAnorm(l_sw)))));

SwivelPlane = _originPlane(SwivelRot*SwivelPlane*reverse(SwivelRot));

pointPair pp2 = _pointPair(dual(Z_e^SwivelPlane));

Sphere p_e = _Sphere(

-(-sqrt(_float(GAnorm(lcont(pp2,pp2))))+pp2)*

(inverse(lcont(einf,pp2))));

Line Lsw goes through the origin, its algebraic representation is an Euclidean bivec-
tor. We define originLine as follows:

specialization: blade originLine(e1^e2, e2^e3, e3^e1);

92

The plane πswivel is a linear combination of the blades defined by the type originPlane:

specialization: blade originPlane(e1, e2, e3);

We do not define it as Plane, because the distance between πswivel and origin is 0, that
means the e∞ part can be omitted. For contrast, we give the definition of an arbitrary
Plane below:

specialization: blade Plane(e1, e2, e3, einf);

The quaternion Qswivel matches the definition of quaternion,

specialization: versor quaternion(1.0, e1^e2, e2^e3, e3^e1);

point pair pp2 matches the definition of pointPair, and the point Pe is assigned to
Sphere naturally.

Computation of the elbow quaternion Qe

This step is based on section 7.2.3. Please find the Gaigen 2 implementation as follows:
originLine l_se = _originLine(dual(e0^pe^einf));

Line l_ew = _Line(dual((p_e^pw^einf)));

Line Lse goes through the origin, so it is of type originLine:

specialization: blade originLine(e1^e2, e2^e3, e3^e1);

Line Lew does not go through the origin. We define the type Line as follows:

specialization: blade Line(e1^e2, e1^e3, e2^e3,

e1^einf,e2^einf,e3^einf);

mv::Float cosi = (-_Float(scp(l_se,l_ew)))/(d1* d2);

mv::Float cos_2 = sqrt((1+cosi)/2.0);

mv::Float sin_2 = sqrt((1-cosi)/2.0);

quaternion_i q_e = _quaternion_i(cos_2+sin_2*quati);

Here please pay attention to the difference between Lse and Lew. quati is defined as
a constant for the quaternion i. Quaternion Qe describes a rotation around the x axis
only using e3 ∧ e2 as blade. This matches the definition of quaternion_i:

specialization: versor quaternion_i(1.0, e3^e2);

93

Rotate to the elbow position
Please find the Gaigen 2 implementation for the computation of Q12 as follows :

Sphere p_ze = _Sphere(d1*e3);

originPlane pi_m = _originPlane(p_ze-p_e);

originPlane pi_e = _originPlane(dual(p_ze^p_e^e0^einf));

originLine l_m = _originLine(pi_e^pi_m);

pureQuaternion q_12 =_pureQuaternion

(l_m*(1.0f/_float(GAnorm(l_m))));

Point Pze is assigned to type Sphere. Plane πm and πe are NOT assigned to type
Plane, because they go through the origin (the coefficient of e∞ is 0). This matches the
definition of multivector type originPlane. The intersection line Lm goes through the
origin, so it is assigned to type originLine. Quaternion Q12 has no scalar part, so it is
assigned to type pureQuaternion:

specialization: blade pureQuaternion (e3^e2, e1^e3, e2^e1);

Rotate to the wrist location

Table 7.3: Computation of the shoulder quaternion
πyz2 = Q12 ∗ e1 ∗ Q̃12

c3 = πyz2·πswivel

|πyz2||πswivel|

sign = πyz2 · Pw

Q3 =
√

1+c3
2

+
√

1−c3
2

k

Qs = Q12 ∗ Q3

Please find the Gaigen 2 implementation according to table 7.3 as follows (in the
first formula we use directly e1 instead of πyz):
originPlane plane_yz2 = _originPlane(q_12*e1*reverse(q_12));

cosi=computeCos(plane_yz2,SwivelPlane);

mv:: Float sign= _float(scp(plane_yz2,pw));

sign = sign/abs(sign);

cos_2 = sqrt((1+cosi)/2.0)*sign;

sin_2 = sqrt((1-cosi)/2.0);

quaternion_k q_3 = _quaternion_k(cos_2+sin_2*quatk);

q_s = q_12 * q_3;

94

Plane πyz2 is NOT assigned to type Plane, because it has the distance 0 to the ori-
gin. So the coefficient of e∞ is 0. This matches the definition of multivector type
originPlane. Quaternion Q3 describes a rotation around the z axis, so it is assigned
to type quaternion_k:

specialization: versor quaternion_k(1.0, e2^e1);

and quaternion Qs is assigned to the quaternion type.
The above mentioned versor multiplication rotating the plane πyz with the help of a

quaternion Q12 can be optimized as follows . The C++ code for this equation reads:

Plane plane_yz2 = applyVersor(q_12, e1);

whereby q 12 is a quaternion and e1 is a constant.
The final result is then emitted as the following optimized C++ function:

inline Plane applyVersor(

const quaternion& V, const __e1_ct__& X)

{

return Plane(

V.c[0]*V.c[0] - V.c[1]*V.c[1] +

V.c[2]*V.c[2] - V.c[3]*V.c[3] ,

-2*V.c[0]*V.c[1] + 2*V.c[2]*V.c[3],

2*V.c[2]*V.c[1] + 2*V.c[0]*V.c[3]);

}

7.3.2 Optimizations with Maple

We use Maple in order to get the most elementary relationship between the input and
output parameters of our inverse kinematics algorithm (see table 7.4). The specific
technique is described in section 2.13.3 on page 33.

Inverse kinematics algorithm in Maple

The goal of our inverse kinematics algorithm is to compute the output parameters Qs

and Qe based on the input parameters (see table 7.4). In this section we present the
Maple code of the inverse kinematics algorithm :

• Compute the elbow point Pe

95

Table 7.4: Input/output parameters of the inverse kinematics algorithm
parameter Maple meaning

Pw pw(pwx, pwy, pwz) target point of wrist
φ sangle swivel angle
d1, d2 d1, d2 length of the forearm and the upper arm

Qs qs shoulder quaternion
Qe qe elbow quaternion

> pw:=pwx*e1+pwy*e2+pwz*e3+0.5*

(pwx^2+pwy^2+pwz^2)*einf+e0;

> S1:=pw-0.5*d2*d2*einf;

> S2:=e0-0.5*d1*d1*einf;

> Z_e:=S1 &w S2;

> // now compute the swivel plane ...

> l_sw:=-(e0 &w pw &w einf)&c e12345; // dualization operation

> pi_swivel:=-(pz &w pw &w e0 &w einf)

&c e12345;

> norm_l_sw:=sqrt(l_sw &c reversion(l_sw));

> q_swivel:=cos(sangle/2)+sin(sangle/2)

*(l_sw / norm_l_sw);

> pi_swivel:=q_swivel &c pi_swivel

&c reversion(q_swivel);

> PP:=-(Z_e &w pi_swivel) &c e12345;

> PP:=vectorpart(PP,2);

> einf_PP:=LC(einf,PP);

> norm_einf_PP:=einf_PP &c

reversion(einf_PP);

> inv_einf_PP:=einf_PP/norm_einf_PP;

> p_e:=-(-sqrt(scalarpart(LC(PP,PP)))

+PP) &c inv_einf_PP;

> p_e:=vectorpart(p_e,1);

• Compute the quaternion Qe at the elbow joint

> l_se:=-(e0 &w p_e &w einf)&c e12345;

96

> l_ew:=-(p_e &w pw &w einf)&c e12345;

> c4:=-LC(l_se,l_ew)/(d1*d2)/Id;

> qe:=sqrt((1+c4)/2)+sqrt((1-c4)/2)*(-qi);

• Rotate to the elbow position

> p_ze:=d1*e3+0.5*d1^2*einf+e0;

> pi_m:= p_ze-p_e;

> pi_e:=-(p_ze &w p_e &w e0 &w einf)&c e12345;

> l_m:=pi_e &w pi_m;

> q12:=l_m/(sqrt(l_m &c reversion(l_m)));

• Rotate to the wrist location
We compute the quaternion Qs at the shoulder joint. It will let the robot wrist
reach the given target Pw:

> pi_yz2:=q_12 &c e1 &c reversion(q_12);

> _sign:=scalarpart(LC(pw,pi_yz2));

> _sign:=_sign/abs(_sign);

> norm_pi_swivel:=sqrt(pi_swivel &c

reversion(pi_swivel));

> c3:=scalarpart(-LC(pi_yz2,pi_swivel))

/(norm_pi_swivel);

> q3:=sqrt((1+c3)/2)+sqrt((1-c3)/2)

*_sign*qk;

> qs:=q12 &c q3;

The quaternions Qs and Qe are the required results of our algorithm.

Optimized inverse kinematics algorithm

With the help of Maple our geometric algebra formulas are simplified and combined to
very efficient expressions because of the symbolic computation feature of Maple. For
instance, for the first lines of the algorithm of section 7.3.2 we get a result as follows:

Z_e = 0.5*(1-d1^2)*(pwx*e15+pwy*e25+pwz*e35)-

0.5*(1+d1^2)*(pwx*e14+pwy*e24+pwz*e34)+

0.5*e45*(pwx^2+pwy^2+pwz^2+d1^2-d2^2)

97

with only some simple multiplications and additions.

|Lsw| =
√

pw
2
x + pw

2
y + pw

2
z. (7.34)

The coefficients of the swivel plane are:

πswivelx =(2 cos
φ

2
sin

φ

2
pwzpwx − pwy |Lsw|+

2pwy |Lsw| cos
φ

2

2

)/ |Lsw|

πswively =(2 cos
φ

2
sin

φ

2
pwzpwy + pwx |Lsw| −

2pwx |Lsw| cos
φ

2

2

)/ |Lsw|

πswivelz =
−2 sin φ

2
cos φ

2
(pw

2
x + pw

2
y)

|Lsw|
(7.35)

The coefficients of the point pair PP

PPi =
1

2
πswivelx(pw

2
x + pw

2
z + pw

2
y + d2

1 − d2
2)

PPj =
1

2
πswively(pw

2
x + pw

2
z + pw

2
y + d2

1 − d2
2)

PPk =
1

2
πswivelz(pw

2
x + pw

2
z + pw

2
y + d2

1 − d2
2)

PP14 =
1

2
(1 − d2

1)(pwyπswivelz − pwzπswively)

PP15 =
1

2
(1 + d2

1)(pwzπswively − pwyπswivelz)

PP24 =
1

2
(1 − d2

1)(pwzπswivelx − pwxπswivelz)

PP25 =
1

2
(1 + d2

1)(pwxπswivelz − pwzπswivelx)

PP34 =
1

2
(d2

1 − 1)(pwyπswivelx − pwxπswively)

PP35 =
1

2
(1 + d2

1)(pwyπswivelx − pwxπswively) (7.36)

98

Extract the elbow point Pe from the point pair PP :

einf PP =(PP35 − PP34)
2 + (PP14 − PP15)

2

+ (PP25 − PP24)
2

tmp1 = − PP 2
i − PP 2

j − PP 2
k − PP 2

14+

PP 2
15 − PP 2

24 + PP 2
25 − PP 2

34 + PP 2
35

tmpsqrt =
√

tmp1

pex =(PPj(PP34 − PP35) + PPk(PP25 − PP24

+ tmpsqrt(PP15 − PP14))/einf PP

pey =(PPi(PP35 − PP34) + PPk(PP14 − PP15)

+ tmpsqrt(PP25 − PP24))/einf PP

pez =(PPj(PP15 − PP14) + PPi(PP24 − PP25)

+ tmpsqrt(PP35 − PP34))/einf PP (7.37)

The quaternion Qe of the rotation at the elbow joint:

Qe =

√
1 +

pe
2
x−pexpwx+pe

2
y−peypwy−pezpwz+pe

2
z

d1d2

2
+

√
1 − pe

2
x−pexpwx+pe

2
y−peypwy−pezpwz+pe

2
z

d1d2

2
e23 (7.38)

The result for the quaternion Q12 is:

tmp2 =d4
1pe

2
y − 2d3

1pe
2
ypez + d2

1pe
2
ype

2
z+

d4
1pe

2
x − 2d3

1pe
2
xpez + d2

1pe
2
xpe

2
z+

d2
1pe

4
x + 2d2

1pe
2
xpe

2
y + d2

1pe
4
y

|Lm| =
√

tmp2

q12i =
d1pex(d1 − pez)

|Lm|

q12j =
d1pey(d1 − pez)

|Lm|

q12k =
d1(pe

2
x + pe

2
y)

|Lm|
(7.39)

99

The last rotation at the shoulder joint is c3:

c3 =(πswivelx(q12
2
k + q12

2
j − q12

2
i)−

2q12i(q12jπswively + q12kπswivelz))

/
√

πswivel
2
x + πswivel

2
y + πswivel

2
z

sign =pwx(q12
2
i − q12

2
k − q12

2
j)+

2q12i(q12kpwz + q12jpwy)

sign =
sign

|sign|

q3scalar =

√
1 + c3

2

q3k =

√
1 − c3

2
sign (7.40)

The final result of Qs is:

Qs = − q12k · q3k−
(q12i · q3scalar + q12j · q3k)e23−
(q12i · q3k − q12j · q3scalar)e13−
(q12k · q3scalar)e12 (7.41)

Based on these results of the Maple optimization process we can code them into C/C++
easily. For better computation efficiency some frequently used given variables should be
defined as constant and some repeatedly computed expressions should be assigned to
help variables.

7.4 Results

At first we developed and simulated our algorithm on a high level based on CLUCalc
(see [60]), developed by Christian Perwass. Then, we had to implement it on the target
platform Avalon ([90]), a virtual reality system written in C++ using Visual Studio.NET
2003. Previously, inverse kinematics was implemented using IKAN [80], a widely used
C++ library.

Our Maple approach outperformed the IKAN implementation clearly. It turned out
to be about 3.3 times faster. Based on this approach we are able to design and test our

100

algorithms on a high level. When we are satisfied with our algorithm we are able to
transfer it to C/C++ without the need of additional libraries.

Also our Gaigen 2 approach outperformed IKAN in a similar way. The Conformal
Geometric Algebra based algorithm is 43 % faster than IKAN, and even 240 % faster
when the conversion from matrices to quaternions is taken into account. Based on the
Gaigen 2 approach we are able to implement our algorithms in a way that still reflects
the elegant features of Conformal Geometric Algebra.

In a nutshell, we do not only provide a rapid prototyping approach based on elemen-
tary objects but also highly efficient implementations.

101

Chapter 8

Conclusion

The main result of this thesis is that ”Geometric Computing using Conformal
Geometric Algebra” is not only leading to elegant and geometrically intuitive algo-
rithms but that these applications can also be implemented very efficiently. Please find
hereafter the benefits in more detail:

• We investigated quaternions with regard to the direct usage for algorithms in
Conformal Geometric Algebra. In the computer animation algorithm of chapter
7 we could use them directly embedded in the inverse kinematics algorithm. This
is the reason why we could avoid to translate between transformation matrices
and quaternions. In chapter 3 we furthermore showed that Conformal Geometric
Algebra is able to unify a lot of additional mathematical systems like imaginary
numbers, Plücker coordinates, dual numbers and dual quaternions. From the
knowledge point of view, you have to learn only one mathematical system, you do
not have to learn translations between different systems and you are able to get
more intuitively new insights in all areas of engineering.

• We analyzed the role of infinity in Conformal Geometric Algebra for a better
understanding of its geometric entities like spheres and planes. This analysis in
chapter 4 is also helpful for a better understanding of the nature of Conformal
Geometric Algebra operators like rotors and translators.

• The just mentioned basic objects sphere and plane could be used advantageously
for the approximation of point sets by these objects in chapter 5. Very helpful was
the application of the inner product of Conformal Geometric Algebra as a measure
of distance.

102

• Chapter 6 showed the rapid prototyping possibility of algorithms based on Confor-
mal Geometric Algebra with the help of the inverse kinematics and the grasping
process of a robot. The interactive and visual approach based on CLUCalc is
able to lead to a remarkable reduction of development time for new algorithms.
These algorithms are very intuitive and compact because of easy computations of
geometric objects like spheres or circles as well as because of the easy handling of
transformations.

• Chapter 7 presented an inverse kinematics algorithm in Conformal Geometric Al-
gebra and the proof of its efficience. Often a clear structure and greater elegance
result in lower runtime performance. However, we could show that our inverse
kinematics application of a virtual character based on Conformal Geometric Alge-
bra is now even faster than conventional algorithms. Because of their compactness
Conformal Geometric Algebra algorithms are easy to implement and easy to pro-
cess in Gaigen 2 and Maple. The two approaches have different advantages: Based
on the Gaigen 2 approach we are able to implement our algorithms in a way that
still reflects the elegant features of Conformal Geometric Algebra. Based on the
Maple approach we are able to implement them with the help of our standard
compilers without the need of additional libraries.

All of these properties lead to enhanced quality of the algorithms that are also
easier to understand and better to maintain. With these results, we are convinced that
Geometric Computing based on Conformal Geometric Algebra will become
more and more widely accepted in a great variety of applications in computer graphics
and robotics.

103

Chapter 9

Future work

There is a wide range of possibilities for new applications of Geometric Computing
based on Conformal Geometric Algebra. In order to further improve the runtime
performance of Conformal Geometric Algebra solutions we intend to evaluate hardware
solutions. From the application point of view, we will mainly focus on virtual kinematics,
on game engines as well as on dynamics for robotics and computer animations.

Figure 9.1: Architecture of a Geometric Algebra hardware

104

9.1 Hardware solution

From the efficiency point of view, we intend to investigate hardware solutions for Geo-
metric Algebra computations. Currently there are three hardware solutions, one from
Germany ([62]), one from Italy ([3]) and one from UK ([56]). The hardware solution

Figure 9.2: Multivector hardware representation

Figure 9.3: Multivector hardware representation details

from the University of Southampton, UK seems to be the most interesting one since this
is the only floating point solution. The researchers from Southampton have built a scal-
able n-dimensional(n=8) geometric algebra processor core architecture realizable using
both ASIC (Application Specific Integrated Circuit) and FPGA(Field Programmable

105

Gate Array) platform. The FPGA platform is an obvious choice for evaluating algo-
rithms and implementations. However, the over-all goal is performance and FPGAs
just do not deliver fast enough throughput generally to improve over conventional ded-
icated hardware solutions in particular for computer graphics applications. Therefore,
we - as also the developers do - believe that a dedicated ASIC platform is necessary to
demonstrate a credible practical alternative to classical implementations.

The mathematical representation of the architecture is shown in figure 9.1. The
geometric product consists of three main computations, a scalar multiplication, a blade
computation and a sign computation.

Figure 9.2 shows the representation of a multivector consisting of a linear combina-
tion of components as shown in figure 9.3 consisting of a sign, an exponent, a mantissa
and a blade. Their multiplication is done for the sign, the scalar part and the blade
part separately. The sign computation is based on swapping of basic blades.

9.2 Virtual kinematics

Figure 9.4: Virtual kinematics

From the kinematics point of view we will focus on so-called virtual kinematics [47].
With this system you are able to virtually assemble and simulate all kind of kinematic
mechanisms like robots. The described properties of Conformal Geometric Algebra can
be used in order to design a new general approach for inverse kinematics algorithms.
A wide class of kinematic chains can be handled by a single general inverse kinematics
algorithm. Starting from a general description of a wide class of kinematic mechanisms,

106

general solutions are to be developed based on this method. This model will make it easy
to extend the class of kinematic mechanisms. You only have to maintain one algorithm
for many kinematic mechanisms that can be globally optimized.

9.3 Game engines

We expect a lot of advantages for game engines using Conformal Geometric Algebra. The
main question concerning game engines is: what kind of game engine functionality can
benefit the most of Conformal Geometric Algebra? Benefits could be easy programming,
the unified mathematical system, robustness, runtime performance etc. Good candidates
are collision detection and kinematics.

9.4 Dynamics

The physically correct handling of dynamics is especially important for robotics but
also for computer animations and simulations. First results show that also from the
differential kinematics point of view, we are able to work very intuitively with Conformal
Geometric Algebra. While we are able to describe both spheres and planes as vectors
we are additionally able to describe rotations and translations as well as rotational and
linear velocity with the help of unified algebraic expressions. The expression for the
Jacobian immediately relates to geometric entities like lines for the rotation axis of the
rotational velocity and planes with the well known velocity vector as a normal. For the

Figure 9.5: Elasticity based on Conformal Geometric Algebra

handling of elasticity we will benefit from the master thesis [45]. See figure 9.5 for some
simulation results.

107

Bibliography

[1] The homepage of geomerics ltd. HTML document http://www.geomerics.com.

[2] Plucker coordinates. HTML document http://en.wikipedia.org.

[3] F. Sorbello G. Vassallo S. Vitabile A. Gentile, S. Segreto and V. Vullo. Cliffosor,
an innovative fpga-based architecture for geometric algebra. In ERSA 2005, pages
211–217, 2005.

[4] M. Alexa. Linear combination of transformations. In Proceedings of ACM SIG-
GRAPH 2002, 2002.

[5] R. AbÃlamowicz. Clifford algebra computations with maple. In W. E. Baylis, editor,
Clifford (Geometric) Algebras, pages 463–501. Birkhäuser, Boston, 1996.

[6] R. AbÃlamowicz and B. Fauser. The homepage of the package cliffordlib. HTML
document http://math.tntech.edu/rafal/cliff9/, 2005. Last revised: September 17,
2005.

[7] D. Cremers B. Rosenhahn, T. Brox and H.-P. Seidel. A comparison of shape match-
ing methods for contour based pose estimation. In 11th International Workshop on
Combinatorial Image Analysis, 2006.

[8] U. Kersting D. Smith J. Gurney R. Klette B. Rosenhahn, T. Brox. A system of
marker-less human motion estimation. Kuenstliche Intelligenz(KI), 2006.

[9] Paolo Baerlocher and Ronan Boulic. An inverse kinematics architecture enforcing
an arbitrary number of strict priority levels. The Visual Computer, 20(6):402–417,
2004.

108

[10] E. Bayro-Corrochano. Robot perception and action using conformal geometry.
In E. Bayro-Corrochano, editor, the Handbook of Geometric Computing. Appli-
cations in Pattern Recognition, Computer Vision, Neurocomputing and Robotics,
chapter 13, pages 405–458. Springer Verlag, Heidelberg, 2005.

[11] E. Bayro-Corrochano, K. Daniilidis, and G. Sommer. Motor algebra for 3d kine-
matics : The case of the hand-eye calibration. Journal of Mathematical Imaging
and Vision, 13:79–99, 2000.

[12] E. Bayro-Corrochano and G. Sobczyk, editors. Geometric Algebra with Applications
in Science and Engineering. Birkhäuser, 2001.

[13] E. Bayro-Corrochano and J. Zamora-Esquivel. Inverse kinematics, fixation and
grasping using conformal geometric algebra. In IROS 2004, September 2004,
Sendai, Japan, 2004.

[14] E. Bayro-Corrochano and J. Zamora-Esquivel. Kinematics and differential kinemat-
ics of binocular robot heads. In proceedings of ICRA conference, Orlando, USA,
2006.

[15] J. Browne. The grassmannalgebra book home page. HTML document, 2002. Last
visited 15. Sept. 2003.

[16] Jonathan Cameron and Joan Lasenby. Oriented conformal geometric algebra. Pro-
ceedings of ICCA7, 2005.

[17] William K. Clifford. On the classification of geometric algebras. In R. Tucker,
editor, Mathematical Papers, pages 397–401. Macmillian, London, 1882.

[18] A. Differ. The Clados home page. HTML document, 2002. Last visited 15. Sept.
2003.

[19] Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge
University Press, 2003.

[20] L. Dorst, C. Doran, and J. Lasenby, editors. Applications of Geometric Algebra in
Computer Science and Engineering. Birkhäuser, 2002.

[21] L. Dorst and D. Fontijne. 3d euclidean geometry through conformal geometric
algebra (a gaviewer tutorial). available from http://www.science.uva.nl/ga, 2003.

109

[22] L. Dorst and S. Mann. Geometric algebra: a computational framework for geometri-
cal applications (part i: algebra). Computer Graphics and Application, 22(3):24–31,
May/June 2002.

[23] Leo Dorst. Honing geometric algebra for its use in the computer sciences. In
G. Sommer, editor, Geometric Computing with Clifford Algebra. Springer-Verlag,
2001.

[24] P. Fleckenstein. C++ template classes for geometric algebras. Available at
http://www.nklein.com/products/geoma.

[25] D. Fontijne, T. Bouma, and L. Dorst. Gaigen: A geometric algebra implementation
generator. Available at http://www.science.uva.nl/ga/gaigen.

[26] D. Fontijne and L. Dorst. Performance and elegance of 5 models of geom-
etry in a ray tracing application. Software and other downloads available at
http://www.science.uva.nl/∼fontijne/raytracer, 2002.

[27] D. Fontijne and L. Dorst. Modeling 3D euclidean geometry. IEEE Computer
Graphics and Applications, 23(2):68–78, MarchApril 2003.

[28] C. F. van Loan G. H. Golub. Matrix Computations. The Johns Hopkins University
Press, Baltimore and London, 1996.

[29] Holger Griesheimer. Inverse kinematik auf basis von conformaler geometrischer
algebra. Master’s thesis, FH Darmstadt, 2005.

[30] D. Hestenes. New Foundations for Classical Mechanics. Dordrecht, 1986.

[31] D. Hestenes. Old wine in new bottles : A new algebraic framework for compu-
tational geometry. In E. Bayro-Corrochano and G. Sobczyk, editors, Geometric
Algebra with Applications in Science and Engineering. Birkhäuser, 2001.

[32] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus: A Unified
Language for Mathematics and Physics. Dordrecht, 1984.

[33] David Hestenes. The Geometric Calculus home page. HTML document
http://modelingnts.la.asu.edu/.

[34] David Hestenes and Renatus Ziegler. Projective Geometry with Clifford Algebra.
Acta Applicandae Mathematicae, 23:25–63, 1991.

110

[35] D. Hildenbrand. Geometric computing in computer graphics using conformal geo-
metric algebra. Computers & Graphics, 29(5):802–810, 2005.

[36] D. Hildenbrand, E. Bayro-Corrochano, and J. Zamora-Esquivel. Advanced geo-
metric approach for graphics and visual guided robot object manipulation. In
proceedings of ICRA conference, Barcelona, Spain, 2005.

[37] D. Hildenbrand, D. Fontijne, C. Perwass, and L. Dorst. Tutorial geometric algebra
and its application to computer graphics. In Eurographics conference Grenoble,
2004.

[38] D. Hildenbrand, D. Fontijne, Yusheng Wang, M. Alexa, and L. Dorst. Competitive
runtime performance for inverse kinematics algorithms using conformal geometric
algebra. In Eurographics conference Vienna, 2006.

[39] D. Hildenbrand, J. Zamora-Esquivel, and E. Bayro-Corrochano. Inverse kinematics
computation in computer graphics and robotics using conformal geometric algebra.
In ICCA7, 7th International Conference on Clifford Algebras and their Applications,
2005.

[40] E. Hitzer. Interactive and animated geometric algebra with cinderella.
http://sinai.mech.fukui-u.ac.jp/gcj/software/GAcindy/GAcindy.htm.

[41] E. Hitzer. Euclidean geometric objects in the clifford geometric algebra of Origin,
3-Space, Infinity. In Bulletin of the Belgian Mathematical Society - Simon Stevin,
2004.

[42] Martin Erik Horn. Grass, mann! das clifford-kinder-rechenbuch. In Arne Ober-
laender Volkhard Nordmeier, editor, Didaktik der Physik der DPG, Beitraege zur
Fruehjahrstagung Duesseldorf 2004 (Beitrag 8.5), Tagungs-CD des Fachverbands,
ISBN 3-86541-066-9, LOB - Lehmanns Media, Berlin 2004., 2004.

[43] Martin Erik Horn. Quaternionen und geometrische algebra. In Didaktik der Physik
der DPG, Beitraege zur Fruehjahrstagung Kassel 2006, 2006.

[44] A. Lasenby J. Lasenby, E. Bayro-Corrochano and G. Sommer. A new methodology
for computing invariants in computer vision. In Proceedings of ICPR 96, 1996.

[45] Thomas Kalbe. Beschreibung der dynamik elastisch gekoppelter koerper in konfor-
maler geometrischer algebra. Master’s thesis, TU Darmstadt, 2006.

111

[46] U. Kersting, B. Rosenhahn, H.-P. Seidel, and R. Klette. Tracking human motion
without markers - opportunities for field testing in sports. In 5th World Congress
of Biomechanics, Munich, 2006.

[47] Virtual Kinematics. Virtual engineering project home page. HTML document
http://www.igd.fraunhofer.de/igd-a2/projects/Kinematics/index.html.

[48] Joan Lasenby, W. J. Fitzgerald, A.N. Lasenby, and C.J.L. Doran. New geometric
methods for computer vision: An application to structure and motion estimation.
International Journal of Computer Vision, 3(26):191–213, 1998.

[49] S. Mann L.Dorst, D. Fontijne and Morgan Kaufman. Geometric Algebra for Com-
puter Science, An Object-Oriented Approach to Geometry. Morgan Kaufman, 2005.

[50] P. Leopardi. The GluCat home page. HTML document, 2002. Last visited 15.
Sept. 2003.

[51] H. Li, D. Hestenes, and A. Rockwood. Generalized homogeneous coordinates for
computational geometry. In G. Sommer, editor, Geometric Computing with Clifford
Algebra, pages 27–59. Springer-Verlag, 2001.

[52] P. Lounesto. The CLICAL home page. HTML document, 1987. Last visited 15.
Sept. 2003.

[53] S. Mann and L. Dorst. Geometric algebra: a computational framework for geo-
metrical applications (part ii: applications). Computer Graphics and Application,
22(4):58–67, July/August 2002.

[54] S. Mann, L. Dorst, and T. Bouma. The making of GABLE, a geometric algebra
learning environment in matlab. pages 491–511, 2001.

[55] The homepage of maple. http://www.maplesoft.com/products/maple. 615 Kumpf
Drive, Waterloo, Ontario, Canada N2V 1K8.

[56] B. Mishra and P. Wilson. Hardware implementation of a geometric algebra pro-
cessor core. In Proceedings of IMACS International Conference on Applications of
Computer Algebra (in press), Nara, Japan, 2005.

[57] Naeve and A. Rockwood. Course 53 geometric algebra. In Siggraph conference Los
Angeles, 2001.

112

[58] Alba Perez and M. McCarthy. Sizing a serial chain to fit a task trajectory using
clifford algebra exponentials. In proceedings of ICRA conference, Barcelona, 2005.

[59] Alba Perez, M. McCarthy, and B. Bennet. Dual quaternion synthesis of constrained
robots. In proceedings of Advances in Robot Kinematics, 2002.

[60] C. Perwass. The CLU home page. HTML document http://www.clucalc.info, 2005.

[61] C. Perwass and W. Förstner. Uncertain geometry with circles, spheres and conics.
In R. Klette, R. Kozera, L. Noakes, and J. Weickert, editors, Geometric Properties
from Incomplete Data, volume 31 of Computational Imaging and Vision, pages
23–41. Springer-Verlag, 2006.

[62] C. Perwass, C. Gebken, and G. Sommer. Implementation of a clifford algebra co-
processor design on a field programmable gate array. In R. Ablamowicz, editor,
CLIFFORD ALGEBRAS: Application to Mathematics, Physics, and Engineering,
Progress in Mathematical Physics, pages 561–575. 6th Int. Conf. on Clifford Alge-
bras and Applications, Cookeville, TN, Birkhäuser, Boston, 2003.

[63] C. Perwass, C. Gebken, and G. Sommer. Geometry and kinematics with uncertain
data. In A. Leonardis, H. Bischof, and A. Pinz, editors, 9th European Conference on
Computer Vision, ECCV 2006, May 2006, Graz, Austria, number 3951 in LNCS,
pages 225–237. Springer-Verlag, Berlin Heidelberg, 2006.

[64] C. Perwass and D. Hildenbrand. Aspects of geometric algebra in euclidean, projec-
tive and conformal space. Technical report, University of Kiel, 2004.

[65] C. Perwass and G. Sommer. The inversion camera model. In 28. Symposium für
Mustererkennung, DAGM 2006, Berlin, 12.-14.09.2006. Springer-Verlag, Berlin,
Heidelberg, 2006.

[66] C.B.U. Perwass. Applications of Geometric Algebra in Computer Vision. PhD
thesis, Cambridge Universtiy, 2000.

[67] C.B.U. Perwass and J. Lasenby. A Geometric Analysis of the Trifocal Tensor. In
R. Kakarala R. Klette, G. Gimel’farb, editor, Image and Vision Computing New
Zealand, IVCNZ’98, Proceedings, pages 157–162. The University of Auckland, 1998.

[68] C.B.U. Perwass and J. Lasenby. A Unified Description of Multiple View Geometry.
In G. Sommer, editor, Geometric Computing with Clifford Algebra. Springer-Verlag,
2001.

113

[69] A. Rockwood, H. Li, and D. Hestenes. United states patent no. 6,853,964: System
for encoding and manipulating models of objects. 2005.

[70] B. Rosenhahn. Pose Estimation Revisited. PhD thesis, Inst. f. Informatik u. Prakt.
Mathematik der Christian-Albrechts-Universität zu Kiel, 2003.

[71] B. Rosenhahn and G. Sommer. Pose estimation in conformal geometric algebra.
Journal of Mathematical Imaging and Vision, 22:27–70, 2005.

[72] Alla Safonova, Jessica K. Hodgins, and Nancy S. Pollard. Synthesizing physically
realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans-
actions on Graphics, 23(3):514–521, August 2004.

[73] L. Sciavicco and B. Siciliano. Modelling and Control of Robot Manipulators.
Springer, 2000.

[74] Hyun Joon Shin, Jehee Lee, Michael Gleicher, and Sung Yong Shin. Computer pup-
petry: An importance-based approach. ACM Transactions on Graphics, 20(2):67–
94, April 2001.

[75] Cristian Sminchisescu and Bill Triggs. Kinematic jump processes for monocular 3d
human tracking. In 2003 Conference on Computer Vision and Pattern Recognition
(CVPR 2003), pages 69–76, June 2003.

[76] G. Sommer, editor. Geometric Computing with Clifford Algebra. Springer Verlag,
2001.

[77] G. Sommer. Applications of geometric algebra in robot vision. In H. Li, P.J.
Olver, and G. Sommer, editors, Computer Algebra and Geometric Algebra with
Applications, volume 3519 of LNCS, pages 258–277. 6th International Workshop
IWMM 2004, Shanghai, China and International Workshop GIAE 2004, Xian,
China, Springer-Verlag, Berlin Heidelberg, 2005.

[78] G. Sommer, B. Rosenhahn, and C. Perwass. The twist representation of free-form
objects. In Geometric Properties from Incomplete Data, volume 31 of Computa-
tional Imaging and Vision, pages 3–22. Springer-Verlag, 2006.

[79] J. Suter. Clifford. Used to be available at http://www.jaapsuter.com, 2003.

[80] Deepak Tolani, Ambarish Goswami, and Norman I. Badler. Real-time inverse kine-
matics techniques for anthropomorphic limbs. Graphical Models, 62(5):353–388,
September 2000.

114

[81] Maria Cruz Villa Uriol, Alba Perez, and Falko Kuester. Humanoid synthesis using
clifford algebra. In proceedings of ICRA conference, Orlando, USA, 2006.

[82] VHuman. The Virtual Human Project home page. HTML document
www.virtualhuman.de.

[83] Yusheng Wang. Algorithm and performance of the grasping movement of a human-
arm-like chain based on conformal geometric algebra. Master’s thesis, TU Darm-
stadt, 2006.

[84] Rich Wareham, Jonathan Cameron, and Joan Lasenby. Applications of conformal
geometric algebra in computer vision and graphics. Lecture Notes in Computer
Science, 3519:329–349, June 2005.

[85] Rich Wareham and Joan Lasenby. Applications of conformal geometric algebra in
computer vision and graphics. submitted to ACM Transactions on Graphics, 2004.

[86] A. Watt and M. Watt. Advanced Animation and Rendering Techniques. Addison-
Wesley, 1992.

[87] Katsu Yamane. Simulating and Generating Motions of Human Figures. Springer,
2004.

[88] M. Zaharia and L. Dorst. Modeling and visualization of 3d polygonal mesh surfaces
using geometric algebra. Computers & Graphics, 29(5):802–810, 2003.

[89] M.D. Zaharia and L. Dorst. Interface specification and implementation internals of
a program module for geometric algebra. Journal of Logic and Algebraic Program-
ming, 2003.

[90] ZGDV. The Avalon home page. HTML document http://www.zgdv.de/avalon/.

[91] Haidan Zhang. Grasping strategies for a virtual barrett hand based on conformal
geometric algebra. Master’s thesis, TU Darmstadt, 2006.

[92] Jun Zhao. Motion optimization of kinematic chains based on dynamics parameters
in conformal geometric algebra. Master’s thesis, TU Darmstadt, 2005.

115

Appendix A

Akademischer Werdegang

Dietmar Hildenbrand hat von Okt. 1981 bis Apr. 1986 an der TH Darmstadt Informatik
mit Abschluß Diplom studiert. Danach hat er verschiedene Positionen in der Industrie
ausgefüllt speziell im Bereich der Leitung von Software-Projekten.

Seit Juli 2002 ist er wissenschaftlicher Mitarbeiter im Fachgebiet Graphisch inter-
aktive Systeme der TU Darmstadt und seit Jan. 2006 Geschäftsführer des interdiszi-
plinären Forschungsschwerpunkts Graphische Datenverarbeitung der TU Darmstadt.

116

