
Effective Retrieval and Visual Analysis in
Multimedia Databases

Dissertation zur Erlangung des akademischen Grades
des Doktors der Naturwissenschaften an der Universität

Konstanz im Fachbereich Informatik und
Informationswissenschaft

vorgelegt von

Tobias Schreck

Universität
Konstanz

Universität
Konstanz

Universität
Konstanz

April 2007

Tag der m̈undlichen Pr̈ufung: 15. Dezember 2006

Referenten: Prof. Dr. Daniel A. Keim, Universität Konstanz

Prof. Dr. Dietmar Saupe, Universität Konstanz

Priv.-Doz. Dr. Umeshwar Dayal, HP Labs, Palo Alto, USA

http://www.eg.org
http://diglib.eg.org

Für meine Eltern.

Acknowledgments

The last four years during which I worked on this thesis mark a challenging and demanding,
yet rewarding period for me. Not only was I introduced to a variety of intriguing research
problems in the fields of content-based retrieval and visual analytics. In particular, I had the
opportunity to work with a number of inspiring people, each of them sharing insight and
motivation.

First of all I like to thank Daniel Keim for his continued supervision and motivation. His
approach to defining interesting problems, and then tackling them by appropriate methods has
shaped much of my work. I thank Daniel for the wealth of insight provided, and his encour-
agement to teamwork with colleagues, and to share results with the community. Then, I like
to thank Dietmar Saupe for providing supervision and inspiration during continued collabo-
ration. Dietmar shared valuable insight on many occasions; his ready support and help when
writing papers is highly appreciated. Some of the ideas investigated in this thesis were de-
veloped during two research internships I had the opportunity to spend with Hewlett-Packard
Laboratories at Palo Alto, California. I like to thank Umesh Dayal and Ming Hao of HP Labs
for their continued support and collaboration, and for a rewarding internship time.

Many thanks go to dear collaborators at the University of Konstanz. Benjamin Bustos is
a great colleague always willing to help and to discuss problems and ideas. Christian Panse,
Jörn Schneidewind, and Mike Sips have become great colleagues and friend along the way,
sharing with me their passion and expertise in visualization and data analysis. I also thank
Dejan Vraníc for nice collaboration and sharing expertise and data during our joint 3D retrieval
project. I thank Marco P̈otke of SD&M AG München for valuable discussion on aspects of
geometric similarity search and visualization.

I also like to cordially thank my group colleagues Florian Mansmann, Hartmut Ziegler,
and Markus Wawryniuk. They all provided specific insights, support, and valuable discussion
during joint projects. I also thank students Tilo Nietzschmann, Domink Morent, and Henrico
Dolfing for fruitful joint work.

This work was supported by the German Research Foundation (DFG), by the University
of Konstanz, by Hewlett-Packard Laboratories, and by the EU Panda and Delos Networks of
Excellence.

Parts of this thesis were published in:

1. T. Schreck and C. Panse. A new metaphor for projection-based visual analysis and
data exploration. Proceedings of theIS&T/SPIE Conference on Visualization and Data
Analysis (VDA), 2007.

2. B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranic. An experimental effective-
ness comparison of methods for 3D similarity search.International Journal on Digital
Libraries, Special Issue on Multimedia Contents and Management (IJDL), 6(1):39-54,
Springer, 2006.

3. T. Schreck, D. Keim, and C. Panse. Visual feature space analysis for unsupervised
effectiveness estimation and feature engineering.Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME), IEEE, 2006.

4. D. Keim, T. Nietzschmann, N. Schelwies, J. Schneidewind, T. Schreck, and H. Ziegler.
A spectral visualization system for analyzing financial time series data.Proceedings of
the Eurographics/IEEE-VGTC Symposium on Visualization (EuroVis), IEEE, 2006.

5. T. Schreck, D. Keim, and F. Mansmann. Regular Treemap layouts for visual analy-
sis of hierarchical data.Proceedings of the Spring Conference on Computer Graphics
(SCCG), Comenius University Bratislava, 2006.

6. B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranic. Feature-based similarity
search in 3D object databases.ACM Computing Surveys (CSUR), 37:345-387, ACM
Press, 2005.

7. U. Dayal, M. Hao, D. Keim, and T. Schreck. Importance driven visualization layouts
for large time-series data.Proceedings of the IEEE Symposium on Information Visual-
ization (INFOVIS), IEEE, 2005.

8. D. Keim, F. Mansmann, and T. Schreck. MailSom - visual exploration of electronic
mail archives using Self-Organizing Maps.Proceedings of the Conference on Email
and Anti-Spam (CEAS), Stanford University, 2005 (short paper).

9. B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranic. Using entropy impurity for
improved 3D object similarity search.Proceedings of the IEEE International Confer-
ence on Multimedia and Expo (ICME), IEEE, 2004.

10. B. Bustos, D. Keim, C. Panse, and T. Schreck. 2D maps for visual analysis and retrieval
in large multi-feature 3D model databases.Proceedings of the IEEE Visualization Con-
ference (VIS), IEEE, 2004 (poster paper).

Abstract

Based on advances in acquisition, storage, and dissemination technology, increasing amounts
of multimedia content such as images, audio, video, or 3D models, become available. The
Feature Vector(FV) paradigm is one of the most popular approaches for managing multimedia
content due to its simplicity and generality. It maps multimedia elements from object space to
metric space, allowing to infer object similarity relationships from distances in metric space.
The distances in turn are used to implement similarity-based multimedia applications. For a
given multimedia data type, many different FV mappings are possible, and theeffectiveness
of a FV mapping can be understood as the degree of resemblance of object space similarity
relationships by distances in metric space. The effectiveness of the FV mapping is essential
for any application based on it.

Two main ideas motivate this thesis. We first recognize that the FV approach is promising,
but needs attention of FV selection and engineering in order to serve as a basis for building
effective multimedia applications. Secondly, we believe that visualization can contribute to
building powerful user interfaces for analysis of the FV as well as the object space. This the-
sis focuses on supporting a number of important user tasks in FV-based multimedia databases.
Specifically, we propose innovative methods for (a) effective processing of content-based sim-
ilarity queries, (b) FV space visualization for discrimination analysis, and (c) visualization
layout generation for content presentation. The methods are applied and evaluated on a num-
ber of specific multimedia data types such as 3D models, images, and time series data, and are
expected to be useful in many other multimedia domains.

Effective retrieval in 3D databases (Chapter 2). We review and classify a significant num-
ber of recently proposed FV extractors supporting the 3D model domain. Extensive effec-
tiveness evaluation experiments are performed for many FV extractors on a number of bench-
marks. Methods for improving retrieval effectiveness by forming static and query-dependent
combinations of FVs are researched. Experiments show significant improvements in retrieval
precision (quality of the answer sets) to be achievable.

Visual FV space analysis (Chapter 3). We explore the usage of interactive 2D projections
for retrieval and organization of multimedia content in a multi-FV 3D retrieval system. Self-
organizing maps (SOMs) have shown to be appropriate to this end. We propose a PCA-based
visualization method for supervised visual discrimination analysis in FV space. Also, SOM-
based techniques are explored for unsupervised estimation of FV space discrimination power.
Both visualizations can be used for addressing the FV selection problem, and for fine tuning
FV-based multimedia applications.

x

Layout generation for content presentation (Chapter 4). We investigate visualization lay-
out generation strategies for presentation of multimedia content. Inspired by the popular
TreeMap algorithm, we develop space-efficient layout generators providing certain regular-
ity and ordering properties which are useful for presenting multimedia content to the user.
The layouts are applied on sets of time series data, and experimentally shown to outperform
competing TreeMap algorithms on a number of metrics.

Zusammenfassung

Basierend auf Fortschritten bei der digitalen Erfassung, Speicherung undÜbermittlung mul-
timedialer Inhalte werden zunehmend grosse Mengen von Multimedia Objekten wie z.B.
Bilder, Audio, Videos, und 3D Modellen verfügbar. DasFeature VectorParadigma ist auf-
grund seiner Einfachheit und Allgemeinheit einer der populärsten Ans̈atze zum Management
von Multimedia Inhalten. Es bildet die Elemente eines Multimedia Objektraumes in einen
metrischen Raum ab und ermöglicht hierdurch, von den Distanzen im metrischen Raum auf
Ähnlichkeitsbeziehungen im Objektraum rückschliessen zu k̈onnen. F̈ur einen gegebenen
Multimedia Datentyp sind prinzipiell viele verschiedene Abbildungen in einen metrischen
Raum denkbar. DieEffektiviẗat einer gegebenen Abbildung kann als der Grad derÜberein-
stimmung der Distanzen im metrischen Raum mit dem Grad derÄhnlichkeiten im Objektraum
verstanden werden. Die Effektivität der Abbildung mit Feature Vektoren ist von grundlegen-
der Bedeutung f̈ur alle auf dieser Abbildung aufsetzenden Anwendungen.

Zwei grundlegende Ideen liegen dieser Arbeit zugrunde. Zum einen stellen wir fest, dass
der Feature Vektor Ansatz der geeigneten Auswahl und Konfiguration der Feature Vektoren
bedarf, um effektive Anwendungen zu ermöglichen. Zum anderen sind wirüberzeugt davon,
dass bestimmte Visualisierungstechniken als effektive Schnittstellen für den Feature und den
Objektraum geeignet sind. Im Rahmen dieser Arbeit werden innovative Methoden (a) zur
effektiven Ausf̈uhrung vonÄhnlichkeits-Suchanfragen, (b) zur visuellen Diskriminierung-
analyse, und (c) zur Layouterzeugung für die Pr̈asentation und Analyse von Multimedia Daten
entwickelt. Die N̈utzlichkeit der Methoden wird durch Anwendung auf eine Reihe von ver-
schiedenen Multimedia Datentypen wie 3D Objekte und Zeitreihendaten aufgezeigt.

Effektive Ähnlichkeitssuche in 3D Datenbanken (Kapitel 2). Wir klassifizieren eine sig-
nifikante Anzahl von aktuellen Feature Vektor Extraktionsverfahren zur inhaltsbasierten Be-
schreibung von 3D Modellen. Umfassende Effektivitätsevaluierungen werden durchgeführt,
basierend auf verschiedenen Benchmarks. Darüber hinaus werden Methoden zur Verbesserung
der Retrieval Effektiviẗat durch Bildung von statischen und dynamischen Kombinationen aus
Feature Vektoren vorgestellt.

Visuelle Featureraum Analyse (Kapitel 3). Es werden 2D Projektionen entwickelt die zum
Retrieval und zur Organisation von Multimedia Datenbanken dienen. Selbstorganisierende
Karten (SOMs) haben sich in diesem Zusammenhang als nützlich erwiesen. Wir untersuchen
weiterhin Ans̈atze zurüberwachten und unüberwachten Diskriminierungsanalyse mittels 2D
Projektionstechniken. Die Ergebnisse dieser Analyse unterstützen den Datenbankadminis-
trator beim Feature Selektionsproblem und beim Feature Feintuning sowie den Endbenutzer
beim Retrieval und der Egebnisanalyse.

xii

Layout Erzeugung für Multimedia Inhalte (Kapitel 4). Basierend auf dem populären Tree-
Map Algorithmus entwickeln wir neue Strategien zur Darstellung von multimedialen Inhalten.
Es werden raumeffiziente Layout Generatoren entworfen, welche bestimmte Ordnungs- und
Regulariẗatseigenschaften aufweisen und deshalb nützlich für die Darstellung von Multimedia
Inhalten sind. Untersuchungen zeigen dieÜberlegenheit der Algorithmen gegenüber klassis-
chen TreeMap Varianten bzgl. einer Reihe von Gütekriterien.

Contents

1 Introduction 1
1.1 Database support for multimedia data .1
1.2 Feature Vector approach and effectiveness considerations2
1.3 Applications and benchmarking in multimedia databases3
1.4 Considered multimedia data types .5
1.5 Thesis outline and contribution .6

2 Effective feature-based query processing 9
2.1 Content-based retrieval systems .10

2.1.1 Similarity queries and Feature Vectors10
2.1.2 Effectiveness and efficiency considerations12
2.1.3 Benchmarking effectiveness in a retrieval system13

2.2 Modeling FV extraction for 3D objects .15
2.2.1 3D objects data type .15
2.2.2 A new process model for classification of 3D FV extractors16

2.3 Query processing using single Feature Vectors20
2.3.1 Classification of studied FV extractors using the process model . . .20
2.3.2 3D retrieval benchmark design .22
2.3.3 Benchmark-global effectiveness results23
2.3.4 Sensitivities and extraction complexity28

2.4 Query processing using static combinations31
2.4.1 Building combinations of Feature Vectors31
2.4.2 Results for static distance-based combinations35
2.4.3 Results for static rank-based combinations41
2.4.4 Analysis of the results .43
2.4.5 Summary and practical recommendations49

2.5 Query processing using dynamic combinations50
2.5.1 Query-dependent analysis of static combinations50
2.5.2 An Entropy-based discrimination estimator52
2.5.3 Results for dynamically weighted combinations54
2.5.4 Analysis of the results and practical recommendations57

3 Projection-based visual feature space analysis 59
3.1 Interactive organization and retrieval with Self-Organizing Maps60

3.1.1 Kohonen’s Self-Organizing Map (SOM) algorithm60
3.1.2 Visual analysis of 3D, Email, and time series databases using the SOM62

xiv Contents

3.1.3 SOM-based support for retrieval and visual relevance feedback69
3.1.4 Summary of the results .71

3.2 Unsupervised visual feature space analysis73
3.2.1 Background .73
3.2.2 A distance-based discrimination power estimator73
3.2.3 A component-based discrimination power estimator74
3.2.4 Application .74
3.2.5 Evaluation .78
3.2.6 Conclusions .84

3.3 Supervised visual feature space analysis .88
3.3.1 Background .88
3.3.2 Projection and visualization methods90
3.3.3 The convex hull metaphor for projection-based visual analysis93
3.3.4 Application .95
3.3.5 Evaluation .101
3.3.6 Conclusions .107

4 Space-filling visual object space analysis 109
4.1 A survey of TreeMap-based layout algorithms110

4.1.1 Visualization of hierarchies with TreeMaps110
4.1.2 Desirable properties of TreeMap algorithms112
4.1.3 Existing TreeMap variants .113
4.1.4 Analysis and proposed TreeMap algorithms117

4.2 Importance-driven space-filling layouts for time series data120
4.2.1 Importance relationships on time series and layout requirements . . .120
4.2.2 Formal problem definition .122
4.2.3 Splitting mask selection and splitting policies124
4.2.4 ID-Map algorithm .126
4.2.5 Application .128
4.2.6 Evaluation .130
4.2.7 Conclusions .136

4.3 Regular layout generation with Grid TreeMaps139
4.3.1 Continuous and Quantum TreeMap algorithms139
4.3.2 Grid TreeMap algorithm .142
4.3.3 Application .143
4.3.4 Evaluation .148
4.3.5 Conclusions .151

5 Thesis conclusions 153

A Appendix 157

List of Figures

1.1 Feature Vector paradigm .4
1.2 Multimedia data types . 7
1.3 FV paradigm with applications . 8

2.1 Query-by-example .12
2.2 Retrieval answer comparison .15
2.3 Polygon mesh .16
2.4 3D FV extraction process model. .18
2.5 Average precision vs. recall with best dimensionality settings (KN-DB). . . .24
2.6 Average precision vs. recall with best dimensionality settings (PSB-Test). . .25
2.7 The models from the planes model class (KN-DB).26
2.8 Average precision vs. recall,planesmodel class (KN-DB). 26
2.9 The models from theswordsmodel class (KN-DB). 26
2.10 Average precision vs. recall, swords model class (KN-DB).27
2.11 Humans query class results .27
2.12 Cows query class results .28
2.13 PCA alignment problems .29
2.14 Dimensionality vs. R-precision (KN-DB)29
2.15 Dimensionality vs. R-precision (PSB-Test)30
2.16 Extraction efficiency (1) .31
2.17 Extraction efficiency (2) .32
2.18 FV ranking comparisons .32
2.19 dmax-based combination results .36
2.20 Mean-based combination results .37
2.21 Variance-based combination results .38
2.22 Median-based combination results .40
2.23 Medrank-based combination results .42
2.24 Borda-based combination results .43
2.25 Distance-based performance comparison .44
2.26 Rank-aggregation performance comparison46
2.27 Combination participation histograms .48
2.28 Correlation of combination-specific performance results49
2.29 Suboptimal performance of combinations51
2.30 Results of optimal query processor .52
2.31 Query processor architecture .54
2.32 Dynamic selection results .55

xvi List of Figures

2.33 Dynamic combination results .56
2.34 Dynamic weighting results comparison .56

3.1 SOM algorithm .61
3.2 SOM over 3D benchmark .63
3.3 SOM over E-Mail database .65
3.4 Growth Matrices .67
3.5 SOM over Growth Matrices .68
3.6 SOM-based retrieval support .70
3.7 Different U-Matrices .71
3.8 Classification purity .72
3.9 U-Matrix heterogeneity comparison .76
3.10 Comparative component-plane analysis .77
3.11 Uniformity score and discrimination power78
3.12 Performance of the selected PSB-Train FV spaces79
3.13 Intra-FV regression (1) .85
3.14 Intra-FV regression (2) .86
3.15 Synthetic FV space regression results .87
3.16 Scatter plot and convex hull-based visualization91
3.17 SOM-based class visualization .93
3.18 Convex hulls over ISOLET-5 data set .96
3.19 Convex hull-based class contrast plots .98
3.20 Convex hull withp3 coordinate information 99
3.21 Comparative visual FV space benchmarking (1)100
3.22 Comparative visual FV space benchmarking (2)101
3.23 Correlation between hull compactness and benchmark scores103
3.24 Intra-FV correlation analysis .105
3.25 Inter-FV correlation analysis .106

4.1 Visualizing hierarchic structures .111
4.2 Standard TreeMap layout principle .115
4.3 Optimized TreeMap layout principles .115
4.4 Quantized TreeMap layouts .117
4.5 ID-Map principle .125
4.6 Mask chooser module .125
4.7 Splitting masks and splitting policies .126
4.8 Splitting masks and element sequence .127
4.9 Results of differen mask chooser configurations129
4.10 ID-Map result using stock data .131
4.11 ID-Map result using bond data .132
4.12 Comparing ID-Map with Squarified TreeMap results134
4.13 Evaluation of error functions .137
4.14 Continuous TreeMap result .140
4.15 Quantum TreeMap operation .141

List of Figures xvii

4.16 Grid TreeMap operation .143
4.17 Grid TreeMap rendering methods .144
4.18 QTM and GTM-N results .145
4.19 GTM-S and GTM-B results .146
4.20 GTM-S legend .148
4.21 Display efficiency results (1) .148
4.22 Display efficiency results (2) .150
4.23 GTM comparison .151

A.1 KN-DB example query objects .159
A.2 Combination results for the COREL images database.160
A.3 Performance comparison for COREL images161
A.4 Participation histogram, cardinality 2 .162
A.5 Participation histogram, cardinality 3 .163
A.6 Diamond-shaped U-Matrix .164
A.7 U-matrices .165
A.8 Component plane arrays .166
A.9 Synthetic R-precision results .167
A.10 U-Matrices for synthetic data .167
A.11 Convex hulls and basic shapes .168
A.12 ID-Map layout snapshots .169
A.13 ID-Map ordering and position reversal errors170
A.14 ID-Map resorted layout snapshots .170

List of Tables

2.1 Studied 3D FV extractors. .21
2.2 Average R-precision of the 3D descriptors (KN-DB).23
2.3 Top-n scores of FVs .33
2.4 dmax-based combination statistics .37
2.5 Mean-based combination statistics .38
2.6 Variance-based combination statistics .39
2.7 Median-based combination statistics .40
2.8 Medrank-based combination statistics .42
2.9 Borda-based combination statistics .43

3.1 Selected FV spaces and dimensionalities .80
3.2 Dimensionality selection heuristic performance81
3.3 Synthetic FV space scenarios .83
3.4 Discrimination precision benchmark scores97

4.1 TreeMap display properties comparison .119
4.2 Proposed TreeMap algorithms .119

A.1 KN-DB query classes .158
A.2 COREL images combination statistics .160

1 Introduction

Contents
1.1 Database support for multimedia data 1

1.2 Feature Vector approach and effectiveness considerations 2

1.3 Applications and benchmarking in multimedia databases 3

1.4 Considered multimedia data types . 5

1.5 Thesis outline and contribution . 6

Database technology provides the back end functionality for all kinds of information sys-
tems shaping the information society. Whether it be operational information systems support-
ing processes and work flows in an organization, or innovative applications in E-Commerce,
E-Learning, E-Government and so on, all these rely on database technology for storing, query-
ing, manipulating, and sharing information, while providing services such as high perfor-
mance, high reliability, and concurrency control. The relational approach to data management
was extremely successful in offering a simple, powerful model for structuringfactual infor-
mation. Yet, due to advances in data acquisition and processing technology, as well as increas-
ing physical storage capacities, large amounts ofmultimediadata are created, collected, and
stored.

The term multimedia in the narrow sense describes data compound of multiple media types,
e.g., a video stream incorporating an animation sequence with an audio track synchronized to
the animation. In a wider sense (which is adopted in this thesis) multimedia data is understood
as all kinds of non-standard media information, not necessarily compounding different media
at once. Example data types according to this notion include vector graphics, images, 3-
dimensional models, audio signals, video sequences, but also trees and graphs of all kinds
of applications (such as describing a molecular structure, for example). Multimedia database
technology aims at providing useful management facilities for the multimedia data type, much
like relational database technology does for the relational data type.

1.1 Database support for multimedia data

In the multimedia database domain, important concepts from relational database technology
have to be adapted or show to be less important, while new concepts need to be introduced.
E.g., the transaction concept does not play as important a role in managing a database of im-
ages than it does in managing a database of flight reservation records, simply because not many
conflicting accesses to the database occur. On the other hand, the update operation on an image

2 Chapter 1. Introduction

is not as straightforward as changing one attribute in a given record, but data-specific methods
and interfaces for updating the content need to be implemented. One important concept that
does not directly translate from relational to multimedia databases is that ofquerying. A re-
lational query can be specified directly on the database schema, requesting the records where
the respective attributes satisfy the given selection criteria. By definition, the query is an exact
one: Either a record satisfies the query, or it does not. In multimedia databases there usually is
no schema structuring the content on the semantic level which the user is typically interested
in, and most of the time it is not very useful to perform exact queries on the low-level data
representation itself. Rather than that, the user will query for certain data-specific, high-level
characteristics of the multimedia data. Consider again an image database. The typical user
will not be able to specify a query in the form of requiring certain RGB values in certain re-
gions of the images. She will rather be interested in higher-level features such as e.g., presence
or absence of a sunset in the image, or other semantic concepts recognized in the images.

Besides explicitly specifying semantic concepts to query for in a multimedia database,
query-by-exampleis an important querying paradigm. Suppose the user has one or a few
multimedia objects already at hand, e.g., by preceding browsing of the database. A query-
by-example then requests the objects mostsimilar to the already available object (the query
object). To this end, the multimedia database system has to implement suitable similarity
functions scoring the similarity between any two objects of a considered data type in order
to produce answer lists of database objects sorted by decreasing degree of similarity for pre-
sentations to the user. TheFeature Vectorapproach [33] due to its simplicity, performance,
and generality is a popular scheme to implement such similarity functions in a multimedia
database system. This thesis considers methods for the effective support of several important
applications in multimedia databases where one or multiple Feature Vectors are available for
each database object. The remainder of this introduction is structured as follows. Section 1.2
recalls the Feature Vector approach to similarity-oriented multimedia data management. Sec-
tion1.3 describes several prominent database applications, and options for benchmarking FV
extractors. In Section 1.4, we describe a number of data types which are of specific interest in
this thesis. Finally, Section 1.5 outlines the remainder of this thesis, and summarizes its main
contributions.

1.2 Feature Vector approach and effectiveness
considerations

The Feature Vector (FV) approach [33] to similarity-based management of multimedia data
represents multimedia objectso∈O given in an original object spaceO by points~po ∈ Rd in
a d-dimensional vector space. FV extractors are functionsO→ Rd mapping elements from
object space to vectors of real values, numerically describing characteristic objects properties.
Suitable extractors should provide that the generated FVs (a) are efficiently extracted and
(b) allow to effectively capture object space similarity relationships by appropriate distance
functionsd : (~pi , ~p j)→R+

0 defined in FV space. The FV approach provides a simple, flexible
means to implement important multimedia applications such as content-based retrieval and

1.3. Applications and benchmarking in multimedia databases 3

clustering. Also, the FV approach supports database indexing [10], providing efficient access
to database content. For many multimedia data types, description schemes other than FVs
exit, e.g., relying on graph-based representations. Also, sophisticated transformation-based
matching schemes have been proposed for certain content, where the similarity between two
objects is given by the (appropriately defined) cost minimum over all possible transformations
π : oi → o j transforming objectoi into objecto j . Yet, due to its simplicity and generality, the
FV approach remains highly popular.

Theeffectivenessof the FVs used to represent multimedia content is of critical importance
for any similarity-based application under the FV approach. We understand the effectiveness
of a FV extractor as the degree of how accurately distancesd in FV space resemble similarity
relationships in object space. Generally, FVs are heuristically introduced, and their effective-
ness is experimentally evaluated. For a given multimedia data type, many different approaches
to extract characteristic features are possible, and a-priori it is not clear what the most impor-
tant features are, given a data type and application. For many multimedia data types a wealth
of competing FV extractors have already been proposed, and even in spite of significant ex-
perimental efforts in the multimedia community, often it is not clear what the most effective
FV extractors would be for a given data type, far less for a given database. Evidence for
the wealth of different FV extractors available are given e.g., in the image [93] and the 3D
model (cf. Section 2.3 and [18]) domain, where each several dozens of competing schemes
for mapping objects to FV space have been proposed to date.

The reason for such a wealth of FV extractors are (a) the heuristical nature by which the
extractors are defined, and (b) the potentially very different similarity notions one can estab-
lish for many data types. Consider e.g., the image data type. For different types of images
and databases, different types of features seem reasonable. If the user is interested in the
distribution of colors present in the images, she could use for example histograms defined in
RGB color space as features to describe the images. On the other hand, if color is irrelevant,
but rather individual objects contained in the images are of interest, then certainly, features
defined over segmented images identifying objects within the images are desired. As another
example, consider the 3D model data type. Similarity can be measured based on global or
local geometric shape, but it can also be measured based on structural properties of the mod-
els. On a wider scale, the similarity between two models can be based on the semantics of the
objects in a given application context.

Figure 1.1 (a) illustrates the FV extraction process for a 3D multimedia object. Figure 1.1
(b) illustrates three different 3D models of cars. Depending on the given similarity notion,
different degrees of similarity are perceivable (e.g., all models function as means of trans-
portation, and their structure is given by a chassis with four wheels; two models belong to the
sports car class, while one car is a limousine; etc.)

1.3 Applications and benchmarking in multimedia databases

Many multimedia applications rely on a representation of the original data in an effective FV
space to produce meaningful results. In Content-based Database Retrieval, distances between
a query object or feature-based query specification, and the database elements are evaluated

4 Chapter 1. Introduction

(a) (b)

Figure 1.1:Under the Feature Vector approach to retrieval in multimedia databases, the simi-
larity between objects is estimated by the distance between their respective Feature
Vector representations (a). The definition of Feature Vectors for a given multime-
dia data type should reflect an appropriate similarity concept depending on the
application, user context, etc. This is illustrated in (b), where the degree of simi-
larity between individual models can be based on various structural or geometric
properties.

to produce answer lists sorted by increasing distance to the query point [33]. Distances in
FV space are also required in Classification and Clustering [37]. Briefly, in Classification un-
known data instances are assigned the class label of the most similar class according to a clas-
sifier learned from supervised training data. In Clustering, distances between data instances
are used to automatically find clusters of similar elements. Also, in Information Visualization
[22] often similarity relationships among the data objects are exploited for effective image
generation, e.g., by constructing similarity-driven layouts (cf. also Sections 3.1 and 4.3.3).

While such more user-oriented applications assume the data already to be described in
an appropriate FV space,benchmarkingas a more system-oriented application refers to the
process of selecting promising FV spaces from a pool of available FV spaces, for a given
database or application. We can distinguish two dimensions of benchmarking:Supervisedvs.
unsupervisedbenchmarking indicates whether supervised information, usually some kind of
ground truth, is used in the benchmark, or whether it operates independently of such controlled
information. Furthermore, we can distinguish betweennumericandvisualbenchmarks. We
next detail the latter options for benchmarking.

Numeric benchmarking. The effectiveness of a FV space can be numerically benchmarked
if a suitable ground truth classification (supervised information) is available. In many data
domains, reference benchmarks have been designed containing data and supervised classi-
fication information. Example benchmarks are the TREC document collection [68] for text
retrieval, the COREL image collections in image retrieval [65], or the Princeton Shape Bench-
mark for 3D model retrieval [81]. Such retrieval benchmarks can be evaluated using metrics
from Information Retrieval such as Precision and Recall [6]. For benchmarking the effective-
ness of classification and clustering algorithms, e.g., the UCI Machine Learning Archive [25]
provides data sets for machine learning problems from a wealth of application domains. Su-
pervised numeric benchmarking can be problematic due to the costs associated with building

1.4. Considered multimedia data types 5

and evaluating benchmarks, and also potential instability and ambiguities in the benchmark
itself [65]. Therefore, unsupervised FV space benchmarking is desirable, but still a largely
unsolved problem. Certain theoretical approaches relying on statistical information calculated
in FV space exist [2, 42]. These works are of rather theoretical nature and to the best of our
knowledge have not been practically leveraged yet.

Visual benchmarking. Visual benchmarking is an interesting option complementing the nu-
meric benchmarking approach. It aims to support an evaluator in understanding and explaining
numeric benchmarking results. It also aims to support the definition and tuning of feature ex-
tractors and distance functions employed. For visual benchmarking, projections of the FV
space to display space are popular, where the benchmark objects are mapped to and visualized
in 2D, sometimes also in 3D. We assume a suitable projection technique exists which man-
ages to transfer the essence of the distance relationships of a data set given in FV (or metric)
space to the low-dimensional display space. Then, benchmark-based class distribution char-
acteristics can be analyzed. Important visual benchmarking questions include the discovery of
interesting inter-class relationships, the assessment of compactness and discrimination prop-
erties of classes of objects, and the comparative evaluation of global discrimination power of
different FV (or metric) space representation of a given data set. The visual analysis of such
questions can help in selecting and engineering FV spaces to better support a given applica-
tion. E.g., in a retrieval scenario, badly discriminated classes could be identified, and the FV
space then fine-tuned accordingly to improve the discrimination of the identified classes.

1.4 Considered multimedia data types

As indicated above, multimedia as a data type definition is not very specific, but may generally
denote non-standard (non-structured, non-relational) data. Many different multimedia data
types exist. Throughout this thesis, we develop and discuss FV-based techniques for managing
multimedia data along several different data types. We next sketch the specific data types
considered later on in this thesis. Figure 1.2 illustrates the data types.

3-Dimensional (3D) Objects 3-Dimensional objects (or models) are used to represent real-
world or artificial objects. They are prominently used in CAD-based engineering for modeling
e.g., machining parts. They are also used for rendering/visualization purposes in simulation,
education, and entertainment. Model formats include boundary representations, e.g., by means
of polygon meshes, point clouds, or implicit surfaces. Also, volumetric representations by
voxels or composition of primitives in Constructive Solid Geometry (CSG) are used in practice
[21]. 3D databases used in this thesis include the Konstanz 3D database [19, 61] and the
Princeton Shape Benchmark [81]. As FVs we use a variety of different features defined over
curvature, volumetric, statistic, and image-based object properties [18, 97]. The corresponding
FV extractors were originally proposed and/or implemented by our colleagues Dietmar Saupe
and Dejan Vranic.

6 Chapter 1. Introduction

Raster Images Images may very well represent the most popular multimedia data type.
Digital image sources include acquisition from the real-world using digitalization (think of
the ubiquitous digital cameras; also remote sensing images are obtained from observation
satellites); and artificial generation by rendering or manual drawing. Various lossy or loss-
less schemes for encoding and transmitting raster images exist. Many FV extractors based on
characteristics such as color histograms, texture descriptions, or edges distributions have been
proposed in context of content-based image retrieval (CBIR). It is also possible to segment
images into different partitions prior to feature extraction, possibly identifying semantically
meaningful image parts. In this thesis, we use a classified subset of the COREL image data-
base which is often used in CBIR evaluation. The database contains 6.000 images each de-
scribed by six different FVs based on color histograms, texture, and convolution descriptors,
cf. [75]. We obtained the data from Peter Howarth and Stefan Rüger.

Email Documents Text is a highly complex data type. Its degree of structure can vary
from completely unstructured text, e.g., a short office note written on a post-it, up to highly
structured texts such as a research paper following a sequence of chapters from introduction
to conclusion and adhering to certain rules for stating facts, citing other work and so on. The
RFC 2822 (Internet Message Format) defines the document structure for E-Mail messages
to be transmitted over the Internet. E-Mail consists of fields containing sender and receiver
addresses, subject line, and mail body text. A classical descriptor for text documents is the
so-calledt f × id f vector, which basically consist of weights rating the importance of given
words in a given document with respect to a collection of documents. We have collected about
10.000 E-Mails from our working group, classified as either spam (non-solicited messages)
or non-spam. We defined at f × id f -based FV over these E-Mail, and apply it for database
organization and retrieval.

Time Series Time series is also a rich data type of great importance in many application
domains ranging from Science and Engineering to Business and Finance. Generally, a time
series denotes a sequence of one- or multidimensional measures with associated time stamps
that can be equally or non-equally spaced in time. Depending on the application, many aspects
can be of importance in a time series, e.g., we can analyze for occurrence of certain predefined
patterns like in financial technical analysis, presence or absence of trends, cycles, and seasonal
effects in econometric series, or simply extreme values like in many basic monitoring applica-
tions, for example. Based on these patterns of interest, many different FVs can be defined. In
this thesis, we consider time series from the financial domain (S&P-500 [84] and Fund-based
[54] price series).

1.5 Thesis outline and contribution

Two main ideas motivate this thesis. We first recognize that the FV approach to management
of multimedia data is promising, but needs attention of FVselection and combinationin order
to serve as a basis for building effective multimedia applications. Secondly, we believe that

1.5. Thesis outline and contribution 7

(a) 3D object (b) Raster image (c) Email document (d) Time series

Figure 1.2:Four types of multimedia data considered in this thesis.

appropriatevisualizationis suited for designing effective analysis tools and user interfaces for
the FV as well as the object space.

In this thesis, we focus on effectively supporting a number of important tasks given in FV-
based multimedia databases. Specifically, we propose innovative methods (a) for effective
processing of content-based similarity queries, (b) for FV space visualization for database
organization and supervised/unsupervised FV discrimination analysis, and (c) for layout gen-
eration for content presentation in object space. The methods are applied and evaluated on a
number of specific multimedia data types and are expected to be useful in many other multi-
media domains. The remainder of this thesis is structured as follows.

• In Chapter 2, we review and classify a significant number of recently proposed FV
extractors supporting the 3D model domain. Extensive effectiveness evaluation experi-
ments are performed for many FV extractors on a number of benchmarks. Then, meth-
ods for improving retrieval effectiveness by forming static and query-dependent com-
binations of multiple FVs are researched. Experiments show significant improvements
in retrieval quality to be achievable. These aspects contribute to developing effective
retrieval systems.

• In Chapter 3, we turn to visualization support for feature-based retrieval systems. We
first explore the usage of interactive 2D projections for retrieval and organization of data-
base content in a multi-feature 3D retrieval system. Self-organizing maps (SOMs) have
been shown to be appropriate to this end. We then research two SOM-based techniques
for unsupervised comparative estimation of the discrimination power provided in mul-
tiple FV spaces. The techniques are specifically advocated to support the FV selection
process in cases where supervised benchmarking is not possible or too expensive. We
finally introduce a simple but effective visualization metaphor supporting supervised
visual discrimination analysis in projected FV space. Both lines of FV space visual-
ization can be used for addressing the FV selection problem, for fine tuning FV-based
multimedia applications, and for visual FV-space analysis.

• Chapter 4 then deals with layout generation for content presentation in object space. We
first review the popular TreeMap family of layout algorithms. Inspired by these works,
we develop space-efficient layout generators providing certain regularity and ordering
properties which are useful for presenting multimedia content to the user. The layouts

8 Chapter 1. Introduction

are applied on sets of time series data, and experimentally shown to outperform com-
peting TreeMap algorithms on a number of metrics. Specifically, the ID-Map algorithm
is developed which replaces the standard slice-and-dice TreeMap strategy with a novel
splitting mask-based strategy. Splitting masks are predefined rectangular partitioning
schemes supporting regular layouts. In the last Section of Chapter 4, we develop a sec-
ond alternative TreeMap scheme operating directly on a global regular grid of element
cells in order to produce displays of high regularity as required by certain data types
such as images or time series data. The Grid-TreeMap is derived, and several render-
ing methods based on the approach are experimentally examined by application and
experiments.

• Chapter 5 finally summarizes the thesis, draws conclusions, and identifies future re-
search directions we regard promising in the context of this work.

The thesis structure follows the three topics FV-based query processing and evaluation (for
3D model FVs), visual analysis of feature space, and layout generation for the object space.
These three aspects are rather orthogonal and each complement to multimedia database man-
agement and application. Owing to this structure, we have decided against having a separate
related work Chapter, but rather, have the discussion of related work where appropriate, inter-
leaved with the flow of the thesis.

Figure 1.3 concludes the Introduction by extending the FV extractor pipeline given in Figure
1.1 (a) to denote the wealth of different multimedia applications possible by the FV approach
to multimedia database management. Specifically, on the right-hand-side it illustrates (from
top to down) content-based retrieval, projection-based database browsing, and object space
layout generation controlled by a feature-based distance function.

Figure 1.3:Extension of the feature extraction pipeline from Figure 1.1 (a) by including the
application layer.

2 Effective feature-based query
processing

Contents
2.1 Content-based retrieval systems .10

2.1.1 Similarity queries and Feature Vectors10

2.1.2 Effectiveness and efficiency considerations12

2.1.3 Benchmarking effectiveness in a retrieval system13

2.2 Modeling FV extraction for 3D objects 15

2.2.1 3D objects data type .15

2.2.2 A new process model for classification of 3D FV extractors16

2.3 Query processing using single Feature Vectors20

2.3.1 Classification of studied FV extractors using the process model . .20

2.3.2 3D retrieval benchmark design .22

2.3.3 Benchmark-global effectiveness results23

2.3.4 Sensitivities and extraction complexity28

2.4 Query processing using static combinations31

2.4.1 Building combinations of Feature Vectors31

2.4.2 Results for static distance-based combinations35

2.4.3 Results for static rank-based combinations41

2.4.4 Analysis of the results .43

2.4.5 Summary and practical recommendations49

2.5 Query processing using dynamic combinations50

2.5.1 Query-dependent analysis of static combinations50

2.5.2 An Entropy-based discrimination estimator52

2.5.3 Results for dynamically weighted combinations54

2.5.4 Analysis of the results and practical recommendations57

10 Chapter 2. Effective feature-based query processing

Content-based similarity queries are one of the main applications in multimedia databases.
For implementing similarity search systems, the usage of Feature Vectors (FVs) is popular
due to the simplicity and generality of the approach. On the other hand, setting up an effec-
tive content-based retrieval system requires some considerations. Appropriate FV extractors
have to be defined for the given multimedia data type to be supported. Questions regarding
provision of certain types of invariances, FV resolution and representation, etc. have to be
addressed. As it turns out, many different feature extractors are usually possible. While good
settings can be found experimentally using single FVs, as will be shown the system can profit
from appropriately combining multiple different FVs for query processing.

In this Chapter, Section 2.1 introduces the main concepts of content-based retrieval in mul-
timedia databases. In Section 2.2, we specifically consider the problem of FV extraction in
3D databases, a prominent data type which has only recently been supported by appropri-
ate FV extractors. A process model for 3D feature extraction is proposed. In Section 2.3, the
retrieval effectiveness of a range of 3D FV extractors is experimentally benchmarked, identify-
ing strengths and weaknesses of the methods. Motivated by benchmarks comparing individual
FV methods, options for building static and query-dependent combinations are researched in
Sections 2.4 and 2.5. Both options significantly improve the retrieval precision as shown on
several 3D benchmarks.

Parts of this Chapter appeared in [18, 19, 15, 17].

2.1 Content-based retrieval systems

In this Section, we introduce the main concepts associated with content based multimedia
retrieval systems. Section 2.1.1 discusses similarity queries in general. Section 2.1.2 intro-
duces the usage of FVs for answering similarity queries, and Section 2.1.3 details methods
how the quality in terms of answer precision of a given retrieval system can be practically
benchmarked.

2.1.1 Similarity queries and Feature Vectors

A similarity query to a multimedia database requests those objects from the repository which
are mostsimilar to a givenquery specification. Implicitly or explicitly, a similarity query pro-
vides specific attributes which it is referring to, and specifies how similarity is measured on the
identified attributes. Under the FV paradigm, objects are represented by vectors of real-valued
components which numerically capture important properties (features) of the objects. The
similarity between two objects is associated with thedistanceresulting between the objects’
FVs under a given metric defined in vector space. Therefore, the user could in principle issue
a similarity query by manually setting the component values which are of interest, thereby
directly editing the query vector. This approach is only useful if the number of components
in the FV space is small and the meaning of the dimensions (properties addressed by the FV

2.1. Content-based retrieval systems 11

components and their respective scales) as well as their influence regarding the distance func-
tion employed is known to the user. This is usually not the case in Multimedia databases
where the FVs typically compound dozens or even hundreds of dimensions which often are
not easily interpretable by the user, e.g., if the features are represented in the frequency do-
main. Therefore, thequery-by-exampleapproach is practical. It is based on the user providing
the query point by a representative object, the query object. Such a query object can originate
from different sources. It can be selected by the user while browsing through the object data
base. Also, the user sometimes already has such query objects in her possession, or she can
provide a query by a rough sketch or approximation. The latter option is dependent on the
data type and can involve drawing a sketch when querying for 2D/3D shape, or humming of a
melody in audio retrieval.

Given that a query point is provided, also the similarity function used to answer the query is
required. It consists of the required feature(s) to use as well as the distance function to employ.
The former is necessary as based on the application or user task, not all of the possibly many
features which can describe a given data type are also requested by the user. In multimedia
data, typically many different features (aspects) can be perceived in a given application, not
all of them relevant to all users. E.g., in an image retrieval scenario, the user may be interested
in specific texture patterns occurring in the desired images, but may not care for the specific
colors which are involved. This in effect is a feature selection problem which the user has
to address. Finally, also the distance function operating in FV space has to be specified.
An important family of distance functions in vector spaces is theMinkowski(Ls) family of
distances, defined as

Ls(~x,~y) =

(
∑

1≤i≤d

|xi−yi |s
)1/s

∈ R+
0 , ~x,~y∈ Rd.

Examples of these distance functions areL1, which is calledManhattan distance, L2, which
is theEuclidean distance, andL∞ = max1≤i≤d |xi−yi |, which is called themaximum distance.
Other more specialized distances from statistics such as Kolmogorov-Smirnow,χ2 statistics
etc are possible. Also, parameterizations are possible for many distance functions, e.g., the
Minkowski distances can be weighted to let the user express importance or preferences for
certain FV components. But this is usually not considered directly in interactive query spec-
ification, as the average user cannot be expected to have an understanding on the outcome of
such parameterizations on the retrieval results. Rather, such parameterizations of the distance
functions are left for semiautomatic optimization using relevance feedback techniques. There,
relevance judgements supplied by the user are leveraged to find distance parameterizations
expected to improve sub-sequent search iterations.

If the similarity query (query pointq and distance functiond) is specified, the query can be
processed by the system. To this end, based on the real valued vectors describing the objects
in a database, a similarity query for a query objectq is usually executed as ak-NN query,
returning thek objects whose FVs have the smallest distance toq under distanced, sorted by
increasing distance to the query.

12 Chapter 2. Effective feature-based query processing

Figure 2.1 shows an example of a content-based similarity query in a 3D object database.
The first object in the row is the query object (a model of a Formula-1 racing car), and the next
objects are the nearest neighbors retrieved by the search system. Objects considered relevant
are marked by blue dots in the answer list. Note that the ranking contains several irrelevant
objects, and further relevant objects may be encountered at later positions in the ranking.

Figure 2.1:A query-by-example in a 3D multimedia database. The leftmost object is the query
example. On the right, the nearest neighbors to the query are displayed. Relevant
answer objects are marked by a dot.

2.1.2 Effectiveness and efficiency considerations

Several desirable properties can be identified in FV-based search systems. Generally, the
system should supporteffectiveandefficientretrieval. Efficiency refers to the consumption of
resources needed for storage and retrieval of the multimedia objects and can be measured by
metrics such as response times and disk utilization. Effectiveness of the system relates to the
usability of the query interface provided. It also relates to the quality of the answer objects
returned by the search system, and this point is of primary interest here. Quality of the answers
measures the degree of relevance among the answer list with respect to the query object. An
effective retrieval system is supposed to return the most relevant objects from the database on
the first positions from thek-NN query, and to hold back irrelevant objects from this ranking.

Effectiveness and efficiency in a FV-based search system are determined primarily by the
implemented FVs. This leads to the following requirements for good FVs. Regarding effi-
ciency, we can identify:

1. Efficiency of FV extraction.

2. Efficiency of FV representation.

3. Embedded multi-resolution property.

Fast extraction makes it possible to perform database inserts on the fly, where FVs are cal-
culated for any new object to be inserted in real time. Efficiency of representations requires
the vectors to consume minimal space in terms of number of vector components and number
of bits used to encode the component values. Short FVs reduce the amount of disk/memory
space required to store the FVs, and speed up distance calculations and access to the vec-
tors. Specifically, the performance of vector space index structures deteriorates quickly if
the dimensionality of the indexed data grows [10]. Often, there is a typical tradeoff between
resolution (size) of the FVs, and the provided discrimination power (cf. Section 2.3.4), in

2.1. Content-based retrieval systems 13

that higher dimensionality leads to better retrieval precision. Therefore, the embedded multi-
resolution property is desirable. FVs with this property encode progressively more object
information inside a given FV, meaning that by considering subsets of dimensions in embed-
ded multi resolution FVs allows to chose the level of detail of the object description. This is a
clear advantage, as for non multi-resolution FVs, one FV has to be stored for each resolution
level to be supported by the system.

Regarding effectiveness, the following FV properties are desirable:

4. Sufficient discrimination power.

5. Desired invariance properties.

6. Robustness properties.

7. Interpretability of components.

Discrimination power requires that an appropriate distance function defined in FV space ef-
fectively captures the similarity relationships present in object space by distances in FV space.
Therefore, discriminating object features have to be selected on which the FVs are based.
Next, depending on the multimedia data type and application, certain invariances of the search
may be desired, meaning that distances in FV space should be invariant with respect to cer-
tain application-dependent object transformations which are considered leaving similarity re-
lationships unchanged. E.g., in many cases the resolution of two raster images should not
affect the similarity measure between them. Robustness is another effectiveness criterion of-
ten demanded, implying that small variations in the multimedia objects, e.g., caused by noise,
should not dramatically alter the resulting distance between the objects in FV space. Finally,
also interpretability of the components can be seen as an effectiveness criteria. If the user
can understand the meaning of the FV components, she can directly configure the distance
function employed, e.g., by specifying component weights to be used.

2.1.3 Benchmarking effectiveness in a retrieval system

The effectiveness of a similarity search system can be assessed by different approaches. Under
theuser orientedapproach, a number of users are to perform similarity search tasks using the
algorithms (FVs) under concern, and then certain measures of user satisfaction are aggregated.
While this approach can reflect user satisfaction in real-world application settings, such ex-
periments usually are not quantitatively reproducible and need careful definition of user tasks
and user groups, therefore they are expensive. Objective and reproducible effectiveness eval-
uations are possible if there exist suitableground-truthclassified data sets (benchmarks) on
which similarity search methods can be evaluated. Examples of multimedia benchmark data
collections include the TREC text archives for information retrieval [68], or the UCI machine
learning repository [25] for data mining research. In content-based image retrieval (CBIR),
collections of images published by Corel Corporation are prominently used [65]. In time se-
ries retrieval, the UCR time series repository maintained by Eamonn Keogh is a reference

14 Chapter 2. Effective feature-based query processing

[57]. In the 3D model domain, also several benchmarks exist, most prominently to date the
Princeton Shape Benchmark [81], among others (cf. Section 2.3.2). A ground truth bench-
mark is a data set of objects with an associated classification scheme defining membership of
objects in similarity classes. Such classifications can be disjoint or overlapping, and hierar-
chic or flat. The classification is usually manually created according to common and intuitive
understanding of similarity. On the benchmark, queries are performed for benchmark objects,
and then, statistics on the precision of the produced answer lists are calculated which allow to
compare the quality of different search algorithms under the benchmark.

In Information Retrieval, different measures for the quality of answer lists given a reference
classification are possible. A nice overview is given e.g., in [89, 6], and also in [81]. In this
thesis, we consider the widely usedprecision-recallmetrics for comparing the effectiveness
of the search algorithms. We consider benchmark classifications where the similarity is given
in binary form: Given a query objectq, an answer objecto is either relevant to the query,
or irrelevant, and relevance does not differ between two objets which are both relevant (or
irrelevant) to the query object. Then, for a given answer list,precision(P) is the fraction of
the retrieved objects which are relevant toq, andrecall (R) is the fraction of the complete set
of relevant objects in the benchmark, which are contained inA. That is, if N is the number
of objects relevant to the query,A is the number of objects retrieved andRA is the number of
relevant objects in the result set, then

P =
RA

A
, andR=

RA

N
.

Precision-recall diagrams plot the precision values obtained for answer sets for increasingly
higher recall levels. They can be normalized to the eleven standard recall levels (0%, 10%, . . . ,
100%) [6]. Given a set of benchmark queries, the precision-recall diagrams obtained for each
query can be averaged to obtain aggregated precision-recall results for a whole benchmark, or
for a subset of the benchmark, e.g., a specific benchmark query class.

In addition to precision at multiple recall points, we also consider theR-precisionmeasure
[6] (also known asfirst tier [81]) for each query, which is defined as the precision when
retrieving the first (nearest)N objects. The R-precision gives a single number to rate the
performance of a retrieval algorithm:

R-precision=
RN

N

Precision-recall statistics can be used in so-called one-shot experiments, where each query
object from the benchmark is queried using a given search algorithm. Then, the benchmark
can be evaluated fully automatically. In systems which employ relevance feedback trying to
improve search results during consecutive iterations involving the user giving relevance scores
to answer lists, then also the change (delta) in the precision-recall statistics is interesting.
Systems which need fewer relevance feedback iterations to achieve a given level of precision,
or where the rate of improvement is larger on an average relevance feedback iteration, are
considered better.

2.2. Modeling FV extraction for 3D objects 15

Figure 2.2 illustrates the comparison of four different retrieval methods using a benchmark
query. A F-1 car model (leftmost column) is queried in a 3D benchmark; racing cars are
considered relevant, while all other objects are considered irrelevant to the query. The respec-
tive answer listsA1 to A4 of size 15 are given in the four rows. The precision of the answer
sets amounts toP1 = 6

15,P2 = 8
15,P3 = 5

15, andP4 = 8
15, respectively (the relevant objects are

marked by dots). Regarding the full answer lists of length 15, we consider methods 2 and 4
best in this example, as both retrieve 8 relevant answer objects. If we consider smaller prefixes
of the answer lists, we see that method 4 manages to report the relevant objects at earlier posi-
tions in the rankings, so if short answer lists are demanded by the system, then this algorithm
is the best choice among the four algorithms.

Figure 2.2:Results of a query using the DBF, SIL, and CPX FVs (cf. Section 2.3) are shown in
the first three rows, respectively (answer listA1, A2, andA3). The last line (answer
list A4) shows the answers using a static unweighed combination of all three FVs.
Objects relevant to the query object are marked by dots.

2.2 Modeling FV extraction for 3D objects

2.2.1 3D objects data type

3D objects are an important multimedia data type with many application possibilities. 3D
models can represent complex information, and the problem of searching for similar 3D ob-
jects arises in a number of fields. Example application domains include Computer Aided
Design/Computer Aided Manufacturing (CAD/CAM), Virtual Reality (VR), Medicine, Mole-
cular Biology, Military applications, Entertainment, and so on. E.g., in Medicine the detection
of similar organ deformations can be used for diagnostic purposes [51]. 3D object databases
are also used to support CAD tools which have many applications in industrial design and
manufacturing. For example, standard parts used in manufacturing processes can be modeled
as 3D objects. When a new product is designed, it can be composed by many individual parts
which fit together to form the product. If some of these parts are similar to one of already ex-
isting standard parts, then the re-usage of standard parts can lead to a reduction of production
costs, as compared to the re-designing of the requires parts. As another application, movie and
video game producers make heavy usage of 3D models to enhance realism in entertainment

16 Chapter 2. Effective feature-based query processing

applications. Re-usage and adaptation of 3D objects by similarity search in existing databases
is a promising approach to reduce production costs.

As 3D objects are used in diverse application domains, different forms for object repre-
sentation, manipulation, and presentation have been developed. In the CAD domain, objects
are often built by merging patches of parameterized surfaces, which are edited by technical
personnel. Also, constructive solid geometry techniques are often employed, where complex
objects are modeled by composing primitives. 3D acquisition devices usually produce vox-
elized object representations or clouds of 3D points. Other representations like swept volumes
or 3D grammars exist. Probably the most widely used representation to date is to approx-
imate a 3D object by a mesh of polygons, usually triangles (cf. Figure 2.3 for a 3D mesh
and a rendered image of it.) For a survey on important representation forms, see [21]. For
3D retrieval, basically all of these formats may serve as input to a query-by-example. Where
available, information other than pure geometry data can be exploited, e.g., structural data
that may be included in a Virtual Markup Language (VRML) representation. Many similarity
search methods that are presented in the literature up to date rely on triangulations, but could
easily be extended to other representation forms. Of course, it is always possible to convert or
approximate from one representation to another one.

(a) Polygon mesh (b) Rendered image

Figure 2.3:Visualization of a polygon mesh (a) and a typical rendering result (b).

2.2.2 A new process model for classification of 3D FV extractors

Candidate features for usage in a 3D FV extractor depend on the specific format in which the
models in the considered database are given. Often, information about properties of surface
(e.g., texture or reflection properties), volumetric aspects (e.g., mass density), or structure
(e.g., hierarchical containment relationships defined on parts of the model) cannot be assumed
in a model representation. A property common to most representation forms is geometry, and
consequentially, 3D FV extractors usually rely on geometry information to generate 3D FVs.

2.2. Modeling FV extraction for 3D objects 17

In this Section, we next propose a model of the 3D descriptor definition process, followed by
a discussion of important requirements typically demanded for 3D FVs.

3D FV extraction process model

The extraction of shape descriptors generally can be regarded as a multistage process like
illustrated in Figure 2.4. In this process, a given 3D object, usually represented by a polygonal
mesh, is first preprocessed to achieve required invariance and robustness properties. Then, the
object is transformed so that its character is either of surface type, or volumetric, or captured
by one or several 2D images. Then, a numerical analysis of the shape takes place, from the
result of which finally the feature descriptors are extracted. We briefly sketch these basic steps
in the following.

1. Preprocessing.Several requirements that suitable methods for 3D similarity search
should fulfill can be identified. The methods should beinvariantwith respect to changes
in rotation, translation, and scale of 3D models in their reference coordinate frame. Ide-
ally, an arbitrary combination of translation, rotation and scaling operations applied to
one object should not affect its similarity measure with respect to another object. In
other words, the features comprising the shape descriptor ideally should not depend on
the arbitrary coordinate frames that the authors of 3D models have chosen. Suitable
methods should also berobustwith respect to variations of the level-of-detail, and to
small variations of the geometry and topology of the models. In some applications,
invariance with respect to anisotropic scaling may also be desirable.

2. Type of object abstraction.A polygonal mesh can be seen in different ways. We may
regard it as an ideal mathematical surface, infinitely thin, with precisely defined prop-
erties of differentiability. Alternatively, we may look at it as a thickened surface that
occupies some portion of volume in 3D space, or for watertight models as a boundary
of a solid volumetric object. The transformation of a mesh into one of these forms is
typically called voxelization. Statistics of the curvature of the object surface is an ex-
ample of a descriptor based directly on a surface, while measures for the 3D distribution
of object mass, e.g., using moment-based descriptors, belong to the volumetric type of
object abstraction. A third way to capture the character of a mesh would be to project
it onto one or several image planes producing renderings, corresponding depth maps,
silhouettes, and so on, from which descriptors can be derived.

3. Numerical transformation.The main features of meshes in one of the types of object
abstractions outlined before can be captured numerically using one of various methods.
Voxel grids and image arrays can be Fourier or Wavelet transformed, and surfaces can
be adaptively sampled. This yields a numerical representation of the underlying object.
It is not required that the numerical representation allows the complete reconstruction
of the 3D object. However, these numerical representations are set up to readily extract
the mesh shape descriptors in the final phase of the process.

4. Descriptor generation.We propose to group the descriptors for 3D shape in three main
categories based on their form.

18 Chapter 2. Effective feature-based query processing

a) Feature vectors, or FVs, consist of elements in a vector space equipped with a
suitable metric. Usually, the Euclidean vector space is taken with dimensions that
may easily reach several hundreds. Such Feature Vectors may describe conceptu-
ally different types of shape information, such as spatial extent, visual expression,
surface curvature, and so forth.

b) In statistical approaches,3D objects are inspected for specific features, which are
summarized usually in the form of a histogram. For example, in simple cases this
amounts to the summed up surface area in specified volumetric regions, or, more
complex, it may collect statistics about distances of point pairs randomly selected
from the 3D object.

c) The third category is better suited forstructural 3D object shape descriptionthat
can be represented in the form of a graph [85, 41]. A graph can more easily repre-
sent the structure of an object that is made up of or can be decomposed into sev-
eral meaningful parts, such as the body and the limbs of objects modeling animals.
However, finding a good similarity measure for graphs is not as straightforward as
for Feature Vectors, and, moreover, small changes in the 3D object may lead to
large changes in the corresponding structural graph, which is not ideal for solving
the retrieval problem.

Denoising

Scale

Translation Volumetric

Surface

Sampling

DFT

Wavelet

Image Etc. Graph

Statistical

 Rotation

 Preprocessing

(Descriptor)
Output

 Object Descriptor
 Abstraction GenerationTransformation

 Numeric

Feature Vector

(3D Object)
Input

Figure 2.4:3D FV extraction process model.

For a classification of 3D object retrieval methods we use the type of object abstraction
from the second stage of the extraction pipeline as the primary category. Thus, we ask whether
the descriptor used in the respective method is derived directly from the surface, or whether
it is based on an intermediate volumetric or image type of abstraction. For a second level
of differentiation we propose to look at the form of descriptors (Feature Vector, statistical,
or structural). Therefore, we adopt a classification based on the abstraction setting and the
form of descriptors rather than the semantics behind them. Other classifications for shape
description and analysis methods are possible, see for example the survey of Tangelder and
Veltcamp [87] or Loncaric [64]. The methods in the Feature Vector class are efficient, robust,
easy to implement, and provide some of the best approaches [87, 49, 97]. Therefore, these are
the most popular ones that are explored in the literature. Also in this work, we restrict to this
case as the currently dominant framework for 3D retrieval systems. We do not imply, however,
that the other methods may be inferior and should therefore be discarded from future research.
Most of these methods have their particular strengths and may well be the ideal candidate for
a specific application.

2.2. Modeling FV extraction for 3D objects 19

Invariance and robustness requirements

The most important invariance properties of searching for 3D content refer to invariance with
respect to translation, scale, and orientation of the models. It is also commonly demanded that
the search is robust with respect to changes in the level of detail of the models, e.g., the resolu-
tion of the mesh which is modeling an object. These invariance and robustness properties can
be achieved in different ways. If only relative object properties are used to define the descrip-
tor, then the invariance is not a problem, e.g., as in [70]. These methods are typically found
in the class of statistical methods. Invariance with respect to rotation can be achieved with
energy summation in certain frequency bands of spectral representations of suitable spherical
functions [34, 49]. In a generalization of this method to volumetric representations one may
achieve rotational invariance by an appropriate combination of Zernike moments [67]. The
invariance with respect to translation and to scale must be achieved in these methods by an
a-priori normalization step, i.e., by translating the center of mass of the 3D object to the origin
and by scaling the objects so that they can be compared at that same scale.

Otherwise, the invariance properties can be obtained approximately by an additional pre-
processing normalization step, which transforms the objects so that they are represented in a
canonical reference frame. In comparison to the above mentioned works, besides the trans-
lation of the coordinate origin and the definition of a canonical scale, also a rotational trans-
formation must be applied in order to complete the normalization. In such a reference frame,
directions and distances are comparable between different models. The predominant method
for finding this reference coordinate frame is pose estimation by principal components analy-
sis (PCA) [73, 98], also known as Karhunen-Loeve transformation. The basic idea is to align
a model by considering its center of mass as the coordinate system origin, and its princi-
pal axes as the coordinate axes. An extension to normalizing (isotropic) scale is to factor
out also anisotropic scale [50] so that the variance of the object along any direction is unity.
This is achieved by scaling the object along its principal axes by the inverses of the corre-
sponding eigenvalues. The three eigenvalues can be appended to the Feature Vector of the
re-scaled object, and with an appropriate distance metric one may either completely disre-
gard the anisotropy of the model or assign an arbitrary importance to it, depending on the
application or user preferences [50].

While the majority of proposed methods employs PCA in some form or another, several
authors have stability concerns with respect to the PCA as a tool for 3D retrieval. On the
other hand, omitting orientation information also omits valuable object information. Thus,
there is a tradeoff between achieving intrinsic rotation invariance without rotating the object
in a canonical orientation, and the discrimination power that can additionally be attained by
using an (approximated) canonical orientation. A detailed thorough empirical analysis would
have to compare both cases to the retrieval performance achievable by optimal pairwise object
alignment. This is a hard to do experiment and still outstanding. For a more detailed discussion
see [34, 96, 66, 86].

20 Chapter 2. Effective feature-based query processing

2.3 Query processing using single Feature Vectors

2.3.1 Classification of studied FV extractors using the process model

In this Section, we experimentally evaluate the retrieval performance of a number of 3D fea-
ture extractors. These FV extractors were designed and/or implemented by our colleagues
Dietmar Saupe and Dejan Vranic and detailed in [97]. The contribution of this Section is (a)
to provide a comparative evaluation of a significant number of 3D FV extractors, and (b) to
serve as a reference base line for measuring the improvement potential achievable by building
static and dynamic combinations of FVs in Sections 2.4 and 2.5. We briefly sketch the princi-
ples of the used FV extractors used in this study in the following. The ordering is done by the
object abstraction underlying the FV extractor, according to the descriptor extraction process
model introduced in Section 2.2.2. For a more detailed discussion of the methods, as well as
additional evaluation results please refer to [18, 19, 16, 97].

Volumetric methods. These methods perform a partitioning of 3D space and consider ag-
gregates of model surface in each of the partitions. TheRotational Invariant(RIN) [47]
method sums up sampled model surface points belonging to certain equivalence classes de-
fined on the cells of a voxel grid inside which the models are scaled. TheVoxel(VOX) [97]
method considers the fraction of model surface occupying the cells of a voxel grid around the
model. The3DDFT (3DDFT) [97] method considers the same samples as VOX, but repre-
sented in the frequency domain. TheVolume(VOL) [97] FV is constructed by measures of
model volume located inside a pyramid-like partitioning of the model’s bounding box. The
last method in this category is theHarmonics 3D(H3D) [34] FV, which considers a set of
concentric binary functions defined on the voxel grid and transformed to the frequency do-
main using the Spherical Harmonics transform. Note that by design this FV provides rotation
invariance by discarding rotation information from the description.

Surface-based methods. Methods in this class consider properties obtained from abstract-
ing the 3D models to their surface. TheMoments[PMOM] [73] describes a 3D model by
enumerating certain moments calculated from the 3D coordinates of the centroids of all model
faces (triangles, polygons). TheRay Moments[RMOM] [97] FV also considers a collection
of moments, where the moments are calculated by sampling the model surface using equally-
spaced rays emitted from the model centroid. TheCords[COR] [73] FV combines histograms
over length and angles obtained from lines connecting the model centroid with the centroids
of all model faces.Shape Distribution SD2[SD2] [70] describes a 3D model by a histogram
of distances calculated for pairs of points randomly sampled on the model surface. TheShape
Spectrumdescriptor [SSD] [105] is a histogram over model surface curvature.

Image-based methods. These approaches extract features from one or several 2D projec-
tions of the 3D models. TheSilhouette FV[SIL] [97] is a Fourier descriptor considering
centroid-based distance samples of 2D renderings of the models. TheDepth Buffer[DBF]
[97] FV is also image-based, but considers grey-scale depth images rendered from the mod-

2.3. Query processing using single Feature Vectors 21

Table 2.1:Studied 3D FV extractors.

Descriptor name Abbr. Source Preproc. Object abstr. Num. transf. Type

Rot. Inv. RIN [47] RTS Volumetric None Histo
Voxel VOX [97] RTS Volumetric None Histo

3DDFT 3DDFT [97] RTS Volumetric 3D DFT FV
Volume VOL [97] RTS Volumetric None FV

Harmonics 3D H3D [34] TS Volumetric Sph. Harm. FV
Moments PMOM [73] RTS Surface Sampling FV

Ray Moments RMOM [97] RTS Surface Sampling FV
Cords COR [73] RT Surface Sampling Histo

Shape Dist. D2 SD2 [70] None Surface Sampling Histo
Shape Spectrum SSD [105] None Surface Curve fitting Histo

Silhouette SIL [97] RTS Image Sampling + DFT FV
Depth Buffer DBF [97] RTS Image 2D DFT FV
Ray-Based RAY [97] RTS Image Sampling FV
Rays-SH RSH [97] RTS Image Sampling + Sph. Harm. FV

Shading-SH SHA [97] RTS Image Sampling + Sph. Harm. FV
Complex-SH CPX [97] RTS Image Sampling + Sph. Harm. FV

els. TheRay-based[RAY] [97] method can be regarded as a real-valued depth image in
spherical coordinates. TheRays-SH[RSH] [97] considers the Spherical Harmonics transform
of the Ray-based depth image.Shading-SH[SHA] [97] performs a spherical projection of
shading information calculated from surface normal vectors. Finally, theComplex-SH[CPX]
[97] FV combines the RSH and SHA features in a complex-valued measure represented in the
frequency domain.

Please refer to table 2.1 for an overview over the methods in the order as listed above. The
preprocessingfield lists the explicitly supported invariances (R: rotation; T: translation; S:
scale). Theobject abstractionfield refers to the abstraction type from the process model dis-
cussed in Section 2.2.2.Numeric transformgives the method applied on the model samples
such as Discrete Fourier or Spherical Harmonics transform, Sampling, or fitting of curves. Fi-
nally, thetypefield indicates wether the vectors are histograms or arbitrary real-valued vectors.
Please note that the table also includesabbreviationsfor the individual methods. We will make
repeated use of these abbreviations to refer to the individual 3D FV extractors throughout the
remainder of this thesis.

All these FV extractors were heuristically introduced. They were inspired by various Com-
puter Graphics (e.g., DBF or SIL), Geometry (e.g., SSD), or Signal Processing (e.g., the idea
of representing features in the frequency domain) techniques. Up to special cases it is a-
priori quite unclear which of these features should be preferred for addressing the general
3D retrieval problem. Each of the descriptors captures specific model information, and their
suitability for effective retrieval needs to be experimentally evaluated.

22 Chapter 2. Effective feature-based query processing

2.3.2 3D retrieval benchmark design

The effectiveness of the heuristically introduced 3D FV extractors can be experimentally eval-
uated using the benchmarking approach on a suitable ground truth database as described in
Section 2.1.3. The availability of commonly accepted, high-quality reference benchmarks is
a beneficial factor in finding effective FV extractors in many multimedia applications. In the
content-based 3D retrieval field, which is not yet as established as other retrieval domains,
there are not too many benchmarks available. Probably the most prominent 3D benchmark
was released in 2004 by the Princeton Shape Retrieval and Analysis Group: ThePrinceton
Shape Benchmark(PSB) [81]. This benchmark consists of a carefully compiled set of 1,814
3D models in polygon mesh representation that were harvested from the Internet. The bench-
mark also includes object partitioning schemes on several levels of abstraction, that is, several
definitions of disjoint classes of objects, where all objects within the same class are to be con-
sidered similar. The benchmark is partitioned in oneTrainingand oneTestset, each containing
half of the models. As to the types of objects considered, the PSB consists of models represent-
ing object classes that are familiar from the real world, such as animals, plants, vehicles, tools,
or accessories. Not included are model classes from specialized application domains, e.g.,
CAD engineering or molecular biology. Of the different PSB classification schemes defined,
the PSB-Baseclassification represents the most selective classification granularity, grouping
objects strictly by function (semantic concept) as well as global shape. For our subsequent
effectiveness evaluations, we consider this base classification.

In our own work, we also compiled a 3D benchmark database for evaluation purposes: The
Konstanz 3D Database(KN-DB) [19, 61]. The KN-DB contains 1,838 3D objects which we
harvested from the Internet, and from which we subsequently manually classified 472 objects
by global shape and function into 55 different model classes (the remaining models were
left as “unclassified”). Table A.1 in the Appendix lists the individual query classes defined
in the KN-DB benchmark, along with the number of member objects per class. Similar to
the Princeton Shape Benchmark, the KN-DB benchmark contains mesh models representing
“real-world” objects such as humans, animals, vehicles, and so on. Please refer to Figure
A.1 in the Appendix for an illustration of member objects from some of the query classes
contained in the KN-DB benchmark.

Comparing model types and classification philosophy in the PSB-Base and the KN-DB,
we find that the partitioning of models into similarity classes was done in the same spirit,
and both databases contain similar classes of objects. Having this in mind, the following
evaluation, which is based on these two benchmarks, is valid for these ’real-world’ 3D objects.
Supposing that these model types form a significant part of the models freely available today
on the Internet, the results give hints for selecting algorithms for building general-purpose 3D
Internet search engines.

We evaluated the implemented FVs using different levels of resolution (dimensionalities),
from 3 up to 512 dimensions, testing many different resolution settings as allowed by the
individual methods. For object preprocessing prior to FV extraction, we apply the contin-
uous principal component analysis (CPCA) [97] for those descriptors that require pose nor-

2.3. Query processing using single Feature Vectors 23

Table 2.2:Average R-precision of the 3D descriptors (KN-DB).

Descriptor Abbr. Best dim. Avg. R-prec.

Depth Buffer DBF 366 0.3220
Voxel VOX 343 0.3026

Complex CPX 196 0.2974
Rays-SH RSH 105 0.2815
Silhouette SIL 375 0.2736
3DDFT 3DDFT 365 0.2622

Shading-SH SHA 136 0.2386
Ray-Based RAY 42 0.2331

Rotation Invariant RIN 406 0.2265
Harmonics 3D H3D 112 0.2219

Shape Distribution D2 SD2 188 0.1930
Ray Moments RMOM 363 0.1922

Cords COR 120 0.1728
Moments PMOM 31 0.1648
Volume VOL 486 0.1443

Shape Spectrum SSD 432 0.1119

malization. Fixing a FV, we obtain benchmark-average retrieval performance values by first
executing queries for all classified objects defined in the benchmark, and then averaging the
query-specific precision and recall statistics. In a similar way, we obtain class-average results
by averaging only over the queries belonging to a given class. We obtain the retrieval per-
formance statistics by considering the binary relevance status of answer objects according to
class membership, and applying the formulas recalled in Section 2.1.3.

2.3.3 Benchmark-global effectiveness results

Database-average effectiveness results

Table 2.2 shows the best average R-precision values obtained for all implemented descriptors
over all queries from theKN-DB benchmark, and their corresponding best dimensionality
settings. The most effective FV according to this measure is the image-based Depth Buffer
FV set to 366 dimensions.

Figures 2.5 (a) and (b) show the precision vs. recall figures for all the implemented descrip-
tors, evaluated on the KN-DB. The difference of the average R-precision values between the
best performing descriptors is small, which implies that in practice these FVs should all be
suited equally well for retrieval of “general-purpose” polygonal 3D objects. As a contrast,
the effectiveness difference between the best and the least performing descriptor is significant
(up to a factor of 3). We observed that descriptors which rely on consistent polygon orien-
tation like Shape Spectrum or Volume exhibit low retrieval rates, as consistent orientation is

24 Chapter 2. Effective feature-based query processing

not guaranteed for many of the models retrieved from the Internet. Also, the moment-based
descriptors in this test seem to offer only limited discrimination capabilities.

Figures 2.6 (a) and (b) give the query-average precision vs. recall curves for thePSB-Test
database when using the FV resolution providing the best average R-precision for this database
(we include database-specific optimal dimensionality setting and achieved R-precision num-
bers in the legend). It is interesting to note that the results from the PSB-Test are quite similar
to the ones obtained with the KN-DB. Despite the two databases having differences in size,
models, and classification, the ranking of descriptors by retrieval performance, as well as the
absolute performance figures are well comparable. Comparing the descriptor rankings from
the KN-DB and the PSB-Test, there occur certain switches in the rankings, but all switches
take place on roughly the same R-precision level. The two best performing descriptors and
the four least performing descriptors retain their positions. We attribute the similarity of the
retrieval performance results to the fact that both databases contain a comparable distribution
of models, and manual classification was done in a comparable manner, namely, according to
function and shape.

We also evaluated the descriptors’ retrieval performance on thePSB-Traindatabase. While
the absolute retrieval performance level using the PSB-Train (as measured by R-precision) is
slightly higher than on the PSB-Test (about two percentage points), the descriptor rankings
by retrieval performance are the same on both PSB partitions, except for one adjacent rank
switch occurring between the eighth and ninth position in the ranking. This is not surprising,
considering the construction of the PSB Training and Test partitions [81].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average Precision vs. Recall

Depth Buffer
Voxel

Complex
Rays−SH
Silhouette

3DDFT
Shading−SH

Ray based

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average Precision vs. Recall

Rotational invariant
Harmonics 3D

Shape distribution
Ray−moments

Cords
Moments
Volumes

Shape spectrum

(b)

Figure 2.5:Average precision vs. recall with best dimensionality settings (KN-DB).

Specific query classes

The preceding experimental results compared the benchmark-average retrieval performance
of the different FV extractors. The Depth Buffer was found to outperform the other methods
on average over all queries. It is interesting to also compare the retrieval performance for
individual query classes and ask whether the FV ranking obtained on average also holds on the

2.3. Query processing using single Feature Vectors 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average Precision vs. Recall

Depth Buffer (510d, 0.3040)
Voxel (124d, 0.2777)

Silhouette (480d, 0.2643)
Rays−SH (91d, 0.2514)
Complex (144d, 0.2471)

3DDFT (172d, 0.2269)
Ray based (42d, 0.2252)

Rotational invariant (104d, 0.2032)

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average Precision vs. Recall

Shading−SH (120d, 0.2030)
Harmonics 3D (112d, 0.1979)
Ray−moments (454d, 0.1817)

Shape distribution (310d, 0.1712)
Cords (30d, 0.16075)

Moments (52d, 0.1506)
Volumes (294d, 0.1281)

Shape spectrum (102d, 0.1154)

(b)

Figure 2.6:Average precision vs. recall with best dimensionality settings (PSB-Test).

class level. To this end, we find that a good number of individual query classes from all three
benchmarks reflect the benchmark-average rankings, while discrepancies on the subsequent
ranks may occur. Figures 2.7 to 2.10 illustrate two query classes and corresponding retrieval
results from the KN-DB, namely one class with planes and one class with swords. The charts
give the effectiveness results obtained with the descriptors for these query classes. Both in the
planes and swords classes, Depth Buffer scores first. While the FV performance ranking for
the planes class resembles the benchmark-average ranking quite closely, for the swords class,
there is significant disagreement with the global ranking on the next ranks. Specifically, the
RIN and SD2 descriptors are among the top-4 descriptors in this class, while they are ranked
on positions 9 and 11 in the benchmark-average ranking, respectively.

Another interesting observation on the class level can be made with respect to the Shape
Spectrum descriptor. While this descriptor performs the least on benchmark average, it achieves
the best retrieval result in a KN-DB query class number 55 containing models of humans,
yielding on average 34% R-precision in this query class. As this descriptor considers the dis-
tribution of local curvature, it is able to retrieve human models that have different postures,
while the other descriptors retrieve only those models where model posture is roughly the
same (see Figure 2.11 for an illustration).

While these results are illustrative in nature, they indicate that choosing the descriptor based
on benchmark average results may not be the optimal choice for answering each and every
query that may be submitted to the retrieval system. Specifically, these results motivate the
use of static as well as dynamic combinations of individual feature vectors, as will be further
developed in Sections 2.4 and 2.5. Please refer to Table 2.3 in Section 2.4.1 for a statistic
regarding the ranking of the different descriptors on the class level.

26 Chapter 2. Effective feature-based query processing

Figure 2.7:The models from the planes model class (KN-DB).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average Precision vs. Recall

Depth Buffer
Voxel

Silhouette
Complex

3DDFT
Harmonics 3D

Shading−SH
Shape distribution

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average Precision vs. Recall

Rays−SH
Moments

Ray based
Ray−moments

Rotational invariant
Shape spectrum

Cords
Volumes

(b)

Figure 2.8:Average precision vs. recall,planesmodel class (KN-DB).

Figure 2.9:The models from theswordsmodel class (KN-DB).

2.3. Query processing using single Feature Vectors 27

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average Precision vs. Recall

Depth Buffer
Rotational invariant

Voxel
Shape distribution

Rays−SH
Complex

3DDFT
Ray based

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

re
ci

si
on

Recall

Average Precision vs. Recall

Harmonics 3D
Silhouette

Ray−moments
Volumes
Moments

Shading−SH
Cords

Shape spectrum

(b)

Figure 2.10:Average precision vs. recall, swords model class (KN-DB).

Figure 2.11:Example query in the humans class (KN-DB). The first and second rows show
the eight nearest neighbors using the Depth Buffer and the Shape Spectrum FVs,
respectively.

28 Chapter 2. Effective feature-based query processing

2.3.4 Sensitivities and extraction complexity

Level-of-detail

Robustness of the retrieval with respect to the level-of-detail in which models are given in a
database is an important descriptor property. We test for this property using a query class from
the KN-DB that contains 7 different versions of the same model, in varying levels of resolution
(specifically, models of a cow with 88 up to 5,804 polygons). Except Shape Spectrum and
Cords, all descriptors manage to achieve perfect or near-perfect retrieval results. Figure 2.12
(a) shows one example query in this class for 3 descriptors, and Figure 2.12 (b) gives the
average R-precision numbers for all descriptors in this query class.

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

3DDFTRSHVOXVOLRAYRMOMDBFSIL

R
−

pr
ec

is
io

n

Descriptor

R−precision in the cow query class

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

SSDCORSHASD2PMOMRINH3DCPX

R
−

pr
ec

is
io

n

Descriptor

R−precision in the cow query class

(c)

Figure 2.12:(a): Retrieval results for one example cow query object (KN-DB). The descriptors
used are Depth Buffer, Cords, and Shape Spectrum from the first to the third
query row, respectively. (b-c): R-precision values for the cows model class, and
for all evaluated FVs.

Principal axes

PCA normalization is required by most descriptor methods. For certain model classes, the
PCA gives alignment results that are not in accordance with the alignment a user would intu-
itively expect based on semantic knowledge of the objects. For example, in the KN-DB we
have defined a query class with 4 arm chairs (see Figure 2.13 (a)). In this class, PCA results
are counterintuitive. While we cannot give an in-depth discussion of the PCA here, we note
that in this query class an inherently rotational-invariant descriptor (harmonics 3D) provides
the best class-specific retrieval performance (see Figure 2.13 (b)).

Effectiveness as a function of the dimensionality of the descriptor

It is possible to calculate FVs at different resolutions, e.g., by specifying the number of rays
with which to scan the objects, by specifying the number of Fourier coefficients to consider,
etc. We are therefore interested in assessing the effect of descriptor resolution on retrieval
effectiveness. Figure 2.14 (a) and (b) show the effect of the descriptor dimensionality on the
query-average effectiveness in the KN-DB. Figures 2.15 (a) and (b) show the same charts
for the PSB-Test benchmark. Again, the descriptors’ retrieval performance behaves similarly

2.3. Query processing using single Feature Vectors 29

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Precision vs. Recall, Chairs class

Harmonics 3D
Rotation Invariant

Moments
Depth Buffer

Voxel
Rays−SH

Cords
Silhouette
Complex

3DDFT
Ray−based

Shading−SH
Shape Spectrum

Volume
Ray−Moments

Shape Distribution D2

(b)

Figure 2.13:Alignment problems of PCA in some classes (a). All objects are rendered with
the camera looking at the center of mass along the least important principal axis.
The rotation-invariant FV Harmonics 3D shows the best retrieval performance in
this query class (b).

for both benchmarks. The figures show that the precision improvements are negligible for
roughly more than 64 dimensions for most FVs, which means that it is not possible to im-
prove the effectiveness of the search system by increasing the resolution of the FV over some
dimensionality. It is interesting to note that this saturation effect is reached for most descrip-
tors at roughly the same dimensionality level. This is an unexpected result, considering that
different FVs describe different characteristics of 3D objects.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 64 128 192 256 320 384 448 512

R
−

pr
ec

is
io

n

Dimensionality

Average R−precision

Depth Buffer
Voxel

Complex
Rays−SH
Silhouette

3DDFT
Shading−SH

Ray based

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 64 128 192 256 320 384 448 512

R
−

pr
ec

is
io

n

Dimensionality

Average R−precision

Rotational invariant
Harmonics 3D

Shape distribution
Ray−moments

Cords
Moments
Volumes

Shape spectrum

(b)

Figure 2.14:Dimensionality vs. R-precision (KN-DB)

30 Chapter 2. Effective feature-based query processing

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 64 128 192 256 320 384 448 512

R
−

pr
ec

is
io

n

Dimensionality

Average R−precision

Depth Buffer
Voxel

Silhouette
Rays−SH
Complex

3DDFT
Ray based

Rotational invariant

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 64 128 192 256 320 384 448 512

R
−

pr
ec

is
io

n

Dimensionality

Average R−precision

Shading−SH
Harmonics 3D
Ray−moments

Shape distribution
Cords

Moments
Volumes

Shape spectrum

(b)

Figure 2.15:Dimensionality vs. R-precision (PSB-Test)

Computational complexity

We also compared the computational complexity of the 16 implemented descriptors. Typically,
the computational cost of feature extraction is not of primary concern as extraction needs to
be done only once for a database, while additional extraction must be performed only for
those objects that are to be inserted into the database, or when a user submits a query object
that is not yet indexed by the database. Still, computational complexity may be a bottleneck
if many objects are to be imported on the fly in a productive system. We therefore present
some efficiency measures taken on an Intel P4 2.4 GHz platform with 1 GB of main memory,
running Microsoft Windows, when extracting FVs from the KN-DB database. We observed
that in general FV extraction is quite fast for most of the methods and 3D objects. Shape
Spectrum is an exception. Due to the approximation of local curvature from polygonal data
by fitting of quadratic surface patches to all object polygons, this method is rather expensive.
In general, PCA object preprocessing only constitutes a minor fraction of total extraction cost,
as on average the PCA cost was only 3.59 seconds for the complete database of 1,838 objects
(1.95 milliseconds per object on average).

Figure 2.16 (a) shows the average extraction time per model as a function of the dimension-
ality of a descriptor. We did not include in this chart some of the descriptors that posses the
multi-resolution property (because we computed those descriptors only once, using the maxi-
mum possible dimensionality), and we also discarded the curves for Shape Spectrum (almost
constant and one order of magnitude higher than the others) and Volume (a constant value for
all possible dimensions, 387 milliseconds). It follows that the extraction complexity depends
on the implemented descriptor. For example, one of them has constant extraction complexity
(Shape Distribution), others produce sub-linear curves (e.g., Rotation Invariant and Cords),
others produce linear curves (e.g., Ray-Moments), and the rest produce super-linear curves
(e.g., Harmonics3D and Moments). Figure 2.16 (b) summarizes the average extraction time
per model (milliseconds) for all examined descriptors using their optimal dimensionality (cf.
Table 2.2).

2.4. Query processing using static combinations 31

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 64 128 192 256 320 384

E
xt

ra
ct

io
n

T
im

e
(m

s)

Dimensionality

Average Extraction Time

Voxel
Ray based

Rotational invariant
Harmonics 3D

Shape distribution
Ray−moments

Cords
Moments

(a)

Feature Vector Avg. time (ms)
Depth Buffer 249

Voxel 60
Complex 166
Rays-SH 162
Silhouette 50
3DDFT 1.545

Shading-SH 166
Ray-based 19

Rotation invariant 153
Harmonics 3D 167

Shape distribution 68
Ray-moments 228
Cords-based 10

Moments 12
Volume 388

Shape spectrum 6.439

(b)

Figure 2.16:Average extraction time for some of the descriptors while varying their corre-
sponding dimensionality (a). Descriptor computation complexity for fixed (opti-
mal) dimensionality (b).

If the dimensionality of the descriptor is fixed, then it is possible to produce a point cloud
visualizing the extraction time as a function of the number of triangles of the 3D object. Using
this point cloud, we computed the best fitting linear curve by performing a linear regression.
Figures 2.17 (a) and (b) show two examples of best fitting curves for the Depth Buffer and
Harmonics 3D descriptors respectively, using their optimal dimensionality setting (cf. Table
2.2).

2.4 Query processing using static combinations

2.4.1 Building combinations of Feature Vectors

The retrieval performance analysis in Section 2.3 suggests that there exist a number of FVs
that achieve good average retrieval performance on the majority of query classes, but that there
is no clear winner among them which delivers optimal retrieval precision for all possible query
classes. Instead, the individual FVs have different advantages and disadvantages. Sometimes,
FVs which perform bad on benchmark average prove valuable when certain specific classes
must be retrieved. E.g., the Shape Spectrum provides good retrieval results on thehumans
query class, but performs poor for most of the other benchmark classes. For many pairs of
query classes, there is a significant disagreement of the FV performance rankings found. E.g.,
for the KN-DB classesF-1 andBottles, the respective FV rankings by retrieval precision for
a number of FVs from our setup differed significantly (c.f. Figure 2.18). E.g, Depth Buffer
scores 1st in the F-1 class, while it performs only 4th in the bottles class. As another example,
the Rays-SH FV scores worst in F-1, but second best in the bottles class.

32 Chapter 2. Effective feature-based query processing

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250

E
xt

ra
ct

io
n

T
im

e
(m

se
c)

Number of triangles (in thousands)

Feature Extraction Time vs. Complexity of the Object

Depth buffer (avg. time = 249 msec)
Best fitting curve (y = 4.33x + 204.76)

(a)

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250

E
xt

ra
ct

io
n

T
im

e
(m

se
c)

Number of triangles (in thousands)

Feature Extraction Time vs. Complexity of the Object

Harmonics 3D (avg. time = 167 msec)
Best fitting curve (y = 1.69x + 149.39)

(b)

Figure 2.17:Best fitting curve for the extraction time of Depth Buffer (a) and Harmonics 3D
(b).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average Precision vs. Recall, F−1 car query class (9 objects)

Depth Buffer (0.59)
Voxel (0.41)

Silhouette (0.41)
Complex (0.36)

Rays−SH (0.32)

(a) F-1 results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average Precision vs. Recall, bottles query class (14 objects)

Voxel (0.46)
Rays−SH (0.42)
Complex (0.39)

Depth Buffer (0.36)
Silhouette (0.29)

(b) Bottle results

(c) F-1 models (d) Bottle models

Figure 2.18:Retrieval results for the two KN-DB query classes F-1 cars and bottles. The
performance rankings of the individually benchmarkes FVs do not agree for these
two classes.

2.4. Query processing using static combinations 33

These class-specific ranking results are, similar to the per-class results given in Section
2.3.3, illustrative in nature. More systematically, we looked at the distribution of rankings of
the methods throughout the 55 query classes of the KN-DB benchmark. Table 2.3 shows the
number of query classes a FV scored in the top 1, 2, or 3 positions according to the benchmark-
average R-precision results. Interestingly, the Depth Buffer FV, which achieves best retrieval
performance on benchmark average, is the best method only for 12 of the query classes, while
Silhouette and Voxel win in 14 and 13 classes, respectively.

Table 2.3:Number of query classes where the FVs manage to score top-n (KN-DB).

FV n = 1 n = 2 n = 3

Silhouette 14 24 35
Voxel 13 18 26

Depth Buffer 12 22 29
Harmonics 3D 9 20 27

Ray-SH 6 22 37
Complex-SH 1 4 11

Sometimes, the suitability of a given feature extractor for retrieval of a specific query class
can be theoretically estimated by the extractor definition. E.g., the Shape Spectrum descriptor
performs good in the humans query class as it considers surface-relative properties which al-
low retrieval of models with similar surface properties but different articulations (poses) of the
limbs. For many other FVs, such theoretical estimations are much harder to do. What we can
note is that the considered FVs represent different, often complementary information regard-
ing the description of 3D objects. Some of them consider surface-based information, some
consider extension-based information, and still others consider information extracted from 2D
projections like silhouettes. As the different FVs capture different aspects and characteristics
of the models, we are interested to test whethercombiningFVs leads to improved retrieval ef-
fectiveness as compared to database-average selection of a certain FV to use by default (e.g.,
sticking to the Depth Buffer FV for all queries). We expect appropriate combinations of FVs to
produce more robust and precise retrieval results, as we avoid the disadvantages of using just
one single FV which is often not the best choice for a given query class. Combining multiple
structurally different FVs leads to a more complete object description capturing more object
aspects. Combining FVs can be regarded as a voting scheme, where the individual FVs con-
tribute preferences for retrieval results (rankings) towards an aggregated ranking. Intuitively,
if a minority of FVs performs bad (ranks irrelevant objects high) and a majority of FVs con-
tributes good rankings, we expect the good FVs to compensate the bad FVs in an appropriate
ranking combination scheme.

Building of combinations of FVs of different types has previously been shown to be ben-
eficial in content-based image retrieval, e.g., in [44, 39]. Also, the combination of different
classifiers using so-calledensemblesis a technique researched for improving classification

34 Chapter 2. Effective feature-based query processing

accuracy in data mining problems. So, how can different FVs be practically combined in a
retrieval system? There exist two main approaches for buildingunweighed(equal-important,
homogeneous) combinations of multiple FVs, which we discuss next.

Feature Concatenation. Here, the FVs are combined by simply concatenating the respec-
tive vectors to form so-called hybrid FVs. Two issues arise in this context. First, appropriate
normalization of individual FVs must be considered if each FV is to exert the same (homo-
geneous) influence for sub-sequent distance calculations: (a) the FVs should have the same
length (number of dimensions), and (b) the intervals (spread) of the component values should
be comparable, if standardLp distances are to be engaged for the distance calculation. Second,
if efficiency is a concern, then the overall dimensionality of the resulting hybrid FV has to be
taken care of, as concatenation of high-dimensional FVs leads of course to FVs of even higher
dimensionality. Dimensionality reduction [37] is an option to reduce the concatenated FVs to
reasonable sizes.

An advantage of the concatenation approach is that at query time, the resulting distance can
be immediately calculated, while in the ranking-aggregation approaches, combination has to
be done at query time. On the other hand, concatenated FVs lead to less flexibility in terms of
weighting of individual FVs which might be desirable in a search system (cf. Section 2.5).

Result Aggregation. With this scheme, the system retains the individual FVs which are
to be combined. At query time, the system produces sorted lists (rankings) for each of the
considered FVs, and then forms the final query result by aggregating the individual rankings
as yielded by the FVs. The aggregation can be done by several strategies.Distance-based
aggregation produces the final ranking by calculating the distance between a query object
and each database object as a sum of normalized distances as returned by each individual
FV. Normalization is necessary to compensate for different scales which are possible for the
individual FVs - a FV of high dimensionality and with large variance in component values
would likely dominate smaller sized FVs with less variance in a sum of distances, as the
resulting distances yielded by the former FV would be much higher.

Rank-based(positional) aggregation ignores distances in the rankings but considers just
the ranks of objects in the answer lists returned by the individual FVs. So-called Borda-
rules assign scores (votes) to the rank of each object in each ranking, and produce the final
ranking by the sorted lists over the summed-up votes. The Median aggregation rule forms the
final ranking by assigning each answer object the median of the ranks given to it by each of
the individual FVs, a rule which has been shown to posses interesting robustness properties
[31]. Many more positional aggregation methods are possible, including complex algorithms
minimizing certain distance functions between individual rankings and the aggregation, or
satisfying properties such as theCondorcetcriterion known in Social Choice theory.

Distance and rank-based aggregation methods have to retain and engage the individual FVs
which are to be used in the combinations. Sorted lists have to be produced and aggregated
until the final result can be determined. On the other hand, these aggregation schemes are
flexible to easily integrate weights to the individual FVs/ranks to be aggregated.

2.4. Query processing using static combinations 35

Concatenation of FVs has been studied in [97] for the 3D setting. We here focus on distance-
based combination approaches. In section 2.4.2, we experimentally evaluate the improvement
potential of selected distance-based aggregation schemes in our 3D retrieval system, and in
Section 2.4.3, we consider two prominent positional aggregation schemes.

2.4.2 Results for static distance-based combinations

Combined rankings for a setF of FVs can be produced by sorting the answer objects according
to the sum of normalized distancesdisti(q,o) between query objectq and candidate objectso,
wherei ∈ F :

distcombined(q,o) =
|F |

∑
i=1

1
normi

disti(q,o)

The normalization factornormi is needed to avoid that FVs which yield comparably larger
distances suppress the contributions of other FVs yielding smaller distances. Several normal-
ization schemes are possible. Themaximumnormalization uses:

normi = max
o∈DB

disti(q,o)

It uses the maximum occurring distance between the query object and any candidate object.
It guarantees thatdisti ∈ [0,1] but may be susceptible to outliers: If an outlier object returns a
very large distance as compared to the rest of the database objects, then most of the remaining
object distances will be scaled down drastically, under-emphasizing their role in forming the
combined ranking. Therefore, it is worth also including more outlier-robust normalization
factors in the study. Specifically, we consider normalization factors based onmean, variance,
andmedianof the distances resulting under each FV space contributing to the combination.

We next present retrieval precision results using fixed combinations of distance-based ag-
gregation of multiple FVs on a number of benchmarks. The goal is to compare the perfor-
mance of the combinations with the performance of single FVs. To make the experiments
computationally tractable, we selected a set of 10 FVs from the available 3D FVs (cf. Section
2.3.1). For this set, we built all 210− 1 = 1023 possible FV combinations of cardinalities
1 up to 10. Specifically, we selected the 3DDFT, COR, CPX, DBF, SHA, H3D, RIN, SD2,
SIL, and VOX FVs, which belong to the best and most robust FVs from our implementation.
For each possible combination, we ran batch experiments benchmarking the average retrieval
performance on the KN-DB as well as the PSB-Train and Test benchmarks.

Maximum distance-based combinations

We first evaluated usage of static combinations of FVs with thedmax normalization factor.
Figure 2.19 (a) and (b) give the resulting R-precision figures in a scatter plot for all combi-
nation cardinalities for the KN-DB and the PSB-Test benchmarks. Cardinality 1 corresponds
to the usage of single FVs, and the R-precision values range between 16.6% for the worst FV

36 Chapter 2. Effective feature-based query processing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, KN−DB, Dmax normalization

(a) KN-DB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, PSB−Test, Dmax normalization

(b) PSB-Test

Figure 2.19:Average R-precision scores for unweigheddmax-based combinations of up to 10
FVs, for the KN-DB and PSB-Test benchmarks.

(COR), and 32.2% for the best FV (DBF) on the KN-DB benchmark. Looking at the KN-DB
results, the R-precision rates indicate that there indeed exist combinations of FVs which yield
a significant improvement in retrieval performance. The best combination of cardinality 2 is
composed of the CPX and VOX FVs and yields 38.9% R-precision, which corresponds to an
improvement over the single best FV (DBF) of 20%, which is significant. The best overall
combination under the KN-DB benchmark is of cardinality 7 and compounds all FVs except
for COR, RIN, and SD2 (note that these belong to the worst performing FVs on average).
The combined R-precision amounts to 44.9% and corresponds to an improvement of about
39% over the single best FV (DBF). Using more than 7 FVs in any combination, the best
R-precision rates start to decline. We note that the largest performance improvement leap is
achieved by just 2 FVs in the combination, while inclusion of additional FVs does not impact
the retrieval quality as much as going from single FV usage to the best combination of car-
dinality 2. The results under the PSB-Test benchmark are a few percentage points below the
results of the KN-DB benchmark, but resemble the same performance pattern.

Table 2.4 gives the maximum, minimum, and average R-precision scores for the different
combination cardinalities for the KN-DB and the PSB-Test benchmarks. Interestingly, starting
with combination cardinality of 5, for both benchmarks even the worst performing combina-
tions yield a retrieval precision which is better than the best performing single FV (DBF). This
is true for both benchmarks. This is interesting because it is not always possible to perform
supervised benchmarks to determine the best combination to implement in a practical retrieval
system. The results indicate that there are combination cardinalities for which any combina-
tion outperforms all single FVs, thereby dominating in terms of achievable retrieval quality. It
means that even if we randomly select one specific combination of sufficient cardinality, we
are guaranteed to improve in terms of retrieval precision, as compared to the single FV usage
case.

2.4. Query processing using static combinations 37

Table 2.4:R-precision statistics for thedmax normalized combinations.

Benchmark 1 2 3 4 5 6 7 8 9 10
KN-DB min 16.6 22.3 26.8 30.5 33.4 35.5 38.3 40.8 42.5 44.4
KN-DB mean 24.6 31.0 34.7 37.3 39.4 40.9 42.1 43.1 43.9 44.4
KN-DB max 32.2 38.9 41.8 42.8 43.6 44.4 44.9 44.9 44.7 44.4

PSB-Test min 16.1 21.5 25.2 28.5 31.0 32.7 34.6 36.6 37.7 40.2
PSB-Test mean 22.4 28.2 31.7 34.1 35.8 37.0 38.0 38.8 39.6 40.2
PSB-Test max 30.4 34.9 38.1 39.3 40.0 40.7 40.6 40.6 40.5 40.2

Mean-based combinations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, KN−DB, Mean normalization

(a) KN-DB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, PSB−Test, Mean normalization

(b) PSB-Test

Figure 2.20:Average R-precision scores for unweighed mean-based combinations of up to 10
FVs, for the KN-DB and PSB-Test benchmarks.

Instead ofdmax, normalization of distances is possible using theaveragedistance between
the query object and all the ranked candidate objects. This factor is expected to be less sus-
ceptible to the presence of outlier objects with very large distance to the query object. Figure
2.20 presents the scatter plots of the achieved R-precision values for the combinations under
the KN-DB and PSB-Test benchmarks. The performance characteristics are qualitatively and
quantitatively comparable to thedmax normalization (cf. also Table 2.5). Considering the best
combinations possible, there is a maximal performance leap improving from the best single
FV (DBF, 32.2%) to 38.1% R-precision for two FVs (CPX and VOX), to 42% for three FVs,
and reaching a peak performance of 44.5% for 6 FVs, before peak performance starts to drop.
The peak performance is slightly worse than underdmax normalization (44.6% (7 FVs) com-
pared to 44.9% (7 FVs) under the KN-DB – for PSB-Test the same situation holds. Also, for
5 and more FVs, the worst performing combinations consistently outperforms the single best
FV (DBF), making it safe to use any combination of such cardinalities and still improve over

38 Chapter 2. Effective feature-based query processing

the DBF single usage mode.
While the overall performance pattern of mean normalization tightly resembles thedmax

normalization, the absolute R-precision figures are somewhat smaller, loosing between 1.0
and 0.5 percentage points for the min, max, and mean R-precision scores for most of the com-
binations on both benchmarks. An exception is the weakest performing combination which
is 2 percentage points weaker than thedmax-scheme. Contrarily, the optimal combinations of
cardinality 4 and 5 are about 1.0 and 0.5 percentage points better than under thedmax scheme
(both benchmarks). Our general impression is that as judged by the extreme and the mean
R-precision rates, there is no significant and systematic difference between the performance
of both normalization schemes (cf. also Section 2.4.4 which includes the distribution of indi-
vidual combination differences).

Table 2.5:R-precision statistics for the mean normalized combinations.

Benchmark 1 2 3 4 5 6 7 8 9 10
KN-DB min 16.6 20.1 25.7 29.6 32.7 35.0 37.6 39.9 41.8 44.1
KN-DB mean 24.6 30.1 34.3 37.1 39.2 40.7 41.9 42.8 43.4 44.1
KN-DB max 32.2 38.1 41.9 43.8 44.2 44.4 44.6 44.3 44.6 44.1

PSB-Test min 16.1 20.2 24.5 27.0 29.8 31.8 34.3 35.5 37.2 39.5
PSB-Test mean 22.4 27.6 31.0 33.4 35.1 36.3 37.3 38.0 38.6 39.5
PSB-Test max 30.4 34.4 38.2 39.9 40.2 40.2 40.0 40.0 39.7 39.5

Variance-based combinations

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, KN−DB, 3xStdDeviation normalization

(a) KN-DB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, PSB−Test, 3xStdDeviation normalization

(b) PSB-Test

Figure 2.21:Average R-precision scores for unweighed 3-standard variance-based combina-
tions of up to 10 FVs, for the KN-DB and PSB-Test benchmarks.

2.4. Query processing using static combinations 39

Besidesdmax and mean normalization, we can normalize by a factor based on thevariance
of the distances returned by each FV to be combined. In one experiment, we set the normal-
ization factornormi = 3×σi(q,DB), whereσi(q,DB) is the standard variance of the distances
between query objectq and all candidate objects from the databaseDB under the FVi. This is
a rule-of-thumb often used in data normalization preprocessing. While it does not bound the
maximum normalized distance, it is expected to be more robust with respect to outliers.

Figure 2.21 gives the scatter plot of R-precision results achieved by the variance-normalized
combinations, and Table 2.6 gives the extreme and the mean R-precision results achieved.
Basically, the same performance pattern like fordmax and mean normalization is given. The
combinations improve significantly over the single usage of FVs, with a performance peak at
about 6 to 7 FVs in the combinations. The largest performance leap occurs when going from
the DBF single FV to a combination of DBF and CPX. With 5 (6) FVs, the worst performing
combination still outperforms the DBF single FV on the KN-DB (PSB-Test) benchmark.

The overall performance readings are again somewhat below the results yielded bydmaxag-
gregation. Minimum and maximum performance results for smaller cardinalities are between
1 and 3 percentage points below thedmaxresults, while the performance gap narrows for larger
cardinalities, and the mean results. Generally, the performance results are also slightly below
the results achieved by the mean normalization scheme.

Table 2.6:R-precision statistics for the 3x standard deviation normalized combinations.

Benchmark 1 2 3 4 5 6 7 8 9 10
KN-DB min 16.6 19.2 24.9 28.4 32.3 35.3 37.4 40.8 42.2 44.5
KN-DB mean 24.6 29.7 33.9 36.9 39.1 40.8 42.1 43.2 44.0 44.5
KN-DB max 32.2 36.8 39.6 42.5 43.2 43.8 44.5 44.7 44.7 44.5

PSB-Test min 16.1 19.2 23.8 26.8 29.6 32.0 33.9 36.0 37.3 40.5
PSB-Test mean 22.4 27.1 30.7 33.3 35.2 36.7 37.8 38.7 39.8 40.5
PSB-Test max 30.4 33.2 35.9 38.2 39.4 39.8 40.0 40.3 40.4 40.5

Median-based combinations

We finally evaluated the results of normalizing the distances by the median of all distances
occurring for a given query objects under a given FV space. The median is examined as
another outlier-robust normalization scale often used in other data processing applications.
Figure 2.22 and Table 2.7 present the R-precision results obtained by the batch experiments.

The overall performance pattern again resembles the three previous normalization schemes:
Significant improvements over the single best FV, decreasing performance leaps with a satu-
ration cardinality, and certain minimum cardinalities after which even the worst combinations
outperform the best single FV. The absolute performance values are slightly below thedmax

normalization results, and on a level comparable to the mean normalization, and better than
the variance-based normalization. Also, for larger cardinalities, the performance detriment
regardingdmax is decreasing.

40 Chapter 2. Effective feature-based query processing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, KN−DB, Median normalization

(a) KN-DB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1
R

−
P

re
ci

si
on

Combination Cardinality

Unweighted Combinations, PSB−Test, Median normalization

(b) PSB-Test

Figure 2.22:Average R-precision scores for unweighed median-based combinations of up to
10 FVs, for the KN-DB and PSB-Test benchmarks.

Table 2.7:R-precision statistics for the median normalized combinations.

Benchmark 1 2 3 4 5 6 7 8 9 10
KN-DB min 16.6 20.1 25.5 29.3 32.5 34.8 37.6 40.0 41.7 44.0
KN-DB mean 24.6 30.0 34.2 37.1 39.1 40.7 41.8 42.6 43.4 44.0
KN-DB max 32.2 38.2 42.0 43.7 44.0 44.5 44.4 44.3 44.2 44.0

PSB-Test min 16.1 20.1 24.4 26.8 29.7 31.8 34.4 35.6 37.3 39.4
PSB-Test mean 22.4 27.5 31.0 33.3 35.0 36.3 37.2 38.0 38.6 39.4
PSB-Test max 30.4 34.4 38.4 40.0 40.2 40.2 40.0 40.1 39.8 39.4

2.4. Query processing using static combinations 41

2.4.3 Results for static rank-based combinations

It is also possible to build combinations based only on therankswhich are given to the can-
didate objects by the FVs in the combination. Rank-based aggregation considers only the
positions of candidate elements in the rankings and ignores any numeric scales which might
be present. The advantage of this scheme is that it requires less information for building com-
bined rankings. Rank aggregation is popular for building meta search engines for the web
[31]. These aggregate the sorted lists retrieved from different search engines into a combined
list of web pages. The combination algorithm does not need to know internals of the different
search engines but generically operates on the outputted lists, considering the different search
engines as black boxes. On the other hand, relying just on ranks ignores information. There
is no chance to exploit information on how close or distant two adjacently ranked objects
are, which is possible using distance-based aggregation. We compare the previous results by
considering two rank-based aggregation schemes.

TheBorda Aggregation(or voting) scheme transforms rank positions into votes which are
sub-sequently summed up in order to obtain the final ranking based on these votes. The
dependency between rank and number of votes awarded has to be specified. In the most
simple case, for a rankingR= [o(1), . . . ,o(n)] of n objectso∈ O, we awardv(i) = n− i votes
for objecto(i) at ranki, i ∈ [1, . . . ,n]. This scheme realizes a linear dependency between rank
and number of votes; also, non-linear schemes are possible.

The median Aggregationscheme is another simple but interesting aggregation scheme. It
forms the aggregated ranking by sorting the candidate objects according to the median of
the ranks given to them by each of the FVs contributing to the combination. Median rank
aggregation has been shown to approximate the optimal aggregation solution based on the
Footrule rank distance measure, and to provide robust aggregation [31]. Also, an efficient
implementation exists for median rank aggregation, called Medrank [32].

Medrank combinations

Figure 2.23 and Table 2.8 give the R-precision results for the Medrank-based combinations.
The overall performance pattern considering the extreme and the average R-precision resem-
bles that of the distance-based aggregation: Significant improvements over the single usage
mode are achieved. The optimal R-precision (KN-DB) is reached with 8 FVs (all except for
RIN and SD2) and amounts to 44.8%, which is only 0.1 percentage point worse than the
optimal dmax-based combination (7 FVs yielding 44.9% R-precision). Other than this peak
performance, the cardinality-dependent minimum, average, and maximum performance read-
ings are consistently below thedmax-based results, yielding each about 1 to 2 percentage points
less R-precision than thedmax scheme.

Borda combinations

We finally tested the simple Borda aggregation scheme, awarding the candidate objects votes
inversely proportional to their ranks as given under the individual FV spaces. The final ranking
is produced by summing up the votes for all candidate objects and sorting the final list. Fig-
ure 2.24 and Table 2.9 present the obained R-precision scores. Once again, combinations pay

42 Chapter 2. Effective feature-based query processing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Medrank Combinations, KN−DB

(a) KN-DB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1
R

−
P

re
ci

si
on

Combination Cardinality

Medrank Combinations, PSB−Test

(b) PSB-Test

Figure 2.23:Average R-precision scores for Medrank-based combinations of up to 10 FVs,
for the KN-DB and PSB-Test benchmarks.

Table 2.8:R-precision statistics for the Medrank-based combinations.

Benchmark 1 2 3 4 5 6 7 8 9 10
KN-DB min 16.6 22.1 25.5 29.5 32.3 35.8 37.0 39.7 41.0 43.3
KN-DB mean 24.6 29.3 33.7 36.5 38.2 40.1 40.9 42.2 42.4 43.3
KN-DB max 32.2 35.8 40.1 41.8 42.6 43.8 44.2 44.8 43.8 43.3

PSB-Test min 16.1 19.8 23.3 26.5 29.1 31.8 33.3 35.8 37.1 39.2
PSB-Test mean 22.4 26.3 29.9 32.6 34.0 35.9 36.4 37.8 38.1 39.2
PSB-Test max 30.2 32.1 36.3 37.3 38.3 38.8 39.9 40.0 39.2 39.2

2.4. Query processing using static combinations 43

Table 2.9:R-precision statistics for the borda rank-based combinations.

Benchmark 1 2 3 4 5 6 7 8 9 10
KN-DB min 16.6 22.1 24.4 27.6 30.0 33.2 35.0 36.8 38.9 40.0
KN-DB mean 24.6 29.3 31.8 33.8 35.3 36.7 37.8 38.7 39.5 40.0
KN-DB max 32.2 35.7 37.6 38.5 39.3 39.3 39.5 39.6 40.0 40.0

PSB-Test min 16.1 19.7 22.3 25.3 27.1 29.8 31.6 33.5 35.4 36.9
PSB-Test mean 22.4 26.3 28.8 30.6 32.2 33.5 34.6 35.5 36.3 36.9
PSB-Test max 30.4 32.1 33.0 34.3 35.5 35.8 36.2 36.7 36.7 36.9

off by improved retrieval precision. Comparing with the previous combination schemes, we
see that the R-precision statistics are significantly below the Medrank and the distance-based
aggregation schemes. The minimum, average, and maximum performance for each combina-
tion cardinality is between 3 to 5 percentage points below the respective results achieved by
the dmax scheme, which is a significant loss in precision. Also, we see that there is no sat-
uration point reached for the best-performing combinations in the combination cardinalities
considered here.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Borda Combinations, KN−DB

(a) KN-DB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 9 8 7 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Borda Combinations, PSB−Test

(b) PSB-Test

Figure 2.24:Average R-precision scores for Borda-based combinations of up to 10 FVs, for
the KN-DB and PSB-Test benchmarks.

2.4.4 Analysis of the results

The presented results are now analyzed for insight into how to build good static combina-
tions. We compare the effect of normalization methods in distance-based combinations, and
aggregation schemes in rank-based aggregation. The combination structure is analyzed to give
recommendation for cases where optimal combinations cannot be determined by exhaustive

44 Chapter 2. Effective feature-based query processing

benchmarking. Stability with respect to the different benchmarks is discussed. Finally, the
results are summarized.

Performance assessment of distance-normalization methods

For the distance-based aggregation approach, we have tried different distance normalization
schemes based on maximum, mean, median, and variance-based scaling factors. A-priori it is
not clear which normalization should be engaged, as all of them can be theoretically justified.
Regarding the comparison of the lowest, highest, and average R-precision results achieved
by the different combinations, surprisingly thedmax-based normalization, which in principle
is susceptible to outlier distances, dominated the other normalization schemes for almost all
combination cardinalities in terms of the best, the worst, and the average performing com-
binations. The mean and median-based normalization schemes performed comparably and
slightly worse thandmax, and the variance-based scheme yielded the lowest retrieval perfor-
mance results. We note that these comparisons are done for an aggregation of performance
results, namely, the extreme and average R-precision results aggregated over all combinations
of a given cardinality.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 10 9 8 7 6 5 4 3 2 1

M
ea

n/
D

m
ax

Combination Cardinality

KN−DB, Mean against Dmax normalization

100%

(a) Mean/dmax

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 10 9 8 7 6 5 4 3 2 1

3x
S

ta
nd

ar
dV

ar
ia

nc
e/

D
m

ax

Combination Cardinality

KN−DB, Variance against Dmax normalization

100%

(b) Variance/dmax

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 10 9 8 7 6 5 4 3 2 1

M
ed

ia
n/

D
m

ax

Combination Cardinality

KN−DB, Median against Dmax normalization

100%

(c) Median/dmax

Figure 2.25:Average R-precision on the KN-DB benchmark of mean, variance, and median
normalized unweighed combinations in fraction of respective performance of
dmax normalized combination. There is no significant difference in the perfor-
mance of the normalization methods.

If we instead compare the normalization schemes along all possible combinations, we ob-
serve thatdmax is not superior for all the combinations. Rather, there exist combinations where
one or several of the other normalization schemes outperformdmax. Figure 2.25 shows a scat-
ter plot of the mean, variance, and median-based combinations’ performance relative to the
dmax scores, under the KN-DB benchmark. Clearly, about half of the combinations for each
normalization scheme actuallyimprovesover dmax. But it is the total effect of all improve-
ments/deteriorations which leads to the aggregate results found previously: While about half
of the combinations improve overdmax, the rate of improvement is outweighed by the rate of
deterioration occurring for the other half of combinations.

We can practically use these findings in the following ways. If benchmarking is possible
and we are free to form any combination with respect to cardinality and contributing FVs, then

2.4. Query processing using static combinations 45

we will select the optimum combination using thedmax normalization. If we are restricted in
the usage of FVs, meaning that it is not possible to form any combination of FVs available
for some reason, and exhaustive benchmarking is possible, then we may find one of the other
normalization schemes to provide superior results, and consequently, use this combination. If
exhaustive benchmarking is not possible, then we recommend to default to thedmax aggrega-
tion scheme, using a combination of large cardinality, expecting to yield best performance on
average.

Performance assessment of rank aggregation methods

The rank-aggregation schemes Borda and Medrank were found to be outperformed by the
dmax-based distance aggregation scheme for the minimum, maximum, and average benchmark
scores for any combination cardinality. The Medrank scheme performs comparable to the
mean and variance-based distance aggregation schemes. The linear Borda scheme performed
worst under this analysis, being consistently outperformed between 3 and 5 percentage points
in R-precision bydmax.

If we consider the rank aggregation performance results relative to thedmax scheme (cf.
Figure 2.26), we see that contrary to the situation for the distance-based schemes, there are
cardinalities where most or all individual combinations are outperformed bydmaxaggregation.
This is especially evident for the Borda scheme (cf. Figure 2.26 (b)), where the mass of
combinations yields only around 90% of the respectivedmax performance. For cardinalities 2
and 3, a minority of Borda combinations improves overdmax, while starting with cardinality
4, except for one outlier all Borda combinations are outperformed bydmax. For Medrank,
the comparison withdmax is not as bad as for Borda, still the trend is that for the larger-sized
combinations (6 FVs and above), the mass of combinations is outperformed bydmax.

We conclude that if we are free to form any combination of FVs, and exhaustive bench-
marking is possible, we will choose thedmaxscheme, as it outperforms the optimal Borda and
Medrank combinations. If we are restricted in the combination of FVs to select, depending on
the restriction it might be the case that Medrank results in best performance (probably for low
cardinalities), and to a lesser degree of probability, the Borda scheme (up to cardinalities 3).
If exhaustive benchmarking is not possible, then we recommend using thedmax combination
on a large number of FVs as default.

We attribute the loss in performance by the rank aggregation schemes to the fact that dis-
tance information is suppressed, while distance actually carries meaningful information which
the distance-based schemes manage to exploit. Nevertheless, positional aggregation schemes
have advantages. Positional aggregation must be used in cases where distance information
is not available (such as when building a meta search engine treating individual search algo-
rithms as black boxes). Also, an efficient implementation of Medrank is available [32], while
efficiently implementing query processing using multiple FVs is not straightforward and in-
volves building of complex index structures [20].

We finally note that Medrank has been attributed so-called spam-fighting abilities, referring
to its robustness with respect to outlier rankings giving undeserved high ranks to certain can-
didate objects (as judged by a majority of additional rankings) [31]. This is a useful property

46 Chapter 2. Effective feature-based query processing

when combining rankings for a World Wide Web meta search engine, where individual en-
gines might be spammed by manipulated content. We tested this property by considering all
FV combinations which included the worst performing single FV (COR) from our selection
of FVs. If COR is actually acting as a spammer, Medrank could be expected to give better
retrieval results than other non spam-resistent aggregation schemes for the combinations in-
cluding COR. We looked at the R-precision results for these combinations but could not find
any systematic improvement of Medrank on these combinations over thedmax scheme. This
does not, however, imply that Medrank does not have anti-spam properties, but most probably
that COR cannot be regarded a spammer (its retrieval results are not arbitrary enough). A
more systematic experiment testing the anti-spam property of Medrank in this retrieval setup
would have to involve systematically perturbing/noising a small number of FV rankings.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 10 9 8 7 6 5 4 3 2 1

M
ed

ra
nk

/D
m

ax

Combination Cardinality

KN−DB, Medrank against Dmax aggregation

100%

(a) Medrank/dmax

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 10 9 8 7 6 5 4 3 2 1

B
or

da
/D

m
ax

Combination Cardinality

KN−DB, Borda against Dmax aggregation

100%

(b) Borda/dmax

Figure 2.26:Average R-precision on the KN-DB benchmark of Medrank and Borda aggrega-
tion, as a fraction of performance ofdmax normalized combinations.

Role of the combination structure

Given that for each combination cardinality, we have many options for combining subsets of
the available FVs, and given that we observed a bandwidth of resulting retrieval precision
rates, it is interesting to look at the structure of the combinations. Are there specific character-
istics that make up good combinations? To this end, we constructedparticipation histograms
for the combinations. For the set of all possible combinations of a fixed cardinality, we par-
tition the combinations into two groupslow precisionandhigh precision, according to the
average R-precision scores resulting for the combinations (low contains the lowest 50%, high
contains the highest 50% of combinations). Then, for both groups and for each of the 10 FVs,
we calculate the respective participation frequencies. For a group and a FV, the participation
frequency gives the number of combinations in which the considered FV participates.

Figure 2.27 shows the participation histograms for combinations of cardinality 2 (first row)
and 4 (second row). The histograms were calculated fordmax normalized combinations un-
der the KN-DB benchmark. The left charts give the participation histograms for the low

2.4. Query processing using static combinations 47

performing combinations, while the right charts give the histograms for the high performing
combinations. The FVs were sorted by increasing single benchmark scores. We observe that
the histograms of the low performance combinations are skewed to the left, implying that
the badly performing FVs, according to single benchmark scores, are participating more fre-
quently in bad-performing combinations than in high-performing combinations. Conversely,
in the group of good combinations, the histograms are skewed to the right, meaning that these
combinations consist more frequently of FVs which also perform good as benchmarked indi-
vidually. A visualization of the participation histograms for the cardinalities 2 and 3 for the
KN-DB benchmark is included in the Appendix Figures A.4 and A.5.

We observed this dependency clearly for participation histograms for combination cardinal-
ities of small up to medium size (up to about cardinality 6). For higher cardinalities 7 to 9,
the skewness effect was also present, but diminished (the corresponding histograms approach
a uniform-like shape). This can be attributed to the fact that for increasing cardinalities and a
fixed number of FVs, each FV participates more often in a combination, thereby leveling-out
the skewness effect. This becomes clear if we consider the case of 10 FVs and the 10 possible
combinations of cardinality 9: Each FV participates in 90% of all possible combinations, and
the corresponding participation histograms are approximately uniform. We also observed the
skewness effect for the other benchmarks PSB-Train and Test, as well as the other distance-
based combination schemes. Taking together these observations, we conclude that FVs which
perform good in single usage are also good candidates for high-performance combinations.
As a rule-of-thumb for cases where exhaustive benchmarking is not possible to determine the
optimal combination, we therefore recommend to combine a set of best performing single
FVs.

Sensitivity regarding the benchmark

We also asked whether the performance results of the combinations are dependent on the
3D benchmark used. Considering that benchmarking is expensive, and database content may
dynamically evolve away from the benchmark characteristics for which a combination was
initially optimized, it is interesting to assess whether the retrieval performance of a specific
combination remains stable if database content changes. To approach this question, we stud-
ied the correlation between R-precision results for the combinations under the three 3D bench-
mark used here. Figure 2.28 gives the scatter plots of observed R-precision values for the 1023
possible combinations of the 10 FVs, for all three pairs of benchmarks, and using thedmax-
based aggregation. There is a significant linear correlation between the R-precision results of
the combinations for all pairs of benchmarks. The squared correlation coefficients amount to
more than 93%. We conclude that the combinations’ retrieval precision rates are stable over
the three benchmarks, implying that we can safely determine the optimal combination using
any of the three benchmarks, expecting to achieve the optimal or near-optimal combination
result even in case the target database (application) is not identical to the benchmark. This
conclusion is valid for the three benchmarks considered here, which are build over a com-
parable distribution of 3D models (cf. Section 2.3.2). We note that the correlation analysis
also includes the cardinality 1 combinations, which correspond to the single usage of FVs.
Here also the correlation is clear, which indicates benchmark-based selection of single FVs

48 Chapter 2. Effective feature-based query processing

 0

 2

 4

 6

 8

 10

DBFVOXCPXSIL3DDFTSHARINH3DSD2COR

F
re

qu
en

cy

FV

Participation Histogram, Low Precision, Card 2, KN−DB

(a) Card. 2, Low Precision Combinations

 0

 2

 4

 6

 8

 10

DBFVOXCPXSIL3DDFTSHARINH3DSD2COR

F
re

qu
en

cy

FV

Participation Histogram, High Precision, Card 2, KN−DB

(b) Card. 2, High Precision Combinations

 0

 10

 20

 30

 40

 50

 60

 70

 80

DBFVOXCPXSIL3DDFTSHARINH3DSD2COR

F
re

qu
en

cy

FV

Participation Histogram, Low Precision, Card 4, KN−DB

(c) Card. 4, Low Precision Combinations

 0

 10

 20

 30

 40

 50

 60

 70

 80

DBFVOXCPXSIL3DDFTSHARINH3DSD2COR

F
re

qu
en

cy

FV

Participation Histogram, High Precision, Card 4, KN−DB

(d) Card. 4, High Precision Combinations

Figure 2.27:Participation histograms of the 10 FVs for combination cardinalities 2 (a,b) and
4 (c,d). The FVs are sorted by increasing single retrieval performance.

2.4. Query processing using static combinations 49

is stable with respect to different benchmarks. Similar results are also obtained for the other
distance-based aggregation schemes.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
−

P
R

ec
is

io
n

P
S

B
−

T
es

t

R−PRecision KN−DB

KN−DB vs. PSB−Test

(a) KN-DB/PSB-Test (94.0%)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
−

P
R

ec
is

io
n

P
S

B
−

T
ra

in

R−PRecision KN−DB

KN−DB vs. PSB−Train

(b) KN-DB/PSB-Train (92.9%)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
−

P
R

ec
is

io
n

P
S

B
−

T
es

t

R−PRecision PSB−Train

PSB−Train vs. PSB−Test

(c) PSB-Train/PSB-Test (94.3%)

Figure 2.28:R-precision results of the combinations under the three considered benchmarks
KN-DB, PSB-Train and PSB-Test, plotted pairwise against each other (R2 mea-
sures are included in brackets).

2.4.5 Summary and practical recommendations

We summarize the main findings of the experiments on unweighed combinations as follows.

• Static combinations of FVs are a simple, effective approach to improve the average
retrieval precision in our 3D retrieval system. Improvements of up to 40% in R-precision
have been observed on a set of 10 rather differently defined single 3D FVs, and on
several 3D benchmarks, as compared to the single-best individual FV.

• The improvement rates are most significant when switching from single FV usage to
combinations of small cardinalities, i.e., 2 or 3. This is interesting, as the combina-
tion size also affects the efficiency of query processing, where in general, larger-sized
combinations lead to higher computational costs for distance calculation or rank aggre-
gation.

• Further improvement potential exists for larger combinations, but diminishes rather
quickly. For large-sized combinations (7 FVs and above), there is danger that retrieval
precision is eventually starting to decrease.

• Care has to be taken in determining the FVs to participate in a combination. Exhaustive
benchmarking allows to find the optimal combination for a given cardinality.

• The results suggest there are cardinalities where even the worst performing combination
outperform the best performing single FV. This is interesting as it supports the idea
of using combinations by default even if it is not possible to benchmark all possible
combinations by exhaustive experiments.

50 Chapter 2. Effective feature-based query processing

• Regarding the structure of the FV combinations, the participation histograms showed
that FVs which provide good retrieval precision in single mode are also good candidates
for inclusion in a combination.

• We found that distance-based aggregation in general gives better retrieval results than
rank-based aggregation. We attribute this to the fact that distance-based aggregation em-
ploys more information about the individual rankings, as purely positional aggregation
schemes do.

• The above discussion was done for a set of 10 different 3D FVs. We note that we have
done the same set of experiments for a database of raster images (cf. Section 1.4). This
database contains 6.000 classified COREL images described by 6 different image-based
FVs based on features such as color and texture [75]. The corresponding results closely
resemble those obtained using the 3D benchmarks. Figures A.2 and A.3, as well as
Table A.2 in the Appendix present the corresponding results.

2.5 Query processing using dynamic combinations

2.5.1 Query-dependent analysis of static combinations

In Section 2.3, we determined the on average best performing single FV (the Depth Buffer
FV). In Section 2.4, we have seen that by building unweighed combinations, the retrieval pre-
cision could be significantly boosted, achieving about 40% improvements in average retrieval
precision. Similar to the single FV case, benchmarking allowed to find theon benchmark
averagebest combination of FVs. It turns out that the same phenomenon which originally
motivated the usage of combinations, namely that the on average best method is not necessar-
ily the optimal choice for processing every possible query class or object, also holds for the
case of static combinations. Consider Figure 2.29, which shows the KN-DB benchmark results
for the optimal single FV and combinations for two specific query classes, weed and galleons.
In these classes, the single 3DDFT FV yields best retrieval results, while the next best com-
binations of different cardinalities yield lower precision. In these KN-DB query classes, no
possible unweighed combination of the set of studied 3D FVs improves over the usage of
the best single FV (3DDFT). Consequently, using a static combination of FVs to answer all
queries is expected to be only suboptimal if such classes/objects occur in a retrieval system.
Then, it should be possible to further increase the retrieval precision by an appropriate scheme
whichdynamicallydecides which FVs (including the single FV mode) to use for answering a
given query.

Figure 2.30 gives the precision-recall results for a hypothetical optimal query processor
which for each KN-DB query object always selects the best unweighed FV combination (in-
cluding usage of single FVs; a selection of 6 best FVs was the basis for these results). This in-
telligent query processor achieves about 60% R-precision on the KN-DB benchmark, which is
another significant improvement over the retrieval quality achieved by the static (benchmark-
average optimal) FV combination determined in Section 2.4.

2.5. Query processing using dynamic combinations 51

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re

ci
si

on

Recall

Average precision vs recall, Weed models

3DDFT (0.6111)
VOX+SHA+GRA+3DDFT (0.4306)

VOX+SPH+GRA (0.4028)
3DDFT+GRA (0.3889)

(a) Weed retrieval results

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re

ci
si

on

Recall

Average precision vs recall, Galeons models

3DDFT (0.166)
VOX+H3D+SHA (0.166)

VOX+CPX (0.083)
DBF+VOX+CPX+SIL+RSH+3DDFT (0.083)

DBF+VOX+CPX+SIL+RSH+3DDFT+H3D+SHA+RAY (0.083)

(b) Galeons retrieval results

(c) Weed models (d) Galeons models

Figure 2.29:Precision-recall results for the class-dependent best single FV and combinations
of FVs, for two different KN-DB query classes (R-precision results are given in
brackets). Any possible combination of multiple FVs results in lower retrieval
precision as compared to the single FV usage. Practically, using fixed combina-
tions of FVs for all possible queries is sub-optimal.

Building such a query processor is a difficult problem, as it is not clear how the system
should decide which FVs to select to answer a given query. One approach is to use bench-
marking to determine for each query class the optimal selection of FVs. Given a query object,
the system could use a classifier to determine the benchmark class most similar to the query
object, then lookup the optimal combination known from benchmarking (and stored in a ta-
ble), and then execute the query using the indicated combination. This approach is problematic
as (a) it is not clear if the dynamically submitted query objects are always representative for
the benchmark used in building the combination table, and (b) classifying the query object
also requires a similarity function, but finding the appropriate similarity function is the core
problem, so this is a paradox.

Another approach is to use purely unsupervised information for finding a good combination
to answer a given query. In [42] it was proposed to heuristically search the combination space
until the histogram of resulting distances between the query and the candidate objects form a
two-peaked distribution. It was assumed that if such a pattern is found, then there is a num-
ber of relevant nearest neighbors to the query (yielding the first peak of low distances), while
the remaining objects are irrelevant and their corresponding (larger) distances normally dis-
tributed, yielding the second distribution peak. While this approach is an intuitively justified
heuristic, we were not able to successfully implement it in our 3D search system. We presume
this failure might be due to the small class sizes in our benchmarks, which do not allow the

52 Chapter 2. Effective feature-based query processing

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

P
re

ci
si

on

Recall

Average precision vs recall

Best dynamic combination (59%)
Best fixed combination (44%)

Best single FV (32%)

Figure 2.30:Retrieval results on the KN-DB using the single best FV (DBF), the optimal
static combination, and the result using a hypothetical query processor choosing
the optimal combination of FVs (including single FV usage, where optimal) for
each benchmark query. Query-dependent combinations offer additional potential
for boosting the retrieval precision.

respective distance histograms to yield a clear peak of low distances.
Given the problems of these two approaches, we decided to research a query processor

which makes use of supervised object information without using distance histograms and with-
out solving the classification problem. The basic idea is, given a query object, toestimatethe
retrieval precision to expect for each available FV on a so-called reference data base which
consists of objects with class labels. The reference database is used to calculate a measure
for thecoherenceof a prefix of the ranking resulting for each FV, and then use this measure
to weight the FVs in a dynamically built combination. Weighting of FVs can be realized in a
distance-based aggregation scheme (cf. Section 2.4.2) by scaling the distance contributions of
each FV accordingly. Weighting as a special case also allows to form any kind of unweighted
combination, including the usage of single FVs by setting the weights of participating FVs to
one, and to zero for those FVs not participating.

We next present a heuristic implementing the sketched estimation of individual FV perfor-
mance. We then define two methods that use this estimator to improve the effectiveness of the
retrieval system byselectinga good FV given a query object from a pool of available FVs,
and also bycombiningFVs with weights based on the estimator value.

2.5.2 An Entropy-based discrimination estimator

We use an estimator based on theentropy impurity[30] for determining the best FVs to use
given a query object and a reference database (supervised information). The entropy impurity
is a well known measure used e.g., in decision tree induction, where it measures the “impurity”
of a nodeN of the tree w.r.t. the elements assigned toN. If these elements all have the
same class label, then the impurity is 0, otherwise it is a positive value that increases up to
a maximum when all classes are equally represented. Other impurity measures are theGini

2.5. Query processing using dynamic combinations 53

and themisclassification impurity[30], but we experimentally obtained the best results using
entropy impurity. We now define the concept ofk-entropy impurity, and we show how to use
it to build weighted combinations of FVs.

Method A: Query-dependent selection of a single FV

One way to implement a dynamic query processor in a multi-FV system is to try toselect the
best suited FVfor a query objectq. Our hypothesis for selecting good FVs is that good FVs
are expected to provide a high level ofcoherenceamong the objects in the resulting ranking
of answer objects, i.e., we expect to retrieve similar objects (objects from the same similarity
class) at the first positions of the ranking. Using a reference database, we can measure the
coherence of a ranking by the distribution of class labels contained in the ranking.

Let U be the universe of valid 3D objects. LetT ⊂ U be a finite set oftraining objects,
whereω j ⊆ T, 1≤ j ≤ N, is aclassof objects (i.e., all objects inω j are considered similar),
andT =

U
ω j . Letq∈U be a query object. Given a FVf , aranking Rq

f is a list of objects from
T sorted in ascending order by the distances betweenq and every object inT with respect to
f . Also,Pk(ω j ,R

q
f) denotes the fraction of objects at the firstk positions ofRq

f that are in class
ω j .

Definition 1. The k-entropy impurity of a FV f with respect to q is defined as

i(f ,q,k) =−
N

∑
j=1

{
Pk(ω j ,R

q
f) log2(Pk(ω j ,R

q
f)) if Pk() > 0

0 otherwise

If the k objects are in the same class, the impurity is 0; otherwise it is positive, with the
largest value occurring when the different classes are equally likely, and the number of classes
covered by thek objects is maximal. We use the previously definedk-entropy impurity to
measure the degree of coherence of each FV.

Definition 2. Let F = { f1, . . . , fM} be a set of M FVs. The k-entropy impurity selection func-
tion is defined as

EntImpSelection(F,q,k) = arg min
1≤`≤M

{i(f`,q,k)}.

The FV that minimizes thek-entropy impurity forq is selected. In case of ties, the best FV
according to a pre-computed ranking of FVs based on individually benchmarked performance
(cf. Section 2.3) is selected.

Method B: Query-dependent weighted combination of FVs

Another way to leverage the effectiveness estimations is building acombination of FVsbased
on the estimator. The problem is to determine which FVs to combine, as inclusion of FVs
unsuited for usage withq can reduce the overall effectiveness of the search system. We pro-
pose to use thek-entropy impurity to weigh each FV in the combination, giving more weight
to those FVs with lower entropy impurity. Letd` be the distance function using FV̀, and let
dmax̀ be the maximum distance betweenq and any object of the database using FVf`.

54 Chapter 2. Effective feature-based query processing

Definition 3. The k-entropy impurity weighted distance between a query object q and an
object o∈U is defined as

δk(q,o) =
M

∑̀
=1

1
1+ i(f`,q,k)

d`(q,o)
dmax̀

,

We useδk(q,o) to produce the combined ranking list. Figure 2.31 gives the architecture
of the proposed FV selection and combination scheme, including the set of FVs, the query
object, the reference database used for weight calculation, and the actual database to execute
(and evaluate) the queries on.

classified
test
DB

DB

Set F of
FV Extractors

test-query(q, f)

weight w(q, f)

query(q, F, W)

ranking(q, F, W, DB)

qu
er

y
q

an
sw

er
s

Query
Processor

User

Figure 2.31:Architecture of the proposed dynamic query processor.

2.5.3 Results for dynamically weighted combinations

For experimentally evaluating this selection and combination heuristic we again used the KN-
DB benchmark. We selected the 17 largest query classes containing each at least 9 objects for
the experiments. Specifically, classes 5,10,14,17,18,19,20,21,26,27,32,36,49,52,53,54,55
were selected (cf. Table A.1 in the Appendix). The classified objects were used as queries,
and those objects which belong to the same model class as a given queryq were considered
the objects relevant toq. We used theL1 norm to perform the similarity queries.

From our set of implemented 3D FVs, we selected the best five benchmarked FVs with
their best dimensionality according to Section 2.3.3: Depth Buffer (366-d), Voxel (343-d),
Complex (196-d), Rays-SH (105-d), and Silhouette (375-d). This ordered list of FVs also
serves to resolve ties that may occur when using our selection criterion.

2.5. Query processing using dynamic combinations 55

To evaluate the selection technique, we partitioned the set of classified objects into a train-
ing set and a test set in order to perform cross-validation [37]. We randomly partitioned the
classified set of objects in two halves. One half was used as the training setT. The other half
was used as the query setQ. For computing the effectiveness scores, the objects ofT were not
considered to be part of the database. We repeated this procedures times, and we averaged
the results to obtain final scores. We experimentally found thats= 100 yields stable results.

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

2 3 4 5 6 7 8 9 10

R
−

pr
ec

is
io

n

k

Entropy impurity, average R−precision

(a)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Ent. Imp. Depth Buffer Voxel Complex Rays−S.H. Silhouette

R
−

pr
ec

is
io

n

Feature vector

Average R−precision

(b)

Figure 2.32:Entropy impurity, average R-precision varying parameterk (a). Average R-
precision, all FVs (b).

Figure 2.32 (a) shows the average R-precision with the entropy impurity selection test
(methodA) while varying parameterk from 2 to 10. The best effectiveness score is achieved
with k = 3, but the scores with 2≤ k≤ 5 are very similar. This result suggests that it is not
necessary to search the optimumk for each similarity query, and that anyk from 2 to 5 is
equally robust. Fork > 7, the effectiveness starts to decrease.

Figure 2.32 (b) compares the average R-precision of the five individual FVs and the 3-
entropy impurity selection technique. The query-dependent selection technique manages to
outperform the static policy of using the benchmark-average optimal FV (DBF) for every
query. The improvement in effectiveness between the DBF FV and the selection technique is
about 7%, which is significant in terms of retrieval effectiveness. It is comparable with the
effectiveness improvement between two consecutive FVs in the list. Figure 2.33 (left) shows
the precision vs. recall figures for all individual FVs and the selection technique. The average
R-precision values are also indicated for each curve. The 3-entropy impurity selection has
better precision for all recall levels compared with the best single FV, which means that our
method is more effective than any of the studied FVs.

We also present experimental results of the proposed combination technique withk-entropy
impurity (methodB). Figure 2.33 (right) shows precision vs. recall curves for the best single
FV and the combination method using 3-entropy impurity. One can observe a large effective-
ness improvement of 29% in terms of R-precision using the combination technique, which is
greater than any improvement between the single FVs used in these experiments. We obtained

56 Chapter 2. Effective feature-based query processing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average precision vs. recall

3−Entropy impurity selection (0.3309)
Depth buffer (0.3095)

Voxel (0.2673)
Complex (0.2544)

Rays−S.H. (0.2344)
Silhouette (0.2259)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Average precision vs. recall

3−Entropy impurity combination (0.3997)
Depth buffer (0.3095)

Figure 2.33:Average precision vs. recall, all FVs (left). Average precision vs. recall, combi-
nation with entropy impurity (right)

similar experimental results with 2≤ k≤ 10, which also suggests that it is not necessary to
search for an optimumk value for each query.

Figure 2.34 presents a summary of the average R-precision values obtained with the pro-
posed techniques, and compares them with the optimal selection score, i.e., for each query
object the FV with the best performance with respect to the given query was used. It shows
that the effectiveness obtained by our combination method is pretty close to the optimal single
selection. We also tested the combination method using all of the 16 implemented FVs. We
obtained a slightly better result (40.73% R-precision) than with the combination using 5 FVs.
However, this improvement is obtained at the expense of higher CPU cost, because in that
case we have to compute 16 rankings instead of just 5.

0.2

0.25

0.3

0.35

0.4

0.45

Optimal Combination Selection Best FV 5th FV

R
−

pr
ec

is
io

n

Feature vector

Average R−precision

Figure 2.34:Comparison of the effectiveness obtained with the proposed methods based on
entropy impurity.

2.5. Query processing using dynamic combinations 57

2.5.4 Analysis of the results and practical recommendations

Experiments have shown that typically, it is only suboptimal from the retrieval precision view-
point to fix a single FV or a combination of FVs to use for every possible query, but rather,
appropriate selection or combination of FVs yields optimal retrieval results with respect to the
available FVs. We researched two techniques based on the entropy impurity concept for query-
dependent selection and weighted combination of FVs for query processing. The results show
that the selection technique outperforms the DBF (single best FV) by 7 percentage points,
and it comes close to the optimal single-selection strategy, which is interesting. Regarding
the weighted combinations, these significantly outperform the theoretical optimal single se-
lection. We have also compared to the dynamically weighted results with the optimal static
combination determined as in Section 2.4. Then, the dynamic selection is still ahead, but only
about one percentage point in R-precision. Note that the R-precision results here and in Sec-
tion 2.4 are not directly comparable, as for the entropy experiments we restricted to a subset
of KN-DB, as we needed larger-sized classes for cross-validation purposes. Our results show
that retrieval systems actually can profit from automatic feature selection techniques. In [15],
we have researched an alternative estimation function and also found it useful. The results
presented in [15] have recently been confirmed using different FVs [69]. Additional new 3D
FVs will probably be proposed in the future, but we do not expect that a single method will
outperform all possible combinations on all possible queries. Dynamically combining FVs
therefore is regarded promising.

Assessing the practicability of this architecture, we have to consider the costs and benefits of
such a system in order to give practical recommendations. The main costs areincreased com-
putational overheadfor evaluating the test queries and for dynamically forming the queries.
Dynamic weighting potentially also raises thesecondary storage access costsfor retrieving
the nearest neighbors from disk, as indexing multi-FV databases with variable FV weights is
a challenging problem [12]. The costs also compound themaintenance of the reference data-
baseused for weight calculation. Conceptually, such a reference database can be build and
maintained by the running system, by monitoring the users submitting queries and indicating
relevant objects like done in relevance feedback. The quality of the reference database is im-
portant for the effectiveness of the discussed dynamic selection technique. Sensitivity exper-
iments we performed indicate that the reference databases has to be similar to the evaluation
database, in order to yield beneficial weight estimates. Specifically, we used two structurally
similar but differen 3D databases for estimation and evaluation, namely, the PSB-Test and
Train databases. Then, the retrieval results were not as good as when doing cross validation,
where by definition the reference database actually is an unbiased sample of the evaluation
database.

To economically judge the practicability of the system, we have to assess it’s benefit. If
we compare the dynamically weighted combinations’ retrieval precision results with the op-
timal static combination results, the improvement of dynamic combination is smaller than
comparing dynamic selection with static selection of single FVs. The dynamically weighted
combinations’ advantage over the optimal static combination amounts to about one percentage
point in R-precision. Depending on the application requirements, it therefore may be sufficient

58 Chapter 2. Effective feature-based query processing

to stick to a good static combination, which does not incur all of the above mentioned costs.
We here cannot come to an ultimate recommendation whether the costs of the dynamic ap-

proach will be outweighed by the benefit of a (relatively) small improvement in retrieval pre-
cision, as we would need to quantitatively assess the actual costs and benefits. Conceptually,
cases can be made where even small improvements yield big returns. In certain application
domains such as object recognition in industrial inspection or optical character recognition,
which share similarities with content-based retrieval, even relatively small improvements in
recognition rates may be highly desirable. Specifically, improvements in recognition rates on
the magnitude of fractions of percentage points may be justified when compared against the
costs of misclassification. As a second line of argumentation for the dynamic case, improved
weight estimation schemes other than entropy impurity, or the availability of new feature vec-
tors yielding retrieval precision highly specific to the type of query class could yield larger
effectiveness gains as compared to static selection and combination schemes.

We finally point out that besides the reference-database approach, other methods for build-
ing weighted combinations are possible. One approach is to collect interactive relevance feed-
back information to optimize the weights to better fit a user’s relevance profile, assuming that
re-issuing the modified query results in more relevant answer objects. Of special interest for
us are automatic techniques which do not require interaction or much supervised information.
Another possibility for estimating FV effectiveness based on purely unsupervised informa-
tion will be discussed in Section 3.2. Leveraging such information in a query processor for
dynamic FV selection and combination is regarded as interesting future work.

3 Projection-based visual feature space
analysis

Contents
3.1 Interactive organization and retrieval with Self-Organizing Maps . . . 60

3.1.1 Kohonen’s Self-Organizing Map (SOM) algorithm60

3.1.2 Visual analysis of 3D, Email, and time series databases using the SOM62

3.1.3 SOM-based support for retrieval and visual relevance feedback . . .69

3.1.4 Summary of the results .71

3.2 Unsupervised visual feature space analysis73

3.2.1 Background .73

3.2.2 A distance-based discrimination power estimator73

3.2.3 A component-based discrimination power estimator74

3.2.4 Application .74

3.2.5 Evaluation .78

3.2.6 Conclusions .84

3.3 Supervised visual feature space analysis88

3.3.1 Background .88

3.3.2 Projection and visualization methods90

3.3.3 The convex hull metaphor for projection-based visual analysis . . .93

3.3.4 Application .95

3.3.5 Evaluation .101

3.3.6 Conclusions .107

In Chapter 2 we have evaluated single and combined FVs for the 3D data type domain re-
garding benchmarked retrieval precision. It was concluded that certain FVs and combinations
thereof are well suited for capturing similarity relationships in object space. While “query-
by-example” retrieval is a prominent FV-based database application, other forms of access to
database content are possible. Consider, e.g., the case when a user is introduced to a previ-
ously unknown database. Clearly, she will not have query objects readily at hand, but will
first need to get an overview over the database content in order to assess important database

60 Chapter 3. Projection-based visual feature space analysis

characteristics such as distribution of objects and object clusters to expect. To this end, vi-
sual representations of database content prove to be helpful. Usually, the amount of objects
contained is rather large and the user cannot be expected to visually inspect each and every
database object directly. Rather, clustered or compressed representations are a desirable tool.

Section 3.1 addresses visual support for database summarization, organization and retrieval
using the Self-Organizing (SOM) [59] algorithm by Kohonen. The usability of the SOM
algorithm for FVs of hundreds of dimensions is demonstrated on several datasets. Then,
based on SOM-technology, in Section 3.2 we propose two tools for unsupervised visual FV
space discrimination analysis and feature engineering. Furthermore, a form of supervised
visual analysis for class discrimination analysis and comparative FV space benchmarking in
projected space is then introduced in Section 3.3. There, the idea is to visually aggregate
class distributions given as points in projected space by convex hulls over class distributions.
This visualization metaphor is motivated, practically applied on two data sets, and statistically
validated.

Parts of this Chapter appeared in [79, 78, 54, 53, 52, 13, 14].

3.1 Interactive organization and retrieval with
Self-Organizing Maps

This Section discusses the application of the Self-Organizing Map (SOM) algorithm to several
different multimedia datasets. The SOM is proposed as a practical tool for compressing large
multimedia databases into a manageable set of prototype vectors which can be visualized for
database presentation, and used as an interface for querying and visual analysis. Section 3.1.1
briefly introduces the SOM algorithm. Sections 3.1.2 and 3.1.3 then discuss usage of SOM-
based visualizations for providing effective overviews over several multimedia datasets, as
well as a concept for using them as part of a retrieval interface. We recognize that SOM is a
highly popular technology that has been used for quite some time now and hundreds of papers
have been published on the SOM algorithm and applications thereof (see the bibliography
given in [59]). Nevertheless, to the best of our knowledge our applications of SOM to the 3D,
E-Mail, and Growth-Matrix domains are novel. Also, they show the practical applicability
and provision of meaningful results even on datasets of very high dimensionality (up to 500
dimensions are given in the application here). Finally, scaling the saturation attribute in SOM
maps to indicate SOM occupancy density is a novel tool which we introduce in Section 3.1.2.

3.1.1 Kohonen’s Self-Organizing Map (SOM) algorithm

A natural way to deal with growing amounts of data is to apply data reduction techniques. E.g.,
we may reduce a large data set to a small number of prototypes using clustering schemes, and
then visualize the obtained cluster prototypes, possibly enriched by additional information
indicating cluster characteristics. TheSelf-Organizing Map(SOM) [59] algorithm is a non-
linear projection and data reduction algorithm which is popular in analysis and visualization

3.1. Interactive organization and retrieval with Self-Organizing Maps 61

of large high-dimensional data sets. It is a scheme for training a neural network representing
a distribution of high-dimensional input data. A low-dimensional (usually, 2-dimensional)
grid of reference vectors is learned from the input data by means of competitive, iterative
adjustment of reference vectors to the input data space. Effectively, the SOM is a combined
vector quantization and projection algorithm, as (a) many input records are represented by a
fixed number of reference vectors, and (b) the reference vectors representing the input data are
given a topological ordering by the SOM grid. The SOM yields (a) a clustering of the data
and (b) approximately preserves the topology of the data points from the input space, and is
therefore especially useful for data visualization and exploration purposes. We here do not re-
call the SOM algorithm details but instead refer to the standard reference for SOM technology
given by its inventor, Teuvo Kohonen [59]. Figure 3.1 illustrates three adjustment steps during
SOM training.

(a) Step 1 (b) Step 2 (c) Step 3

Figure 3.1:The SOM is an iterative competitive learning algorithm. During training of the
SOM, input data vectors are matched to (appropriately initialized) reference vec-
tors located on a grid, and then the reference vectors of the match, as well as those
of neighboring nodes, are adjusted to the input data.

SOM training parameters

Training of Self-Organizing maps is a semi-automatic process during which a number of para-
meters have to be adjusted appropriately to obtain good results. The main parameters of SOM
training include the dimensionality and topology of the SOM grid; the neighborhood kernel
and learning rate function; and the number of iterations for which the learning is allowed to
take place. Also, for initialization of the prototype vectors, several options exist. The choice
of parameters and initialization usually is determined by characteristics of the data set at hand
in combination with a number of rules-of-thumb known in the literature [59, 60]. A standard
approach in tuning these parameters is to generate multiple SOMs for a range of parameter
and initialization settings. From these candidate SOMs, the best one according to an selection
criterion is chosen. Various selection criteria are possible and depend on the data set at hand.
An unsupervised quality criterion often proposed is the average quantization error of the SOM
with respect to the data set. Supervised criteria include measures for classification accuracy
on labeled training data. Also, manual inspection by an expert is possible.

62 Chapter 3. Projection-based visual feature space analysis

For the SOMs to be discussed in Sections 3.1.2 and 3.1.3, we largely relied on the rules-
of-thumb given in [60], in combination with manual inspection, where we judged the quality
of the resulting SOMs by considering the distribution of database elements over the SOM.
Usually, only a few runs were sufficient to obtain satisfactory results. Our experience after
generating SOMs for many different data sets is that generally, the SOM gives quite robust
results, and the specific parameter choices are not so important as long as the rules-of-thumb
are roughly adhered to. Additional support for the robustness of the SOM algorithm with
respect to a key parameter (grid dimensionality) will be presented in Section 3.2. There, in a
sensitivity analysis main SOM-based results are shown to hold for significantly varying SOM
grid dimensionality settings.

Applications areas and SOM visualization methods

SOMs have previously been successfully applied to many data analysis and visualization tasks.
Examples of applications to multimedia data collections include text documents (WebSom
[43]), music (Islands of Music [71]), and also images (the PicSOM retrieval system [63]). Sev-
eral visualization techniques supporting different SOM-based data analysis tasks exist [95].
The so-calledUltsch-Matrix(U-matrix) visualizes the distances between reference vectors of
pairs of adjacent nodes, and visual cluster analysis can be performed by searching for con-
nected sets of SOM nodes which have low distance between each other, but high distances
with respect to surrounding map regions.Component planesare useful in visualizing the dis-
tribution of individual components in the reference vectors, supporting correlation analysis.
If the input data points are mapped to their best matching reference vectors,histogramsof
map population measures, e.g., the distribution of objects over the map using smoothed data
histograms [72], or labels of classes, are possible.

3.1.2 Visual analysis of 3D, Email, and time series databases using the
SOM

We here discuss application of Self-Organizing Maps as a means for browsing and presenting
large multimedia databases. The feasibility (the meaningfulness of the results) of SOM even
on datasets of very high dimensionality (up to 500 dimensions) is demonstrated. Domain-
dependent interpretations of the SOMs are given, illustrating use-cases in the respective do-
mains.

3D benchmark

The center part in Figure 3.2 displays the allocation frequency of the Konstanz 3D benchmark
(KN-DB, cf. Section 2.3.2) models on a 12× 9 SOM learned from the (366-dimensional)
Depth Buffer descriptor (cf. Section 2.3). A smoothed density histogram [72] is generated
over the node occupancy frequencies and indicated by a blue/red bipolar colormap. The
surrounding images show model browser windows displaying objects located (in the nearest
neighbor sense) at different map nodes. The SOM topologically organizes the objects nicely
by geometric properties: Top-left are located groups of thinly-elongated objects like swords,

3.1. Interactive organization and retrieval with Self-Organizing Maps 63

Figure 3.2:Self-organizing Map trained with the Konstanz 3D Benchmark described by the
Depth Buffer FV (cf. Section 2.3). The map coloring reflects a density histogram,
and the surrounding windows show database objects best-matching selected nodes
on the map. Interestingly, the spatial distribution of elements over the map can be
meaningfully interpreted in terms of gradual change in shape of the models.

64 Chapter 3. Projection-based visual feature space analysis

lamps, spoons etc. On the opposite corner of the map, we have quite converse shapes - located
are voluminous, block-like and spherical objects. If we move from top-left to bottom-right
along the map border in counter-clockwise direction, the located objects seem to transit from
the thin-elongated shapes to the voluminous shapes via more complex objects composed of
combined elongated elements such as chairs. Transiting from top-left to bottom-right along
the diagonal, the objects also become more voluminous, but this time via more compact shapes
such as cars and planes. Combining object browsing and density histogram visualizations, a
user can quickly gain an overview over large collections of models. Also, presentation of the
content of a 3D database is easily possible. To support this use case, a domain expert can
manually annotate the SOM, highlighting areas of interest to novice database users. Annotat-
ing SOMs in a multi-user environment could also be easily realized by a user collaboration
approach.

E-Mail

Email has become one of the most important means of communication. Much work has been
done improving the efficiency of email management, while the effectiveness of email man-
agement from a user perspective has not received a comparable amount of research attention.
SOMs seem prospective in visually supporting management of large collections of E-Mail
similar to the WebSOM system [43]. To obtain FVs from E-Mail data, we employ a well-
known scheme from Information Retrieval. First, we determine a numbern of most frequent
terms from the subject fields of all emails in the archive, after having filtered the subject fields
using a list of stop-words in order to avoid the inclusion of non-discriminating terms in the
description. Then, we apply thet f × id f document indexing model [6], considering each
email as a document represented by its subject field. The model assigns to each document and
each of then terms a weight indicating the relevance of the given term in the given document
with respect to the whole document collection. The concatenation of the term weights for
a given document gives the FV for that document. The set of FVs is then used as input for
the SOM generation. We note that more sophisticated email FV extractors can be thought of.
Specifically, email data usually contains a wealth of meta data and additional attributes that
are candidates for inclusion in the descriptor. In this experiment, we chose to start with a basic
feature extractor, and leave the design of more complex E-Mail descriptors for future work.

We generated a SOM from an archive of 9.400 emails collected from our working group’s E-
Mail server system, using the 500 most frequent subject field terms for thet f × id f descriptor.
We labeled all emails as belonging to either the spam or the non-spam class, as judged by a
spam filter and manual classification. Figure 3.3 (a) shows what we call thespam-histogram
over our E-Mail database. For each map node, the colormap gives the fraction of spam emails
among all emails mapped to the respective node. Shades of red indicate high degrees of spam,
while shades of blue indicate low degrees of spam (these are the “good” email regions on
the SOM). Clearly, the SOM learned from our basict f × id f FVs is capable of discriminating
spam from non-spam email. Note that the bipolar colormap is especially useful for visualizing
binary class distributions. If the classes are well separated on the map, and as we interpolate
the spam frequencies between adjacent nodes, then the regions between the class boundaries
are interpolated to about1.0+0.0

2 = 0.5 which corresponds to the white (“neutral”) interval in

3.1. Interactive organization and retrieval with Self-Organizing Maps 65

the used colormap. Thereby, the separation is also visually emphasized, as there emerges a
clear structure in the data.

(a) Spam Histogram (b) Discrete brightness

(c) Continuous saturation (d) Continuous brightness (e) Continuous monochrome

Figure 3.3:SOM-based analysis of a spam/non-spam classified E-Mail dataset. (a) spam-
histogram (red indicates spam, blue indicates non-spam). (b)-(e) represent the
component plane for term #214 (“work”) using several rendering options: Usage
of a fixed threshold (b) and scaling the spam histogram via the saturation (c) and
brightness (d) attributes. (e) gives the classical component plane visualization
using a monochrome color.

Our E-Mail FV consists of weights of discriminating terms from the E-Mail. We can use
the SOM to analyze the distribution of the weights over the SOM. To this end, component
planes [95] have been proposed. The component plane technique visualizes the distribution
of a selected dimension over the SOM reference vectors, usually by means of monochromatic
intensities, or varying the sizes of symbols representing the SOM grid nodes. Figure 3.3 (e)
illustrates the former approach, where we denote the weight for term #214 which is “work”
by varying intensities of color yellow set in linear proportion to the normalized weight mag-
nitudes. By comparing the weight histogram with the SOM, we learn that this term occurs
in E-Mails both of type spam and non-spam. The right-hand side “work” cluster compounds

66 Chapter 3. Projection-based visual feature space analysis

university-related emails from one PhD student in our working group. While such analysis
is possible, it requires the user to analyze two images in parallel (the class histogram and the
component plane). Recognizing that the bipolar colormap nicely communicates the structure
of the spam/non-spam distribution, we propose to combine both views by manipulating appro-
priate visual attributes in the spam histogram image based on the weight magnitudes. Thereby,
the cognitive load of the user is reduced, as she does not have to switch forth and back between
several images.

We experimented with several different options for combining both images by scaling satu-
ration or brightness attributes in HSV color space of one image, based on the other. In Figure
3.3 (b), we employed a simple threshold scheme based on weight magnitude. For each node,
if the weight is larger or equal to 0.3, we set the saturation attribute to 1.0, else we set it to
0.0. We note that the clusters are easily perceivable, and the class memberships are clearly
communicated. The overall class structure on the map remains nicely perceivable even for
those regions where the weights are close to zero, which is due to the nature of the bipolar
colormap. On the other hand, finding appropriate thresholds requires some user intervention.
Also, varying weight magnitude within the clusters is suppressed due to the quantization of
the weights to zero or one.

Figures 3.3 (c) and (d) illustrate continuous combinations of the class and the weight his-
tograms. (c) linearly scales the saturation attribute of the class histogram to the term weight,
retaining the full weight density information. We see that the weight quickly diminishes when
going away from the cluster centers. Again, the structure of the class histogram is visible. Fi-
nally, Figure (d) linearly scales the brightness attribute of the class histogram image based on
the normalized term weight. Using brightness, the class structure is suppressed. On the other
hand, the image is less complex as the structure boundaries are not included in the display.
We summarize that for the case with binary distributions and an appropriate colormap, we can
easily combine two complementary SOM-based data views (distribution of classes and single
components in the reference vectors).

Asset price growth rates

TheGrowth Matrix [54] technique is a triangular visualization technique for showing growth
rate behavior for financial asset price series, for each of the possible subintervals given in a
time series of fixed length. The basic idea is to map start and end point in time to a 2D carte-
sian coordinate system, visualizing the magnitude of growth or loss by a color-coding scheme
(cf. Figure 3.4 for some Growth Matrix examples). The growth matrix is a tool for analysis
of intra period growth patterns within large time series of assets prices. It can also be used to
compare growth patterns among classes of assets. For the latter task, it is necessary to find
good layouts by which to visualize multiple Growth Matrices in a single display. Here, we
utilize the SOM technique to cluster large sets of Growth Matrices in order to produce infor-
mative overviews. Particularly, we chose a subset of an asset database [54], consisting of 1.700
growth matrices of dimensionality 1002 (time intervals range from 01/1997 to 03/2005). For
training the SOM, we down-sample the original data to matrices of size 202, resulting in vec-
tors of dimensionality 190 which in turn are input to the SOM algorithm. We train a grid of
12×9 reference vectors onto which the original data is mapped back. Image 3.5 (a) visualizes

3.1. Interactive organization and retrieval with Self-Organizing Maps 67

Figure 3.4:Growth matrices for funds composed of European technology stock. See [54] for
a detailed discussion of this visualization technique.

the obtained SOM by drawing the best matching Growth Matrix for each SOM node, where
thesaturationattribute in HSV color space of each Growth Matrix thumbnail is scaled using
75%-quantile normalization according to the total number of objects matching the respective
node. The display allows to draw conclusions regarding the characteristics of the given asset
database. Particularly, we can easily identify three salient patterns occurring in the data set:

1. Steady growth throughout the considered time interval (possibly assets composed of
securities; mostly green areas; cf. NodeA);

2. Significant losses during the so-calleddot-comcrash period followed by relative recov-
ery (mostly assets composed of stocks; mostly red growth intervals in the upper right
region, and green ones in the lower left region; NodesD,B);

3. Assets showing more mixed growth characteristics during the observation interval (het-
erogeneous (red/green) growth patterns; top half of the rightmost column on the map;
NodeC).

Globally, we can perceive a separation of the different patterns on the map. The steady
growers separate the mixed growers and the dot-com type assets along two vertical axes in the
right half of the map. On the left half, we observe a low number of degenerate Growth Matrix
images with extreme and sharp color distributions, e.g., the top three nodes in the second
column, due to erroneous data elements. We can also perform closer inspection of individual
clusters by browsing the assets mapped to (in the nearest neighbor sense) certain nodes. Image
3.5 (b) illustrates several nodes representing the above identified patterns.

Also from application on this specific data type (matrices of growth rates) we conclude that
the SOM is a well suited technique for simultaneously analyzing large multimedia databases.
For training the SOM, a number of growth coefficients (190 were used here) can directly be
used as input to the algorithm, producing meaningful results.

68 Chapter 3. Projection-based visual feature space analysis

(a) Growth Matrix SOM

(b) SOM node A (c) SOM node B (d) SOM node C (e) SOM node D

Figure 3.5:Self-organizing map of 1.700 growth matrices (a). The map was learned from
the down-sampled original data. The input space is compressed in a meaningful
way, allowing to identify salient global patterns in the data. Saturation scaling
is performed on the thumbnail images to give additional visual hints regarding
the density distribution of the patterns. Visual inspection of assets represented by
different SOM nodes (b-e). (b): steady growers (SOM node A); (c,d): dot-com
(SOM nodes B,D); (e): mixed patterns (SOM node C). Please refer to (a) for the
location of the SOM node labels (A−D) on the map.

3.1. Interactive organization and retrieval with Self-Organizing Maps 69

3.1.3 SOM-based support for retrieval and visual relevance feedback

Besides data reduction and presentation purposes, SOMs are also suited as a user-friendly
interface for querying for content. The PicSOM system [63, 76] demonstrated this. It is an in-
tegrated retrieval and exploration system for image databases described by multiple FVs. The
core of PicSOM is a set of hierarchically structured SOMs called the TS-SOM index. From
root to leaf elements along the tree, the SOM grids get larger. On a given level, each SOM
grid unit references one chid SOM, organizing all the data elements which are best match-
ing the given parent SOM node. On top of this hierarchic structure, a combined browsing
and retrieval system is developed. Starting with the root of the index, the user is confronted
with SOMs where a thumbnail image is drawn for the best matching image of each grid node.
There are two modes of operation. First, the user can drill down the TS-SOM index top-down
on a path for the best fitting image on each level, finally reaching a leaf-level SOM assumed
to contain (most) relevant images according to user preferences. The other mode is based on
relevance-feedback. While browsing SOM-levels, the user may mark thumbnail images she is
strongly interested in. The system then identifies the SOM nodes on the leaf level where the
marked objects best match, and presents other image elements matched at the respective leaf
nodes by certain heuristics.

We have implemented a simpler, non-hierarchic system for SOM-based retrieval of 3D
models. We use one global SOM representing the whole dataset. The SOM is an optional view
which is provided in addition to the standard ranking displays. The SOM is bidirectionally
linked with the retrieval interface. Such integration of query-by-example retrieval and SOM-
based overview allows to explore many interesting querying pathssimultaneously, as opposed
to the linear browsing of sorted answer lists returned by standard retrieval systems. In our
system, SOM nodes can be selected by the user, and the objects mapped to the selected nodes
(the best-matching 3D objects) can be loaded into the 3D model browser, allowing to explore
the SOM’s structure. Vice versa, for each object in an answer list, its respective location on the
SOM grid can be highlighted. By coupling nearest-neighbor querying and SOM visualization,
the user can enhance the querying process by exploring those SOM regions where interesting
answer objects are mapped to, possibly finding additional relevant objects, which in turn can
be used for refining the query using relevance feedback techniques.

The SOM exploration process is supported by different SOM views which can be interac-
tively switched. The U-Matrix allows assessment of the clustering structure of regions where
relevant objects are mapped to (cf. Figure 3.6 (a) for an illustration). Furthermore, we im-
plemented the response surface technique [95] visualizing the distances between a given 3D
model’s FV, and all SOM reference vectors, thereby revealing the map region(s) best repre-
senting the data vector (cf. Figure 3.6 (b) for an illustration). The SOM nodes closest to the
query model are good candidates for further inspection when searching for similar objects. In
this illustration, the user has selected one object she is interested in from a given list of answer
objects (the human model denoted by a red circle). On the response surface regarding this
object’s FV, a set of node prototype vectors exhibits low distance (denoted by red shades) to
the selected model, indicating a potentially interesting map region to explore.

70 Chapter 3. Projection-based visual feature space analysis

(a) Best matching units marked on U-Matrix (b) Response Map to selected object

Figure 3.6:Supporting the retrieval process by marking relevant objects found in answer lists
on the SOM (a). In (b), the response surface view visualizes the distances of
SOM reference vectors to a selected object. The views can be used to inspect the
3D models contained in the matched nodes, possibly finding additional relevant
answer objects.

Considering that not just one, but often multiple different feature extractors are available for
indexing multimedia data, it is an interesting question how the SOMs generated for the same
database represented in different FV spaces relate to each other. Also, we would like to have
a tool supporting the user in selecting the FV extractors best suiting her needs. We therefore
propose to include visualization of SOMs generated using different FV extractors for visual
estimation of the appropriateness of the given FV extractors for a given query. Figure 3.7
shows SOMs for four different feature spaces generated for our 3D database. (a) and (b) show
U-matrices of a moment-based and an extension-based FV, respectively. These two FVs have
experimentally been found to exhibit rather low retrieval performance on database-average (cf.
Section 2.3). Subimages (c) and (d) show U-matrices of two image-based FVs. These FVs of-
fer comparably higher retrieval performance on database-average. We find these benchmarked
results confirmed by inspection of the respective SOMs. For the low-performance FVs, the
U-matrices show that roughly the same low distances exist between the reference vectors of
many of the map nodes (darker grey shades indicate higher magnitudes of L1 node distances
in vector space). On the other hand, for the high-performance case, the U-matrices show a
richer and more heterogeneous pattern of inter-node distances (cf. Section 3.2 for a more
thorough analysis of this phenomenon). We therefore expect these FVs to offer higher object
discrimination power. In accordance with this observation, the members of a class of similar
objects (i.e., the airplane models from the Konstanz 3D Benchmark, illustrated in Figure 3.8
(a)) are spread widely over the SOMs given in (a) and (b), while they cluster much better on
the maps (c) and (d) (note that all map nodes best matching the airplane models are marked
red in the maps).

Such comparative displays can be used interactively as follows. Assume a user has marked
several objects as being relevant. SOMs for the available FVs are displayed with marks in-
dicating the best-matching units to the relevant objects. Considering response surfaces and
U-Matrices, the user can search for promising FVs and regions which to interactively explore
for more objects. Ideal FVs are expected to produce SOMs where the matched nodes are com-
pactly located, and being clearly discriminated from the surrounding map regions. The latter

3.1. Interactive organization and retrieval with Self-Organizing Maps 71

property can be assessed by considering the U-Matrices, and also the response surfaces for the
matched objects.

(a) PMOM (16%) (b) COR (17%) (c) SIL (27%) (d) DBF (32%)

Figure 3.7:U-Matrices for four different FV extractors and the Konstanz 3D benchmark,
sorted increasingly by benchmarked retrieval precision (R-precision scores are
given in brackets). Marked red are best-matching units for a class of plane models,
cf. Figure 3.8(a).

In addition to the above discussed distance-based characteristics, another interesting rela-
tionship between global FV retrieval performance and SOMs can be experimentally estab-
lished. This is done by defining an appropriate measure for the benchmark-based purity of
SOMs. We define themap-purityas the size-weighted average purity of all SOM nodes,
where the purity of a node is equal to the fraction of objects belonging to the largest object
class present at the considered node. Figure 3.8 (b) plots DB-averaged retrieval precision
measures (cf. Section 2.3) of several FVs against the map-purity values of the corresponding
SOMs for different SOM grid resolutions. There is a clear dependency between both metrics.
It implies that better FV extractors, as measured by supervised benchmark, also better cluster
similar objects on the SOM grid. We therefore can expect better benchmarked FV extractors
to be better suited for the above described SOM-based exploration support for retrieval. Please
note that these results were obtained by using the Princeton Shape Benchmark Train database,
which consists entirely of classified objects. We conclude that by inspecting the U-matrices
of different FVs, a user is able to identify those FVs that suit her needs, that is, find FVs that
offer good global (or local, where required) discrimination power.

3.1.4 Summary of the results

We summarize the empirical findings from our application of SOM technology on a variety of
multimedia databases as follows.

• The SOM allows compact representations of large datasets of multimedia objects de-
scribed by FVs. The maps summarize many objects by a fixed amount of prototype
vectors. Often, the results can be meaningfully interpreted in terms of map topology.

• The high dimensionality of some of the considered FV extractors does not seem to be a
problem for the SOM algorithm. Evidence are the semantically meaningful SOM results

72 Chapter 3. Projection-based visual feature space analysis

(a) KN-DB Class ID 20

FV retrieval performance versus SOM classification purity

R2 = 0.8312

R2 = 0.8894

R2 = 0.7927

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

DB-average retrieval performance (R-Precision)

W
ei

gh
te

d
av

er
ag

e
no

de
 p

ur
ity

24x18
12x9
8x6
Linear (24x18)
Linear (12x9)
Linear (8x6)

(b) Classification purity and R-precision

Figure 3.8:(a) the airplane class visualized in Figure 3.7. (b) regression between benchmarked
retrieval precision and classification purity of best-matching units on the SOMs.

obtained, e.g., for the Depth Buffer described 3D database or the Email database from
Section 3.1.2, where the vectors were of dimensionality 366 and 500, respectively.

• The quality of the FV extractors used to generate the SOMs has a large impact on the
quality of the resulting maps. The better the discrimination power of a FV, the better
the SOM-based results with respect to topological organization of the objects regarding
similarity can be expected.

• The SOM offers a wealth of options for visualization which in turn support content-
based retrieval and object browsing:

– Density histograms in combination with thumbnail maps allow summarization and
presentation (abstracting) of large multimedia databases.

– U-matrices can be used for visual cluster analysis in the datasets.

– Marking of best-matching nodes and usage of response surfaces are suited for
interactive retrieval using the SOM.

– Comparative visual inspection of SOMs supports the interactive selection of the
FV spaces best supporting the retrieval of similar objects the user is interested in.

– Component planes allow correlation analysis, and inspection of component-based
characteristics of distributions of object classes.

– Several schemes for visual combination of class histograms with component planes
using scaling in HSV color space were proposed in this Section.

3.2. Unsupervised visual feature space analysis 73

3.2 Unsupervised visual feature space analysis: Tools for
distance- and component-based discrimination
estimation

3.2.1 Background

As has already been indicated in this thesis, in the 3D domain there exists an abundance of
FV extractors to chose from. This situation is also true for other multimedia domains, such as
the image domain [93]. Like done in Chapter 2, effectiveness of individual FV extractors can
be benchmarked if suitable ground truth classifications (supervised information) are available.
Also, supervised FV engineering by dimensionality reduction [104] or building appropriate
combinations of FVs (c.f. Section 2.5) is then possible. Practically, due to the large num-
ber of extractors available, and the costs and even potential instability [65] associated with
many benchmarks make supervised identification of the most effective extractors for a given
application difficult. An alternative is to resort tounsupervisedestimation of FV space effec-
tiveness. To this end, a number of advanced statistical approaches have been proposed [2, 42].
These works are of rather theoretical nature and to the best of our knowledge have not been
practically applied yet.

In this Section, we address the problem ofunsupervised FV space analysisby means of
characteristics obtained from compressed (clustered) FV space representations. As we are
interested in visually supporting the analysis, and based on the previous work from Section
3.1, we rely on the Kohonen Map (SOM) algorithm for FV space compression. The Kohonen
Map resembles a robust algorithm well suited for visualization [95]. In Section 3.1 we have
explored the application of Kohonen Maps in a multimedia retrieval system. In the following,
we now leverage unsupervised information extracted from Kohonen Maps for FV selection
and engineering.

3.2.2 A distance-based discrimination power estimator

We propose an intuitive, simple, and practical method for unsupervised estimation of FV space
discrimination power. We base our method on the following hypothesis:

Hypothesis 1. Discrimination power provided in a given FV space can be estimated by the
degree of uniformity of the distance histogram defined over inter-cluster distances in the re-
spective FV space.

An important assumption underlying Hypothesis 1 is that a FV space can be represented
by a number of cluster prototypes as obtained by application of an automatic clustering al-
gorithm, e.g.,k-Meansor theKohonen Map. We then consider the distribution of distances
between adjacent cluster prototypes. We expect the corresponding distance histograms to
approximately resemble uniform distributions if the underlying FV spaces provide good dis-
crimination power, as a-priori there is no rationality why any specific distance intervals should
be preferred. While this has not necessarily to be the case for any possible combination of FV
extractor and multimedia database, we expect uniform distance distributions to provide the

74 Chapter 3. Projection-based visual feature space analysis

best chances for meaningful discrimination in FV space. Conversely, we assume that for FV
spaces providing only little discrimination power, cluster distances may be arbitrarily biased
towards any subset of distance intervals.

3.2.3 A component-based discrimination power estimator

Any meaningful distance functiond : (~pi , ~p j)→ R+
0 in vector space, such as the Minkowski

or Quadratic Form distance functions, has to rely on the components (dimensions) in the FV
space. So it is ultimately the sum of characteristics of the individual FV components that
determines the FV effectiveness. We next state a second hypothesis, and propose a tool for
visualizing certain component-based FV space characteristics supporting unsupervised dis-
crimination power estimation and feature engineering.

Hypothesis 2. Discrimination power provided in a given FV space can be estimated by the
degree of heterogeneity among the components of the cluster prototype vectors representing
the FV space.

Similar to Hypothesis 1, the intuition behind Hypothesis 2 is that FV spaces exhibiting
high heterogeneity of prototype vector components can be attributed better chances to provide
meaningful discrimination power. The more biased the component values are towards certain
component intervals, the less chances are expected for good discrimination power.

Based on these considerations, we propose interactive FV space evaluation by visualizing
the component distributions of the cluster prototypes in FV space. Again, we rely on the
Kohonen Map algorithm. A Kohonencomponent plane(CP) [95] visualizes the distribution of
one selected FV dimension over the respective Kohonen Map. We can visualize all component
distributions in a FV space by simultaneously displaying the set of CPs in a component plane
array (CPA).

3.2.4 Application

Application of the distance-based estimator

We tested Hypothesis 1 (the distance-based estimator) on a database of 3D models - the
Princeton Shape Benchmark(PSB) Train partition [81] - described by a set of ten compet-
ing FV extractors. The FVs are the PMOM, SD2, H3D, RIN, 3DDFT, CPX, SIL, VOX, and
DBF methods (cf. Section 2.3.1). Also included is the DSR FV, which is a statically com-
bined (concatenated) FV compounding four different FVs [97]. We generated Kohonen Maps
of dimensionality 12×9 for the database and each of the FV extractors. Figure 3.9 visualizes
the distribution ofL1 distances between neighboring SOM prototype vectors using diamond-
like diagrams (cf. Figure A.6 in the appendix), for four different FV spaces. We note that
we useL1 as there are results thatL1 may be the most robust of the Minkowski distances
for high-dimensional data [3]. In the respective images, brighter (darker) shades correspond
to lower (higher)L1 distances. From left to right, the degree of uniformity of the respective
maps’ distance distributions increases. While image (a) is dominated by low distances, image
(d) consists of a rich mix of different distances. In terms of distance histograms, image (a)

3.2. Unsupervised visual feature space analysis 75

is skewed towards low distances, while image (d) approximately resembles a uniform inter-
cluster distance distribution. Based on Hypothesis 1, we therefore expect the FV extractor
underlying (d) to have best chances to provide good discrimination power, while we expect
the converse for the FV extractor underlying (a). The two FV extractors of (b) and (c) should
provide medium discrimination power as they show neither uniform nor extremely skewed
distance distributions. Note that these assessments are based on unsupervised information
automatically extracted from the respective FV spaces.

We verified these visually obtained effectiveness estimations by comparing them with bench-
marked effectiveness scores obtained using the classification information accompanying the
PSB database [81]. Specifically, we considered averagedR-precisionscores [6] over the PSB
in the different FV spaces (cf. also Section 2.3 in this thesis). The R-precision scores for each
of the four FV extractors are included in Figure 3.9 and correlate positively with the degree
of uniformity of the distance distributions. Please refer to Figure A.7 in the Appendix for
U-Matrices for all ten FV spaces.

Application of the component-based estimator

We tested Hypothesis 2 by applying the CPA technique also on the PSB-T data set. Figure
3.10 shows CPAs of four different FV spaces, ordered by increasing R-precision scores (please
refer to Figure A.8 in the Appendix for CPAs for all ten FV spaces). Figure (a) contains the
worst benchmarked FV extractor from our setting. Its CPA indicates that most components
of the prototype vectors are biased towards certain value intervals, with substantial variance
in component values only towards the bottom-right area of the CPs. We do not expect such
characteristics to provide good chances for meaningful object discrimination. Conversely, im-
age (d) corresponds to the most discriminative FV extractor according to the PSB benchmark.
The respective CPA exhibits heterogeneous patterns for almost all components. We therefore
are lead to expect good discrimination power.

Images (b) and (c) represent middle-ground situations regarding component heterogeneity.
The extractor underlying image (b) exhibits significant variance among roughly the upper
half of FV components. The lower half of components seem to be significantly correlated,
as the respective CPs show similar patterns. Taking together these facts, we expect moderate
discrimination power. A similar situation is present in image (c). About half of the components
show significant variance, while the other half of the components represent roughly constant
values which cannot meaningfully contribute to object discrimination. In this case, we note
that the respective FV extractor was wrongly configured which lead to the observed outcome.
Again, taking together both observations leads us to expect moderate discrimination power.

Besides discrimination power estimation, the CPA technique is also helpful in interactive
FV engineering. The respective CPAs suggest that the highly correlated or approximately
constant components can be aggregated or removed in the FVs underlying CPAs (b) and (c) in
Figure 3.10. Doing so should lead to more compact FVs expected to retain the discrimination
power provided by the original FVs.

76 Chapter 3. Projection-based visual feature space analysis

(a) PMOM (15%) (b) SD2 (18%)

(c) 3DDFT (25%) (d) DSR (43%)

Figure 3.9:Visualization of theL1 distances between adjacent cluster prototypes of Kohonen
Maps generated for the PSB-Train database represented in four different feature
spaces. Bright (dark) shades correspond to low (high) distances. The degree of
uniformity of the respective distance distributions increases from left to right. This
is in accordance with the increase of a supervised discrimination precision bench-
mark score (R-precision, given in brackets).

3.2. Unsupervised visual feature space analysis 77

(a) PMOM (15%) (b) RIN (23%)

(c) DBF (31%) (d) DSR (43%)

Figure 3.10:Component plane arrays for the PSB-Train database represented in four different
feature spaces, sorted by benchmarked precision scores. The visualization allows
unsupervised selection of prospective FV extractors, and can be used to identify
highly correlated or indiscriminating components for removal from the FV. Note
that the number of component planes differs among the arrays, as each FV ex-
tractor was equipped with a specific, method-dependent dimensionality setting.

78 Chapter 3. Projection-based visual feature space analysis

3.2.5 Evaluation

Evaluation of the distance-based estimator on real FV data - inter FV space evaluation

We substantiate the practicability of the distance-based estimator by a regression analysis
between R-precision scores and degree of uniformity of the Kohonen Map distance distrib-
utions given in the ten FV spaces. For each FV spacef , we calculate theuniformity score
us(hf) = ∑b

i=1 |h
f
i −

1
b| as theL1-distance between its distance histogramhf defined overb

bins, and the uniform histogram of lengthb. The lower this score, the more uniform the re-
sulting distance histogram is. Figure 3.11 gives the results of the logarithm model regression
analysis for the ten FV extractors usingb = 10 bin distance histograms. We verify the cor-
relation between the supervised and the unsupervised FV space metric at squared correlation
coefficientR2 = 0.60. While this is not a perfect functional dependency, both metrics clearly
correlate in the expected sense. We obtained similar results for different bin and Kohonen Map
dimensionality settings. We conclude that the proposed analysis is a valid and practical op-
tion for addressing the unsupervised FV extractor selection problem. Note that the presented
results are aninter-FV spaceanalysis in that we contrast different FV spaces with each other
in the regression, fixing the dimensionality of each FV space to the optimal dimensionality as
determined by benchmarking in Section 2.3.4.

Retrieval precision against Uniformity Score
(10 Histogram Bins)

y = -0.3653Ln(x) + 0.3112
R2 = 0.5969

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

R-precision

U
ni

fo
rm

ity
 S

co
re

PSB-Train
Logarithmisch (PSB-Train)

(a) Regression

Feature Vector
Extractor

R-precison
Score

Uniformity
Score

PMOM 14.82% 1.1590
SD2 18.26% 0.9692
H3D 20.20% 0.8051
RIN 22.52% 0.6974

3DDFT 25.08% 0.7795
CPX 27.08% 0.7487
SIL 28.15% 0.8308

VOX 31.13% 0.7333
DBF 31.16% 0.7179
DSR 42.61% 0.7282

(b) Data

Figure 3.11:Regression analysis between uniformity score of Kohonen Map distance his-
tograms (unsupervised information) and a supervised discrimination precision
metric for ten FV extractors. The expected correlation is verified, indicating via-
bility of the analysis for automatic discrimination power estimation.

We give technical details regarding the above experiment. The SOMs were generated using
the SOMPAK implementation by the Helsinki University of Technology [60]. The parameters
were set as follows: 12× 9 rectangular grid; randomly initialized reference vectors; a bub-
ble kernel was used. We performed a two-staged training process. First, 25 DB iterations
using radiusr1 = 15 and learning rateα1 = 0.05 were performed. Then, 50 DB iterations
using radiusr2 = 5 and learning rateα2 = 0.02 were performed. For each SOM, the distance

3.2. Unsupervised visual feature space analysis 79

histogram was calculated withb = 10 bins over theL1 distances between the reference vec-
tors of all pairs of adjacent SOM nodes. The histogram was equi-width and constructed over
the [dmin,dmax] interval. Many more settings were tried regarding SOM grid dimensionality,
histogram size (number of bins), and Minkowski distancesL1, L2, andL3, on the PSB-Train
dataset. The setting given above is the one reported here and represents the best correlation
results. Correlation quality as measured byR2 on the exponential model was sensitive to the
distance (onlyL1 gave good correlation). Also, larger and smaller SOM grids gave somewhat
deteriorating correlations. The bin setting regarding the setting with a 12×9 SOM grid and
using theL1 norm was rather robust.

We suppose that the moderately-sized SOM grid and histograms are beneficial in that they
provide a smoothing effect suppressing outliers and noise, thereby stabilizing the result. We
note that regarding SOM grid size, several rules of thumb are proposed in the literature, e.g.,
recommending setting the number of nodes to the square root of the database size [60]. We
used the 12×9 settings for many different databases of several thousands of objects each, and
mostly obtained good clustering results.

Evaluation of the distance-based estimator on real FV data - intra FV space evaluation

It is interesting to ask whether the observed dependencies also hold for anintra-FV space
analysis. We recall from the experiments in Section 2.3.4 that the FV extractors usually can
be configured to different resolution levels, e.g., by setting the granularity of sampling fea-
tures from the objects. Determining the optimal FV dimensionality is in itself a feature selec-
tion problem which is traditionally solved by the benchmarking approach. If the dependency
between distance distribution heterogeneity and benchmarked retrieval precisions also holds
for the different dimensionalities possible within the different FV spaces, then the estimator
should also be useful for the dimensionality selection problem.

R-Precision in FV dimensionality (PSB-Train)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 64 128 192 256 320 384 448 512

Dimensionality

R
-p

re
ci

si
on

DBF
SIL
PMOM
H3D
SD2
RIN
CPX
3DDFT
VOX
DSR

(a) All FV spaces

R-Precision in FV dimensionality (PSB-Train)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 25 50 75 100 125 150 175 200 225 250

Dimensionality

R
-P

R
ec

is
io

n DBF
VOX
H3D
SD2
RIN

(b) Selected FVs and dimensionalities

Figure 3.12:R-precision as a function of dimensionality for all 10 FV spaces considered in
Figure 3.11 (left) and the 5 selected (right) FV spaces, measured on the PSB-
Train benchmark.

We therefore consider an intra-FV space regression experiment by plotting R-precision val-

80 Chapter 3. Projection-based visual feature space analysis

Table 3.1:Dimensionality and R-precision spans for the selected PSB-Train FV spaces. The
selection is based on a sufficiently large span in both variables.

FV space min dim max dim min R-prec. max R-prec. Num. of dim settings
SIL 15 60 23% 27% 4
RIN 4 155 8% 22% 7
SD2 5 50 11% 17% 5
DBF 30 246 22% 30% 4
H3D 16 80 2% 19% 5

ues obtained for different dimensionality settings in a given FV space against the uniformity
scores of the respective SOM spaces. We selected a set of five FV spaces for which we tested
the dependency. Specifically, we selected the SIL, RIN, SD2, DBF, and H3D FV extractors, as
these (a) allow for a sufficiently fine granularity of available dimensionality settings, and (b)
the respective dimensionality settings yield a sufficient span of resulting R-Precision scores.
In other words, we required the FV spaces to provide a significant spread in both variables.
Figure 3.12 reports the benchmarked R-precision scores for the FV spaces and dimensional-
ities, and Table 3.1 summarizes the span of dimensionality and R-precision variables of the
selected FV spaces.

Figures 3.13 and 3.14 report the results of the uniformity score regression experiments for
each of the selected FV spaces. The left columns contain plots of respective R-precision values
against uniformity scores. The uniformity scores were calculated using histogram width such
that the log regression dependency was maximized w.r.t. theR2 statistic. The dependency
strengths range between 93% for the SIL FV space, and 45% for the H3D FV space. The
scatter plots indicate that a correlation exists between the supervised and the unsupervised
FV metrics within each FV space and for varying dimensionality. Looking at the scatter
plots, we see that selecting the FV dimensionality which minimizes the uniformity score not
always manages to choose the optimal FV dimensionality, but gives good selection decisions
significantly outperforming the random choice. If we chose the FV dimensionality setting
yielding thelowestor second lowestuniformity scores, we select FV spaces which perform
significantly better than the random choice of any FV dimensionality.

Table 3.2 gives the selection results. In both unsupervised FV selection polices, in 4 out
of 5 cases, the choice is better than random. The second lowest uniformity score selection
rule manages to select the optimal dimensionality setting in 3 out of 5 cases (for the SIL,
RIN, and SD2 FV spaces), manages to chose the second best dimensionality in one case (H3D
FV space), and performs worse than random only for one FV space (DBF, where it selects
only the 3rd performing out of 4 FV dimensionality settings). The policy of choosing the
dimensionality setting minimizing the uniformity score performs slightly worse in terms of
selection ranks, as compared to the second-lowest selection policy. It manages to detect the
best setting once (H3D), and performs better than random for SIL (2nd of 4), RIN (3rd of 7),
and DBF (2nd of 4). It under performs the random selection only once in case of SD2, where

3.2. Unsupervised visual feature space analysis 81

Table 3.2:Performance of dimensionality selection policies based on selecting the FV space
yielding the lowest or second lowest uniformity score. Both policies perform better
than random for 4 out of the 5 FV spaces. The 2nd lowest selection policy hits the
optimal dimensionality in 3 out of 5 cases.

FV space lowest choice 2nd lowest choice
SIL 2/4 1/4
RIN 3/7 1/7
SD2 4/5 1/5
DBF 2/4 3/4
H3D 1/5 2/5

it chooses the 4th best performing out of 5 available dimensionality settings.
We note that this evaluation was based purely on the ranks of selected dimensionality set-

tings. In terms of resulting R-precision scores, the selection policies perform even better, if
one compares against the worst case, namely, ending up with the R-precision scores result-
ing from selecting the worst performing dimensionality. From the scatter plots we see that
for the low uniformity score data regions, the associated R-precision scores are rather similar,
making the lost precision not so severe if not the optimal dimensionality setting is selected.
E.g., the lowest uniformity score selection policy hits only the 4th best out of 5 dimensional-
ity settings in the SD2 space. Still this is a good choice, considering that the 4th best setting
yields 15.8% R-precision, while the best choice would yield 17.9%, which implies that not
too much R-precision is lost by this choice. What is even more important, is that the worst
choice is avoided, which would yield only 11.3%. Generally, the avoidance of the worst case
seems to be robust, as the uniformity scores for the lowest realized R-precision observations
are significantly higher than those for the better realizations, for all of the FV spaces.

Regarding the robustness of the intra-FV evaluation, we also examined the correlation de-
pendencies while varying the bin size settings for calculating the uniformity scores. The right
columns of charts in Figures 3.13 and 3.14 report theR2 values obtained by varying the bin
widths betweenb = 2 andb = 20 in the correlation experiments. As converse to the results
to be presented for the synthetic data set in the next section (indicating analysis robustness
w.r.t. histogram width), the correlation strength seems to depend on the histogram width set-
tings. Basically, we obtain the tightest dependencies for small histogram widths between 3
and 7 bins. Larger histogram widths lead to diminishing dependencies. Also, there occur
oscillations in the dependencies, alternating between significantR2 measures, and insignifi-
cant results below 10%. This is an interesting observation which at current is advocated to
the simple equi-width binning approach chosen in the definition of the uniformity score. It is
presumed that histogram discretizing artifacts account for the fluctuations observed regarding
dependency strength. It is also presumed that data-adaptive binning strategies should lead to
improved robustness in the histogram-based dimensionality selection heuristic, an idea which
is left for future work.

82 Chapter 3. Projection-based visual feature space analysis

Evaluation of the distance-based estimator on synthetic data

The above findings are interesting as they link unsupervised information extracted from several
given 3D FV spaces with respective effectiveness benchmarks. As benchmarks are supervised
in nature and expensive to build, unsupervised effectiveness estimation is desirable. We are
therefore interested whether these empirical results generalize, and we would like to assess the
robustness of these findings. As the number of available high-quality research benchmarks and
multimedia FV extractors is limited, we consider additional synthetic data sets. We generated
several datasets simulating FV spaces of varying discrimination between the object classes.
The specifications of the FV generation are as follows:

• Thedimensionality (dim)was set to 128, which represents a middle ground resolution
regarding many real FV extractors.

• Thedatabase sizewas set to contain between 50 and 200 classes (n classes), where each
class consists of 50 elements (c size). These sizes seem typical for many multimedia
benchmarks.

• The FVs were modeled as being normally distributed with standard variance of 1.0
around a given, class-specific center point for all dimensions in FV space.

• The class-specificclass centroids(center points) were modeled as being uniformly dis-
tributed along all dimensions in FV space.

• The degree ofinter-class discriminationwas modeled by varying the interval from
which the class centers were drawn (d span) between 1.0 and 5.0.

These settings were chosen as a model of typical multimedia benchmarks. While modeling
inter-class discrimination is probably the most difficult part, we believe that using classes
with uniformly distributed centroid and normally distributed component values is a reasonable
choice. In combination with the dimensionality span chosen from which to draw the class
centroids simulates class discrimination which is comparable to real FV benchmarks. We have
measured R-precision scores for the synthetic data range, and observed they ranged between
2% and 100% (cf. Figure A.9 in the Appendix).

Regarding the SOM parameter settings, we consider three SOM size settings. In theequal-
samplingscenario, the number of SOM nodes is roughly equal to the number of classes, so that
we expect the respective SOMs to represent each synthetic class by one SOM node. We also
consideredover-samplingandunder-samplingscenarios, where the number of SOM nodes
exceeds or falls short of the number of classes. Considering differently sized SOMs is impor-
tant for assessing the robustness of the analysis. This is because in automatic FV evaluation
we cannot be sure about the number of classes present in a given database (this supervised
information is beyond the scope of the analysis). Consequentially, we cannot adjust to SOM
grid size to optimize the analysis in case there was some data-dependent best SOM grid size
depending on the FV space characteristics. Intuitively, we would expect the number of SOM
nodes having to match or exceed the number of classes, as only then the SOM algorithm has a

3.2. Unsupervised visual feature space analysis 83

chance to map the classes to the SOM grid in a discriminating way. Table 3.3 summarizes the
three experiment settings we devised based on this reasoning.

Table 3.3:Three experimental settings. The data distribution chosen tries to capture important
characteristics of real multimedia FV data. The database and SOM sizes model
cases where the number of SOM nodes exceeds (matches, falls short of) the number
of simulated classes.

Scenario dim n classes c size d span grid nodes per class
over-sampling 128 50 50 1.0−5.0 32×24 15.36
equal-sampling 128 100 50 1.0−5.0 12×9 1.08
under-sampling 128 200 50 1.0−5.0 12×9 0.54

Figures 3.15 (a), (c), and (e) plot the uniformity scores (usingb = 10 histogram bins) ob-
tained when increasingd spanfrom 1.0 up to 5.0 in steps of 0.2, thereby gradually increasing
inter-class discrimination. (c) gives the result for the equal-sampling scenario, where the re-
lation between SOM nodes and object classes is roughly 1 : 1. There is a clear dependency
between the two metrics: As discrimination is improved, the uniformity score decreases, indi-
cating the SOM-based distance histograms move towards a uniform distribution. The squared
correlation coefficientR2 amounts to about 85%, indicating a significant correlation between
the two metrics. Figures (a) and (e) show the over-sampling and the under-sampling case,
where the number of SOM nodes exceeds or falls short of the number of classes in the syn-
thetic data. Interestingly, there is also a significant relation between class discrimination and
uniformity score in both scenarios, even if the number of SOM nodes is not sufficient to rep-
resent each class with a SOM node (reference vector) of its own as in the under-sampling
scenario. The respectiveR2 values amount to about 70% for under-sampling (0.5 nodes per
class) and 50% for over-sampling (15 nodes per class), respectively. Again, histograms of
length 10 were used to calculated the uniformity score for these scenarios.

Besides SOM grid size, another parameter needs to be set for the analysis: The histogram
lengthb used for calculating the uniformity score from the SOM node distances. As we are
interested in assessing the influence thatb has on the analysis, we performed all regressions
while varyingb between 2 and 20. Figures 3.15 (b), (d), and (f) report the observedR2 val-
ues for the three scenarios and for varying histogram lengths. For small histogram sizes up
to about 5 bins,R2 is rather low (but increasing). We attribute this to the fact that the small
histogram sizes perform too much aggregation, eliminating needed information regarding the
distance distributions. For histogram lengths of about 7 to 8 bins and above, we observe stable
dependencies between 0.50 and 0.85R2 levels for the different scenarios. This is another inter-
esting finding, as it indicates that we do not have to worry too much about finding appropriate
histogram length settings, as there is a stable interval of useful settings.

We conclude from the experiments on synthetic data that Hypothesis 1 is quite robust with
respect to the SOM grid size, which supports the usability of the discrimination power esti-
mation technique. Also, there is no need to also estimate the number of classes, but we expect

84 Chapter 3. Projection-based visual feature space analysis

reasonable SOM sizes, such as indicated by the well-known rules-of-thumb for SOM genera-
tion to deliver good results. We note that we have performed additional experiments on data
sets with different dimensionality and dspan settings, obtaining comparable results.

Evaluation of the component-based estimator

Regarding evaluation of the CPA technique, we summarize that the CPA technique allows vi-
sual assessment ofvariance, component-correlation, andnoise / errorcharacteristics present
among FV space components. In our experiments, we were able to verify these unsupervised,
visually obtained assessments using supervised benchmarking results, indicating the useful-
ness of the CPA tool for FV selection and engineering.

We note that numerically capturing such discussed CPA characteristics is difficult. Recently,
there have been efforts to automatically diagnose the effectiveness of visualization results by
means of pixel-oriented analysis. So-calledPixnostics[45] explores interestingness measures
defined on images by appropriately engineering image-analysis functions considering e.g., the
degree of variance, structural changes, or block-wise correlations within an image. The goal
is to have a scalar interestingness function for solving the parameter choosing problem in gen-
erating effective visualizations. It are such interestingness functions that we need to research
to automatically leverage the component-based visual FV space analysis proposed in Section
3.2.3. We leave the design of appropriate Pixnostics functions and regression experiments
similar to the ones given for the distance-based estimator for future work.

We conclude that the CPA technique complements the distance-based technique, and that
both tools offer visual and analytical access to a wealth of useful FV space information.

3.2.6 Conclusions

We gave two intuitive hypotheses linking FV space characteristics obtained by unsupervised
means with the discrimination power (effectiveness) to expect in the respective FV space.
We gave experimental evidence based on real and artificial FV data supporting the hypothe-
ses, and we demonstrated the applicability of two corresponding tools for visual FV space
analysis. The tools are proposed to complement the (expensive) supervised benchmarking
approach to FV space evaluation, and they are advocated for interactive FV selection and en-
gineering tasks. Specifically, the distance-based discrimination power estimator is suited for
automatic, unsupervised FV space selection, where the task is to find the best discriminating
FV space in a set of different FV types, or dimensionality settings thereof. With some minor
limitations, the experiments showed the automatic unsupervised FV selection heuristic to be
robust regarding parameterization. The tools are expected to be helpful in designing improved
similarity-based multimedia applications. The tools are specifically useful in cases where no
appropriate benchmark is available.

Future work involves exploring and comparing additional unsupervised metrics for FV
space discrimination power estimation. Besides the 3D FV domain considered in this Sec-
tion, we plan to apply the techniques in additional multimedia data domains.

3.2. Unsupervised visual feature space analysis 85

R-PRecision vs. Uniformity Score
(SIL FV, 3 bins)

y = -1.2338Ln(x) - 0.9825
R2 = 0.9345

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.05 0.1 0.15 0.2 0.25 0.3 0.35

R-Precision

U
ni

fo
rm

ity
 S

co
re SIL FV

Logarithmisch (SIL FV)

(a) SIL (R2 = 93%,b = 3)

Histogram Sensitivity (SIL)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Bins

R
2 Log

(b) SIL sensitivity

R-PRecision vs. Uniformity Score
(RIN FV, 7 bins)

y = -0.3544Ln(x) + 0.174
R2 = 0.7625

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.05 0.1 0.15 0.2 0.25 0.3 0.35

R-Precision

U
ni

fo
rm

ity
 S

co
re RIN FV

Logarithmisch (RIN FV)

(c) RIN (R2 = 76%,b = 7)

Histogram Sensitivity (RIN)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Bins

R
2 Log

(d) RIN sensitivity

R-PRecision vs. Uniformity Score
(SD2 FV, 3 bins)

y = -0.7328Ln(x) - 0.6797
R2 = 0.6915

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.05 0.1 0.15 0.2 0.25 0.3 0.35

R-Precision

U
ni

fo
rm

ity
 S

co
re SD2 FV

Logarithmisch (SD2 FV)

(e) SD2 (R2 = 69%,b = 3)

Histogram Sensitivity (SD2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Bins

R
2 Log

(f) SD2 sensitivity

Figure 3.13:Intra-FV space experiments for the SIL, RIN, and SD2 FV spaces in variable
dimensionality. The left column of charts gives the strongest dependencies for
selected histogram bin widths. The right column gives the correlation sensitivities
for histogram widths between 2 and 20 bins.

86 Chapter 3. Projection-based visual feature space analysis

R-PRecision vs. Uniformity Score
(DBF FV, 3 bins)

y = -0.3693Ln(x) + 0.1276
R2 = 0.6836

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

0.05 0.1 0.15 0.2 0.25 0.3 0.35

R-Precision

U
ni

fo
rm

ity
 S

co
re DBF FV

Logarithmisch (DBF FV)

(a) DBF (R2 = 68%,b = 3)

Histogram Sensitivity (DBF)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Bins

R
2 Log

(b) DBF sensitivity

R-PRecision vs. Uniformity Score
(H3D FV, 7 bins)

y = -0.1406Ln(x) + 0.7028
R2 = 0.4509

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

R-Precision

U
ni

fo
rm

ity
 S

co
re H3D FV

Logarithmisch (H3D FV)

(c) H3D (R2 = 45%,b = 7)

Histogram Sensitivity (H3D)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Bins

R
2 Log

(d) H3D sensitivity

Figure 3.14:Intra-FV space experiments for the DBF and H3D FV spaces in variable dimen-
sionality. The left column of charts gives the strongest dependencies for selected
histogram bin widths. The right column gives the correlation sensitivities for
histogram widths between 2 and 20 bins.

3.2. Unsupervised visual feature space analysis 87

Cluster Separation and Uniformity Score
(Oversampling, 10 Histogram Bins)

y = -0.3063Ln(x) + 0.9261
R2 = 0.4517

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0

Cluster Separation

U
ni

fo
rm

ity
 S

co
re

Synthetic
Logarithmisch (Synthetic)

(a) Over-sampling, 20 bins

Histogram Sensitivity (Oversampling)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Bins

R
2 Log

(b) Over-sampling sensitivity

Cluster Separation and Uniformity Score
(Equalsampling, 10 Histogram Bins)

y = -0.724Ln(x) + 2.0012
R2 = 0.8669

0.0

0.5

1.0

1.5

2.0

2.5

1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0

Cluster Separation

U
ni

fo
rm

ity
 S

co
re

Synthetic
Logarithmisch (Synthetic)

(c) Equal-sampling, 20 bins

Histogram Sensitivity (Equalsampling)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Bins

R
2 Log

(d) Equal-sampling sensitivity

Cluster Separation and Uniformity Score
(Undersampling, 10 Histogram Bins)

y = -0.4994Ln(x) + 2.0285
R2 = 0.6983

0.0

0.5

1.0

1.5

2.0

2.5

1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0

Cluster Separation

U
ni

fo
rm

ity
 S

co
re

Synthetic
Logarithmisch (Synthetic)

(e) Under-sampling, 20 bins

Histogram Sensitivity (Undersampling)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Bins

R
2 Log

(f) Under-sampling sensitivity

Figure 3.15:Dependency between uniformity score and discrimination in FV space on syn-
thetic data. (a,c,e): Log regression between rate of discrimination and uniformity
score for distance histograms of length 10. (b,d,f): Sensitivity of the dependency
for varying histogram lengths in terms ofR2.

88 Chapter 3. Projection-based visual feature space analysis

3.3 Supervised visual feature space analysis: Convex hulls
over class distributions in 2D projected space

3.3.1 Background

Huge and quickly increasing volumes of complex data are collected and archived in many
important application domains. To make sense of archives of complex data, thesimilarity
conceptis of fundamental importance as it allows the application of mining algorithms such
as clustering, classification, association, and filtering. Similarity concepts can be implemented
by mapping the elements from (possibly complex) object spaceO to an appropriate metric
spaceX in which a distance functiond(x,y) ∈ R+

0 , x,y∈ O is defined for any pair of objects
(x,y). d is interpreted as a scale for the (dis)similarity between objects. Approaches for
establishing a metric spaceX for an object spaceO are to implement the distance functiond to
operate either (a) directly on pairs of objects, or (b) on points in vector space representing the
objects. Approach (a) can be implemented by associatingd(x,y) with the costs of efficiently
transforming objectx into objecty using a set of predefined edit operations. (b) corresponds
to the Feature Vector (FV) approach which extracts characteristic numeric features from the
objects forming vectors of real-valued properties, that is, points in FV space (cf. Section
2.1.1). We understand theeffectivenessof a metric space as the degree of how accurately
distances in metric spaceX resemble similarity relationships in object spaceO. Designing
effective metric spaces for complex object spaces is difficult, as often different transformation
or feature extraction algorithms are possible, and it is a-priori not clear what the best choices
are.

Projection-basedvisualization of metric spaces is a power tool for analyzing key distrib-
ution and similarity characteristics among the elements in complex, possibly large data sets.
Many different projection methods such as Multidimensional Scaling, Principal Component
Analysis, and the Self-Organizing Map algorithm exist for projecting data from metric space
X to display spaceRk, k = 2,3 (cf. Section 3.3.2). While each projection has specific advan-
tages (and disadvantages) in preserving distances and topology, all of them require effective
visualization for the data in projected space. Most visual analysis tasks in projected space in-
clude in one way or the other the estimation of shape, size, distribution and overlap of groups
of objects. Standard visualization approaches using clouds of symbols do not scale well with
growing data set sizes.

In this Section, we present an intuitive and effective novel projection-based visualization ap-
proach for discrimination analysis and evaluation. The approach is based on the hull metaphor
for visually aggregating sets of points in projected space, and can be used with a variety of
different projection techniques.

We next briefly recall several important data analysis applications operating on metric
spaces, and discuss basic options for evaluating metric space effectiveness. We also describe
two data sets we will use in the remainder of this Section.

3.3. Supervised visual feature space analysis 89

Applications in metric space

Many data-driven applications rely on a representation of the input data in an effective met-
ric space to produce meaningful results. InContent-based Database Retrieval(cf. Section
2.1), distances between a query object and candidate elements are used to produce answer
lists sorted by increasing distance to the query object [33]. Distances in metric space are
also required forClassificationandClustering[37]. In Classification, unknown data instances
are assigned the class label of the most similar class, according to a classifier learned from
supervised training data. In Clustering, distances between data instances are used to automati-
cally find clusters of similar elements. Also, inInformation Visualization[22] often similarity
relationships among the data objects are exploited for effective image generation.

Due to the complexity associated with many data types, usually it is not clear what the most
relevant metric space to use is a-priori. E.g., in the multimedia retrieval domain an abundance
of structurally different, complementary FV extractors to chose from is evident: In the image
[93] and in the 3D model retrieval [18] domain, each several dozens of competing schemes
for mapping objects to metric space have been proposed to date.

Numeric metric space evaluation

The effectiveness of a metric space can be benchmarked if a suitable ground truth classifica-
tion (supervised information) is available. In many domains, reference benchmarks have been
designed containing data and supervised classification information. Example benchmarks are
the TREC document collection [68] for text retrieval, and the COREL images in image re-
trieval [65]. Such retrieval-oriented benchmarks can be evaluated with metrics like Precision
and Recall [6]. For benchmarking the effectiveness of classification and clustering algorithms,
e.g., the UCI Machine Learning Archive [25] provides data sets for machine learning problems
from a wealth of application domains.

Supervised benchmarking can be problematic due to the costs associated with building and
evaluating benchmarks, and also potential instability and ambiguities [65]. Therefore,unsu-
pervisedFV space benchmarking is desirable, but still a largely unsolved problem. Certain
theoretical approaches exploiting statistical information calculated in FV space exist [2, 42].
These works are of rather theoretical nature and to the best of our knowledge have not been
practically leveraged yet.

Visual metric space evaluation

Visual benchmarkingis a highly interesting option complementing the numeric benchmarking
approach. It aims to support the evaluator in understanding and explaining numeric bench-
marking results. To this end, projections to display space are popular. The benchmark objects
are mapped to and visualized in 2D (sometimes 3D) using a suitable projection technique, and
then class distribution characteristics can be analyzed. Important projection-based analysis
tasks include:

• Discovery of interesting inter-class relationships: Which classes are similar, which ones
are dissimilar?

90 Chapter 3. Projection-based visual feature space analysis

• How compact and discriminated are the classes?

• Are there problematic classes which do not separate well, possibly perturbing the dis-
crimination of other classes?

• What is the overall discrimination quality in the given metric space? That is, how good
is separation w.r.t. all classes simultaneously?

The visual analysis of such questions can help inselecting and engineeringof metric spaces
to better fit a given application. E.g., in a classification scenario, badly discriminated classes
can be identified, and the metric space can be fine-tuned in a subsequential step to improve the
identified problems.

Data sets considered

Two data sets will be used in the remainder of this Section. The first is theISOLET-5data
set [25] consisting of 1559 samples of the letters ’A’ to ’Z’ spoken out by different persons,
represented in 616-dimensional FV space. The used features consist of a combination of
different aural properties extracted from the samples. This FV space provides considerable
discrimination power, as precision results of up to 95% have been reported for appropriately
trained classifiers [25]. The other data set is thePrinceton Shape Benchmark Train Partition
(PSB-T) [81]. It comes from the 3D model retrieval domain and consists of 907 polyhedral
meshes representing real-world objects like animals, humans, vehicles, and so on (cf. Section
2.3.2). We use a subset (in total, 12) of the 3D FV extractors recently proposed [18] for
mapping the database into different FV spaces. The individual FV spaces represent geometric
properties such as curvature, volumetric- and image-based features of the models and vary in
dimensionality (tens to hundreds of dimensions) as well as in average retrieval precision [19].

The ISOLET-5 data set is already represented in a fixed metric space providing good dis-
crimination power. We use it to discuss projection-based visualization techniques and use
cases in Sections 3.3.2 and 3.3.4. The PSB-T data set is represented in many different metric
spaces. We will use this data set to apply our projection visualization forcomparative visual
FV space analysisin Section 3.3.4, and also for statistical experiments in Section 3.3.6.

The remainder of this Section is structured as follows. Section 3.3.2 recalls several popular
projection techniques, and discusses the symbol clouds projection drawing approach. Based
on this discussion, in Section 3.3.3 we motivate and define our convex hull-based visualiza-
tion technique. In Section 3.3.4, we apply the technique on two data sets, illustrating its
effectiveness in a number of important projection-based use cases, including a novel use case:
Comparative visual metric space benchmarking. In Section 3.3.5, we present experimental
evidence statistically supporting our hull-based metaphor. Finally, Section 3.3.6 summarizes
and outlines future work in the area.

3.3.2 Projection and visualization methods

In this Section, we briefly illustrate three well-known projection techniques based on Principal
Components Analysis, Multidimensional Scaling, and Self-Organizing Maps. We then point

3.3. Supervised visual feature space analysis 91

out certain shortcomings of the symbol-based drawing approach usually adopted in projection-
based visualization [28].

Principal-Component-based projections

Principal Component Analysis (PCA) [46] is a popular statistical method for summarizing
multivariate data by capturing a maximum of data variance in a small number of derived di-
mensions.Principal Components(Principal Axes) are orthonormal directional vectors given
by linear combinations of the original dimensions. They effectively form a new base sys-
tem for the data, based on a rotation of the original base system. The Principal Axes of a
d-dimensional data set are found by Eigenvector analysis of the respectived×d covariance
matrix. Sorted by respective Eigenvalue magnitudes, the Principal Axesp1, . . . , pd subse-
quently capture a maximum of remaining variance in the data. By projecting a multivariate
data set into the plane formed by the two Eigenvectors with largest Eigenvalues,p1× p2, 2D
projections expected to be useful for visual data analysis are generated. Refined PCA-based
projection algorithms have been addressed by several authors including optimization for in-
teractive projections [28] and for providing better robustness and class separation properties
[62]. Figure 3.16 (a) exemplarily shows the projection of the 616-dimensional ISOLET-5 data
set intop1× p2 space using the standard PCA. The class labels of the projected data elements
are indicated by colored letters, so called symbol-clouds.

a

b

bc cdd
ee

f

f

gg

h

h
i
i

j

jk k

l

l

m

m

n

n

o

o

pp

q

q
r r

s

s

tt

u

uv v

w
w

x

x

y

y

z

z

a

a

b

bc
cdd

e

e

f
f

g
g

h
h

i
ij j

k

k

ll
m

m

n

n

o

o

p
p

q

q

r
r

s
s

t

t

u

u

v v

w

w

x

x

y

y
z
z

aa

b

b

c
c

d

d

e

e

f

f

g
g

h

h
i

i

j
j k

k

l
l
m

m
n

n

o
o

p

p
q

q
r r

s
s

t

t

u

u

v

v w

w

x
x

y

y

z

z

aa

b
bc

c

d

de
e

f

f

gg

hh
i

ij
j

k
k

l

l

m

n

n

o

o

pp

q

q

r
r

s

s

t
t

u

u

v

v
w

w

x

x

yyzz
a

a

b

b

cc

d

d

e

e

f
f

g

g
h
h

i

i

j
j

kk

ll

m

m

n

n

o

o

p

p

q
q

rr

s

s
t t

u
u

v v

w

w

x

x

y
y

z
z

a

a

b

b

c

c

dde
e

ff

g
g

h

h i

i

j

j
k

k

l

l

m

m

n

n

oo

pp

q

q

r
r

s

s

t
t

u

u

v

v w

w

x

x

y
y

z

z
aa

b

b

c

c

d

d
ee

f

f

g

g

h h

i
i

j

j

k

k

ll

m
m

n
n

oo

pp

q
q

r

r

ss

t

t

u
u

v

v

w

w

x

x

y

y

z

z

aa

b
b

c

c

d

d
e

e

f

f

g

g

h

h

i

i

j

j k

k

l
l

m

m

nn

o
o

p

p

q

q

r

r

s s

t

t

uu

vv w

w

xx

y
yzz

a

a

b

b

c

c

d

d e

e

ff

g
g

h

h

i

ij
j

k
k

l
l

m

m
n

n

o o

pp

q
q

r

r

s

s

t t

u
u

v

v
w

w

x

x

y

y
z

z

a a

bb
ccd d

ee

f
f

g

g

h
h

i

i

j

j

k

k

l

l

m

m
n

n

o

o

p
p

q

q

r

r

s

s

t t

u u

v
v

w
w

x
x

yy

z
z

a a

bb
c

c

dd

e
e

f
f

g

g

h

h

i
i

j

j

k

k

ll

mm
nn

o

o

p p

q

q
r

r

s s

t

t u

uv

v
w

w

x

x

y
y

z
z

a
a

bb ccdd

e

e

f
f

g

g

h
h

ii

j
j

k

k

l
l

m

mn
n

o

o

p

p

qq

rr

s

s

tt

u

u

v

v

w

w

x

x

y

y

z
z

a

a

b

b

c
c

d
d

e

e

f

f

g
g

h

h

i
ij

j k
k

l

l

mm
nn

o
o

p

p

qq

r

r

s

s

t t

u
u

v

v
w

w

xx

y

y
z
z

a

a

bb

c

c

d
d e

e

f
f

g

g

h
h

i

i

j

jk
k

l

l

m
mn

n

oo

p
p

qq

r
r

ss

tt

uu

v v

ww

x

x

y

y
z

z

a
a

b b
cc
d

d
e

e

ff

g
g

h

h

i

i

j

j
kk

l
l

m
m

n

n

o

o

p

p

q

q

r r

ss

t
t

u

u

v
v

w

w

x
x

y
y

z

z

a

a

b

b
c

c

d
d

e

e

f

f

g
g

h

h

i

i

j
j

k

k

l

l

m

m

n

n

o
o

p

p

q

q

r
r

s
s

t
t

u u

vv

w
w

x

x

y

y

z

z

a
a

b b

c

c

d

d
e

e

f
f

gg

h
h

i ij

j
k

k

l

l

mmn

n

oo

p p

q

q

r
r

s
s

t

t

u
u

v

v

w

w

x

x

y
y

zz

a

a
bb

c
c

d
d

e

e

f
f

g

g

hh

i
i

jj k
k

l

l
mm

n
n

o

o

p

p

q

q

r
r

s
s

t

t

uu

v
v

w

w

x

x

y

y

z

z

a
a

b

b
cc

dd

e e

f
f

g
g

h
h

i

i

j
j

kk

l
l

m

m

n

n

o

o

p
p

q
q r

r

ss

tt

u

u

vv

w w

x
x

y
y

z z

a

a
b

b
c

c

dd

e

e

f

f

gg

h

h

i

i

j

j

kk

l

l

mmn

n

o
o

p
p

q q

r
r

ss

t
t

u
u

v v

ww

x
x

y

y

zz
aa

bbcc
d

d

e

e

f

f

g

g

h

h

i

i

j

j

kk

ll

m
mn

n

oo

pp

q

q

r
r

ss

t

t

u

u

v
v

w

w

x
x

y

y

z

z

a

a
b b

c

c

dd
e

e

f

fg

g

h

h

i

i

j
jk

k

l
l

m

mn
n

o

o

p

p

q
q

r
r

ss

t
t

u

u

vv w

w

x

x

y

y

z
z

aa

b b

c

cd
dee

f

f

g

g

h

h
i

i

j
j

k

k

l

l
m

m

n
n

o

o

p
p

qq

r

r

s

s

tt

u u

v

v

w

w

x

x

y

y
z

z

a
a

b

b

c
c

d

dee

f

f

gg

h
h

i
i

jj
k

k

ll
mm

n

n

o

o

p

p

qq

r

r

s

s

t
t

u
u

vv

w

w

x

x

y

y

z
z

aa

b
bc

c

dd
e e

f
f

g

g

hh

ii

j

j kk

l

l

m

m
nn

o

o

pp

q

q

r
r

s

s

t
t

uu

v

v
ww

x

x

y

y

zz

aa

b

b

c
c

d
d

e

e

f
f

gg

hh

ii

j j
kk

l

l

m
mnn

o

o

p p

q

q

r

r

s

s

t
t

u

u

v

v

ww

x

x

y
yz

z a

ab

b

c
c

d

d

e
e

f

f

g

g

h
h

i

i
jj

k

k

l
l

mm
nn

o

o

p

p

q

q

r
r

s

s

t t

u

u

v

v
w

w

x x

y

y

z

z

a
abb

cc
dd

e

e
ff

g g

h
h

i
i

jj

k
k

l

lm

mn
n

o
o

p
p

q

q

r

r

ss
t

t

u
u

v v

w
w

x x

y

y

z
z

a
a

b

b
c

c

dd

ee

f
f

g
g

h
h

i

i

j

j k

k

l

l m

m

n

n

o

o

p p
q

q

r

r

s
s

t

t

u

u

v
v

w

w

x
x

y

y

z

z

a

a

b
b

c

c

d
d

e

e

f
f

gg

h
h

i
i

j

j
k

k

l
l m

m
n

n

o

o

p

p

q

q
r

r

s

s

tt

uu

v

v

w

w

x

x

y y

z

z

−10 −5 0 5 10

−
5

0
5

Comp.1

C
om

p.
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

(a) Symbol plot (b) Convex hull plot

Figure 3.16:Projection of the ISOLET-5 data set to the plane spanned by the first two Principal
Components of the data set. The classes are visualized using symbol clouds (a).
Image (b) gives the convex hull-based visualization of the data at outlier removal
level ε = 1.5 with class label annotations (cf. Section 3.3.3).

92 Chapter 3. Projection-based visual feature space analysis

Multidimensional Scaling

The family of Multidimensional Scaling (MDS) [24] algorithms is another popular projection
technique. The basic idea is to find an arrangement of the data elements in a low-dimensional
Euclidean output space such that the pairwise distances in the output space resemble the pair-
wise distances in the given input space as closely as possible. Such an arrangement can be
found by diverse iterative algorithms adjusting the element positions to minimize an appropri-
ate globalstressscale measuring the disagreement of pairwise distances in input and in output
space. The MDS projection is applicable on data described in any metric space, not just in
vector space as is the case for PCA. As the positioning heuristics run the danger of finding
local optima, several MDS projections can be generated and the one with the best stress result
be chosen. MDS projections can be visualized analogous to PCA-based projections.

Self-Organizing Maps

The Self-Organizing Map (SOM) algorithm [59] (cf. also Section 3.1.1) is a combined vector
quantization and projection algorithm. It represents an input data set described in an input vec-
tor space by a set of reference vectors each uniquely located at one node on a low-dimensional
regular grid. The reference vectors are fitted to the input data by an iterative learning process,
where the nodes compete for data elements. The SOM gives a compressed representation of
the input data space, partially capturing topological properties of the input data space on the
grid [59]. 2D projections are possible by mapping the input data elements to their best match-
ing SOM reference vector each. Figure 3.17 shows a 12×9 SOM learned from the ISOLET-5
data set. We have visualized the distribution of object classes on the SOM by marking all
nodes matched by at least one data element of a given class. The left and right images show
the best matching reference vectors for the classes 13 (letter ‘N’) and 14 (letter ‘M’), respec-
tively. Marking SOM grid nodes can give an idea of the distribution of object classes along
the grid. Usually, the SOM is configured with much less nodes than input objects. This in
turn means that most SOM nodes will represent many objects, often also belonging to dif-
ferent classes. As it is not clear how to define good marking schemes indicating mixes of
many classes on low-resolution grids, we feel that grid-marking visualization is rather prob-
lematic. An alternative would be to resort to the symbol cloud approach in combination with
appropriate rearrangement of coinciding elements for all grid nodes.

Discussion of symbol-based projection visualization

In the standard approach, projected elements are visualized by plotting symbols indicating
their class membership, leading to what we like to callsymbol clouds. Throughout a given
display, the symbol cloud should support thefast, effective, and parallel perception of class
membershipby the user to facilitate analysis of class distribution characteristics. The primary
visual attributes of a symbol for indicating class membership are color and shape (label).
But both attributes are not expected to scale for large numbers of classes and elements. It
is assumed that color and shape are limited in effectively discriminating more than a certain
number of nominal values due to the human perceptual system [99]. From experiments we

3.3. Supervised visual feature space analysis 93

(a) Letter N (b) Letter M

Figure 3.17:Self-organizing maps for the ISOLET-5 data set. The reference vector nodes
marked in red are the best matching units to the objects from classes ‘N’ and
‘M’, respectively. Both classes are rather close to each other in FV space, and so
are their projections onto the SOM grid.

conclude that depending on distribution characteristics, symbol clouds are not optimal for vi-
sually analyzing more than about ten classes. Of course, if all classes are separated perfectly
then the problem is not as severe. But as (a) the number of classes increases, (b) the num-
ber of elements per class decreases, and (c) the inter-class overlap increases, analyzing class
distribution characteristics clearly gets more difficult.

Projection-based class distributions are analyzed primarily along the following characteris-
tics (cf. Section 3.3.1):

• compactnessof a given class;

• overlapof a given class with other classes;

• separationbetween different classes; and

• shapeof a given class distribution.

The correct visual estimation of these features in a given symbol cloud is difficult, and gets
worse in the data set size. Therefore, we next motivate a new approach for visualizing class
distributions with better scalability and support for visual estimation of the above mentioned
features.

3.3.3 The convex hull metaphor for projection-based visual analysis

Considering the difficulties with symbol clouds, we propose a more abstract, yet useful and
empirically supported visualization for analyzing projected class distributions: Theconvex
hull shape metaphor. We motivate this metaphor from a discrimination analysis point of view,
and show how to easily produce effective visualizations with it. The discussion is done forR2,
but extension toR3 is straightforward.

94 Chapter 3. Projection-based visual feature space analysis

Discrimination analysis with shapes

With symbol clouds, the analyst has to first form a mental model describing the shape of each
class distribution, and then estimate compactness and overlap metrics based on these shape
models. This is not an easy, but rather demanding and ambiguous task. We therefore propose
to integrate the shape modeling step into the visualization. To do so, we need to find shapes in
projected space appropriately representing the given class distributions. Including shapes in
the projection, it should be much easier to visually discriminate many different classes simply
by tracking corresponding shape boundaries. Also, quantitative estimation of compactness
(shape area), overlap (degree of inter-shape intersection), and separation (distance to other
shapes) should become more intuitive.

Many different shapes are possible describing a set of projected points. E.g., we can simply
model rectangles or circles either minimally spanning all projected elements (cf. Section
3.3.4), or centered and scaled to reflect mean and deviation statistics in the fashion of a 2D
box plot. More sophisticated, we can define models for fitting free form shapes to the element
clouds representing certain density characteristics. Having in mind that (a) projections to low-
dimensional space usually incur an information loss, and (b) representing point distributions
by shapes is an abstraction anyway, we here propose a simple and intuitive shape: The convex
hull. It is the smallest convex polygon containing all points in a finite point set. Its perimeter
is minimal for all possible enclosing polygons, and it can be computed inO(nlogn), where
n is the number of points. By experimenting with different enclosing shapes we found the
convex hull to be very effective in visualizing class distribution and overlapping relationships
among many classes simultaneously. Per se, the convex hull does not reflect local density
properties, and is sensitive to outlier elements. In our visualization, we address this by giving
visual clues on the distribution of elements by including element marks inside the hulls, and
by applying moderate outlier removal prior to rendering of the hulls. We support overlap
perception by rendering the hulls using transparency like in [58], and applying a suitable
colormap for distinguishing different classes. We will see in Sections 3.3.4 and 3.3.5 that
the convex hull metaphor is an effective, useful visualization as justified by application and
statistical results.

We note that also in [46] convex hulls were used ad-hoc for indicating class membership
of points in projected space. We state that our work contributes beyond simple hull-based
diagram drawing as we support large data set sizes via outlier removal preprocessing and
transparent layering. We also support visualization of an additional attribute in the display,
and we present statistical justification for the convex hull metaphor. All of this has not been
done previously to the best of our knowledge.

Convex hull-based class visualization

We here describe the ingredients of the convex hull-based visualization approach. Let

D =
|C|[

c=1

Dc ⊂ X

3.3. Supervised visual feature space analysis 95

denote a set of data elements in spaceX, whereX can be any metric space, or more specifically,
a high dimensional vector spaceRd, d > 3. LetD be partitioned into a setC of object classes,
where each classc∈C contains a number|c| of distinct data elements. Furthermore, let

P : X→ Rk, k = 2,3

be a suitable projection function such as PCA or MDS mapping the elements fromX to R2 or
R3. Let

T : S→ S′, S′ ⊆ S, S∈ Rk, k = 2,3

be an appropriate thinning function for removing outliers from setsSof (projected) data ele-
ments. LetH(S) be a convex hull generator such asGraham Scan[36] operating on setsSof
points in projected space. Finally, letCM be an array of at least|C| distinct, appropriate colors
(colormap). An implementation for drawing convex hull-based projections is then given in
Algorithm 1.

We note that in general, the class partitioning schemeC must not necessarily be obtained
using supervised information. Often, such a partitioning can be effectively obtained by an
appropriate clustering preprocessing step.

Input : Data setD ∈ X, Projection algorithmP, convex hull generatorH, thinning function
T, color mapCM.

1: perform the projection:Dp← P(D)
2: clear the display
3: /* loop all classes */
4: for c∈C do
5: perform outlier removal:T p

c ← T(Dp
c)

6: /* loop remaining class members */
7: for o∈ T p

c do
8: marko in the display
9: end for

10: find convex hull:H p
c ← H(T p

c)
11: fill H p

c using colorCM[c] with alpha blending
12: end for

Output : Display of convex hulls over projected and thinned class distributions.

Algorithm 1: Hull-based class visualization

3.3.4 Application

We now apply our convex-hull based projection visualization approach on two data sets,
demonstrating the usefulness of the technique for visual analysis in a number of use cases.

96 Chapter 3. Projection-based visual feature space analysis

Global visual discrimination analysis

(a) ε = 3.5 (b) ε = 3.0 (c) ε = 2.5

(d) ε = 2.0 (e) ε = 1.5 (f) ε = 1.0

Figure 3.18:Convex hulls over PCA-based 2D projections of the ISOLET-5 data set. From
top-left to bottom-right, outlier removal is done more aggressive. The convex
hull visualization metaphor is an intuitive and effective tool supporting a number
of important projection-based analysis tasks. Supported by application examples
and statistical results, we advocate it over the symbol-based projection approach.

Figure 3.18 shows the application of the convex hull visualization on the ISOLET-5 data
set. We projected the 1559 616-dimensional data elements onto thep1× p2 plane obtained
by PCA analysis of the data set (the first three principal axes explain 26%, 9%, and 6% of
overall data variance, respectively). We then thinned each class cloud by removing all ele-
ments more distant to their respective class centroid than a multipleε of class-specific stan-
dard deviation, as measured in projected space. Specifically, we applied thinning thresholds
ε = {3.5, 3.0, 2.5, 2.0, 1.5 1.0} retaining 92%, 85% , 74%, 59%, 40% and 17% of the orig-
inal data elements, respectively. We finally rendered the convex hulls using selected colors
with a 50% transparency setting. The polygon colors were selected by equal-spaced sampling
of therainbowcolormap in order to obtain discriminating colors for each polygon.

From the display, typical discrimination characteristics in the ISOLET-5 data set can be
easily read (cf. Figure 3.16 (b) for a larger and annotated Figure). The convex hulls al-
low quick perception of a number of overlapping hull clusters representing e.g., letter groups
{BCDEGPTVZ}, {AJHK}, and{FSX}. Distinguishing of classes even with multiple over-
laps is nicely supported by the transparently filled convex hulls. Note that the same data is
also visualized in Figure 3.16 (a) using the symbol clouds approach. Clearly, the convex hull

3.3. Supervised visual feature space analysis 97

visualization is more effective in indicating compactness, separation, and overlapping rela-
tionships present among the projected data. In our implementation, the class labels can either
be read from the colormap legend included in the visualization, or via mouse-over functional-
ity in the visualization. In addition to analyzing static projections, the user can also animate
the display by cycling though intervals of outlier removal thresholds to better understand the
compactness characteristics of the class distributions. E.g., by going from moderate to more
aggressive thinning, the hulls are shrunk in size. By comparing the different ‘shrink patterns’,
the user can easily get an assessment of the compactness and outlier characteristics of the
projected classes.

Class contrast plots

The convex hull visualization is useful for contrasting individual classes which might be spe-
cially important in an application. Figure 3.19 shows the convex hull-based projections of
the PSB-T benchmark classes in two different FV spaces. We have outlined non-filled hulls of
classes No. 23 and 48. The classes’ discrimination benchmark scores in the two FV spaces are
roughly converse to each other (cf. Table 3.4): While the “3DDFT” FV space provides a good
discrimination score of 60% for class 48 (3D models of shelves objects), it produces a low
score for class 23 (3D models of swords objects). The converse situation holds for the “DBF”
FV space. These benchmark scores can be visually confirmed by the convex hull diagrams.
In the projected “3DDFT” FV space (Figure 3.19 (a)) class 48 is quite compact and shows
little overlap with neighboring classes. On the other hand, class 23 is much less compact with
significant overlap with neighboring classes. Roughly the opposite situation is given for the
two classes in the “DBF” FV space (cf. Figure 3.19 (b)).

Besides visually explaining class-specific benchmark scores, contrast plots are helpful in
analyzing the root causes of class-based discrimination quality: Which other classes share
overlap with a given class? How many different classes interfere? Results of such analysis
can be fed back into the metric space design process for better supporting problematic classes.

Table 3.4:Discrimination precision benchmark scores for PSB-T classes 23 and 48 under
the “DBF” and “3DDFT” FV extractors, respectively. Clearly, higher benchmark
scores correlate to more compact and less overlapped class hulls in Figure 3.19.

Class-ID Name Size 3DDFT-Score DBF-Score
23 Swords 15 18% 64%
48 Shelves 13 60% 30%

Integrating additional information

Up to special cases, the projectionsP : X→Rk, k = 2,3 incur a loss of information regarding
preservation of topology and distances. While this is an inherent problem of projecting to
lower-dimensional spaces, we can enrich our visualization by additional clues on lost or sup-
pressed information, making the projected display more complete regarding the original data

98 Chapter 3. Projection-based visual feature space analysis

(a) 3DDFT (b) DBF

Figure 3.19:Contrasting the discrimination of two PSB-T object classes in the “3DDFT” (a)
and “DBF” (b) FV spaces. The plots allow visual verification of numeric bench-
mark scores and identification of potentially problematic classes for fine-tuning
the respective metric spaces.

space. With PCA-based projections, a natural extension of the (2D) display is to include the
third principal axisp3. It explains the maximal portion of remaining data variance among any
of the remaining principal axes. Specifically, we propose integrating thep3 information by
first performing theVoronoidecomposition of a given convex hull based on its class elements.
Then, each Voronoi cell indicates the respective elements’sp3 value by transparently filling
the cell using a (secondary) colormap defined linearly along thep3 axis spread[pmin

3 , pmax
3].

Figure 3.20 shows the projected FV space from Figure 3.19 (a). The convex hulls of classes
23 and 48 are Voronoi tessellated and thep3 distribution is visualized, allowing further visual
exploration of class-specific discrimination differences. For the already compact convex hull
of class 48, we see that the elements are also compactly located along thep3 axis. Specifi-
cally, we perceive that thep3 components of the elements (a) are similar to each other (the
cells are colored-coded homogeneously) and (b) positioned around a middle-groundp3 value
(the cells are color-coded in white to pale shades; cf. the bipolar color scale included in Figure
3.20). Conversely, class 23 not only has a less compact convex hull with significant overlap
in p1× p2 space, but the element’sp3 components show significant variance. This is clear as
the Voronoi cells are color-coded rather heterogeneously, indicating significant spread along
p3 towards the lower[pmin

3 , pmax
3] interval.

Based on the concrete projectionP employed, other additional metrics are candidates for in-
clusion in the display. Consider the MDS projection. There is nop3 axis but instead we could
visualize an appropriate local measure of projection quality, e.g., local MDS stress values. We
note that Voronoi-based color-coding potentially reduces the scalability of the display w.r.t.
the number of hulls a user can effectively distinguish visually, as the additional cell coloring
interferes with the transparency-based indication of overlapping hull regions. We therefore
advocate the selective application of cell-based visual hints for a limited number of classes

3.3. Supervised visual feature space analysis 99

Figure 3.20:Visualizing the element distribution along the third principal axisp3 for selected
classes by a color-coded Voronoi partition of respective convex hulls (cf. Figure
3.19 (a)). In the data set, the Principal Componentsp1, p2 andp3 together explain
29%+12%+7%= 48% of total variance.

simultaneously. This can be controlled by mouse-over functionality, or by automatic determi-
nation of a subset of classes showing the most interesting patterns w.r.t. the selected metric.

Comparative FV space analysis

In many domains it is not clear how to best design appropriate metric spaces, but often, dif-
ferent choices are possible for a given data type and application. Then, benchmarking assists
in identification of the best choices. Convex hull-based projected space visualization is well
suited for comparative visual benchmarking: It provides compact assessments of the discrim-
ination power we can expect for a benchmark in competing metric spaces. Figure 3.21 shows
the convex hulls over all PCA-projected PSB-T benchmark classes consisting of at least 5 ele-
ments after outlier removal atε = 2.0, for a number of different metric spaces. The images are
sorted by increasingly better benchmark scores. It is interesting to correlate visual features of
the convex hull displays with respective benchmark scores: The more compact, less overlap-

100 Chapter 3. Projection-based visual feature space analysis

ping, and better separated the convex hulls are, the higher the respective numeric benchmark
results get. Besides purely interactive FV space evaluation, we can also numerically capture
such hull distribution features for automatic evaluation of visually motivated discrimination
benchmarks (cf. Section 3.3.5).

For comparison, we also visualized the PSB-T metric spaces using minimum bounding
discs and rectangles to visually aggregate the class distributions. Figure 3.22 shows the last
three projections from Figure 3.21 using those metaphors (cf. Figure A.11 in the Appendix
for all six projected spaces simultaneously.). While the three given metric spaces provide
the most compact and well discriminated projections in the example, the displays are still
highly cluttered, making it more difficult to visually distinguish individual class distributions,
compared to the convex hull approach. This is due to the fact that minimal discs and rectangles
tend tooveremphasizethe size of the distributions, and also, the respective shape boundaries
by definition are more homogeneous, therefore less visually discriminating to the user.

(a) COR (16%) (b) SD2 (18%) (c) H3D (20%)

(d) CPX (27%) (e) VOX (31%) (f) DSR (40%)

Figure 3.21:Convex hulls over the PCA-projection of the PSB-T benchmark classes after out-
lier removal, obtained from 6 different FV spaces. The images are sorted by
increasing average benchmark scores (indicated in brackets), indicating better
discrimination in original FV space. Visual attributes of the convex hulls in pro-
jected space such ascompactness, spreadandoverlapclearly correlate with the
observed benchmark scores.

3.3. Supervised visual feature space analysis 101

(a) CPX (27%) (b) VOX (31%) (c) DSR (40%)

(d) CPX (27%) (e) VOX (31%) (f) DSR (40%)

Figure 3.22:The last three projections from in Figure 3.21, using minimum bounding discs
(top row) and rectangles (bottom row). The displays are much more cluttered,
making it more difficult to visually distinguish individual class distributions.

3.3.5 Evaluation

In Sections 3.3.3 and 3.3.4, we have motivated and applied the convex hull metaphor for
visual discrimination analysis. The underlying assumption was that compactness, overlap, and
cluster separation metrics visually obtained from convex hulls formed over the class elements
in projected spaceRk, k = 2,3 may be used to assess the class discrimination quality in metric
spaceX. The justification of the convex hull approach depends on the correctness of this
assumption, which in turn depends on:

(a) The fidelity by which the projectionP preserves distance and topological relationships
among the data elements in metric spaceX; and

(b) The effectiveness of the convex hull shape in aggregating class distribution characteris-
tics in projected space.

We here cannot discuss factor (a) in light of the wealth of projection algorithms available, but
stick to the PCA-based projection, noting that it is a linear projection preserving a maximum
of variance information in projected space. Concerning factor (b), we regard the application
discussion in Section 3.3.4 as empirical evidence supporting the usefulness of the convex
hull approach. We also gathered statistical evidence supporting the convex hull metaphor by
correlating benchmark-based discrimination metrics obtained in original space with certain
discrimination metrics defined over convex hulls in projected space. Specifically, we defined:

102 Chapter 3. Projection-based visual feature space analysis

• Relative area metric: The area (size) of a convex convex hull as the fraction of total
projection space covered by the hull. We evaluate this metric by the number of pixels a
given hull covers in the display, among all display pixels.

• Overlap metric: The degree of overlap of a given convex hull with other hulls in the
display. We evaluate this metric by averaging the number of hulls intersected by the
given hull, for every pixel of the given hull in the display.

• Silhouette metric: This metric corresponds to the silhouette coefficient as defined in [48]
of a given hull. Briefly, this is a distance-based measure rating the average separation of
the hull members from their nearest neighbor hull.

We scaled these metrics such that larger values indicate the hulls to be larger, more overlap-
ping, and less separating - that is, less discriminating according to common visual interpre-
tation. We then performed regression experiments using these hull metrics as regressors to
explain benchmark-based discrimination scores obtained under the PSB-T benchmark data set
represented in 12 different FV spaces. We set up two different regression experiments:

• Intra-FV experiments. We fix the FV space and explain the class-specific benchmark
scores by hull-based compactness metrics along all benchmark classes in the given FV
space.

• Inter-FV experiments. We fix the benchmark class and explain the class specific bench-
mark scores by hull-based compactness metrics along all FV spaces for the given bench-
mark class.

The compactness metrics were calculated from the convex hulls of all benchmark classes
which after medium outlier removal contained at least 4 elements. The projected space con-
sisted of a 800×800 pixel display. We first give exemplary regression results, before we dis-
cuss sensitivity aspects. The results indicate a clear dependency between convex hull-based
compactness metrics in projected space on one hand, and discrimination benchmark scores on
the other hand.

Exemplary regression results

Figure 3.23 shows exemplary regression results obtained when setting outlier removal level
ε = 1.5 (see below for a sensitivity analysis). Chart (a) gives anintra-FV analysis. It plots
the compactness scores of the convex hulls of the PSB-T classes in the projected SD2 FV
space against the R-precision benchmark score for the respective classes in original FV space.
The compactness scores were calculated by evaluating and multiplying the area, overlap, and
silhouette metrics as defined above, for each of the convex hulls in the projected SD2 FV
space. We observe a logarithm dependency of both metrics atR2 = 48%. While this is not
a perfect dependency, the metrics clearly correlate: The lower the hull compactness scores
(indicating higher hull compactness/separation), the higher the benchmarked discrimination
scores are.

3.3. Supervised visual feature space analysis 103

Figure 3.23 (b) shows an exemplaryinter-FV regression. We have plotted the combined
regressor against respective R-precision scores for the benchmark class 41, along all FV spaces
for which there remained at least 4 projected class members after outlier removal. We verify
the dependency atR2 = 87%. This represents a significant dependency between the visual and
the numeric discrimination power metrics for this class and parameter setting, which again is
evidence for the practicability of the convex hull-based visual discrimination analysis.

Intra-FV Regression

y = -0.0665Ln(x) + 0.6078
R2 = 0.4846

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

(Area * Overlap * Silhouette)

R
-p

re
ci

si
on SD2 FV

Log

(a) Intra-FV analysis

Inter-FV Regression

y = -0.0733Ln(x) + 0.8433
R2 = 0.8746

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

(Area * Overlap * Silhouette)

R
-p

re
ci

si
on Class 41

Log

(b) Inter-FV analysis

Figure 3.23:Regression between compactness of convex hulls in projected space, and respec-
tive benchmark discrimination scores calculated in original space. Both metrics
significantly correlate in the expected sense, substantiating the usability of the
convex hull approach.

Intra-FV regression sensitivities

We performed a series of regression experiments to understand the sensitivity of the relation-
ship between benchmark scores in FV space and compactness of convex hulls in projected
space. First, we considered the intra-FV analysis setup. For each of the 12 FV-spaces, we
report theR2 results of the logarithm regression between the hull compactness metrics and
R-precision scores, for all benchmark classes which after outlier removal consisted of at least
4 elements. We varied the outlier removal thresholdε between 1.5 and 4.0. Charts (a) to (c)
in Figure 3.24 report theR2 results for the overlap, the area, and the silhouette regressors,
respectively. We observe that the overlap regressor (chart a) yields the lowest dependency
strength aroundR2 = 10% for most of the FV spaces. An exception are the 3DDFT and VOX
FV spaces, whereR2 is around 15%. The area (chart b) regressor delivers better dependencies
roughly between 20% and 40%R2 for the different FV spaces. Similar dependency strength is
found for the silhouette regressor (chart c). For all regressors, the dependency strength seems
to be rather robust in terms of theε setting.

We also formed hybrid regressors by combining the individual compactness metrics. To this
end, we normalized and multiplied individual compactness metrics. The combined regressors
combine information about hull compactness (area metric) and separation (overlap and sil-
houette metrics), and are expected to add stability to the regression. Chart (d) in in Figure

104 Chapter 3. Projection-based visual feature space analysis

3.24 reports the results when the area and silhouette regressors are combined. The respective
R2 results are significantly improved over each of the single regressors, yielding around 50%
R2 for a majority of the FV spaces. An even better improvement is observed when all three
regressors are combined (chart e). This is interesting, as here also the overlap regressor is
included, which on its own has only low explanation power (chart a). We also observe that
again, the dependencies are rather robust w.r.t. the differentε settings. We finally observe
that the dependency strengths are rather similar for the individual FV spaces, with the excep-
tions of the PMOM and COR FV spaces. In these FV spaces, the dependencies are the lowest
among all FV spaces and experiment settings. Also, the PMOM and COR FV spaces yield the
lowest benchmarked discrimination power in original space.

Inter-FV regression sensitivities

We also looked at the correlation strengths for each of the individual benchmark classes of the
PSB-T database (inter-FV correlation experiments). Having in mind the results from Figure
3.24, we fixedε = 1.5 for the experiment series, and we removed the PMOM FV space from
the analysis, as this space showed the lowest overall dependency in the regression. As relevant
classes we chose those for which at the given outlier removal threshold there were at least 4
FV spaces for which in the respective class projections there remained at least 4 convex hull
members. We requested at least 4 hull members per class to stabilize the hull formation. We
note that specifically, for hulls formed over fewer than 3 points, the shapes would degenerate to
lines or points, rendering the area-based metrics meaningless. We also requested 4 FV spaces
to have at least those many regression points, noting that for fewer points the regression easily
degenerates. Consider specifically, that for just two regression points we can always perfectly
fit a linear or logarithm function. Applying these restrictions, of the 90 classes defined in the
PSB-T benchmark, we retained 44 benchmark classes.

Figure 3.25 reports theR2 results of the log regression analysis for each of the qualified
benchmark classes along the remaining 11 FV spaces. Charts (a), (b), and (c) report the re-
gression results for the overlap, the area, and the silhouette hull metrics along the different
classes, respectively. The results show a rather mixed pattern. For some classes and regres-
sors, there is very tight correlation of up to 80% ofR2 or more, while for other classes and
regressors, there is little or no predictive power of the regressors. There is no regressor which
delivers best predictive power for all of the classes. On average over all benchmark classes,
the regressors perform quite similar: the overlap, area, and silhouette metrics deliver 24%,
26%, and 25% ofR2, respectively.

We also considered combined regressors. Charts (d), (e), and (f) report theR2 results ob-
tained when forming two combinations of the individual metrics using multiplication, like
done above for the intra-FV analysis. We firstly observe that the regression results stabilize
along the benchmark classes, and that both combinations yield comparable regression power
given the benchmark class. Secondly, the combined regressors possess more predictive power
than each of the three metrics on their own. On average over all classes, combining the area
and silhouette (area, silhouette, and overlap) metrics yields 29%(33%) of R2.

3.3. Supervised visual feature space analysis 105

Overlap ~ R-precision

0

10

20

30

40

50

60

70

PMOM COR SD2 H3D GRAY RIN 3DDFT CPX SIL DBF VOX DSR

FV

R
^2

1.5
2.0
3.0
4.0

(a) overlap regressor

Relative Area ~ R-precision

0

10

20

30

40

50

60

70

PMOM COR SD2 H3D GRAY RIN 3DDFT CPX SIL DBF VOX DSR

FV

R
^2

1.5
2.0
3.0
4.0

(b) relative area regressor

Silhoeutte Coefficient ~ R-precision

0

10

20

30

40

50

60

70

PMOM COR SD2 H3D GRAY RIN 3DDFT CPX SIL DBF VOX DSR

FV

R
^2

1.5
2.0
3.0
4.0

(c) silhouette coefficient regressor

(Area * Silhoeutte) ~ R-precision

0

10

20

30

40

50

60

70

PMOM COR SD2 H3D GRAY RIN 3DDFT CPX SIL DBF VOX DSR

FV

R
^2

1.5
2.0
3.0
4.0

(d) combined regressor (area*sil)

(Area * Silhoeutte * Overlap) ~ R-precision

0

10

20

30

40

50

60

70

PMOM COR SD2 H3D GRAY RIN 3DDFT CPX SIL DBF VOX DSR

FV

R
^2

1.5
2.0
3.0
4.0

(e) combined regressor (area*sil*Overlap)

Figure 3.24:R2 results of the log regression for the different FV spaces (intra-FV analysis), for
single (a,b,c) and combined (d,e) regressors. Note that the FV spaces are sorted
by increasing discrimination benchmark scores.

106 Chapter 3. Projection-based visual feature space analysis

Single Regressors (1)

0

10

20

30

40

50

60

70

80

90

100

2 3 4 6 7 8 12 13 14 23 25 26 31 33 35

ClassID

R
^2

Overlap
Area
Silhouette

(a) Single regressors (1)

Single Regressors (2)

0

10

20

30

40

50

60

70

80

90

100

36 37 38 40 41 43 45 46 48 49 50 52 53 54 55

ClassID

R
^2

Overlap
Area
Silhouette

(b) Single regressors (2)

Single Regressors (3)

0

10

20

30

40

50

60

70

80

90

100

56 57 60 61 65 66 67 68 72 73 74 81 82 84

ClassID

R
^2

Overlap
Area
Silhouette

(c) Single regressors (3)

Combined Regressors (1)

0

10

20

30

40

50

60

70

80

90

100

2 3 4 6 7 8 12 13 14 23 25 26 31 33 35

ClassID

R
^2 Area*Sil

Area*Sil*Overlap

(d) Combined regressors (1)

Combined Regressors (2)

0

10

20

30

40

50

60

70

80

90

100

36 37 38 40 41 43 45 46 48 49 50 52 53 54 55

ClassID

R
^2 Area*Sil

Area*Sil*Overlap

(e) Combined regressors (2)

Combined Regressors (3)

0

10

20

30

40

50

60

70

80

90

100

56 57 60 61 65 66 67 68 72 73 74 81 82 84

ClassID

R
^2 Area*Sil

Area*Sil*Overlap

(f) Combined regressors (3)

Figure 3.25:R2 results of the log regression for the individual benchmark classes (inter-FV
analysis), for single (a,b,c) and combined (d,e,f) regressors.

3.3. Supervised visual feature space analysis 107

Summary

To summarize this evaluation, we obtained good to quite strong correlation between the de-
fined compactness and separation metrics of convex hulls in projected space, and discrimi-
nation benchmark scores in original space. For appropriate parameter settings,R2 results of
50% and above are observed. Of course there is some sensitivity involved in such experi-
ments. Varying regressor model, benchmark classes, and outlier removal levels, the predictive
power varied among the classes and FV spaces. The strongest dependencies resulted when
employing a combined regressor model with medium outlier removal setting. We conclude
that there exists a substantial correlation between visual compactness and numeric benchmark
scores, at least for the considered PSB-T data and the PCA projection as used in this evalua-
tion. Considering that projection of high-dimensional FV space to 2D suppresses information,
and that the convex hull metaphor was motivated visually rather than theoretically, this in an
interesting result. It underscores the practicability of convex hull based projections for visual
discrimination analysis. We finally note that by designing convex hull discrimination metrics,
we are effectively developing visually motivated, at the same time numerically computable
benchmarks. We believe such “benchmarking design” is an additional interesting use case of
the convex hull visualization.

3.3.6 Conclusions

In this Section, we have motivated, practically applied, and statistically supported an intuitive,
simple, yet effective approach for supporting important projection-based visual analysis tasks.
The convex hull metaphor visually aggregates element classes in projected space, allowing
to assess distribution metrics such as compactness, shape, separation and overlap among data
sets consisting of classified objects. The metaphor can be combined with any 2D projection
technique and supports visual analysis tasks such as discrimination analysis, visual bench-
marking, metric space engineering, and database exploration. We believe projection-based
visual analysis is a power tool for handling increasing volumes of complex data becoming
available, which often are represented in multiple metric spaces.

Future work involves exploring further projection-based data analysis use cases, and exper-
imenting with additional projection algorithms. We plan to design more complex metaphors
considering free-form shapes and/or the density of points in projected space. A starting point
for the latter idea could be to adapt the approach presented in [91]. Comparing such advanced
metaphors to the plain convex hull should be interesting.

4 Space-filling visual object space
analysis

Contents
4.1 A survey of TreeMap-based layout algorithms110

4.1.1 Visualization of hierarchies with TreeMaps110

4.1.2 Desirable properties of TreeMap algorithms112

4.1.3 Existing TreeMap variants .113

4.1.4 Analysis and proposed TreeMap algorithms117

4.2 Importance-driven space-filling layouts for time series data120

4.2.1 Importance relationships on time series and layout requirements . .120

4.2.2 Formal problem definition .122

4.2.3 Splitting mask selection and splitting policies124

4.2.4 ID-Map algorithm .126

4.2.5 Application .128

4.2.6 Evaluation .130

4.2.7 Conclusions .136

4.3 Regular layout generation with Grid TreeMaps 139

4.3.1 Continuous and Quantum TreeMap algorithms139

4.3.2 Grid TreeMap algorithm .142

4.3.3 Application .143

4.3.4 Evaluation .148

4.3.5 Conclusions .151

In Chapter 3 of this thesis, we have discussed several approaches for visual analysis offea-
ture spaceor metric space-based properties in multimedia databases aiming at summarizing
database content (cf. Section 3.1) as well as estimating discrimination power in feature or met-
ric space (cf. Sections 3.2 and 3.3). While the presented techniques are helpful for analyzing
feature and metric-space properties, they rely on a high degree of abstraction of the database
content: They provide aggregated or projected representations of the data and rely on FV or
metric space representations of the multimedia content. Often, visualization solutions less
abstract are required, mostly of course when the content has to be studied at theobject-level

110 Chapter 4. Space-filling visual object space analysis

which is the case e.g., for database browsing, for inspection of retrieval or clustering results,
and for presentation of selected database content.

A requirement for object level visualization often encountered is a high degree of regularity
when visualizing collections of multimedia objects. Consider e.g., the visualization of collec-
tions of 3D models (displayed by thumbnail images) or time series (displayed by bar- or line
charts). Clearly, to support visual comparability between the objects, it is desirable to provide
each object with the same amount and shape of display space when laying out the elements. In
this Chapter, motivated by the popular TreeMap [82] family of layout algorithms, we consider
layout algorithms providing regularity properties not present in the original TreeMap algo-
rithm. Our algorithms try to be space-efficient, reflect hierarchic and ordering relationships
present among the data elements, and target good regularity with respect to size, aspect ratio,
and position of the resulting display partitions. The methods are discussed in the context of
comparativetime seriesvisualization, but are applicable on a variety of multimedia data types
such as images, and 3D models, among others. In Section 4.1, we survey the main TreeMap
algorithms and variants. In Section 4.2, we introduce theID-Map layout algorithm based on
the idea of not doing continuous splitting of display space, but rather mapping data subsets
into predefined partitions of display space using so-called splitting masks. Then, in Section
4.3, we revisit theQuantumTreeMap by Shneiderman et al, and compare it against variants
of theGrid TreeMap algorithm we introduce in that Section. The algorithms are discussed in
terms of application examples on real data, as well as evaluation of diverse error metrics in
batch experiments.

Parts of this Chapter appeared in [26, 77].

4.1 A survey of TreeMap-based layout algorithms

4.1.1 Visualization of hierarchies with TreeMaps

The TreeMap family of layout algorithms is an Information Visualization success story. Pro-
posed originally by Shneiderman in the early 90s [82], its suitability for the visualization
of large, hierarchically structured data sets has been quickly recognized. The technique has
been successfully applied in many different problem domains such as file system manage-
ment, stock market monitoring, newsgroups monitoring, electorial results presentation, and
biological data, among others [5]. Also, several shortcomings have been identified in the orig-
inal algorithm, leading to a number of improved algorithms addressing certain layout goals.
TreeMaps continue to be a highly interesting topic in the InfoVis community: At the 2005
IEEE Symposium on Information Visualization, five accepted papers focussed on TreeMaps,
and experts in the field believe that the potential for improvement is not yet exhausted [90].

TreeMaps are about visualization of large,hierarchically structured data sets, i.e., data
where all the data elements can be regarded as leaves in a tree data structure, with the tree
encoding hierarchical relationships. There exist well-known techniques to visualize hierar-
chic data such as indented node lists, node-link diagrams, or so-called Venn diagrams (cf.
Figure 4.1 (a) to (c)). While such techniques are rather familiar and allow the user to form

4.1. A survey of TreeMap-based layout algorithms 111

a mental model of the hierarchic relationships present in the data, these techniques do not
scale well with data set size, as a large fraction of the display space consists of background
[82]. Desirable are techniques with higher space efficiency, allowing for better utilization of
limited display space, at the same time supporting important analysis tasks such as reading
of hierarchic relationships and comparing of data elements. The original TreeMap algorithm
corresponds to a rectangular Venn diagram (cf. Figure 4.1 (d)), where all data subsets on a
given hierarchical level are allocated rectangular display space in sequence to each other. By
alternating the orientation of the data subset sequence layouts from one hierarchical level to
the other between horizontal and vertical layout, and also minimizing the space allocated to
the boundaries drawn around the data partitions, the TreeMap layout is obtained (cf. Figure
4.1 (e)).

Root

A

B

C

A1
A2

B2

B1

B3

C1

B11

B12

B31
B32

(a)

Root

A B C

A1 A2 B2B1 B3 C1

B11 B12 B31 B32

(b)

A1 A2

B2

C1

B11 B12

B31 B32

Root

A

B
B1

B3

(c)

A

A1

A2

B1

B2

B11 B12

B3B31 B32

B C1

(d)

A1

A2

B11 B12

B2

B31 B32

C1

(e)

Figure 4.1:Visualization of hierarchies using familiar indented lists (a), node-link diagrams
(b), and Venn diagrams (c). The classical TreeMap displays (e) can be regarded
as a rectangular Venn diagram (d) with minimal border indention. Illustrations
adapted from [83].

In the standard implementation [82], the algorithm recursively descends a given data hierar-
chy in top-down direction, allocating data subsets to display partitions by placing horizontal or
vertical split lines in proportion to weights obtained by aggregating numeric properties under-
lying the data partitions. Such weights may include the number of elements, the sum of some
quantity given by the data elements, or other explicitly or implicitly given numeric features
of the data. A construction example is given in Section 4.3.1. The resulting display is space-

112 Chapter 4. Space-filling visual object space analysis

filling and visualizes the data elements as well as the hierarchical relationships via rectangular
containment.

The standard TreeMap algorithm has been recognized for its effectiveness in communicat-
ing element distributions in large data sets. Van Wijk et al stated in [11] that “TreeMaps are
efficient and compact displays, which are particularly effective to show the size of the final
elements in the structure.” On the other hand, the effectiveness (speed and accuracy) of per-
ception of hierarchic relationships might not be as good as in traditional approaches due to the
fact that hierarchy is visually supported with just a minimal amount of display resources, e.g.,
split lines of just a few pixels width. The standard TreeMap algorithm provides the straight
split line property (cf. also Section 4.3.2) which in theory allows the user to determine the
hierarchic structure of the data set by visually parsing the display. But parsing the display by
tracking the split line structure top-down requires some effort, at least for complex hierarchies.

Several other drawbacks of the TreeMap approach have been identified. The original al-
gorithm lays out the data in the order as it is encoded in the tree structure, and places split
lines in strict proportion to sums of underlying weights. Thereby, the shape (aspect ratio) of
the resulting display partitions is not considered, which in practice results in the occurrence
of arbitrary aspect ratios. Specifically, long and thin (skinny) rectangles make it difficult to
find, to compare, or to select respective data rectangles, and also, such rectangles are difficult
to label appropriately [9, 94]. Also, by visualizing the data tree without reorganization, the
resulting displays show discontinuous behavior if the underlying data weights change. This
means that data elements will change their position within the display based on updates to
the weights, which make the standard TreeMap inappropriate for visualization of dynamically
updated content [9]. Several improvements have been made to the original TreeMap algorithm
addressing such drawbacks, which will be discussed in the next Sections.

4.1.2 Desirable properties of TreeMap algorithms

When comparing different TreeMap algorithm variants, we can see that they try to satisfy
certain (usually, contradictory) layout objectives which have been identified as desirable. By
design of the respective TreeMap variants, the objectives are either guaranteed, optimized,
or ignored. We next sketch the main layout objectives traditionally considered by TreeMap
algorithms.

Space-Efficiency. Space efficiency (the utilization of display space with data elements) is
the main objective in TreeMap layouts. Most TreeMap algorithms optimize this criteria by
minimizing the amount of display space allocated to visualization of hierarchic relationships
(e.g., rectangle indention and width of split lines).

Overlap. Besides space efficiency, it is commonly accepted in TreeMap algorithms to pro-
duce displays where display partitions do not overlap each other.

Hierarchy. The display should encode the hierarchic structure of the data set which is vi-
sualized. It should be possible for the user to easily identify the hierarchic relationships

4.1. A survey of TreeMap-based layout algorithms 113

present among groups of elements throughout the data set. The hierarchy should be effec-
tively (quickly and correctly) perceivable by the user. In TreeMaps, hierarchy is encoded
by nesting data partitions inside non-overlapping, rectangular (or differently shaped) display
partitions.

Proportionality of display partitions. The linear proportionality between display partition
area and a selected quantitative property of the data elements contained therein, such as vol-
ume, amount, sum or the like, is considered important by many TreeMap designers. Pro-
portionality provides that individual data elements as well as groups of elements (given the
non-overlap property) can be quantitatively compared with each other by considering the area
of the respective display partitions.

Ordering of elements. If the data set also contains an ordering among the data (leaf level
or the inner levels), then this ordering should also be reflected by the position of the display
partition in the map. The standard TreeMap preserves a given order, as it lays out the elements
on a given hierarchy level sequentially in the given orientation, that is, either in horizontal
or vertical stripes of display space. Other algorithms which perform resorting of elements to
optimize the display typically violate the ordering goal.

Aspect ratios. Several algorithms consider the aspect ratios of the resulting rectangular
display partitions. The reason is to avoid or minimize the occurrence of arbitrary rectangle
shapes, e.g., long and skinny rectangles, which would be difficult to select, compare or label,
or otherwise inappropriate to accommodate specialized content. Aspect ratios can be consid-
ered for rectangles just on the leaf level, or both on leaf and inner tree levels.

Computational complexity. A property typically desired in TreeMap layout generation is
the efficiency of computation. TreeMap algorithms are usually designed for interactive appli-
cations, and consequentially implement computationally light optimization (if any). Typically,
heuristics and greedy optimizers are used. To the best of our knowledge, there are only few
exceptions of TreeMap techniques which employ computationally heavy optimization. Brute-
force exhaustive searching in the layout space was used in [100]. The specific scenario there
considered the layout of stock market data, which due to the limited size of the data set made it
possible to do exhaustive search. Another exception is one technique proposed in [40] which
employs genetic algorithm-based optimization for layout of geo-related data. This algorithm
was designed for offline layout generation.

4.1.3 Existing TreeMap variants

Two main lines of improvement to the original TreeMap algorithm have been pursued in the
literature. One line of work considers improving the shapes of the display partitions in order
to better support comparability and interaction with leaf elements. The other line considers
supporting the easy perception of hierarchy structure by improved rendering methods, e.g.,
using shading [92], or exploring non-rectangular display tessellation schemes such as circles

114 Chapter 4. Space-filling visual object space analysis

[74] or Voronoi cells [7]. We here cover algorithms of the first line of research and operating
on rectangles, as our work also focuses on optimizing rectangle shapes for supporting the
display of regularity-requiring content inside the rectangles (cf. Sections 4.2 and 4.3).

We classify the main body of TreeMap algorithms based on how the splitting decisions are
found. We consider two dimensions to this end.

• The first dimension refers to how the split axis (either horizontal or vertical) is found for
carrying out the split action. To this end, the splitting algorithm can either simply alter-
nate between the split axes, which is calledslicing and dicing. The standard slice and
dice algorithm does not consider the shape of the resulting rectangles at all.Optimizing
algorithms on the other hand base their selection of the split axis on characteristics of
the data to lay out, aiming at optimizing the resulting aspect ratios towards meeting cer-
tain predefined target ratios. They employ certain layout heuristics expected to optimize
the (aggregated) deviation of display rectangle aspect ratios from some preset target ra-
tios. Optimizing algorithms are usually space-filling but cannot give guarantees for the
aspect ratios of the resulting displays.

• The second dimension for our classification is whether on a given split axis, the split
point is found in strict linear proportion to the weight of the underlying data set to be laid
out, or whether it is constrained to assume only a limited number of different positions
on the split axes. The first policy we like to callcontinuoussplitting, as any of the
infinitesimal many possible split points on a given split axis may be chosen. The other
option we like to calldiscretizedsplitting. Discretization is usually done with regular
grids (or use of splitting masks, cf. Section 4.2). The goal is to regularize the TreeMap
display. Discretizing algorithms by design do better at achieving aspect ratio goals
than do continuous algorithms, at the expense of the space-filling or proportionality
properties (cf. Sections 4.2 and 4.3).

These two dimensions result in four possible classification possibilities, of which the three
most important combinations are used for our classification. We next briefly recall specific
algorithms from each of these three classes.

Continuous slice-and dice algorithms. The slice-and-dice approach continuously and re-
cursively allocates a given (sub)tree of data elements to a given display space by either hori-
zontally or vertically slicing the display. The number of slices corresponds to the number of el-
ements to be laid out, where the elements are either leaf-level atomic data elements, or disjoint
sets of elements (data subtrees). The split points are determined in linear proportion to the un-
derlying weights associated with the data elements (or sums or other aggregates of weights in
case a set of subtrees). Based on the data distribution to be laid out, arbitrary rectangle shapes
may emerge. The original TreeMap algorithm [82] is a prototypical slice-and-dice algorithm.
Figure 4.2 illustrates the mechanism of the original continuous slice-and-dice TreeMap layout
on a simple hierarchical input data structure. A comprehensive list of TreeMap applications
can be found in [5].

4.1. A survey of TreeMap-based layout algorithms 115

A B

A1 A2 A3 B1 B2

(a) Hierarchically structured data

A1 A2 A3

B1 B2

(b) TreeMap layout

Figure 4.2:The standard continuous TreeMap algorithm alternatingly splits display rectan-
gles along horizontal and vertical lines while recursively traversing a hierarchi-
cally structured data set in top–down direction. In this illustration, a data set of 5
elements organized in 2 groups (a) is laid out by using the number of leaf elements
as the weights for split point determination (b).

Continuous optimization algorithms. These algorithms perform rectangular tessellations
where the resulting rectangle areas are in linear proportion to sums of underlying weights of
the data elements. Opposed to the slice-and-dice algorithms, the data partitions on a given
level are not necessarily assigned to a consecutive linear sequence of adjacent slices of display
space, but rather, a number of different layout alternatives are evaluated, and the best one
according to some quality criterion is selected for layout. Several techniques fall into this
category.

(a) Squarified layout (b) Stripe layout

Pivot

R1

R2

R3

(c) Ordered layout

Figure 4.3:Several layout principles proposed in the literature for squarifying the TreeMap
display.

The Squarified TreeMapby van Wijk et al [11] targets square-shaped rectangles. When
allocating a number of elements in a display partition, the algorithm lays out a number of
elements, not necessarily all of the elements in the given set, inside one strip of display space
such that a cumulated aspect ratio error measure is optimized. Then, the algorithm continues
by laying out another partition of elements inside another strip of display space which may
be oriented either parallel or perpendicular to the previous strip, and so on until all of the
elements are allocated (cf. Figure 4.3 (a)). The algorithm rearranges the order of the elements

116 Chapter 4. Space-filling visual object space analysis

such that they are laid out by decreasing element weight. The algorithm achieves good results
in practice, but the (size-based) ordering of elements may be discontinuous if the algorithm
breaks up a given sequence of elements into many small element subsequences allocated in
differently oriented strips each.

Shneiderman et al in [9] gave two TreeMap variants also aiming to produce squarified lay-
outs. TheirOrdered layout algorithm partitions a list of elements to be laid out into three
groups of elements and one special single element, the pivot element. The pivot is assigned
to a rectangle along the top (or right, depending on the display rectangle’s overall aspect ra-
tio) edge of the display rectangle (cf. Figure 4.3 (c)). The first group of elements contains
all elements with index smaller than the pivot element and is assigned to rectangleR1. The
remaining elements are partitioned into groups 2 and 3 (assigned to rectanglesR2 andR3),
such that the aspect ratio of the pivot rectangle approaches 1.0 as closely as possible. Then,
the algorithm recursively continues to lay out groups 1 to 3 inside their assigned rectangles.
Predefined layouts exist for cases where the number of elements is smaller than 4. The dis-
play is completely determined by this procedure up to the selection of the pivot element. To
solve this, the authors propose several decision rules such as choosing the pivot as the central
element or the largest element according to weight. The second layout variant given in [9] is
similar to van Wijk’s Squarified TreeMap, but fixes the layout stripe orientation to be horizon-
tal for each stripe (cf. Figure 4.3 (b)): Each horizontal stripe is filled until the average aspect
ratios of the elements contained is as close to 1.0 as possible. Both layouts are shown to pro-
duce good squarified layouts in practice. The authors point out the high degree of order their
layouts provide. Opposed to the Squarified TreeMap, which performs layout by descending
weigh, their algorithms perform the layout in the order given by the data set. The ordered
layout places partitions of consecutive elements inside the same display rectangles, and the
stripe layout lays out consecutive elements inside horizontal stripes. Both layouts provide that
elements which are close to each other in the given element ordering are also located close in
the display.

The algorithms recalled up to here heuristically optimize aspect ratios to be square like,
other approaches are possible. E.g., in [94] the authors propose a scheme (called Modifiable
TreeMap) which first partitions a set of elements to be laid out into two subsets. Then, each
subset is laid out by dicing the two slices of the initial display rectangle which holds each one
of the two partitions. The algorithm evaluates many options for partitioning the initial set of
elements into two groups until a satisfactory result with respect to an aggregated error function
is found.

Discretizing algorithms. The previous algorithms optimize rectangle aspect ratios to ap-
proach some desired aspect ratio. But there are also situations where a fixed aspect ratio must
be guaranteed for each element in the display. Then, quantization of split points is an option.
TheQuantum TreeMap[9] is doing so. The basic idea is to discretize the intermediate output
of a continuous TreeMap such that the resulting display partition’s dimensions are matching
integer multiples of a predefined base size for width and height. Thereby, it is possible to
lay out elements inside cells of the predefined dimension (width and height) which are also
positioned on a global regular grid. Figure 4.4 (a) illustrates the Quantum TreeMap. In Sec-

4.1. A survey of TreeMap-based layout algorithms 117

tion 4.3, the Quantum TreeMap will be subject to an analysis regarding its space efficiency
properties, and an improved quantized layout method will be proposed based on that analysis.

In addition to quantizing continuous layouts it is also possible to first tessellate the given
display space into some regular scheme and then map the data elements to the obtained base
units. Bubble Maps[8] follow this idea by allocating the cells on a regular grid with data
elements in a rectangular or bubble-like scheme, effectively scanning a grid like done in bucket
filling algorithms from Computer Graphics (cf. Figure 4.4 (b)). Furthermore, in [101]Jigsaw
Mapswere introduced which map data elements to grid cells by using a space-filling curve,
e.g., the Hilbert-Curve. These quantized algorithms guarantee the same aspect ratio for each
data element to be laid out. On the other hand, they cannot guarantee space-filling results, as it
is not always possible to find a grid of dimensionality such that the exact number of elements
in a given data set is matched, and the target aspect ratio is satisfied. Also, for the Bubble and
Jigsaw Maps, perception of hierarchy can be expected to be more difficult than in the Quantum
and Continuous algorithms, as the data (sub) partitions do not form rectangles any more.

(a) Quantum TreeMap (b) Bubble Map (c) Jigsaw Map

Figure 4.4:Illustrations of several quantized TreeMap layout algorithms. Illustrations adapted
from [8] (a,b) and [101] (c).

4.1.4 Analysis and proposed TreeMap algorithms

It is possible to compare the above discussed TreeMap variants along the display properties
identified in Section 4.1.2. We first note that by design, all algorithms areoverlap-free. The
continuous algorithms arespace-fillingup to the space dedicated for split line drawing or
indention of partitions which we consider an implementation issue beyond the main layout al-
gorithm. The discretized algorithms are space-filling up to quantization, that is, the difference
between the size of the base grid used, and the number of elements to be laid out in the given
data set. We note that for the Quantum TreeMap relying on the continuous slice-and-dice
algorithm, more subtle space-inefficiencies exist (cf. the discussion in Section 4.3.2). Re-
gardinghierarchy encoding, the algorithms reflect hierarchy by nesting of data subsets within
enclosing rectangular display space. An exception are the Bubble Maps, where the enclosing

118 Chapter 4. Space-filling visual object space analysis

display space is not necessarily rectangular but can assume free-forms depending on the filling
algorithm used. Also, the Jigsaw Map is an exception to this, as hierarchical relationships are
given along the space-filling curves.

Proportionality between data element weights and respective area of the display partition
is provided by design in the algorithms which perform continuous, proportional partitioning
of display space. The quantized algorithms introduced so far map data elements to cells of
constant size and aspect ratio. They thereby guarantee some atomic constant area for each
element, but are unable to reflect varying individual weights, as all element rectangles have the
same size. Therefore, differing individual weights for the data elements cannot be reflected.
On the other hand, this predefined atomic dimensionality (aspect ratioproperty) for each data
rectangle is guaranteed in the quantizing algorithms, a feature which is either ignored in the
original slice-and-dice algorithm, or optimized in the optimizing line of TreeMap algorithms.

The most complex layout property distinction between the algorithms is probably theorder-
ing feature. Ordering refers to how the display encodes an ordering between data elements as
given by the data structure. The probably best reflection of ordering is achieved by the slice-
and-dice algorithm which places all elements to be laid out linearly inside a given slice of
display space. The Stripe TreeMap algorithm achieves slice-based linear ordering of elements
only within each stripe, but exhibits discontinuity in element order at the stripe breaks. The
Squarified TreeMap algorithm lays out the elements by decreasing weights, thereby destroy-
ing any distinct order which might be defined on the data set elements. Even if the original
element order is in accordance with the sorted weights, the algorithm may provide only weak
ordering, as in the worst case the stripe layout orientation switches on each subsequent data
partition during the layout process (cf. Figure 4.3 (a)). The Ordered TreeMap achieves some
kind of ordering by clustering together sequences of elements in enclosing elements (rectan-
glesR1 to R3 in Figure 4.3 (c)). Other than that, it cannot be guaranteed that a linear ordering
in the sense of placing the elements continuously inside display stripes is achieved. The qual-
ity of ordering then has to be experimentally evaluated using certain metrics of proximity of
elements in the resulting displays as done in [9].

Considering the quantized algorithms, the Quantum TreeMap’s ordering capability is de-
fined by the underlying layout algorithm which is used to obtain the intermediate display
which is then discretized. For the Bubble Maps, the ordering of elements depends on the con-
crete layout technique used for assigning the display cells, but can be expected to be moderate
for the rectangular filling algorithm, and low for the bubble-like schemes. The Jigsaw Map in
theory provides perfect (recursive) ordering as the space-filling curve used is a consistent lin-
ear scheme along which the elements are organized in the display. On the other hand, from the
usability perspective it seems questionable whether space-filling curve schemes are intuitive
to use for average users.

Table 4.1 summarizes the relationship between the TreeMap algorithms recalled in Section
4.1.3 and the main TreeMap visualization objectives identified in Section 4.1.2. Not included
in that table are the less discriminating criteriaoverlap freeness, at it is given by design in these
algorithms, andcomputational complexity, as all algorithms discussed work in linear time or
employ light (greedy) optimization strategies. Also not included is thespace-efficiencycrite-
rion, which raises some subtle problems for the discretizing algorithms only (to be discussed
in depth in Section 4.3.

4.1. A survey of TreeMap-based layout algorithms 119

Table 4.1:Comparison of TreeMap variants recalled in Section 4.1.3 along important display
properties identified in Section 4.1.2.

Algorithm class Algorithm name Hierarchy Proportionality Ordering Aspect Ratios
Slice-and-dice TreeMap [82] rectangular nesting linear linear ignored

Optimizing Squarified [11] rectangular nesting linear linear, discontinuous optimized
Stripe [9] rectangular nesting linear linear, discontinuous optimized

Ordered [9] rectangular nesting linear clustered optimized
Modifyable [94] rectangular nesting linear linear, discontinuous optimized

Discretized Quantum [9] rectangular nesting atomic as base algorithm fixed
Bubble [8] freeform nesting atomic linear, discontinuous fixed

Jigsaw [101] nesting along curve atomic recursive fixed

In the following Sections we will introduce two TreeMap variants which each aim to im-
prove the display to provide tessellations suited for display of data elements which are not
only represented by the area of a rectangle, but which render specialized content inside them
such as time series data. The ID-Map algorithm given in Section 4.2 introduces the notion
of splitting masksinto which partitions of data are allocated, and which provide certain regu-
larity and ordering properties in the tessellation. These splitting masks can be considered as
a quantization of the number of display partitions produced for a given layout level, and can
be configured to provide different degrees of proportionality regarding the resulting display
partition sizes. TheGrid TreeMapintroduced in Section 4.3 is a quantized algorithm which
tries to avoid certain drawbacks given in the Quantum TreeMap algorithm by performing the
TreeMap allocation directly on a grid of homogenously shaped display cells. Table 4.2 con-
cludes this Section by summarizing properties of the proposed algorithms in context of the
preceding discussion.

Table 4.2:Systematization of the ID-Map and Grid TreeMap algorithms to be introduced in
Sections 4.2 and 4.3.

Hierarchy Proportionality Ordering Aspect Ratios
Optimizing ID-Map [26] rectangular nesting approximate recursive optimized
Discretized Grid TreeMap [77] freeform nesting atomic linear, discontinuous fixed

120 Chapter 4. Space-filling visual object space analysis

4.2 Importance-driven space-filling layouts for time series
data

Time seriesare a multimedia data type of utmost importance in many application domains.
Information Visualization to date has contributed with a variety of helpful techniques to un-
derstand and analyze time series data, where the focus has been mainly to support a limited
number of time series, or to consider aggregated views of large collections of time series. For
example, thePolaris system[38] allows the analyst to easily pivot and refine visual specifica-
tions of table-based graphical displays. Schumann employs a time wheel [1], where the basic
idea is to present the time axis in the center of the display, and circularly arrange the variables
around the time axis. Van Wijk [103] introduced a clustering-based visualization to condense
multiple time series data into a calendar-based view. Shneidermans interactive pattern search
[4] provides fast information retrieval on over-laid time series data. Sets of time series con-
sisting of hundreds of thousands of observations may be visualized by resorting to pixel-based
rendering paradigms [55].

In this Section, we address the problem of generating appropriate visualization layouts for
simultaneously analyzing large sets of time series using the familiar bar or line charts drawing
methods. Our goal is to allow an analyst to quickly perceive relative importance and hierarchy
relations within sets of time series, while at the same time supporting good comparability of
the data by highly regular layouts. We next introduce the notion ofimportance-driven layout
generationfor sets of time series (Section 4.2.1), and we formalize a set of constraints that we
feel an effective layout for comparative analysis tasks on large time series data should provide
(Section 4.2.2). We then develop a simple but effective heuristic algorithm that generates rec-
tangular layouts based on the identified layout goals (Sections 4.2.4 to 4.2.3). We continue by
applying the algorithm on several real-world data sets, demonstrating the practicability of the
approach in Section 4.2.5. Section 4.2.6 presents an experimental analysis and a comparison
against a popular space-filling and aspect-ratio aware TreeMap algorithm. Finally, in Section
4.2.7 we draw conclusions and outline possible future research directions.

4.2.1 Importance relationships on time series and layout requirements

When considering comparative analysis tasks on collections of time series, often there can be
perceived a partial or total intrinsicimportance(or interestingness) relation among the differ-
ent time series. Such importance relationships should be reflected in the layout. For example,
in a sales analysis application, the primary importance measure might be the total sum of sales
numbers in each time series. In a network monitoring application, importance relationships
may be derived from certain performance metrics taken from hosts on a network. Or, in a
stock trading application, importance relationships may be derived from the variance in the
stock price time series (a risk measure). An effective layout should support the perception
of importance relations by using the two in our opinion most important display properties:
positionandsize.

Regarding position, usually, the objects at the top of a display are perceived to be more
important than those at the bottom, and objects on the left hand side are considered to be more

4.2. Importance-driven space-filling layouts for time series data 121

important than those on the right hand side in a given display row (as subject to convention).
Regarding size, larger objects are perceived to be more important than smaller objects. These
natural ways to reflect importance relationships enable an analyst to quickly locate the most
important objects as the data set grows large. In Sections 4.2.4 and 4.2.3, certain scalar impor-
tance measures derived from time series data serve as input for our layout algorithm, which in
turn allocates size and position of display partitions into which to place the time series.

We note that our approach is inspired in part by thedegree of interestingness(DOI) [35, 23]
concept. The DOI concept models the interestingness of each data element in a data set as
a function of its a-priori interestingness, and its distance to one or more current focus cen-
ters. The DOI concept can be used to generate interactive focus-and-context displays using
distortion techniques. In terms of the DOI concept, here we only consider the a-priori inter-
estingness component in the data set.

Time series are usually displayed usingbar or line charts. Traditionally, multiple time series
are accommodated by overlaying them in one common chart, or by using tabular, equal-sized
layouts. Both approaches are problematic due to occlusion (overlaying) and an emerging
need for scrolling interaction (tabulating) as the data set grows large. Also, the possibilities
for encoding importance and hierarchical relationships are limited in these approaches. We
therefore propose an overlap-free space-filling approach to time series layout to address both
importance-coding and scalability. Overlapping layouts are also possible to address scalabil-
ity, but we here do not investigate this line of design.

When laying out sets of bar or line charts in a space-filling display, it is not sufficient to
allocate rendering space by assigning position and size according to importance, but also,
regularity is a vital criterion for comparing time series. Regularity consists of the aspect
ratio, which should be favorable for rendering a given number of time steps within each time
series display partition. The aspect ratios of multiple time series should be homogeneous.
Also, the alignment of the partitions should be as good as possible, and the number of unique
horizontal scales should be low. Experiments we performed suggest that a low number of
horizontal scales might be more important than a low number of unique vertical scales. We
can support this observation by the fact that in bar and line charts, horizontal scale influences
the perception of value sequence and duration of time intervals. Vertical scale influences
perception of value magnitudes. While value perception can be easily supported using color
maps, supporting perception of time sequence on many different horizontal scales is nontrivial,
especially in space-filling layouts.

An additional requirement for importance-driven time series layout arises if there are also
hierarchical relationships present among the set of time series. In a sales scenario, for exam-
ple, the world might be divided into regions, and these regions themselves might be further
subdivided into sub regions. For each sub region there may exist a time series for a given
product by observing respective sales figures for consecutive points in time. Note that the
embedding of hierarchical layout constraints may conflict with the importance-driven layout
generation.

122 Chapter 4. Space-filling visual object space analysis

4.2.2 Formal problem definition

We here formalize certain requirements that an effective importance-driven time series layout
should provide. LetTS= {TS1, . . . ,TSn} denote a set ofn time series objects, where a time
seriesTSi is a set of|TSi | pairs of real-valued observations with corresponding time stamps.
Ii = Ii(TSi) is a real-valued function defined on time series implementing the application-
specific, normalized importance measure, where 0≤ Ii ≤ 1 ∀i ∈ {1, . . . ,n}∧∑n

i=1 Ii = 1. The
task of the layout algorithm is to partition an initial (root) rectangular display areaR of width
R.w and heightR.h into a partitionP = P(R,TS) consisting of one sub-rectangleRi for each
time seriesTSI . Let |Ri |= Ri .w∗Ri .h denote the area ofRi , and units are normalized such that
|R| = ∑n

i=1Ri = 1 . Let Ri .cx andRi .cy denote thex andy coordinates of the center of mass
of Ri , with the display origin located in the south-west corner. Next we give constraints for
display partitions over unstructured as well as hierarchically organized sets of time series.

Constraints for unstructured time series sets
n

∑
i=1
||Ri |− Ii | →min! (4.1)

]n
i=1 Ri = R∧∀i, j ∈ {1, . . . ,n}, i 6= j : Ri ∩Rj =� (4.2)

n

∑
i=1

Ii ∗ |
Ri .w
R.i.h

−c∗ |TSi || →min! (4.3)

∀i, j ∈ [1, . . . ,n], i 6= j :

{
Ii > I j ⇒ (Ri .cy> Rj .cy)∨ (Ri .cx< Rj .cx∧|Ri .cy−Rj .cy|< ε)
Ii < I j ⇒ (Ri .cy< Rj .cy)∨ (Ri .cx> Rj .cx∧|Ri .cy−Rj .cy|< ε)

(4.4)

n

∑
i=0

n

∑
j=i+1

di f f dim(i, j)→min! (4.5)

di f f dim(i, j) =
{

1 Ri .w 6= Rj .w∨Ri .h 6= Rj .h
0 otherwise

(4.6)

The proportionality constraint (Equation 4.1) defines incentive that the area of each time
series rectangle should be proportional to the importance of the respective time series,Ri ∝ Ii .
Thespace-filling and non-overlapconstraint (Equation 4.2) demands that the individual par-
tition rectanglesRi never overlap, and that their union completely covers the available display
spaceR. Theweighted aspect ratio errorconstraint (Equation 4.3) demands minimization of
the sum of importance-weighted aspect ratio errors, where the aspect ratio error is a function
of the deviation of the actual aspect ratio of a rectangleRi from a targeted aspect ratio. The
targeted aspect ratio is modeled as a linear function of the respective time series length|TSi |,
and parameterc models the relation between time series length and targeted aspect ratio. The
ordering constraint (Equation 4.4) demands that whenever there is an importance ordering
possible between two time series, then this importance relationship is reflected in the display

4.2. Importance-driven space-filling layouts for time series data 123

by placing the more important one above the less important one, or to the left of it, give they
are placed on the same height in the display. The latter is tested for using a threshold parame-
ter ε. Note that it is straightforward to adjust the ordering constraints such that, according to
user convention, the rectangles would be positioned conversely, e.g., from right-to-left instead
left-to-right. Finally, theregularity constraint (Equation 4.5) asks that the number of unique
rectangle dimensions(Ri .w,Rj .h) be kept minimal in the display. This can easily be measured
by summing a functiondi f f dim (Equation 4.6) giving whether two rectangles have the same
dimensions or not, over all pairs of rectangles. This is the core requirement we have in mind
when designing the ID-Map algorithm.

Constraints for hierarchically structured time series sets

Let the hierarchical structure ofTSbe encoded by a treeTST, where each leaf distinctively
contains one time series objectTSi ∈ TS, and inner tree nodes encode the hierarchical or-
dering. LetNTST denote the set of all inner tree nodes of TST, and letu ∈ NTST denote an
inner tree node. Let the setTS(u) denote all time series rooted at inner tree nodeu, and let
MBR(TS(u)) denote the minimal bounding box covering the rectangles of the time series from
TS(u). Finally, letAgg(TS(u)) bet a function aggregating the individual importance measures
Ii , i ∈ TSover the time series fromTS(u).

∑
u∈NTST

(|MBR(TS(u))|− |]i∈TS(u) Ri |)→min! (4.7)

∀u,v∈NTST,u 6= v :



Agg(TS(u)) > Agg(TS(v))⇒ (MBR(TS(u)).cy> MBR(TS(v)).cy)∨
(MBR(TS(u)).cx< MBR(TS(v)).cx∧
|MBR(TS(u)).cy−MBR(TS(v)).cy|< ε)

Agg(TS(u)) < Agg(TS(v))⇒ (MBR(TS(u)).cy< MBR(TS(v)).cy)∨
(MBR(TS(u)).cx> MBR(TS(v)).cx∧
|MBR(TS(u)).cy−MBR(TS(v)).cy|< ε)

(4.8)
The hierarchical rectangular containmentconstraint (Equation 4.7) defines incentive to

cluster the rectanglesRi in all sets of rectangles corresponding to the time seriesTS(u) rooted
at a tree nodeu as compact as possible. Compactness is measured by the size of the minimal
bounding boxMBRaround the rectanglesR(u). Thehierarchical orderingconstraint (Equa-
tion 4.8) is defined similar to the non-hierarchical ordering constraint given in Equation 4.4. It
extends the demand of left-to-right/top-to-bottom ordering from single time series rectangles
to sets of hierarchically grouped time series rectangles. To this end, the ordering definition
is rewritten based on minimum bounding rectangles grouping sets of time series rectangles
TS(u) andTS(v) rooted at inner tree nodesu andv. The positional ordering of these mini-
mum bounding boxes should reflect the relation between the aggregated importance measures
of the underlying time series, according to a suitably defined aggregation functionAgg().

124 Chapter 4. Space-filling visual object space analysis

Solving the problem

The above constraints postulate certain properties that a rectangular display tessellation should
provide for layout of sets of time series. The constraints are based on the considerations in
Section 4.2.1. We recognize there exist conflicts between the objectives. E.g., it will not
be possible to find a layout that simultaneously realizes the optimum for the constraints for
proportionality (Equation 4.1) and regularity (Equation 4.5) for most data distributions, given
that we simultaneously obey the space-filling and non-overlapping constraints (Equation 4.2).
So, theoretically, we would only be able to find layouts optimal in theParetosense, and have to
select one from these such that an appropriately combined, scalar error function is optimized.

Practically, finding optimal solutions involving multiple competing objectives of this type
is a complex problem for which we do not expect to find efficient algorithms. In the fol-
lowing Section, we therefore propose a heuristic algorithm which is motivated by the above
constraints, and which is producing visually satisfying results in interactive time as will be
shown. The algorithm is based on partitioning the display space recurringly using homo-
geneous splitting patterns. The algorithm is designed towards supporting the regularity and
aspect ratio error constraints. The space-filling/non-overlapping and hierarchical rectangu-
lar containment criteria the algorithm guarantees by design. The performance regarding the
proportionality, ordering, and hierarchical ordering criteria are not explicitly addressed in the
algorithm definition. It will be up to an experimental evaluation in Section 4.2.6 where we
analyze the algorithm behavior with respect to these criteria. In this evaluation, we will come
back to the above given constraint definitions, using them as error metrics for analyzing the
algorithms performance.

The role of the importance measureIi (for short: i-measure) is to impose the importance
relation on the set of time series. Usually, appropriatei-measures depend on the specific
application context in which the visualization is to be deployed, and will have to be obtained
from a domain expert. Suitablei-measures may be as simple as themin or maxaggregation
functions (e.g., when monitoring for network performance bottlenecks), or they may involve
complex time series analysis algorithms (e.g., when searching for certain local patterns in
trading data). In our system, we have implemented a set of basici-measures, which already
serve well for many applications:

• average, sum, min, max, count, deviation;

• exception count for some preset threshold;

• count of local extreme in the time series;

• the average difference between adjacent values.

In addition, a number of optional time series preprocessing methods have been implemented,
e.g., offset and amplitude normalization, smoothing, and missing value interpolation [56].

4.2.3 Splitting mask selection and splitting policies

Our algorithm recursively maps ordered subsets of time series data into display partitions,
which are constructed by a set of so-called splitting masks. We propose a set ofsplitting

4.2. Importance-driven space-filling layouts for time series data 125

(a) Theuneven(left) andeven(right) split-
ting masks.

(b) Totally ordered time series tree.(c) An allocation step in the
ID-Map algorithm.

Figure 4.5:ID-Map recursively allocates (c) partitions of the totally ordered time series tree
(b) into partitions of pre-defined splitting masks (a).

st1 st2 st3 p2 p3

p1

rank

im
po

rt
an

ce

(a) Uneven allocation of tree level 1.

p11
p13

p12
p14

rank

im
po

rt
an

ce

(b) Even allocation on first subtree on level 2.

Figure 4.6:Recursive allocation of time series subtrees using the mask chooser.

masksas a scheme for partitioning any given rectangle into a certain number of sub rectangles,
reflecting importance-relations by size and position of the sub rectangles as given by the mask
definition (mask structure). The role of the splitting masks is to provide regular layouts, and
at the same time communicate importance and hierarchical relationships by size, position,
and rectangular containment characteristics in the display. Using fixed display partitioning
schemes avoids certain problems that traditional TreeMap algorithms exhibit by design, as
they performcontinuoussplitting. Contrarily, using splitting masks, we perform splitting in a
restrictedmanner.

For allocating a given set of time series, amask choosermodule first analyzes the distrib-
ution of i-measures present in the data currently to be laid out, and then selects from a set of
predefined splitting masks the mask best accommodating the presenti-measure distribution.
We start by defining two masks suited for two salient types of distributions. Theunevenmask
contains three partitions and is appropriate when the distribution ofi-measures is skewed. The
other mask is theevenmask and is selected if the distribution ofi-measures is rather uniform.
We use Pearson’s Mode Skewness (PMS) [102] as the skewness scale. Figure 4.5 (a) illustrates
the basic splitting masks, and Figure 4.6 illustrates two steps in the recursive layout using the
mask chooser.

Considering mask split-point determination, we define three different policies, each one
implementing a certain trade-off between thesize-proportionalityandregularity constraints.
Policy A splits an input rectangle at fixed relative positions, irrespective of thei-measures un-
derlying the data to be allocated. For the even mask, policyA splits both horizontally and
vertically at 1

2 edge length. For the uneven mask, it vertically splits at2
3, and horizontally at

1
2 edge length. PolicyA results in maximum regularity, but does not guarantee linear reflec-
tion of importance-relationships purely by size. In policyB, the rectangle is split vertically in
linear proportion to sums of the underlyingi-measures, but horizontally it is split at1

2 edge

126 Chapter 4. Space-filling visual object space analysis

(a) Split policy A (b) Split policy B (c) Split policy C

Figure 4.7:Splitting policiesA, B, andC applied on the uneven (left) and even (right) splitting
masks.

length. This results in less regularity, but improves size-proportionality. Finally, policyC per-
forms all the splitting in linear proportion to the sums of underlyingi-measures, guaranteeing
linear size-proportionality at the expense of regularity. Figure 4.7 illustrates the three splitting
approaches.

We note that for now, we fix the splitting policy based on user preference when generat-
ing the layout. We note that it would also be possible to perform the policy selection in a
data-dependent way, but leave this for future work. Regarding the size proportionality and
regularity tradeoff, we note that the importance relations are always encoded in the overall
nesting structure of the display, and specialized techniques supporting nesting structure per-
ception exist [88].

4.2.4 ID-Map algorithm

ID-Map algorithm for unstructured sets of time series

For generating an importance-driven layout for an unstructured set of time series, we first
determine thei-measure for each time series object, and build a list of time series sorted
decreasingly byi-measure. Evaluating Pearson’s Mode Skewness of thei-measure distribution
of the list, we select the appropriate splitting maskMs from a setM of predefined masks. As
Ms definesn = |Ms| partitions, we also partition the sorted list of time series inton equal-
sized ordered subsets of time series. We then assign each time series subset in order to the
respective display partition as defined byMs, and recursively proceed with all subsets and
display partitions, until each time series has been allocated to one display rectangle each.

ID-Map algorithm for hierarchically structured sets of time series

A set of hierarchically organized time series can be held in arooted tree: Inner tree nodes
encode the hierarchy; each leaf node of the tree holds one time series. The tree can be totally
ordered byi-measures. To this end, we first aggregate thei-measures from all leaf nodes
bottom-up along the hierarchy, until each inner tree node is labeled with an aggregatedi-
measure. We then sort the children of all inner tree nodes by their respectivei-measure labels,
obtaining a totally ordered rooted time series tree. Figure 4.5 (b) illustrates. The algorithm
for unstructured sets can then be applied by considering sorted lists of time series tree nodes,
instead of sorted lists of time series, as input to the recursive layout. Generation of the layout
is initialized by inputting the tree root to the algorithm, and it terminates once all branches

4.2. Importance-driven space-filling layouts for time series data 127

(a) (b) (c) (d) (e)

Figure 4.8:Recursive partitioning of display space using the even (a,b) and uneven (c,d) split-
ting masks. (e) illustrates a typical ordering result of the Squarified TreeMap.

of the tree have been processed, and all time series have been allocated. Figure Figure 4.5
(c) illustrates the allocation of inner tree nodes from a geo-related hierarchy to the partitions
of an uneven splitting mask. The example assumes that the region West has a significantly
higher aggregated i-measure than regions North and East. The ID-Map Algorithm for the
hierarchically structured case is given in pseudo-code in Algorithm 2. As will be shown next,
this scheme is able to produce regular layouts which favor importance-driven perception and
fast visual comparison of many different time series simultaneously.

We note that due to the recursive mapping of sets of elements to partitions of the display
space, the positioning of consecutively ordered elements follow typical recursive patterns.
A user unfamiliar with recursive orderings might need some time to familiarize with such
orderings. Figure 4.8 illustrates the ordering patterns in the even and the uneven splitting
masks.

1: ProcedureID Map(list of nodesL, display rectangleR):
2: /* terminal node reached: draw the time series */
3: if (L contains exactly one leaf node)then
4: drawTimeSeries(L[0].timeSeries,R)
5: return
6: end if
7: /* single non-leaf node reached: recursively layout child nodes */
8: if (L contains exactly one non-leaf node)then
9: ID map(L[0].children,R)

10: return
11: end if
12: /* list of nodes: select splitting mask; layout chunks of nodes */
13: Ms← choosemask(M, L)
14: partitionL into n equal-sized, ordered chunks of nodesc1, . . . ,cn, wheren = |Ms|;
15: for chunk= 1 ton do
16: ID map(cchunk,Rchunk(Ms,R))
17: end for

Algorithm 2: ID-Map algorithm

128 Chapter 4. Space-filling visual object space analysis

4.2.5 Application

Split policy and mask chooser configurations

We have experimented with different masks choosing schemes, such as manipulating the
skewness threshold for the PMS selector, restricting the mask chooser to a fixed mask, as
well as distinguishing between different choosing rules for inner and leaf nodes in the time
series tree. Figure 4.9 shows the results for four different configurations of the algorithm on a
dataset of 80 time series from the finance domain, organized in 9 classes (see next Section for
details on the data set).

In Figure 4.9 (a), we let the mask chooser select between the even and the uneven splitting
masks, based on a volatility measure, to layout both inner and leaf level nodes of the time
series tree. The splitting policy is set proportional to sums of underlyingi-measures. (policy
C). The display communicates hierarchical relationships between the elements, the size of
each rectangle is proportional to the volatility measure, and more volatile Sectors and stocks
are positioned top-left in the display. For some time series, due to proportional splitting,
we have aspect ratios which are rather square-like, and so, only suboptimal for comparing
x and y scales among the different time series elements. In Figure 4.9 (b), we have set the
mask chooser to use split policyA, which performs splitting always at fixed relative positions,
ignoring (sums of) underlyingi-measures in the layout generation. The result is a more regular
display with a reduced number of unique x and y scales throughout the display (specifically,
there occur only 3 unique x scales). Size proportionality is not linear anymore, but position
still indicates importance relationships among the data, and comparability of x and y scales in
the display is improved.

To even further improve regularity, we may restrict the mask chooser to always select a
fixed splitting mask for laying out the data. In Figure 4.9 (c), we fix the layout of the leaf level
nodes to uneven mask. In Figure 4.9 (d), we have fixed the layout to even on all groups of time
series. Both variants share that they disregard distributions ofi-measures when laying out the
leaf level data, so we cannot distinguish anymore between uniform or skewed distributions
of i-measures among the different sectors; onlyordinal relationships are perceivable from the
display. On the other hand, regularity is further increased.

From these results we conclude that already the two basic splitting masks (even, uneven),
along with appropriate settings for the mask chooser module, offer a wealth of possible layout
results for visualizing sets of time series data. By fixing the above described layout parameters,
the user can tune the layout to fit her needs and preferences.

Application on financial datasets

Finance is an application domain where naturally, large sets of hierarchically organized time
series data occur. For example, the GICS standard is a multi-level hierarchical classification
of the 500 stocks compound in the Standard&Poors 500 index. Investors, in order to make
investment decisions, often need to overview, compare, and analyze stocks from specific sec-
tors they are interested in. Our algorithm is suited to provide an effective overview over sets
of categorized stocks, where the most important time series are readily perceivable and ana-
lyzable. Figure 4.10 shows 30 normalized daily opening prices from October and November

4.2. Importance-driven space-filling layouts for time series data 129

(a) (b)

(c) (d)

Figure 4.9:Several different mask chooser configurations along with resulting layouts.

130 Chapter 4. Space-filling visual object space analysis

2003 of 80 stocks from 9 differentS&P500Industries (the data was obtained from [84]). For
this example, assume we are interested in comparing the relative volatility of stocks. In order
to identify stocks of interest to a risk-seeking investor, we first apply offset- and amplitude
normalization [56] as preprocessing. We then select as thei-measure the average difference
between all adjacent values of each time series, respectively. Thisi-measure rates the volatil-
ity of stock prices. For sector level aggregation, we average over thei-measures from all time
series contained in each of the 9 sectors, respectively.

Using this i-measure to guide the layout, the ID-Map algorithm maps each two or three
sectors to one partition of an even mask. From the generated layout we learn that the Utilities
and Telecommunications Sectors (located top left in the display) are the most volatile in this
example, as they are placed into partitionp1 of an even layout. Sectors Energy, Health Care,
and Materials (bottom-right) are the least volatile (placed in partitionp4). The stocks from
Utilities are more volatile than those from Telecommunications on average (they are placed
on top of Telecommunications). On the other hand, the distribution of volatility among the
stocks from Utilities is more uniform (ranging from 0.018 to 0.012) than those from Telecom
(ranging from 0.022 to 0.010). This is readily perceivable, as the mask chooser lays out the
Utilities stocks in an even mask, while it chooses an uneven mask for Telecommunication.
Using the fixed splitting policyA in the layout algorithm, the overall display partitioning is
highly regular. Note that only three different x-axis scales are present; this supports visual
comparability of the actual time series data.

As another example, we have applied ID-Map to lay out a set of long bond price time series
(cf. Figure Figure 4.11). The display shows daily prices of 170 bonds during roughly 13 years
of trading, resulting in up to 3.200 values per bond. Asi-measure we considered the relative
increase in the bond prices over the respective time intervals, and normalized prices were
plotted using a pixel-oriented technique similar to [55]. The analyst can not only compare
the life spans of the bonds (the portions within the rectangles occupied with values; white is
background), but also the total increase in price over all years (the size of the rectangles) and
the growth path over the durations (the change in the color map).

4.2.6 Comparison with continuous aspect-ratio optimizing TreeMap
algorithm

In this section, we compare the ID-Map layout algorithm with an aspect ratio optimizing vari-
ant of the well-known TreeMap layout algorithm. We discuss key features of both algorithms,
and present results obtained from batch experiments performed on synthetic data.

Aspect ratio aware TreeMaps

TreeMap [82] is an excellent tool for displaying large volumes of low-dimensional, hierarchi-
cally organized data. By design, the original algorithm does not care about the regularity of
the display it generates, as split points are placed in linear proportion to sums of underlying
measures. While proportionality is guaranteed, there is no guarantee for regularity. Several
variants optimize aspect ratios [9, 11, 94]. Here, we extend van Wijk’s Stripe-filling method

4.2. Importance-driven space-filling layouts for time series data 131

Figure 4.10:Hierarchical ID-Map (configured to split policy A), applied on a set of 80 time
series from 9 different S&P500 Industries. The mask chooser uses even and
uneven masks to distinguish skewed from uniform stock risk among and within
Industries. Thei-measure used is normalized volatility of stocks; color used in
the bar charts redundantly indicates normalized stock open price from green (low)
through yellow (medium) to red (high).

132 Chapter 4. Space-filling visual object space analysis

Figure 4.11:Non-hierarchical layout of daily prices of 170 bonds of up to 13 years of trad-
ing. Split policy C using the even split mask was fixed for all layout steps. The
bond prices were normalized to 100%, starting with the first price record avail-
able for each bond. Green denotes 100%, red denotes the maximum (260% in
this data set). The growth in bond price over the bonds’ life span was selected
as the i-measure. The bonds mainly experience smooth, continued growth over
their respective life spans. Bonds existing for longer periods of time have grown
larger than bonds which are comparably younger. The rectangle sizes are directly
proportional to the relative bond growth rates.

4.2. Importance-driven space-filling layouts for time series data 133

[11] (Squarified TreeMapalgorithm) to support data-dependent target aspect ratios. The orig-
inal approach aims to generate square rectangles, and the overall aspect ratio of the rectangle
to be filled determines the orientation of the current layout stripe. For our purposes, we con-
sider four possible layout orientations in each step (see Figure 4.12 (a)): We greedily fill each
one in four possible orientation stripes with rectangles until the cumulated sum of weighted
aspect error (see Constraint in Equation 4.3 in Section 4.2.2) has reached the minimum. We
then make the stripe with the lowest overall cumulated error sum permanent, and recursively
continue the layout within the remaining rectangle. For evaluation purposes, we applied the
modified Stripe TreeMap algorithm to a data set consisting of 24 unstructured time series (48
values each), assuming a quadratic distribution ofi-measures followingf (x) = x2,x ∈ [0..1]
for the set of time series elements. For the aspect ratio error function, we set parameterc to 1

16,
targeting an aspect ratio of 4 : 1 for each time series of 48 values. Figure 4.12 (b) shows the
result. While we have good horizontally-oriented aspect ratios around 4 : 1, due to continuous
splitting in strict proportionality, the number of different x- and y-axis scales is high. Also,
the rectangles are not lined up at stripe borders. Furthermore, the ordering of elements may
be discontinuous at stripe borders, whenever the algorithm performs a horizontal/vertical (or
vice versa) change in stripe orientation. These facts result in medium overall regularity of the
display.

ID-Map layout

Figure 4.12 (c) shows the application of ID-Map using the uneven mask with splitting policyA
(fixed split points) on the dataset. We notice the display’s high regularity. Due to the recursive
allocation of chunks of time series to display partitions using fixed splitting, rectangle sizes are
not guaranteed to be in linear proportion toi-measures. We notice that even a reversal of size
andi-measure relations may occur (note thati-measure relations are always perceivable by the
overall splitting structure). To improve proportionality, it is possible to re-sort the rectangles
by size in a top-down/left-right manner followed by re-assigning time series to rectangles
(Figure 4.12 (d)). While we maintain the high regularity of the display, we obtain better
proportionality and avoid the reversal case. Splitting policiesB andC increasingly trade-off
regularity for improved proportionality betweeni-measure and rectangle size. The regularity
will be reduced, as either vertical (B), or both vertical and horizontal splitting (C) is performed
in proportion to underlying i-measures. For mosti-measure distributions, this will lead to
increasing numbers of unique scales. To moderate the loss in regularity, we can quantize
the split points by implementing a “snap to grid”-like splitting function. Figures 4.12 (e)
and (f) show the quantized uneven layouts obtained from split policiesB andC, respectively.
Comparing Figures 4.12 (e) and (f), we note that policiesBandC improve thei-measure to size
proportionality at the expense of reduced regularity, as due to the higher number of different
edge lengths occurring, the aspect ratio and regularity constraints (constraints in Equation 4.3
and 4.5 in Section 4.2.2) get more stressed.

134 Chapter 4. Space-filling visual object space analysis

v

h

v vv h

h h h v

(a) Layout orientations in the adapted Squarified
TreeMap algorithm.

(b) Adapted Squarified TreeMap result.

(c) ID-Map, uneven, split policyA. (d) ID-Map, uneven, split policyA (resorted).

(e) ID-Map, uneven, quantized split policyB. (f) ID-Map, uneven, quantized split policyC.

Figure 4.12:Adapting the Squarified TreeMap algorithm for time series data (a), and compar-
ing the result (b) against ID-Map using different splitting policies of the uneven
splitting mask (c – f) on a synthetic data set.

4.2. Importance-driven space-filling layouts for time series data 135

Experimental evaluation

We also conducted a series of experiments on synthetic data to obtain numeric performance
results. We used the algorithms to layout unstructured sets of 5 up to 200 time series with
48 values each, within a 1200× 900 pixel display. We assumei-measures are uniformly
distributed in[0,1] for each data set (we also tested square root and square like distributions,
but obtained similar results). We restricted ID-Map to use the uneven splitting mask with non-
quantized split point determination throughout the experiments. We also tested restricting to
the even mask, and again obtained similar results. For the Squarified TreeMap algorithm,
we set parameterc = 1

16 targeting aspect rations of 4 : 1 for each time series of length 48.
For each generated layout, we evaluated a set of error functions based on the postulations
given in Section 4.2.2. Figure 4.13 contains the obtained error numbers. For a sequence of
corresponding display snapshots, cf. Figure A.12 in the Appendix.

Figure 4.13 (a) shows thenormalized regularity error(constraint from Equation 4.5 from
Section 4.2.2) as the ratio between unique combinations of rectangle width and height scales
(as measured with a 2 pixel threshold), and the number of rectangles. The metric can be in-
terpreted as the number of unique rectangle dimensions per data element in the layout. Lower
numbers indicate higher regularity. In this metric, as expected the ID-Map splitting policiesA
andB perform better than the Squarified TreeMap algorithm, for all data element cardinalities.
This is not true for splitting policyC, which becomes worse than the Squarified algorithm for
roughly more than 60 rectangles. If we consider just the fraction of unique x scales irrespec-
tive of the behavior of y scales, not surprisingly, splitting policiesA andB perform similarly,
as they split the x axis always at fixed relative positions (see Figure 4.13 (b)). For growing
numbers of elements, the Squarified algorithm approaches the ID-Map policiesA andB. The
good performance of the Squarified algorithm in this metric can be attributed to the fact that
the algorithm often choosesvertical stripes in this setting (layout orientationsvv andhv in
Figure 4.12 (a)). This results in decreasing fractions of unique x scales per element. We can
also consider the same metric for the y axis alone (see Figure 4.13 (c)). Here, split policyA
outperforms all other algorithms, while policesB andC perform identical and slightly better
than the Squarified algorithm.

A second performance metric considers thenormalized ordering errorbased on constraint
in Equation 4.4 in Section 4.2.2). Here, we measure the fraction of top-down and left-right
ordering violations among all pairs of time series, using a 10 pixel threshold for parameterε.
Despite its recursive tessellation scheme, ID-Map with all splitting policies stabilizes at around
12% ordering violations and manages to consistently outperform the Squarified algorithm,
which oscillates around 30% ordering violations. Figure 4.13 (d) gives the numbers.

In two other metrics, the Squarified algorithm performs quite well and better than ID-Map.
Firstly, by its’ continuous splitting policy, it guarantees size proportionality (see constraint in
Equation 4.1 in Section 4.2.2). In Figure 4.13 (e), we have evaluated thenormalized propor-
tionality error and see that the ID-Map splitting policiesB andA produce increasing propor-
tionality error. Squarified TreeMap and splitting policyC produce no proportionality errors
(up to rounding effects in the pixel display), as both perform continuous, proportional split
point determination. Secondly, Squarified TreeMap produces lowweighted aspect ratio error

136 Chapter 4. Space-filling visual object space analysis

as measured by constraint in Equation 4.3 in Section 4.2.2. This is not surprising, as weighted
aspect ratio error is the optimization criterion in the algorithm. ID-Map ignores the weighted
aspect ratio error, and consequentially, produces significant aspect ratio error figures, see Fig-
ure 4.13 (f).

As noted above, a potential drawback of the ID-Map split policyA is that that for certain
pairs of data elements, a reversal of i-measures and corresponding rectangle sizes may occur.
It was proposed that to minimize this counter-intuitive effect in the ID-Map/policyA layout,
a resorting of rectangles can take place prior to assigning time series elements to display
rectangles. We also observed the behavior of the ordering error, as well as the number of
reversal cases, for the synthetic data set. Figure A.13 in the Appendix reports the respective
error numbers. To summarize, resorting is an option to significantly reduce the degree of size
to i-measure reversal cases, while also improving the ordering error numbers.

Regarding the remaining objectivesspace-filling, overlap-freeness, andhierarchical rectan-
gular containment, we note that all algorithms provide these, considering their definition.

We conclude the experimental evaluation by noting that ID-Map manages to produce regular
displays which are suited for comparative analysis of time series data, as it provides a low
number of different axis scales (both for individual axes x and y, as well as the combination
of scales). Also, it produces low errors regarding the positioning of rectangles according to
i-measure relationships. Regarding linear proportionality and data-dependent target aspect
ratios, the Squarified algorithm seems the better choice, if such criteria are primarily desired.

4.2.7 Conclusions

To summarize Section 4.2, we note that ID-Map provides high display regularity in terms of
good rectangle alignment and a low number of different rectangle scales. It largely obeys
the top-down, left-right ordering of elements in its layout. We conclude that the algorithm is
a simple, yet effective layout scheme for analysis tasks on sets of time series data, as high
display regularity supports comparing intervals in time and function value of the line and bar
charts, and differentiations in position and size serve to indicate data-dependent importance
scales.

By configuring the algorithm to different splitting policies, the user can control the tradeoff
between size proportionality and display regularity according to preference. We point out that
in many applications it is well possible to trade off linear proportionality between time series
importance and rectangle sizes for regularity. This is because often, appropriate importance
measures are heuristically obtained, and perfect quantitative reflection might not be meaning-
ful anyway. Furthermore, sometimes just ordinal importance relations among time series data
are considered by the analyst.

We note that in the experimental comparison, we have considered the non-hierarchical case
only. We expect that for sufficiently balanced hierarchical structures, we will obtain good re-
sults by recursively applying the ID-Map algorithm throughout the data hierarchy. Of course,
application data might be arbitrarily skewed, and we can construct cases where ID-Map runs

4.2. Importance-driven space-filling layouts for time series data 137

Regularity Error

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5 25 45 65 85 105 125 145 165 185

Number of Time Series

A
ve

ra
ge

 N
um

be
r o

f U
ni

qu
e

Sc
al

es

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(a) Regularity errors.

X-Regularity Error

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5 25 45 65 85 105 125 145 165 185

Number of Time Series

A
ve

ra
ge

 N
um

be
r o

f U
ni

qu
e

X
Sc

al
es

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(b) X-regularity errors.

Y-Regularity Error

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5 25 45 65 85 105 125 145 165 185

Number of Time Series

A
ve

ra
ge

 N
um

be
r o

f U
ni

qu
e

Y
Sc

al
es

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(c) Y-regularity errors.

Ordering Error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

5 25 45 65 85 105 125 145 165 185

Number of Time Series

A
ve

ra
ge

 O
rd

er
in

g
Vi

ol
at

io
n

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(d) Ordering errors.

Proportionality Error

0.00

0.20

0.40

0.60

0.80

1.00

1.20

5 25 45 65 85 105 125 145 165 185

Number of Time Series

N
or

m
al

iz
ed

 S
iz

e
Er

ro
r

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(e) Proportionality errors.

Aspect Ratio Error

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

5 25 45 65 85 105 125 145 165 185

Number of Time Series

W
ei

gh
te

d
A

sp
ec

t R
at

io
 E

rr
or

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(f) Weighted aspect ratio errors.

Figure 4.13:Error functions for layout of 5 to 200 rectangles, using the uneven splitting masks
and assumingi-measures uniformly distributed in[0,1].

138 Chapter 4. Space-filling visual object space analysis

into degenerate layouts. Consider a totally sorted time series tree, which takes the form of a
binary tree degenerated to a right-hand-side list. Using ID-Map split policyA would result
in a highly irregular allocation of display space to time series rectangles, such that a small
fraction of rectangles consume much of the display space. To circumvent such degenerate
situations, we need additional rules to detect and handle the layout of the time series tree, e.g.,
by using additional and possibly data-dependent layout masks. This point, as well as find-
ing methods for achieving display regularity and better size-proportionality at the same time
using data-dependent split point quantization schemes, constitute interesting future research
directions.

In certain domains, e.g., in a network monitoring application, high data update rates are
given which dynamically change underlyingi-measures and thus, call for dynamic updates to
the display layout. How to provide good transitions for updates to the ID-Map display is also
an open problem which we would like to address in future work.

4.3. Regular layout generation with Grid TreeMaps 139

4.3 Regular layout generation with Grid TreeMaps

In Section 4.2, we introduced the ID-Map algorithm which aimed at improving the regularity
of the resulting display partitioning in a TreeMap-like layout. While regularity was improved,
still different rectangle sizes and aspect ratios emerged in the display, where rectangle sizes
were used to reflect importance relationships. In some applications, regularity needs to be
maximized (all rectangles need to be of the same dimensions), even at the expense of pro-
portionality (as then, thesizeof the rectangles cannot be used to communicate quantitative
relationships any more). The Quantum TreeMap algorithm [9] quantizes the output of the
standard TreeMap algorithm to produce layouts where each data element (rectangle) corre-
sponds exactly to one cell on a uniform grid, providing maximum regularity by definition.
In this Section, we analyze the space-efficiency characteristic to the Quantum TreeMap algo-
rithm. Based on the analysis, we propose an improved quantized TreeMap variant including
three supporting rendering methods. We compare it against the Quantum TreeMap, and con-
clude that the display is competitive with the Quantum TreeMap, outperforming it in terms of
display efficiency for a range of data distributions.

The specific outline of the Section is as follows. In Section 4.3.1, we give a discussion of the
disadvantage of the continuous slice-and-dice TreeMap in providing regular displays. We also
discuss the Quantum TreeMap algorithm in detail. In Section 4.3.2, we then develop a family
of new TreeMap algorithms based on analysis of the Quantum TreeMap. In Section 4.3.3, we
apply three instantiations of our layout algorithm family as well as the Quantum TreeMap on
a hierarchically structured time series data set, demonstrating the usefulness of our algorithm.
In Section 4.3.4, we go on to evaluate the space efficiency characteristics of our algorithms
by performing a range of layout experiments based on synthetic data sets modeling different
classes of hierarchic structures. Finally, Section 4.3.5 concludes.

4.3.1 Continuous and Quantum TreeMap algorithms

We next illustrate the regularity problem of the Continuous TreeMap by an application exam-
ple. We then discuss the Quantum TreeMap approach for generating regular dispalys.

Regularity Problem of the Continuous TreeMap

The standardcontinuous TreeMapalgorithm (here abbreviated as CTM), as recalled in Sec-
tion 4.1.3, is a simple yet powerful layout technique supporting hierarchically structured data.
However, it has disadvantages regarding the regularity of the produced displays. Due to split-
ting of rectangles in linear proportion to sums of underlying weights, the continuous TreeMap
may produce tessellations consisting of many different rectangle aspect ratios, depending on
input data characteristics. Then, it may be hard for the user to select, compare, and trace
rectangles throughout the hierarchy [94, 11, 9].

Consider for example the problem of laying out sets of hierarchically structured time series,
or more generally, bar chart data. Then, in order to be able to compare time intervals and
value magnitudes, there must not be too many different scales present in the display tessella-
tion. Figure 4.14 shows an example of visualizing a set of hierarchically structured time series

140 Chapter 4. Space-filling visual object space analysis

charts using the CTM algorithm. Clearly, it is hard to compare periods in time and value mag-
nitudes throughout the display, as practically every time series rectangle is assigned unique
scales for itsx andy axes.

Figure 4.14:In practice, the CTM algorithm produces many different aspect ratios andx/y-
scales in its layout. Thereby, it is difficult to present important data types such as
time series inside the obtained rectangles in a useful way. The image shows the
CTM layout of the data set used in Section 4.3.3. Clearly, it is hard to effectively
compare the data set elements.

Quantum TreeMaps for Guaranteeing Consistent Aspect Ratios

It has been recognized that besidesoptimizingaspect ratios, in many applications it is desirable
to guaranteeconstant size and aspect ratios for all of the rectangles to be laid out. This is
motivated by supporting visual comparability when displaying multi-dimensional or abstract
data types such as images [9] or time series data [26], which call for regularity-providing
layout generation algorithms. In order to support regularity in TreeMap displays, in [9, 8]
it was proposed to perform a quantization of the output of the TreeMap algorithm, where
width and height of the resulting rectangles are allowed to assume only integer multiples of
predefined height and width quanta. The so-calledQuantum TreeMap(here abbreviated as
QTM) guarantees consistent rectangle aspect ratios, and by design places all data elements
on unique positions on a global regular grid. The basic idea is to first perform continuous
splitting, and then, based on this (intermediate) result, search for a good quantization of the
split points allowing to lay out the number of data elements requested by the given data subset.
It has to be defined what constitutes a good quantization, but usually, the amount of wasted
space, or the deviation from the continuous rectangle in terms of aspect ratio or symmetric
area difference are candidates for optimization.

4.3. Regular layout generation with Grid TreeMaps 141

The Quantum TreeMap principle can be applied on any intermediate input TreeMap layout.
In [9] quantization was done for the so-called Strip TreeMap layout, and in [8] it was done for
the so-called Ordered TreeMap layout. Both layouts are TreeMap variants aiming at optimiz-
ing rectangle aspect ratios. We here consider quantization of the original slice-and-dice layout.
Figure 4.15 illustrates the QTM technique applied on the slice-and-dice TreeMap algorithm.

A B

A1 A2 A3 B1 B2

(a) (b)

2.1.1 2.1.2

2.1.3

2.2.1 2.2.2

(c)

2.1.1 2.1.2 2.1.3

2.2.1 2.2.2

(d)

Figure 4.15:The Quantum TreeMap (QTM) quantizes the results of continuous splitting to
a suitable amount of rows and columns on a global regular grid. Image (b)
shows a global regular discretization grid overlaid on an initial CTM split de-
cision (dashed line), based on the simple data distribution indicated in (a). Based
on the concrete searching heuristic used, different allocation outcomes are possi-
ble. The blue and orange split lines included in (b) are possible based on different
quantization rules. (c) and (d) illustrate the final results. As opposed to the CTM-
based result shown in Figure 4.2(b), the quantized displays are not space-filling
any more.

By design, QTM does not obey the space-filling property of the original algorithm. In [9],
the authors performed an experimental analysis of thedisplay overheadmetric, which is the
amount of display space not occupied by data elements. The authors concluded that display
overhead is not critical when laying out data sets consisting of many elements per hierarchical
group. In this Section, we will revisit the QTM algorithm in an experimental analysis, and
will compare it against ourGrid TreeMapalgorithm developed in the next Section.

142 Chapter 4. Space-filling visual object space analysis

4.3.2 Grid TreeMap algorithm

The Quantum TreeMap provides layouts with guaranteed constant size and aspect ratios of the
data rectangles, and with consistent alignment of the elements on a global grid. There exist
two sourcesO for potential display overhead (loss in display utilization efficiency):

O1 QTM is not always able to quantize layout partitions to grid dimensions corresponding
to the exact number of elements to be laid out (grid cells may be left unoccupied; first
source of potential display overhead).

O2 QTM performs on-the-fly quantization of split points. During processing of the algo-
rithm, the resulting global layout may grow or shrink in width and height, deviating
from the initial root display rectangle. The final result may have to be be (isotropically)
scaled back into the original root display rectangle. Whenever the aspect ratios of the
root display and the resulting grid differ, then display overhead due to scaling will occur
(second source of potential display overhead).

We presume that based on the hierarchic characteristics of the input data set, significant
display overhead may occur in QTM. We therefore researched an alternative quantization
scheme we call theGrid TreeMap(GTM). Instead of first performing the continuous TreeMap
on the root display rectangle and then quantizing the result to the grid, we go the other way
round. We first decompose the root display rectangle to a grid of sufficient dimensionality, and
then perform the TreeMap algorithm directly on the resulting grid. The grid dimensionality is
found such that (a) the number of rows and columns is sufficient to hold all the data elements,
(b) no more than one row or one column is only partially occupied with data elements, and (c)
the aspect ratio of the resulting grid slots matches a predefined (targeted) aspect ratio as closely
as possible. We then perform the TreeMap algorithm on this grid by alternatingly scanning
rows or columns to assign data elements to slots on the grid (cf. Figure 4.16). We presume
this approach to be more space efficient than QTM for certain data set characteristics, at the
same time producing regular layouts. We recognize that by using scan based assignment of
elements to grid slots, we will encounter “stair-step” effects, thus split boundaries (hierarchical
separators) are not guaranteed to be straight lines anymore. It will be the responsibility of the
following rendering techniques to compensate for the loss of the straight line property, which
by design is provided in the CTM and QTM methods.

Rendering Grid TreeMaps

One property of the Quantum TreeMap not present in the Grid TreeMap is that in the former,
groups of elements are separated by straight lines. With QTM, the TreeMap user can trace
connections of the straight lines to quickly recognize hierarchical relationships present in the
data. With GTM, which performs scan line based partitioning of grid slots, we do not have the
straight line separator property, and it is expected that this negatively affects the ready perceiv-
ability of hierarchic relationships without providing appropriate visual support. Therefore, we
have to pay close attention to the way by which we indicate the hierarchy separators. We have
experimented with several different separating schemes, and found three of them effective for
rendering GTM layouts of different data hierarchy patterns:

4.3. Regular layout generation with Grid TreeMaps 143

30

16 14

79 68

(a) (b) (c)

Figure 4.16:With theGrid TreeMap(GTM), first the display rectangle is decomposed into a
grid of sufficient dimensionality to hold all data set elements. Then, on this grid
GTM performs slicing and dicing by alternatingly scanning rows and columns.
The right images show the GTM algorithm allocating the first (b) and the second
(c) levels of the hierarchy denoted in image (a).

1. GTM-N (Nested): Draw enclosing boundaries around groups of elements. Free the
required display space by simultaneously scaling down all grid rectangles such that the
display can accommodate all boundaries without over plotting.

2. GTM-S(Split Lines): Keep the distance between adjacent grid slots constant, and in-
dicate split line depth (hierarchy level) by appropriately setting the drawing attributes
color, thickness, and shape of the respective split lines.

3. GTM-B(Burst): Indicate hierarchy by varying the distance between groups of elements
with the splitting depth. Let greater distance between groups of rectangles indicates
higher (closer to the root) hierarchic separations.

GTM-Split keeps the amount of display space dedicated to hierarchic information constant,
but is not expected to scale for arbitrary deep hierarchies due to the fixed amount of display
space reserved for the split lines. GTM-Nest and GTM-Burst do not guarantee a bound for
the fraction of display space allocated for indicating arbitrarily deep or wide hierarchical rela-
tionships, but we will see in the next Sections that the techniques work well in practice. The
proposed rendering techniques are illustrated in Figure 4.17. In the next sections, we will
apply the GTM variants on a real-world data set, and perform experiments on synthetic data
assessing the quality of the layout algorithms.

4.3.3 Application

We here present the application of the QTM and GTM algorithms on a data set consisting
of daily stock price time series obtained from [84]. We like to render the data using the
familiar bar chart drawing technique, which requires a high degree of regularity in the display
to support effective comparative analysis. To allow the analyst to gain a quick overview over
a set of bar charts, the corresponding layouts should produce regular tessellations. Note that a
continuous layout as provided by the classical CTM (c.f. Figure 4.14) is clearly inappropriate
for this task, and we recognize the need for quantized layouts.

144 Chapter 4. Space-filling visual object space analysis

GTM-Nest

(a) Nest

GTM-Split

(b) Split Lines

GTM-Burst

(c) Burst

Figure 4.17:Three rendering methods for visualizing hierarchical relationships for Grid
TreeMap layouts. Cf. also Figure 4.16.

In order to impose a meaningful hierarchical ordering on the data set, as a preprocessing
step we apply theHierarchical Agglomerative Clustering Algorithm(HAC) [37] on the data
set. The HAC iteratively merges pairs of sets of elements which exhibit highest similarity at
the given iteration. The result is a binary tree which when properly visualized is a nice tool
for analyzing similarity relationships in a set of objects on which a meaningful similarity scale
can be defined. Note that binary-tree hierarchies are a stress test for the layout algorithms. The
heighth of a balanced tree with fanoutf containingn leaves (data elements) logarithmically
depends onf , ash= logf n holds. This in turn means that binary trees give deepest hierarchies
(more hierarchy levels) as compared to trees with fanout larger than 2. Thereby, the display
has to communicate more information and consequentially, has to allocate more display space
resources for hierarchy visualization.

For generating the layouts, we used a subset of the time series database consisting of 60
series with 48 values each. We configured the HAC algorithm to use the Euclidean distance
between time series normalized for offset and scale. Such normalization is a useful preprocess-
ing step when calculating time series similarity [56]. The resulting tree is of height 11, which
leads to a high degree of data partitioning, stressing the layout algorithms. We set the targeted
aspect ratio (as width : height) to 4 : 1, which seems reasonable for rendering bar charts of
the considered length. We set the root display to 1200×900 pixels. Where needed, we set
indention of grid rectangles and thickness of splitting / nesting lines to reasonable parame-
ters which try to be space efficient, and at the same time support perception of hierarchical
separation relationships.

In the following, we consider asdisplay overheadthe fraction of the root display rectangle
which is not occupied by time series (bar chart) rectangles. Specifically, empty space as well
as space occupied by split lines or used for element separation contributes to display overhead.
In case of QTM and GTM-B which may return layouts violating the aspect ratio of the root
display rectangle , we isotropically scale back the layout to fit the root display rectangle prior
to measuring display overhead.

Quantum TreeMap

Figure 4.18 (a) gives the result of the QTM layout of the hierarchically clustered data set. The
display aligns all time series rectangles on a global grid, and guarantees that all rectangles

4.3. Regular layout generation with Grid TreeMaps 145

(a) Quantum TreeMap (QTM) (b) Nested Grid TreeMap (GTM-N)

Figure 4.18:Quantum TreeMap (a) and nested Grid TreeMap (b) layouts of 60 time series,
organized by similarity using the hierarchic agglomerative clustering algorithm
(HAC) for preprocessing.

have the same size and aspect ratio. Due to the binary branching in the HAC tree, the tree
height is significant and results in a complex set of hierarchical relationships among the time
series. This in turn stresses the layout in terms of display overhead. When allocating inner tree
nodes, QTM searches for grid layouts which locally minimize display overhead. Therefore,
the total display overhead of a given data partition not only depends on the current quantization
decision made for the given tree node. It also depends on the quantization steps performed
when subsequently laying out the subtrees rooted at the given node, as well as the layout of
the siblings of the considered tree node. By design, QTM is a greedy layout algorithm which
does not consider global effects in the local layout decisions it makes, and consequently, the
display overhead is expected to be high if the tree structure is complex and deep. The overall
overhead in the QTM display of this data set amounts to 71%, which is significant. On the
other hand, the QTM retains the straight line property when separating groups of elements
in the display. This makes it rather easy for the analyst to trace partition borders in order to
understand the hierarchical relationships in the data set.

A more subtle problem coming along with the uneven distribution of elements to embedding
rectangles is that of potentially reduced perceivability ofbalancing relationships. Note that in
the QTM display, the size of rectangular display partitions does not have to be proportional
to the number of contained data elements. E.g., consider in Figure 4.18 (a) the first top-level
partition of the data set indicated along the straight horizontal line at about1

3 height. Within
this partition, the data is subsequently separated into two groups containing 15 and 3 elements,
respectively (the left and the right partition in the topmost display partition). As a result of
the final quantization layout, the second-level (vertical line) separator between the two groups
is placed at12 display width. At first, this might mislead to assuming both partitions to be
balanced, as the display areas in the left and right hand side partitions are equal. Yet, the
population of these areas with data elements is quite uneven (15 and 3 elements, respectively).

146 Chapter 4. Space-filling visual object space analysis

Nested Grid TreeMap (GTM-N)

Figure 4.18 (right) gives the result of the GTM-N (nested) layout of the data set. The algorithm
first generates the Grid TreeMap layout, and then draws thin boundaries around groups of
elements. Here, we drew boundaries of 1 pixel width around groups of elements which belong
together along the hierarchy. We also indent adjacent lines by 1 pixel. The deeper a given
hierarchy, the more grouping lines have to be drawn. Consequently, the bar chart boxes have to
be scaled down to free up the space required for border drawing. We chose to simultaneously
scale down all rectangles by the same amount as required by the hierarchy, to keep the data
elements at the same size and consistently positioned on the global grid.

The display overhead metric amounts to roughly 70%, which is comparable to the QTM
result. The reason is the depth of the hierarchy. As the HAC tree is of height 11, and consider-
ing we have to allocate at least 2 pixel per hierarchic boundary on each side of the respective
rectangles, it is not surprising that the rectangles are scaled down significantly. On the other
hand, as compared to QTM most of the space not occupied with bar charts is occupied by
nesting boundaries, indicating hierarchic information. We note that the topmost separation
levels are clearly perceivable, as there is a visual cumulative effect when many lines are drawn
in parallel. Also, the number of elements contained in subtree partitions is better perceivable,
as there is no “dead space” like in the QTM. It is somewhat more difficult to trace the lower
separation borders. Eventually, we have to rely on the pixel-level to completely assess the full
hierarchical structure.

Hierarchic Split Lines Grid TreeMap (GTM-S)

(a) Split Line Grid TreeMap (GTM-S) (b) Burst Grid TreeMap (GTM-B)

Figure 4.19:Splitline-based (a) and Burst Grid TreeMap (b) layouts of the same data as in
Figure 4.18.

The Grid TreeMap with hierarchic split lines (GTM-S) uses visual attributes of split lines
of fixed maximal width in order to communicate hierarchical separations throughout the data

4.3. Regular layout generation with Grid TreeMaps 147

tree. Designing split lines which are visually discriminating and at the same time are capable
to encode ordinal relationships (tree levels) is not an easy task. We experimented with several
different settings, and found the scheme given in Figure 4.20 a good compromise, although
other schemes are possible. We employ color, split line width, and dashing as visual attributes.
Figure 4.19 (a) shows the resulting Grid TreeMap layout using hierarchic split lines. We have
indented the rectangles by 10 Pixels each to free space for drawing the hierarchical split lines.
We notice that the top separation levels in the hierarchy (i.e., the bright most split lines) are best
perceived. Tracing the lower-level split lines is somewhat harder, as the lines get increasingly
thinner, but still it is possible to do so using the legend. The overall display overhead of 31%
is reasonably smaller than the one resulting from QTM and GTM-N.

Burst Grid TreeMap (GTM-B)

GTM-N and GTM-S draw enclosing boundaries and hierarchic split lines to communicate hi-
erarchic relationships among subsets of data elements. Another alternative we tested is to visu-
alize the separation relationships by depth-dependent horizontal and vertical spacing between
the individual data element groups. In our strategy, groups of objects get “burst apart” such
that groups separated on higher hierarchy levels get separated by more horizontal or vertical
space between them. We implemented a policy which during the layout generation performs
the bursting by translating rectangle partitions: In a sequence of scanning rows (columns),
the partitions get burst apart along vertical (horizontal) directions. We model the “bursting
distance”d(l) separating the sibling element groups rooted at an inner tree node of levell in a
tree of heighth as linearly depending on the respective hierarchy levell :

d(l) =
h− l

h
×Dmax

It results that the topmost partitions (rooted at hierarchy levell = 0) get allocated the dis-
tanced(l = 0) = 1×Dmax for separation, while the consecutive split levels are allocated a
linearly decreasing amount of maximal bursting distance. In practice, we get good results by
settingDmax= min(width,height) of the grid cells.

Figure 4.19 (b) shows the GTM-B layout of the clustered data set. Translating the groups
proportional to the splitting level supports perceivability of the splitting hierarchies. There
is a tradeoff between the space-efficiency and the usage of bursting: Larger burst distances
(implemented by higherDmaxsettings) consume more display space leading to higher display
overhead rates for a given data set. Still, display utilization is reasonable. In this example,
the space used for bursting was 53% of display space. We note that other than in the previous
variants, the individual rectangles are not aligned on a global grid anymore due to the con-
tinuous calculation of the amount of translation. Note also that the resulting layout may need
to be scaled back into the original root display area (like QTM), possibly resulting in scaling
overheadO2 (c.f. Section 4.3.2).

148 Chapter 4. Space-filling visual object space analysis

(a) (b)

Figure 4.20:Split line legend for the GTM-S layout in Figure 4.19 (a).

4.3.4 Evaluation

We recognize two important criteria for evaluating the quality of the proposed layout algo-
rithms. One criteria is theeffective perceivability of hierarchical relationshipsby the user.
Evaluating this metric formally is difficult as it would require a carefully designed user study
which at present is beyond our resources. We note that we regard the discussion in Sec-
tion 4.3.3 as supporting the effectiveness of the GTM techniques in visualizing hierarchical
relationships in regular displays. A second obvious evaluation criterion is thedisplay uti-
lization which contrary to the hierarchy perceivability can be automatically evaluated using
the display overhead metric. We experimentally measured the display overhead during batch
experiments to layout synthetically generated data sets of different size and hierarchy charac-
teristics. Specifically, we considered different balanced and unbalanced hierarchy models for
laying out 5 up to 200 time series objects inside a 1200×900 root display area.

Balanced Tree, Fanout = 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160 180 200

Number of Elements

D
is

pl
ay

 O
ve

rh
ea

d

QTM
GTM-N
GTM-B
GTM-S

(a) Balanced hierarchy,f = 2

Balanced Tree, Fanout = 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160 180 200

Number of Elements

D
is

pl
ay

 O
ve

rh
ea

d

QTM
GTM-N
GTM-B
GTM-S

(b) Balanced hierarchy,f = 8

Figure 4.21:Display overhead for GTM-{N,B,S} and QTM, for balanced hierarchies with tree
fanouts of 2 (a) and 8 (b), respectively.

Balanced hierarchies

We first evaluate the display overhead modeling the hierarchy as abalancedtree with constant
fanout f at each inner tree node. Figure 4.21 gives the display overhead results for fanout

4.3. Regular layout generation with Grid TreeMaps 149

settingsf = 2 (left chart) andf = 8 (right chart), respectively.
GTM-Nest and GTM-Split clearly show decreasing space efficiency for growing numbers

of elements. As the tree height grows with the number of elements, GTM-Nest has to allocate
more space for boundary drawing, which is freed by scaling down the grid cells. In case of the
binary tree (f = 2), already at 100 elements, space required for boundaries consumes more
than 60% of display resources. Practically, rendering more that 100 elements in the given tree
structure and root display (1200×900) using GTM-N thereby is problematic. Again, as noted
in the preceding Section, using binary trees is a stress test for the Grid TreeMap. In case of
trees of higher fanout this problem diminishes, as then tree height grows less aggressive. In
case of f = 8, GTM-N’s space efficiency improves to at most 50% of display overhead for
200 elements.

GTM-Split allocates constant inter-cell distances irrespective of the hierarchy structure
(note the identical display overhead curves in Figures 4.21 and 4.22). As the number of cells
grows, so does the amount of inter-cell spacing required for drawing hierarchic split lines. The
amount of space allocated for hierarchy visualization amounts to 20% for few elements, up to
a maximum of 60% for 200 elements.

GTM-Burst indicates hierarchical separations by translating partitions of elements apart
along opposite directions. The amount of translation negatively depends of the hierarchy
level. Therefore, trees with high fanout at higher tree levels (close to the root) consume the
most space for bursting. Forf = 2 we observe reasonable display overhead numbers around
50% for most data sizes. Withf = 8 the amount of space required is rather high (up to 80%)
for most data sizes.

The Quantum TreeMap results show an oscillating display usage pattern. In our imple-
mentation, we let QTM search for a good local quantization by either extending the number
of columnsor the number of rows to accommodate the number of elements to lay out in
each iteration, and using theareaof the alternatives as the selection criteria. In the hierarchy
model considered here, a large part of the display overhead in QTM is due to scaling overhead
(overhead sourceO2 in Section 4.3.2). In our experiments, many resulting QTM layouts are
significantly larger in width than in height, so isotropically scaling back the result into the
1200×900 display sacrifices vertical space. Due to the balanced structure of the hierarchy,
overhead sourceO1 makes up only a smaller part of the loss in display space. The latter find-
ing is in accordance with the results from [9]. With the data considered here, QTM overhead
oscillates around 60% (50%) atf = 2 (f = 8), with significant variance.

Unbalanced hierarchies

We also evaluated the display overhead when modeling the hierarchy as anunbalancedtree.
We keep fanoutf at each inner tree node constant but populate the leftmost child of each inner
tree node with the triple number of leaf elements rooted at the respective node, as compared to
its right hand side siblings. Figure 4.21 gives the results for fanout settingsf = 3 (left chart)
and f = 4 (right chart), respectively, for this tree model. We chose these fanout settings to get
tree structures of sufficient depth for our experiments. We obtain unbalanced trees where data
is unevenly distributed along the tree paths.

We observe the same metric readings for GTM-Split, as by design its space occupancy is

150 Chapter 4. Space-filling visual object space analysis

invariant with respect to tree structure. GTM-Nest, due to the unbalanced hierarchy structure,
has to dedicate less display space to the group boundaries as compared to the low-fanout tree
results in Figure 4.21 (left). We observe maximal hierarchy overhead of about 80% (70%) for
200 elements using a fanout off = 3 (f = 4). We note that for element counts up to about 140,
in both hierarchies we still have around 100%−60%= 40% space left for element rendering.
GTM-Burst is significantly impacted by the deeper hierarchies resulting from the unbalanced
tree structure, as it has to bust apart more element partitions, andd(l) is diminishing at a slower
rate (cf. Section 4.3.3). Also,O2 overhead occurs for GTM-Burst. Maximum overhead is in
the range of 80% for both fanout settings, and for most data sizes. An exception is the interval
between 40 and 100 elements withf = 4, where overhead is around 60%.

Unbalanced Tree, Fanout = 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160 180 200

Number of Elements

D
is

pl
ay

 O
ve

rh
ea

d

QTM
GTM-N
GTM-B
GTM-S

(a) Unbalanced hierarchy,f = 3

Unbalanced Tree, Fanout = 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160 180 200

Number of Elements

D
is

pl
ay

 O
ve

rh
ea

d

QTM
GTM-N
GTM-B
GTM-S

(b) Unbalanced hierarchy,f = 4

Figure 4.22:Display overhead for GTM-{N,B,S} and QTM, for unbalanced hierarchies with
tree fanouts of 3 (a) and 4 (b), respectively.

Experiments Summary

We can summarize the experimental findings as follows. GTM-Burst delivers efficient layouts
in terms of the hierarchy overhead metric for hierarchical structures of comparably low fanout,
as then, less space is allocated for bursting apart partitions (cf. Section 4.3.3). GTM-Nest
delivers efficient layouts in the opposite case, namely, when fanout is high and resulting tree
depth is comparably low. The bottleneck factor in GTM-Nest is the tree depth, as the maximal
hierarchic level in the data set dictates the amount of down scaling that has to be applied on all
grid cell rectangles (recall that we target regular layouts, so we demand uniform scales for all
rectangles). GTM-Burst and GTM-Nest therefore are recommended for complementary use
depending on the hierarchical structure to be visualized. GTM-Split provides a middle ground
and is promising in case the number of elements in the data set is not too large, irrespective of
the hierarchical structure present, up to a limit dictated by the number of levels we can visually
discriminate using split line drawing attributes. We estimate the latter limit to be around 10
levels, which should be sufficient to support many real-world applications.

We also evaluated the Quantum TreeMap algorithm as a base line competitor for our algo-
rithms. As the charts show, there are data constellations where either one of the Grid TreeMap

4.3. Regular layout generation with Grid TreeMaps 151

algorithms outperforms the QTM, in term of the display overhead metric. We conclude that
Grid TreeMaps are a practical option for visualizing regularity-requiring, hierarchical data
sets. Depending on the nature of the data in terms of hierarchical structure and data set size,
the most appropriate GTM variant may be selected interactively by the user or automatically
by the visualization system as based on the display overhead metric. Figure 4.23 summarizes
the experimental findings in a table.

Tobias Schreck - Regular TreeMap Layouts for Visual Analysis of Hierarchical Data

Experiments (3)

Good for shallow and
low-fanout trees

Room for additional
visual clues

Bad (conversely)

>80% overhead @ 60 series

Good due to lower numbers of
partitions on higher levels

Roughly around 50% for all
data set sizes considered

BURST

Independent of hierarchic
structure

Effectiveness probably
limited to ~5-10 levels

Invariant

dito

Invariant

50% overhead @ 140 series
60% overhead @ 200 series

SPLIT

Good for shallow trees

Hierarchy perception
rather easy

Good due to less indention

40% overhead @ 120 series
50% overhead @ 200 series

Bad due to constant indention

50% overhead @ 60 seriesNEST

SummaryShallow Tree
(f=8)

Deep Tree (f=2)Method

Figure 4.23:Summary of the display overhead experiments.

Regarding the rather high degree of display overhead in QTM, we note that the numbers may
be due to our chosen implementation (cf. Section 4.3.4). Other quantization heuristics are pos-
sible, and we have not attempted to optimize the searching strategy to the considered data set
characteristics. We note that traditionally, TreeMap algorithms perform greedy optimization,
and this is rather a feature than a drawback of the techniques. The TreeMap philosophy is to
provide fast algorithms suited for online layout generation. We therefore have not attempted
to further optimize the quantization in our QTM implementation in a back-tracking manner,
as we feel this would not be in accordance with the tradition of TreeMap algorithms. We
rather take QTM as a reference for assessing the performance of our Grid TreeMap variants,
which are designed to give compact representations based on the linear nature of the TreeMap
algorithm family.

4.3.5 Conclusions

We have presented novel layout techniques based on the idea of applying the recursive TreeMap
algorithm on a regular grid of display cells. The introduced Grid TreeMap layouts provide a
high degree of regularity, and thereby are suited for layout of hierarchically structured, com-

152 Chapter 4. Space-filling visual object space analysis

plex data sets requiring regularity such as time series data, images, and multidimensional data,
among others. Depending on the nature of the data set in terms of hierarchy fanout, degree of
tree balance, and data set size, different Grid TreeMap rendering variants using boundaries,
split lines, or translation-based separation, can be recommended. We applied the techniques
for visualizing hierarchically clustered time series data, and we performed synthetic experi-
ments allowing to evaluate the algorithm performance in terms of perceivability of hierarchical
relationships and display overhead.

In this Section we have focussed on designing the basic layout generators, and will address
improved rendering for the different Grid TreeMap variants in the future. Several options
for visually supporting the perceivability of hierarchical structures using cell connectors, in-
dication of bursting directions, usage of shading and cushions and so on are possible. Also,
interaction techniques such as mouse-over-based highlighting functionality like implemented
in the SequoiaView system [80] seem a promising extension for supporting hierarchical per-
ception and navigation by the user. Evaluation of the effectiveness of hierarchical structures
perception should be addressed in a formal user study. In this Section we assumed all the data
elements to require the same layout (size and aspect ratio) for their enclosing element rectan-
gles. Another interesting problem would be to design regularity-providing layout generators
for data where the elements require differing element layouts.

5 Thesis conclusions

This thesis started by considering the Feature Vector approach for the management of data-
bases of multimedia objects. The FV approach describes complex multimedia objects by
points in high-dimensional feature space. Using an appropriate metric defined in FV space,
distances in FV space are associated with similarity relationships in object space, which in
turn are input to important applications such as content-based retrieval, clustering, and visual
database analysis.

For many data types, there is a wealth of FV extractors available to perform the mapping
to FV space, and it is usually not clear what the best FV extractors in terms of effectiveness
and efficiency of the representation are. Therefore, benchmarking and FV space analysis are
needed to address the FV selection and engineering problems. The FV selection problem
refers to identifying the most appropriate FV spaces for a given data type and application.
The FV engineering problem refers to finding the most efficient representation for a given FV
space. In this thesis we have addressed these problems for the 3D model retrieval domain. We
have proposed supervised and unsupervised methods for FV selection and engineering, and for
increasing the effectiveness of multimedia applications by building appropriate combinations
of FVs. Also, novel visualization methods were devised for effectively supporting retrieval
and visual analysis in multimedia databases at the FV space and at the object levels. We next
recall the main results in each of these thesis areas. We also summarize related problems
considered interesting for future research in this context.

Effective retrieval with Feature Vectors (Chapter 2)

In this chapter, we studied FV extraction for 3D models. First, the 3D model data type was
introduced, and key desirable properties of 3D FV extractors were identified. An extraction
process model was set up that allows systematization of the wealth of different 3D extractors
which have been proposed recently. The model considers the most important preprocess-
ing and transformation steps, and accommodates statistical, FV and graph-based descriptions.
We then introduced the Konstanz 3D benchmark, a collection of 3D models manually clas-
sified according to geometric shape. This benchmark was used to evaluate the discrimina-
tion power (effectiveness) of a range of structurally different 3D FV extractors, identifying
benchmark-average discrimination power, as well as robustness and efficiency of FV extrac-
tion. An image-based extractor was found to deliver best results.

Based on an analysis of the distribution of retrieval performance over subsets of the bench-
mark (individual query classes), we then researched combinations of FVs as a powerful means
of boosting the discrimination performance. Thorough experiments were conducted explor-
ing the combination space with respect to combination structure, combination cardinality, and

154 Chapter 5. Thesis conclusions

mode of combining the selected FVs. A scheme based on sums of maximum-normalized dis-
tances was found to deliver best results. Furthermore, an approach for building dynamically
weighted combinations was proposed. Using a certain amount of supervised information, a
query processor builds weights for each FV in the system to execute dynamically weighted
queries based on the given query object.

Several promising directions for future research in this context can be identified. Regarding
descriptor definition, the problem of how to best achieve rotational invariance is obvious.
Solutions to date include using PCA-based object normalization on one hand, and defining
feature extractors considering implicit rotational invariant features only on the other hand.
Quantifying the tradeoff between both approaches should be done in a careful experiment
including an orientation ground truth.

On a larger scale, the specialization of FVs for certain application domains such as CAD
or medical applications, where peculiarities of the database (model characteristics) can be
exploited, seems promising. Current extractors consider more general, global geometric fea-
tures, suited for general-purpose VRML models found on the Internet today, like represented
in the benchmarks considered in this thesis. Exploiting domain-dependent knowledge should
allow design of FV extractors better supporting specific applications.

Also in this context, graph-based descriptors are suited to capture structural information,
which is difficult to achieve with FVs. How to robustly extract graph-based information from
3D objects is not clear to date, and also, how these could possibly be encoded in a FV. Further-
more, current FV extractors consider the global model, aiming at calculating global geometric
similarity. Local (partial) similarity calculation is a largely unsolved problem.

Regarding the implementation of effective retrieval systems, we see potential for the dy-
namic FV selection and weighted combination approach. The theoretic analysis showed
that significant improvement potential exists over the static combination approach, if the best
suited FVs to answer the given query can be found. Heuristics to estimate the suitability are
needed. They can be based on supervised information, which could be dynamically collected
from the system by monitoring relevance feedback provided by the users. Also, unsupervised
estimators based on distance and component distributions are possible. In Section 3.2 we
leveraged such a scheme globally for different FV spaces. How to adapt these estimators for
the query-local case is an interesting problem which should be addressed.

Visual feature space analysis (Chapter 3)

The second contribution of this thesis was to research visualization techniques suitable for
supporting retrieval, browsing, and FV selection and engineering in multimedia databases.
First, the Self-Organizing Map (SOM) algorithm was shown to be applicable to organize large
multimedia databases described by high-dimensional FVs in a semantically meaningful way.
SOMs were generated for collections of 3D models, E-Mails, and time series objects; these
data types have not been previously organized elsewhere using SOMs to the best of our knowl-
edge. The obtained SOM visualizations were improved by representing density distribution
information by scaling appropriate color space attributes. The proposed SOM views are use-

155

ful to quickly overview previously unknown databases, and to perform scatter browsing to
obtain query objects, and visual database analysis in the wider sense. Also, we proposed
SOMs as a suitable means for implementing visual relevance feedback by mapping relevant
answer objects back to the map, encouraging the exploration of neighboring SOM regions.
This approach is expected to lead to retrieval of more relevant answer objects by the user.

SOMs were then researched as unsupervised estimators of global discrimination power to
expect for a given database represented in different FV spaces. The estimators are based on
the heterogeneity of cluster distances and FV component distributions, and allow unsuper-
vised selection of suitable FV spaces for a given application in the absence of benchmarking
(supervised) information. Regression experiments validated the usefulness of the estimators
on real as well as on synthetic data. Unsupervised FV selection and engineering is desirable,
as the supervised approach requires a large test database, therefore is expensive, and may not
be stable for dynamically changing database content.

We finally explored a new metaphor for projection visualization, the convex hull metaphor.
This visualization improves over the symbol cloud approach usually adopted in 2D/3D projec-
tion visualization, and supports supervised visual benchmarking, class discrimination analysis,
and FV engineering in the wider sense. By a series of systematic experiments, the validity of
the proposed metaphor for visual analysis was statistically supported.

There exist promising future research directions in visual analysis support for multimedia
retrieval. The integration of standard retrieval interfaces with the SOM view should be fur-
ther developed. Specifically, more advanced methods for mapping relevant objects onto the
SOM are needed, considering also local SOM node characteristics such as node population
density, relative discrimination to surrounding SOM regions, and so on in the visualization.
Such mapping encourages the user to explore further on the SOM, potentially finding more
relevant objects. The performance of such interactive SOM-based exploration in terms of pre-
cision/recall statistics should be assessed by appropriate experiments, allowing to compare
the SOM-approach to more standard relevance feedback methods from machine learning and
information retrieval. Parts of these aspects are currently being worked on [29]. Also, it is
planed to further research these directions within the DELOS EU Network of Excellence on
Digital Libraries [27] (there: task 4.5a ‘Visual Relevance Feedback’).

Regarding the proposed unsupervised discrimination power estimators, it would be interest-
ing to research additional estimation functions based on entropy, or other information-theoretic
measures rating the heterogeneity of distances and components in SOM space. Pixnostics [45]
are expected to be a suitable starting point. Also, adaption of these estimators to work in a
dynamic query processor should be researched. The idea is to use local SOM-estimators for
query-dependent FV selection and weighting. In context of this idea, it would also be interest-
ing to combine the unsupervised estimators with supervised information obtained e.g., during
a relevance feedback cycle.

Finally, regarding the convex-hull based projection approach, we feel that the display could
be improved by researching more complex visualization metaphors. Such metaphors could
include free-form shapes modeling also the local density of the point clouds, and the degree of
overlap throughout the shape. An interesting starting point to this end would be to implement

156 Chapter 5. Thesis conclusions

the so-called Enridged Contour Maps [91] in our system.

Visual object space analysis (Chapter 4)

The last part of the thesis dealt with visualization support for the object level. Regular layout
algorithms were researched which support the structured visualization of database content.
Use cases are exploration of database content, and visualization of search results. Regularity
providing layout algorithms are needed for many object-level representations of multimedia
content, such as images, time series, and text documents.

First, we surveyed the popular TreeMap family of layout algorithms. We classified the
algorithms according to their approach to the display regularity objective into continuous,
optimizing, and guaranteeing layout algorithms. The main layout objectives the algorithms
are based on were analytically compared.

We then proposed a regularity-optimizing algorithm (the ID-Map algorithm), which re-
cursively allocates sets of time series elements into partitions of predefined splitting masks.
The splitting masks provide regularity and ordering properties, supporting comparative visual
analysis of time series data. Choosing between different prototype mask templates, the display
is able to communicate the distribution of certain interestingness measures along a given hier-
archy. The algorithm was applied on a number of data sets, demonstrating its usefulness. The
technique was experimentally compared with an aspect-ratio optimizing algorithm by means
of certain display metrics, outperforming the competitor on a number of metrics.

We finally proposed a regularity-guaranteeing algorithm (the Grid TreeMap algorithm)
which operates by slicing and dicing a regular grid of display space. Three different rendering
methods were designed supporting the visualization of deep or wide hierarchical structures
on the grid. The algorithm was applied on a hierarchically clustered time series data set, and
experimentally shown to outperform the slice-and-dice Quantum TreeMap algorithm.

Again, a number of interesting research directions can be identified. First, the ID-Map algo-
rithm could be improved with respect to size-proportionality. Data-dependent discretization
of split points is an option to improve this characteristic. As size-proportionality shares a
trade-off with the regularity property, precisely quantifying this tradeoff would be helpful for
improving importance-driven time series layouts.

Regarding the Grid TreeMap approach, the three proposed rendering methods split, nest,
and burst could also be improved by combination with other hierarchy-supporting visualiza-
tion techniques. E.g., the cushion metaphor [88] has been shown to work well for supporting
perception of complex hierarchical structures. We plan to use cushions or 2.5D-like shading
to support the burst and nest approaches. Also, further researching effective combinations of
color and shape attributes should lead to improved designs of hierarchical split lines of fixed
width to support the split rendering method. Generally, it is a challenging problem to design
hierarchical visual clues for inclusion in TreeMap-like displays. Recent results from the IEEE
Symposium on Information Visualization 2006 indicate that the potential for improvement in
this direction is not yet exhausted.

A Appendix

158 Chapter A. Appendix

Table A.1:Query classes defined in the KN-DB benchmark. The database contains 1838 ob-
jects, out of which 472 were manually assigned to one of 55 query classes.

Class id Description # of models

1 ants 6
2 rabbits 4
3 cows 7
4 dogs 4
5 fish-like 13
6 bees 5
7 CPUs 4
8 keyboards 8
9 cans 4
10 bottles 14
11 bowls 4
12 pots 4
13 cups 8
14 wine glasses 9
15 teapots 4
16 biplanes 5
17 helicopters 9
18 missiles 16
19 jet planes 18
20 fighter jet planes 26
21 propeller planes 10
22 other planes 4
23 zeppelins 6
24 motorcycles 5
25 sport cars 6
26 cars 23
27 Formula-1 cars 9
28 galleons 4

Class id Description # of models

29 submarines 5
30 warships 5
31 beds 7
32 chairs 24
33 office chairs 6
34 sofas 4
35 benches 3
36 couches 11
37 axes 4
38 glasses 7
39 knives 3
40 screws 3
41 spoons 3
42 tables 6
43 skulls 3
44 human heads 8
45 human masks 4
46 books 4
47 watches 2
48 sand clocks 4
49 swords 25
50 barrels 3
51 birches 4
52 flower pots 9
53 trees 11
54 weeds 9
55 human bodies 56

159

(a) Class 5 (fish-like)

(b) Class 13 (cups)

(c) Class 32 (chairs)

(d) Class 55 (human bodies)

Figure A.1:Members of four different query classes from the Konstanz 3D Benchmark.

160 Chapter A. Appendix

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, COREL images, Dmax normalization

(a) dmax normalization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, COREL images, Mean normalization

(b) mean normalization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, COREL images, 3*StdDeviation normalization

(c) variance normalization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, COREL Images, Median normalization

(d) median normalization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, COREL images, Medrank normalization

(e) Medrank aggregation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Unweighted Combinations, COREL images, Borda aggregation

(f) Borda aggregation

Figure A.2:Combination results for the COREL images database.

Table A.2:R-precision statistics for the COREL images combinations.

Normalization 1 2 3 4 5 6
dmax min 11.9 14.9 17.1 19.1 20.9 22.5
dmax mean 14.2 18.1 20.1 21.3 22.0 22.5
dmax max 18.0 22.5 23.7 24.1 23.5 22.5
mean min 11.9 14.7 16.5 18.5 20.3 22.4
mean mean 14.2 17.7 19.6 20.8 21.7 22.4
mean max 18.0 22.2 23.3 23.6 23.5 22.4

variance min 11.9 14.6 16.5 18.9 20.7 22.5
variance mean 14.2 17.4 19.5 20.9 21.8 22.5
variance max 18.0 21.1 22.8 24.0 23.4 22.5
median min 11.9 14.7 16.5 18.4 20.3 22.4
median mean 14.2 17.7 19.6 20.8 21.7 22.4
median max 18.0 22.3 23.3 23.5 23.5 22.4

Medrank min 11.9 14.0 15.5 17.7 18.7 21.0
Medrank mean 14.2 16.8 17.8 19.5 19.7 21.0
Medrank max 18.0 20.4 20.1 21.3 21.2 21.0

Borda min 11.9 14.0 15.7 17.7 19.5 21.0
Borda mean 14.2 16.8 18.4 19.6 20.4 21.0
Borda max 18.0 20.4 21.5 21.7 21.3 21.0

161

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Mean relative to Dmax, COREL images

100%

(a) Mean/dmax

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

3xVariance relative to Dmax, COREL images

100%

(b) 3xVariance/dmax

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 6 5 4 3 2 1

R
−

P
re

ci
si

on
Combination Cardinality

Median relative to Dmax, COREL images

100%

(c) Median/dmax

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Medrank aggregation relative to Dmax, COREL images

100%

(d) Medrank/dmax

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 6 5 4 3 2 1

R
−

P
re

ci
si

on

Combination Cardinality

Borda aggregation relative to Dmax, COREL images

100%

(e) Borda/dmax

Figure A.3:Performance of the aggregation methods relative todmax, on the COREL FV data-
base.

162 Chapter A. Appendix

Size COR SD2 H3D RIN SHA 3DDFT SIL CPX VOX DBF R-Precision
(17.2) (19.3) (22.1) (22.6) (23.8) (26.2) (27.3) (29.7) (30.3) (32.2)

2 1 0 0 0 0 1 0 0 0 0 22.27%
2 1 1 0 0 0 0 0 0 0 0 22.71%
2 1 0 0 0 0 0 1 0 0 0 24.05%
2 1 0 0 1 0 0 0 0 0 0 25.11%
2 0 1 1 0 0 0 0 0 0 0 25.54%
2 1 0 0 0 1 0 0 0 0 0 25.73%
2 1 0 1 0 0 0 0 0 0 0 25.79%
2 0 1 0 1 0 0 0 0 0 0 26.15%
2 1 0 0 0 0 0 0 0 0 1 27.40%
2 0 0 1 0 0 1 0 0 0 0 27.48%
2 0 0 0 1 0 1 0 0 0 0 27.60%
2 0 1 0 0 0 1 0 0 0 0 27.96%
2 0 1 0 0 0 0 1 0 0 0 28.05%
2 1 0 0 0 0 0 0 1 0 0 28.17%
2 0 0 1 1 0 0 0 0 0 0 28.30%
2 0 0 1 0 0 0 1 0 0 0 28.39%
2 0 0 0 1 0 0 1 0 0 0 28.89%
2 0 0 1 0 1 0 0 0 0 0 29.67%
2 0 0 0 0 1 0 0 1 0 0 30.85%
2 0 0 0 1 0 0 0 0 0 1 30.88%
2 0 0 1 0 0 0 0 0 0 1 30.89%
2 0 0 0 1 1 0 0 0 0 0 30.90%
2 0 1 0 0 0 0 0 0 0 1 31.11%
2 0 0 0 0 0 1 0 0 1 0 31.17%
2 0 1 0 0 1 0 0 0 0 0 31.31%
2 0 0 1 0 0 0 0 1 0 0 31.40%
2 0 1 0 0 0 0 0 1 0 0 32.36%
2 0 0 0 0 1 1 0 0 0 0 32.41%
2 1 0 0 0 0 0 0 0 1 0 32.50%
2 0 0 0 0 1 0 1 0 0 0 33.54%
2 0 0 0 0 0 1 1 0 0 0 33.58%
2 0 0 0 1 0 0 0 1 0 0 33.62%
2 0 0 0 0 0 0 1 0 0 1 33.84%
2 0 1 0 0 0 0 0 0 1 0 34.23%
2 0 0 1 0 0 0 0 0 1 0 34.57%
2 0 0 0 1 0 0 0 0 1 0 34.58%
2 0 0 0 0 0 1 0 0 0 1 35.02%
2 0 0 0 0 0 0 1 1 0 0 35.32%
2 0 0 0 0 0 0 1 0 1 0 35.72%
2 0 0 0 0 1 0 0 0 0 1 35.97%
2 0 0 0 0 1 0 0 0 1 0 36.35%
2 0 0 0 0 0 1 0 1 0 0 36.65%
2 0 0 0 0 0 0 0 1 0 1 37.40%
2 0 0 0 0 0 0 0 0 1 1 37.50%
2 0 0 0 0 0 0 0 1 1 0 38.85%

Figure A.4:Participation histogram for combinations of cardinality 2 (KN-DB). The columns
are sorted increasingly by single FV benchmark scores (R-precision), and the rows
are sorted by increasing R-precision of the combinations. Dark shaded cells indi-
cate that the respective FV participated in the combination. FVs which perform
good in single usage participate more often in good performing combinations.

163

Size COR SD2 H3D RIN SHA 3DDFT SIL CPX VOX DBF R-Precision
(17.2) (19.3) (22.1) (22.6) (23.8) (26.2) (27.3) (29.7) (30.3) (32.2)

3 1 1 0 0 0 1 0 0 0 0 26.84%
3 1 1 0 0 0 0 1 0 0 0 27.34%
3 1 1 0 1 0 0 0 0 0 0 27.71%
3 1 0 0 0 0 1 1 0 0 0 28.08%
3 1 1 1 0 0 0 0 0 0 0 28.79%
3 1 0 0 1 0 1 0 0 0 0 28.84%
3 0 1 0 1 0 1 0 0 0 0 29.25%
3 1 0 0 1 0 0 1 0 0 0 29.75%
3 0 1 1 1 0 0 0 0 0 0 29.84%
3 1 0 1 0 0 1 0 0 0 0 29.95%
3 1 1 0 0 1 0 0 0 0 0 30.04%
3 0 1 0 1 0 0 1 0 0 0 30.04%
3 0 1 1 0 0 0 1 0 0 0 30.10%
3 1 0 0 0 1 1 0 0 0 0 30.10%
3 1 0 1 1 0 0 0 0 0 0 30.41%
3 1 0 1 0 0 0 1 0 0 0 30.47%
3 1 1 0 0 0 0 0 0 0 1 30.74%
3 0 1 1 0 0 1 0 0 0 0 30.79%
3 1 0 0 0 0 0 1 0 0 1 30.94%
3 1 0 0 1 0 0 0 0 0 1 31.11%
3 1 0 0 0 1 0 1 0 0 0 31.31%
3 1 0 0 1 1 0 0 0 0 0 31.36%
3 1 0 0 0 1 0 0 1 0 0 31.43%
3 1 0 1 0 1 0 0 0 0 0 31.44%
3 1 0 0 0 0 1 0 0 0 1 31.46%
3 0 0 1 1 0 1 0 0 0 0 31.65%
3 1 0 1 0 0 0 0 0 0 1 31.66%
3 1 1 0 0 0 0 0 1 0 0 31.87%
3 0 1 0 1 1 0 0 0 0 0 31.93%
3 0 0 0 1 0 1 1 0 0 0 31.94%
3 0 0 1 1 0 0 1 0 0 0 31.95%
3 0 1 1 0 0 0 0 0 0 1 32.10%
3 0 0 1 0 0 1 1 0 0 0 32.31%
3 0 1 0 1 0 0 0 0 0 1 32.38%
3 0 1 0 0 0 1 1 0 0 0 32.38%
3 0 1 1 0 1 0 0 0 0 0 32.40%
3 1 0 0 0 0 0 1 1 0 0 32.75%
3 1 0 1 0 0 0 0 1 0 0 32.81%
3 1 0 0 0 0 1 0 1 0 0 32.90%
3 0 0 1 1 0 0 0 0 0 1 33.40%
3 0 1 0 0 0 0 1 0 0 1 33.42%
3 0 0 0 1 0 1 0 0 0 1 33.43%
3 1 0 0 1 0 0 0 1 0 0 33.45%
3 1 0 0 0 1 0 0 0 0 1 33.47%
3 0 0 0 1 0 0 1 0 0 1 33.51%
3 0 0 1 0 1 0 0 1 0 0 33.56%
3 0 0 1 1 1 0 0 0 0 0 33.65%
3 0 1 0 1 0 0 0 1 0 0 33.66%
3 0 1 1 0 0 0 0 1 0 0 33.74%
3 0 0 1 0 1 1 0 0 0 0 33.87%
3 0 0 1 0 0 1 0 0 0 1 33.99%
3 0 0 1 0 1 0 1 0 0 0 34.03%
3 1 0 0 0 0 1 0 0 1 0 34.05%
3 0 0 1 0 0 0 1 0 0 1 34.08%
3 1 0 0 0 0 0 0 1 0 1 34.35%
3 0 0 0 1 1 1 0 0 0 0 34.61%
3 0 0 0 1 1 0 1 0 0 0 34.64%
3 0 1 0 0 1 0 0 1 0 0 34.86%
3 0 1 0 0 0 1 0 0 0 1 34.86%
3 0 1 0 0 1 0 1 0 0 0 34.91%

(a)

Size COR SD2 H3D RIN SHA 3DDFT SIL CPX VOX DBF R-Precision
(17.2) (19.3) (22.1) (22.6) (23.8) (26.2) (27.3) (29.7) (30.3) (32.2)

3 1 1 0 0 0 0 0 0 1 0 34.99%
3 0 0 1 0 0 0 1 1 0 0 35.02%
3 0 1 0 1 0 0 0 0 1 0 35.11%
3 0 0 0 1 1 0 0 1 0 0 35.18%
3 1 0 0 1 0 0 0 0 1 0 35.21%
3 0 0 1 1 0 0 0 1 0 0 35.23%
3 0 1 0 0 0 0 1 1 0 0 35.32%
3 0 0 1 0 0 1 0 1 0 0 35.38%
3 0 0 0 1 1 0 0 0 0 1 35.43%
3 0 0 0 0 1 0 1 1 0 0 35.61%
3 0 1 1 0 0 0 0 0 1 0 35.78%
3 0 1 0 0 0 1 0 0 1 0 35.79%
3 0 0 1 0 1 0 0 0 0 1 35.80%
3 0 0 0 1 0 1 0 0 1 0 35.90%
3 1 0 0 0 0 0 1 0 1 0 35.92%
3 1 0 1 0 0 0 0 0 1 0 35.97%
3 0 0 1 0 0 1 0 0 1 0 36.00%
3 0 0 0 1 0 0 1 1 0 0 36.13%
3 0 0 0 0 1 1 0 1 0 0 36.23%
3 0 0 0 0 0 1 1 0 0 1 36.33%
3 0 0 0 0 0 1 1 0 1 0 36.41%
3 0 0 1 1 0 0 0 0 1 0 36.42%
3 0 1 0 0 1 0 0 0 0 1 36.45%
3 0 1 0 0 0 0 1 0 1 0 36.51%
3 0 1 0 0 1 1 0 0 0 0 36.57%
3 0 0 0 1 0 0 1 0 1 0 36.76%
3 0 0 1 0 0 0 0 1 0 1 36.77%
3 0 0 0 1 0 1 0 1 0 0 37.01%
3 0 1 0 0 0 0 0 1 0 1 37.09%
3 0 0 0 0 1 1 0 0 1 0 37.13%
3 0 1 0 0 0 1 0 1 0 0 37.14%
3 0 0 0 1 0 0 0 1 0 1 37.14%
3 0 0 0 0 1 0 0 1 0 1 37.26%
3 0 0 1 0 0 0 1 0 1 0 37.36%
3 0 0 0 0 1 0 1 0 0 1 37.53%
3 1 0 0 0 1 0 0 0 1 0 37.67%
3 1 0 0 0 0 0 0 0 1 1 37.72%
3 0 0 0 1 0 0 0 0 1 1 37.80%
3 0 0 0 0 0 1 0 0 1 1 38.12%
3 0 0 0 0 1 1 1 0 0 0 38.23%
3 0 0 1 0 0 0 0 0 1 1 38.30%
3 0 1 0 0 0 0 0 0 1 1 38.34%
3 0 0 0 0 0 0 1 1 0 1 38.34%
3 0 0 0 0 0 1 1 1 0 0 38.80%
3 0 0 0 1 1 0 0 0 1 0 39.04%
3 0 0 0 0 0 0 1 0 1 1 39.05%
3 0 0 0 0 1 1 0 0 0 1 39.21%
3 1 0 0 0 0 0 0 1 1 0 39.23%
3 0 0 0 0 1 0 0 1 1 0 39.39%
3 0 0 0 0 0 1 0 1 1 0 39.46%
3 0 1 0 0 1 0 0 0 1 0 39.57%
3 0 0 1 0 0 0 0 1 1 0 39.58%
3 0 0 1 0 1 0 0 0 1 0 39.71%
3 0 0 0 0 1 0 1 0 1 0 39.76%
3 0 0 0 0 0 1 0 1 0 1 40.00%
3 0 0 0 0 0 0 1 1 1 0 40.38%
3 0 0 0 1 0 0 0 1 1 0 40.48%
3 0 1 0 0 0 0 0 1 1 0 40.53%
3 0 0 0 0 1 0 0 0 1 1 41.59%
3 0 0 0 0 0 0 0 1 1 1 41.76%

(b)

Figure A.5:Participation histogram for combinations of cardinality 3 (KN-DB).

164 Chapter A. Appendix

(a) (b)

(c) (d)

(e) (f)

Figure A.6:The diamond-shaped U-Matrix is constructed by representing the distances be-
tween adjacent nodes on the rectangular grid by diamonds (we thank Dietmar
Saupe for giving the idea). The diamonds are color-coded by respective distance.
The SOM nodes are represented by circles, with the circles being color-coded
according to the average distance to all neighboring nodes.

165

(a)
P

M
O

M
(15%

,1.16)
(b)

S
D

2
(18%

,0.97)
(c)

H
3D

(20%
,0.81)

(d)
R

IN
(23%

,0.70)

(e)
3D

D
F

T
(25%

,0.78)
(f)

C
P

X
(27%

,0.75)
(g)

S
IL

(28%
,0.83)

(h)
V

O
X

(31%
,0.73)

(i)
D

B
F

(31%
,0.72)

(j)
D

S
R

(43%
,0.73)

F
igure

A
.7:U

-M
atrices

for
the

ten
F

V
spaces

from
S

ection
3.2.4.

R
-precision

and
uniform

ity
scores

are
given

in
brackets.

166 Chapter A. Appendix

(a)
P

M
O

M
(15%

,52d)
(b)

S
D

2
(18%

,130d)
(c)

H
3D

(20%
,128d)

(d)
R

IN
(23%

,155d)

(e)
3D

D
F

T
(25%

,173d)
(f)

C
P

X
(27%

,169d)
(g)

S
IL

(28%
,375d)

(h)
V

O
X

(31%
,343d)

(i)
D

B
F

(31%
,510d)

(j)
D

S
R

(43%
,472d)

F
igure

A
.8:C

om
ponent

plane
arrays

for
the

ten
F

V
spaces

from
S

ection
3.2.4.

R
-precision

and
F

V
dim

ensionality
are

given
in

brackets.

167

R-Precision on Synthetic Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0

Class Separation

R
-P

re
ci

si
on 50 Classes

100 Classes
200 Classes

Figure A.9:R-precision plots for the synthetic data sets used in Section 3.2.5. The R-precision
ranges between 0% and 100%, modeling R-precision score ranges encountered
also in real benchmarks.

(a) Over-sampling (b) Equal-sampling (c) Under-sampling

Figure A.10:U-Matrices for the synthetic datasets used for experiments in Section 3.2.5 with
d span settings of 5, providing good cluster separation properties (cf. also Figure
A.9).

168 Chapter A. Appendix

(a)
C

O
R

(16%
)

(b)
S

D
2

(18%
)

(c)
H

3D
(20%

)
(d)

C
P

X
(27%

)
(e)

V
O

X
(31%

)
(f)

D
S

R
(40%

)

(g)
C

O
R

(16%
)

(h)
S

D
2

(18%
)

(i)
H

3D
(20%

)
(j)

C
P

X
(27%

)
(k)

V
O

X
(31%

)
(l)

D
S

R
(40%

)

(m
)

C
O

R
(16%

)
(n)

S
D

2
(18%

)
(o)

H
3D

(20%
)

(p)
C

P
X

(27%
)

(q)
V

O
X

(31%
)

(r)
D

S
R

(40%
)

F
igure

A
.11:C

onvex
hulls

(top
row

),
and

m
inim

um
bounding

discs
(m

iddle
row

)
and

rectangles
(bottom

row
)

over
the

F
V

spaces
discussed

in
S

ection
3.3.4.

169

(a)
(b)

(c)
(d)

(e)

(f)
(g)

(h)
(i)

(j)

(k)
(l)

(m
)

(n)
(o)

(p)
(q)

(r)
(s)

(t)

F
igure

A
.12:S

napshots
of

layouts
using

ID
-M

ap.
F

rom
top

to
bottom

row
s,

the
uneven

splitting
m

ask
using

splitting
policies
A

,B
,

and
C

,
as

w
ellas

the
S

quarified
T

reeM
ap

algorithm
are

show
n

for
layout

of
5

up
to

200
rectangles

in
a

1200
×

900
display

(refer
to

S
ection

4.2.6).

170 Chapter A. Appendix

Ordering Error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

5 25 45 65 85 105 125 145 165 185

Number of Time Series

A
ve

ra
ge

 O
rd

er
in

g
Vi

ol
at

io
n

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(a) Ordering error.

Size-Imeasure Reversal Error

0.00

0.05

0.10

0.15

0.20

0.25

5 25 45 65 85 105 125 145 165 185

Number of Time Series

R
ev

er
sa

l R
at

e

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(b) Reversal error.

Ordering Error (A-resorted)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

5 25 45 65 85 105 125 145 165 185

Number of Time Series

A
ve

ra
ge

 O
rd

er
in

g
Vi

ol
at

io
n

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(c) Ordering error (resorting).

Size-Imeasure Reversal Error (A-resorted)

0.00

0.05

0.10

0.15

0.20

0.25

5 25 45 65 85 105 125 145 165 185

Number of Time Series

R
ev

er
sa

l R
at

e

Uneven (A)
Uneven (B)
Uneven (C)
Squarified

(d) Reversal error (resorting).

Figure A.13:Position and size errors without (first row) and with resorting of rectangles (sec-
ond row). Resorting reduces the amount of size/imeasure reversals to about 5%
on average, and also improves the (positional) ordering error.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure A.14:The uneven layout snapshots from Figure A.12 (first row), and the same layouts
using resorting (second row).

Bibliography

[1] J. Abello, H. Schumann, and C. Tominski. Axes-based visualizations for time series dat. In
Proceedings of the IEEE Symposium on Information Visualization (InfoVis). IEEE, 2003.

[2] C. Aggarwal. On the effects of dimensionality reduction on high dimensional similarity search.
In PODS ’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 256–266, New York, NY, USA, 2001. ACM Press.

[3] C. Aggarwal, A. Hinneburg, and D. Keim. On the surprising behavior of distance metrics in
high dimensional spaces. InProceedings of the International Conference on Database Theory
(ICDT), pages 420–434, 2001.

[4] A. Aris, P. Buono, A. Khella, C. Plaisant, and B. Shneiderman. Interactive pattern search in time
series. InProceedings of the SPIE Conference on Visualization and Data Analysis, 2005.

[5] B. Shneiderman’s TreeMap History Website.http://www.cs.umd.edu/hcil/treemap-
history/index.shtml/.

[6] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison-Wesley, 1999.

[7] M. Balzer and O. Deussen. Voronoi treemaps. InProceedings of the IEEE Symposium on
Information Visualization (InfoVis), Minneapolis, MN, USA, October 23-25. IEEE Computer
Society, 2005.

[8] B. Bederson. Photomesa: A zoomable image browser using quantum treemaps and bubblemaps.
In Proceedings of the ACM Symposium on User Interface Software and Technology (UIST’01),
pages 71–80, 2001.

[9] B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quantum treemaps: Making
effective use of 2D space to display hierarchies.ACM Trans. Graph., 21(4):833–854, 2002.

[10] C. Böhm, S. Berchtold, and D. Keim. Searching in high-dimensional spaces: Index structures
for improving the performance of multimedia databases.ACM Computing Surveys (CSUR),
33(3):322–373, 2001.

[11] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. InProceedings of the Joint Euro-
graphics and IEEE TCVG Symposium on Visualization, 2000.

[12] B. Bustos. Index Structures For Similarity Search in Multimedia Databases. PhD thesis, Uni-
versity of Konstanz, Germany, 2006. submitted.

[13] B. Bustos, D. Keim, C. Panse, and T. Schreck. 2D maps for visual analysis and retrieval in
large multi-feature 3D model databases (poster paper). InProceedings of the IEEE Visualization
Conference (VIS’2004). IEEE Press, 2004. Poster paper.

172 Bibliography

[14] B. Bustos, D. Keim, D. Saupe, T. Schreck, and A. Tatu. Methods and user interfaces for ef-
fective retrieval in 3D databases (in German).Datenbank-Spektrum - Zeitschrift für Datenbank
Technologie und Information Retrieval, (20):23–32, 2007.

[15] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranić. Automatic selection and combina-
tion of descriptors for effective 3D similarity search. InProceedings of the IEEE International
Workshop on Multimedia Content-based Analysis and Retrieval, pages 514–521. IEEE Com-
puter Society, 2004.

[16] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranić. An experimental comparison of
feature-based 3D retrieval methods. InSecond International Symposium on 3D Data Processing,
Visualization, and Transmission (3DPVT’2004). Thessaloniki, Greece, September 6-9., pages
215–222. IEEE, 2004. Poster paper.

[17] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranić. Using entropy impurity for improved
3D object similarity search. InProceedings of the IEEE International Conference on Multimedia
and Expo (ICME), Taipei, Taiwan, June 27-30, pages 1303–1306. IEEE, 2004.

[18] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranić. Feature-based similarity search in 3D
object databases.ACM Computing Surveys (CSUR), 37:345–387, 2005.

[19] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranic. An experimental effectiveness com-
parison of methods for 3D similarity search.International Journal on Digital Libraries, Special
Issue on Multimedia Contents and Management, 6(1):39–54, 2006.

[20] B. Bustos, D. Keim, and T. Schreck. A pivot-based index structure for combination of feature
vectors. InProceedings of the 20th Annual ACM Symposium on Applied Computing. Multimedia
and Visualization Track, Santa Fe, New Mexico, March 13 -17, 2005. ACM, 2005.

[21] R. Campbell and P. Flynn. A survey of free-form object representation and recognition tech-
niques.Computer Vision and Image Understanding, 81(2):166–210, 2001.

[22] S. Card, J. Mackinlay, and B. Shneiderman.Readings in Information Visualization: Using Vision
to Think. Morgan Kauffman, 1999.

[23] S. Card and R. Rao. Exploring large tables with the table lens. InProceedings of the ACM
Conference on Human Factors in Computing Systems. ACM, 1995.

[24] M. Cox and M. Cox.Multidimensional Scaling. Chapman and Hall, 2001.

[25] C. Blake D. Newman, S. Hettich and C. Merz. UCI repository of machine learning databases,
1998.

[26] U. Dayal, M. Hao, D. Keim, and T. Schreck. Importance driven visualization layouts for large
time-series data. InProceedings of the IEEE Symposium on Information Visualization (InfoVis),
Minneapolis, MN, USA, October 23-25. IEEE Computer Society, 2005.

[27] DELOS Network of Excellence on Digital Libraries, funded under the EU Sixth Framework
Programme.http://www.delos.info/.

Bibliography 173

[28] I. S. Dhillon, D. S. Modha, and W. S. Spangler. Class visualization of high-dimensional data
with applications.Computational Statistics and Data Analysis, 4(1):59–90, 2002. Special issue
on Matrix Computations and Statistics.

[29] H. Dolfing. A discretized projection-based framework for visual analytics. Master’s thesis,
University of Konstanz, Germany, 2007.

[30] R. Duda, P. Hart, and D. Stork.Pattern Classification. Wiley-Interscience, New York, 2nd
edition, 2001.

[31] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In
Proc. ACM WWW Conference, 2001.

[32] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification via rank
aggregation. InProc. ACM SIGMOD Conference, pages 301–312, 2003.

[33] C. Faloutsos.Searching Multimedia Databases by Content. Kluwer Academic Publishers, Nor-
well, MA, USA, 1996.

[34] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and D. Jacobs. A search
engine for 3D models.ACM Transactions on Graphics, 22(1):83–105, 2003.

[35] G. Furnas. Generalized fisheye views. InProceedings of the ACM Conference on Human Factors
in Computing Systems. ACM, 1986.

[36] R. Graham. An efficient algorithm for determining the convex hull of a finite planar set.Inform.
Proc. Letters, 1(4):132–133, 1972.

[37] J. Han and M. Kamber.Data Mining: Concepts and Techniques. Morgan Kauffman, 2001.

[38] P. Hanrahan, C. Stolte, and D. Tang. Polaris: A system for query, analysis, and visualization of
multidimensional relational databases.Transactions on Visualization and Computer Graphics
(TVCG), 8(1), 2002.

[39] D. Heesch, A. Yavlinsky, and S. Rueger. Performance comparison between different similar-
ity models for cbir with relevance feedback. InCIVR ’03: Proceedings of the International
Conference on Image and Video Retrieval, pages 456–466. Springer-Verlag, 2003.

[40] R. Heilmann, D. A. Keim, C. Panse, and M. Sips. Recmap: Rectangular map approximations. In
IEEE Symposium on Information Visualization 2004 (InfoVis04), October 10-12, Austin, Texas,
USA. IEEE Computer Society, October 2004.

[41] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. Kunii. Topology matching for fully automatic sim-
ilarity estimation of 3D shapes. InProc. ACM International Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH’01), pages 203–212. ACM Press, 2001.

[42] A. Hinneburg, C. Aggarwal, and D. Keim. What is the nearest neighbor in high dimensional
spaces? InProceedings of the International Conference on Very Large Data Bases (VLDB),
pages 506–515, 2000.

174 Bibliography

[43] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. WEBSOM—self-organizing maps of doc-
ument collections. InProceedings of WSOM’97, Workshop on Self-Organizing Maps, Espoo,
Finland, June 4-6, pages 310–315. Helsinki University of Technology, Neural Networks Re-
search Centre, Espoo, Finland, 1997.

[44] P. Howarth and S. Rueger. Evaluation of texture features for content-based image retrieval. In
CIVR ’04: Proceedings of the International Conference on Image and Video Retrieval.

[45] D. Keim J. Schneidewind, M. Sips. Pixnostics: Towards measuring the value of visualization. In
IEEE Symposium on Visual Analytics and Technology (VAST 2006), Baltimore, Maryland, USA,
October 29 - November 3, 2006.

[46] I. Jolliffe. Principal Components Analysis. Springer, 3rd edition, 2002.

[47] T. Kato, M. Suzuki, and N. Otsu. A similarity retrieval of 3D polygonal models using rotation
invariant shape descriptors. InProc. IEEE International Conference on Systems, Man, and
Cybernetics, pages 2946–2952, 2000.

[48] L. Kaufman and P. Rousseeuw.Finding groups in data. Wiley, New York, 1990.

[49] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic rep-
resentation of 3D shape descriptors. InProc. Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (SGP’03), pages 156–164. Eurographics Association, 2003.

[50] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Shape matching and anisotropy.ACM Trans-
actions on Graphics, 23(3):623–629, August 2004.

[51] D. Keim. Efficient geometry-based similarity search of 3D spatial databases. InSIGMOD ’99:
Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data,
pages 419–430, New York, NY, USA, 1999. ACM Press.

[52] D. Keim, F. Mansmann, and T. Schreck. Analyzing electronic mail using temporal, spatial,
and content-based visualization techniques. InLNI Tagungsb̈ande Informatik. Gesellschaft f̈ur
Informatik (GI), 2005. Invited paper.

[53] D. Keim, F. Mansmann, and T. Schreck. Mailsom - visual exploration of electronic mail archives
using Self-Organizing Maps. InSecond Conference on Email and Anti-Spam (CEAS 2005),
Stanford University, Palo Alto, CA, USA, July 21-22, 2005. Short paper.

[54] D. Keim, T. Nietzschmann, N. Schelwies, J. Schneidewind, T. Schreck, and H. Ziegler. A
spectral visualization system for analyzing financial time series data. InProceedings of the
EuroVis 2006: Eurographics/IEEE-VGTC Symposium on Visualization, Lisbon, Portugal, May
8-10 , 2006. IEEE Computer Society, 2006.

[55] Daniel A. Keim, Mihael Ankerst, and Hans-Peter Kriegel. Recursive pattern: A technique for
visualizing very large amounts of data. InVIS ’95: Proceedings of the 6th conference on Visu-
alization ’95, page 279, Washington, DC, USA, 1995. IEEE Computer Society.

[56] E. Keogh. Tutorial on data mining and machine learning in time series databases. InProceedings
of the Fourth IEEE International Conference on Data Mining (ICDM). IEEE, 2004.

[57] E. Keogh and T. Folias. The UCR time series data mining archive, 2002.

Bibliography 175

[58] H. Kestler, A. Mueller, T. Gress, and M. Buchholz. Generalized venn diagrams: A new method
of visualizing complex genetic set relations.Bioinformatics, 21(8):1592–1595, 2005.

[59] T. Kohonen.Self-Organizing Maps. Springer, Berlin, 3rd edition, 2001.

[60] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. Sompak: The self-organizing map
program package. Technical Report A31, Helsinki University of Technology, Laboratory of
Computer and Information Science, FIN-02150 Espoo, Finland, 1996.

[61] Konstanz 3D Model Database.http://merkur01.inf.uni-konstanz.de/CCCC/.

[62] Y. Koren and L. Carmel. Visualization of Labeled Data Using Linear Transformation. InIEEE
Symposium on Information Visualization (InfoVis), pages 121–128, 2003.

[63] J. Laaksonen, M. Koskela, S. Laakso, and E. Oja. PicSOM—content-based image retrieval with
self-organizing maps.Pattern Recogn. Lett., 21(13-14):1199–1207, 2000.

[64] S. Loncaric. A survey of shape analysis techniques.Pattern Recognition, 31(8):983–1001, 1998.

[65] H. Müller, S. Marchand-Maillet, and T. Pun. The truth about corel - evaluation in image retrieval.
In CIVR ’02: Proceedings of the International Conference on Image and Video Retrieval, pages
38–49, London, UK, 2002. Springer-Verlag.

[66] M. Novotni and R. Klein. A geometric approach to 3D object comparison. InProc. International
Conference on Shape Modeling and Applications, pages 167–175. IEEE CS Press, 2001.

[67] M. Novotni and R. Klein. Shape retrieval using 3D zernike descriptors.Computer Aided Design,
36(11):1047–1062, 2004.

[68] US National Institute of Standards and technology. Text retrieval conference,http://-
trec.nist.gov/.

[69] R. Ohbuchi and Y. Hata. Combining multiresolution shape descriptors for 3D model retrieval.
In Proceedings of the 14th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG’2006), 2006.

[70] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distributions.ACM Transactions
on Graphics, 21(4):807–832, 2002.

[71] E. Pampalk. Islands of music. Master’s thesis, Technical University of Vienna, 2001.

[72] E. Pampalk, A. Rauber, and D. Merkl. Using smoothed data histograms for cluster visualization
in self-organizing maps. InProc. Int. Conf. on Artifical Neural Networks (ICANN’02), volume
2415 ofLecture Notes in Computer Science. Springer, 2002.

[73] E. Paquet, M. Murching, T. Naveen, A. Tabatabai, and M. Rioux. Description of shape informa-
tion for 2-D and 3-D objects.Signal Processing: Image Communication, 16:103–122, 2000.

[74] Pebbles Circular TreeMap Project.http://lip.sourceforge.net/ctreemap.html.

[75] M. Pickering and S. R̈uger. Evaluation of key frame-based retrieval techniques for video.Com-
puter Vision and Image Understanding, 92:217–235, 2003.

176 Bibliography

[76] PicSOM project homepage.http://www.cis.hut.fi/picsom/.

[77] T. Schreck, D. Keim, and F. Mansmann. Regular treemap layouts for visual analysis of hier-
archical data. InSpring Conference on Computer Graphics (SCCG’2006), April 20-22, Casta
Papiernicka, Slovak Republic. ACM Siggraph, 2006.

[78] T. Schreck, D. Keim, and C. Panse. Visual feature space analysis for unsupervised effectiveness
estimation and feature engineering. InIEEE International Conference on Multimedia and Expo
(ICME’2006). Toronto, Canada, July 9-12, 2006.

[79] T. Schreck and C. Panse. A new metaphor for projection-based visual analysis and data explo-
ration. InProceedings of the IS&T/SPIE Conference on Visualization and Data Analysis (VDA),
2007.

[80] SequoiaView Homepage.http://www.win.tue.nl/sequoiaview/.

[81] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The princeton shape benchmark. InProc.
International Conference on Shape Modeling and Applications (SMI’04), pages 167–178. IEEE
CS Press, 2004.

[82] B. Shneiderman. Tree visualization with tree-maps: 2D space-filling approach.ACM Transac-
tions on Graphics, 11(1):92–99, 1992.

[83] B. Shneiderman, editor.Sparks of Innovation in Human-Computer Interaction. Ablex Publish-
ing Corporation, 1993.

[84] S&P500 stock price archive.http://kumo.swcp.com/stocks/.

[85] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape matching and re-
trieval. InProc. International Conference on Shape Modeling and Applications (SMI’03), pages
130–142. IEEE CS Press, 2003.

[86] J. Tangelder and R. Veltkamp. Polyhedral model retrieval using weighted point sets.Interna-
tional Journal of Image and Graphics, 3(1):209–229, 2003.

[87] J. Tangelder and R. Veltkamp. A survey of content based 3D shape retrieval methods. InProc.
International Conference on Shape Modeling and Applications (SMI’04), pages 145–156. IEEE
CS Press, 2004.

[88] H. van de Wetering and J. van Wijk. Cushion treemaps: Visualization of hierarchical informa-
tion. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis), 2005.

[89] C. van Rijsbergen.Information retrieval. Butterworths, London, 2nd edition, 1979.

[90] J. van Wijk. Personal communication, January 2006.

[91] J. van Wijk and A. Telea. Enridged contour maps. InProceedings of the IEEE Visualization
Conference, 2001.

[92] J. van Wijk and H. van de Wetering. Cushion treemaps. InProceedings IEEE Symposium on
Information Visualization (InfoVis), pages 73–78, 1999.

Bibliography 177

[93] R. Veltkamp and M. Tanase. Content-based image retrieval systems: A survey. Technical Report
UU-CS-2000-34, University Utrecht, 2000.

[94] F. Vernier and L. Nigay. Modifiable treemaps containing variable shaped units. InWork in
Progress Proceedings of the IEEE Information Visualization (InfoVis), 2000.

[95] J. Vesanto. SOM-based data visualization methods.Intelligent Data Analysis, 3(2):111–126,
1999.

[96] D. Vranić. An improvement of rotation invariant 3D-shape descriptor based on functions on
concentric spheres. InProc. IEEE International Conference on Image Processing (ICIP’03),
Volume III, pages 757–760, 2003.

[97] D. Vranić. 3D Model Retrieval. PhD thesis, University of Leipzig, 2004.

[98] D. Vranić, D. Saupe, and J. Richter. Tools for 3D-object retrieval: Karhunen-Loeve transform
and spherical harmonics. InProc. IEEE 4th Workshop on Multimedia Signal Processing, pages
293–298, 2001.

[99] C. Ware.Information Visualization. Morgan Kaufmann, 2004.

[100] M. Wattenberg. Visualizing the stock market. InCHI ’99: CHI ’99 extended abstracts on
Human factors in computing systems, pages 188–189, New York, NY, USA, 1999. ACM Press.

[101] M. Wattenberg. A note on space-filling visualizations and space-filling curves. InIEEE Int.
Symposium on Information Visualization (InfoVis), 2005.

[102] E. Weisstein. Pearson mode skewness. From MathWorld – A Wolfram Web Resource
http://mathworld.wolfram.com/PearsonModeSkewness.html.

[103] J. Van Wijk and E. Van Selow. Cluster and calendar based visualization of time series data. In
INFOVIS ’99: Proceedings of the 1999 IEEE Symposium on Information Visualization, page 4,
Washington, DC, USA, 1999. IEEE Computer Society.

[104] L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-based filter
solution. InProceedings of The Twentieth International Conference on Machine Leaning (ICML-
03), pages 856–863, 2003.

[105] T. Zaharia and F. Prêteux. 3D shape-based retrieval within the MPEG-7 framework. InProc.
SPIE Conference on Nonlinear Image Processing and Pattern Analysis XII, volume 4304, pages
133–145, 2001.

	Introduction
	Database support for multimedia data
	Feature Vector approach and effectiveness considerations
	Applications and benchmarking in multimedia databases
	Considered multimedia data types
	Thesis outline and contribution

	Effective feature-based query processing
	Content-based retrieval systems
	Similarity queries and Feature Vectors
	Effectiveness and efficiency considerations
	Benchmarking effectiveness in a retrieval system

	Modeling FV extraction for 3D objects
	3D objects data type
	A new process model for classification of 3D FV extractors

	Query processing using single Feature Vectors
	Classification of studied FV extractors using the process model
	3D retrieval benchmark design
	Benchmark-global effectiveness results
	Sensitivities and extraction complexity

	Query processing using static combinations
	Building combinations of Feature Vectors
	Results for static distance-based combinations
	Results for static rank-based combinations
	Analysis of the results
	Summary and practical recommendations

	Query processing using dynamic combinations
	Query-dependent analysis of static combinations
	An Entropy-based discrimination estimator
	Results for dynamically weighted combinations
	Analysis of the results and practical recommendations

	Projection-based visual feature space analysis
	Interactive organization and retrieval with Self-Organizing Maps
	Kohonen's Self-Organizing Map (SOM) algorithm
	Visual analysis of 3D, Email, and time series databases using the SOM
	SOM-based support for retrieval and visual relevance feedback
	Summary of the results

	Unsupervised visual feature space analysis
	Background
	A distance-based discrimination power estimator
	A component-based discrimination power estimator
	Application
	Evaluation
	Conclusions

	Supervised visual feature space analysis
	Background
	Projection and visualization methods
	The convex hull metaphor for projection-based visual analysis
	Application
	Evaluation
	Conclusions

	Space-filling visual object space analysis
	A survey of TreeMap-based layout algorithms
	Visualization of hierarchies with TreeMaps
	Desirable properties of TreeMap algorithms
	Existing TreeMap variants
	Analysis and proposed TreeMap algorithms

	Importance-driven space-filling layouts for time series data
	Importance relationships on time series and layout requirements
	Formal problem definition
	Splitting mask selection and splitting policies
	ID-Map algorithm
	Application
	Evaluation
	Conclusions

	Regular layout generation with Grid TreeMaps
	Continuous and Quantum TreeMap algorithms
	Grid TreeMap algorithm
	Application
	Evaluation
	Conclusions

	Thesis conclusions
	Appendix

