i

TECHNISCHE UNIVERSITAT WIEN

Dissertation

Priority Scheduling
for Networked Virtual Environments
and Online Games

ausgefiihrt
zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von
Univ. Prof. Dipl.-Ing. Dr.techn. Werner Purgathofer,
Institut 186 fur Computergraphik und Algorithmen,
und unter Mitwirkung von
Univ.-Ass. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

eingereicht
an der Technischen Universitat Wien,
Fakultat fuir Technische Naturwissenschaften und Informatik,

von
Dipl.-Ing. Christian Faisstnauer,
Matrikelnummer 9056328,
Horazstrasse 4/H,
1-39100 Bozen, Italien,
geboren am 12. August 1971 in Bozen, Italien.

Wien, am 18. Mai 2001

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org

Chris Faisstnauer

Priority Scheduling
for Networked Virtual Environments
and Online Games

(PhD Thesis)

20000 T T T T

RR —
PRR —
18000 - g

16000 q

14000 | 9

12000 H b

10000 A

8000

6000

4000 Kt E
/ \\
2000

VNS ‘\ 4
\ *\\,""h‘ﬁff\f\_,ﬁ,»\u,.gi"*" v \w/, -

0 1 1 1 1
200 400 600 800 1000

o

http://www.cg.tuwien.ac.at/faisst/
mailto:faisst@cg.tuwien.ac.at



Abstract

The problem of resource bottlenecks is encountered in almost any distributed vir-
tual environment or networked game. Whenever the demand for resources — such
as network bandwidth, the graphics pipeline, or processing power — exceeds their
availability, the resulting competition for the resources leads to a degradation of
the system’s performance.

In a typical client-server setup, for example, where the virtual world is managed
by a server and replicated by connected clients which visualize the scene, the server
must repeatedly transmit update messages to the clients. The computational power
needed to select the messages to transmit to each client, or the network bandwidth
limitations often allow only a subset of the update messages to be transmitted to
the clients; this leads to a performance degradation and an accumulation of errors,
e.g. a visual error based on the positional displacement of the moving objects.

This thesis presents a scheduling algorithm, developed to manage the objects
competing for system resources, that is able to achieve a graceful degradation of
the system’s performance, while retaining an output sensitive behavior and being
immune to starvation. This algorithm, called Priority Round-Robin (PRR) schedul-
ing, enforces priorities based on a freely definable error metric, trying to minimize
the overall error. The output sensitivity is a crucial requirement for the construc-
tion of scalable systems, and the freely definable error metric makes it suitable to
be employed whenever objects compete for system resources, in client-server and
peer-to-peer architectures as well. Therefore Priority Round-Robin scheduling is a
substantial contribution to the development of distributed virtual environments and
networked online-games.



Kurzfassung

Ein Mangel an Resourcen ist ein Problem, das bei nahezu allen Virtual-Reality
Applikationen (*Virtual Environments’) und Videospielen beobachtet werden
kann. Die Netzwerk-Bandbreite, der Durchsatz der Graphik-Pipeline, oder die
verfligharen Prozessorzyklen reichen oft nicht aus, um die Anforderungen des Sys-
tems zu erfiillen. Der daraus folgende Wettstreit um die Resourcen fiihrt zu einer
massiven Beeintrachtigung des gesamten Systems, und beschrénkt dessen Skalier-
barkeit.

In einer Client-Server Anwendung, zum Beispiel, wird die *virtuelle Welt” von
einem zentralen Server verwaltet, und von mit dem Server in Verbindung ste-
henden Clients repliziert, welche aufRerdem eine graphische Darstellung fiir den
Benutzer erzeugen. Dies erfordert, dal alle Clients vom Server tber sémtliche
Anderungen in der gemeinsamen Datenbank informiert werden. Die zum Erzeu-
gen dieser Mitteilungen benétigten Prozessorzyklen, oder die zum Ubermitteln
benotigte Netzwerk-Bandbreite, Ubersteigt oft die zur Verfigung stehenden Re-
sourcen des Systems, sodal’ nur eine Teilmenge der erforderlichen Daten bearbeitet
werden kann. Dies fuhrt zu einer Aufsummierung von Fehlern, z.B. Sichtbarkeits-
fehler, welche auf Positionsanderungen der sich bewegenden Objekte beruhen.

Diese Dissertation prasentiert einen Scheduling-Algorithmus, genannt
Priority Round-Robin (PRR) Scheduling, welcher zur Verwaltung von um
Systemresourcen konkurrierende Objekte entwickelt wurde. PRR weist samtlichen
Objekten eine Prioritdt zu, welche anhand einer frei definierbaren Fehlermetrik
bestimmt wird, und versucht den Gesamtfehler des Systems zu minimieren.
Trotzdem ist der Aufwand des Algorithmus nur von der Anzahl der aus-
zuwéhlenden Objekte abhéngig, und nicht von der Gesamtanzahl der Objekte
(Coutput sensitive’). AuBerdem garantiert der Algorithmus, dall alle Elemente
mindestens einmal innerhalb einer gewissen Zeitspanne ausgewdahlt werden, was
die Gefahr einer *Starvation’ minimiert.

Durch die frei definierbare Fehlermetrik kann PRR in nahezu allen Situatio-
nen eingesetzt werden, in denen es zu Engpassen bei der Zuteilung von Resourcen
kommt, und durch die ’output sensitivity’ des Algorithmus wird die Konstruktion
von skalierbaren Systemen wesentlich erleichtert. PRR ist in der Lage, den durch
Resource-Engpésse erzeugten Fehler stufenlos zu minimieren, und passt sich lau-
fend an dynamische Situationen an.
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The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And | must follow, if | can,

Pursuing it with eager feet,

Until it joins some larger way
Where many paths and errands meet.
And whither then? | cannot say.

J.R.R. Tolkien (1892-1973)
English poet and novelist.
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Chapter 1

| ntroduction

Stting inside the cockpit of his new and carefully tuned gladiator robot, the
japanese mercenary Tetsuo scans the surroundings for approaching enemies. Sud-
denly the radar starts to emit warning sounds, and Tetsuo spins the giant robot
around to face the incoming thread. What he sees does not |eave him much time
to react, because the other BattleMech heads toward him at incredible speed. Sud-
denly something strange seems to happen to the unknown opponent, as he starts
to perform a staccato-like motion, appearing to stand still for a few fractions of a
second, for then abruptly reappearing a few meters ahead of its previous position.
Confused by this strange phenomenon, Tetsuo nearly missed to see the missile that
suddenly materializes halfway between him and his opponent, aiming directly at
the torso of his BattleMech. Now where did this missile come from? Did the other
Mech shoot it? Tetsuo directs his robot into a frenetic jump into the air, to avoid
the missile, and fortunately managesto skip it by inches. Asthis callsfor an appro-
priate response, Tetsuo in turn triggers two small but fast projectiles towards his
opponent. And again, the other BattleMech seems to be protected by an invisible
force. As he appears to be completely immobile, the first projectile passes right
through him, without doing any damage, and microseconds later he makes again
an invisible motion some metersto the side. But the second projectile hitsitstarget,
and apparently in a vulnerable part, as a series of small explosions starts to cover
the other BattleMech, transforming it into a cluster of debris. This was the time
Tetsuo relaxed too early, removing his hands from the commands, as unexpectedly
another enemy missile appeared in mid-air, and like a shot from afterlife convicts
Tetsuo’s BattleMech into a clearly disassembled state.
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This might be an excerpt from a networked online game, in which the user has
to maneuver a humanoid robot through a virtual scenery, to compete with other
users in a gladiator-like competition. In such a distributed virtual environment,
geographically distant users have the illusion to be all together at the same time in
the same place - a virtual arena where to engage in challenging tournaments. This
scenario resembles a popular online-game called ’BattleTech’, which was one of
the first highly successful networked games set up in entertainment centers. The
screenshot on the previous page is from *MechWarrior 4°, a PC-based conversion
of the BattleTech concept.

However, this example also describes some of the effects that might be caused
by a lack of resources, e.g. if the demand for network, rendering or processing re-
sources exceeds their availability. The first anomaly described above, the *staccato-
like motion’, is a typical effect that derives from a delayed or missing transmission
of update packets. As each host relies on such messages to be informed about the
actions of the remote entities managed by other hosts, an unsteady flow of infor-
mation substantially affects the representation of these entities and the interaction
with them. This is also valid for the missile "materializing halfway between both
opponents’: if the message describing the firing of the missile by the remote entity
does not arrive in time (or does not arrive at all), the first information the local
host receives about this action is a missile coordinate in midair. The host cannot
interpolate the missing motion of the missile (to display the user a delayed repre-
sentation), or ignore it at all, because the missile is an ’influential” object whose
knowledge is essential to the player; hence every information about it must be dis-
played immediately after reception.

An unsteady or delayed flow of update messages highly affects interaction be-
tween the objects in the environment; the user has a delayed perception of the
actions triggered by the remote users (such as the incoming missile). It also pre-
vents the user from correctly targeting the other players, because their position as
assumed by the local host is outdated, and the projectiles will be aimed at an af-
terimage. The ’shoot from afterlife’ described above is a phenomenon that was
reported from several distributed environments, such as NPSNET ([httpNPS]) and
various online games. If the opponent shoots a missile shortly before being de-
stroyed, and the delivery of the message is delayed enough for the remote users to
be informed about the destruction of the opponent before receiving that message,
it appears like the missile was fired from an inoperative entity.

The illusion of immersion, and the illusion of being all together at the same
time in the same place largely depends on the performance of the system: fast in-
teraction rates, smooth animation and fluid sound, for example, are essential com-
ponents, and a lack of those resources is likely to foil the realism of the virtual
world.

The networked online game described above is just one of the many possible
areas of application for distributed virtual environments, which can provide much
more intuitive interaction metaphors than typical desktop setups, e.g. by allow-
ing the use of innate abilities like communication via gestures. Unfortunately, the
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resource demands for virtual environments are very high, often leading to scala-
bility problems and undesirable performance decreases due to a lack of available
resources.

The following work focuses on dealing with these resource bottlenecks. First
the structure of networked environments is examined, to highlight the bottlenecks
that might be encountered, for then introducing a resource management technique
- a priority-based scheduling algorithm - that is able to optimize the usage of the
resources and achieve a graceful degradation of the system’s performance.

1.1 Task of adistributed virtual environment

A distributed virtual environment (DVE), often also referred to as networked vir-
tual environment (NVE), is typically represented as a set of independent entities,
each having an own geometry and behavior. Some entities are static (such as
buildings or terrain), other have dynamic behavior that is either autonomous (e.g.,
drones) or controlled by a user via input devices (e.g., vehicles or the gladiator
robots mentioned in the introductory game). Every entity is managed by a host,
either automatically via the system’s software, or controlled by the user via the
aforementioned input devices which can range from mouse, keyboard or joystick
to data gloves or motion trackers. Output devices connected to the host allow the
user to perceive the environment, typically from the point of view of the controlled
entity which is the user’s representation in the environment. Frequently used out-
put devices are e.g. monitors, head-mounted displays, headphones, force-feedback
devices or motion platforms.

Distributed virtual environments, as compared to hon-networked environments,
have the task to bridge the geographic distance between the users. The hosts are
connected to a network over which they can exchange messages; this allows remote
users to participate and cooperate in a common environment and perform what is
called a ’distributed interaction’ or ’distributed simulation’.

Figure 1.1: Basic structure of a distributed virtual environment.
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The system should allow the users to interact with each other and the environ-
ment in an intuitive and realistic manner; they should have the impression of being
at the same time in the same place. This feeling of *presence’ depends on the input
and output devices available, the interaction and navigation metaphors selected,
and the performance of the system, which includes factors such as frame rate and
response time. Basically, the more intuitive is the input and the more realistic the
output, the greater is the feeling of immersion. The scope of the environment de-
termines the desired level of realism, but in most cases the environment should
provide a comprehensive illusion of immersion.

1.2 Examplesof virtual environments

A virtual environment (VE) arguably provides the most natural means of com-
municating with a computer because it allows us to use our inherent 3D spa-
tial skills that have evolved over thousands of years (such as walking, gesturing,
looking, grabbing etc.) There is a vast range of potential applications for virtual
environments, for example safely training personnel for high-risk activities (e.g.
astronauts or pilots), or supporting rehearsal possibilities for medical personnel
like virtual surgery (see Figure 1.2(b)). VR can be employed in the context of
information visualization, to provide a comprehensive overview over the data at
disposition (Figure 1.2(a) shows a diagnostic system for the International Space
Station). It can be helpful to understand complex phenomenons, such as in the
NASA Ames’ Virtual Windtunnel shown in Figure 1.2(c), which allows to visual-
ize and manipulate computational fluid dynamics models. Using VE technology,
architects is given the possibility to design and walk through virtual buildings,
rooms or cities (Figure 1.2(d)); it might also be a new medium for artists to ex-
press their visions.

Many of the applications in the areas mentioned above are not implemented in
a distributed fashion, because the tasks of building a virtual house or experimenting
with the Virtual Windtunnel do not necessarily need network support. There are
however research areas in the context of virtual reality that benefit extensively from
the ability to bridge the distance between the participating users.

For example in collaborative research, where geographically distant engineers
can operate on the same project by constructing, examining and manipulating
shared virtual objects in a common environment. Or collaborative business, where
teleconferencing and ’virtual’ meetings (Figure 1.3(b)) allow businessmen to avoid
time-consuming travels. Computer Supported Cooperative Work” (CSCW) is a
term often used in this context. The interaction metaphors introduced by VE sys-
tems, combined with the ability of networks to bridge large geographic distances,
allow to explore and manipulate environments which are remote or hazardous to
human beings, for example nuclear or chemical power plants, quarantine zones,
caves, volcanos, the bottom of the sea or even distant planets. Figure 1.3(a) shows
an example of such a teleoperation device, that translates the motions of a human
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(a) Diagnostic system for the ISS. (© Imagination (b) Virtual eye surgery.
computer services G.m.h.h, Austria.

(c) Virtual Windtunnel. © NASA Ames research (d) Architectural walkthrough.
center.

Figure 1.2: Examples of Virtual Environments.

operator to a remote place, and vice versa lets the user perceive the environment as
if he were there personally.

A similar area of application is remote surgery, where a robot is telecontrolled
by a surgeon to perform an operation on a distant patient; this might be especially
useful if one medic has to care about many patients in different locations contem-
poraneously, or if it is e.g. time critical to rely on the abilities of a specialized
surgeon residing in a remote location.

Extensive efforts have been put in the development of distributed virtual envi-
ronments to perform large scale military training of soldiers; the goal is to allow a
large number of geographically distant users to contemporaneously participate in
virtual exercises and combat maneuvers. This permits to simulate maneuvers of an
extent not possible in the real world, and allows to model any desired terrain and
environment, other than including experimental vehicles or airplanes only existing
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(b) Meeting in a virtual room. (c) Military simulation. (© LORAL industries.

Figure 1.3: Examples of Virtual Environments.

on the drawing board. Furthermore, the stress on the environment and the peril of
injuries is almost nonexistent.

And last, but not least, distributed virtual environments are being employed
for entertainment purposes at a rapidly growing rate. The manifold possibilities
of modelling a virtual surrounding, and the ability of multiple players to interact
in the same game, broods interest in children and adults similarly. Figure 1.4(a)
shows the Loch Ness’ adventure, in which crewmembers have to collaborate to
maneuver a submarine through the lake of Loch Ness, in order to save Nessie’s
eggs from hunters. ’BattleTech’ is a game developed mainly for adults, where
different players engage in tournaments by maneuvering gladiator robots through
a common environment (such as the figure on the first page). Figure 1.4(b) depicts
a cluster of simulators used to control these so called *BattleMechs’.

There also exist various multiplayer PC games, played over the internet, that
can to some extent be defined as distributed virtual environments, although - mainly
due to hardware restrictions - the interaction rates and the feeling of immersion
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(@) The Loch Ness adventure. (© Iwerks (b) BattleTech cockpit. (© Virtual World
Entertainment / Evans & Sutherland. Entertainment.

Figure 1.4: Examples of Virtual Environments

are usually quite limited. Some popular categories are first-person shooters, strat-
egy games and role-playing games. First-person shooters, such as Doom, Quake
([httpID]) or Half-Life ([httpHALF]), are based on fast infights in a rather small
scenery, while the task in strategy games usually consists in planning and direct-
ing a battle in a large environment, using various types of soldiers, vehicles and
weapons; the interaction is sometimes interrupted to plan the next moves. Role-
playing games contain action as well as strategy components; the goal mostly
consists in exploring a large environment to solve determined quests. Commer-
cial online role-playing games, such as Ultima Online ([httpUO]) or Everquest
([httpEVERY), are based on environments resembling whole worlds, and are often
populated with thousands of avatars; therefore they show all bottleneck problems
of a typical distributed virtual environment.

1.3 Challengesof distributed virtual environments

The requirements for distributed virtual environments are manifold.

From the user’s point of view, they (typically) should provide a comprehensive
sense of realism and immersion. The illusion of immersion depends on many fac-
tors: first of all, the user must be able to interact intuitively with the environment,
which largely depends on the interaction metaphors and input devices employed.
For example, selecting an object by pointing at it with a glove is certainly more
intuitive than selecting it from a drop-down menu using a mouse, especially if the
whole operation is performed in a 3D environment. Concerning the output devices
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available, a HMD equipped with headphones providing spatial sound leads to a
much better feeling of immersion than sitting in front of monitor with monotonic
loudspeakers.

But this describes only the *front-end” of the environment. The system itself
must allow truly real-time, interactive manipulation of the environment; changes
to the environment must be perceived immediately. The animations are required
to be smooth, and realistic sound is highly desirable. All users should be able to
interact as if they were all just centimeters away from the tip of each other’s nose,
independent from the physical distance to the other participants.

From the system’s point of view, some of the most important requirements are
scalahility, fault tolerance, and authentification or accounting services. The fault
tolerance of a system determines its response in case of malfunction of one or more
components. In the worst case, the whole system blocks or crashes. An effective
fault tolerance strategy should limit the effect to the faulty components, bridging
them so that the users do perceive few or no performance decreases. Authentifica-
tion and accounting services are an area that is especially important in commercial
distributed environments, where security concerns and a correct billing is essen-
tial to user satisfaction. The scalability of a system is maybe the hardest point to
achieve. Distributed virtual environments put heavy requirements on resources,
and each additional user or new object increases the load. To achieve scalability, it
is absolutely necessary to optimize the usage of the available resources.

Providing an efficient resource management is a crucial requirement in con-
structing distributed virtual environments. The purpose is not only to minimize the
effects of the inevitable resource bottlenecks that arise whenever the demand for
the resources exceeds their availability, but it also helps making the system more
fault tolerant, and increases its scalability. The less demand each object in the en-
vironment puts on the system, the more users can be accommodated, and the less
influence has the failure of a component.

Some of the main bottlenecks, which degrade the system’s performance, are:

e The network, which handles the transmission of messages and the exchange
of information between the participating hosts.

e The graphics system, responsible for rendering the images.

e The processing cycles required to perform the computations necessary to
run the environment (e.g. simulating objects or processing the users’ input).

Compared to a non-networked virtual environment, a distributed VE has the
advantage of being able to bridge geographic distances, but it also introduces the
notion of ’distribution’ into all aspects of the system. Hence the developers have to
deal with the issue of:
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e Adistributed database: other than requiring a generic knowledge concern-
ing the implementation of databases (e.g., efficient storage and data query),
the notion of distribution requires to additionally manage the aspects of repli-
cation and consistency among the various parts of the database.

e As a realistic interaction between the user and the system requires an imme-
diate response to every user’s action, a distributed interaction has to deal
with the delay introduced by the network, in addition to the requirements for
intuitive interaction metaphors.

e Performing a distributed simulation or computation, in order to partition
the processing load on all resources available, involves areas such as paral-
lelization and process synchronization.

e The authentification of users or objects in a distributed environments also
involves distributed database access and synchronization.

A distributed virtual environment relies on the network to exchange informa-
tion (by sending and receiving messages), but the usage of a network always in-
troduces a delay - as small is it might be; the information exchange can never be
simultaneous. It is one of the tasks of the system to mask the artefacts due to its
distributed nature. Therefore an efficient resource management is especially cru-
cial if the environment is distributed - with special attention paid to the network
itself.

All existing DVE employ various techniques to avoid and manage resource
bottlenecks. We distinguish between two basic approaches:

e Reduction techniques: their task is to reduce the ’load’ on the resource,
by reducing the number of objects! competing for it. These approaches in-
volve compression, Area-of-Interest management (e.g. visibility culling), or
exploiting user perceptual limitations such as Levels of Detail (LOD). The
terms "reduction techniques’ and ’filtering techniques’ are often used syn-
onymously, and for the sake of simplicity we will continue this tradition.
However, we must be aware that in a strict sense the term ’filtering tech-
nique’ is a correct denomination only for Area-of-Interest approaches, and
to some extent also for Dead Reckoning algorithms; techniques such as com-
pression or LOD do not apply filtering functions on the competing elements.
Chapter 4 provides a description of the various reduction techniques; addi-
tional starting points can be found in [Clar76] (culling), [Gree97] (a generic
Area-of-Interest model) and [Heck97] (geometric Levels of Detail).

!Please note that in this context the term “object’ is intended as an individual element competing
for a resource; it must not necessarily coincide with a geometric object in a virtual environment that
can generate several elements demanding a resource. However, for not extending the terminology
excessively, we will limit ourselves to the term *object’.
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e Employing scheduling techniquesto repeatedly select which of the compet-
ing objects should be granted the resource requested; the choice among the
competing objects is based on one or more determined system parameters.

Both approaches have their limitations: if reducing the number of competing
objects (e.g. removing the objects which are invisible from the rendering pipeline)
still generates more objects than the resource can manage, the bottleneck problem
persists. In turn, a scheduling technique is always only an approximation of the
optimum state, as only a subset of the competing objects can be chosen; some
objects must always be neglected. Hence the fewer objects are competing, the
better. The best results can be achieved by combining reduction and scheduling
techniques.

1.4 Contribution

We contribute a scheduling algorithm to the set of available resource management
techniques that is not only able to enforce priorities while being at the same time
output sensitive, but that also allows to efficiently combine scheduling and reduc-
tion/filtering approaches. This technique - called Priority Round-Robin (PRR)
scheduling - can decrease the load on the resources and provide a graceful degrada-
tion of the system’s performance, and due to its output sensitivity ease considerably
the construction of truly scalable virtual environments. PRR is starvation free and
enforces priorities based on a freely definable error metric (the algorithm tries to
minimize the overall error); hence it can be employed whenever objects are com-
peting for a resource. By including reduction techniques (e.g. visibility culling)
in the determination of the objects’ priorities, PRR is able to fill the gap between
reduction and scheduling techniques, and at the same time preserve an output sen-
sitive behavior.

A popular approach to build virtual environments (and especially online games)
is to use a client-server architecture: the virtual world is managed by the server and
replicated by connected clients, which visualize the scene and/or navigate an avatar
through the environment. All updates from the client are routed via the server (of-
ten also responsible for the simulation of autonomous entities), which can perform
arbitrary reduction/filtering functions. Some systems employ visibility information
in order to decrease the network load, by transmitting each client only updates for
those objects visible to it. Timely delivery of update messages is essential to avoid
visual errors (e.g., server and client having a different position information for the
same object).

However, these approaches cause a substantial overhead to the server, as it is of-
ten required to examine all objects in the environment for each client. For example,
to transmit only the visible object updates to a client, it is necessary for the server
to keep track of the point of view for all clients, and continuously select the corre-
sponding visible objects. Assume N = numberof clients = numberof objects.

10
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Examining all objects for every client leads to an effort of O(N?), which substan-
tially affects the scalability of the system. Furthermore, these reduction techniques
do not deal with the issue of scheduling the remaining objects. If the number of
messages to be transmitted still exceeds the network bandwidth, the bottleneck
problem persists. In this case (or if no reduction/filtering is employed at all), we
face a scheduling problem similar to those found in operating systems research.

But scheduling in operating systems is not identical to scheduling in VEs. In
particular, VEs can host a very large number of objects, so that examination of ev-
ery object in every turn is too computationally expensive. Instead, applications in
a VE requires an output sensitive algorithm that operates with constant effort per
connected client, hence being dependent only on the number of objects to schedule,
rather than the number of objects in the environment (which would be input sensi-
tive). The simple Round-Robin (RR) approach to scheduling has this property and
is therefore often used for such scheduling problems. But the RR strategy - simply
selecting every object in turn - cannot accommodate dynamically changing simu-
lations. For example, if the server has to distribute updates of entities moving with
variable speed, for increased realism in the behavior, fast entities will require more
frequent updates than slower moving ones. Such priorities cannot be achieved with
plain RR.

The PRR algorithm explained in detail in Chapters 6 ff. is able to enforce prior-
ities, while retaining the output sensitivity and starvation-free performance of RR;
hence PRR is a valid replacement for RR in most circumstances. We will evaluate
the algorithm in the aforementioned client-server system and compare its perfor-
mance to plain Round-Robin. PRR is used to schedule the update messages at a
constant effort of O(k) per client, where & is the number of updates that can be
transmitted by the network (and thus have to be selected); the priority of the ob-
jects is determined by the visual error, e.g. the position displacement. By applying
visibility culling when the objects are selected by PRR (and including the visibility
information in the determination of the objects’ priorities), the resulting effort is
still O(k). Hence we have an overall effort of O(k « N) = O(N) for N connected
clients, an output sensitive behavior which is crucial for scalable environments.
The performance increase achieved by PRR will be determined from comparing
the visual error of PRR to the visual error of RR, when both are used to schedule
the update messages that the server transmits to the clients. Although we evaluate
the PRR algorithm in a client-server system (for reasons discussed in more detail in
SubSection 2.3.2 and Chapter 9), PRR scheduling is also applicable to peer-to-peer
systems, with the known difficulties of employing filtering techniques in serverless
systems (refer e.g. to Section 4.1)
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Publications

In the last couple of years we have already published several papers related to the
PRR algorithm. This thesis provides a comprehensive conclusion of this work,
covering the theoretical aspects of the algorithm, and including an extended evalu-
ation section. The publications in question are:

e [Fais00a] C.Faisstnauer, D.Schmalstieg, W.Purgathofer: Priority Round-Robin
Scheduling for Very Large Virtual Environments. Proceedings of the VR 2000
conference, pp. 135-142, 2000.

This paper was awarded the honorable mention in the Best Paper Award,
and also selected for republication in the Virtual Reality journal published
by Springer.

e [Fais00c] C.Faisstnauer, D.Schmalstieg, W.Purgathofer: Scheduling for Very
Large Virtual Environments and Networked Games Using Visibility and Pri-
orities. Proceedings of the DIS-RT 2000 conference, pp. 31-38, 2000.

An extended version of this paper will be republished in one of the future
issues of the SCS Transactions journal.

e [Fais00b] C.Faisstnauer, D.Schmalstieg, W.Purgathofer: Priority Scheduling
for Networked Virtual Environments. |EEE Computer Graphics and Appli-
cations (CG&A), Vol. 20, No. 6, 2000.

The remainder of the thesis is structured as follows:

In Chapter 2 we will present an overview about the structure of distributed vir-
tual environments, followed by a treatment of the bottlenecks encountered (Chap-
ter 3) and the resource management techniques typically employed to deal with
them (Chapter 4). Chapter 5 lists some academic and military DVE along with
references to the resource management techniques applied by them.

The Priority Round-Robin (PRR) algorithm is introduced in Chapter 6, describ-
ing its theoretical background. PRR can be applied in any situation where objects
compete for a determined system resource; however in our opinion network bot-
tlenecks are the biggest limitations to the scalability of distributed virtual environ-
ments. Hence we will evaluate the PRR scheduling in a testbed resembling a large
scale DVE, where it is employed to schedule the transmission of update messages
over the network. As visibility information is available in most virtual environ-
ments, the ability of PRR to be combined with reduction/filtering techniques will
be demonstrated by including visibility information in the determination of the ob-
ject’s priorities (Chapter 7). Chapter 8 describes a heuristic that allows PRR to deal
with unpredictable object behavior, as it is often caused by user-controlled avatars,
especially in online games.

The evaluation section consists of two parts. The testbed employed to evaluate
PRR is described in Chapter 9, and the results are presented in Chapter 10.

As the evaluation section cannot possibly cover all imaginable configurations
of DVE’s, the research on this area will be continued. Any information about future
developments can be obtained directly from the author.
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Chapter 2

Main components of a distributed
virtual environment

From a very general point of view, a distributed virtual environment (DVE) can
be seen as a set of hosts connected through a network, and operating on a shared
database that allows the objects in the environment to interact with each other. The
following three subsections provide a more detailed analysis of this basic classifi-
cation.

2.1 Hosts

A simple sketch of a distributed virtual environment consists of geographically dis-
tant hosts connected through a network, such as depicted in Figure 1.1, each host
allowing a user to participate in the environment: by manipulating input devices
such as a keyboard, joystick, or data glove, the user can maneuver an avatar through
the environment; a monitor or head-mounted display (HMD) connected to the host
provides the user a representation of the environment. Of course a virtual environ-
ment might consist of many different host types, some of them providing services
to the environment (instead of managing users) or managing more than one user; in
this first sketch the task of a host is limited to manage one determined user. Hence
each host basically performs a repeated traversal of the following main loop:

1. Read the input devices. The user can issue commands to the system by
manipulating input devices connected to the host, e.g. to control an avatar
through the environment. The motion of the avatar changes the local state of
the environment (as stored by the host).

2. Read from the network. Whenever the user manipulates its avatar, this
local change to the environment is distributed over the network to the other
hosts (see step 4). Thus to get information about the other avatars in the
environment, each host must read incoming packets from the network and
update the locally stored state of the environment accordingly.

13
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3. Computational modelling. From the motion information gathered about
the own (from the input devices) and the other avatars (from the network),
the host can now process interactions among the objects in the environment;
this may include physical modelling of local objects, predictive modelling
of remote objects, or collision detection and response.

4. Writeto the network. Each host must communicate the changes made by
its local objects (such as the “own’ avatar) on the common environment to the
other hosts. This is done by transmitting messages via the network, so that
the other hosts can update their internal representations of the environment
accordingly.

5. Rendering of the environment. As last step in the main loop the envi-
ronment must be presented to the user. It mainly involves the generation
of images, displayed via a head-mounted display or a traditional monitor,
which makes up for the lion’s share of the resources required in this step.
But to achieve a comprehensive sense of immersion, the other senses of the
user should be stimulated as well, e.g. by generating spatial sound, force-
feedback, haptic information, or manipulating the sense of balance.

This mainloop can be implemented by the client in either a single-threaded, or
a multi-threaded approach. When only one single thread is used (see Figure 2.1(a),
all steps are executed sequentially, one after another. This is easier to implement
than the multi-threaded version, but enables each module to slow down or block
the whole system; the entire main loop is only as fast as the slowest component.

Using a dedicated thread for each module of the main loop, such as depicted
in Figure 2.1(b), requires additional synchronization overhead, as the modules ex-
change their information over a shared memory (for more related information see
e.g. [EI-R98]). But it allows all modules to operate at their own speed, and supports
parallel computing as well as more advanced resource sharing.

2.2 Shared database

In a distributed virtual world, users should have the illusion of being at the same
time in the same place. As all hosts participate a common environment, they op-
erate on a shared database describing the virtual scene. We mainly differentiate
between two approaches of storing and managing the database, which are closely
related to network structure employed: using a central repository vs. managing the
environment in a distributed database.

e Central repository: the environment is usually stored by one or more (cen-
tralized) server(s), and replicated fully or partially by the connected clients.
The server(s) are responsible for managing the database and the transmis-
sion of data to the clients. Typically the object geometry is distributed to
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(a) Single-threaded main loop. (b) Multi-threaded main loop.
Figure 2.1: Single-threaded versus multi-threaded implementation of the main loop.

the clients at startup, so that communication at runtime can be limited to the
transmission of update messages, hence saving network bandwidth. How-
ever, having each client store the entire environment implies heavy memory
requirements; thus it is necessary to make a tradeoff between a complete
download at startup, or uploading/downloading part of the object geometry
at runtime. This saves memory, but puts additional load on the network.

e Distributed database: an opposite approach is to assign the task of manag-
ing the database and distributing the changes to the hosts themselves. Each
hosts is responsible for transmitting the geometry and the state changes of
the objects it manages to the other hosts, without the help of a centralized
server. Thus it is necessary that the hosts negotiate the consistency of their
databases among them. This approach makes it much more difficult for a
host to store only a determined part of the environment, hence usually all
hosts store the whole environment in their local database.

Some publications related to this topic (e.g. [Sing99]) employ the term *cen-
tral repository’ only in conjunction with a completely consistent replication of the
database: all changes to the environment are perceived fully and simultaneously by
all hosts. The fact that some databases might be temporarily inconsistent and only
updated after a determined delay is classified as "distributed database’. We think
that is interpretation is somehow misleading, and prefer to relate this classification
to the physical architecture of the database, by talking of ’central repository’ in
conjunction with client-server networks, while the term distributed database’ is
related to peer-to-peer networks.
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2.3 Network

2.3.1 Architecture and Protocols

The network is the core component of a distributed virtual environment: the com-
munication between the hosts can only take place using a network to exchange
messages. As the use of a network always introduces a delay (a truly simultaneous
transmission is not possible), it is important to keep the number of messages to be
transmitted as low as possible.

The network structure employed can heavily affect the performance of the
distributed virtual environment (see e.g. [Funk96a]). It influences the number of
messages that have to be transmitted in order to keep the database consistent, or to
provide determined services (such as directory services, collision detection, etc.)
We mainly differentiate between two types of network architecture, called client-
server and peer-to-peer.

In client-server architectures a server is used to mediate the communication
between the clients connected to it. As all messages between the various clients
pass through one or more server(s), the latter can explicitly filter out messages
(e.g. by employing visibility culling) or process/enhance the messages, like adding
client-specific info, or aggregating multiple messages for the same recipient into
one message. Servers can provide services like a centralized information directory,
collision detection, or database management; hence this structure matches the *cen-
tral repository’ (see Section 2.2). Furthermore, if more than one server is present
in the environment, they can be arranged in a hierarchical structure, to improve the
efficiency of the database management or message transmission.

In a peer-to-peer network, the clients exchange their messages directly; the
communication between them is not routed through a server. This structure, which
matches a ’distributed database’ (Section 2.2), has the advantage of avoiding the
additional latency introduced if all communication passes through one or more
intermediate server(s). But it also increases the difficulty of keeping the hosts’
databases consistent or performing resource-optimizations like Area-of-Interest fil-
tering (see Section 4.1): each sending host must have information about its com-
munication peers, it must know which data the other hosts need. Hence this archi-
tecture puts increased size, memory and processing requirements on all hosts, and
it is more difficult to locate entities, players or services. Figures 2.2(a) and 2.2(b)
show a simplified representation of a client-server and peer-to-peer structure, re-
spectively.

Very often a hybrid approach, combining client-server and peer-to-peer ap-
proaches, is employed: some clients exchange their messages via a server, and oth-
ers communicate directly. Additionally, pure peer-to-peer networks (which contain
no server at all) may be enhanced by servers responsible only for providing deter-
mined centralized services, such as directory services to quickly locate objects or
other services.
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Host

Client

(a) Client-server architecture. (b) Peer-to-peer architecture.

Figure 2.2: Network architectures.

Other than by the architecture (or physical structure) of the network, the com-
munication is also affected by the network protocol employed. The communica-
tion between sender and receiver, both in client-server and peer-peer networks, can
happen in a connection-oriented fashion, which is tailored to the reliable transmis-
sion of data streams (such as the TCP/IP protocol), or via a best-effort, connection-
less packet-delivery service like UDP.

e TCP/IP connections ([Post81]) set up a direct communication channel be-
tween sender and receiver. They require an explicit connection establishing
and removal, and the continuous management of all open connections re-
quires additional overhead. But TCP/IP provides a reliable communication
service and supports continuous data streams.

e The UDP protocol ([Post80]) is a connectionless service, where small pack-
ets are routed through the network on a best-effort basis. No explicit con-
nection is set up: the communication is rather based on a ’fire-and-forget’
philosophy. Once a sender has dismissed some packets, it has no guarantee
that they will arrive at their destination uncorrupted, in the correct order, or
arrive at all. But in advantage no overhead is required for explicitly opening,
managing and closing the connections. Hence UDP allows a much higher
number of connections, and is encouraged if a sender frequently changes the
receiver of the messages.

TCP/IP connections are unicast transmissions (which means, each message is
send explicitly from one determined source to one determined destination). UDP
connections can be either unicast, broadcast, or multicast.

In a broadcast transmission ([Mogu84]), a message sent by a host is automat-
ically delivered to all other hosts in the local network (e.g., all hosts connected to
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the ethernet cable). The advantage is that the message must be sent only once,
reducing the overhead for the sender. The disadvantage is that all hosts receive the
message, and must hence process it, which introduces an overhead for the recip-
ients. Furthermore, the network is flooded with packets. Broadcast transmission
mode is advantageous if the messages are likely to be accepted by most receivers;
in this case the time required to distribute the messages is considerable lower com-
pared to unicast transmission, where each message must be sent to all recipients
separately. However, if the message is of concern only to few hosts in the network,
the additional overhead for the receivers and the increased bandwidth requirements
of broadcast transmission are likely to outweigh the benefits.

Multicast transmission ([Deer89]) tries to overcome this problem by specify-
ing for each message a list of recipients that should receive the message. Hence
the sender still has to transmit the message only once, but the number of recipients
can be explicitly limited. Multicast transmission has low bandwidth requirements,
but it must be supported by the routers; they have to replicate the message in case
the recipients are reached via different output channels of the router.

Although all combinations of network structure and network protocol are pos-
sible, client-server architectures typically employ TCP/IP, except in cases a client
must change server frequently, or an unreliable transmission is acceptable. Peer-
peer networks in contrast mostly employ the UDP protocol (mainly used in multi-
cast transmission mode).

Networking is a very complex field, and this section can only provide a very
rough introduction. To learn more about the field, refer e.g. to [Come94] or [Stev94].

2.3.2 Scalability Issues

Peer-to-peer networks, in order to be scalable at all, must limit the number of
update messages transmitted over the network. Assume every host manages one
avatar, we have N = number of objects = number of hosts. If a host transmits
an update to all other hosts every time its avatar moves, the number of messages
grows with an O(N?) effort, impeding any scalability.

To make the system scalable, it is necessary to apply message filters, so that
update messages are not sent to every host for every update. Popular approaches
include the use of explicit filtering functions (e.qg., visibility culling based on pre-
computed cell-to-cell visibility) or implicit filtering by means of multicast groups.

A very simple form of explicitly performing visibility culling is to send updates
only to those peers whose avatar® lies in a cell visible to the cell in which the
updates occurred (we assume a cell-based subdivision of the environment and limit
the culling to a precomputed cell-to-cell visibility). But this requires each host to
maintain an up-to-date list of which cells the other avatars reside in. This technique
scales beyond the ’send an update to everybody’ approach, but still requires to
send update messages to all peers whenever an avatar moves into a new cell. As

The position and direction of the avatar is used as viewpoint to present the environment to the
user.
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infrequent as this might be, the effort is still O(N?); hence the system is not truly
scalable.

If the network supports multicast, the filtering effort may be shifted from the
hosts to the network, by assigning a multicast address to each cell and let the objects
send updates to the cell they are actually located in; the hosts can then subscribe
to the cells within their area of interest. The hosts do not have to maintain lists,
but rather joint and leave multicast groups, as their viewpoint moves across cell
boundaries. This involves no explicit update transmissions, but implicitly causes
the network to generate messages needed to update the routing tables. This addi-
tional overhead, even if being only O(NV), grows with the number N of connected
clients, hence the system is not scalable infinitely.

The only way to make unlimited scalability theoretically possible, is to em-
ploy a client-server architecture, where no additional communication between the
clients is necessary to maintain the filtering functionality, and where localized com-
munication between avatars in the same area dominates.

Section 4.1 describes the culling techniques mentioned above in more detail.
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Chapter 3

Detecting resour ce bottlenecks

The most influential resource bottlenecks typically encountered in distributed vir-
tual environments are the network, the graphics pipeline, and the computational
power (processor cycles).

The performance of a network is mainly characterized by its bandwidth and
latency (also referred to as delay). The bandwidth describes the amount of data
that can be transported simultaneously by the network; it can be imagined like the
amount of water that is observed flowing through a tube on any chosen point of
its course. The bandwidth, which is determined by the type of hardware used to
transmit and transport the data (see e.g. [Stal96]), is measured in Kbps, Mbps or
Gbps (kilo-bits, mega-bits or giga-bits per second, respectively); Table 3.1 shows
the bandwidth limitations of some frequent network types. The latency in turn
describes the time required by one bit of information to travel from the sender to
the receiver. Due to its physical nature, a network always introduces some delay,
hence every information transmitted will always be outdated to some extent when
it is received.

Modem 14.4-56 Kbps
DSL 1.5 Mbps
Cable modem | 10 Mbps
Ethernet 10-1000 Mbps
Fiber optics 10 Gbps

Table 3.1: Bandwidth data of connection hardware.

The limitations of the graphics pipeline, responsible for rendering the envi-
ronment and producing a frame rate fast enough to perceive a smooth animation,
are usually determined by the graphics card, and expressed in ’polygons per sec-
ond’ (polygon throughput) as well as ’pixels per second’ (fill rate). The number of
polygons-per-second a graphics card can support describes the number of polygons
that can be processed per unit time (in this case, per second), including geometric
transformations and projections. Thus it is a measure of the polygon throughput,
which limits the number of polygons the objects in the environment can consist of.
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The pixels-per-second give the fill rate of the graphics card, describing the
number of pixels that can be drawn per second. This affects the appearance of the
polygons’ surface, e.g. the use of a texture.

A typical approach is to first reduce the number of polygons used to represent
the environment (e.g. by using Levels of Detail or performing visibility culling),
then to limit the number of pixels needed to render the surface of the polygons (e.g.
by selecting textures of varying complexity). Table 3.2 gives the performance data
of some widely used graphics cards. However, these humbers must be taken with
great care as they are based on different evaluations, and some specifications (such
as the PS2 and especially the XBox) are synthetic values estimated by the vendors
and not based on realistic gaming environments.

Nintendo 64 150K
Sony Playstation 350K
Sega Dreamcast 3M
Gamecube 6M-12M
GeForce2 25M
Sony Playstation 2 75M
XBox 100M
SGI Infinite Reality 2 Multipipe (16) | 210M

Table 3.2: Polygons per frame of graphics hardware.

The computational power needed to traverse the mainloop depicted in Sec-
tion 2.1 is the third major bottleneck typically present in a DVE. Processor cycles
are needed to query the input devices, read data from and write data to the network,
and support the graphics pipeline in the generation of the images necessary to pro-
vide a smooth animation. The computational modelling is especially demanding:
simulating the motion of the own entities, predicting the motion of the remote en-
tities, performing collision detection, etc.

Furthermore, a substantial amount of processing power is needed to apply
resource management techniques, such as reduction/filtering or scheduling algo-
rithms. Hence the effort of decreasing the network and/or graphics bottleneck in-
creases the processing bottleneck; the optimization of one resource is often at the
expense of another.

Managing these resource bottlenecks in virtual environments is crucial to the
performance, scalability and user acceptance of the system. User studies indicated
that people experience a decrease in performance if the entire mainloop takes more
than 100 msec (JWIok95]), hence the resource optimization techniques should pre-
vent the bottlenecks to affect the system beyond that point.

We must be aware that the optimization techniques which have the task to re-
duce the load on the resource and manage their usage, are themselves consumers of
these resources. It is necessary to carefully consider which resources are consumed
to optimize the usage of other resources; the optimization of the graphics pipeline
or the network is typically at the expense of processor cycles; lowering the load on
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the processor often requires to transmit more messages. We must remain within
the confines of the available resources and time constraints; the resource optimiza-
tion techniques employed should on one side reduce the load on the resources and
minimize the effect of the bottlenecks, and on the other side allow the system to
run in 100 msec loops.

Every new user that participates in the environment increases the demand for
resources, thus directly affecting the scalability of a system and the requirement
for efficient resource management techniques.

e New users must receive the initial state of the database at startup, and up-
dates from the other objects at runtime. Furthermore, they generate updates
themselves that must be sent to the other participants. All these actions put
additional load on the network.

e New users also increase the load on the graphics pipeline and the demand
for processor cycles, as the objects introduced by them must be rendered,
monitored and stored by all other hosts.

Minimizing the demand for resources does not only help to avoid bottlenecks;
even if enough resources are at disposition, an efficient management - leading to
a decreased demand for resources - will improve the performance of the system:
ranging from a faster transmission of data and a better interactive performance to a
smoother animation.

Furthermore, it helps alleviate another problem that is introduced by the exis-
tence of inhomogeneous components in distributed systems: if the hosts interacting
in the common environment differ in their equipment and hardware performance,
it is more difficult to maintain a consistent state and a consistent view into the envi-
ronment for all participating users. It is up to the system designer which strategy to
follow: exploiting all resources available or use the lowest common denominator.
If every host exploits all of the resources it has at disposition, a high-performance
graphics workstation can provide a much higher frame rate and more detailed rep-
resentation of the environment than a low-cost personal computer. This will favor
some users while penalizing others, when interacting with each other - whereby the
penalized user is not always the one with the slower hardware. Singhal and Zyda
([Sing99]) stated an example of military exercises based on NPSNET, in which
the participants with a simpler and less detailed representation of the battlefield
were able to spot the enemies faster than the users which had a highly detailed
representation.

If the system tries to find a lowest common denominator, it attempts to give all
users an equal chance, and an equal main loop (similar frame rates, response time
and representation details). However, parts of the resources will be wasted, and
one slow component can massively penalize the whole system.
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Chapter 4

Managing networ k bottlenecks

In Chapter 3 we have presented three major bottlenecks encountered in distributed
virtual environments: the network, the graphics pipeline and the processing power.
As the evaluation of the PRR algorithm (Chapters 9 and 10) focuses on the opti-
mization of the network bandwidth usage, the next sections deal extensively with
network bottlenecks. Section 4.1 examines the various reduction techniques typ-
ically employed to deal with network restrictions; for the sake of completeness
the management of graphics and processing bottlenecks is shortly mentioned in
Section 4.2. The scheduling techniques and their typical usage in connection with
network limitations are briefly overviewed in Section 4.3; Section 4.4 finally de-
picts how reduction and scheduling techniques can be combined with the help of
the PRR algorithm.

4.1 Reduction techniques

A wide range of techniques have been developed in the recent years to deal with
the network bottlenecks that typically arise in distributed virtual environments.

The simplest approach is to optimize the communication protocol, trans-
mitting only the messages that are strictly necessary. This includes reducing the
message size (compression), as well as aggregation of multiple messages for the
same recipient into one big message (NETEFFECT [Das97], for example, employs
this concept to perform group dead reckoning). Aggregation does not reduce the
amount of data transmitted or the number of recipients, but the total number of
messages that are sent. Concerning the compression of messages, other than raw
binary compression, more sophisticated approaches include compression of geom-
etry data ([Dans94]), polygonal data ([Deer95]), or a combination of geometry and
image data ([Levo95]).

Area-of-Interest (AOI) management techniques are among the most popu-
lar approaches to reduce the load on resources. Basically, they try to reduce the
amount of information that is generated, processed and transmitted by filtering out
the information that is not of interest to the recipient (e.g., the objects which are
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invisible). As each host is usually focussed only on a small portion of the envi-
ronment, the so called ’Area of Interest” (AOI), a substantial amount of resources
(especially of network bandwidth required) can be saved by transmitting the host
only the data of those entities that can be perceived. Objects which are invisible
and hence cannot be perceived by the user, are often preempted in favor of the vis-
ible ones. A generic treatment of the AOI notion can be found in the aura-nimbus
model described in [Gree97].

AOQI techniques are so called “filtering techniques’; for the sake of simplicity
this term is often used synonymously for all different types of ’reduction tech-
niques’, although only AOI approaches (and, to some extent, Dead Reckoning
techniques) perform an explicit filtering function on the objects.

Among the simplest forms of AOl management is to require each host to ex-
plicitly register interest in the chosen objects. This approach is successful if a host
is interested in a small and mostly static set of distinct objects; otherwise, the sub-
scription and unsubscription effort is likely to outweigh the benefits of the filtering.

In vicinity-based AOI techniques, the interest in a determined object is given
by the distance to the viewer. The environment is typically subdivided in regions,
and each user gets updates only from those objects which lay in the regions im-
mediately adjacent to its own location. The subdivision can be arbitrary or regular
(e.g., employing a regular grid of 2D hexagonal cells, such as in NPSNET [Mace95]).
All objects subscribe to the region they are located in, transmitting it their data,
such as position updates. This allows all hosts to be informed about the actions
in the regions they are interested in, either by monitoring the flow of information
towards that region(s), or explicitly querying a sort of region manager.

Visibility-based AOI allows to save network bandwidth by suppressing the
transmission of update message which lay outside the field of view of the user.
Even if this leads to an inconsistent state of the scene database among the various
hosts, this inconsistency cannot be perceived by the users, as it affects only objects
which are hidden. The visibility can either be predetermined, or specified by a cam-
era or viewcone at runtime. In SPLINE ([Barr96]), for example, the environment
is subdivided into regions whose inter-visibility is calculated in advance; the RING
system ([Funk95]) employs accurate visibility culling based on dynamic cameras,
while AVIARY uses viewcones. In the first case, it suffices to determine which
regions are visible from the one the user is actually in, and discard the objects
located in the other regions. If the visibility is given by the position, orientation
and field of view of a moving camera, in order to make this calculation feasible at
runtime, it is usually necessary to subdivide the environment into fine-grained cells
and employ so called ’potentially visible sets’ (the notion of PVS was first intro-
duced by [Aire90]), which contain the areas of the environment visible from each
possible location of the camera. Typically, the environment is triangulated, with
lists of potentially visible triangles being used to quickly determine the visibility
relationships.
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A practical application of PVS can be found e.g. in the UND Walkthrough
project described in [Mine95] or [Aire90], but also in our testbed which uses a
very simple algorithm to predetermine the PVS (see [Schm97]). A good starting
point for a generic introduction into culling is [Clar76]; comprehensive overviews
about polygon culling are given in [Mine95] or [Funk96b].

We correlate only the camera-based visibility (as used in RING) to the visibility-
based AOI techniques; if the visibility is pre-determined and based on regions
(SPLINE, or NETEFFECT), on our opinion it has a greater resemblance to vicinity-
based technigues. The reason is that in the latter case the filtering condition is
given simply by the presence of the object in determined static regions. However,
if the visibility is based on a moving camera, the culling area may be continuously
changing and requires a much more fine-grained subdivision of the environment.

Dead reckoning (DR) is another set of techniques that reduce the number of
messages transmitted over the network. In dead reckoning, other than simulating
its own (local) objects, each host maintains a simplified behavioral model for the
remote objects managed by the other hosts. Using this model, it predicts the actual
state of these remote objects by extrapolating from the previous states; this opera-
tion is referred to as ’dead reckoning’. This technique allows to limit the network
transmission to updates messages used to correct the prediction, in case it becomes
too inaccurate. To detect this case, every host stores an additional ’ghost’-copy
of the own objects simulated locally, to which it applies the same dead reckoning
routines as employed by the other hosts for the prediction. Whenever the repre-
sentations of the (simulated) local objects and the "ghost’ objects differ by a deter-
mined threshold, the remote hosts are likely to have the same errors in their dead
reckoning, and updates to correct the remote dead reckoning are transmitted.

Although dead reckoning is a generic notion of predicting the behavior of re-
mote objects in order to save network bandwidth, it is typically limited to extrapo-
lating the objects’ position based on position/velocity updates (NPSNET [Mace94],
for example, employs first-order derivatives, while PARADISE uses the position
history [Sing95b]). Exceptions are e.g. the use of dead reckoning for articulated
human figures, such as investigated by [Capi97a].

Dead reckoning is limited to a physically based motion of objects that can be
computed incrementally from a limited set of values (such as velocity or accelera-
tion for position dead reckoning), in order to allow the remote hosts to perform an
accurate prediction. Therefore, as dead reckoning relies on a prediction based on
the recent objects’ behavior, the fields of application in areas with an unpredictable
user behavior, such as in online video games, is very limited. Furthermore, the
reduced demand for network bandwidth gained by employing DR goes at the ex-
pense of a heavily increased computation effort, as clients have to predict behavior
of the remote objects.

Dead reckoning is related to the AOI techniques listed above by the fact that
the transmission of updates is determined by the amount of interest’ of the re-
cipients in the various objects. In DR however, the interest is determined by the
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accuracy with which the recipients predict the motion of the objects, rather than by
the objects’ properties themselves (such as visibility or distance to the camera).

Other ways of reducing the transmission of messages over the network rely on
exploiting user perceptual limitations. The visual sense is the most important
one, but not all information captured by the eyes is effectively perceived. The
human brain filters the information, memorizing only the most important parts.
Large, fast moving objects, for example, capture the attention more than small,
slowly moving objects; motion performed perpendicular to the line of sight is much
more conspicuous than motion toward the viewer. Furthermore, the resolution of
the output displays and the eyes themselves restricts the amount of detail that can
be perceived. Therefore, not all objects laying in the user’s field of view are equally
important; this allows to prioritize the transmission of update messages.

Levelsof Detail (L OD), for example, partially exploit this concept by provid-
ing for each object different representations of varying complexity, and repeatedly
choose that ’level of detail’ which matches the user’s perception and the network
bandwidth available.

Geometric Leves of Detail provide for the same objects a set of different
geometric representations with varying detail, which can range from millions of
polygons and high-resolution textures to a flat-shaded representation using only
few polygons. Which level of detail to employ is determined e.g. by the distance
to the camera: objects which are too far away need a less detailed representation
than nearby objects, and are hence represented with a lower LOD. This affects both
the number of messages transmitted over the network (objects with many articu-
lated parts, for example, generate more updates than objects with only few moving
parts), and the load on the graphics pipeline to render the objects. In more recent
virtual environments, much work has gone into providing continuous solutions to
the LOD model creation problem. A comprehensive overview about polygonal
surface simplification algorithms is given in [Heck97].

However, Levels of Detail are not limited to the geometric representation of
the objects; they may include areas such as simulation, collision detection, physical
forcemodelling or the framerateitself. LODs can be used e.g. to tune the precision
of simulating the objects’ movement, their behavior, the collision detection, or the
physical force modelling. Objects which are far away from the camera need a less
precise animation than nearby ones. The LODs can be used to affect the amount
of data that is transmitted: for example only position updates for distant objects,
but position, orientation, joint angles, color updates, etc. for nearby objects. Even
the frame rate, the frequency with which the update information is sent, might be
affected by the LOD of the objects. From this point of view, also the PRR algorithm
can be classified as a LOD technique, because the priority assigned to the objects
determines the frequency of their update messages. These Levels of Detail are
usually implemented by assigning each object multiple independent data channels
([Sing95b] calls them fidelity channels), each providing information at a different
LOD, affecting precision and/or frequency ([Kess96]) of the data.
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Delaying the delivery and representation of low-priority information is also
a possible way to reduce the load on the network or the graphics pipeline, respec-
tively; but it is a rather infrequently used approach. Examples can be found in
[HarvoT].

The performance of the optimization techniques employed can be largely sup-
ported or hindered by the network architecture chosen for the distributed environ-
ment (refer to Section 2.3), which has a substantial influence on the network load
required.

A client-server architecture, for example, is better suited for complex filter-
ing mechanisms than peer-to-peer networks; all communication is routed through
servers which have a ’centralized’ knowledge of the clients’ objects and can per-
form an explicit filtering, as well as modifying and enhancing the messages (such
as aggregation of packets for the same recipient); the disadvantage is that the
servers introduce an additional latency in the network transmission. Peer-to-peer
networks, in turn, are suited to perform an implicit filtering using for example mul-
ticast groups. Multicast is only able to perform a coarse filtering, based on a list of
’subscribed’ destinations, but allows to shift part of the filtering effort to the routers
and network interfaces.

Multicast is very suited for vicinity-based AOI management, because the im-
plicit filtering achieved by multicast-groups is accurate enough for region-based
culling: each region is assigned its own multicast address; clients subscribe to the
multicast address of the region they are located in (sending their data to that ad-
dress). Hosts can then receive the updates of all objects in a determined area by
listening to the multicast address of the corresponding region(s). Hence for achiev-
ing vicinity-based AOI optimization, a peer-to-peer architecture is sufficient.

If visibility-based AOI management determined by a dynamic camera is needed
instead, subdividing the environment into regions and providing a multicast ad-
dress per region is not accurate enough; rather a multicast address per object is
necessary, providing a very fine-grained partitioning. An alternative approach is
to employ region-based multicast groups to first achieve a rough implicit filtering,
for then performing a fine-grained explicit filtering on the data transmitted in each
multicast group; however, this considerably increases the overhead. Employing
per-object multicast groups requires each host to continuously monitor which ob-
jects are actually present in its changing viewcone, in order to be able to subscribe
to the multicast-address of those objects which are momentarily visible.

Therefore it is necessary to provide a directory service capable of delivering
the actual location of the objects, or return all objects contained in a specific area.
In peer-to-peer networks, this service can be implemented in a distributed fashion,
to meet the network’s architecture: each host is responsible for providing informa-
tion about its local objects. In client-server networks, where all communication
is managed by one or more server(s), this service is best provided by the servers
themselves, which can easily monitor the motion of objects and cameras as they
forward (and on demand process) the data packets for the clients. Alternatively,
a hybrid solution may be employed, where the hosts send information about their
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objects to a centralized server, which in turn can be queried by the hosts to obtain
the multicast addresses to subscribe to.
The use of multicast groups has several limitations:

e The routers in the network must support multicast addressing. Today there
still exists a substantial amount of routers which do not.

e The number of multicast groups that can be supported by network cards and
routers is limited, so it may be not possible to assign a dedicated address to
each object.

e Subscribing and unsubscribing to multicast groups requires an overhead and
introduces some delay; hence these actions should not be performed fre-
quently.

These limitations can often give a client-server architecture an advantage over
a peer-to-peer network. For example, if the cameras are moving at fast speed,
the set of objects in their viewcones is continuously changing. Using peer-to-peer
networks and multicast groups to perform the visibility culling requires to assign
a multicast address to each object, and each camera to subscribe to the multicast
addresses of the objects in their field of view. This might lead to a subscription
overhead much higher than the additional delay introduced by the servers in a
client-server architecture. If the camera is highly dynamic, the adaptation (sub-
scription/unsubscription) to the continuously changing set of objects in its view-
cone is likely to outweigh the latency advantages of the peer-to-peer networks.

4.2 Usingreduction techniquesfor graphical and
processor bottlenecks

The limitations of the graphics pipeline, which is responsible for the generation of
images at a frame rate fast enough to produce a smooth animation, are basically de-
termined by the throughput and fill rate of the hardware. Throughput is expressed
in number of polygons that can be handled per unit time (typically a second); it
puts restrictions on the geometric structure of the objects. The fill rate limits the
number of pixels that can be drawn (per second), thus affecting the representation
of the object’s surface, e.g. the detail of the textures employed.

The throughput restrictions are typically met by reducing the number of poly-
gons to be drawn. Visibility culling, a filtering technique also employed to improve
the performance of the network, can be used to discard the objects invisible to the
user. Subsequently, the number of polygons required to display the visible objects
is further reduced by employing geometric LODs.

Levels of Detail can be also used to reduce the number of pixels required to
display a determined object, e.g. by providing textures with varying resolution used
to represent the surfaces of the polygons.
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Processor bottlenecks are handled in a similar fashion. The shortage is due
to an excessive amount of information that has to be processed. Processor cycles
are required by all steps of the main loop (refer to Section 2.1), but especially by
the computational modelling (simulation) of the objects. The more objects have
to be simulated, and the more precision is used in the simulation computations,
the higher is the demand for processing power. Therefore, AQOI filtering which
discards objects not of concern to the user reduces the load on the processor, e.g.
by preventing invisible objects from being simulated. Levels Of Detail in turn
can be used to provide various ’simulation LODs’, which rely on processing the
information at various precision ([Carl97]). The simulation of avatars far away
from the user’s viewpoint might for example suffice with the translation of static
low-polygon objects; avatars in the immediate vicinity of the user might require a
physically correct simulation of articulated human figures including the user of in-
verse kinematics (for an introduction into the realistic representation and animation
of virtual human figures see e.g. [Capi97b] or [Pand96]).

Of course this discussion gives only a rough overview about the problem, but
as the Priority Round-Robin scheduling algorithm is evaluated by focussing on the
network bandwidth optimization, the treatment of graphical and processor bottle-
necks is beyond the scope of this thesis and treated here only for completeness.

A fact that must always be considered when dealing with resource bottlenecks
is that the various resources in a system are all related to each other; bandwidth
and processor implications, for example, parallel each other closely in networked
virtual environments. Optimizing the network bandwidth is usually at the expense
of an increased demand for processor cycles; speeding up the simulation of the
objects by sending accurate background information or performing parallel com-
puting e.g. increases the traffic on the network. Hence it is necessary to evaluate
the impact of a resource optimization technique on all resources in a system, and
determine the overall cost versus the benefit achieved.

[Sing99] describes the relationship between networking and processing in dis-
tributed virtual environments with the so called *Information Principle Equation’:

resources ~ M x Hx BxT x P (4.1)
where

number of messages transmitted

average number of destination hosts for each message

average network bandwidth required for each message

timeliness with which the network must deliver messages

(a large number implies minimal delay)

P | number of processor cycles required to receive/process each message

“WIzZ

This principle expresses the fact that an accurate compromise between the re-
source optimization techniques employed and the resources required by these tech-
niques must be found in order to improve the scalability and performance of a
system.
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As we must stay within the confines of the available resources (network, pro-
cessor cycles, etc.), the scalability of the system is limited; if an excessive number
of objects demands too many resources, the resulting bottlenecks cause a degra-
dation of the system’s performance. Employing reduction/filtering techniques to
reduce the number of competing objects does not suffice, because in case the re-
maining load still exceeds the availability of the resources, the bottleneck problem
persists, and the degradation of the system’s performance it not graceful at all. This
problem might be partly alleviated by employing scheduling techniques.

4.3 Scheduling techniques

Scheduling conceptually follows a different approach than reduction (or filtering)
techniques. It does not reduce the number of objects competing for a determined
resource, but rather tries to select a determined subset among all competing ob-
jects (which are granted the resource requested), in order to optimize one or more
determined system parameters.

This problem is known from operating systems research, where independent
processes competing for CPU power have to be scheduled for assignment of pro-
cessor cycles; a comprehensive overview can be found in [Tane92], [Stal95], [Deit90]
or [Silb94].

The simplest scheduling policy is executing the processes one after another in
their order of submission (that is, using their age or time of arrival as priority),
called First Come-First Served (FCFS). FCFS is a so called non-preemptive algo-
rithm, where a selected process terminates before a new process is scheduled.

In preemptive algorithms, the currently running process may be interrupted by
another process. This happens for example in Round Robin (RR) scheduling, the
preemptive version of FCFS, where each process is removed from the resource and
reinserted at the end of the queue if it exceeds a determined time slice. As RR is
output sensitive and immune to starvation, it is a very popular technique; however
due to its inability of enforcing priorities its performance is rather limited.

A scheduling algorithm which employs priorities and also includes a feedback
from the system is the so called Multilevel Feedback Queue (MLFQ). It consists
of levels with decreasing priorities; the algorithm starts with the highest level and
picks all processes present in that level in a round-robin fashion. After a determined
time slice the actually selected process is preempted and inserted in the next lower
level; thus the priority of the processes decreases with increasing execution time.
When a level is empty, the algorithm selects the processes of the next lower level.
New processes are inserted in the highest level, a fact that may lead to a starvation
of the processes in the lower levels. To overcome this problem, processes waiting
to be scheduled may be raised to a higher level after a determined amount of time.
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However, the MLFQ is not apt to be employed as generic-purpose scheduling
algorithm for virtual environments, as there are substantial differences between the
scheduling of processes in operating systems and the scheduling of objects in a
virtual environment:

e Processes are usually scheduled only once (except rescheduling because of
preemption), after which they are terminated and removed from the schedul-
ing queue. For further scheduling, the processes have to be resubmitted to
the algorithm, where they are treated as new processes. In virtual environ-
ments, we often have to schedule the same object repeatedly (e.g. recurrently
sending position updates of a moving object).

o |f priorities are employed by process scheduling algorithms, they are used to
determine which process is to be scheduled next: the process with the highest
priority is chosen, but this may lead to starvation of lower priority processes
(e.g. in the MLFQ). Techniques to avoid starvation employ a constant mon-
itoring of all processes to treat lower level processes (or penalize high level
processes); this leads to an overhead depending from the number of pro-
cesses. In virtual environments, where objects are scheduled repeatedly, the
priorities are rather related to the scheduling frequency of the objects (the
amount of time to wait between two consecutive schedulings), as opposed to
the waiting time until the next scheduling.

e Process scheduling algorithms usually deal with a reasonable number of
processes, which allows them to continuously examine all processes to de-
termine their characteristics. As the overhead of our algorithm should not
depend on the number of objects (this would imply an input-sensitive be-
havior), it is prevented from sorting or comparing all objects against each
other.

e The ’amount’ of resources required by processes may vary substantially, thus
it is often necessary to preempt the execution of a process to be resumed later.
Furthermore, it is necessary to distinguish between CPU and I/O-bound pro-
cesses. For PRR scheduling we assume all objects need a small, constant
amount of non-blocking resource (e.g. transmitting an update over the net-
work), so that they can be serviced completely when being scheduled.

What most process scheduling techniques have in common with our attempt
to schedule objects in virtual environments is the attempt to optimize determined
system parameters, to minimize the risk of starvation (every object should be guar-
anteed to be serviced at least once within a determined amount of time), and to
enforce priorities.
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4.4 Combining reduction and scheduling techniques

Usually reduction and scheduling techniques are combined to achieve better perfor-
mance. In a strict sense, most reduction/filtering techniques require the additional
use of a scheduling algorithm, in case the resulting number of objects still exceeds
the availability of the resource. The most widely used scheduling algorithm in this
situation is Round-Robin, due to its output sensitivity and starvation free perfor-
mance. However, scheduling techniques select a subset of objects which is granted
the resource requested, but this is always only an approximation of the optimum
state (all objects getting the resource), as good as the selection may be. Hence the
less objects are competing, the better is the approximation that can be made by the
scheduling techniques.

The Priority Round-Robin (PRR) approach presented in Chapters 6 ff. is not
only a very efficient scheduling algorithm, but also allows a better integration of
scheduling and reduction techniques than the traditional approach, which is to first
apply a reduction/filtering technique on the competing objects, and then applying
a scheduling technique on the remaining ones. PRR includes the reduction tech-
niques in the determination of the objects’ priorities, without renouncing to an
output sensitive behavior (see Chapter 7). An evaluation of the PRR algorithm can
be found in Chapters 9 and 10, where it is employed to manage the transmission of
update messages in a client-server system. Visibility information will be included
in the determination of the objects’ priorities when they are scheduled; this allows
to preempt the transmission of invisible objects in favor of the visible ones.
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Examples of resource
management in virtual
environments

Almost all existing virtual environments employ resource management techniques
to reduce the load on their resource and minimize the effects of bottlenecks.

SIMNET ([Pope89], [Calv93]) was one of the first existing DVEs; its devel-
opment started in 1983 and was officially discontinued in 1990. SIMNET was
commissioned by the US Department of Defense (DoD) as a military simulator for
small unit training. It follows a peer-to-peer architecture; every host replicates the
database completely and acts as an autonomous simulation node responsible for
managing one or more entities, such as vehicles, planes or soldiers. According to
a so called "object-event paradigm’, each node is responsible for placing messages
about every state change of its objects on the network, so that they can be perceived
by the other nodes. As broadcast is employed to distribute the event messages, the
network is continuously flooded with packets; multicast is supported by the sys-
tem, but only to run multiple independent ’exercises’ simultaneously. Although
dead reckoning is employed to reduce the number of packets transmitted, due to
the elevated network load the SIMNET specifications require the use of dedicated
high-performance networks.

SIMNET is a highly proprietary system requiring specialized hardware, thus in
order to be further usable by a broader range of researchers, the DI S project was
conceived in 1990 to generalize and extend the SIMNET protocol, allowing the
simulation of different types of players on different types of machines. Formally
DIS is a protocol, not an system architecture; it became an IEEE standard in 1993
[IEEE93]. The DIS protocol consists of 27 different types of messages (so called
Protocol Data Units, or PDU’s) that every node participating in the system must be
able to read and write. DIS does not introduces new resource management tech-
niques in addition to those employed by SIMNET (it uses broadcast to distribute
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the messages, and support dead reckoning, although with a selection of 9 different
types).

Both SIMNET and DIS are military developments contracted by the DoD, but
encountered some interest in the academic community, thus in 1990 the Naval
Postgraduate School started the development of NPSNET ([httpNPS]), aiming at
providing a low-cost version of SIMNET. In its first version, NPSNET is limited
to read SIMNET databases; DIS compliance was achieved in version IV presented
in 1993 ([Mace94]). Additionally to the dead reckoning of SIMNET and DIS,
NPSNET IV employs a vicinity-based AOI filtering, based on a subdivision of
the environment into 2D hexagonal cells ([Mace95]). Each cell has an associated
multicast address, with every object subscribing to the cell it is located in. In
this way information about nearby objects can be collected by subscribing to the
multicast addresses of the neighboring cells.

Due to their system architecture, SIMNET, DIS and NPSNET support only a
limited number of participant; except for a few specialized research implemen-
tations (such as [Calv95], which sustained 5000 entities for 3 to 5 minutes), the
maximum number of participating entities ranges from approximately 500 to 1000
objects.

Managing a higher number of objects requires the use of further resource man-
agement techniques, such as in RING, PARADISE or NETEFFECT; these systems
aim at supporting more than 1000 objects. PARADISE ([httpPARA]) is a hybrid
peer-to-peer system, where ’external’ servers provide an entity directory service.
Each object registers at the server, and is assigned a multicast address.The various
hosts can then subscribe to objects in their vicinity by using the directory service.
Furthermore, PARADISE uses an advanced dead reckoning mechanism based on
the position history of the objects, and can aggregate nearby objects into groups to
optimize the multicast filtering ([Sing95b]).

NETEFFECT ([Das97]) is a client-server architecture, with clients linked to a
cluster of servers via TCP/IP connections. Each server manages one or more ’com-
munities” which can be populated by user-controlled avatars, and is responsible for
the transmission of update messages between the various clients. NETEFFECT
employs "group dead reckoning’, based on visibility predetermined by the system
designer: the dead reckoning updates for objects in the same building or room are
grouped together to reduce the number of messages transmitted. Furthermore, the
communication between the servers is limited by managing all objects in a deter-
mined ’community’ on the same server, independent from the physical location of
the connected clients which manage those objects (the counterpart would be to let
each server manage the objects of the clients connected to it, independent from the
affiliation of the objects to a community).

The RING system ([Funk95]), based on a client-server architecture, reduces
the number of messages transmitted by employing a camera-based visibility culling;
the communication between the clients is managed by the server(s). The visibil-
ity computation is based on a division of the environment into cells, and on sets
of potentially visible cells precomputed by the server(s). The latter keep track of
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which cell an object is actually located in, and maintain a list of the contained ob-
jects for each of the cells. RING also uses ’surrogates’, a sort of dead reckoning,
to approximate the behavior of the objects. In contrast to NETEFFECT, the con-
nections between clients and server(s) are based on UDP, thus clients can change
server frequently without connection overhead.

The VLNET system ([Capi97b]), developed to investigate the realistic repre-
sentation and interaction of virtual human figures in shared virtual environments,
tries to minimize the number of update messages required to animate humanoid
avatars by employing motor functions’ [Pand96] and human dead reckoning’
[Capi97a]. Motor functions provide parameterized motions, based on a dedicated
set of motion parameters approximated from biomechanical experiments; human
dead reckoning focuses on employing dead reckoning techniques for the motion of
humanoid virtual models.

Other academic distributed virtual environments are e.g. SPLINE ([Barr96]),
AVIARY ([Snow94]), WAVES ([Kazm93]), MASSIVE ([Gree95]), BRICKNET
([Sing94], [Sing95a]), MR-TOOLKIT ([Shaw93]), DIVE ([httpDIVE], [Carl93])
or DVE ([Grim91]); however they are not discussed in more detail as they do not
employ previously unmentioned resource management techniques.
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Chapter 6

Priority Round-Robin Scheduling

6.1 Overview

As anticipated in Section 1.4, the idea of developing Priority Round-Robin (PRR)
scheduling originated from the need for a fully scalable filtering technique (visi-
bility culling), to be employed in distributed virtual environments. Visibility in-
formation is often employed in DVESs in order to decrease the network load, by
transmitting only updates of objects which are visible. It is required to compare
the objects in the environment against the viewcone of the cameras visualizing
the scene, and discard those objects which lay outside the viewing frustum; this
procedure is referred to as “culling’. A popular approach to implement such filter-
ing functions in DVESs is to employ a client-server architecture, where the server
manages the transmission of all update messages between the clients. However,
assigning the server the task to perform visibility culling for all connected clients
causes a substantial overhead. To transmit each client only updates of the visible
objects, it is necessary for the server to keep track of the point of view for every
client, and continuously compare all objects against the viewing frustums. Assum-
ing N = number of clients = number of objects, examining all objects for
all clients leads to an effort of O(IN?), which substantially affects the scalability.

The PRR algorithm aims at reducing this effort; it provides a prioritized man-
agement of the update messages transmitted from server to client, including visi-
bility culling in the determination of the messages’ priorities. PRR has a constant
effort of O(k) per client, where £ is the number of updates that have to be selected;
this leads to an overall effort of O(k x N) = O(N) for N connected clients. Thus
PRR has an output sensitive performance, a crucial requirement for the construc-
tion of scalable environments.

But Priority Round-Robin scheduling is not limited to client-server architec-
tures; it can be employed in peer-to-peer networks as well. PRR is a generic-
purpose scheduling technique that enforces priorities based on a freely definable
error metric, trying to minimize the overall error. Therefore, it can be employed
in almost any situation where objects compete for system resources, because a
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resource bottleneck always causes a degradation of the system performance that
can be measured and hence optimized by the PRR algorithm. By including e.g.
visibility culling in the determination of the objects’ priorities, PRR can combine
scheduling and filtering techniques, while still preserving an effort of O(k) per
client. Furthermore, it overcomes the problem that reduction/filtering techniques
do not deal with the fact that the remaining objects may still exceed the available
resources; PRR fills in this gap.

The inspiration of the Priority Round-Robin algorithm can be found in the
short-term process scheduling known from operating system’s research, where a
set of independent processes is given processor time in order to optimize deter-
mined system’s parameters. Two of the most widely used algorithms are Round-
Robin (RR) and the Multilevel Feedback Queue (MLFQ). RR is widely used due
to its simplicity, output sensitivity and starvation-free performance, but prevents
the use of priorities. The MLFQ does enforce priorities (it consists of a set of
levels with decreasing priorities), but has either to deal with the risk of starvation,
or must constantly monitor all processes and thus renounce to an output sensitive
performance.

The scheduling of processes in operating systems and the scheduling of objects
in virtual environments bears some substantial differences, for example the fact
that in virtual environments - as opposed to process scheduling - the objects usu-
ally need be scheduled repeatedly, and that their high number prevents an efficient
examination or sorting of all objects. However, by combining the basic properties
of RR and MLFQ, the PRR algorithm inherits the advantages of both, providing
an output sensitive and starvation free performance, and at the same time being
able to enforce priorities. It is therefore a valid replacement for RR in most cir-
cumstances. We will employ PRR in our client-server testbed to schedule position
update messages, a task which is usually handled by a simple RR queue.

The priority management of PRR is based on the assumption that if an object
is not granted the resource requested, it accumulates error, e.g. visual error. To be
useful for scheduling, this error must be modelled as an appropriate error metric
(such as deviation in position); the goal of the PRR algorithm is thus to minimize
the cumulativeerror over all objects in the environment, called the *overall error’.

Each object in the algorithm is assigned a so called ’'Error Per Unit’ (epu),
which is a prediction of how much the error will increase in a determined time
unit!. If the error is a deviation in position, then the velocity of an object is a
suitable epu.

While the levels are processed in RR order, each level is assigned a priority,
which reflects the frequency with which the objects in the different levels are se-
lected; objects with a higher epu have to be scheduled more often than objects with
a lower epu. The combination of traversing each level using RR, but with a differ-
ent priority, gives our algorithm its name - Priority Round-Robin scheduling.

1The time unit chosen for the epu does not affect the performance of the algorithm
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We call the waiting time between two consecutive schedulings the repetition
count (rc); it is a measure of the time an object has to wait between two selec-
tions and thus a measure for the cumulative error generated by the object until the
next scheduling. All objects in level i have the same repetition count r¢;, which
determines the scheduling frequency and hence the priority of level i.

Let lev denote the number of levels and ne; denote the number of objects in
level 4. If we repeatedly take one object from each level (we traverse all levels at
an equal speed of one), the repetition count is simply

re; = ne; x lev (6.1)

In the example shown in Figure 6.1, objects A and B (level 1) must wait 6 times
between two consecutive schedulings, objects C to F' in level 2 have a repetition
count of 12, and object G is scheduled every 3 times. The more objects in a level,
the longer they must wait between two consecutive schedulings. If all levels are
of equal length, the repetition count of the objects is the same as if they were
scheduled using the RR algorithm (in which case r¢ = number of objects).

For try=1

Level 1 E rcs=6 ro= _elem; . Z tr;
Level 2 : m : fczrzt?z=1 re: repetition count

elem;: no. elements in level i
tr;: traversal rate of level i

= lev: number of levels
Level 3 For tg3 1
Ic3=

[€[D[E[F] (CIBIEIF] [CIDIEIF] (C[DIEIF]

Scheduling order for tr;=1: ACG, BDG, AEG, BFG

Figure 6.1: Object scheduling order if all levels are traversed at an equal speed of one.

We also see that in the time interval in which the largest level m is traversed
exactly once, the other levels ¢ (of equal or smaller size) are traversed at least once.
We thus define the level frequency [ f; of level i as

Nem

lfi= (6.2)

ne;

Whenever the largest level is traversed exactly once, all objects have been sched-
uled at least once; those of the largest level one time, and those of the other levels
one or more times. The turnaround time (¢t) in which all objects have been sched-
uled at least once is simply

tt = ney, * lev (6.3)

38



Priority Round-Robin Scheduling Chapter 6

If the epu of an object can be assumed to be constant (such as for entities travelling
at constant speed), a predicted error pe for that object can be calculated from

pe = epu * rc (6.4)

Furthermore, an estimate of the total error per level and the total error of the
environment can be computed from the epu of each object and the repetition count
of the levels. Keeping score of these total error measures is done incrementally
with negligible overhead.

6.2 Scheduling for static error distributions

So far the issue of how objects are assigned to levels has not been discussed. Also,
it has not been mentioned whether the number of objects in a level is constant or
variable. Assuming a constant number of objects for each level, objects in smaller
levels get scheduled more often. To fulfill the requirement that objects with a large
epu should get scheduled more often in order to minimize the overall error, these
objects should be inserted into smaller levels.

If the error distribution of the objects is known a priori, it is possible to fix the
number and size of the levels a priori. If we define a set of levels with increasing
size and insert the objects with decreasing epu into the levels, then the larger the
epu Of the object, the smaller is the level (and thus the repetition count) the object
is assigned to. After having determined the optimal number and size of the levels
from the error distribution of the objects (based on a prediction of the error), we
can determine the level to which to assign an object. Each successive level covers a
range of possible errors - an error interval - corresponding to the objects it contains.
If the error values associated with the objects are completely static, objects will stay
in the level they are assigned to.

Unfortunately, dynamic virtual environments do not have a static error distri-
bution. An object’s epu will almost certainly change each time it is inspected. Not
only must the object then be inserted into another level, but also the error intervals
associated with the levels must be adjusted, if the size of the levels is to be kept
constant. However, we have found that for large numbers of objects the systems
response to these adjustments is slow, and the overall error is often larger than plain
RR when object behavior is dynamically changing.

6.3 Scheduling for dynamic error distributions

In order to overcome the aforementioned problem, the size of the levels must be
variable. Therefore, the error interval covered by a level is no longer an indicator
of where an object should be inserted. We considered two alternative variants of
how to assign an object to a level:
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e Minimization of the overall error: the most suitable level for each object
is chosen by estimating for the object’s current epu of how the overall error
is affected if the object is inserted into each level. The algorithm then selects
that level which leads to the lowest overall error. Unfortunately, while this
strategy automatically finds the best number of objects for each level, it is not
superior to RR: as the assignment to a level is only dependent on global error
minimization rather than directly on the epu of the object, this algorithm
tends to distribute objects with high and low errors equally on all levels. This
leads to levels of equal length and equal average error, with a performance
equivalent to RR scheduling. Thus the size of the levels must be variable,
and the assignment of an object to a level must directly depend on its epu.

e Average Error Per Unit: this approach uses an average epu associated
with each level to determine the most suitable level for an object. The
average epu is computed using a moving average. An object is then as-
signed (according to its epu) to the level with the ’closest’ averageepu.
This does not produce a perfect grouping of the objects according to their er-
ror, but does quickly adapt to changing error distributions with no additional
overhead.

After some experimentation, the second approach - based on average epu - was
chosen as the most efficient strategy.

6.4 Optimum traversal rate

In Section 6.1 we have introduced a scheduling strategy that consists of repeatedly
picking one object from each level. In this case the average contribution of an
object to the overall error is determined by the number of objects in each level
(Equations 6.4 and 6.1); the repetition count can only be influenced by level length.

If we assign objects to levels according to their epu, the length of the levels
is fixed by the error distribution of the objects. This retains us from minimizing
the overall error produced by the objects by determining an appropriate repetition
count for each level. The rc cannot be influenced by the scheduling algorithm, as
it might contradict to the repetition count fixed by the error distribution.

Therefore we need to determine for each level a different *speed’ with which it
is traversed (calculated from the error generated by the level), rather than constantly
picking one object from each level. This traversal rate tr; describes for each
level i the number of objects that are selected from that level each time it is visited
(all levels are accessed in turn, as in Figure 6.1). This makes the repetition count
depend not only on the number of objects in each level, but allows it to be varied
via the traversal rate of the level.
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Using a determined traversal rate ¢r;, the repetition count rc¢; for level i is now
given by

re; = —l * try (6.5)

where ne; is the number of objects in a level and lev the total number of levels. If
av; is the average epu? of level 4, we can furthermore calculate a predicted error
pe; for level i.
pe; = ne; * av; * rc;
neiz * AU, lev
pe; = BE— * Ztrk (6.6)
k=1
By summing up the errors predicted for each level, we can derive a formula for the

overall error (err).
lev

err = E pe;
i=1

lev

2 lev
ne;” *x av;
err = — % tr; 6.7
> 67)

()

Our goal is to minimize the overall error err by selecting the optimum traversal
rate ¢r; for each level 7. Hence we can build a cost-function err to minimize, with
tr; being the variables of the function. The number of objects ne; and the average
error av; of each level i can be treated as constant; hence we can ignore the sum of
the ¢r; in Equation 6.7, and use su; to substitute for

su; = ne; * av; (6.8)

This allows us to construct the following cost-function err from Equation 6.7:

lev

1
err(tri, ..., trey) = Z su; * - (6.9)
i=1 ¢

This optimization problem is best solved with the help of Lagrange Multipliers:
Equation 6.10 allows us to find the extrema of function f, with g being a constraint
function for the variables of f:

grad f = Xxgrad g (6.10)

2A\s an object is assigned to a level according to its epu, the average epu of a level is the moving
average of the objects’ epu contained in that level. Simplifying, we can assume that all objects in a
level have the same epu, equal to the average epu of the level.
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Hence we use err as function to minimize (substitute for f) and introduce a
constraint function cons (Equation 6.11) given by the sum of all traversal rates,
which is assumed to be equal to one.

lev

cons = Ztm =1 (6.11)

Substituting for function f and ¢ in Equation 6.10 yields Equation 6.12, which
allows us to find the values for the variables ¢r; where err is a minimum:

lev lev
grad (Z Sty * —) = Ax grad (Z tn) (6.12)

To do so, we have to build for all variables tr; the partial derivatives F,.,:

Fo. - (Zk (;::k * tT’k) — A\ x W (6.13)

Solving the partial derivatives F},, we get

Fir, - —% = Ax1
and from this we can solve for ¢r;:
tr; = —% (6.14)
Now, by plugging Equation 6.14 into the constraint function (Equations 6.11 and 6.15)
tri+ .+t =1 (6.15)
we can solve for \: oo
A=Y v
=1

After substituting for v/ in Equation 6.14, we get a formula for ¢r;:

SU;
Zlev

Re-solving for su; (Equation 6.8) we finally get the optimum value for the traversal
rate tr;, in order to minimize the overall error err.

vne;? * av;
221 V/nep? x avy,

try = (6.16)

t?"i = (6.17)
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The main loop of the PRR algorithm hence consists in simultaneously traversing
all levels according to their ’speed” tr;. Every time an object is selected, it is
granted the resource requested (for example transmitting a position update), after
which the object is reevaluated: first a new epu is determined (based e.g. on the
actual velocity of the object), then it is reassigned to one of the levels according
to its epu. Assigning the object to the level whose average epu is most close
to the epu of the object yields an simple yet effective adaptation to even rapidly
changing error distributions. Afterwards, the traversal rate of the levels is modified
to account for the new error distribution.

Assuming a fixed number of levels keeps the effort needed to schedule an object
constant, so the PRR algorithm can achieve output sensitive behavior. The freely
definable epu allows us to include visibility information in determining an object’s
priority.
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Using visibility infor mation

Visibility information is already available in many existing virtual environments
and networked games, usually employed to limit the amount of data transmitted
over the network. In indoor scenes, rooms and buildings occlude most parts of the
environment; in outdoor scenes the visibility is often limited by a radius around the
user, e.g. the so called *fog of war’ in strategy games.

Visibility culling of objects in a virtual environment can be accomplished by
first determining the visible area that can be seen from the viewpoint, and then
checking which objects are inside and outside that area. Figure 7.1 depicts the
visible area for a client, with objects A and B being visible, and object C' being
invisible.

Usually visibility culling is first used to reduce the number of objects, then
a plain FIFO or RR queue is used to schedule the remaining objects; thus the
visibility information is employed to insert or remove objects from the queue.
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Figure 7.1: Visible area and visible objects of the client’s viewpoint.

We replace RR with a Priority Round-Robin (PRR) scheduler and include vis-
ibility information in the determination of the objects’ priorities. This allows us to
reduce the effort for the server to determine which updates should be sent to each
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client. As each client has its own field of view, the server must usually examine all
objects for each client. Assuming the number of clients approaching the number of
objects (N = number of clients = number of objects), it is an effort of O(N?).

By employing the PRR algorithm it is possible to shift part of this effort to
the scheduler; we let PRR repeatedly schedule as many objects (k) as the net-
work permits, achieving an overall effort of O(k « N) = O(IN) for N connected
clients. Whenever an object is selected, PRR checks whether it is visible or not.
For a visible object the update is transmitted, otherwise the algorithm continues
its selection, looking for visible objects, with the highest speed permitted by the
computing power and the network bandwidth. The visibility information affects
how the object’s priority is determined: visible objects get a priority equal to their
velocity (their epu); if an object is invisible, the priority is chosen such as to let
the object be rescheduled when it is expected to become visible again. In our im-
plementation we base the prediction of when an object will be visible again on
the shortest path from the actual position to the next visible area (other than the
velocity of the object).

7.1 Temporal bounding volumes

The determination of the time interval an object is supposed to remain invisible is
based on a technique called ' Temporal Bounding Volumes' (TBV). A TBV is a re-
gion of space (for simplicity often a circle or sphere) which completely contains an
object for a specific period of time, called the validity interval (see e.g. [Suda96]).
The TBV becomes invalid if the object leaves the volume. Hence its ’expiration
date’ is determined by the movement of the object (e.g. rotating around a fixed
point, travelling along a track, or translating freely in space) and by the size the
TBV can have. In the extreme, a TBV encompassing the whole area of movement
of the object will always be valid.
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Figure 7.2: TBV for an invisible object based on the shortest path to the next visible area.
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For objects with unconstrained translational movement, the expiration date of
the TBV is directly related to its size. The validity interval of a TBV could be
calculated by dividing the size of the TBV by the velocity of the object. However,
in large virtual environments the entities are usually avatars with an unpredictable
behavior.

Our application of the TBV consists in using them to determine the priority of
objects in the PRR algorithm: every time an object is scheduled, PRR determines
whether it is visible or not. In the latter case, a TBV is constructed, based on the
time the object is supposed to become visible again (thus, the size of the TBV
determines its validity interval). Given the fact that the scheduling frequency of an
object is reflected by its priority, we assign the object a priority such as to become
scheduled again at the same moment the TBV expires (and the object is supposed
to become visible again); this provides kind of an automated *wake-up’ function.
Figure 7.2 shows the TBV for an object with unbound translation, calculated from
the shortest path to the next visible area (hatched area).

7.2 Integrating visibility information in PRR

In order to be usable by the PRR algorithm, we express the time interval an object
has to wait (given by the TBV) in number of scheduling actions!. Hence we can
directly compare the waiting time of an object - given by a number of scheduling
actions - to the scheduling frequency of each level (given by the repetition count,
as calculated using Equation 6.5). An object is then assigned to that level whose
scheduling frequency best matches its required waiting time.

This causes a difference in how an object is assigned to a level, depending on
whether it is visible or not: if an object is visible, it is assigned to that level whose
average epu best matches the epu of the object (determined by its velocity). If
it is invisible, that level is chosen whose scheduling frequency best matches the
waiting time determined by the TBV. In the latter case, the epu of the object is not
determined by its velocity; rather it temporarily assumes the average epu of the
assigned level. This allows the PRR algorithm to simultaneously process visible
and invisible objects.

This value depends on the number of objects the PRR can schedule per unit time.
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Activity monitoring

One possible origin of errors in the scheduling is an unpredictable or rapidly chang-
ing behavior of the objects. The PRR algorithm usually computes the epu of an
object based on its recent simulation behavior; but if the object suddenly changes
its behavior by a noticeable amount, then the epu that was computed for the object
when it was last inserted into a level is no longer valid. The object would need a
new epu, but this can happen only when it is scheduled the next time.

Hence in the time interval between the change in behavior and the next schedul-
ing of the object, the priorities and traversal rates as used by the PRR algorithm are
not correct. In the worst case, this may lead to an overall error which is higher
than that produced by plain RR scheduling. The scheduling frequency of the ob-
jects (given by the repetition count of the level they were inserted in) is determined
by the relation of their epus; objects with a higher epu get a higher scheduling
frequency (a bigger share of the resource) at the expense of objects with a lower
epu. For example, an object ranked high in relation to the other objects concerning
its epu may suddenly slow down and produce an error (per unit) much lower than
most other objects. But until it is rescheduled, it is bound to the fast level it was
assigned to, at the expense of other objects which were previously slower, but are
now faster (in relation of their epu, alias velocity). Even worse, objects rated low
and assigned to a slow level, is denied a higher scheduling frequency until they are
rescheduled, in case they should experience a sudden speedup.

If such changes in behavior follow specific patterns, the PRR algorithm can
take them into consideration by analyzing the history of the objects; but if the
behavior is unpredictable, as occurs very often for human-controlled avatars in
virtual environments, the efficiency of PRR is endangered.

To prevent this case from happening, we first need to develop a measure for the
"activity” of objects, in order to quantify the frequency and ’amount’ of changes
in the epu of an object (reflected from changes in its behavior), and the impact of
those changes on the performance of PRR.

47



Activity monitoring Chapter 8

8.1 Activity detection methods

Two detection methods were taken into consideration:

Compare the overall error: this method compares the overall error gener-
ated by PRR to the (predicted) overall error that would have been generated if the
objects would have been scheduled using plain Round-Robin. The overall error
generated by PRR is given by

noElements
errorPRR = ( Z epu; * 1¢;) (8.1)
i=1

while the error generated by RR is described by Equation 8.2 (using RR, the
repetition count rc; is equal to the number of objects in the level).

noElements

errorRR = ( Z epu;) * noElements (8.2)

=1

If errorPrr is greater than errorRR, a response strategy must be triggered.

Compareerror and benefit: the second approach is to compare the predicted
error caused by the behavior changes to the predicted benefit achieved by using
PRR instead of RR. Every time an object is scheduled (and thus a new epu is com-
puted), the change between the new and the old epu, multiplied by the repetition
count between the last two schedulings, is taken as error caused by the change in
behavior. This assumes the worst case, namely that the change in epu occurred
immediately after the object was assigned to the level. These errors, which include
increases as well as decreases in the epu are continuously summed up in a moving
average, called the ’error penalty’. We also experimented with an error penalty that
examines only the objects whose epu increased between two consecutive schedul-
ings (hence they were bound too long in a level which became too slow for them);
this assumes that the effect of objects whose epu decreased - because they use a
"fast’ level at the expense of other objects that might need it - is detected indirectly
when examining these objects that were denied the fast level. The latter approach
proved to be less reliable than the prior one, and was thus discarded.

The predicted benefit of using PRR instead of RR assumes the best case, namely
the difference in the overall error (between PRR and RR) that would have been ex-
perienced if all epus had remained unchanged; this is called the 'error benefit’.

penalty = rc; * abs(epu; * epuOld;) (8.3)
noFElem noFElem
benefit = (noElem Z epu;) — ( Z rCi * epuy;) (8.4)
i=1 i=1

Equations 8.3 and 8.4 show the formula for the error penalty and error benefit;
noFElem is the total number of objects in the environment, epu; and r¢; denote the
epu and the repetition count of object 4, respectively, and epuOld is the epu the
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object had when it was scheduling the last time. Whenever the error penalty is
higher than the error benefit for a determined amount of time (called the moni-
toring period), the "behavior threshold’ is triggered.

This heuristic proved to be the most reliable for very dynamic objects and was
thus adopted as default detection method.

8.2 Activity response strategies

If the behavior of the objects is classified as too instable to rely on priorities for the
scheduling, it is necessary to limit the influence of the priorities. In this case, the
following response strategies have been tested:

e Switching: simply switch to RR performance, hence ignoring the priorities
assigned to the objects. All levels are traversed at such a speed as to give
the objects the same repetition count they would get in plain RR. This pro-
duces some undesirable peaks in the overall error when switching between
PRR and RR performance.

e Damping: specify a maximum difference between the traversal rates of the
various levels, thus limiting the influence of the priorities (epu). We divide
the interval covered by the average epu of all levels into segments of equal
length, same in number to the levels in the PRR (this is the highest ’stage’
of damping); the length of the resulting segments is then used as maximum
difference by which the average epu of the various levels is allowed to vary.
The nearer the average epus are brought together, the more PRR approaches
RR performance.

Damping is a heuristic approach (as it is the detection method), but produces
good results and a smooth transition between the various stages. Whenever the
error penalty is higher than the error benefit for the monitoring period, the
highest amount of damping (number of segments = number of levels) is ap-
plied; every time that for the duration of the monitoring period the error penalty
stays below the error benefit, the stage of the difference-restriction is decreased
by one (the number of segments is decreased, until having just one segment left;
the latter does not pose any restrictions on the variance of the epu anymore).
This leads to smoother transition than just differentiating between *full” damping
(number of segments = number of levels) and no damping.

Damping works independently of whether visibility is used in the PRR or not;
it allows the PRR algorithm to become a safe scheduling strategy that can cope
with almost any error distribution and object behavior.
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8.3 Additional damping methods

However, an unpredictable object behavior is not the only possible origin of errors
in PRR scheduling. The fact that the speed with which the various levels are tra-
versed is not based on absolute values, but rather on the relation of the objects’
priorities between each other, bears another source of inaccuracy. A PRR algo-
rithm consisting of two levels with an average epu of 10 and 1, for example, will
traverse the levels at the same speed as another PRR algorithm whose levels have
an average epu 0f 1 and 0.1 (assuming the number of elements in each level is
equal in both algorithms). Therefore, the scheduling frequency of a level depends
not only on the epus and T'BV's of the objects it contains, but is affected also by
the priorities of the objects contained in the other levels. For a determined level,
raising the average epu of the other levels or lowering its own average epu has
the same effect: the traversal speed decreases. Viceversa, if the objects contained
in the other levels decrease their epu, the traversal speed increases (same as if its
own average epu raises).

This leads to the situation that not only every change of an object’s priority, but
also the assignment of an object to a different level has a determined influence on
the whole system; varying the number of objects in the levels affects their traversal
rate (even if the average epus of the levels do not change). If visibility information
is employed, objects change level rather frequently, even if the epus of the objects
do not vary: if an object is invisible, it is assigned to that level whose scheduling
frequency best matches the validity interval of the object’s T BV, while the same
object (if visible) is assigned to the level with the closest epu. Therefore it is likely
that every transition from a visible to an invisible portion of the environment (and
viceversa) causes the reassignment of an object to a different level.

Employing visibility information intensifies two possible sources of errors that
must be dealt with. First, the same object may be assigned to levels with very
different speeds, depending on whether it is visible or not. It may happen that an
object suffices with a slow level when being in an invisible area of the environment
(the shortest distance to the next visible area is very long), but requires a fast level
when becoming visible (it also has an elevated velocity). If the object still waits
in the slow level when becoming visible, the visual error may experience a sud-
den increase, because the object is now located in a level which might be far too
slow, and furthermore the contribution of the object to the overall visual error was
suspended while it was invisible (refer to Section 9.5).

Second, invisible objects are generally more prone to variations of the levels’
speed than are visible objects. The scheduling of invisible objects relies on a spe-
cific *deadline’ that must be met (the moment the invisible object is supposed to
become visible, as expressed by the validityinterval of the T'BV'). Hence invis-
ible objects depend on the absolute value of the scheduling frequency of the level
they are assigned to; any variation in the level’s speed will cause the invisible ob-
ject to be re-scheduled either too early (before it becomes visible) or too late (after
it became visible).
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Visible objects, which are assigned to the levels according to their epu, do not
rely on a determined speed of the levels. As long as the scheduling frequency of
the levels reflects the relation of the objects’ epu (a high epu require a fast level, a
low epu requires a slow level), the PRR will still minimize the overall visual error.

To deal with these problems we include the scheduling frequency - hence, the
speed - that was *promised’ to the various objects (when they were inserted into
a determined level) in the PRR algorithm. The ’promised speed’ is simply the
actual traversal speed the level had when the object was inserted (and on which
the object’s TBV relies). From the promised speed of the objects contained we
compute an average promised speed for each level, which is now used for the
traversal of the levels. This decreases the responsiveness of PRR only marginally,
but allows it to handle even rapidly changing visibility situations.

51



Chapter 9

Evaluation of the PRR algorithm

9.1 Testbed architecture

We will evaluate the performance of the Priority Round-Robin algorithm in a
client-server architecture, where it is employed to schedule the transmission of
update messages from the server to the connected clients. Although the PRR al-
gorithm can be employed in a peer-to-peer network as well, we have chosen a
client-server environment to evaluate PRR for several reasons.

Other than theoretically allowing unlimited scalability (see SubSection 2.3.2),
client-server architectures are better suited to perform complex filtering functions,
as all communication is routed through the server(s). This automatically gives them
access to all information needed to perform the filtering, so that e.g. performing an
accurate culling on a viewing frustum determined by the field of view of a camera
does not increase the communication overhead compared to a cell-based filtering,
which is very popular in peer-to-peer networks. Implementing correct visibility
culling in a peer-to-peer environment would substantially increase the communi-
cation overhead required to perform the filtering, other than perhaps stressing many
clients beyond their hardware capacities. In client-server architectures the clients
must perform very little processing or storage to manage the transmission of the
update messages; the whole burden of forwarding the messages and performing the
filtering functions is assigned to the server(s). Server are typically better equipped
than clients, and by employing the PRR algorithm the server can manage the trans-
mission of the update messages - including visibility culling - at a constant effort
per connected client.

Another aspect of preferring a client-server architecture for evaluating PRR lies
in the priorities of the algorithm itself. PRR enforces priorities in the scheduling of
the objects, based on their Error PerUnit (we employ the velocity of the objects
as epu). As the scheduling frequencies of the various levels relies on a comparison
of the objects’ epu, each PRR scheduler must have the velocities of all objects at
disposition. In peer-to-peer network, this requires additional transmission when-
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ever the priority of an object changes. However, the performance increase of PRR
outweighs this additional overhead.

And last, but not least, our testbed tries to resemble large scale online games
such as Ultima Online ([httpUQY]) or Everquest ([httpEVERY]), which typically em-
ploy a client-server architecture.

9.2 Task of the PRR algorithm

In this setup, our server simulates the movement of a large number of avatars
through the environment, trying to roughly resemble the behavior of the avatars
in the online games mentioned above. Each of the connected clients can maneuver
a camera through the environment, to observe the whole scenery from a dynami-
cally changing viewpoint. As the scene description is transferred to the clients at
startup, the communication at runtime can be limited to the transmission of update
messages from the server to the clients.

In most existing environments the transmission of updates to each client is
managed using a simple RR or FIFO queue, which is easy to implement and has an
output sensitive effort, crucial for the scalability of such systems. However, if the
number of updates to send to each client exceeds the network bandwidth (which
might often be the case, even if visibility culling is used to filter out updates of
invisible objects), the resulting resource bottleneck leads to a performance degra-
dation causing a database inconsistency (and hence a visual error determined by
the objects’ displacement).

In our implementation, we manage the transmission of the update messages
with a Priority Round-Robin algorithm instead of a simple Round-Robin queue.
Therefore we can schedule the objects according to priorities which are determined
from the visual error of the objects (difference in position of the same object on
server and client). This not only minimizes the overall visual error caused by the
network bottleneck, but also leads to a graceful degradation of the system’s perfor-
mance.

Furthermore, the PRR algorithm can include visibility information in the de-
termination of the objects’ priorities. Visibility information is available in most
virtual environments, determined by the viewpoint of the various clients and used
to filter out the transmission of updates for invisible objects. As we employ a client-
server architecture, the server can easily keep track of the position of the objects
in the environment as well as the clients” viewpoints; this visibility information is
then used when determining the priority of the objects. In contrast to first culling
the invisible objects, and then scheduling the remaining objects (as is the usual
approach if a plain Round-Robin queue is used), we let the scheduler manage all
objects and include the visibility information in the priority of the objects. As the
determination of an object’s priority happens every time and only when the object
is selected by the scheduler, this does not affect the output sensitive performance of
PRR. Hence the Priority Round-Robin algorithm provides a tool that considerably

53



Evaluation of the PRR algorithm Chapter 9

eases the construction of scalable environments; it can manage very large numbers
of objects and still provide a graceful degradation of the system’s performance in
case of bottlenecks.

Section 9.3 first describes our testbed implementation, followed by a descrip-
tion of the behavior used to simulate the motion of the avatars (Section 9.4). The
error metric employed in the performance comparison is depicted in Section 9.5.
The performance increase that can be achieved by replacing plain RR with the PRR
algorithm is finally presented in Chapter 10.

We will employ several different system configurations, with and without the
use of visibility culling, as well several different behavior models of the objects.

9.3 Testbed implementation

We tried to construct the testbed in such a way as to roughly resemble typical large
scale online games (such as Ultima Online or Everquest). Our system consists
of a central server managing and simulating an extended environment that can be
explored by the connected clients. However, we keep the simulation of the envi-
ronment very simple. The scenery was generated by randomly replicating a small
tile containing a set of walls, and then triangulating the floorplan. It is populated
with rigid avatars (represented by simple dots in the screenshots) that are translated
through the environment, following some very simple behavioral rules which are
depicted in Section 9.4; the movement of the avatars is limited to simple trans-
lational displacements. The clients replicate the environment by storing the last
known position for each object, thus requiring an update message every time the
server changes the position of an avatar. As our implementation aims only at eval-
uating the performance of PRR, compared to plain RR, the clients need not render
the environment.

The server is implemented in a single-threaded fashion; its main loop consists
in first translating all objects, for then transmitting each client as many position
update messages as the network permits. If the bandwidth permits to transmit only
a subset of the pending update messages, a client experiences a visual error given
by the difference between the object’s position as simulated by the server and the
last position update received by the client.

We evaluate the performance of PRR by comparing the visual error a client
experiences when the transmission of the update messages is managed by a PRR
algorithm, as opposed to employing a simple RR queue. Hence the server manages
two different data structures for each connected client, one PRR and one RR queue,
filled with all objects that generate position updates. Both queues are traversed
simultaneously, transmitting as many updates to the client as the network permits.
Therefore in our testbed implementation each client receives two different sets of
updates, one from the RR queue, and one from the PRR queue, as illustrated in
Figure 9.1; both algorithms is given the same bandwidth, hence both schedulers
transmit updates at the same frequency. If the updates provided by PRR are used,
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the avatar position (as assumed by the client) is depicted by the green objects, while
the red objects represent the RR queue.

To compare PRR and RR, a client stores for each object the last position update
received from both schedulers. The visual error is then calculated by summing up
(for all objects) the difference between the stored update and the position simulated
by the server. In Chapter 10 the performance of PRR is expressed by the percentage
the visual error of PRR is lower than that of RR; e.g. a value of 50% means the
overall visual error can be halved by replacing RR with PRR.

Figure 9.1: Updating the object’s position using updates from the RR and PRR scheduler.

Our testbed was implemented to run entirely on a single workstation, hence
the network bandwidth limitations are only ssimulated. Although this makes the
results more *experimental” than sending the update messages over a real network,
it eases a precise comparison between PRR and RR performance. The transmis-
sion of update messages can be ’simulated’ by writing the objects’ new position
directly into a memory region shared with the client, and the position difference
can be evaluated immediately with two memory accesses (server memory, client
memory).

If we employ a real network for the evaluation, the clients must generate a log
file that contains the actual position of their objects for the whole duration of the
evaluation. Upon completion, the server can then calculate the position differences
using the clients’ logfiles and a logfile generate by the simulator. However, this
requires huge amounts of diskspace, and the frequent filesystem accesses gener-
ate considerable overhead, consuming processor cycles otherwise available to the
scheduling algorithms and the simulator. It is possible to avoid the usage of logfiles,
but at the expense of transmitting a massive amount of additional evaluation mes-
sages, in which the clients report the actual position of their objects to the server.
This in turn consumes a substantial amount of network bandwidth, falsifying the
network properties the testbed is supposed to evaluate.

As the evaluation of the PRR algorithm is based on network bandwidth and
does not consider latency effects, we can assume that an update is perceived by
the client immediately after it was sent by the server. This allows us to replace
the real network, characterized mainly by a delayed transmission of information,
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with a shared memory data exchange; the bandwidth restrictions can be simulated
precisely concerning memory accesses as well. Furthermore, our testbed structure
allows to simulate a much larger number of objects and clients than a "real-network’
solution would permit.

Thus the single-threaded mainloop of the testbed is implemented as follows:

1. The server translates all objects in the environment by a determined position
displacement; this is called a ’simulation step’.

2. For each client, a limited number of updates (only a subset of the total num-
ber of objects, in order to simulate the network bandwidth restrictions) is
transmitted: first by employing a Round-Robin queue, which simply tra-
verses a list containing all objects, and then using a Priority Round-Robin
algorithm. The number of updates determines the severity of the bandwidth
bottleneck (or vice versa); the higher the bottleneck, the smaller the number
of updates allowed per loop.

3. The visual error for both the RR and PRR algorithm is then evaluated for
each client, by comparing the object’s position as simulated by the server to
the last position update transmitted to the client. First the clients sum up the
individual visual errors of their objects, then the clients’ errors are summed
up into the overall visual error encompassing all clients. This calculation is
performed for RR and PRR separately, after which the overall error of both
is compared.

4. The loop is repeated with step 1.

To make this ’simulated’ network as realistic as possible, the number of up-
dates that are transmitted in each loop is based on the specifications of a common
hardware equipment. Assuming that most online game are played over the internet,
and cable modems or DSL are still rare goods in many areas, we specify the con-
nection between server and clients to be a standard 56Kbps (kilo-bits per second)
modem, which means 56.000 bits or 7000 bytes per second. Client-server setups
allow each client a dedicated connection to the server, thus we trust a steady flow
of 56Kbps between server and client.

We furthermore assume commercial online game providers have enough hard-
ware resources to generate a smooth animation, which requires a minimum frame
rate of 24 fps (frames per second); hence the simulator will produce 24 position
updates per second for each object. The minimum size of an update packet in our
environment is six bytes: two bytes for an object identifier, and other two bytes
for the x- and y-coordinate each. As such packets must be transmitted 24 times
a second, the 56 Kbps of the connection limits the number of updated objects to
approximately 50 (2% = 48.61).

In the examples presented in Chapter 10 we populate the environment with
1000 objects; thus both the RR and PRR algorithm are allowed to update only 50
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out of the 1000 simulated on each loop, which is 5% of the total number of ob-
jects. This is our reference bandwidth; but to show how the PRR reacts to different
network bottlenecks, we repeat all examples with a slightly increased bandwidth,
where we allow both schedulers to update 100 objects (10%) after each simulation
step.

In the first part of the evaluation we ignore camera position and visibility infor-
mation. Thus all objects selected by RR and PRR are effectively transmitted to the
corresponding client. The second part includes visibility culling: all clients move
an independent camera through the environment, whose position, orientation and
field of view determines which objects are visible and which ones lay outside the
area of interest. As clients perceive only the objects inside the viewcone of their
camera, the visual error is limited to the visible objects; entities which are invisible
do not contribute to the overall error, as they cannot be perceived by the user (for a
more detailed explanation refer to Section 9.5).

Hence it is possible to reduce the visual error by preempting the transmission
of invisible objects in favor of the visible ones; the RR and PRR schedulers pass
only the visible objects to the network layer, skipping the invisible objects. How-
ever, this might require to examine more objects than are effectively transmitted;
the amount of time at disposition for this search is limited by the update rate of
the simulator. For example, a frequency of 24 position displacements per second
means one simulation step happens approximately every 40 milliseconds. This is
the amount of time RR and PRR have at disposition to select the updates for their
client, before the simulator produces new updates, making the old ones outdated.
As we want to make a precise comparison between RR and PRR, a premise of
our system is that the server grants each RR and PRR scheduler 40 milliseconds
of time to select the 50 (or respectively 100) update objects. We noticed that the
overhead introduced by the error measurement functions in our testbed does not
allow a homogeneous distribution of time slices; thus we limit the time slices for
the schedulers artificially. Our hardware allows us to examine approximately 100
objects on each loop, in order to find the 50 visible objects that can be transmitted.
To allow an accurate comparison between the examples in which we schedule 50
objects on each loop, and those where 100 objects are selected, in the latter case
we assume our system was upgraded to a faster CPU, and permit PRR and RR to
examine 200 objects (to find 100 visible ones).

The PRR algorithm uses the TBV approximation introduced in Section 7.1 to
treat invisible objects. This automated *wake-up’ function minimizes the selection
of invisible objects; RR lacks such an optimization. Although RR has the theoret-
ical advantage of not being required to perform TBV calculations for its objects,
the time needed for this process can be minimized by precomputing a list which
stores the distance between all triangles in the floorplan. As each entry requires
only one length value, and this list is valid for all PRR algorithms managed by the
server, it is a memory requirement feasible by most systems. Using the object’s
actual triangle as reference, this list allows us to find the nearest visible triangle
with few memory lookups.
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9.4 Implementation of the behavioral model

The behavioral model with which the server moves all objects through the envi-
ronment roughly resembles an average conduct profile of avatars in large scale
online games such as Ultima Online or Everquest. It consists in selecting a desti-
nation, moving to that location with a predefined velocity (the movement consists
of a simple translation), and upon arrival repeating the whole process. The envi-
ronment can be equipped with so called "hotspots’, dedicated areas with resemble
prioritized haunts (such as rooms, buildings, special places, etc.) frequently present
in large scale virtual environments. These preferred whereabouts lead to the situ-
ation that the avatars are not distributed equally over the whole environment, but
rather tend to group in specific places. Furthermore, avatars do not always rush
from one place to another, but rather spend some time in their chosen haunt, before
continuing to their next destination. Hence we equip all objects in our simulation
with a small set of behavioral parameters:

e Each object has a determined speed with which it moves through the envi-
ronment; this velocity is used as Error Per Unit (epu) when determining
the object’s priority.

e An individual predefined percentage value is assigned to each object and
used to decide between contenting itself with a random location (anywhere
in the environment) or requiring a hotspot, when selecting a new destination;
this allows us to specify the "attractiveness’ of the hotspots and enforce their
usage. If the avatar is located in a hotspot when selecting a new destination,
we further distinguish between forcing the transition to a different hotspot,
or choosing a different position in the same hotspot, in order to spend some
time in that area; this resembles the exploration of a determined haunt.

o Additionally, we support the formation of crowds in the environment; each
object can perform an independent movement, or be instructed to follow the
movement of another object. This leads to the migration of groups through
the environment.

As the environment consists of a triangulated floorplan, the selection of a new
destination is based on triangles. First the shortest path from the actual position
to the destination triangle is determined, using a connection graph that was build
when initializing the environment. Then a spline is generated, using a random
position inside each triangle along the computed migration path as control points.
The motion of the objects thus consists in a translation along splines with their
predetermined velocity. Once arrived at destination (reaching the end of the spline),
the whole process is repeated.
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9.5 Error measurement

The error metric used to compare the performance of Priority Round-Robin and
plain Round-Robin is based on the visual error given by the objects’ displacement.
Every time the simulator changes the position of an object, it results in a visual
error given by the difference between the position simulated by the server and the
last position update received by the client; upon transmission of a position update,
the visual error of the object is set to zero. The sum of the objects’ individual
errors gives the visual error of the client; the errors of all clients taken together are
denoted as the overall visual error.

In order to make the visual error independent from the movement direction
of the object, we do not measure the absolute (Euclidian) distance between the
object’s position (on server and client), but rather perform an incremental com-
putation of the visual error by repeatedly adding the translation offset after each
simulation step. If we simply compare the object’s position on server and client to
determine the visual error, a simulated motion which heads away from the last po-
sition stored by the client leads to a steadily increasing visual error; but if the client
then changes its direction and moves toward the stored position, the visual error
would begin to decrease, although the client does not perceive the motion of the
object, hence logically increasing the inconsistency. The simple "Euclidian’ metric
gives a snapshot of the ’actual’ visual error at a determined moment in time, but
does not account for any motion performed between two evaluations of the visual
error, if the simulated position is the same at both times. Figure 9.2(c) shows the
visual error as given by the Euclidian distance if the object performs the motion
depicted in Figure 9.2(a). We see that at step 8 and 22 the visual error is the same,
although there was a substantial motion inbetween; furthermore, while the object
performs a circular motion, the visual error does not increase, although information
about the movement is lost.

A premise of our error metric is that any motion of a visible object that is not
received by the client must lead to an increase of the visual error, because the user
misses information about the behavior of the object that it should perceive.

Hence we accumulate the visual error, instead of measuring an absolute value.
By adding the relative displacement after each simulation step to the actual error,
every motion is accounted for in the error determination. The visual error accumu-
lated in the meantime is set to zero whenever an update of the most recent position
is received by the client. Figure 9.2(b) shows how the visual error of the motion
depicted in Figure 9.2(a) evolves if the incremental metric is used.

Following this argumentation line, if an object becomes invisible we ’preserve’
the visual error accumulated up to that moment. As long as the object is invisible,
it does not accumulate further error, because the actual motion of the object cannot
be perceived by the user. But the error that was accumulated before the object
became invisible is still considered in the overall visual error, because even if the
object cannot be perceived right now, the user still missed part of the visible motion
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(a) Waypoints of the avatar’s movement. (b) Visual error determined incrementally.
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(c) Visual error of Figure 9.2(a) as determined by the absolute Euclidian distance.

Figure 9.2: Measurement of the visual error (Euclidian distance).

that it should have perceived. The object continues to accumulate visual error as
soon as it becomes visible again.

For example, if an object disappears behind a wall as depicted in Figure 9.3,
the contribution of the object to the overall visual error does not increase until it
reappears again on the other side of the wall. But the error that was accumulated
while heading toward the wall must be preserved. The user missed some infor-
mation about the object’s behaviour, and might still assume the object is located
somewhere in front of the wall. Figure 9.4 shows how the visual error accumulates
over time for the object in Figure 9.3.

However, the fact that RR and PRR transmit only updates for objects which
are visible penalizes the invisible ones. They are forced to "keep’ their visual error
(accumulated when they were visible), but are not allowed to send an update to
the client, in order to set their accumulated error to zero. Therefore, we allow
PRR and RR to update even invisible objects, but only if they were still visible the
last time they were selected (and thus an update was transmitted to the client). In
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this way, the user is able to perceive that the object disappeared, and the object
is allowed to clear its error contribution. Until the object becomes visible again,
any subsequent selections will be ignored by PRR and RR (if the calculation of the
T BV was correct, the PRR should not reschedule the element until it gets visible

again anyway).

0123 910 11

456738

Figure 9.3: Movement of the avatar through an invisible area.

Visual Error

Waypoint Index -
0123456728910 11

Figure 9.4: Evaluation of the visual error for the movement in Figure 9.3.
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Results

To compare the performance of PRR under various circumstances, we evaluate
a given set of error distributions (presented below) on four different setups with
increasing complexity:

e No visbility: in the first part of the evaluation we do not employ visibil-
ity information; we assume that each client can perceive all objects present
in the environment (hence all objects selected by the PRR and RR sched-
uler are effectively transmitted to the client). The scheduling of the objects
is based entirely on their velocity with which they are moved along ran-
domized paths. This makes it possible to observe the influence of the error
distribution on the performance of the PRR algorithm directly. As there are
no client-specific differences between the various clients connected (such as
independent viewpoints), the sequence of updates transmitted by PRR is the
same for all clients (each clients has its own dedicated PRR scheduler). The
RR queues always transmit the same sequence for every client.

e Visibility: the second part of the evaluation includes visibility information,
given by the position, direction and field of view of a camera that is moved
by the client through the environment. As the cameras controlled by the var-
ious clients are independent from each other, the priorities as determined by
the corresponding PRR queues, and hence the overall errors experienced by
the different clients may vary substantially. In most examples we employ
a camera with a field of view of 90 degrees that is moved along a random-
ized path, using the same behavioral rules as for the objects; the velocity of
the camera is set to 0.1 units. Figure 10.1 shows the triangulated floorplan
employed in our evaluations; for the sake of clarity only 100 objects are dis-
played. The red star depicts a camera, with the invisible triangles shaded
dark. For efficiency reasons we employ a very simple visibility algorithm
(see [Schm97]), which does not compute the visible and invisible portions
of a triangle. But as the Temporal Bounding Volumes, used to calculate the
priorities of the invisible objects, are a very conservative estimate, this does
not affect the performance of the PRR algorithm.
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¢ Visibility and hotspots: in order to increase the realism of the objects’ be-
havior, we set five sparse "hotspot’ areas in the environment and require that
all objects select their destinations to be located in one of the hotspots. This
resembles the fact that in virtual environments (especially in online games)
there usually exist determined areas of interest such as rooms, buildings, etc.,
while large portions of the environment are only traversed when migrating
from one such area to another. In this setup, every time a client reaches the
end of his motion path, with a 75% probability it selects a new destination
in a different hotspot; with the remaining 25% the new destination lies in
the same hotspot the client is actually located in. In the examples where
we employed static cameras, we positioned them near one of the hotspots;
when dynamic cameras were used, their motion through the environment
was independent from the hotspots, in order to include the case of exploring
a sparsely populated part of the environment. Figure 10.2 shows the same
floorplan as in Figure 10.1, but with hotspot areas represented by the colored
triangles.

e Visibility, hotspots and leaders: another typical behavior in virtual envi-
ronments is the formation of crowds, a fact supported by the existence of the
hotspots. We simulate this behavior by designating some objects as ’lead-
ers’, which move from on hotspot to another, or to a different location in
the same hotspot. The remaining objects then follow one of these leaders (at
their own speed).

Figure 10.1: Visible area for the camera (star). Invisible triangles are shaded gray.
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For the evaluations we populate the environment with 1000 objects. First we
assign them a uniform error distribution: each object gets a velocity between 1
and 3 units. Then the analysis is repeated using a clustered error distribution, a
case more apt for the PRR algorithm because it allows to construct clearly distinct
error groups. We employ two different sets, denominated 'S’ (for *small’) and
'L’ (for ’large’): they resemble the fact that in many virtual environments a small
set of objects has a high velocity with respect to the majority of the objects; for
example, if humans, vehicles or even airplanes are simulated contemporaneously
in the same environment. Basically, the more distinct the groups are, the higher the
performance increase achieved by PRR.

The first set, called ’S’, has three different error groups:

e 100 objects have a velocity between 9 and 10 units.

e 250 objects have a velocity between 1 and 1.2 units.

e 650 objects have a velocity between 0.1 and 0.5 units.
In the second set 'L’ the groups are more distinct:

e 100 objects have a velocity between 9 and 10 units.

e 250 objects have a velocity between 0.1 and 0.12 units.

e 650 objects have a velocity between 0.01 and 0.05 units.

The evaluation of these three error distributions in the different environment setups
is presented in Sections 10.1 to 10.4. To show how the RR and PRR algorithms
react to a varying network bandwidth, we repeat all examples with two different
settings, allowing the schedulers to update 50 or 100 objects after each simulation
loop, respectively.

All evaluations are performed with 10 clients connected simultaneously to the
server, each moving a dedicated camera through the environment (except in Sec-
tions 10.1 where visibility is ignored). The graphs in the following sections show
the overall visual error for both PRR and RR (y-axis), which has been summed up
over all ten clients; the x-axis of the graphs is labelled with the simulation loops
(or main loops) performed.

The performance increase achieved by PRR is expressed as percentage value.
Using the error of RR as reference value (100%), we determine by how many
percent the overall visual error can be reduced if PRR is used instead of RR. A
result of 42%, for example, means that the visual error of PRR is 58% the error of
RR. The percentage given refers to the sum of the individual errors of all client;
as there may be substantial variations, we also list the percentages of the single
clients.
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Figure 10.2: Environments with five hotspot-areas (no camera drawn).

Figure 10.3 presents a snapshot of the testbed implementation. The central
panel shows the triangulated floorplan with the objects simulated by the server (for
the sake of clarity only 100 objects are drawn). The left and right panels on top of
the snapshot visualize the individual errors of the single objects as experienced by
one specific client; the left panel shows the visual error for the RR queue, while the
right panel is associated to the PRR scheduler. It is possible to select between dif-
ferent types of visualization: the magnitude of the visual error can be represented
e.g. by the radius of a circle centered around the objects (as shown in Figure 10.3),
by a line connecting the position of the object on the server with the last position
update received by the client, or varying the color brightness with which the object
is drawn. The graph at the bottom of the snapshot displays the overall visual error
for the PRR and the RR algorithm (summed up over all clients).

A fact that can be observed in all examples is that by employing a uniform error
distribution, the performance increase that can be achieved with the PRR algorithm
is much more limited with respect a *clustered’ error distribution, because the al-
gorithm cannot construct clearly distinct error groups (to be serviced at different
priorities).

Furthermore, when employing a uniform error distribution, the size of the in-
terval has only a restricted impact on the performance of PRR, as can be seen in
Sections 10.1: the intervals ranging from [0.1, 1] up to [1, 200] show almost the
same results (a decrease of the visual error by 10% on average). But by using
clustered error distributions, we measured performance increases of up to 7600(!)
percent (shown in Graph 10.22). If visibility information is employed, the size of
the uniform error interval has a larger impact on the PRR performance, mainly due
to the use of Temporal Bounding Volumes.
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Figure 10.3: Snapshot of the testbed employed to evaluate the PRR algorithm.

We can also observe that the more objects can be scheduled on each loop, the
bigger is the advantage of PRR over RR scheduling. With uniform error distribu-
tions, the difference between scheduling 50 or 100 objects on each loop is minimal,
but with clustered error distributions there may be substantial differences.

10.1 No visibility

First we evaluate the performance of the PRR algorithm without employing visi-
bility information, thus no camera is associated to the clients.

We rather assume that all objects are visible to each client. Graph 10.1 shows
the overall visual error of PRR and RR if all 1000 objects is assigned a velocity
between 0.1 and 3 units; both algorithms are allowed to schedule 50 objects (5%
of all objects) after each simulation loop. In this case, the overall visual error of
PRR is 9.7% lower than that generated by RR.
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Graph 10.2 shows the same configuration, but this time allowing PRR and RR
to schedule 100 objects (10% of all objects). The magnitude of the visual error
(y-axis) is clearly much lower than compared to scheduling only 50 objects; the
relation between both errors (RR and PRR) changes only slightly: the reduction of
the overall error by employing PRR is 10.2%.
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Graph 10.1: The overall visual error of RR is reduced by 9.7% using PRR scheduling.
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Graph 10.2: The overall visual error of RR is reduced by 10.2% using PRR scheduling.

In both graphs it is possible to observe the frequency with which the plain RR
queue traverses the objects: the period of the RR error curve is exactly 20 loops
(hence, 20 simulation steps) in Graph 10.1, and 10 steps in Graph 10.2. The reason
is that RR requires exactly 20 loops to traverse the whole queue once if 50 objects
are scheduled per loop; with 100 scheduled objects the turnaround time is lowered
to 10 loops. This effect can be perceived even more clearly in the examples which
employ clustered error distributions. In all cases the PRR algorithm is not only able
to achieve a lower overall error than RR, but it also keeps the visual error mostly
constant, while the visual error of the RR queue can have very large amplitudes
(see e.g. Graphs 10.5 through 10.7).
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To show that by employing a uniform error distribution the size of the interval
has only a limited effect on the performance of PRR, Graph 10.3 depicts the visual
error if all objects is assigned a velocity between 0.1 and 1 units, while Graph 10.4
visualizes a velocity between 0.1 and 10 units (scheduling 50 objects). In the first
case we can lower the visual error by 6.5% if we employ PRR instead of RR; in
the second case the reduction is exactly 12%.
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Graph 10.3: The overall visual error of RR is reduced by 6.5% using PRR scheduling.
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Graph 10.4: The overall visual error of RR is reduced by 12% using PRR scheduling.

Even if we increase the uniform error interval by a larger amount, the perfor-
mance changes marginally. By assigning all objects a velocity between 0.1 and
100 units, the reduction of the visual error is 11.2% when scheduling 50 objects
and 11.7% when scheduling 100 objects per loop. With an error interval between
0.1 and 200 the overall error produced by PRR is 10.7% and 11.2% lower than
RR(for 50 and 100 object per loop, respectively).

If we employ a clustered error distribution, the PRR algorithm is able to con-
struct clearly distinct groups handled at different priorities. By employing the clus-
tered set /S” (3 groups: 100 objects have a velocity between 9 and 10 units, 250

68



Results

Chapter 10

objects have a velocity between 1 and 1.2 units, and the remaining 650 objects
between 0.1 and 0.5 units), the PRR algorithm lowers the overall visual error by
36.4% if 50 objects are scheduled after each simulation step (Graph 10.5), and

38.7% for 100 updated objects (Graph 10.6).
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Graph 10.5: The overall visual error of RR is reduced by 36.4% using PRR scheduling.
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Graph 10.6: The overall visual error of RR is reduced by 38.7% using PRR scheduling.

With the second clustered set that has even more distinct error distributions
(100 objects: velocity between 9 and 10 units, 250 objects: velocity between 1 and
1.2 units, 650 objects: velocity between 0.1 and 0.5 units) the PRR algorithm can
achieve an overall visual error that is 75.6% lower than that of a plain RR queue
(for 50 objects scheduled after each simulation step, in Graph 10.7). If 100 objects
are scheduled on each loop, the error reduction is 79.6%.
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Graph 10.7: The overall visual error of RR is reduced by 75.6% using PRR scheduling.

102 Visibility

In the following three subsections we employ visibility information in the PRR al-
gorithm when determining the priorities of the objects. The visibility for each client
is determined by the position, direction and field of view of an independent camera
that is moved through the environment along a randomized path with a velocity
of 0.1 units; the field of view is set to 90 degrees. As opposed to Sections 10.1,
the reduction of the visual error achieved by PRR for the different clients can vary
perceptibly, because the path of the camera and hence the set of objects in its view-
cone is different. When using clustered error distributions, these differences are
more pronounced than with a uniform error distribution.
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Graph 10.8: The overall visual error of RR is reduced by 45.9% using PRR scheduling.

70



Results Chapter 10

The first example employing visibility is performed with the uniform error dis-
tribution (velocity between 0.1 and 3 units). Graph 10.8 shows the overall visual
error for PRR and RR when scheduling 50 objects; the visual error is reduced by
45.9%. If 100 objects are updated per simulation loop, the reduction of the visual
error is 52.8%. The steep slope of the curve that can be observed in the middle of
the graph was caused by some of the cameras suddenly appearing behind a wall,
experiencing an abrupt increase of objects in their viewcone. In the error measure-
ment we consider only the visible objects (please refer to Sections 9.3); this leads
to a sudden increase in the number of objects contributing to the visual error.
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Graph 10.9: The overall visual error of RR is reduced by 45.2% using PRR scheduling.

Graph 10.9 shows the same example, this time with static camera placed at
random positions and facing approximately the center of the environment; the re-
duction of the overall visual error is similar to the evaluation in Graph 10.8: 45.2%.
These examples show that the PRR algorithm can cope efficiently with rapidly
changing visibility situations.
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Graph 10.10: The overall visual error of RR is reduced by 25.9% using PRR scheduling.
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If we employ a uniform error distribution with a larger interval (e.g. between
0.1 and 10 units), the advantage achieved by PRR over RR is slightly less than for
the example in Graph 10.8. The reason lies mainly in the fact that with fast moving
objects frequently entering and exiting the viewcones of the cameras, the PRR can
perform a less accurate prediction for the object’s behavior (the epu for visible and
invisible objects is computed in a different way; refer to Chapter 7). Graph 10.10
shows the overall errors for the error interval € [0.1, 10] with 50 objects scheduled
per simulation loop (dynamic camera); the reduction is 25.9%. Scheduling 100
objects lowers the overall visual error by 41.1%.
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Graph 10.11: The overall visual error of RR is reduced by 56.4% using PRR scheduling.

However, for clustered error distributions the availability of clearly distinct
error groups outweighs the reduced predictability caused by changing visibility
situations by far. Assigning 100 objects a velocity between 9 and 10 units, 250
objects a velocity between 1 and 1.2 units, and 650 objects a velocity between
0.1 and 0.5 units (set 'S"), the visual error of PRR is 56.4% lower than that of
RR (scheduling 50 objects per simulation loop, Graph 10.11). If 100 objects are
scheduled, the advantage is 69.1%.
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Graph 10.12: The overall visual error of RR is reduced by 53.6% using PRR scheduling.
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The motion of the camera has also a slight effect on the evaluation of the over-
all visual error; Graph 10.12 shows the example of Graph 10.11 repeated with a
static camera (random position, direction approximately toward the center of the
environment). The reduction of the overall visual error achieved by PRR is almost
the same as in Graph 10.11: if 50 objects are scheduled, 53.6%, and if 100 objects
are scheduled, 71.8%.
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Graph 10.13: The overall visual error of RR is reduced by 86.6% using PRR scheduling.

If we employ set 'L’ (100 objects: velocity between 9 and 10, 250 objects: ve-
locity between 0.1 and 0.12, 650 objects: velocity between 0.01 and 0.05) together
with the dynamic cameras, the overall error is reduced by 86.6% when schedul-
ing 50 objects, as illustrated in Graph 10.13, and by 95.5% when scheduling 100
objects.
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Graph 10.14: The overall visual error of RR is reduced by 84.2% using PRR scheduling.
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The more distinct the error groups, the more the graphs for the dynamic and
static cameras look similar to each other; Graph 10.14, which repeats the example
of Graph 10.13 with a static camera, differs only slightly from Graph 10.13. With a
static camera, scheduling 50 objects in each loop allows PRR to reduce the overall
visual error by 84.2%; with 100 objects selected per loop the error reduction of
PRR is 95.2%.

10.3 Vishbility and hotspots

To increase the realism of the objects’ behavior, we randomly select five sparse
areas in the environment, so called ’hotspots’, and employ them as preferred haunts
for the objects: we require that all objects select their destinations to be located in
one of the hotspots. This resembles the fact that in large virtual environments,
and especially in online games, the avatars are usually interested in few dedicated
areas of the environment, such as rooms, buildings, cities etc., while most parts of
the environment are only traversed when migrating from one such area to another.
Every time a client reaches the end of a previously selected path, it chooses a new
destination; with a probability of 75% the new destination will lie in a different
hotspot, with the remaining 25% it lies on a different position of the same hotspot
the object is actually located in. The path of the cameras is not affected by the
hotspots, for not sticking to the hotspots and include the case of exploring the
sparsely populated parts of the environment.

The evaluation for the uniform error distribution (velocity interval between 0.1
and 3 units) is presented in Graph 10.15. By scheduling 50 objects, the overall
visual error of PRR is 46.2% lower compared to RR; updating 100 objects in each
loop, the overall error can be decreased by 52.0%.
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Graph 10.15: The overall visual error of RR is reduced by 46.2% using PRR scheduling.
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With the clustered error set /.S, the performance of PRR is as follows: if 50
objects are scheduled in each loop, the overall visual error is reduced by 57%
(Graph 10.16); with 100 objects scheduled the reduction is 70%.
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Graph 10.16: The overall visual error of RR is reduced by 57.0% using PRR scheduling.

The clustered error set’ L’ (100 objects € [9,10], 250 objects € [0.1, 0.12], 650
objects € [0.01,0.05]) shows a reduction of the visual error by 85.7% according to
Graph 10.17 (scheduling 50 objects). If 100 objects are scheduled, PRR lowers the
error by 95.4%.
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Graph 10.17: The overall visual error of RR is reduced by 85.7% using PRR scheduling.
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10.4 Visbhility, hotspots and leaders

In this section we enhance the simulation of the objects by another behavior that
can often be observed in large scale virtual environments and online games, namely
the formation of crowds; gathering together and moving in groups is an attitude that
is partly encouraged by the existence of the haunt areas (hotspots). We designate
some objects as "leaders’; they repeatedly move from one hotspot to another (with a
probability of 75%) or to a different position in the same hotspot (with a probability
of 25%), at the speed specified by the error distribution. The objects which are not
’leaders’ are designated as ’followers’: they randomly select one of the leader-
objects and try to follow its movements (they always select the same destination as
their leaders do). Because the follower-objects move at their own speed, whenever
clustered error distributions are employed, the followers always choose a leader
from the same error group, otherwise the velocity difference might by too high to
follow its movements).

The first example, shown in Graph 10.18, is performed with the uniform error
distribution € [0.1,3]; we choose 5 of the 1000 objects as leaders. The remaining
objects select one of these five objects, and follow every its movement.

We can observe five different groups of objects (of approximately equal size)
following their leader as it moves from hotspot to hotspot. The cameras are dy-
namic (velocity = 0.1 units); their path is not affected by the hotspots. If 50 objects
are scheduled after each simulation step, the overall visual error of PRR is 48.4%
lower compared to RR; when scheduling 100 objects, PRR reduces the visual error
by 53.8%.
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Graph 10.18: The overall visual error of RR is reduced by 48.4% using PRR scheduling.
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We repeat the example with the clustered error set 'S’ (Graph 10.19). This
time we designate two leaders per group, and let the remaining objects in each
group follow one of both "alpha’ objects. Therefore we have 6 different groups
moving through the environment, in three different speed clusters. The behavior of
the cameras is the same as in the previous example. PRR reduces the overall visual
error of RR by 68.3% (50 objects scheduled per loop) and 78.1% (100 objects
scheduled per loop).
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Graph 10.19: The overall visual error of RR is reduced by 68.3% using PRR scheduling.

With the clustered error set’ L’ (100 objects € [9, 10], 250 objects € [0.1, 0.12]
and 650 objects € [0.01, 0.05]), the visual error of PRR is 87.7% lower compared
to RR (scheduling 50 objects, Graph 10.20), and 96.4% lower when scheduling
100 objects per loop. Again two objects were designated as leaders in each of the
three error groups.

18000

i PRR error reduction| |Number of objects: 1000
16000 11Overall: 87.7 % | |Error distribution: 3 groups (set 'L)
e 100 elements: vel=[9,10]
14000 | {lClient1: 89.0% ® 250 elements: vel=[0.1,0.12]
Client2: 88.2% ® 650 elements: vel=[0.01,0.05]
12000 - 1l Client 3: 87.3% e Lead objects per group: 2
C:Iem 4: 79.8% | |Number of hotspots: 5
Client5: 89.4 %
10000 7 Cl;::f 6 866 D/: Number of clients: 10
8000 ||Client7: 85.3% | | Object scheduled: 50
Client 8: 96.7 % o
Cliont 9 87.7% | |VisiPilty: yes
6000 7| Client 10: 90.0 % | |Camera: dynamic
e Moving atf vel=0.1
4000 1 o Field of view: 90 degrees
2000
. i L B S P S et
0 200 400 600 800 1000

Graph 10.20: The overall visual error of RR is reduced by 87.7% using PRR scheduling.
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For the sake of completeness we repeat the example of Graph 10.19 with static
cameras; to avoid letting them face an area empty most of the time, we position
them near one of the hotspots. The result is shown in Graph 10.21, with a reduction
of the overall error by 64.5% (50 objects scheduled per loop). If 100 objects are
scheduled, the visual error of PRR is 72.5% lower than that of RR.
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Graph 10.21: The overall visual error of RR is reduced by 64.5% using PRR scheduling.

Concluding, a rather theoretical example, but that clearly shows the potential
of the Priority Round-Robin algorithm. We assume the situation of 10% of the
objects having a velocity 1000 times higher than the remaining objects; if airplanes
are simulated contemporaneously with pedestrians, we might have a situation like
this. 100 objects have a velocity between 9 and 10 units, 250 objects have a velocity
between 0.01 and 0.012 units, and the 650 remaining objects between 0.001 and
0.005 units. By scheduling 200 objects on each loop, the visual error of PRR is
98.7% lower than RR - this means the visual error of RR is 7508% higher than
that achieved by using PRR, and whose curve has quite an elevated amplitude, as
can be seen from Graph 10.22 (the PRR curve can be hardly detected at the very
bottom of the graph).

78



eeeeee

eeeeeeeeeeeeeeeee




Chapter 11

Conclusion

We have presented a technique to enhance plain Round-Robin scheduling by adding
the enforcement of priorities to its advantages of being output sensitive and im-
mune to starvation. The Priority Round-Robin (PRR) algorithm can bring a sub-
stantial contribution to the development of distributed virtual environments and
networked online-games containing a very high number of objects. The simplic-
ity of PRR and the freely definable error metric make it a suitable substitution for
Round-Robin in most cases. In our examples we have employed PRR as substi-
tute for the plain Round-Robin queue to transmit the update messages at a constant
effort per connected client; the frequency of the updates is determined from pri-
orities based on the behavior of the objects. Furthermore, PRR can be efficiently
combined with reduction/filtering techniques such as visibility culling. By includ-
ing the visibility information in the determination of the objects’ priorities, we
do not abandon output sensitivity. Hence PRR not only provides a scalable tech-
niques that leads to a graceful degradation of the system’s performance concerning
network bandwidth limitations. But it also helps avoid computational bottlenecks
caused by a naive application of reduction/filtering techniques. To account for the
often unpredictable or rapidly changing behavior of user controlled avatars, espe-
cially in online games, a heuristic measure for the activity of the objects was also
incorporated in our system. Whenever the motion the objects is too unpredictable
to base the determination of their priorities on the recent simulation behavior, the
influence of the priorities is successively restricted, which leads to a graceful degra-
dation of PRR performance in almost any circumstances. Although our evaluations
were performed with only 1000 objects and 10 clients connected, the PRR algo-
rithm has no theoretical restrictions, thus being applicable to environments of any
size. Therefore, it is a valid contribution to the construction of scalable large scale
distributed virtual environments and networked online games.
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The Road goes ever on and on
Out from the door where it began.
Now far ahead the Road has gone,
Let othersfollow it who can!

Let them a journey new begin,

But | at last with weary feet
WII turn towards the lighted inn,
My evening-rest and sleep to meet.

J.R.R. Tolkien (1892-1973)
English poet and novelist.



