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Kurzfassung

Tone Mapping (Farbtransformation) ist der letzte Schritt eines jeden photore-
alistischen Bilderzeugungsverfahrens. Aufgrund der Nichtliregent'und der
vorhandenen Einscankungen des Farbraums und des dynamischen Verhaltens
des zur Darstellung verwendeten @&isrist es otig, eine Farbtransformation auf

die berechneten Farbwerte anzuwenden.

Wir beschreiben den Stand der Forschung im Bereich Transformationsmetho-
den und einige neue Methoden. Der Hauptbeitrag dieser Arbeit liegt in der inter-
aktiven Abgleichung von Kontrast und Blende sowie in Methoden mit minimalem
Informationsverlust und Messung des einfallenden Lichts.

Die interaktive Abgleichung eraglicht die Darstellung der Szene mit einer
gewunschten Beleuchtungs-Stimmung, selbst wenn die Beleuchtungswerte in fik-
tiven Einheiten berechnet wurden.

Die Methoden mit minimalem Informationsverlust basieren in gewisser Weise
auf dem Ansatz des Photographen. Die Farbtransformation wird nur auf ein bes-
timmtes Farbintervall angewandt, welches automatischabtwiird. Der ur-
springliche Kontrast aller Pixel in diesem Intervall bleibt erhalten.ubarhinaus
ist die auf Fehlerbeschrnkungen basierende Methode eine Erweiterung von
Schlicks Verfahren.

Die Methode zur Messung des einfallenden Lichts basiert ebenfalls auf einer
in der Photographieiblichen Vorgangsweise. Diese Methode egfitht die
genaue Reproduktion von Farben. Selbst wenn die durchschnittliche Reflexion
einer Szene sehr klein oder grof3 ist, wird diese Methode diewrglichen Far-
ben reproduzierendkinen, eine Eigenschatft, die konkurrierenden Methoden fehlt.
Die Grundidee ist, die einfallende Beleuchtung durch simulierte Lichtmessung in
der Szene zu messen und die daraus resultierende Skalierung auf die berechneten
Farbwerte anzuwenden.

Neben diesen eigenen Beigren werden andere relevante Atze besprochen.

Wir beschreiben die Transformation von Tumblin und Rushmeier, die Kontrast-
basierte Methode von Ward, das weitverbreitete Verfahren mit Durchschnittsbil-
dung, den exponentiellen Ansatz von Ferschin et al., Schlicks Abbildung, ein auf
Sichtbarkeit beruhendes Verfahren zur Farbtransformation von Larson et al. und
einen visuelle Adaption backsichtigenden Ansatz von Ferwerda et al.

Leider gibt es keine letztdtige L6sung zur Farbtransformation. Jede Methode
hat Stirken und Schachen, und der Benutzer sollte die geignete Methcaldew’
kdnnen.

Die Arbeit endet mit der Rsentation eines Algorithmus zur Berechnung
der Farbbilddifferenz. Eine gute Metrik zur Bewertung des Farbabstandes
zweier Bilder wird in der Computergraphik oft betrgt, ist aber nicht leicht
zu konstruieren. Die in dieser Arbeit beschriebene Metrik beruht auf der men-



schlichen Wahrnehmung und arbeitet im Bildbereich. Eine Fourier- oder Wavelet-
Transformation ist daher nichbtig, was das Verfahren schnell und intuitiv macht.

Diese Methode ist die einzige, die explizit den Abstand des Beobachters zum Bild
in Betracht zieht.



Abstract

Tone mapping is the final step of every rendering process. Due to display devices’
nonlinearities, reduced color gamuts and moderate dynamic ranges it is necessary
to apply some mapping technique on the computed radiances.

We described mapping methods that are considered to be state of the art to-
day, and some newly developed techniques. The main contributions of this thesis
in tone mapping techniques are interactive calibration of contrast and aperture,
minimum information loss methods and incident light metering.

The interactive calibration technique makes it possible to display a desired
scene lighting atmosphere if the radiance values are rendered in fictitious units.

Minimum information loss techniques are based, in a way, on the photog-
raphers’ approach. The mapping function is applied only on a certain radiance
interval, which is chosen automatically. The original contrast of all pixels inside
the interval is preserved. Furthermore, the bounded error version of the minimum
loss method is an extension of Schlick’s method.

The incident light metering method was inspired by the photographers’ ap-
proach, too. This method makes it possible to reproduce original colors faithfully.
Even if the average reflectance of a scene is very low, or very high, this method
will reproduce original colors, which is not the case with other methods. The idea
is to measure the incident light using diffusors in the scene, and then to compute a
scale factor based on the incident light and apply this scale factor on the computed
radiances.

Beside these, other tone mapping techniques are described in this work. We
described Tumblin and Rushmeier’s mapping, Ward’s contrast based scale factor,
the widely used mean value mapping, an exponential mapping introduced by Fer-
schin et al., Schlick’s mapping, a visibility matching tone operator introduced by
Larson et al., and a model of visual adaptation proposed by Ferwerda et al.

Unfortunately there is no ultimative solution to the tone mapping problem.
Every method has its strengths and weaknesses, and the user should choose a
method according to his or her needs.

Finally, this thesis ends with a color image difference algorithm. A good image
metric is often needed in computer graphics. The method described here is a
perception based metric that operates in the original image space (there is no need
for Fourier or wavelet transform), what makes the whole method fast and intuitive.
This is the only method that stresses distance dependency explicitly.
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Chapter 1

Introduction

Computer graphics is one of the newest visual media. It has become established
as an important tool in design, entertainment, advertisements, fine arts, and many
other applications, where images are needed. One of the many fields of computer
graphics is image synthesis, often called rendering. Photorealistic rendering turns
the rules of geometry and physics into pictures that could hardly be distinguished
from photographs. Local illumination methods can render images ignoring the
Impact of objects on the illumination of other objects in the scenes. Therefore,
if local illumination methods are used, shadows, penumbras, specular reflections
and refractions, diffuse interreflections, etc., cannot be taken into account. On
the other hand, global illumination models, ray tracing and radiosity (the two
most popular), try to model light in an environment. Of course, such methods
take much more time (local illumination methods are implemented in modern
graphics hardware), but, as stated before, the results can not be distinguished from
photographs.

Every rendering process consists of two steps. The first is the computing of
luminance values, and the second is the mapping of the computed values to the
values appropriate for displaying on common display devices. There is a lot of
research dealing with the first step, but the second step is surprisingly often ne-
glected, although it is far from trivial. Actually there are just a few authors dealing
with this problem, in contrast to hundreds of researchers who are improving the
first rendering step. Our work is primarily concerned with the final step of the
rendering process. It is assumed that image is rendered, and floating point values
of pixels’ color components are known. We will not deal with methods that are
used to compute these values. The floating point image will be called the "raw
image”.

In the ideal case the raw image should be mapped to the display device so
that the displayed image creates the same sensation in the viewer as would have
been experienced by seeing the real environment. Unfortunately, there are many
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obstacles to realizing this ideal. These include the display devices’ nonlinearities,
limited color gamut, limited display device contrast, changing lighting conditions
in the viewing environment, human vision rules, the basic limitations of represent-
ing 3D reality as a 2D projection, etc. Some of these obstacles will be explained
later.

Various mapping methods are described in this work. Some methods take into
account the above mentioned problems, or at least some of them, while other,
more simple methods, do not. Some familiarity with color science, radiometry
and photometry is necessary to understand this work, therefore chapter 2 deals
with color science basics, radiometry and photometry and some aspects of human
vision are described in chapter 2 as well.

Chapter 3 describes various display devices. Actually CRT as the most used
display device in computer graphics, slides, and some printers are described. Data
measured by the authors are also given in this chapter.

In chapter 4 linear scale factor methods are introduced. Probably the most
widely used mapping is the use of a single scale factor which maps the average
luminance to 0.5 input value, assuming that the display device’s input range is
[0,1], and that the device has linear response. Unfortunately, such scale factor can
not reproduce the original atmosphere of the scene. Actually it will display the
scene lit by a very weak light source, and the same scene lit by a very strong light
source as being the same image, because of linearity of the integral operator in the
rendering equation [ArKi9O0].

An interactive mapping technique introduced by Matkoaiid Neumann in
[MaNe96] makes it possible to display images with the proper atmosphere if this
is known. The method uses two parameters called contrast and aperture, and
maps the raw image according to subjective user settings. The interactive cali-
bration mapping method is one of the contributions of this thesis. At the end of
the fourth chapter a contrast based scale factor proposed by Greg Ward [Ward94]
s described. Ward’s mapping makes differences just visible in the real world be-
come just visible in the displayed image. If the visibility analysis is crucial (e.g.
the design of emergency lighting) this could be the right mapping method. Im-
provements of this method are introduced by Ferwerda et al. [FPSG96] and Ward
et al. [LaRP97] and they are described in the next chapter.

In chapter 5 non-linear scale factors are introduced. A mapping technique
proposed by Schlick [Schl94] is described first. Schlick’s method is actually a
computational improvement of the logarithmic mapping based on Weber’s law.
This is an automatic method that yields good results if the overall raw image con-
trast is not too high. Further, a non-linear mapping technique as suggested by
Ferschin et. al. in [FeTP94] is described. Ferschin et al. introduced a method
which suppresses the influence of a few very bright pixels influencing the aver-
age too much. If luminances in the raw image are computed in absolute units,
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the appropriate atmosphere based on preserving the original brightness, could be
reproduced using Tumblin and Rushmeier’s mapping technique. This method is
introduced in [TuRu93] and [TuRu91], and this is still one of the most comprehen-
sive solutions of the raw image mapping problem. Unfortunately it is solved only
for gray scale pictures. The method is described in section 5.3, and section 5.4 de-
scribes a model of visual adaptation introduced by Ferwerda et al. [FPSG96]. The
model of visual adaptation is based on the Ward’s model. Here the rules of human
adaptation are taken into account. Even temporal effects well known from real
life (e.g. the inability to see when entering a cinema until the eyes have adapted)
can be simulated in computer graphics using this mapping method. Chapter 5 fin-
ishes with an overview of the visibility matching tone operator [LaRP97]. This is

a further improvement of Ward'’s original operator.

Chapters 6 and 7 describe the main contribution of this thesis. Meth-
ods described in this chapters were introduced together vatizti Neumann
[NeMP96], [NMNP97]. The whole family of methods called minimum informa-
tion loss mapping is described in chapter 6. The main idea is to find the clipping
interval so that minimum amount of information is lost, thereby preserving the
original contrast of all correctly displayed pixels. Two variants are described, in
the first the color component is assumed to be essential information, and in the
second the pixel is treated as essential information. The second variant is called
the minimum area loss. The method works especially well in back light scenes,
which are often displayed as too dark if average value mapping is used. The meth-
ods are not conditioned by knowledge of absolute units. Another possibility is to
limit allowed information loss, and find the smallest contrast interval which still
satisfies limited error condition. Of course, in this case the original contrast is not
always preserved.

Chapter 7 describes incident light metering in computer graphics. Incident
light metering is a well known method in professional photography and the movie
industry. In fact, it was used at the beginning of the photography era by por-
trait photographers. Although it is not practical for amateur photographers (light
should be measured at the subject position, not at the camera), it can be imple-
mented in computer graphics. It overcomes the problem of average mapping,
where a very bright scene (e.g. a snow covered mountain) and a very dark one
(e.g. a heap of coal) are displayed as medium gray (or close to it), which makes
the bright scene too dark and the dark scene too bright. When incident light me-
tering is used, raw images are mapped correctly, and the absolute units should
not be known. We recommend using this method when absolute units are not
known (which is most often the case due to difficulties in getting appropriate data
for light sources and materials) and the scene settings are not usual (e.g. very
bright, or very dark scenes, scenes with back light etc.). Note that bright or dark
scene here does not mean well or poorly lit scene, but rather the scene with low
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or high object’s reflectances. Actually, this is the only method that will reproduce
selected colors even for the scenes with very low or very high average reflectance.
The tone mapping part of this thesis ends with chapter 7.

The next chapter, perception based color image difference, presents a new al-
gorithm, developed together withaszb Neumann, for computing the difference
between two images. A good image metric is often needed in computer graph-
ics. All progrssive rendering methods should check convergance somehow, lossy
compression algorithms should be evaluated, sometimes the resulting images of
various rendering or tone mapping techiques are compared, etc. The most often
used metric in computer graphics is the mean squared error. Unfortunatelly it
does not corespond to human perception, and sometimes images that look similar
can have larger difference than obviously different images, when the mean square
metric is used.

Two recent papers by Rushmeier et al. [RWPSR95] and Gaddipati et al.
[GaMY97], deal with perception based image metrics. They compute the image
distance either in Fourier or in the wavelet space, which makes them computation-
ally expensive and not intuitive. The color is not handled completely correctly in
these two approaches.

We introduce a new method that operates in the original space and handles the
color more accurately.

This thesis ends with results and conclusion chapters.



Chapter 2

Color Science Basics

Since a familiarity with radiometry, photometry, color science and human vision
Is necessary to understand this work, this chapter will describe some color science
and human vision basics. It would be impossible to cover the whole area of color
science or human vision in a single chapter. Many books have been written on the
above subjects [WySt82], [Boyn92], [Hunt92], and they are still not completely
understood. Therefore, all we want here is to give a brief overview that will help
to follow this work successfully.

The way we see objects around us depends on three factors. The first one is
light. It is clear that we can not see if there is no light. Most of us have expe-
rienced, also, different perception under different lighting conditions (remember
ladies checking the clothes colors in front of the shop in the daylight). The second
one is the object characteristics itself. Some objects are red, some are blue, etc.
The third subject involved in color vision is the human observer. It is impossible
to describe the color sensation in our mind. Actually, it is impossible to describe
any sensation. All we can say is that some color looks like some other, but this
is actually not a description of color. Nevertheless, there is the way of measuring
colors, and light, and these methods will be described next. We will start with
light measuring (radiometry and photometry), then proceed with colorimetry and
finally describe some human vision characteristics that are interesting for tone
mapping techniques.

2.1 Photometry and Radiometry

From our experience with black and white photography, we know that we can see
and recognize an object without knowing its hue. On the other hand we know that
color photos conwey much more additional information. In order to understand
color perception we have to be concerned with spatial as well as with chromatic
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vision. Since there will be no vision without light let’s describe light itself, first.

2.1.1 Light

Humans have wondered throughout history how we are able, through the sense of
vision, to discern the nature and color of objects far removed from our bodies - ob-
jects with which we are obviously not in contact. The ancient Greek philosophers
correctly reasoned that something must pass between our eyes and the objects we
see. Plato developed an emanation theory of vision, which says that an inner fire
gives rise to visual rays shooting outward from the eye. Other philosophers either
accepted the emanation theory or used some other approach to explain human
vision.

During the middle ages, Arab natural philosopher Alhazen rejected the ema-
nation theory of vision. He was convinced that an optical image similar to the one
produced by a pin-hole camera is produced in the eye.

During the Italian Renaissance, the great scientist-painter Leonardo da Vinci
developed perspective drawing, and speculated about human vision. He was con-
vinced that there is some kind of image inside the eye. As the laws of light refrac-
tion and the nature of light were unknown then, da Vinci could not develop his
theory successfully.

The seventeenth century marks the start of the modern era for the study of
light and vision. Spectacle lenses had been discovered by 1285, and positive
lenses have been used to improve the performance of the pin-hole camera. Kepler
understood how the lenses worked in the telescope he was using. He correctly
believed that there is also some kind of retinal image in our eye, but the vision in
its totalty was still not clear to him.

Throughout the period of history described so far, nothing was known about
the physical nature of light. Isaac Newton was the first who realized that white
light is composed of the whole spectrum.

Nowadays, it is well known that light is electromagnetic radiation. The elec-
tromagnetic spectrum extends from very low frequency radio waves, through mi-
crowaves, infrared, visible and ultraviolet light to x-rays and gamma rays. Our
eyes respond to the visible light. If we want to detect the rest of the electromag-
netic spectrum, special instruments ranging from radio receivers to scintillation
counters are required. An exact description of electromagnetic radiation requires a
thorough knowledge of quantum electrodynamics and Maxwell’s electromagnetic
field equations which is beyond the scope of this work. The visible spectrum is
considered to have the wavelengths between 380 and 770 nm. It means if electro-
magnetic radiation of such wavelength hits our eye, we will see it. The perceived
color depends on the wavelength of the radiation. We will deal with measuring
light independently from the wavelength first.
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2.1.2 Radiometry

Radiometry is the science of measuring light in any portion of the spectrum.
Therefore, the color is not important to the radiometry.

Light is radiant energy. Electromagnetic radiation transports energy through
space. A broadband source, like the Sun, emits the energy throughout most of the
spectrum, while, on the other hand, single-wavelength laser emits radiation only
at one specific wavelength.

We can define spectral radiant energy, which is the amount of radiant energy
per unit wavelength interval at wavelengthas:

Qx = dQ/dA (2.1)
Radiant flux is then defined as:
¢ =dQ/dt (2.2)

where() is radiant energy, andis time. Spectral radiant flux is defined &g =
d®/dX. Radiant flux density is the radiant flux per unit area at a point on the
surface. There are two possibilities. The flux can be arriving at the surface (radiant
flux density is then called irradiance):

E =d®/dA (2.3)

And the flux can be leaving the surface (radiant flux density is then referred to as
radiant exitance):
M = dd/dA (2.4)

There are also spectral forms of radiant flux densifigsand M.

If we think of a ray of light arriving at or leaving a point on a surface in a
given direction, then radiance is simply an infinitesimal amount of radiant flux
contained in this ray. Actually the ray should be an infinitesimally narrow cone
with its apex at a point on a surface. The cone has a differential solid dingle
that is measured in steradians. Of course, a ray intersecs the surface dt angle
Therefore a projected areldcosf instead of the aredA should be used. The
definition of radiance is then:

d*®
L= dA(dwcosh) (2:5)
Unlike radiant flux density, the definition of radiance does not distinguish between
flux arriving at or leaving the surface. Spectral radiance, as radiance per unit
wavelength interval at wavelengthis also defined.
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Figure 2.1: CIE photometric curve for photopic, N( and scotopic V)
[WySt82]

2.1.3 Photometry

Photometry measures visible light in units that are weighted according to the sen-
sitivity of the human eye. Our eye is a complex, nonlinear, detector of electro-
magnetic radiation with wavelengths between 380 and 770 nm. The sensitivity of
the human eye varies with the wavelength. Figure 2.1 shows the CIE photomet-
ric curve (CIE stands foCommission Internationale d’Eclairagelnternational
Commission on lllumination). This curve tells us that a light source of strength
W/m?steradian will appear brighter if it emits light of wavelength 550 nm, than
the same strength light source that emits light of 440 nm wavelength. Actually, all
that photometry does is the weighting of radiometric units using the CIE photo-
metric curve. The only difference between radiometry and photometry is in their
units of measurement. All radiometric units have their photometric counterparts.
We will mention only luminance as the counterpart of radiance. In fact it is just
photometrically weighted radiance. Note that digital image synthesis simulates
the light in an enviroment, and as a result radiances (or luminances) of particular
wavelengths are computed. This radiances are stored in the raw-image, which is
then mapped to the display device, using one of the mapping techiques.

Up to now color nas not been taken into account. The next section, colorime-
try, will give us a brief overview of color.
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2.2 Colorimetry

Colorimetry is the science of measuring colors. Although each of us can perceive
colors slightly differently, the CIE has defined a standard observer. A set of stan-
dard conditions for performing color measuring experiments has also been pro-
posed by CIE. A number of color matching experiments have been performed un-
der these standardized conditions. Color matching experiments consists of choos-
ing three particular light sources, that emit light on the white screen, where three
projections overlap and form an additive mixture. On the other side of the screen
a target color is projected, and an observer tries to match the target light by al-
tering the intensities of the three light sources. The weights of light sources are
in the rangd—1, 1]. Negative weights are allowed, as it is not possible to match
all colors using only positive weights. A negative weight does not mean sub-
tracting color from the additive mixture, but rather adding this color to the target
color. After many experiments using light sources of the wavelengths red=700
nm, green=546.1 nm and blue is 435.8 nm [WySt82] color matching curves as

shown in figure 2.2 were proposed by CIE.

Trisnmulos valurs

s | if
1K

Figure 2.2: Ther, g, and b color-matching curves [WySt82]

As it was inconvenient to have negative values in the matching functions CIE
proposed a linear transformation of matching functions resulting ixCy&andz
matching functions, as shown in figure 2.3. Note that there are no negative values

in these matching functions.
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10

Now if the surface reflectance, and the light source distribution are known,
their product defines color &$(\), and the weights XYZ can be found using the

following equations:

780

X = [ emmma
y = ggzoC(A)y(A)d)\
7= [ oz

380

(2.6)
2.7)

(2.8)

The weights, X, Y and Z define a color in the CIE XYZ space. Note that it is

possible that two objects with different spectral reflectance, under certain illumi-
nantion, appear the same, i.e. have the same CIE XYZ values. The CIE XYZ is a
3D linear color space, and it is quite awkward to work in it directly. It is common

to project this space to the X+Y+Z=1 plane. The result is a 2D space known as
the CIE chromaticity diagram. The coordinates in this space are usually called x
and y and they are derived from XYZ using the following equations:

B X
T X¥v+z

(2.9)
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Y
- 2.1
Y= X{v+z (2.10)
Z
— SR R 2.11
TXyvY+z vy (2.11)

As the z component bears no additional information, it is often omitted. Note that
since xy space is just a projection of the 3D XYZ space, each point in Xy corre-
sponds to many points in the original space. Actually the missing information is
luminance Y. Color is usually described by xyY coordinates, where x and y deter-
mine the chromaticity and Y the lightness component of color. Figure 2.4 shows
the CIE xy chromaticity diagram.
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Figure 2.4: CIE xy chromaticity diagram

Chromaticity diagrams can give us a lot of useful information on a particular
color. The horseshoe shaped curve represents the whole spectrum. The straight
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line connecting the lowest wavelength blue and the highest wavelength red is
called the “purple line” and does not represent spectral colors. The white point lies
somewhere inside the diagram, depending on the light source used (e.g. D65 light
source is defined to simulate day-light and has 0.312727 andy = 0.329024).
If a line is drawn through the white point and a particular xy color, then the ra-
tio between this point to white point distance, and the spectral line to the white
point distance gives us the color saturation. If the color is close to the spectral line
its saturation is high. The dominant wavelength which determines a color’s hue
is determined by the intersection of the line with the spectral line. An interesting
property of the xy chromaticity diagram is that all possible mixtures of calgys
andz.y, are given by the straight line connecting these two points. It is clear that
all the possible mixtures of the three cola%g/;, -y andzsys then lie inside the
triangle determined with those three points. Now, it is clear that the color gamut
of any display device using three primaries (like a standard CRT monitor) is only
a subset of all visible colors.

In spite of all the useful characteristics of the CIE xy chromaticity diagram,
it lacks one very important characteristic. Namely, if the distance between any
arbitrary two points is the same as the distance between an other point pair, the
perceived distance will not be the same. In the worst case, if the perceived dis-
tances are the same, actual distances can differ as much as 20 times. In order
to correct this, researchers are trying to find a perceptually uniform color space.
It has, unfortunately, still not been found. CIE proposed two alternatives as im-
provements compared with CIE xyY space. These are CIE LUV and CIE LAB.
Although they are referred to as perceptually uniform color spaces by some au-
thors, they are not. Just for comparison, two perceptually equally distant color
pairs, can differ in the CIE LUV distance as much as 4 times. This is a significant
improvement compared to 20 times by original space, but it is still not perfect.
Conversions between CIE XYZ and CIE LUV are defined with the formulas:

Y
L* =116 ¢ o =16 (2.12)

uw* =13 L" - (u' — ulypie) (2.13)
v =13-L* - (v — Viypire) (2.14)
where
, 4 X
YTXy15-Y+3-2
, 9.V

T X+15-Y+3-Z
The distance between two colors in the CIE LUV space can be computed using
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CIE LUV color difference formula:

AE* =/ AL* + Au* + Av* (2.15)

2.3 Human Vision

Up to now we have seen how light and colors can be measured. But what happens
when light reaches our eye? It hits the photoreceptors on the retina, and they send
the signal through nerves to the brain, where an image is formed. As stated before,
it is possible that each one of us creates different image from the same stimuli. As
we can not describe our sensation, it can not be quantified in any way, either.
The complete vision system is not completely understood yet, but there are many
known human vision characteristics. A lot of research is done in the laboratories,
under special conditions. E.g. the observer has adapted to a certain light level
(it can even take half an hour or more to fully adapt to some conditions), he or
she sees only a small portion of the whole visual angle and so on. Sometimes,
results of such experiments are applied on computer generated images, viewed in
a complex environment, that is far from the ideal laboratory settings. That is the
fact, that should always be in our mind, when evaluating various tone mapping
methods. In this section we are going to describe various characteristics used
In various tone mapping techniques. There are a lot more known human vision
characteristics, but they are beyond the scope of this work.

The light intensity range that we experience every day is huge. The ratio of
light at noon on a sunny day and the moonlight can be as much as 10 million. As
stated before this light hits photoreceptors in our retina, namely rods and cones.
Rods are extremely sensitive to light and provide achromatic vision at scotopic
levels of illumination {0~° to 10 cd/m?). They provide achromatic vision, and
thatis the reason why we can not see colors in dark surroundings. The cones (there
are three types of them) are less sensitive, but provide color vision at photopic
levels of illumination (.01 to 10® cd/m?). Note that both systems are active at
light levels betwee.01 and10 cd/m?. This range is called the mesoptic range.
Unfortunately the mesoptic range is the poorest researched, and this is the range
that is exercised by computer-based office environments with CRT monitors and
subdued lighting.

What happens after the light hits photoreceptors? The signal travels by neural
units to the brain where an image is formed. It is interesting, that despite the fact
that incoming light can have a dynamic range of nearly 14 log units, the neural
units can transfer the signal having the dynamic range of only about 1.5 log units.
It is obvious that there is some adaptation mechanism involved in our vision. It
means that we adapt to some luminance value, and then we can perceive data
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in a certain dynamic range near the adaptation level. One of the most important
characteristics that changes with different adaptation levels is the just noticeable
difference.

2.3.1 Just Noticeable Difference

According to Weber’s law, from the beginning of the century, the ratig/ L of
the just noticeable differencAL and the luminancd. is constant, and equals
0.02 for a wide range of luminances. Nowadays there are better descriptions of
just noticeable difference, and it is clear that it is not constant but depends on
the adaptation level, and can be approximated using Weber’s law just at certain
adaptation levels.

The mapping function proposed by Greg Ward in [Ward94] relies on the work
of Blackwell conducted in the early 1970s. Using a briefly flashing dot on a
uniform background Blackwell established the relationship between adaptation
luminance L,, and just noticeable difference in luminanké(L,) as:

AL(L,) = 0.0594 - (1.219 + L*)*? (2.16)

That means that if there is a patch of luminard¢e+ AL, on the background
of luminanceL, it will be discernible, but the patch of luminanég + ¢, where
e < AL, will not.

A more complex function for the whole range of human vision is used by
Ferwerda et al. [FPSG96], and later by Larson et al. in [LaRP97]. It accounts for
both rod and cone, response, and is given in equation 2.17.

—2.86 if log(L,) < —3.94
(0.405l0g(L,) + 1.6)*18 —2.86 if —3.94 < log(L,) < —1.44
log(AL(L,)) =< log(L,) — 0.395 if —1.44 <log(L,) < —0.0184
(0.249l0g(L,) + 0.65)%7 — 0.72 if —0.0184 < log(L,) < 1.9
log(L,) — 1.255 if log(L,) > 1.9
(2.17)

Ferwerda et al. [FPSG96] and Larson et al. [LaRP97] also exploit the
changes in visual acuity. Visual acuity is the measure of the visual system’s abil-
ity to resolve spatial details. It drops off significantly for low illumination lev-
els. Actually it is about0 cycles/degree at3 log cd/m? and drops off to about
2.2 cycles/degree at —3.3 log cd /m?.

Ferwerda et al. also used the time aspect of adaptation. We are all familiar
with the fact that we can not see immediately after entering the cinema if the film
has already begun. After some period of time we can see the details again. Using
Ferwerda’s model it is possible to simulate such time changes of adaptation in
computer graphics.
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2.3.2 Brightness as a Function of Luminance

Let us now consider the brightness perception. Brightness is the magnitude of the
subjective sensation produced by visible light. The light intensity can easily be
measured, but brightness as a subjective phenomena cannot be exactly measured.
Nevertheless, brightness is often approximated as log luminance, or luminance
powered to 1/2 to 1/3 depending on the authors. More precise studies showed
that there is no one single formula, but rather the brightness-luminance relation
depends on the adaptation level and the surrounding light. We will describe the
work of Stevens et al. [StSt63] extensively used by Tumblin and Rushmeier in
developing their tone mapping operator in this section.

Stevens et al. [StSt63] devised the “brils” units to measure the subjective
value of brightness. According to Stevens 1 bril equals the sensation of brightness
induced in a fully dark-adapted eye by a brief exposure to a 5 degree white target
of 10~ 5lambert (1pulambert) luminance.

Note that two images with different luminance values can have the same
brightness values, and appear to be the same. The reason lies in the adaptation
mechanism, and the inability of neural units to transfer high dynamic range sig-
nals from the retina to the brain. Actually we are very poor judges of absolute
luminances, all that we can judge is the change in luminance, i.e. the brightness.

What did Stevens do? He measured brightness as a function of luminance
and adaptation by using “haploskopic matching”. That means he tried to match
the brightness when one eye is dark adapted (standard condition for brightness
measuring) and the other eye is adapted to a test value. Brightness comparison
between two eyes was made quickly, before either could change adaptation level
significantly. Measured brightness is then:

B=K- (Rtarg - Rthresh)n (218)

whereB is brightness in brilsk;,,, is radiance of target imillilamberts, Rijyesh
is threshold of detectable radiance in millilamberts (this depends on the adaptation
radiance), and and K are constants, dependent on the strength of the adapting
field. For full dark-adaptatiof;;,,.., = 0, n = 0.33, andK = 10.

Stevens proposed the next equation from his measurements:

logio(B) = 0.004 - [(S — 27) - (8.4 — R) — 108] (2.19)

where, assumingd.,, is adapting, white background luminance in lamberts
and L., is target luminance in lamberty = L, in dB, where0 dB =
10° lamberts

Ly,
S =10- loglo(ﬁlamberts) = 100 4 10 - log1o(Lay)
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andR is the target luminance differenced®

L ar
R=S5-10- l091o(10tflgolambert8) = (10 - log10(Ly) — 10 - log10(Liarg)
After substitutingS and R expressions in equation 2.19 we can write the final
equation:
logio(B) = a - logio(L) + 8 (2.20)

where B is brightness in brils[ is viewed (target) radiance in lamberis, is
luminance of white surround and

a=0.4-1og1o(Ly) + 2.92

B =—0.4-(logip(Ly))* + (—2.584 - logio(L,)) + 2.0208

These complex formulas provided by Stevens are, unfortunately, neither valid
nor accurate when applied to more complex images. They are valid for labora-
tory settings only. Bartelson and Breneman [BaBr67] have measured many test
photographs in order to find appropriate brightness versus luminance function for
more complex images. They have proposed an extended formula for complex
scenes:

logio(B) = a+ B - logio(Ryw) — v - RS, (2.21)

wherea, 3, v, andé are parameters dependent on viewing conditions and are
given graphically.

2.3.3 Brightness as a Function of Reflectance

Up to now brightness was considered only as function of luminance. As lumi-
nance is the product of incoming illumination intensity and reflectance (for non-
emitting surfaces) the same luminance can be obtained from surfaces having dif-
ferent reflectances by changing the illumination. Franck [Fran94] showed that
reflectance influences perceived brightness as well. This is valid only for complex
scenes, and his conclusion is based on an experiment. There is still no quantitative
data or suggested formulas, but he claims that a white surface will always appear
brighter then a black surface of the same luminance when cues to the reflectances
are present, as is frequently true in digital image synthesis. This fact is often
neglected, but obviously should be taken into account by tone mapping functions.

2.3.4 Adaptation and Veiling Luminance

Up to now we have been talking about adaptation luminance without saying to
which luminance a human observer would adapt. It is assumed that we will adapt
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to the luminance of our fixation point which approximately covers one visual de-
gree (.5°, by some authors). Just to make things a little bit more complicated,
the adaptation luminance depends on the surrounding luminances as well. The
influence of the surrounding is not large, but if there are some glare sources in the
periphery, the veiling luminance should be taken into consideration.

Bright glare sources in the periphery reduces contrast visibility because light
scattered in the lens obscures the fovea. The influence of the veiling luminance to
the adaptation luminance is well documented in the literature, and we will present
here a model introduced by Moon and Spencer [MoSp45], because this is the
model used by Larson et al. in [LaRP97].

Moon and Spencer proposed the next formula for the corrected adaptation
luminanceL,:

K L0, ¢)
L,=00913 L —/ /
i T Jo>6; 62

whereL, is the corrected adaptation luminancedfim?, L; is the average foveal
luminance incd/m?, L(#, ¢) is the luminance in the directiai, ¢), ¢; is foveal
half angle,~ 0.00873 rad(0.5°), and K is the constant measured by Holloday
[Holl26], 0.0096.

It is obvious from the above equation that the periphery contributes less than
9% to the adaptation luminance. If there are no bright sources in the periphery
this influence can be neglected.

- cos(#) - sin(6)dOd¢ (2.22)

2.3.5 Contrast Sensitivity Function

The contrast sensitivity function described here will be used to develop the color
image metric described in chapter 8. Contrast sensitivity is sometimes called vi-
sual accuity [LaRP97], [FPSG96]. We will use the term contrast sensitivity here,
since we have used this terminology throughout chapter 8. Mannos and Sakrison
[MaSa74] proposed a model of the human contrast sensitivity function. The con-
trast sensitivity function tells us how sensitive we are to the various frequencies
of visual stimuli. If the frequency of visual stimuli is too high we will not be able

to recognize the stimuli pattern any more. Imagine an image consisting of vertical
black and white stripes. If the stripes are very thin (i.e. a few thousand per mil-
limeter) we will be unable to see individual stripes. All that we will see is a gray
image. If the stripes then become wider and wider, there is a threshold width, from
which on we are able to distinguish the stripes. The contrast sensitivity function
proposed by Manos and Sakrison is

A(f) = 2.6 (0.0192 4 0.114 - ) - =@ 114N (2.23)
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f in equation 2.23 is the spatial frequency of the visual stimuli given in cy-
cles/degree. The function has a peak of valugproximately atf = 8.0 cy-
cles/degree, and is meaningless for frequencies afibegcles/degree. Figure
2.5 shows the contrast sensitivity functidif).
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Figure 2.5: Contrast sensitivity function

The reason why we can not distinguish patterns with high frequncies is the
limited number of photoreceptors in our eye. There are several other functions
proposed by other authors, but we choose the above function [MaSa74] because it
can be simply analitically described. The same function is also used by Rushmeier
et al. [RWPSR95] and Gaddipati et al. [GaMY97], which was another motivating
factor in using this function.



Chapter 3
Display Devices

Since the main goal of most rendering processes is to display the image for human
observation, we should examine some display media characteristics in order to use
this media properly. Rendered images can have a dynamic range of several thou-
sands, and even more. As stated in the previous chapter our visual system operates
in an impressive dynamic range. Unfortunately, display media dynamic ranges are
quite small. For example, a CRT monitor, which is the most widely used display
media in computer graphics has a dynamic range of up to 100! Obviously, huge
dynamic range raw images should be mapped somehow to the relatively small
dynamic range of display devices. An ideal display media would have a dynamic
range that equals that of human vision capabilities, and would have the possibility
of displaying luminances as low as the threshold of human vision, and as high
as the maximum still perceivable luminance. It should be capable of reproduc-
ing visible colors, as well. Although such devices have long been in existance in
acoustics, they will not be available in the video media for a long time.

There are two kinds of display media, light-emitting like CRT or, in a way,
projected slides, and light-propagating, like photos or prints, which do not emit
light themselves. Light propagating media is suitable for displaying solid colors
by means of an external light source, while the other group has gamuts exceeding
the solid colors and has the capability to display more saturated colors. E.g. the
saturation of CRT blue can never be achieved with photo paper.

There are three major problems concerning display devices. The first is the
display devices’ non-linear response, the second is the limited dynamic range and
the third is the limited color gamut.

Practically all display media have nonlinear characteristics. Fortunately, that
is not such a big problem, as long as the user is aware of it. If the characteristic
of the device is known, some correction can be done, and the device will act as
a linear device. The situation is more complex for display chains. Let us take
a chain of CRT— negative color film— photo paper, or a chain film-writer

19
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photograph lumiances
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Figure 3.1: Measured characteristic of a photograph print made from slide

color slide— photo paper. It means, an image is displayed on the monitor, then
photographed, and finally a print is made from color negative film (this is valid
for the first chain). For such chains the last link is important, and inputs to the
first link should provide the desired results at the chain’s end. In other words, if
the photo is made from a slide, which is made by a film recorder and the input to
the film recorder is a TIFF file, it is not important how this TIFF file looks on the
CRT, or when the slide is projected. All that matters is that the final print looks
satisfactory. Of course the final print depends on many variables. They include
the type of film used, the quality and temperature of the developing chemicals (in
the above case there are two developments), the length of time the film is in the
chemicals, the type of photo paper used etc. There are also some influences from
one color channel to others in all color media, some additivity failures [ToHe89]
and so on. It is obvious that it would be quite difficult, if not almost impossible for
the common user, to take into account all the above mentioned difficulties. What
the common user should do, is to check the linearity of the device (chain) and the
available device contrast.

The second, and more complex problem is the limited device contrast. As
mentioned earlier, huge contrast raw images should be mapped to relatively small
contrast display devices. This is, actually the most challenging part of most tone
mapping techniques. We have measured CIE Y values of the photography made
from the slide from the film recorder. Figure 3.1 shows the results. Input values
to the film recorder are on the x axis, and the CIE Y values of the last chain link -
photo, are on the y axis. Achieved contrast W&§ /4.0 = 18.675.

Typical device contrasts are given in table 3.1, the ideal values and values that
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we have measured on common available devices are given in the table. Note quite
a big difference in photo contrast. We have measured the contrast of photos that
are automatically processed by Kodak. Some professional laboratories in Vienna
are offering better service, but at, approximately, six times the cost of the usual
Kodak service. We assume that the contrast in this case would be greater, and
closer to the theoretical maximum.

Display media Typical contrast Measured contrast
CRT 50-200 50
Photographic prints 100 18.675
Photographic slides 1000

Newsprint printed in B/W 10

Table 3.1: Typical display device contrasts

The third above mentioned problem is the display devices’ limited color
gamut. There is a lot of research done in gamut mapping. Throughout this work,
we will apply simple color components clipping, in case they exceed the device
gamut. This approach can lead to hue changes in some cases, but more advanced
gamut mapping techniques are out of the scope of this work, and can be found in
[GeAl89], [HoBe93], [WoAB94].

The most widely used media for computer graphics are the CRT monitor and
color printer, for sure. Figure 3.2 shows the color gamut of a typical monitor, and
a printer. The gamut of a printer using highly saturated inks is shown as well. Itis
obvious from this figure why is it impossible to reproduce monitor images on the
color printer perfectly.

We find the slides and CRT the most interesting media, therefore they will be
explained in a simplified, yet for us sufficient way next.

3.1 Slides and Goldberg Rule

An image is created on a slide as the result of a chemical process. The light
arriving on the film through the lenses causes some chemical reactions on the
emulsion that is on the film, and an image is formed. The film is then processed,
and eventually processed once more to obtain photographic prints.

Various films are often described using an “H-D” plot (H-D stands for Hurter
and Driffield who devised them in 1890 [JaMe66]). An H-D plot describes a
density as a response to a given exposure. Let us define exposure and density
next.
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Figure 3.2: Color gamut of printer and CRT

Exposure is defined as the product of the irradiance incident upon the photo-
sensitive surfacel{ and the time during which the surface is exposgd (

E=1t (3.1)

Photographic exposure is usually given in photometric rather than radiometric
units. In equation 3.17 is given inlumens/m? or lux and exposure is then in
lur — sec. In the cases where the incoming flux is a continuous spectral distribu-

tion, the exposure is given by the integral:
E:/aw:/ww (3.2)

The measured response of a photographic material is given in density. Density
IS a unitless, logarithmic measure that indicates the opacity of an emulsion that

results from processing.
Transmission density is used for describing the response of photographic film.

It is defined as:
DT = lOgl()]_/T (33)
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whereT is a transmittance valu&, € [0, 1], that gives the ratio of light transmit-
ted through an emulsion to the quantity of light incident to it. There is also the
reflective densityD which is used in describing the response of photographic
papers.

Let us consider now, a color slide with characteristic curves as in fig. 3.3. The
horizontal axis shows the logarithm of the exposure, the vertical axis shows the
densities in the r,g,b channels.

The density ranges of the three color channels are somewhat different from
another, hence an achromatic gray can only be produced in the coincident part
of the density ranges. It can be seen in fig. 3.3 that the density ranges exceed
3. In linear terms: the contrast exceeds 1000! The corresponding illumination
range on the horizontal axis js-2.5, —0.1]. Values less ther-2.5 and greater
then—0.1 cause no change in densities (so called “fog” and “flare” regions). That
means, roughly, that the logarithm of the range of expositidhdsa value of
about250 on a linear scale! This is much higher than the displayable effective
contrast on any other medium. Dynamic ranges of black and white glossy photo
papers can be up &, but for all other media including color photos and prints
it is significantly smaller, in a range @b to 40. In photography, only the straight
curve sections are convenient. Moreover, the standard is a paper print made from
the slide, perceptionally correct for a contrast rendering of 1:1. This means that we
want to reproduce the original contrast of 50 as 50 on the final print. Therefore,
the really applicable range of contrast for exposures does not exceed the value
of 45, that is aboutl.65 in log;y (actually the recommended contrast value in
photography is 32). For instance, on the horizontal axis of fig. 3.3 the section
[—0.25, —1.9] may be applied. This corresponds to the density rafhge2.7] on
the vertical axis. That means that the original scene contrastéfis mapped to
a contrast of 316 on the slide.

Slide gamma is defined as the slope of the straight part of the characteristic
seen in fig. 3.3. Slide gamma values vary from 1.5 to 1.7, and this is the reason
why the scene contrast is enlarged on the slide. The question emerges why the
gamma value is not 1. Obviously, on a paper print (enlargement) gamma must
be 1, otherwise the print would not be equivalent to the original appearance. Re-
member that we want to reproduce original contrast exactly. This is possible since
photo papers have gamma values as well. Enlargements from slides are made on
so called positive papers, with gamma values less than 1. The resultant gamma is
the product of the gammas of the slide and of the positive paper, in fact, about 1.
Actually the original scene contrast will be enlarged on slide, and then again de-
creased by the use of a positive photo paper. Similarly, soft color negatives, with
gamma values less than 1, and enlargement papers of hard gradation (with gamma
values over 1) have resultant gamma values of about 1. The original contrast is
changed on slides due toyavalue of 1.5 to 1.7. Even the color components are
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Figure 3.3: The characteristic curves of Kodak Ektachrome Panther 100x Profes-
sional

changed fronr, g, bto r?, g7, b”. The question emerges how it is possible that
slides are, despite all these facts, perceived correctly when projected. A projected
slide enlarges the original contrast, but the perceived image looks correct. The
Goldberg rule gives us the answer [Schr81]. The Goldberg rule states that the
way we see something depends in an exponential way (Goldberg-Gamma) on the
surrounding lighting. If the human eye is adapted to a very dark surrounding, a
Goldberg-Gamma value of 1.5 to 1.7 gives perceptually correct results. For eyes
adapted to brightness the Goldberg-Gamma decreases down to 1. That is one of
the reasons why slides viewed in a well lit room do not look satisfactory, but when
they are projected in a dark room they are just perfect. In other words, our visual
system reduces the contrast in the dark surrounding, and high contrast projection
is perceived as normal contrast image. On the other hand if a slide is viewed
in a bright surrounding, its contrast is too high, and it looks somehow contrast-
less. This paradox that high contrast image seems to have low contrast, and a low
contrast image looks as full of contrast will be described in the section 4.2.

Note, that it would be possible to exploit slide characteristic in another way.
We could compute a raw image, and compress the original contrast of let’s say 300
to 50, and use it as input to the film writer. The resulting slide will then increase
input contrast to the original 300 value. In this case the slide should be viewed in
a well lit room, placed on a diffuse light source. If there were a big enough slide,
it would outperform all common display media this way.
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3.2 CRTs

CRT monitors are the most widely used display devices in computer graphics. A
CRT (cathode ray tube) is the essential part of all CRT monitors. It contains three
electron guns which emit narrow streams of electrons. The streams pass through
deflection coils that band the beam up, down, right and left. The inside of the front
face of the CRT is coated with three different phosphors, each of them emits light
of certain wavelength when struck by electrons. The intensity of light depends on
the number of incident electrons. There are various phosphors, but red, green and
blue emitting type phosphors are used in common monitors. As all displayable
colors are formed from an additive mixture of red, green and blue, it is clear that
the color gamut of a CRT monitor is a subset of all visible colors.

We will examine some CRT monitor characteristics next. Just as before, we
are interested in the monitor response to various input values. Unfortunately this
response is not linear. For a CRT wiifi displayable levels, the luminance of
gradei, L; can usually be approximated by:

Z' Ydisplay
()
N

where: = 0,1,2,..., N. The value ofyzs,,, Of course, is slightly different
for each color channel.

We have measured; for the red, green and blue color channels of an SGI
color monitor. The results are shown in figure 3.4. It can be seen that default
gamma correction is not perfect, but it is close to linear response. For most appli-
cations it will be sufficient.

25

(3.4)

18 45 5 ]
16 f 40 4.5 F
14 35 4 &

12 "'f 30 35 __-"

10 25 3 -

8 20 25 ’_-"

6 15 2 ey

4 10 ]

2 red 5 green 15__—' blue
Op 50 100 150 200 250 % 50 100 150 200 250 050 50 100 150 200 250

Although it seems in (3.4) that the CRT contrast is infinite (the lowest lumi-
nance value is 0), there is no real O luminance, i.e. the CRT emits some radiance

Figure 3.4: Red, green and blue gun response gftenrection
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even for i=0, (if the measured characteristics in the figure 3.4 are observed care-
fully it can be seen that there is some emittance even for O input level (best seen
for red and blue guns), and there is always some reflection from surrounding light
on the screen [ToHe89]. If you look at the switched off display in a lit room you
will see it is far from totally black. This unwanted luminance level that is propor-
tional to the ambient light is added to the image. It means that in (3.4) a constant
proportional to the ambient luminance level should be added. The ambient lumi-
nance decreases the CRT contrast and the gamut as well. Figure 3.5 illustrates the
problem. It shows how gamut changes with the increase of ambient light.

There is a lot of research done on the calibration of the CRT monitor [Durr87],
[Hall89]. Actually the characteristic changes as time passes, it depends on room
temperature and even on the orientation of the monitor (influence of the Earth
magnetic poles [Fitz89]). All of these influences are relatively small, and they are
not so important for the common user.

Figure 3.5: Chromatic gamut of CRT for ambient illumination covering a range
of five log units. [Layc83]

The CRT contrast depends on the ambient illumination level, on user settings,
and on particular device characteristics. For the same CRT the contrast can vary
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from 20 to 100. The best would be to measure the particular CRT and to work in a
room with a constant illumination. Of course, in this case the device settings once
set, should not be changed any more. The Goldberg-Gamma should be taken into
account for CRTs as well. In dark rooms the Goldberg-Gamma should be set to
1.5, in dim surroundings to 1.2 (default setting for TV). When a CRT is viewed in
very bright surroundings the Goldberg-Gamma decreases to 1. Goldberg-Gamma
correction can be done simultaneously with display gamma correction. Instead
Of Yaispiay N (3.4), Yaisplay/ Ycoiavers ShOUld be used. More exact relationships
than the Goldberg rule are described in the RLAB color space for luminance and
chromatic adaptation [Fair94].

Figure 3.4 shows the measured CIE Y of the red, green and blue color channel.
It can be seen on the y axis that the maximum values of Y are not the same. The
blue gun emits the lowest maximum intensity, and the green gun the highest. If we
are interested in computing an equivalent luminance image from our rgb image,
then each of the color channels should be properly weighted. For this particular
monitor, the weights can be computed from maximum intensities as:

LT’B —-max
d (3.5)

Tweight =
Lred_max + Lgreen_mam + Lblue_mam

L
o green_mazx
Gueight — I L I, (36)
red_maz T green_max + Lpiue_maz

L
blue_max (3 . 7)

red_maz T Lgreen_mam + Lblue_mam

bweight = 17

For our monitor, the weights arg,.ign: = 0.268, gyeight = 0.667 andb,yeign: =
0.065.

We have measured chromaticies CIE x and y values for our monitor as well. It
is interesting that chromaticies for a particular phosphor were not constant as ex-
pected. The measured CIE x,y chromaticies are shown in figure 3.6. We suppose
the reason lies in the fact that there are some cross effects among phosphors. There
can be also some error caused by the measuring instrument at low intensities. Fig-
ure 3.6 shows gamuts for intensities 10, 30, 50, .70250. The chromaticies
change decreases with higher intensities.

Note that the weighting functions computed in eq. 3.5 using maximum inten-
sities, can be computed from chromaticies as well. Each phosphor has a domi-
nant wavelength, and the CIE photometric curve gives a weighting factor for each
of the three phosphors. Assuming our phosphor chromaticies have CIE X,y co-
ordinates and dominant wavelength values as given in table 3.2, corresponding
weights arer,eignt = 0.324, gypeight = 0.631 andby,e;gne = 0.045. These results
are similar to the results obtained using the maximum intensities. Errors are due
to non-perfect measuring conditions.



CHAPTER 3. DISPLAY DEVICES 28

CIEy
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
CE x

Figure 3.6: Change of phosphor chromaticies with increasing intensities

L x [y [A]
red | 0.617| 0.334| 610
green| 0.278| 0.614| 545
blue | 0.154| 0.058| 463

Table 3.2: CIE xy coordinates and dominant wavelength of three phosphor pri-
maries



Chapter 4

Linear Scale-Factor Methods

From now on, we will assume that the display device is calibrated, such that it
has linear response and input range [0,1]. This input range corresponds to [0,255]
for R, G and B color channels for today’s standard devices. Throughout this work
”n” will be used for the device input value,< [0, 1], and” " for the computed
luminance valuel € [0, c0]. Our intention is to describe the various functions
n= f(L).

Most rendering software is still not able to render a raw image in absolute
units. Rendering in absolute units can be quite a tricky job. When absolute units
are required the exact data for light sources and materials are needed. This data
is hard to get or measure, and sometimes the tolerance range of given data is too
high. Data for artificial light sources can be obtained from the manufacturers and
if natural light is used then the time of day, latitude and sky conditions should
be taken into account. The data needed to define BRDFs for materials used in the
scene is far more difficult to find than light source data is. The BRDF depends both
on the chemical composition of the material and on the condition of the surface
(smooth, rough, oxidized, etc.). Furthermore many common materials do not have
spatially uniform BRDFs. Because of all these reasons most rendering tools still
work with fictitious units. Some methods take absolute units into account and can
not be used with raw images rendered in fictitious units.

Although human vision certainly does not use a linear scaling function, this
group of mapping methods renders acceptable results for a wide range of applica-
tions. Its strengths are its simplicity and speed, and if the right method is chosen,
the results can be acceptable for almost all applications if the raw image dynamic
range is not too high.

The reason why linear mapping renders acceptable results, if the right scale
factor is chosen, lies in the adaptation mechanism. If the right “adaptation” level
is chosen the error introduced by using a linear mapping function is acceptable.
The problem is only to find the right scale-factor.

29
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As we want to get various images from computed luminances it is obvious
that these computed values have to be stored. Usually these values are floating
point numbers, one for each color channel (red, green and blue in most cases).
Saving such a float image is very memory demanding (12 bytes per pixel). Greg
Ward in [Ward92] suggests an elegant way of handling this problem and intro-
duces a way how a float image can be stored using only 4 bytes per pixel and
achieving almost the same result. There are also two other raw image formats
(one supported by TIFF file type, and other introduced by Pixar). The raw image
formats are described in the Appendix, as they are a necessity for this kind of
image manipulation.

Another possibility of handling the float-image size problem is to use a low-
resolution preview picture to find the parameters which will be used in the final
high-resolution picture. The combination of these two methods should solve the
memory problem even in computers with a very low amount of memory.

The first intuitive solution to the mapping problem is the use of a linear scale-
factor such that the maximum radiankg,,,. is mapped td,

L
Lmaaz

n = (4.2)

This mapping is useless if the light source is visible or the image contrast
Is too high. In these cases the final image will be too dark. The results of this
mapping method are shown and discussed in the Results chapter. An improvement
of this method, especially popular in the radiosity community, is the mapping
of the largest non self-emitting pixel to 1. Unfortunately, in the case of strong
secondary light sources this method still renders very dark images. The second
drawback is that pixel self-emittance is known only in the first rendering phase,
therefore it is not possible to estimate which pixel is and which is not self emitting
from the raw image.

4.1 Mean Value Mapping

Probably the most widely used mapping method today is the mean value mapping
technique. The idea is to map the average radiance to 0.5 input value, and then
clip the values larger than 1 to 1:

L

=0.5-
" Lcwe

(4.2)

whereL,,. is the average radiance value, anis set tol if n > 1.
According to the above equation, the valueL,,. will be mapped to 1 and
all values larger tha@ - L,,. will be clipped to 1. Obviously the information in
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the range?2 - L., Lia.| 1S l0Ost, although there can be some interesting details.
Another problem is the case when few very high radiance values increase the av-
erage too much, making the final image too dark. There is also a problem that
arises from the fact that the global illumination solution is linear in source radi-
ance [ArKi90], that means results for any two light source strengths are directly
proportional. Therefore the mean value mapping will produce the same images
for various light sources’ strengths. This problem cannot be overcome unless ab-
solute units are known. Using fictitious units makes it impossible to know whether
the scene is supposed to be well lit or dark. Another drawback of the mean value
mapping technique arises when the average scene reflectance is very low or very
high. Imagine an image representing a heap of coal. If the average value (which
Is low) is mapped to 0.5 the whole image will be too bright. On the other hand,
an image of snow covered mountains will be too dark. In spite of all these draw-
backs this is still the most widely used mapping method today. Most of today’s
rendering software can not produce absolute unit raw images, and most scenes are
not very dark or very bright. These two facts make it possible to use mean value
mapping successfully for most renderings. Of course, when an appropriate light-
ing atmosphere or the correct objects’ colors are important, some other mapping
should be used. Result images rendered using the mean value mapping method
are shown in results chapter, color plates 1a, 5a, 9a, 9b, 11a, 14a, and 14b.

4.2 Interactive Calibration

The mean value mapping technique corresponds to the simplest photographers’
approach, where the average light is measured and the aperture is automatically
set such that the average is mapped to the medium gray. More advanced photog-
raphers know that they have to adjust the aperture manually if the scene is not
a typical one. By setting the aperture manually the final photo can be darker or
lighter. Photographers also know how to enhance the overall contrast of the image.
Sometimes it is necessary to use a flashlight even on a sunny day if portraits are
shot. Experienced photographers will choose an appropriate film speed as well.

Just as inreal life, we did not want to use just the mean value mapping method,
so we have proposed to use interactive calibration. Together with chapters 6, 7,
and 8 this is the main contribution of this thesis.

Up to now we have been describing the mapping functions that are applied to
the whole raw image. We introduce another approach here, namely that a clipping
interval is selected first, and the mapping function is applied to this interval only.
Values outside the interval are simply clipped to the interval borders.

Our intention is to find a clipping interval [s,e]. The start point of the interval
will be mapped to the minimum displayable value and the end point to the max-
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imum displayable value. Just as in photography the center of the interval is not
always the average value, actually in professional photo this is almost never true.
The interval is found by varying aperture and contrast, as explained in the next
chapters.

4.2.1 Logarithmic Histogram

Logarithmic histograms will be used to explain the idea of this method. In the
real implementation a histogram is never used. It just helps us to understand the
method. Let’s explain what the logarithmic histogram is and what its advantages
are. As thelog, (logs is used in analogy to photography) is not defined for O,
first all values that are smaller than a certain minimum value should be set to this
minimum value, and as the size of the histogram array is limited, the values above
the maximum allowed value should be set to this maximum value. Now, for the
log, values of each of the r, g, b components, the appropriate histogram array
element is increased. The total number of histogram entries is three times the
number of pixels as each color component is entered separately in the histogram
array. Using a logarithmic instead of a linear histogram has several advantages. A
wide range of luminance values can be represented with a relatively small array,
and the contrast manipulation (introduced later) is easier to explain.

4.2.2 Varying aperture

The interactive calibration method was inspired by photography, but our intention
is not to apply exact photographic methods. We will adopt some terminology
from photography and use it in a simplified way. In this paper the aperture value
is defined as O, if and only if, the average luminance valye,,, is in the center

of the clipping window on the linear scale. When displayed on the log scale itis in
the upper half of the interval. Setting the aperture to +1 means shifting,the

value by 1 on théog, scale, which doubles it. In our implementation the aperture
can be set ta-0.5, +1, +1.5,... A£3. Of course, the aperture can be set to larger
values or a finer step can be applied, yet, from the hundred years of photographic
experience and from our experience, this is almost never necessary.

4.2.3 Varying contrast

In the classical mean value approach the simple scale faétor,,..., is applied
to all values. The next stepis to clip all values larger than 1 to 1 and those less than
0 (usually there are no such values) to 0. This approach clips the values far from
the average. Actually, all values that are more than twice as largg as are
clipped to 1, which means that some interesting details, may not be displayed. By
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varying the contrast and the aperture this problem can be successfully solved. Let
us define the contrast as the ratio between the largest and the smallest luminance
value in a float image. The contrast window on the log scale always has the
same size for a given contrast and this is one more reason for using a logarithmic
histogram. The original contrast of a float image can be anything from as low as 10
or less (although such low-contrast images are rare) to as high as 1000 or more.
Using a larger contrast interval, less pixels will be clipped, but when they are
mapped to the input values, a low-contrast image will be generated. On the other
hand, the use of a small contrast clipping interval will produce an image which is
considered as a high-contrast image. (See results chapter for visualisation of this
confusing fact). In figure 4.1 various contrast windows and aperture settings are
displayed, with the logarithmic histogram of the image shown in results section,
color plates 3 and 4.
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Figure 4.1: Various contrast and aperture settings

4.2.4 Mapping of the Interval

Our intention is to find thes, e] interval such that the final image (produced by
mapping[s, e| to the display device input values) is satisfactory. This means that

it shows the atmosphere supposed to be in the scene, or that it shows lots of de-
tails in a selected area of the image. The user varies contrast and aperture settings
until the image looks satisfactory. We assume that the display device is cali-
brated, has linear response and the ratio between the maximum and minimum
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displayable lightness i§;sp.,. We want to mags, e] to [1/Clispiay, 1]. We will
call 1/Cyispiay value”xs"”. For most CRT ;5,14 iS @bout 50, which makes
equal to 0.02. Given the,,.., value, the aperture valueand contrast, the start
point s of the interval is

a 1+a
2 Timean - 2 o 2 * Tmean

= = 4.3
s 1+¢ 1+¢ (4-3)

and the end point e can be computed as
e=s-c (4.4)

Once the interval is chosen, the mapping for float red, green, and blue values
can be done. The values outside the:] interval should be clipped te ande
prior to the mapping. This color clipping produces visible color distortions in
some cases. There are numerous other clipping approaches but they are out of the
scope of this thesis. There are many ways of mapping to [x, 1]. If the chosen
contrastc is the same as the available device contéagt,,,, a linear mapping
gives the best results. The linear mapping is done by simply dividing the color
components by. The interval is mapped linearly {0, 1] using the following
formulas:

R =red/e (4.5)
G = green/e (4.6)
B = blue/e 4.7)

In the case wheadiffers fromCj;,,14, @ linear mapping does not give satisfac-
tory results. According to human perception rules [StSt63], [Hunt92] a mapping
function of typef(z) = z™ can be chosen for appropriate results. The value of
n lies between 1/3 (e.g. in CIE LUV and CIE LAB lightness formulas) and 1/2
(e.g. in Hunter LUV lightness formulae) [Hunt92]. We suggest taking 0.4
as default value. Two auxiliary valuesandv for the mapping from: € [s, ] to
y € [k, 1] are defined as :

) - 1(R)
“=Fe— f(s) (4.8)
v=7(1) —u- (e 4.9)

The mapping functions for mapping the red, green and blue values (all in the
(s, e] range) to R,G,B (in thés, 1] range) are:
R=fYu- f(red) +v) (4.10)
G=f(u- f(green) +v) (4.11)
B = f'(u- f(blue) + v) (4.12)
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Images mapped using this type of mapping function will be brighter than those
mapped with the linear function, but they will show more details in the dark part
of the image and they will be perceptionally more correct. Now R, G and B can
be used as input to the display device look up table.

4.2.5 Conclusion

We have described a method for mapping calculated luminance values to values
appropriate for displaying. Varying the contrast and aperture, images with the
appropriate atmosphere can be displayed without knowing the luminances in ab-
solute units. Also, for research purposes, some interesting parts of the images
can be shown with lots of details by setting a small contrast and an appropri-
ate aperture value. The introduced methods can save us additional renderings in
most cases, and they reduce the time needed to produce the final image that way.
Results strongly depend on the user settings, so this is a completely subjective
method. Images mapped using this method are shown in the results chapter, color
plates 2, 3, and 4.

4.3 Ward's Contrast Based Scale-factor

The idea is to display bright scenes as bright and poorly lit scenes as dark, mak-
ing the differences just visible in the real world just visible on the display. In
other words the visibility in the scene is preserved. The scale-factor is derived
from the contrast sensitivity studies conducted by Blackwell in the early 1970s
(see Human vision section). Blackwell established the following relationship be-
tween the adaptation luminandg and the minimum discernible difference in
luminance:
AL(L,) = 0.0594 - (1.219 + L04)*® (4.13)

Ward used Blackwell’s studies, but we should be aware that all models de-
scribed here and based on human perception are only an approximation of the
human vision system, since Blackwell's experiments were conducted in perfect
laboratory conditions that are far from the usual complex viewing conditions of a
typical work place. Ward wanted to find a proportionality constant between dis-
play luminance and world luminance that yields a display with roughly the same
contrast visibility as the actual scene. He wanted to find a multiplisuch that:

Li=m" Ly, (4.14)

whereL, is display luminance at an image point, abgd is world luminance at
an image point.
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The key assumption that enables the calculatiom af that:
AL(Lgy) = m - AL(Ly,) (4.15)

whereAL(Ly,) is the minimum discernible luminance changd.at, Ly, is the
display adaptation luminance aiig,, is the world adaptation luminance.

This assumption makes differences just visible in the real world just visible
on the display, and this was the main goal of the whole mapping. Solving the
equation 4.15 for m gives:

1.219 + L347%°
"= [1.219 + L%] (4.16)

In order to get the scale-factor which converts a raw image to a display device
input interval [0,1], the maximum display luminandg;,,..., should be known.
The display adaptation luminance of the viewgy,, should be known as well.
Ward suggests to takk;, = Lanq../2, as he has found that this is close enough
for most applications. The final scale-factois then:

1 [1.219+ (Laman/2)" 1>

" Limas 1.219 + L4

(4.17)

Two unknowns are the maximum display luminance which can be measured,
and the world adaptation level. If no other information is available, the average
value of the raw image can be taken as the world adaptation level although this
is not the completely correct way. If the area of interest in the scene is known,
this can be used as the adaptation level. In this way results can be interpreted as
telling us how well a person would see in an environment while looking at this
point. Note that the raw image should be rendered in absolute units to use this
method. This is still not easy for a common user, but this is the only way the
lighting atmosphere can be automatically taken into account. This simple linear
scale-factor can be used for a wide range of applications where lighting simulation
Is important (architecture visualisation) and it renders great results. Color plates
9c, 9d, 13a, 13b, 17a, and 17b in results chapter illustrate this method.



Chapter 5

Non-Linear Scale-Factor Methods

In this chapter non linear scale factors will be described. The motivation for using
non linear scale factors is to be found in Weber’s law. This law derived in the last
century states that the ratio of the brightness discrimination threghbland the
corresponding brightneds AL/L is constant over a wide range of luminances.
Logarithmic mapping represents this law. According to some more recent exper-
iments, exponential mapping would be more appropriate. These mappings are
expensive to compute and always have some free parameters that should be set
for each raw image separately. Schlick in [Schl94] introduced uniform rational
guantization achieving comparable or better results than exponential or logarith-
mic mapping with much less computational effort.

5.1 Schlick’s Mapping

As stated above Schlick wanted to introduce a mapping function which would act
similar to a logarithmic function but which would be much simpler to compute.
He proposed the so-called rational mapping function:

p-L

= 51
p'L_L+Lma$ ( )

n

This function is intended to account for the non-linearities of both the display
device and human perception. The biggest advantages of Schlick’s mapping are
its speed and automatic selection of the parameter p. The mapping is fast as it
needs only one division, one multiplication, one subtraction, and one addition.

A free parameter in logarithmic and exponential mapping depends on many
factors such as the adaptation level of the observer, the display device character-
istics, human vision rules, etc. It would be ideal to involve all of these factors,
but it would be computationally very expensive and some of the human vision

37
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mechanisms are not understood yet. There are methods that include more human
vision characteristics, and they will be described in the next sections.

Schlick has made the assumption that the level of the darkest non-black gray
is what really changes under different viewing conditions and device settings. The
user should find the input level of the darkest non-black gray level M and compute
the parametep according to the following formula:

_MLmaa:_MmeNMLmaaz
B Nme_Mme - Nme

The idea is then to map the smallest non-zero pixel value of a raw image to the
darkest non-black gray of a display device. In order to find M, Schlick proposes to
display squares of different grays randomly on a black background and to select
the darkest still recognizable square.

Although this mapping is very fast we find its use limited to raw images with
a moderate overall contrast value. Using this mapping with some high contrast
raw images led us to unusable results. When we set the parameter p manually the
resulting images were great. The reason why results are unsatisfactory for very
high contrast images, lies in the fact that the mapping is applied to the whole raw
image range. Suppose that there is only one pixel in the raw image that has a very
high luminance valud.,,... This pixel will cause p to explode, and the whole
mapping technique will become useless.

This method is ilustrated in color plates 1c, 6a, 10a, 10b and 10f.

A possible solution for high contrast raw images could be to combine Schlick’s
mapping with the minimum information loss method as described in chapter 6.

Schlick speculated about spatially non uniform mapping in his work as well,
but ended up with just another spatially uniform solution, similar to the original
one.

p (5.2)

5.2 Exponential Mapping

This section will describe an exponential mapping method introduced by Ferschin
et al. in [FeTP94]. The main idea of this mapping method is to use an exponential
function that will be not affected by a few very dark pixels. This function has
actually been developed from the idea of using a stepwise linear mapping function.
An exponential function overcomes the problem of discontinuities in the shadows
when a stepwise linear function is used. The exponential mapping function is:

n = Nz - (1 — eﬁfw) (5.3)

Figure 5.1 shows the exponential mapping function for a hypothetic raw image
with luminances in rang#), 5000], and an average value ©900. The resulting
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Figure 5.1: Exponential mapping

Images provide a smooth transition between all luminance gradients. The authors
also introduced an alternative form of compression through the alignment of a
reference white point of the radiosity scene with the white-point of the monitor
actually used. This really interesting approach is realized by using the radiosity
white point in the conversion of the radiosity results to the CIE XYZ, and then us-
ing the display device’s white point by converting CIE XYZ values to the monitor
values.

Authors have also experimented with clipping in CIE LUV and CIE LAB color
spaces, and reported no visual differences between all three clippings. Therefore,
they suggest using RGB clipping because of its reduced computational demands.

Note that this method is also an average based method. This means that the
average value will always be mapped to the 0.632 input value, displaying dark
scenes too bright and bright scenes too dark.

The resulting images rendered using this mapping are shown in the results
chapter, color plates 1b and 5b.

5.3 Tumblin and Rushmeier’'s Mapping

This mapping method was first introduced as a technical report in 1991 [TuRu91]
and then in 1993 [TuRu93], and is still considered as state of the art in tone map-
ping. Unfortunately, it is developed for gray scale images only. It is very compre-

hensive but still not complete. Itincludes seven different parameters which should
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be set by the user, and some of them are not always available to common users.
Just as in Ward’s mapping, absolute units are required here. Note that it cannot
be considered as a drawback, it is just a necessity if the lighting atmosphere is
important. If a raw image is rendered in fictitious units, it is just not possible to
say if the lighting in the scene is strong or weak.

Tumblin and Rushmeier find the inspiration for their work in the fact that most
iImage synthesis algorithms do not know the difference between night and day -
differences that are so obvious to the human eye. They wanted to display the
original lighting atmosphere of the raw image in the final image. If the firefly
illumination is simulated it should produce a very dark image, and on the other
hand if the scene is lit with a very strong anti aircraft search light the final im-
age should be almost completely white. The process of tone reproduction is well
known in photography, where the original atmosphere of the scene should be dis-
played in the photo. Fortunately, computer graphics have unlimited possibilities
in choosing the tone reproduction function. It can be very complex, and it is still
quite easy to implement. Photographers, on the other hand, are limited with just
a few chemicals and photo papers, and can not develop such sophisticated tone
operators.

Tumblin and Rushmeier’s (TR) mapping technique uses results obtained by
Stevens et al. [StSt63] regarding the brightness associated with a luminance at
a particular adaptation level. A power law that relates lumindnogeasured in
lamberts to brightness3 in brils at an adaptation level df, is:

B =10% . L% (5.4)

wherea, andg, are:
a, = 0.4 -logio(L,) + 2.92 (5.5)
Bo = —0.4- (logio(Ly))* — 2.58 - logo(Ly) + 2.02 (5.6)

In the first technical report [TuRu91] the authors used the average value as the
adaptation luminance, but in the final version [TURu93] they used another ap-
proach. They used the assumption that the eye adapts in an attempt to keep most
brightness near the “brightness constancy” contodr ot B’ [StSt63] belowL,,
thereforeL, is:

logio(La) = E{logio(L)} (5.7)

whereE{logio(L)} is the expected value &fg:o(L).

Although Tumblin and Rushmeier are aware that Stevens’s data is not valid
for complex viewing conditions and complex scenes (see section Human Vision),
they still used this model, and not the improvement suggested by Bartelson et
al. [BaBr67], because of lower computational cost, and problems with the root
finding of the extended model.
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The TR tone mapping operator attempts to match the brightness of the real-
world luminance with the brightness of the display luminance. By sefiing=
B, where B,, represents the brightness of a real-world luminance Bndhe
brightness of a display luminance, and using equations 5.4, 5.5, 5.6 as follows:

w Ba(w)=Ba(d)
Lg=Ly"" -10 e (5.8)

Note thata, 4 and g, are functions of the adapting luminance of the display
Lqq)- According to eq. 5.7, should be known in order to compuig . To
solve this problem, the authors suggest takipg, as a constant, since it has little
influence o,y andp, ). The suggested value is:

L max
Loy = \/Céﬁnj (5.9)

whereC,,,... is the maximum available display contrast, depending on the display
gamma, ambient illumination and maximum available display lumindncg,..
Finally the complete tone mapping operator can be written as:

[e%

1
a(w) Ydisplay

B -B
[ %a(d) Za(w) " Pa(d) 1
n = . 10 “a(d) —

Ld max max

(5.10)

This operator is designed to reproduce overall brightness appearance, and not
to reproduce visibility (in contrast to Ward’s, Ferwerda’s and visibility matching
mapping described later). We tested the TR operator and the resulting images
look a little bit too dark. We suppose the reason lies in the fact that this mapping
operates within the whole range of human vision. The model functions up to
luminances 08.18 - 10° e¢d/m?, and just for comparison, snow covered ground in
full sunlight emitsl.6 - 10* cd/m? or horizon sky emit$.0 - 10* ¢cd/m? on a day
with sunlit clouds. As the bright images are reserved for such extreme lighting
conditions (search lights), normal light images tend too be a little bit too dark in
our opinion. We have applied the TR operator on each color channel separately,
just as Ward did in the RADIANCE [Ward94a] package. We are aware that this
is not the right way, but finding a better way would certainly exceed the scope of
this work.

Nevertheless, if the analysis of extreme lighting conditions is important this
could be just the right model. It is complicated to implement this model exactly,
but it is worth trying. Resulting images are shown in the results chapter, color
plates 9e, 9f, 13c, 13d, 17¢c, and 17d.
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5.4 Model of Visual Adaptation

A model of visual adaptation has been introduced by Ferwerda et al. in [FPSG96].
This model is based on Ward'’s contrast based scale factor. The difference is in the
functions used for just noticeable differences. Ferwerda et al. use the whole set of
different functions for scoptic and photopic vision. In the mesotopic range they
use a linear combination of scotopic and photopic functions.

Visual acuity is also taken into account by this model, and dark image parts are
simply blurred using a Gaussian convolution filter, since the human visual system
IS not capable of resolving details in dark areas (see Human Vision section).

The temporal aspect of adaptation is also taken into account. It is possible to
simulate an adaptation process over time using this model.

As it is necessary to determine adaptation luminances for using this model,
the authors suggest to assign display adaptation to half the maximum screen lumi-
nance (same as Ward in his contrast based scale-factor), and the world adaptation
to half the maximum of the raw image luminance (different approach than used by
Ward). This is probably the weakest point of the whole mapping technique. Imag-
ine, for example, one extremely bright pixel at the edge of the image. It certainly
will not influence adaptation level that much, as it will seem from this approach.

This is the first, and still the only mapping method that accounts for temporal
change in adaptation. Therefore, if such visualisation is needed, this is the only
possible choice of tone mapping. Ward et al. developed a new visibility matching
operator, that borrows heavily from Ferwerda’s model, but the adaptation level
determination is much improved. This improved model will be described in more
detail next.

5.5 Visibility Matching Tone Reproduction Opera-
tor

The tone mapping operator described in this section has not been published yet.
Actually, only a short sketch was published at SIGGRAPH '97, and the whole
paper is available electronically from the RADIANCE WWW site [RADI97]. We
decided to include this mapping in this work as it seems that this mapping will
be widely spread in the future. It is based on Ferwerda’s mapping, but adapta-
tion level determination is improved. In contrast to all previous methods, that
used only one adaptation level for the whole raw image, this mapping uses many
adaptation levels, just as our visual system does.

The tone mapping process starts with computing a small image where each
pixel corresponds to one visual degree. Actually only center pixels correspond
to the 1 degree angle, but the error introduced in the border pixels is neglectable.
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The 1 degree area corresponds to the adaptation area of our visual system. This
small image will be used to determine adaptation levels at each fixation point.
Luminance is converted to brightness simply by taking the logarithmic values of
luminances. Once the auxiliary image is generated, a logarithmic histogram is
built.

A logarithmic histogram is built in the luminance range from the thresh-
old of human vision10™* c¢d/m?) or the minimum auxiliary image luminance,
whichever is larger, to the maximum auxiliary image luminance.

The next step is histogram equalization. Actually this is not the next step in
the fully implemented method, but this is the base of the whole algorithm, and
therefore it is described first.

Histogram equalization is a well known technique from image processing. The
cumulative frequency distributioR () is needed to equalize a histograf(b) is

defined as: ;

P(b) = —Z"K”Tf (b:) (5.11)
whereT is the total number of histogram entries, @h@;) is the frequency count
for the histogram bin &i;. Later on, the derivative of the above function will be
needed as well. The derivative is:

dP(b) _ f(b)

db TAD (5.12)

where
_ log(Lmax) - lOg(me)
B N
and N is the number of histogram bins, therefaké corresponds to the size of
each bin. Note that since the cumulative frequency distribution is a numerical
integration of the interval, the derivative of the cumulative distribution is the his-
togram with an appropriate normalization factor.

A common histogram equalization (but here applied on the raw-image) would
produce an image where all brightness values have equal probability. The equal-
ization formula can be written as:

By = log(Lamin) + [log(Lamaz) — 10g(Lamin)] - P(B) (5.13)

where B, stands for display brightness, aidfor the raw image brightness. The
problem with this approach is that the dynamic range will be compressed in the
regions where there are only a few samples, and it will be expanded in highly
populated regions. This results in an unnatural appearance of the final image, and
certainly can not be used as useful tone mapping operator.

Suppose that the 60% of pixels have luminnace lower than L,,,.. In
this case, small original luminnce rand@, 0.1 - Lg;,...) Will use 60% of available

Ab
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display luminances. In order to prevent this unwanted effect, Larson et al. sug-
gest limiting an allowed contrast in a particular region. Actually, although naive
histogram equilasation will propose enlarging of the original contrast, it will not
be allowed. At the beginning they used a linear ceiling, which can be written as:

dLq _ Lq
T e
dL. — L
In this way the contrast can not exceed the contrast obtained by using a linear
scaling operator. Note thdf_,;/dL is actually the slope of the mapping function
L, = f(L). Using this type of ceiling the slope of the mapping function can not
exceed that of appropriate linear mapping. From the above equations it is easy to
derive following inequality:

(5.14)

(5.15)

TAb
b) <
f( ) - log(Ld maaz) - log(Ld mm)

wheref (b) is the frequency count for the histogram bin b.

Using this inequality we can be sure that as long as no frequency count ex-
ceeds this ceiling, the resulting histogram will not exaggerate contrast. If some
histogram bin is too populated, it is simply cut off and the ceiling procedure is
repeated iteratively, until there are no more overpopulated histogram bins. This
process is calleflistogram adjustmemather than histogram equalization by the
authors.

Up to now, there were no human vision characteristics taken into account in
this process. The authors say that if the raw image is not rendered in absolute
units, a histogram adjustment, as just described, can be applied to the raw image.
If absolute units are known, the method can be improved.

In the case of absolute unit raw image, the ceiling function is derived from the
just noticeable difference functions (see section Human Vision). The just notice-
able difference for adaptation leve] will be calledAL,(L,). To guarantee that
the display representation does not exhibit contrast that is more noticeable than it
would be in the actual scene, the slope of the operator is constrained to the ratio
of the two adaptation thresholds for the display and actual scene. Note that this is
the same principle introduced by Ward in his contrast based scale-factor [Ward94]
and used by Ferwerda et al. in [FPSG96]. In contrast to the earlier approaches,
where only one adaptation level was chosen, this constraint will be met at all po-
tentional adaptation levels, making this operator more accurate. The new ceiling

is then:
dLy AL, (Ld)

dL — AL(L)
After a similar derivation as with the linear ceiling a ceiling inequationffg) is

(5.16)
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defined as:

) < ALy(Lq) TAbL (5.17)
ALi(Ly) [log(La maz) — 10g(Lg min)] - La
Just as before, an iterative process leads to the solution. Applying this sort of
ceiling function will produce images that reproduce original visibility on the final
image. This operator is further improved by taking the veiling luminance into
account (see section Human Vision).

The formulas described in the Human Vision section are used to incorporate
veiling luminance. This is the computationally most expensive part of the algo-
rithm, as the sum (integral in the original formulas) has to be computed over all
samples for each fixation point using the following equation

3. Ljcos(©i,5)
J#i oz,
J

cos(0; ;)
J#Ft ey,

L,; =0.087 -

(5.18)

where L,; is the veiling luminance for fixation point L; is original fixation
luminance for fixation poinj, and®, ; is the angle between sample i and j (in
radians, that is why.087 stands at the begining of the eq. 5.18).

Once the veiling luminances,; are computed, the original luminancksare
replaced byl ,; using the formula derived from eq. 2.22:

Visual acuity is taken into account, as well. The data used was the same used by
Ferwerda et al., it is described in the human vision section. The dark image parts
are blurred, as the human vision acuity drops with luminance. Ward et al. used the
mip-maps approach well known from texture mapping to realize various acuities
depending on the absolute luminance levels.

The visibility matching tone operator described in this section, tries to match
the visibilities in the original scenes with the display visibilities. Various aspects
of human vision were taken into account, and the produced images match the
visibilities. On the other hand, the final images look a little bit unusual. Maybe
that is because we are not used to images and photos that match the visibility in
high range images. This means that if there is a scene with a window on a sunny
day, the new operator will display the interior and exterior part, and will try to
match the visibility in both parts. It may look unusual to us, as we are used to
seeing either the interior or the exterior in such a case (although we can see both
in real life).

If the analysis of visibility is crucial in a rendering process (e.g. simulation of
emergency lighting) this operator should be used. On the other hand, in everyday
use it can sometimes render unusual (that does not mean incorrect) images.



Chapter 6

Minimum Information Loss
Methods

This chapter describes the whole family of mapping methods called minimum in-
formation loss methods. These methods are one of the contributions of this thesis.
We developed these methods in order to determine exposure automatically. The
methods follow, in a way, a photographers’ approach. The main idea is to place
the clipping interval so that a minimum amount of information is lost, thereby
preserving the original contrast of all correctly displayed pixels.

Just as in interactive calibration (see section 4.2) a raw image histogram is
used in the optimization process.

6.1 Search for the Optimum Contrast Interval

6.1.1 How is it done in Photography?

The method of mean light intensity is the most commonly used method in non-
professional photography since in most cases it gives acceptable results. Accord-
ing to [Morv84] the method gave good results in 80% of amateur motifs (the
sample was ten thousand motifs). In the remaining 20% the aperture should be
shifted up or down to obtain optimal results. E.g., if the main subject is in shadow,
an average measure causes the main subject to appear only as a silhouette. For the
sake of a display rich in detail, the aperture often has to be opened by 2 or 3 units,
compared to the measured mean value. This means that the desired result would
be obtained from a mean illumination twice or three times higher ofvthescale

- i.e. the value 4 or 8 times higher than the average value is displayed as "medium
gray”. Thus, the clipping window has to be shifted on thg scale up to 3 units
compared to values resulting from the average measurement method. For strong

46
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contrast subjects in professional photography, a spot metering is made for all the
typical details, that may result in a subject contrast of even several hundreds or
more. Then, a contrast interval of 32 has to be selected, which produces the least
loss due to the forced clipping. The fundamental method presented in this work
follows that idea.

6.1.2 Mean Light Method in Photography

In photography light measurement techniques work with the assumption that the
scene contrast is 32. The value two times greater than the average measured
lightness will be the white on the picture. The logarithmic middle gray, which

is very near to the perceptual middle grayis8 = 272 times the lightness

of white or2~1° times the measured average value. All values larger than the
white value (two times average) will be clipped to white, and all values below
white/32=average/16=black will be clipped to black. In other words, the clipping
window on the logarithmic scale is logarithmic middle geay.5. Let us consider

an example from computer graphics with classical mean value linear mapping. We
assume a gamma corrected display device with linear response and input range
[0,1]. O corresponds to the minimum displayable luminance level (in our case let
it be 1/32) and 1 corresponds to the maximum displayable luminance value (let it
be 1). The values larger than two times the average value will be clipped to 1, as
in photography, but there is no clipping for low values. 0 absolute luminance will
be displayed as 1/32 in our example. Figure 6.1 illustrates the two approaches.
The differences in the final images are not significant because the main difference
occurs in dark image parts where our perception in bright surroundings can not
perceive them.

log, display Iuninance

Lnin

log, scene |uninance
L L %
X/256%/128%/64 X/32 X/16 X/8 X/4 X/2 X 2x

Figure 6.1: Photographic and CG mean value mapping
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6.1.3 Main Goal of the Optimization

The main goal of our method is to find the interydl, B] such thatB = C' -

A, where theC' is the given clipping contrast, and that a minimum amount of
information is lost due to the applied clipping. The clipping contrast depends on
the display media, and should equal the maximum displayable medium contrast.
Clipping will be done in the most simple way, thus setting values larger thm

B, and those less thatito A. As we want the minimum amount of information to

be lost, let us first define what information is. Two approaches will be introduced.

In the first approach each color component is considered as an equally impor-
tant information unit. So minimizing the information loss means minimizing the
total number of color components clipped. Note that the loss of e.g. 3% of color
components could mean that 3% of the pixels are affected by clipping (if each of
these 3% is affected in all 3 components) or up to 9% of the pixels are affected by
clipping (if all of the clipped color components belong to different pixels). Usu-
ally there are not many pixels clipped only in one or two components. These are
color highlights and saturated colors. As these pixels make up only a tiny part of
an average image, the percentage of affected pixels tends to be close to 3%.

In the second approach the pixel is considered to be the essential information
unit, so the number of affected pixels shall be minimized. Usually there are no
big differences between the optimum intervals in these two approaches, but some
difference almost always occurs. The first approach will be called minimum in-
formation loss, and the second minimum area loss.

6.1.4 Minimum Information Loss
Building a Logarithmic Histogram

The whole optimization process is done on a logarithmic image histogram. A
logarithmic and not a linear histogram is used, because the clipping interval has a
constant size for a given contrast on the log scale. Another reason is the possibil-
ity of building a logarithmic histogram from high contrast images with a relatively
small array. Throughout this chaptey, is used, although any other base would
yield the same results (the base 2 is chosen in analogy to photography). While
forming the histogram, values below a certain valug,, (l0g2(Lin) = lnin)

and above a valub,,, ... ({092 (L) = lma) Should be clipped to these values, as
thelog, is not defined for 0, and the histogram array is limited for huge luminance
values. The histogram is an array, in which each array member holds the num-
ber of pixels with the corresponding luminance. The luminance values for each
pixel in the raw image are stored in float format, so actually each histogram array
member represents luminances in a certain interval. These equidistant histogram
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intervals are arbitrarily long, but a finer histogram yields a more precise result.
We will define the histogram array d@$[k|, wherek € [1, k..., the valuel,,,;,
corresponds t@7[1] andl, ., t0 H[k..]. The luminance corresponding H[k]

will be called L, and thelog.L;, = [;. The difference of the logarithms of two
adjacent grades, the elementary histogram inteérval

lo =1

kmax

0= (6.1)
The size of the clipping interval for a given clipping contrésts calledC L1 P

and
CLIP = int(log2(C)/0) (6.2)

A possible choice for the above values could lg;;,, = 272, I,,;, = —20,

Lnae = 20, C' = 25 = 32, kpar = 8000, thend = 0.005 andCLIP = 1000. The
histogram array is initialized to zero, and then for each color component of all raw
image pixelsH [k] is incremented, where

k = int((logad — limin)/0) (6.3)

andd stands for one r, g, or b color component. Note that the raw image does not
need to be stored. The histogram can be built simultaneously with the calculation
of pixel luminances. Note also that the number of histogram entries (the sum of
all H[k]) is three times the number of pixels in the raw image. After the histogram
is formed, the optimum clipping interval has to be found.

Search for the Optimum Clipping Interval

All we have to do is to apply a discrete algorithm on the histogram formed in the
previous chapter. The length of the interval is CLIP, and we can find its position by
shifting the interval along the complete histogram in discrete steps of one. In each
step the error sum is increased by the outgoing histogram member and decreased
by the incoming one. The pseudo code is given in algorithm 1.
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error :=0;
for i := CLIP + 1 to kmax do
error += H[i];

leasterror := error;

best := 1;

for j := 1 to kmax - CLIP do
begin

error +=H[j];
error -= H[j + CLIP];
if error <= leasterror then
begin
leasterror :=error;
best := j + 1
end
end

Algorithm 1

The optimum clipping interval starts &t[best|, and ends alf [best+C LI P —
1]. The algorithm runs in linear tim@(k,,....). The actuala, b] interval is then:

a = lppin + best - 0 (6.4)
b=a+c (6.5)
or in linear scale:
A =2 (6.6)
B=A-C (6.7)

Now clipping can be done &t, B] and the final image can be generated. Figure
6.2 shows a logarithmic histogram of the images shown in color plates 1 and 2,
and the optimum clipping interval for contrast C=50.

Clipping Error

The simplest is to consider all clipped pixels as contributing to the error equally,
as is done in algorithm 1. This means applying a 0-1 type discrete error function.
Obviously it is not really the same if a pixel with a value just slightly abévye

or one with a value very far from® is clipped toB. The problem can be solved

by applying an error function linearly penalizing the distance fiBr{or A for
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log number

30000
20000 |_II
-

10000
5000 aF I

il

optimum interval, C=50 Lmean 2*Lmean

Figure 6.2: Logarithmic histogram with optimum interval of C=50

the other side of the interval). A combination of these two error functions, a value
limited alternative of the latter can be used as well. All functions are shown in fig.
6.3. Although it seems that applying an error function which is not the discrete
0-1 function can increase the complexity and run time, we will show how an error
function of typec in fig. 6.3 can be applied, and the process still runs in linear
time (this algorithm was suggested by Attila Neumann).

( A
L/
b
C
_ J

Figure 6.3: Various types of error functions

Let us define the error function as in figure 6&ror(a, k) gives the error
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weight of positionk for the clipping intervala, b], whereb = a + CLIP.

0 fork € [a,b — 1]
G forke[l,a—d—11U[b+d, knal
error(a.k) =3, _ ). i forkebbrd-1] (6.8)
(k=0) 77 forkela—da—1]
~
G
a b
d |, cup [ d
kmax
G J
Figure 6.4: Error function
for given G and d:
G
= 6.9
I=d+1 (6:9)

We need one additional precomputed aredy]. The arraye contains influ-
ences on the error for each step. It is defined recursively. First let us define
as:

0 fora <0
fla)=1¢ fla—1)+ H[a] forl <a < knaa (6.10)
f(Emaz) fora > ks
and e[0] as:
Kmax CLIP+d
=Y error(0,i)= >  (i—CLIP)-G/d-H[i|+ G- [f(kmas) — f(CLIP + d)]
i=1 CLIP+1 (6 11)

Note thate[0] corresponds to the starting position as seen in fig. 6.5.
We will defineAc|a + 1] as:

Aela + 1] = ela + 1] — ela] (6.12)
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Figure 6.5: Starting position

ela] = ef[a—1]+g-[f(a+1)— f(a—d)]—g-[f(a+CLIP+d+1)— f(a+CLIP)]
(6.13)
Once thes[a] has been computed, all that has to be done, is to find the minimal
ela] for a € [0, kyna — CLIP], anda is then the starting point of the interval.

6.1.5 Minimum Area Loss

In this section we are going to explain how the clipped image area can be min-
imized. Our goal is again to find duat, B] interval, of known contrast’, and
clipping all color components outsidd, B] just as in the previous chapters. In-
stead of the logarithmic histogram, we should use a 3D representation, to preserve
the information to which pixel each color component belongs. We will use a dis-
crete space, just as before, and we will use a logarithmic axis for the same reason
we used a logarithmic histogram. The problem of finding the interval now be-
comes the problem of finding the cube which contains the most pixels. Note that
the cube can only be shifted along the line r=g=b, as we have to apply the same
[A, B] interval to all color components. The problem is illustrated in figure 6.6.
Although it might seem to be a complex problem from computational geometry

it can be solved in linear time. First note that all pixels that lie outside the sweep
formed by moving the cube cannot ever be contained in the cube. Such pixels can
immediately be considered as error-pixels.

The idea of the algorithm is to pretabulate the influence of every pixel on all
steps. This is done quite simply with two lists. Let’s call them inclusion and
exclusion lists. The inclusion list contains the effect on the total error if the cube
is moved forward, so that the pixel is just included in the cube, and the exclusion
list contains the effect on the total error when the pixel just leaves the cube. The
pseudo code is given in algorithm 2.
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Figure 6.6: Minimum area loss idea

Pixels outside the cube are considered as equally weighted error-pixels
whether they are near the cube or very far away. The inclusion of various er-
ror functions is straight forward, and although the complexity and the run time are
increased, it can be still done in a linear time.

6.1.6 Mapping of the Interval

Once the optimum clipping interval is found it should be mapped to the display
device’s input values. If the clipping contrast equals the display device’s contrast
a linear mapping should be used. The implementation is straightforward. First all
values less than A are set to be equal A, and all values greater than B, are set to
be equal B. Now, théA, B] interval should be linearly mapped to tlie1] input
interval.
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0;
0;

ext_error :
int_error :
error := 0;
for all pixels do
begin
if max(r,g,b) - min(r,g,b) <= CLIP then
begin
I[max(r,g,b)]++;
Elmin(r,g,b)]++;
end
else
ext_error++;

end
for i:= CLIP + 1 to kmax do
int_error := int_error + I[i];
least_error := int_error;
best := 0;
for j := 1 to kmax - CLIP do
begin
int_error -=I[j + CLIP - 1];
int_error += E[j -1];
if int_error < least_error then
begin
least_error :=int_error;
best :=j;
end
end
error :=least_error + ext_error;

Algorithm 2

6.1.7 Limited Information Loss

Up to now we have proposed a fixed contrast, and we have found a clipping in-
terval such that the lost information is minimized. Sometimes, for high contrast
images, the information loss will be too high. In this case, we propose to bound
the information loss, and to find the smallest clipping interval that causes no more
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than the allowed information loss. As the clipping contrast will be higher than the
display device contrast in this case, a linear mapping will not function properly
any more. In order to match the human vision characteristics, we propose to apply
Schlick’s mapping on the clipping interval. One of the biggest disadvantages of
Schlick’'s mapping technique is the explosion of the parameifehe total image
contrast is too high. If there are only few very, very bright pixels in the image,
they increase the overall contrast, and the paramesxplodes. If our limited
error loss scheme is applied, for a proposed error (i.e.}1 69 clipping contrast
will be smaller than the overall contrast, and Schlick’s mapping will produce good
results. If there are few very bright or very dark pixels in the image they will be
clipped and will not contribute to the computation of the parametéYote that
almost the same results would be obtained if a linear mapping on the log scale
would be applied. We recommend Schlick’s mapping due to its lower computa-
tional cost, and its ability to adjust the final image according to the display media
characteristic (the least non-black input level). The following equation describes
Schlick’'s mapping:

p-L

) (6.14)

wheren is the input levelp € [0, 1], L is the luminance value andis:

_M'Lmaa:_M'LminNM'mew:
B NLmzn_MLmzn ~ NLmZn

P (6.15)
wherel is the smallest non-black input level, aids the number of input levels.
In order to find M, Schlick proposes to display squares of different grays randomly
on a black background and to select the darkest still recognizable square. Of
course valueg,,,,;, andL,,,, in eq. 6.14 should be replaced withand B in our
case.

Images mapped using these methods are shown in the results chapter, color
plates 1d, 1e, 1f, 6b, 7a, 7b, 8a, and 8b.

1The allowed error is an arbitrary chosen small percentage. From our experience, results will
be satisfactory in most cases if the error is less than 10%.



Chapter 7

Incident Light Metering

All mapping methods described so far were based on raw image radiances only.
As there is no information on objects’ reflectances in the raw image, bright and
dark objects can not be distinguished. The method described in this chapter, inci-
dent light metering, makes it possible to reproduce original objects’ colors. That
means if, e.g., a dark blue color is assigned to an object in the modelling phase, it
will be displayed as dark blue in the final image, even if the whole scene is com-
posed of dark objects (that is the case when other methods would fail, as described
later). The inspiration for this method came from the incident light metering used
in professional photography and the movie industry.

7.1 Light Metering in Photography

As stated before, the method to be introduced relies on photography analogies.
There are two ways how light can be measured in photography:

The first is incident light metering. It was used at the beginning of the pho-
tography era by portrait photographers. The main idea is to measure the light
falling on the subject that is photographed. The incident light meter is placed at
the subject position and aimed to the camera (see fig. 7.1). Portrait photographers
had the possibility of walking up to the subject, measuring the light, and then
walking back to the camera to adjust the exposure. Actually, this is still done in
professional photography, and in the movie industry, where the incident light is
measured even outdoors via fill panels, and stand-ins are paid to stand around the
scene and be metered for light adjustment purposes (that is the reason why they
are called stand-ins).

For landscape photographers it is not possible to walk to the subject to mea-
sure the light, so they use reflected light metering only, where they measure the
light coming to the camera from the subject direction (fig. 7.1). When people
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started to take photos of moving targets, it was also more convenient to measure
the light from the camera position. Unfortunately, in contrast to incident light me-
tering, reflected light metering is not independent of subject reflectivity or BRDFs
of the scene, and the relative preponderance of light or dark areas in the scene.
This is still the biggest drawback of reflected light metering. Nowadays, however,
in spite of all its drawbacks, it is used more often than incident light metering,
since a lot of improvements in reflected light metering have been introduced. All
these improvements try to compensate for the subject variations over the imagi-
nary average gray scene.
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Figure 7.1: Reflected and incident light metering

Figure 7.2 shows a light meter that can be used for reflected and incident light
metering. Note the white hemisphere that acts as a half-space integral.

7.2 Incident Light Metering in Computer Graphics

In spite of its inability to properly display bright or dark scenes, reflected light
metering has been used in computer graphics exclusively up to now. Maybe the
computer graphics community has been influenced by the fact that this is the dom-
inant method in photography. It is certainly not convenient for a photographer to
measure the incident light in all cases (and sometimes it is simply impossible).
However, in computer generated images it can be achieved quite simply, as will
be explained now. We will explain the method for the monochrome (or black and
white) case in detail first. The extension to the color case is straight forward and
described in the appendix.

The main idea is to place a limited number of diffusors into the scene. A dif-
fusor is a half-space integrator used to measure irradiance. In computer graphics
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diffusor -

Figure 7.2: Incident and reflected light meter

a perfectly diffuse surface can be used as the diffusor. Actually, the outgoing radi-
ance of a surface with perfectly Lambertian BRDF is proportional to the surface’s
irradiance.

Usually only one diffusor is used in photography, as the photographer knows
the subject of interest in the scene. For computer generated images more than
one diffusor will be used, but the number of diffusors is still low compared to
the number of patches or pixels in the final image. We suggest using eg.
8...32 x 32 diffusors in the scene. The number of samples required for incident
light measuring is lower than the number for measuring reflected light, because the
variance of incident light is much lower. Due to the lower variance, the contrast
of irradiance values is also lower than the contrast of radiance values.

Of course it is possible to allow the user to place diffusors interactively into
the scene, but our intention was to create an automatic method. Once the diffusors
have been placed, the irradiance E of each diffusor should be computed as:

E:/QL(d ) - cos©"dw (7.1)

where©™" is the incident anglé®™] = rad,w is a solid angle[w] = sr, Q2 is the
hemisphereL(d™) is the radiance in thé incoming direction[L] = Wm 2sr~!

In general, for an arbitrary BRDB(d™, d°"") the outgoing radiance for dis-
tributed light sources is:

L(dout) — /QL(dm) . P(dm,dOUt) . COSGmdw (72)
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For an ideal Lambertian BRDF

p(L,V) = const. = %[sr’l] (7.3)

wherea is the dimensionless albedo or reflectivitys [0, 1]. That means that:

1
0<p(L,V) <= (7.4)
™
Inserting a Lambertian BRDF in (7.2) and using (7.1) gives:
E
L =q.— (7.5)
™

where L°“ = L(d°**) and has the same value for eatf direction of the half
space.

In the implementation methods to be described later, diffusors will be realized
as perfectly Lambertian, white, elementary metering surfaces, each with the same
albedo valueu = 1. For the sake of simplicity, let us first assume that the lighting
Is totally homogeneous, i.e. each diffusor receives the same irradianceRalue
Therefore, all of the metering surfaces are the same, corresponding to (7.5):

E
Lo, == (7.6)

t
meter T

The linear scale facton used to map the original radiance image is then:

1 T

meter

m

Different surfaces in the scene can have different albedo values. How will they
be displayed using the scale facto? According to (7.5) each surface emits the
radiancel.*" = a- E /7. Multiplying this radiance withn (7.7), results in exactly

the albedo "a” being received for displaying. This is the exact, desired, and correct
solution!

In the case of inhomogeneous lighting there is a set of positions with differ-
ent E,..rer (@nd Lo, ) values. From this set, a representative value should be
produced to be used as an appropriate scale factor. Our first idea was to use the
average value of a truncated histogram of the metering radiances (e.g. the lowest
x % and the highest % of the histogram values are clipped, with.abetween
3 and 10), because some very dark or very light areas in the image can greatly
influence the average value. The valuera$ completely arbitrarily chosen and
can be increased in order to eliminate the excessive influence of a dark or light
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part of the image. To eliminate this effect we use the median value, wherg)
%. In this general case the scale factors:

LT (7.8)

m =
out
Lmedian Emedian

whereL2" . is the median value of the?“, values of the diffusor set.

In the case of inhomogeneous lighting, this method does not produce the exact
albedo value "a” for diffuse surfaces. However, the method offers a good compro-
mise, in general a value near to the original "a”. Sometimes the resulting device
input value will exceed 1, in this case we propose to simply clip such values to 1.

Note that this is a two pass method. In the first pass a small irradiance image is
rendered and the scale factor m is found. In the second pass the original image is
rendered in the full resolution and this raw image is then mapped using the scale
factor m from the first pass. Of course, there are no diffusors in the original scene
used to render the final image.

The irradiance computation is included in some rendering packages (e.g. RA-
DIANCE [Ward94a]). The irradiance calculation is often used for lighting engi-
neering purposes. It is interesting that, in spite of this fact, up to now irradiances
were not used to simulate incident light metering in computer graphics. In the next
chapters we are going to explain how irradiance computation can be implemented
in most rendering software that uses any kind of ray tracing or radiosity.

7.3 Irradiance Computation

7.3.1 Simple Ray Tracing without Interreflections

The method will first be explained for simple ray tracing without interreflections.
This is certainly not a physically plausible case, but due to its low computational
cost, it is often used in real time applications (e.g. virtual reality) and it is widely
spread in commercially available software. Generally, the diffusors can be placed
in the scene using a regular grid on the projection plane. This grid resolution
can be significantly coarser than the image resolution. The first intersections with
scene objects are computed from the view point, and at these intersection points
the diffusors are placed, with the same normal as the intersected object’s surface.
Diffusors are white, perfectly diffuse surface elements, used only for metering
purposes, and are not visible in the final image.

If no interreflections are taken into account, the irradiances are influenced only
by direct illumination from the light sources (sometimes, when an "ambient term”
Is added, it should be added to irradiance values also, simply by adding a constant
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to all irradiance values). According to (7.1) irradiance can be expressed as

1 X p
E =Cymp+ poe Z — - c0sOy, (7.9)

Pl
whereM is the number of point light sourceB;, is the power of the light source
k, r; is the distance between the light soukcand the diffusorQ,, is the incident
angle,C,mp can be estimated from the average reflectivity.

It can be shown that a view dependent ambient term can also be used for non
diffuse BRDFs, this is the topic of forthcoming work.

The irradiances are determined for a very low resolution image, which is not
displayed. Of course, itis possible to render the "irradiance image” in high resolu-
tion to illustrate the irradiance distribution in the scene. For illustration purposes,
instead of using white metering elements, all scene surfaces are set to medium
gray (albedo = 0.5) Lambertian surfaces instead of using their original BRDFs.
We call the result of rendering such a scene a cement image (see Color plates 11b,
15a and 15b). Note that this cement image is completely independent of the orig-
inal BRDFs, so it is the same for various scene attribute settings. It depends only
on direct lighting, as interreflections are not taken into consideration, yet.

7.3.2 Distribution Ray Tracing

In distribution ray tracing [Glas95], interreflection effects are additionally taken
into account. To compute the irradiances in this case, again a low resolution im-
age will be used for the metering. The diffusors are again placed into the scene
according to a coarse regular grid on the projection plane. Diffusors are, just as
before, elementary, white, perfectly diffuse surfaces, not displayed in the final
image.

Let us assume a distribution ray tracing method using multiple reflected single
rays starting from the view point. Now we place a white diffusor metering ele-
ment at each first intersection surface point (see fig. 7.3). Each of these individual
diffusors gathers the irradiance from its half space caused by direct lighting and
by interreflections. Interreflections are realized with single rays starting from the
actual elementary metering surface according to a cosine distribution. More pre-
cisely, by this rendering calculation the correct values (see eq. 7.2) are estimated.
From these values the median value is determined and used to compute the scale
factor m (see eq. 7.8) which is then applied to the original radiance image.
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Figure 7.3: Irradiance metering with distribution ray tracing

7.3.3 Radiosity

The incident light metering method can be easily implemented using radiosity as
well. During the final gathering step a limited number of scene patches should be
replaced by auxiliary light metering patches. These auxiliary patches are perfectly
diffuse white patches that are taken into account only during the final gathering
step. In this way their radiosity is proportional to the irradiance and these radiosity
values can be used for finding the scale factor. Of course, auxiliary patches are not
displayed in the final image, they are just used to find the scale factor. Note that
the predominantly used diffuse radiosity method does not use radiance values, but
radiosity, B, which is7 times radiance. In this case the eq. (7.5) will be:

B=a-E (7.10)

and the scale factor will be: .

- Bmeter
median

(7.11)

7.4 Color Case

The incident light metering has so far been described for the monochrome case.
In reality the diffusors gather colored light from half spaces. Color light can either
be caused by color light sources or can be the result of interreflections at "color”
BRDFs.

The color case should include the monochrome case as a special case (here
monochrome means that= ¢ = b, or in the general case the spectral reflectivity
p(A;) = const.), as neutral color and lighting. The results should then be the same
as in the monochrome case.
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Itis possible to introduce more color models for irradiance computation which
satisfy these conditions. These methods are very similar under average lighting
conditions, but they can differ a lot when used in highly saturated color lighting
(e.g. disco, color neon, theater, fireworks lighting etc.).

Our intention for the color case is to find a scalar vafuinat represents the
irradiance value of the full spectrum. When using a simple 3 channel model (for
lighting and for BRDFs) for a givengb triplet this valuef can be:f(r, g,b) =
Y(r)+Y(g9) + Y(b), whereY represents the CIE value which corresponds to
the relative lightness and has a maximum value of 100. But also other functions
like f(r,g,b) = (r +g+b)/3or f(r,g,b) = max(r, g,b) are appropriate for the
neutral color. In the last two models the neutral color is represented byban
triplet wherer = g = b. Which formula from these three should be used? Yhe
approach is widely used in photography, in spite of its drawbacks. As stated before
this approach gives good results for average lighting color conditions. Figure 7.4
shows the ideal (human eye) and the real spectral sensitivity curve of silicon blue
cells used in an incident light meter. To compare the three suggested scalar
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Figure 7.4: Spectral sensitivity of human eye and Si blue cell

functions f(r, g, b) we take a sample scene that consists of a homogeneously lit
square, which lies normal to the viewing direction. One quarter of this square is
medium red, i.e.Y(r) = 0.5-20 = 10, and(r,g,b) = (0.5,0,0), the second
quarter is medium green, i.&/(¢g) = 0.5-70 = 35, (r,g,b) = (0,0.5,0), the
third quarter is medium blue, i.eY'(b) = 0.5-10 = 5, (r,g9,b) = (0,0,0.5),
and finally the last quarter is neutral, medium gray, ¥g¢n) = 0.5 - 100 = 50,
(r,g,b) = (0.5,0.5,05).

For neutral homogeneous lightiig ¢, b) = (1, 1, 1) irradiance metering re-
sults in a neutral color which should only be scaled with= 100 or (r, g,b) =
(1,1,1) (for the sake of simplicity, the irradiance to radiance conversion will not
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be explained, we only want to illustrate the original color shift). The resulting
colors will be the same as the original, medium red, medium green, medium blue
and medium gray.

Let us see what happens for a blue light{iog0, 1). With light metering we
will measure an irradiance of Y=10, so we should use a scaling factongt0 =
10, which will make all colors highly (10 times) over-exposed. More precisely,
the red and green square quarters will be black as they have no blue component,
but the blue and gray square quarters will resultriry, b) = (0, 0, 5) which will
be displayed af), 0, 1) after the clipping instead of the corrgét 0,0.5).

For green lighting, over-exposure will still occur, with ¢, b) = (0,0.71,0)
for the green and gray square quarter, since green has the biggeste, and
blue the smallest (see fig. 7.4).

Whenf(r, g,b) = (r+g¢+0b)/3 is used as an irradiance measuring formula, for
neutral (white) light the result is the same as above. For green and blue lighting the
resulting values are the same (only the corresponding components are not). For
this formula, green will be lighter than before, but blue will not be so highly over-
exposed. The scale factor will be 3 for both lightings, so instead of the correct
0.5 the corresponding components will be 1.5, i.e. 1 after clipping. The zeros
will remain zeros. It is obvious that the above two methods sometimes produce
significant errors.

Finally, the third functionf(r, g,b) = maxz(r, g, b) will be examined. The
idea is to compute ther, ¢, b) irradiance value for each diffusor and to store the
maximum value for later median determination. In the above example, with white,
green and blue lighting the new (fictive) irradiance value will be 1, and the scale
factor will be 1 as well. For white lighting the results are correct just as before.
With blue lighting the red and green square quarters will be black (which is the
correct result), and the medium blue and the medium gray square quarters will be
correctly displayed af), 0, 0.5) medium blue.

The results will also be correct for all square quarters with green and red light-
ings. We suggest the reader finds scale factors for various combinations of light-
ing (yellow, purple, etc.) and for various color samples. This method always gives
correct or significantly better results than the first two approaches.

In the general case when there are K ¢ 3) discrete wavelengths, the ap-
propriate(r, g, b) triplet should be computed first. This can be done by computing
CIE XYZ coordinates first, and then converting them t@, b.

Sometimes one of the ¢, orb values can become negative, which means that
the color is outside of the device’s gamut. At least one ofrithe b values will
always be positive, however, so the selected maxinf@mg, b) = max(r, g, b)
(fictive) irradiance is always positive.

For neutral lighting the new maximum method gives the same result, for un-
saturated lighting it gives a similar result and for saturated lighting it gives signif-
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icantly better results than the "Y approach” widely used in photography.
The incident light metering method is ilustrated in the results chapter, color
plates 9, 10, 11, 12, 13, 14, 15, 16, and 17.

7.5 Conclusion and Future Work

A new approach of mapping luminance values to display devices has been intro-
duced. The completely new idea of applying the incident light metering method
in computer graphics has been described. Just as in photography, it gives good
results for average scenes, and for complicated lighting condition scenes as well.
It shows its strength even where usual methods based on reflected light metering
fail. The new method displays bright objects as really bright, and dark objects as
really dark, independent of the average reflectivity of the scene. All colors are re-
produced close to the originally selected patterns using only a simple linear scale
factor which is easy to compute. It works well for high contrast (e.g. back lit)
scenes, too. The method can be used with or without absolute units. The lighting
atmosphere of the whole scene can be changed if the scale factor m is multiplied
with a constant c, where e.g.€ [1/2,2]. In this way, irrespective of real irradi-
ances, it is possible to give an image a brighter or darker lighting atmosphere.

An important topic for future work is the use of absolute units in irradiance
metering. It would be interesting to combine the incident light metering with
the work done by Tumblin and Rushmeier [TuRu93], combining two important
human vision characteristics this way.



Chapter 8

Color Image Difference

A good image metric is often needed in digital image synthesis. It can be used
to check the convergence behavior in progressive methods, or to compare images
rendered using various rendering methods. If images are rendered using various
levels of detail (LOD) it is very important to evaluate if a certain LOD image

is sufficient. Furthermore lossy compression methods should also be evaluated
somehow. Reproductions on various media should be compared as well. Finally,
an image query problem, when the most similar image to a target image is seeked
in the large image data-base, happens to be another image metric application.

Of course, itis possible to compare two images by averaging pixel by pixel dif-
ferences. Unfortunately, human vision does not compare images this way, there-
fore the results differ significantly from human comparison. As digital images
are in most cases rendered in order to be observed by humans, a metric should
correspond in some way to human vision. More precisely, if a human observer
would state that the distance between images A and B is greater than that between
images B and C, we expect a metric to give the same results. Comparing images
with the popular mean square error metric (MSE) produces results that can differ
greatly from human evaluation [Giro93]. Our intention is not to give the final so-
lution for a perceptual metric, but rather to offer a simple, efficient way of how
images can be compared in the original space with one single number.

More complex comparisons transform the image in the Fourier [RWPSR95]
or wavelet [GaMY97] space and perform the comparison there. Rushmeier et
al. [RWPSR95] introduce various techniques for comparing luminance images.
They use some ideas from image compression and develop new metrics. All these
metrics are computed after the images are transformed to Fourier space, and the
whole method is designed for luminance images. As luminance images contain
no information on color, these metrics obviously fail for color images, they are
intended to be used for gray scale images only.

Jacobs et al. [JaFS95] have introduced a very fast multi-resolution querying

67
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method, which is intended for a different purpose. Their work is based on the
wavelet transform.

Gaddipati et al. [GaMY97] have introduced a wavelet based metric. In order
to compute some coefficients used by this metric, images should be transformed to
the Fourier space first, which makes this metric very computationally expensive.
The whole metric operates on the separate CIE LUV components, actually only
the L* component of the CIE LUV space was used by the authors, and they did not
suggest how other components could be used and combined with theasure.

We are going to offer a solution for color images in original space using some
human vision characteristics. Of course, it is possible to compute the luminance
of each pixel and then to use a metric for luminance images, but as stated before,
some color differences would be lost. Our idea is to find the weighted average of
color differences of an appropriate set of “area pairs”. The areas will be rectangles,
which are quasi-randomly defined in the image. The results of various sizes and
numbers of rectangles are combined.

The contrast sensitivity function (see Human vision section) as suggested by
Manos and Sacrison [MaSa74] will be used as the weighting function. The same
function is used by Rushmeier et al. [RWPSR95] and Gaddipati et al. [GaMY97].

8.1 Contrast Sensitivity Function

The contrast sensitivity function described in the Human vision section is given
for frequencies in cycles/degree. As we want to compute our metric in image
space, frequencies should be converted from cycles/degree to pixels/degree. This
conversion is simple and follows straight forward from the viewing geometry for
a given viewing distance. Actually the whole metric is viewing distance depen-
dent. (The other above mentioned metrics are also viewing distance dependent,
although it is not explicitly mentioned in the above papers). Consider, once more,
our picture with the black and white stripes. Let the stripes be 1 cm wide now.
You will agree, the stripes will be clearly and sharply distinguishable if the im-
age is observed from 50 cm. But what happens if the viewing distance is, let’s
say, 100 meters. The image becomes gray again. Let us derive the cycles/degree
to pixels/degree conversion now. Actually we are interested in how many pixels
contains one visual degree. We will denote the viewing distance given in dm as
the display size in cm ad/, the display resolution in pixels d8 the width of the
display portion covered by 1 visual degree given in crwasand the number of
pixels inw asr (see fig. 8.1).

From simple geometry follows:

w:2-d-tan% (8.1)
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Figure 8.1: Viewing geometry

w 2-R-d-tans
= R= W (8.2)

Now, according to the Shannon sampling theorem [Glas95], the maximum
frequency that can be realized usinpixels isr /2 cycles.

Let us illustrate this conversion using the next example: Our display device is
a CRT monitor. The width of the monitd# is 34 cm. The display resolution is
1280 pixels, and the viewing distance is 50 cm. We are interested in the number
of pixelsr contained in one« = 1°) visual degree. According to (8.2)is:

2-R-d-tan?  2-1280- 50 - tan0.5°
r = =
w 34

= 32.854 (8.3)

Since the maximum displayable frequency j&, frequencies above 16.427 cy-
cles/degree cannot be displayed. They represent the sub-pixel range (see fig. 8.2).
If we want to exploit our visual system to its maximum we should move the maxi-
mum frequency toward 60 (remember that the contrast sensitivity function is prac-
tically 0 aboves0 cycles/degree, see section 2.3.5 Contrast Sensitivity Function),
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either by increasing the viewing distan¢eor resolutionR (see equation 8.2). If

the distance d is increased further, such that the maximum frequency goes above
60, we are not able to see the individual pixels any more. Larger pixel areas will
become the essential image elements now. Note that if the changes on the pixel
basis are important we can decrease the viewing distanterder to move the
maximum frequency near the peak of the contrast sensitivity funetigh.
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Figure 8.2: Subpixel range for maximum displayable frequency of 22 cycles/degre

8.2 The Main Idea

Our main idea is to place a limited number of rectangles of various sizes in an
image (more precisely in each of the two images that will be compared), then
to compute the average color of each rectangle in CIE XYZ color space, and
finally to convert the average color to the CIE LUV space and compute the color
difference using the CIE LUV color difference formula:

AE* = \/(AL*)? + (Aur)? + (Av*)? (8.4)

Color differences will be weighted according to the rectangle size and the contrast
sensitivity function. In this way the differences that are more visible to us will
be weighted stronger, and they will contribute more to the final distance. CIE
LUV space was chosen as it is perceptually more uniform than CIE XYZ. If there
is some noise in the image, it will automatically be neglected by the contrast
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sensitivity function, unless it is visible and significantly influences our vision.
Actually, more visible differences will contribute to the error more significantly.

As the number of all possible rectangles of various sizes in an image is huge
we are going to use only a subset of all rectangles. We will not allow very thin
rectangles, as we do not think they are so important in the image comparison. Po-
sitions and orientation of rectangles will be chosen quasi randomly, which makes
the metric deterministic.

8.2.1 Algorithm Detalils

As stated before, we will need a large number of rectangles, of which we need the

average color. In order to compute the average colors of rectangles fast we use
summed area tables [Crow84]. A separate table is built for each of the three CIE

XYZ color components for both images. That makes six tables, each containing a

number of entries equal to the total number of pixels in the image (assuming that

the compared images have the same size). Elefgnj) of the tableT” (see fig.

8.3) contains the sum of values of all pixé{§z, y) such that: < i andy < j.

The average of the rectangle defined with po{itd) and (7, j) such thatt < i

and/ < jis then:

T(,j)—Tk—1,7) =T, 1 —1)+T(k—-1,1—1)
(t—k+1)-(G—-1+1)

A= (8.5)

Now, only the position and size of the rectangle has to be given to compute the

I — o
(k.j R — (1)

(k.1 (

(0,0)

Figure 8.3: Summed area table
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average with only a few operations.

The weighting of the particular rectangles according to the contrast sensitivity
function is done implicitly using importance sampling. The integral of the con-
trast sensitivity functiory(f) = f0f+ A(x)dx is precomputed and normalized by
dividing all values withy(60) (see fig. 8.4).
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Figure 8.4: Contrast sensitivity function and its integral + random sampling

Randomly sampling over the domain of the inversegy@f) produces a fre-
guency distribution as desired, so that no additional weights are necessary to get
a distribution proportional tel(f) (see bottom line in fig. 8.4).

Our idea is to select the position on the y axis quasi-randomly, by doing so,
the metric has some meaning during the computation process as well. Once the
size of a rectangle is determined, the orientation, i.e. longer and shorter side size,
should be determined. The size of the rectangle corresponds to the rectangle’s
diagonal, and the maximum allowed ratio of the longer to the shorter side of the
rectangle is the golden section ratib£ 1.618034...). We do not allow narrow
rectangles as they are not so important in visual comparison. We speculated using
various shapes, but since all shapes will be covered using a sufficient number of
rectangles, we use only rectangles which make the method fast as well. The orien-
tation of the rectangle is determined by choosing the angle between the diagonal
and the horizontal axis. This angle is in the raf@g;,, fm..] (see fig. 8.5) and
a particular angle is chosen quasi randomly. When the size and the orientation of
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Figure 8.5: Possible orientations of the rectangles

the rectangle are known, the position of the rectangle can be determined. The rect-
angle position in the image is also determined by quasi random determination of
its lower left corner. The position domain for this procedure is reduced, such that
the complete rectangle lies within the image. Figure 8.6 shows the first 100, 250,
500 and 1000 rectangles placed ind2 x 512 image, assuming the maximum
displayable frequency is 60 cycles/degree. Although there are lot of uncovered
image areas after 1000 rectangles are placed in the image, this result will rarely
be significantly different from final solution. According to our experiments 10000
rectangles will be sufficient in most cases.

Therefore we have &-dimensional quasi random problem. We have chosen
the Halton sequence [Glas95] to compute these quasi-random numbers.

The Halton sequence for an N-dimensional peiptis defined as:

Tm = (P2(m), d3(m), .., Gpy_, (M), dpy (m)) (8.6)

wherep; refers to theith prime number, and the functiof).(m) is the radical-
inverse function ofm to the base-. The value of the radical-inverse function
¢-(m) is obtained by simply reflecting the digitsf written in base- around the
decimal point. Therefore ifu is:

m=ay-r"+a-r'+.. . +a, r" (8.7)
the radical inverse functiop, (m) is:

¢ (m) =ag-rt4ay-r 4. +a,- p (1) (8.8)
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Figure 8.6: First rectangles

As our problem ist—dimensional we need thg,, ¢3, ¢5 and¢; functions.
The size will be chosen using,, the orientation usings; and the position in
the image usings; and¢,;. Now, the user needs only to set the total number of
rectangles and the corresponding metric can be computed. Note, that the metric
produces (slightly) different values for different numbers of rectangles, i.e. for
every number of rectangles a different metric is actually defined.

If the maximum displayable frequency is much lower than 60 cycles/degree it
could be a good idea to subsample the image and to make the summed area tables
correspond to the sub-pixel resolution, e.g. four entries per pixel. In this way
sub-pixel areas can be computed, and a pixel size area can cover four quarters of
the neighboring pixels. It seems to us that a finer subdivision than four sub-pixels
per pixel would be rarely needed. If the subdivision is not done, the weights
of the sub-pixel range should be somehow added to the highest, still displayable
frequency.

The whole idea of placing various rectangles in the image space, overcomes
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the drawback of wavelet transforms that various resolution sub-images have fixed
positions. A quarter of an image sized square placed exactly in the center of the
image will never be considered as an entity using wavelet transforms.

8.2.2 Maodified CIE LUV Color Difference Formula

We stated before that we want to use the CIE LUV color difference formula. CIE
LUV space was designed to approach a perceptually uniform color space, but it
was designed in strictly set laboratory conditions, with adapted observers. In ev-
ery day life, we are rarely fully adapted to any particular luminance level. Most
of the time we are in complex environments, where our eyes do not have enough
time to fully adapt to one specific luminance level. The perception in complex
environments has still not been studied extensively. Hunt [Hunt92] and Nemc-
sics [Nemc93] studied perception in complex environments. Nemcsics developed
a new color space callezbloroid [Hunt92], [Nemc80], [Nemc87], which is de-
signed for complex environments and solid colors (not for self-emitting media).

It is interesting that Nemcsics reports that just noticeable color difference can
be up to 4 times larger in a complex environment, than for the fully adapted eye.
After experiments with 2500 observers Nemcsics concluded that the briglitness
is proportional to\/Y, rather than to/Y" as proposed in CIE LUV formula (for
a complex viewing environment, of course). We made a compromise and use a
modified CIE LUV formula such that is proportional to,/Y and the chromacity
component is computed using CIE uv, but as functions of theldew

L'=10-VY (8.9)
u' = f(L') (8.10)
o' = f(L) (8.11)

This method is certainly not one hundred percent correct, but finding a better
one will exceed the scope of this thesis.

Furthermore, we modified the color difference formula as well. Namely it is
known that colors that have a CIE LUV difference of less than 1 appear to be
the same. This limit value changes with view conditions, frequency of stimuli
etc. Therefore, if two colors are intended to be different, it is recommendable to
choose colors with a CIE LUV difference of 6 or more.

Since we are not able to see color differences less than 1, we modified the
difference formula so that all original differences of less than 1 are set to 0. Note
that this modification makes it possible that images A and B are the same, images
B and C are the same, butimages A and C are different. This is not a metric in the
mathematical sense any more, but it has some other advantages.
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Of course the modified difference formula should be applied to each particular
rectangle pair and not on the final difference. In this way, if the total average dif-
ference is some small number (e.g. 0.5) it means that there is a visible difference
somewhere in the image.

8.2.3 Color Image Difference in a Distance Range

As stated before all perception based metrics are distance dependent. If someone
asks us to see if there is any difference between two similar printed pictures, we
will move the pictures back and forth in order to see some difference. This is true

if the differences are not significant and obvious at first sight, of course. Actually,
what we are doing is moving the maximum frequency on the contrast sensitivity
curve, and trying to match it with a frequency where difference appears. There are
lots of situations where the viewing range is limited and known in advance. For
example, if some rendered images are to be presented in a classroom, the viewing
distance range is known, it is between the viewing distance of the first row, and
the viewing distance of the last row. If images are rendered with some progressive
method, the rendering can be stopped much earlier than if images are intended to
be observed from 50 cm. On the other hand, if some blurring operator is shown,
the lecturer should apply quite a large blurring matrix if he or she wants all those
present at the lecture to see the blurring effect. Even in conferences and university
lectures, images that can not be distinguished are frequently presented as exam-
ples for differences. If the perceptual metric is taken into account such situations
can be avoided. The next example could be a display device in a shopping win-
dow. Sometimes a monitor is placed in a shopping window and some animation
is running. Obviously, the distance between the monitor and the window-glass
is the minimum viewing distance, and the distance between the sidewalk border
and the monitor is the maximum distance. If this were taken into account during
the rendering of animation frames, the rendering time could be shortened signifi-
cantly. There are numerous other similar examples, that can save us a lot of extra
rendering time. If the image difference in a distance range should be computed,
the algorithm would be a little bit different. It is then possible to compute the same
number of rectangles of various sizes, and to apply weighting functions according
to the particular viewing distances.

8.2.4 Image Query

The color image difference introduced here can be used for fast image query as
well. We propose to make a low resolution (e6¢x 60) version of each data-base
image. Furthermore, the method will be not view distance dependent any more.
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The maximum frequency will be set so that the most important frequency corre-
sponds to the rectangles of approximatelg to 1/3 size of the reduced images.
Then, the first 200 rectangles are found, and avetige andv’ values are stored

in an array. This whole process is done once, and.the’, andv’ values (200
values for each image) are stored. Now, the target image is drawn by the user, or
submitted somehow else, and the query begins. The target image is reduced to
the low resolution, 200 rectangles are found (note that they will correspond to the
pretabulated data-base rectangles as the whole method is deterministic), and the
image differences are computed. The whole data-base does not have to be sorted,
we only want to find for example the top 10 images. When the highest difference
limit value of thetop ten clubis known, the current difference evaluation can stop

as soon as the sum of rectangle differences exceeds this top limit. In this way, the
difference computation time will decreaseths top 10 clulwill have better and

better limits.

8.3 Algorithm Summary

Let us summarize the image difference algorithm now. The integration of the
contrast sensitivity function can be precomputed and stored in an array. There
are two images (let us assume they are of equal size), both containr, g, and b
values for each pixel. First the r, g, and b values are transformed to CIE XYZ
values, and summed area tables are built for X, Y, and Z values for both images
(6 tables are built). The Halton series can be precomputed or easily computed
on the fly. The size of a rectangle is determined, and its orientation and position
in the images using Halton series. Average X, Y, and Z of the rectangles are
computed using (8.5) and colors are converted to the CIE LUV color space. Now
the color difference is computed using (8.11) and this difference is added to the
total distance. At the end, the total distance is divided by the number of rectangles
and gives us the difference between two images. Algorithm 3 shows the pseudo
code of the whole process.
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convert rgb values to XYZ values for both images;
build summed area tables for X, Y and Z for both images;
compute cycle/degree—pixel/degree scale factor;
for total number of rectangles do:
begin
select size using precomputed importance sampling;
select orientation using Halton3 series;
select x position of rectangle using Haltonb series;
select y position of rectangle using Halton7 series;
compute average XYZ color of rectangle in both images;
convert XYZ to LUV values;
compute CIE LUV color difference;
add difference to total difference;
end
devide total difference with number of rectangles;

Algorithm 3

8.4 Conclusion and Future Work

We have presented a perception based image metric which can be used whenever
two images should be compared. Human vision is taken into account using the
contrast sensitivity function given by Mannos and Sakrison [MaSa74] as well as
the CIE LUV color space which is almost perceptually uniform. The results are
similar to those reported by Gaddipati et al. [GaMY97]. We find our metric more
intuitive as it is computed in the original image space. The newly proposed ap-
proach overcomes some wavelet’s drawbacks such as the fixed position of certain
frequency levels, as well. There is also no need to transform the image in order to
compute the metric and the color is treated more accurately due to the use of the
CIE LUV color difference formula. The new method can be used for steering the
rendering process when progressive methods are used, for evaluating sufficiency
of appropriate levels in various LOD algorithms, or for an image query from large
data bases. It can also show us if some differences will be visible from a certain
distance range or not.

This is certainly not the ultimate metric, but rather one more solution that
works fine, and can be easily understood. We will try to take into account some
additional human vision properties in the future.



Chapter 9

Results

This chapter will describe results of various tone mapping and image difference
techniques. Tone mapping techniques will be described first.

9.1 Tone Mapping Techniques

We will start with fictitious unit methods, as most rendering packages are still not
able to render raw images in absolute units. Test image 1 was rendered using the
RADIANCE package [Ward94a], without taking its advantage of absolute units
rendering.

Test scene 1 is a simple, back lit scene consisting of few objects. Strong back
light (window in our case) causes problems for most tone mapping techniques.
Color plate 1a shows the image obtained by the mean value mapping technique.
Since the average value is high, the whole image is too dark. The exponential
mapping technique (Color plate 1b) produces a little bit brighter image, since the
average is mapped to 0.632, and not to 0.5 as by the mean value mapping method.
Schlick’s mapping technique tries to display the exterior and the interior part of
the scene simultaneously. Although, this is the only mapping that displays exterior
automatically, we find the final result still a little bit too dark. The factbin the
computation of parameter(see eq. 5.1, 5.2) was setxpin Color plate 1c. Note
that this is the best case, and increasidg(which is often needed for various
media) would cause an increase of paramgter

The minimum information loss methods were tested using the same raw im-
age. Color plate 1d illustrates the minimum information loss technique. We have
added an error function of type c (see Error Function section). Color plate 1e
shows that there is no visible difference. Applying the minimum area loss method
does not show a significant difference, either (Color plate 1f). Actually, the differ-
ences between these three methods will rarely be significant. The interior of the

79
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scene is displayed with a lot of details. The results of interreflections can clearly
be seen (color leak on the walls), and the overall impression corresponds, in a
way, to a photo of the scene.

Test scene 1 has the mean valyg.,, = 3.882625, and Schlick’s parameter
p = 54.428318, assumingy/ = 2 (see section Schlick's mapping). Note that the
mean value mapping method will actually display all pixels in the r&ioge -
Lean]- Table 9.1 shows the data for the minimum loss methods. Starting and
ending points of the intervals are shown in the table. Error function was of type c,
with o = 45° andd = 1/3 of the clipping interval.

method a b contrast| loss

min. info loss | 0.017948| 0.897421| 50 17.604%
with error fun.| 0,020447| 1.022327) 50 18.867%
min. area loss| 0.017998| 0.899913| 50 18.839%

Table 9.1: Scene 1 minimum loss data

Color plate 2 illustrates the interactive calibration. All images have contrast
c = 50, and aperture values are -3, -1.5, 0, and 3. This mapping technique gives us
the possibility to examine particular parts of the image. For example, the reflection
of the red sphere in the window can be seen when the aperture is set to 3. On the
other hand, interesting interreflection details can be examined if the aperture is
shifted to -3 or to even more negative values.

The next scene is mapped using only the interactive calibration. The loga-
rithmic histogram of this scene is shown in the interactive calibration section (fig.
4.1). Color plate 4 shows this scene mapped using contrast 5 and 105, and aper-
ture 0. This is a very low overall contrast image, So mapping using contrast 5 did
not cause significant information loss. Note that the image mapped using a small
contrast window has much higher contrast, than the image generated with a large
clipping contrast.

Scene 3 is a more complex scene rendered using the RADIANCE software.
Color plates 5a, 5b and 6a show the third scene mapped using the mean value,
exponential and Schlick’s mapping technique. Note that the mean value and the
exponential mapping methods do not display any details under the table. On the
other hand Schlick's method shows details under the table, but the overall im-
pression is very poor. The reason lies in the very high overall contrast of the raw
image. This raw image has the mean valyg,,, = 1.292 and Schlick’'s parame-
terp = 9719.833, assumingV/ = 2, which is the best case. The lost information
by the minimum information loss methods here is very large for a contrast of 50.
Table 9.2 shows the data for this scene. The error function was chosen the same
as earlier. As the loss for contrast 50 was too large, we increased the contrast, so
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long as the loss was under 10%, and the new contrast wa2300. Of course,

it would be incorrect to linearly map such a large clipping interval, and Schlick’s
mapping was applied on this clipping interval. Results of the minimum loss tech-
niques are shown in Color plates 6b, 7a, 7b, 8c, and 8d. Due to very similar
mapping intervals of the minimum information loss and the mean value mapping,
these images will look almost the same in this case.

method a b contrast| loss

min. info loss 0.040442| 2.022103] 50 28.329%
with error fun. 0,041810| 2.090512 50 30.134
+Schlick’s mapp. 0.002300| 5.290552| 2300 | 9.065%
min. area loss 0.045311] 2.265544, 50 38.811%

Table 9.2: Scene 3 minimum loss data

All so far shown images illustrate how various final images can be generated
from the same raw image. Note that this type of image manipulation is not possi-
ble without the raw image. Once the mapping is done, pixel values are discretised
in the rangd . . . 255, and every brightening or darkening of the image will cause
a large information loss.

Up to now we have not mentioned incident light metering. As stated before,
incident light metering was designed in order to reproduce original objects’ colors.
It will be illustrated using 3 scenes. Comparisons with mean value, Schlick’s,
Ward’s and Tumblin and Rushmeier’s (TR) mapping techniques will be made.
In order to apply Ward’s and TR mapping methods, we have used default values
suggested by the RADIANCE rendering package. Note that TR images are a
little bit darker, but the settings were the same as for Ward’s mapping technique.
Increasing the light sources’ strength drastically, would brighten TR images, but
we wanted to examine the difference between dark and bright scenes here, and the
relative difference would remain the same even for extremely strong light sources.

The results are shown for three scenes.

The idea of color reproduction is illustrated in color plates 9 and 10. Two
simple scenes were rendered using no interreflection. The only difference between
the two scenes is the color of the room. In the first case (left) the walls are almost
white and in the second (right) the walls are dark gray. The cubes’ colors are the
same and the light settings are equal as well. The color bar under each image
shows the originally selected cubes’ and walls’ colors. Color plates 10c, 10d and
10e show results of the new incident light mapping. It can be seen that all colors
are reproduced faithfully.

Due to the different average, mean mapping produces different colors for the
two scenes (although the cubes have the same colors and the light settings are the
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same). Ward’s mapping fails to reproduce the colors as well as the TR-mapping.
Note that all these three alternative mapping techniques are based on the average
scene luminance, and therefore the colors can not be reproduced faithfully for
both cases as the average values are different for these two scenes. The mapping
method proposed by Schlick [Schl94] produces acceptable images for the first two
cases. Schlick’'s mapping depends on a parameter p, which depends on the total
raw image contrast. As the contrasts of the two scenes are similar, the parameter p
does not differ much. But if the orange box in the bright scene is substituted by a
black box the overall contrast is drastically increased and Schlick’s method fails.
The new, incident light metering method reproduces original colors correctly in
all cases. Note that it would be possible to manually calibrate Schlick’'s parameter
p, but then the method would not be automatic any more. There is the possibility
to manually adjust the exposure in the RADIANCE package as well, but again
this is no automatic method. Table 9.3 gives data for this scene. The mean values
differ a lot. The parameter p required for Schlick’s mapping is almost the same
for the first two settings, but increases for the third. Data for the median value of
radiances are also given in the table. Note that these values do not differ much
from the mean values. We have used mean mapping for comparison throughout
this paper since this is the most widely used method. Using the median value of
radiances would not affect the final results significantly.

dark bright black
room room cube
mean radiance | 0.002511| 0.01341 | 0.01339
median radiance| 0.001796| 0.01432 | 0.01429
median irradiance 0.009160| 0.009160| 0.009160
parametep 1.415 1.267 17.652

Table 9.3: Data for the cubes scene.

The next scene (color plates 11, 12 and 13) is also rendered without inter-
reflections. Again, two different object color settings were used, one with bright
colors, the other with dark colors. Almost all objects are differently defined in
the two settings, only the Christmas balls are equal. On the other hand the light
definition is the same for both settings. The color bar displays a selection of three
of these colors: box lid, chair and wall.

The results of the new mapping are shown in color plates 12a (scene with
bright surfaces) and 12b (scene with dark surfaces). Color plate 11a shows the
dark scene using the mean value mapping. The bright scene mapped with the
mean value approach looks almost the same, so it is not displayed. Color plate
11b shows the irradiance image of scene 2 (all objects are diffuse, medium gray).
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Color plate 13 shows the same images generated using Ward’s and the TR-
mapping. It is obvious that these mappings cancel out the differences which
should be visible. Data for this scene is given in tables 9.4 and 9.5.

settings bright dark

images | 12a, 13a, 13¢ 11a, 12b, 13b, 13d
mean valug  0.9842 0.2533

Lo, 0.7401 0.7401

Table 9.4: Data for the fifth scene (without interreflection)

box lid chair wall
brightt 0.90.20.2 | 050.10.1| 0.80.80.8
dark | 0.18 0.04 0.04 0.1 0.02 0.02 0.08 0.08 0.08

Table 9.5: RGB values for color bar 5

Finally, the sixth scene (color plates 14, 15, 16, and 17) is rendered with in-
terreflections. Tables 9.6 and 9.7 show the data for this scene. Color plates 15a
and 15b are irradiance images that display the irradiance distribution in the scene.
The intensity was extracted from the r,g,b irradiances using the max(r,g,b) princi-
ple (see Incident Light Metering chapter). Note the differences in the irradiance
distribution for dark (color plate 15b) and bright (color plate 15a) scenes due to
interreflections (shadows are much brighter in the bright irradiance image). The
reference color bar in plate 16 shows selected colors for the sofa and the wall in
the bright and dark scene. All other objects change too, except for the tree which
remains unchanged. The results of the new mapping technique are displayed in
color plates 16a and 16b.

Mean value mapping was used to map images in color plates 14a and 14b.
Again, the mean value method fails to reproduce the originally set colors. Color
plate 17 show the same scene mapped using Ward’s and TR-mapping. Note how
the tree becomes significantly brighter with almost all methods, only the newly
proposed algorithm leaves the tree unchanged (that it looks a little bit lighter is a
perceptual sensation caused by the darker background).

Note that the TR-mapping is intended to be used for a different purpose.
Scenes with various light settings would be displayed different. Images look a
little bit too dark as the method functions in a huge range of luminances (the
method works fine up to a luminance level3of8 x loﬁcd/m2 and just for com-
parison a snow covered ground in full sunlight emit$ x 10*cd/m’ according
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settings bright dark

images | 1l4a, 15a, 16a, 17a, 17cl4b, 15b, 16b, 17b, 17d
mean value 0.01816 0.04813

Lot . 0.04282 0.03183

Table 9.6: Data for the sixth scene (with interreflections).

wall sofa
bright | 0.3 0.8 0.8/ 0.87 0.5 0.25
dark | 0.10.30.3/ 0.180.10.05

Table 9.7: RGB values for color bar 6

to [Glas95]). Note that light settings are not extremely low in our settings, and
Ward’s images were mapped using the same light levels and the same software.
When using stronger light sources the TR-mapping will produce brighter images
for both scenes, but again corresponding objects will appear similar although their
color definition is very different.

The tone mapping techniques results end here. It can easily be seen from
the above examples that there is no mapping technique that can be recommended
for general use, but usually there is at least one technique that gives satisfactory
results for each purpose.
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Color Plate 1

85

a. Mean value mapping

b. Exponential mapping

c. Schlick’s mapping

d. Minimum information loss, C=50

e. Minimum information loss
with error function

f. Minimum area loss
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Color Plate 2
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a. Interactive calibration
a=-3, c=50

b. Interactive calibration
a=-1.5, ¢c=50

c. Interactive calibration
a=0, c=50

d. Interactive calibration
a=3, c=50
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Color Plate 3

a. Interactive calibration a=1.5, c=40

b. Interactive calibration, a=0, c=40

c. Interactive calibration, a=-1, c=40
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Color Plate 4

a. Interactive calibration, a=0, c=5

b. Interactive calibration, a=0, c=105
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Color Plate 5

a. Mean value mapping

b. Exponential mapping
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Color Plate 6

a. Schlick’s mapping

b. Minimum information loss, C=50
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Color Plate 7

a. Minimum information loss, C=50
with error function

b. Minimum information loss, C=2300, Schlick’s
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Color Plate 8

a. Minimum information loss, C=2300
Schlick’s, with error function

b. Minimum information loss, C=2300
linear on log scale
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Color Plate 9
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a. Bright scene, mean mapping

b. Dark scene, mean mapping

c. Bright scene Ward’s mapping

d. Dark scene, Ward’s mapping

e. Bright scene, TR mapping

f. Dark scene, TR mapping
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Color Plate 10

94

a. Bright scene, Schlick’s mapping

b. Dark scene, Schlick’'s mapping

c. Bright scene, incident light

d. Dark scene, incident light

e. Bright, black cube, incident

f. Bright, black cube, Schlick’s
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Color Plate 11
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a. Dark scene, mean value mapping

b. Irradiance image
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Color Plate 12
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a. Bright scene, incident light metering

b. Dark scene, incident light metering

Box lid, chair and wall selected colors
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Color Plate 13

a. Bright scene, Ward’s mapping b. Dark scene, Ward’s mapping

c. Bright scene, TR mapping d. Dark scene, TR mapping
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Color Plate 14
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a. Bright scene, mean value mapping

b. Dark scene, mean value mapping
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Color Plate 15
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a. Bright scene, irradiance image

b. Dark scene, irradiance image
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Color Plate 16
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a. Bright scene, incident light metering

b. Dark scene, incident light metering

Sofa and wall selected colors
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Color Plate 17
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a. Bright scene, Ward's mapping

b. Dark scene, Ward's mapping

c. Bright scene, TR mapping

d. Dark scene, TR mapping

Sofa and wall selected colors
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9.2 Color Image Difference

In this section the color image difference described in chapter 8 will be illustrated.
First, the image series used by Gaddipati et al. [GaMY97] will be used to test the
color image difference (CID), the metric introduced by Rushmeier et al., root
mean squared error, and Gaddipati’'s metric. We have implemented Rushmeier’s
metric, although it is not 100% clear which viewing distance should be taken
into account. We have chosen, in this example, the viewing distance so that the
maximum displayable frequency is 60 cycles per visual degree for our metric, and
the number of rectangles was 5000. The distance chosen by Gaddipati et al. is also
not clear from their paper. Results are given in table 9.8, and images are shown in
color plate 18a. Table 9.8 shows the differences between images rendered using
various number of slices. This are rendering from a volume visualization done
using various numbers of slices. Root mean squared error method (RMSE) is
given for each component and for luminance image. The results for Gaddipati’'s
metric are given only graphically in [GaMY97], and therefore they are not so
precise.

[‘method][ 10-20 | 20-30] 30-40] 40-50] 50-60] 60-70 | 70-80] 80-90] 90-100|
RMSE
red | 4.162 | 2.320| 1.688| 1.276| 1.051| 0.869| 0.770| 0.710| 0.648
green | 1.492 | 0.938] 0.551] 0.429] 0.327] 0.289| 0.236| 0.218| 0.194
blue | 4.815 | 2.655| 1.191| 1564 1.282| 1.095 | 0.883| 1.027| 0.809
Y |[0.665]0.386]0.262] 0.202] 0.163| 0.137| 0.114] 0.111] 0.092
Rushm.|| 16.763] 1.108| 0.534 0.399 | 0.206 | 0.104| 0.093| 0.060| 0.070
Gaddi. | 200 | 210 | 45 | 71 | 30 | 30 | 08 | 21 | 10
CID | 1.490 | 0.636| 0.428] 0.346| 0.279| 0.243| 0.211| 0.290| 0.225

Table 9.8: Results of different metrics for image series 1

Note the increasing difference at the end of the series which occurs by CID,
Gaddipati's and Rushmeier’s metric. This differences are not visible, but it is
interesting that they occur in all three metrics.

Image series 2 in color plate 18b, shows images rendered using progressive
radiosity. Numbers of rays shot is given under each image. We measured the
CID, in order to estimate the sufficient number of rays. Results are given in table
9.9. Up to now we were always assuming the maximum displayable frequency is
60 cycles per degree. We have measured the differences in the third image series
for increased viewing distances as well. The distance between the 500K rays and
the 1M rays images was measured. Results are given in table 9.10. The results
are valid for a 17 inch monitor, with 1280 pixels resolution. If it is known that
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the image will be displayed on such a monitor, and it will be observed from a
distance of 3 meters, it is sufficient to render the image using only 500K rays.
This information can save us a lot of rendering time.

images 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
CIDmax. f. 60 3.413 2.710 1.617 1.142 0.797 0.588 0.437 0.271 Q.222

Table 9.9: CID for image series 2

viewing distance [cm] CID

50 1.345
100 1.268
150 1.184
200 1.129
300 1.020
400 0.935
500 0.861
1000 0.630

Table 9.10: CID for various viewing distances, image series 2

We have measured the distance between the 50K and the 100K image using
950000 rectangles. Results are shown in table 9.11. It is clear that the difference
converge, and 5000 or 10000 rectangles are sufficient in almost all cases.

The next example is shown in color plate 19a. This color plate shows an
image series rendered using ray tracing and various numbers of samples per pixel.
We have measured the difference between the 40, 80 and 160 samples per pixel
images. Results are given in table 9.12. These results show us that the 40 and the
160 samples per pixel images can not be distinguished from a distance of 200 cm.
Note that the rendering time was 4 times longer for 160 samples per pixel image.

The final example is illustrated in color plate 20. Color plate 20a shows origi-
nal flower image, and color plate 20b original crow image. We have appliet
blurring filter on the flower image (20c), and we have added some color patches
to the original flower image (20d). There is also an image which has the same lu-
minance, but colors are quite different (20e). Note that Rushmeier’s metric would
report no difference for this two images. There is also a combination of the blurred
flower image and the crow image shown in color plate 20f. Resulting differences
are given in table 9.13. All CID differences are computed assuming the maximum
displayable frequency is 60 cycles/degree, and using 5000 rectangles. Note that
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number of rectangles CID

500 3.375642

1000 3.421180

2000 3.440896

5000 3.412503
10000 3.409281
20000 3.422541
40000 3.419777
80000 3.415657
160000 3.417164
320000 3.417722
640000 3.417656
900000 3.417328
910000 3.417486
920000 3.417535
930000 3.417455
940000 3.417468
950000 3.417440

104

Table 9.11: CID for various numbers of rectangles, image series 2

viewing dist. | 40-160| 80-160
50cm 1.878 | 1.476
100cm 1.409 | 1.112
200cm 0.789 | 0.597
400cm 0.380 | 0.276

Table 9.12: CID for various viewing distances, image series 3
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the often used root mean square error method reports a lower difference between
the flower image with some color patches added (20d) and the original flower im-
age (20a), than between the blurred (20c) and the original image (20a). A human
observer would always report a different result.

b c d e f
crow | blur 3x3 | corrupted| constant Y| combination b+c
CID CID CID CID CID

al| 52.547| 3.771 5.098 25.732 30.582
RMSE | RMSE RMSE RMSE RMSE
38.948| 9.549 5.285 0 28.562
CID CID CID CID CID

b 0 51.595 | 54.732 50.143 23.489
RMSE | RMSE RMSE RMSE RMSE

0 36.930 | 38.986 38.949 25.770
CID CID CID CID CID

c 0 7.759 27.275 28.110
RMSE | RMSE RMSE RMSE RMSE

0 10.584 9.549 26.452

CID CID CID CID CID

d 0 28.406 29.599
RMSE | RMSE RMSE RMSE RMSE

0 13.097 26.284

CID CID CID CID CID

e 0 30.579
RMSE | RMSE RMSE RMSE RMSE

0 28.725

Table 9.13: Differences for image series 3
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Color Plate 18

10 slices 20 slices 30 slices 40 slices 50 slices

60 slices 70 slices 80 slices 90 slices 100 slices

a. Image series 1

b. Image series 2
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Color Plate 19

40 samples per pixel 80 samples per pixel 160 samples per pixel

a. Image series 3
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Color Plate 20

e. Flower image of the same luminance as a. f. Combination of b and c images
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Conclusion

We have presented various tone mapping techniques and image metrics used in
computer graphics. This is still an open area for further research. There will be
better and better display devices in the future, and tone mapping and perception
based difference techniques will become more important.

Unfortunately, we can not say which tone mapping technique is the best.
There are lots of good techniques for various purposes, but there is no one gen-
erally apply-able method. Everyone should choose the appropriate tone mapping
method for a particular goal. If visibility and lighting design is crucial in some
application, the visibility matching or TR mapping method should be used. Of
course absolute units rendering is a necessity in this case. On the other hand, if
the lighting conditions in the scene are unusual (e.g. back light) minimum loss or
interactive calibration techniques could be just the right choice.

If the correct reproduction of the true colors is important, incident light meter-
ing is the clear winner. This method reproduces selected object colors faithfully,
even if the average scene reflectance is very low, or very high (and this is not the
case with other mapping methods).

Contributions of this thesis to tone mapping techniques are interactive calibra-
tion, minimum information and area loss techniques, and incident light metering.

The last part of this work presented a color image difference technique that
operates in the original image space. It is more intuitive than metrics that oper-
ate in transform spaces, and the color is taken into account more properly. This
technique describes also how image difference depends on the viewing distance.
This metric is based on the contrast sensitivity function and CIE LUV space, and
it corresponds to human perception.

Currently we are trying to find some results evaluation mechanism, that will
correspond to human vision.

We are also trying to find a global contrast factor which shall describe the
overall impression of an image, based on human vision. Such a factor can be used
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to evaluate tone mapping techniques, and images in general.



Appendix A

Raw Image File Formats

All tone mapping techniques are applied to a raw image. Unfortunately, only a
few rendering packages today offer the possibility for storing a raw image. Most
rendering packages apply a tone mapping, and only the final image can be stored.
In this way, a lot of information is lost. We have seen how different display media
have different characteristics. An image mapped once for a particular monitor,
does not have to be the optimum solution even for another monitor, and especially
not for a printer or some other device. If a raw image is stored, mapping can be
done for each particular device.

Furthermore, when better display devices become common in the future, raw
images can be mapped optimally to the new media.

The reason why raw images are rarely stored is the large storage space require-
ment. It is true that storing a raw image as the array of float triplets will demand a
huge amount of storage place (96 bits per pixel - four times the usually necessary
24 bits). Compression techniques applied on such files do not help a lot due to
the very poor entropy characteristics of such files. Fortunately there are currently
three freely available raw image formats that overcome the size problem, at the
cost of reduced accuracy. They are RADIANCE [Ward94a], the log format pro-
posed by Pixar, and finally a newly proposed extension to the TIFF file format by
SGl, logLuv. We will describe each of these three formats next.

A.1 Radiance RGBE Format

This raw image file format was first described by Greg Ward [Ward92]. It uses
only 32 bits (4 bytes) per pixel, which makes it comparable to the usual integer
file formats. Furthermore this file format is much better to compress than a naive
four floats format, which brings additional space savings. The idea is to use an
8-bit mantissa for each primary and follow it with a single 8-bit exponent. The
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mantissa is usually normalized in floating point formats to lie between 0.5 and
1. In this raw image format, only the largest mantissa will certainly lie in this
range. Actually, this format favors the largest primary value, and has a limited
dynamic range. The error introduced is negligible, since in the case of primary
values differencing in few orders of magnitude, the largest primary will determine
the pixel's color anyhow. The following, simple example will illustrate this idea.

If color is

0.30.020.1]

it will be converted to:
[0.60.040.2] - 271

or, in 32 bit floating point format
[153 10 51 127]

Note that in the above example, the exponemtwas translated to 127. In
order to cover negative exponents as well, some offset should be added to the
unsigned values. In this case 128 was chosen, which reserves the same range for
values greater than 1 and less than 1. It is possible to adjust this offset value if
necessary, but sinc8?” ~ 1038 it will rarely be the necessary. This file format
covers about6 orders of magnitude with% relative accuracy.

The complete code for encoding the images using the RADIANCE file format
can be found in th&eal Pixelsarticle [Ward92] or on the RADIANCE WWW
page [RADI97].

A.2 Pixar's Log Format

Pixar recognized the need for a raw image file format in film recording. They
developed a log encoding for RGB values, such that they need 33 bits per pixel.
The code is implemented as part of Sam Leffler’'s TIFF Library [RADI97], and it
is freely available electronically. The code covers about 3.5 orders of magnitude
(which is sufficient for films), witr0.4% relative accuracy.

A.3 SGl's LogLuv Format

This is the newest of the three raw image formats mentioned here. It has been
developed at SGI, and is included in Sam Leffler's TIFF Library just as Pixar Log

format. It uses 32 bits/pixel and it is based on human perception, which may have
a big advantage in the future, when more sophisticated devices will be available.
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The new proposed format uses log encoding of luminance ad(u*, v*) en-
coding of chroma. In this way the luminance range covers 38 orders of magnitude,
and chroma covers all visible colors in imperceptible steps. The relative lumi-
nance accuracy 3% and chroma errors are always under the visible threshold.
This format could be the one that will be extensively used in the future.
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