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Abstract
The phase shift algorithm is an important 3D shape reconstruction method in industrial quality inspection and reverse engineer-
ing. To retrieve dense and accurate point clouds, the conventional phase shift methods require at least three fringe projection
patterns, limiting its application to statics or semi-statics scenes only. In this paper, we propose a novel and low-cost single-shot
phase shift 3D reconstruction framework using convolution neural networks (CNN) trained on 3D synthetic fractals. We first
design and optimize a novel projection pattern that compresses the phase period orders and the ambiguous phase information
into a single image. Then, we train two different CNNs to predict the ambiguous phase information and the period orders sep-
arately. The CNNs were trained on randomly generated 3D shapes whose geometric complexity is modeled by recursive shape
generation algorithms which can create an unlimited amount of random 3D shapes on the fly. Initial results demonstrate that
our method can produce high-quality point clouds from just a pair of 2D images, thus improving the temporal resolution of a
phase-shift 3D scanner to the highest possible. As we also include different real-world lighting and textural conditions in the
training data set, experiments also demonstrate that our CNN models which were trained on random synthetic fractals only can
perform equally well in the real world.

CCS Concepts
• Computing methodologies → 3D imaging; Neural networks; Modeling methodologies;

1. Introduction

A rapid and accurate 3D shape retrieval method is crucial in
computer vision, robotics, and reverse engineering applications.
Although 3D scanners such as a time of flight (TOF) camera
[CSC∗10, Zha12] can acquire the 3D point cloud of an object at
a high framerate, the quality of these measurement results is gener-
ally not sufficient for industrial applications where sub-millimeter
point cloud accuracy is required. For many tasks such as 3D surface
quality control, a structured light (SL) 3D scanner is the preferred
3D shape retrieval method [IOF]. By illuminating the measurement
object with coded projection patterns for stereo-matching, an SL
3D scanner is a widely adopted alternative to ToF sensors [Gen11].
However, one major limitation of the conventional SL 3D scanners
is that the measurement is limited to static or semi-static scenes
only. Since multiple patterns have to be sequentially projected onto
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the measurement object, the required processing time for a single
scan result in SL 3D scanners having low temporal resolution and
framerate [PMS10]. Nowadays, how to develop an effective SL 3D
scanner with only a single projection pattern without significantly
degrading the spatial measurement accuracy is still an active and
challenging field of research.

In recent years, the success of deep convolution neural networks
(CNN) [JAFF16, LIMK18] in solving inverse imaging problems
has motivated researchers to investigate using machine learning ap-
proaches to reduce the number of projection patterns needed in SL
3D scanning. Many of the past research focuses on improving the
conventional phase shift (PS) algorithm [FCG∗19,dJD19,NWW20,
BLL19], one of the most popular SL 3D scanning algorithms for
accurate point cloud retrieval. The PS algorithm can achieve high
spatial resolution by projecting a series of sinusoidal fringe pat-
terns, with the increase in the number of fringe patterns resulting
in higher spatial resolution and lower measurement uncertainty. In
order to perform 3D measurement of a scene that includes discon-
tinuous objects, the PS algorithm is also commonly applied with
additional series of gray code patterns encoding the period order
of the fringes. Such a conventional PS approach could easily result
in 15-20 projection patterns for a single 3D scan. However, previ-
ous research has already demonstrated that a CNN is able to infer
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the ambiguous phase information from just a single fringe projec-
tion pattern [FCG∗19, NW21]. In addition, by coding each fringe
period with a unique texton pattern [BLL19], a CNN is also able
to extract the period order information from one single projection
robustly. In summary, using deep learning methods in improving
the phase shift algorithm provides a promising opportunity in the
search for a robust single shot SL 3D reconstruction framework.

In this paper, we extend the previous work in using CNN for
fringe pattern and gray code pattern reduction and develop a novel
single-shot 3D scanning framework that could robustly measure
scenes with discontinuous objects and improve the temporal reso-
lution of SL 3D scanners to the highest possible. In our framework,
we first propose a novel fringe projection pattern that is optimized
to compactly encode both the period order information and the am-
biguous phase information. Then, we develop two types of CNNs
to classify the period order of the fringe pattern and extract the
ambiguous phase features of the fringe pattern. We demonstrate
that our CNN models are able to accurately predict both the am-
biguous phase information and the period order information, there-
fore, providing smooth and accurate global phase information for
stereoscopic disparity search. In addition, we present a novel and
low-cost 3D synthetic data generation approach through which we
can generate an unlimited amount of 3D shapes on the fly. We use
a recursive shape generation approach to control the level of com-
plexity of the 3D shapes. In the initial experiments, we demonstrate
that our single-shot CNN framework trained with only random syn-
thetic fractal shapes can accurately reconstruct 3D point clouds in
both real-world and computer-simulated environments. Our frame-
work at the moment can already achieve 97% point cloud complete-
ness and 89% point cloud correctness in the real-world evaluation
dataset.

2. Related Work

2.1. 3D Scanning

Based on hardware components, 3D sensors can be classified
as passive 3D sensors [BRR11, YWhZ∗18] or active 3D sen-
sors [Zha12, LPC∗00, RCM∗01]. Passive 3D sensors use binocu-
lar stereo vision and reconstruct the 3D scene with a correspon-
dence search [BSGF10] algorithm. Although a passive 3D sensor
has low hardware costs and a high frame rate, it requires expensive
parameter search [YWhZ∗18] and has low 3D reconstruction accu-
racy. Moreover, it could not be used to measure texture-less objects.
Commonly known active 3D sensors are ToF sensors [LPC∗00] and
SL sensors [RCM∗01]. The ToF sensors calculate the distance be-
tween the camera and the object by measuring the time it takes
the projected infrared light to travel from the camera, bounce off
the object’s surface, and return to the sensor. Such a sensor could
provide medium 3D reconstruction accuracy, however, at a low res-
olution [Zha12]. An SL 3D sensor is composed of a camera system
and a projector projecting structured light onto the measurement
object [Gen11,RCM∗01]. SL sensor is most commonly used in in-
dustrial applications [IOF,HDL∗18] as it could produce high accu-
racy point cloud at sub-millimeter level.

2.2. Structured-Light 3D Scanners

Based on the number of projection patterns, active stereo vision
can also be classified as single-shot [LNS16, WZS20] or multi-
shot [Zha16,WGZ19]. Most of the conventional single-shot SL 3D
scanners project a statistical pattern to encode the spatial informa-
tion of the 3D scene, requiring expensive computational parameter
searches. Moreover, such coded projection patterns can not be used
to measure colored or objects with texture information [LNS16].
Multi-shot SL scanners, on the other hand, are more robust in terms
of computational time and measuring textural scenes. However, be-
cause of the low temporal resolution, multi-shot SL scanners are
not suitable to measure non-static scenes. Extensive research has
investigated improving the multi-shot SL algorithms using fewer
projection patterns [HHJC99,PMS10]. However, mathematically, it
is not possible to reduce the projection patterns of the conventional
PS algorithms to only a single pattern, as it requires at least three si-
nusoidal patterns to perform phase retrieval and multiple gray code
patterns for the temporal phase unwrapping (TPU) process.

2.3. CNN for Single-Shot Structured-Light 3D Scanning

With the rise of CNN in image transformation problems [JAFF16],
it has been demonstrated that CNN can directly calculate the
ambiguous phase information using a single sinusoidal image
[FCG∗19]. However, Feng et al.’s method can only predict the am-
biguous phase information, therefore, can not be used to measure
scenes with discontinuous objects. Budianto et al. demonstrates
that instead of using a sequence of gray code patterns, the pe-
riod order of the fringe pattern can be classified by a neural net-
work [BLL19]. However, Budianto’s method can not be used to
predict the fringe pattern at the same time. It has also been demon-
strated by Jeught et al. that a single sinusoidal pattern can also di-
rectly predict general depth information [dJD19], however, missing
essential high-frequency features in the prediction. In this paper,
we extend the methods of Feng et al. [FCG∗19] and Budianto et
al. [BLL19], and develop a contrast-enhanced projection pattern
with optimized texton locations, encoding all essential information
needed for PS 3D reconstruction in one image. Hence, to our best
knowledge, our framework is the first PS framework that can pre-
dict both the ambiguous phase and the period order of the fringe
pattern from only one projection pattern.

3. Method

3.1. The Phase-Shift Algorithm

3D reconstruction using the PS algorithm has three steps: ambigu-
ous phase estimation, temporal phase unwrapping, and correspon-
dence search. Figure 1 illustrates the phase-shift pipeline using 8
sinusoidal patterns and 7 gray code images. Each sinusoidal pat-
tern is π

4 shifted. And the gray code images encode each of the 10
half periods of the sinusoidal pattern.

Given N(N > 3) number of phase-shift steps, ambiguous phase
φ1(x,y) and φ2(x,y), can be mathematically expressed as followed
[RR93]:
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Figure 1: Top framework: the Conventional Phase-shift Approach. The conventional phase-shift approach algorithm requires multiple
projection sequences for one 3D scan, resulting in low temporal resolution. Bottom framework: Our CNN Single-Shot Approach. The
approach reduces all the required projection sequences to one, making accurate predictions of the intermediates images in the conventional
PS pipelines.

φ1(x,y) = arctan
∑

N
n=1 In(x,y)sin( 2πn

N )

∑
N
n=1 In(x,y)cos( 2πn

N )
(1)

φ2(x,y) =−arctan
∑

N
n=1 In(x,y)sin( 2πn

N )

∑
N
n=1 In(x,y)cos( 2πn

N )
(2)

where In(x,y) are the intensity of the projected PS images. We re-
fer to the ambiguous phase φ1(x,y) and φ2(x,y) also as local phase
maps.

Using the gray code images, we could calculate the period order
information k(x,y), from which in the combination with the local
phase maps, could perform TPU and yield the global phase map
Φ(x,y):

Φ =

{
φ1 +[k−mod(k,2)]π, mod(k,2) = 0
φ2 +[k+mod(k,2)−1]π, mod(k,2) = 1

(3)

Notice that in Equation 3, we use both of the local phase maps
to avoid the phase jump artifacts [WL12]. For detailed mathemat-
ics derivation of the algorithm, we recommend the literature In-

terferogram Analysis, Digital Fringe Pattern Measurement Tech-
niques [RR93].

Lastly, after image rectification, [ZDFL95], we can find the cor-
respondence points between the left and right camera based on each
epipolar line from the global phase maps Φ(x,y). Depth informa-
tion z can be retrieved following Equation 4, where L is the camera
baseline length, f is the camera focal length, u1 is the pixel location
of the global phase map for the left camera, u2 is the pixel location
of the global phase map for the right camera, and D is the disparity.

z =
L f

u2−u1
=

L f
D

. (4)

3.2. Framework Overview

Figure 2 presents an overview of our single-shot SL 3D scan-
ning framework. To capture a real-world evaluation dataset, we
use a forensic SL 3D scanner that is composed of two Basler ace
acA2040-90um cameras with a resolution of 2048× 1024 pixels
and an Optoma ML750e Beamer projector unit with a resolution of
1280×800 pixels [IOF]. Although the PS algorithm is also applica-
ble to monocular setup, our framework is based on a stereo setup as
a stereo setup can expand the viewing angle of the scene, mitigat-
ing occlusion when scanning high reflectance surfaces. In addition,
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Figure 2: Overview of Our Single Shot PS 3D Scanning Framework. (i) illustrate the stereo vision setup, (ii) show our compressed PS single
projection pattern, and (iii) display examples of our training data: random 3D fractals with various geometrical complexities and surface
properties. Process (a) divides full-scale images into 64× 64 pixel patches. Process (b1, b2, b3) predicts corresponding learned labels.
Process (c1, c2, c3) combines image patches to form full-scale images. Process (d) reconstructs 3D point clouds from stereo matching.

as a stereo setup is invariant to the position and rotation of the pro-
jector, calibration of the projector is not required. Nonetheless, our
framework could also be easily adapted to an SL system with one
or multiple cameras.

After performing extrinsic and intrinsic calibration for the stereo
system, we export the camera matrix and the estimated 3D poses
of the cameras to Blender, a popular software for 3D simulation
and modeling, to create a digital twin of the forensic 3D scanning
system [IOF]. 3D fractals are randomly generated as measurement
targets to create training data. The rendered images are divided into
64× 64 pixel patches of training features and labels such that the
CNN can extract features with accurate spatial details. Three sep-
arate neural networks are used to predict the three different inter-
mediate images in the PS 3D reconstruction pipeline as shown in
Figure 1. Finally, the predicted local phases and period order image
patches are stitched back together. Correspondence search is per-
formed to calculate the disparity between the stereo global phase
maps. Final point clouds can be reconstructed based on the camera
focal length and the disparity map.

3.3. The Single-Shot Projection Pattern

Figure 2 (ii) illustrates our single shot projection pattern. The pro-
jection pattern contains 10 sinusoidal periods. The half period or-

der, indicated by the index in sub-figure (ii) of Figure 2 is each
encoded by a unique pattern. We adapted and optimized the pat-
terns first proposed by Budianto et al. [BLL19]. The ordering of
the texton pattern is optimized through repetitive experiments such
that the statistical similarity of the pattern is minimized for each
neighboring pattern to avoid classification confusion. As Figure 1
illustrates, one CNN is trained to classify the period order k(x,y)
based on the unique texton pattern for each half period, and two
other CNNs are trained to estimate the local phase φ1(x,y), and
φ2(x,y).

3.4. Training Data Generation

Fractals are known as geometries or signals that resemble self-
similarities. In computer graphics, statistical fractals are widely
used to model complex natural geometries such as coastlines,
clouds, and mountains [The90]. With the capability to model com-
plex geometrical properties recursively based on an initial condi-
tion and simple rules, computer-generated fractals are becoming
popular among computer vision researchers for automatic training
data generation [KOM∗20]. To generate random statistical fractals
in 3D, we use the subdivide function in Blender [Com18]. The sub-
divide function connects meshes of 3D objects to random value
generators, making it possible to randomly change the surface ty-
pology of an object recursively. By adjusting the strength of the
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Figure 3: Real-World Raw Prediction Results of Intermediate Images in phase-shift Reconstruction Pipeline The CNNs predict φ1(x,y),
φ2(x,y), and k(x,y) for both left and right cameras. From these intermediate results, we obtain the global phase map Φ(x,y) for correspon-
dence search. Evaluation target from top to bottom: a female sculpture, an occluded object [TMD09], an industrial part [HKTN17], and a
sculpture head.

random movement of subdivided edges, the number of cuts (the
recursion step), and the smoothness of the mesh surface to add
random surface curvature, we can generate an infinite amount of
unique 3D objects with a wide range of geometrical complexity.

We simulate real-world material properties by randomly attach-
ing different functions that model the real-world optical properties
of non-reflective dielectric surfaces to the random fractal geome-
tries. The real-world materials are modeled with the physics-based
bidirectional scattering distribution function (BSDF) shaders with
different control parameters such as the index of refraction, spec-
ularity, sub-surface scattering, and transmission. In addition, com-
mon real-world textures such as dirt, scratch, and wall paints are
randomly attached to the surfaces to improve the network’s robust-
ness when performing 3D scans in the real world.

For proof-of-concept experiments, we generate training data at
400× 250 pixel, which allows rapid data generation of over 1000
simulated 3D scans of unique random fractals in one day on a com-
puter with 64 GB RAM. The actual training data is 64× 64 pixel
patches that were randomly extracted from each full 400×250 pix-
els image. Figure 2 illustrates some examples of the image patches,
showing that the 64× 64 pixel patches window size is optimal to
cover around two periods of the phase feature. This allows the
CNNs to perform accurate feature extraction and classification.
We generated over 5000 simulated 3D PS scans of random frac-
tals with a resolution of 400× 250 and selected 24 patches from

each scan randomly. Our final training dataset consists of 120,000
64× 64pixels image patches. Generation of such dataset takes ap-
proximately 5 days on a 64 GB RAM CPU.

3.5. Neural Network and Training Details

We used the CNN architecture of the perceptual style transfer net-
work proposed by [JAFF16]. The implementation of our CNN is
adopted from an open source github repository [Lee19]. We ad-
justed the input image size and output image size to 64×64 pixels
to accommodate the actual training patch size. The CNN consists
of one reflection padding layer, three convolution layers, five resid-
ual convolution layers [HZRS15], and three de-convolution layers.
We used ReLU (Rectified Linear Unit) as an activation function
for the convolution layer, and tanh for the de-convolution layer. All
CNN models were trained using the Adam optimizer with the de-
fault learning rate of 0.001.

The CNN for predicting the period order k(x,y) uses a pixel-wise
mean squared error loss function. The CNNs for predicting the lo-
cal phases φ1(x,y) and φ2(x,y) use a cyclic loss function to calcu-
late the mean squared error of the difference of the cosine and the
sine values of the predicted images ŷ and ground truth image y, as
shown in Equation 5. In addition, a binary segmentation map is cre-
ated with OpenCV GrabCut [Bra00] to help the CNN distinguish
the measurement target from the background. The multiplication
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Figure 4: Real-World Raw Reconstructed Point Clouds Comparison Reconstructed point clouds and ground truth point clouds of a Schiller
bust (top) and an industrial part [HKTN17] from different viewing angles from the same 3D scan are presented.

of the error with the binary segmentation mask (yb) helps the loss
function to focus on regions within the measurement target.

Lc =
1
N

N

∑
i=1

[(
cos ŷi − cosyi

)2
+
(

sin ŷi − sinyi
)2]× ybi (5)

We trained three models to predict φ1(x,y), φ2(x,y), and k(x,y)
separately on an NIVIDIA RTX 6000 graphic cards. The CNNs are
trained on synthetic fractals only. Each model was trained for 3000
epochs, which takes 4 days for each training.

3.6. Evaluation Dataset

We evaluate our models both qualitatively and quantitatively in
real-world 3D scanning settings. Our evaluation dataset includes
measurement targets that the CNNs have never seen before, such
as sculptures, white-painted industrial parts, and objects for view
planning that are hard to measure due to occlusion and sharp an-
gle [TMD09]. We also compare the performance of our models
when predicting synthetic data and real-world data.

The ground truth real-world evaluation dataset was captured us-
ing an industrial SL 3D scanner [IOF] with measurement uncer-
tainty between 20− 100 µm, 2048× 1280 pixels, and a measure-
ment field of 325× 200 mm2. This is the same 3D scanner with
the same configuration and calibration matrix which we used to
generate the simulated 3D scanning environment in Blender. The
ground truth PS scans use 8 project patterns of 10 periods of si-
nusoidal fringes and 7 gray code projection patterns, as illustrated
in Figure 1. This ensures that the ground truth PS methods also
have 10 period of fringes as the proposed single-shot projection

Object
Female Bust

(over-exposed)
Industrial

Part [TMD09]
Schiller

Bust
C ↑ 101.66% 98.13% 99.20%
R ↑ − 91.4% 90.0%

Table 1: Quantitative measurement of the completeness and the
correctness of the evaluation objects shown in Figure 3.

pattern. To have a comparable point cloud quality, the real-world
images were scaled down from 2048 × 1280 to 400 × 250 using
OpenCV [Bra00].

3.7. Evaluation Metrics

We present two evaluation metrics, point cloud completeness (C)
and point cloud correctness (R) to perform quantitative measure-
ment of the quality of the single-shot CNN predicted point cloud
against its’ corresponding ground truth point cloud calculated with
the conventional PS method.

The completeness C = Ncnn
Ngt

×100% is calculated by the ratio of
the number of valid points in the predicted disparity map (Ncnn) and
the number of valid points in the ground truth disparity map (Ngt ).

The correctness R= Rcnn
Rgt

×100% is calculated by the ratio of the
number of correct points (difference in disparity map is less than 1)
in the prediction disparity map (Rcnn) to the number of valid points
in the ground truth disparity map (Rgt ).
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Method Cb ↑ Rb ↑ Crw ↑ Rrw ↑
passive
stereo

32% 3.45% 40.5% 3.2%

Ours 97.5% 90.7% 97.5% 89.5%

Table 2: Quantitative Results of Rendered and Real-World
Dataset. Cb measures the point cloud completeness of our ren-
dered dataset. Rb measures the point cloud correctness using our
rendered dataset. Crw measures the point cloud completeness of the
dataset with real-world 3D scans. Rrw measures the point cloud
correctness using a real-world dataset.

4. Results

Figure 3 shows the raw results of φ1(x,y), φ2(x,y), and k(x,y) cal-
culated with the conventional PS reconstruction pipelines and the
raw results predicted by the CNNs. The cross-section lines ran-
domly selected from a row of the predicted image show that only
minor prediction errors occurred at phase jump areas for the local
phase maps and boundary areas where the textural patterns are oc-
cluded. The errors at the phase jump areas are avoided based on
the adaptive global phase calculation algorithm described in Equa-
tion 3. Figure 4 presents the final reconstructed point clouds. Ta-
ble 1 shows the point cloud correctness (R) and completeness (C)
of the measured objects. To demonstrate that our framework can
be a good complement to the conventional passive stereo sensing
technique in acquiring 3D point clouds from a single shot, Table
2 shows the average performance of our approach and the passive
stereo vision [Bra00] approach on the rendered and the real-world
dataset.

5. Discussions

5.1. Advantages of our Framework

Measurement results of point cloud completeness and correctness
demonstrate that our framework can accurately predict the local
phase maps and the period order of the fringe pattern at the same
time, resulting in a high-quality global phase map for 3D point
cloud reconstruction. Moreover, unlike previous CNN frameworks
for phase-shift 3D reconstruction, our CNNs are trained on ran-
dom synthetic geometric shapes only, which significantly reduces
the costs and efforts to select training data from datasets such as the
Thingi10K [ZJ16].

We also discover that our CNNs are more robust in undesired
lighting conditions, for example, when the scene is over-exposed.
Over-exposure is a common engineering problem in cheap projec-
tor modules with a low projection framerate. In order to create a
linear response when projecting a sinusoidal fringe pattern with
continuously oscillating pixel intensity, the exposure time for the
fringe projection pattern has to be increased, making a glossy sur-
face more likely to have over-exposure artifacts. As such marginal
over-exposed scenes are also included in the synthetic training data,
the neural network can to some extent learn to extract the phase fea-
tures from ambiguous over-exposed scenes as well, making it an
additional advantage of our CNN framework over the conventional
PS methods.

The experiment results also demonstrate that our CNN models
can perform equally well in our real-world evaluation dataset and
the synthetic dataset, both of which the networks have never seen
before. This is unsurprising, as the training dataset simulates vari-
ous material and simple textural properties of real-world objects. In
addition, as a background-foreground segmentation mask is used in
the loss function, the CNN models are invariant to the real-world
background environment, making them more robust when it comes
to transferring to real-world applications.

5.2. Limitations

Our framework in the current state has several limitations. As Fig-
ure 3 illustrates, the main source of error comes from the error of
period order detection at the boundary of objects. Such error could
be reduced by increasing image resolution and the resolution of
textural patterns, or applying a smoothing filter on the predicted
period order. However, for a stereoscopic 3D scanning framework,
the final reconstruction accumulates the errors from both cameras.
Future work can investigate and compare the reconstruction accu-
racy with a monocular SL approach using our CNN method.

In addition, our framework is not yet robust enough to perform
reconstruction with heavily texture objects, as the texture of the
objects could interfere with the texton patterns we use to predict
the period order of the fringe pattern. However, as table 2 shows,
our method is a good complement to the passive stereo algorithm,
where the passive stereo is known for being able to perform effec-
tive correspondence searches on heavily texture objects rather than
textureless objects.

Moreover, existing experiments only demonstrate measurement
results at low image resolution (400×250 pixels). Future work can
extend our framework to higher image and reconstruction resolu-
tion for accurate dense point cloud retrieval.

6. Conclusion

In this paper, we propose a novel single-shot phase-shift 3D scan-
ning framework with a low-effort synthetic training data genera-
tion pipeline using random synthetic fractals. We demonstrate that
CNNs trained on synthetic fractals only are able to perform accu-
rate predictions of both the local phase maps and the period order
of the fringe pattern in the real-world measurement setting. Com-
pared to the conventional phase-shift algorithm with 10 periods of
fringe and 15 projection patterns, our method achieves 89.5% point
cloud correctness and 97.5% point cloud completeness at low im-
age resolution. Further research will improve our pipeline by per-
forming experiments at higher resolution and extending our meth-
ods to measure objects with heavy textures, for example, using the
method proposed by Vo et al [VNS16].
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