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Abstract

Proteins are essential to nearly all cellular mechanism, and often interact through their surface with other cell molecules, such
as proteins and ligands. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related
functions hence surface, which is therefore of primary importance for their activity. In the present work, we assess the ability of
five methods to retrieve similar protein surfaces, using either their shape only (3D meshes), or their shape and the electrostatic
potential at their surface, an important surface property. Five different groups participated in this challenge using the shape
only, and one group extended its pre-existing algorithm to handle the electrostatic potential. The results reveal both the ability
of the methods to detect related proteins and their difficulties to distinguish between topologically related proteins.

CCS Concepts

* Applied computing — Computational biology; * General and reference — Evaluation;

1. Introduction

Proteins are linear assemblies of amino-acids that fold in specific,
energy-driven 3D structures [Karl1] that are linked to their bio-
logical activity. Identifying similarities within protein structures is
therefore of tremendous importance in various fields, from bio-
chemistry to drug design. Numerous methods, based on the anal-
ysis of the 3D point clouds defined by the 3D coordinates of the
protein atoms [Zha05], rely mostly on the conserved core struc-
ture of proteins and may be inefficient to detect proteins sharing
surface similarity. The protein surface is a higher-level description
of the protein structure that abstracts the underlying protein se-
quence, structure and fold into a continuous shape with geometric
and chemical features that fingerprint its interactions with the other
molecules of its environment [SPNWO04]. Only a limited number of
methods have been proposed so far [SLL*08b, GSM™*19,ZSSZ20].
The aim of this challenge is to assess the performance of five
currently available methods to retrieve similar proteins using the
3D meshes describing their surfaces (shape-only challenge), or us-
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ing both the surface and the electrostatic potential at the surface
(shape+electrostatics challenge).

2. The Dataset
2.1. Constitution of the SHREC’21 dataset

The dataset relies on the Pfam 33.1 database [MCW*20], which
classifies protein sequences into domains and families. Protein do-
mains of structures from the Protein Data Bank (PDB, [BHNO3])
can therefore be attributed to a Pfam domain. To build up the chal-
lenge dataset, we selected 10 Pfam domains with a large range of
fold similarity (from 0.19 to 0.84, Fig 1): SH2, SH3, SH3_2, PDZ,
PDZ_6, m50, bromo—domain, DNA-binding domain of STAT pro-
tein, PHD-finger and C2H2 Zinc-finger. TM-scores below 0.17 cor-
respond to unrelated proteins, while those above 0.5 usually indi-
cate two structures having the same fold [ZS04]; compared to pre-
vious SHREC challenges, this dataset therefore contains a greater
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Figure 1: Structural similarity between the protein structure
queries. The TM-score (in the (0, 1] range) measures the topolog-
ical similarity between two protein structures: the higher the TM-
score, the more similar the two structures.
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Figure 2: Upset plot of the dataset structure. The dataset is com-
posed of 554 individual shapes, of which 22 bears two of the do-
mains of the dataset.

amount of structures with intermediate structural similarity (i.e.
with TM-scores from 0.17 to 0.5).

For each selected domain, all corresponding structures from the
PDB were listed, and the best resolution structures were retrieved
to serve as a query for the challenge. For some of these domains,
only a limited number of PDB structure is available. The remaining
structures were filtered according to their Uniprot [Con20] identi-
fier, duplicates were discarded and only the best resolution struc-

tures for each Uniprot entry were kept. To be noted, each structure
may contain more than one domain (see Figure 2 for the final struc-
ture of the dataset).

The solvent-excluded surface of all protonated structures were
computed using the default parameters of EDTSurf [XZ09], dis-
carding inner cavities. We computed the electrostatics using APBS
suite [BSJ*01], and used the multivalue software to compute the
electrostatic potential at the mesh vertices locations. The two
datasets proposed (shape-only and shape+electrostatic) includes
554 molecular surfaces which were eventually made available to
the challenge participants, along with the 2 sets of 10 queries. Fig-
ure 1 represents the TM-scores matrix for all queries of the dataset.

2.2. Challenge proposed to the participants

The participants were asked, given each of the query surfaces,
to retrieve the molecular surfaces of proteins that encompass the
same domain as the query. Each query-to-dataset-surface distance
was expected to be expressed as a dissimilarity score. Each par-
ticipant was allowed to submit one dissimilarity matrix for each
dataset: one matrix for the shape-only dataset, and one matrix for
the shape+elecrostatic dataset.

3. Participants and methods

Among the seven groups that initially registered to this challenge,
only 5 were able to produce the results in time and returned a shape-
only dissimilarity matrix. Most of the participants develop methods
dedicated to the analysis of 3D surfaces and are not accustomed
to the use of additional data, only one method (3DZD) has been
adapted in time to handle the shape+electrostatics.

3.1. Network trained with encoded 3DZD (3DZD) by T.
Aderinwale, C. Christoffer, W.—H. Shin, G. Terashi, X.
Wang & D. Kihara

This group submitted two (shape-only and shape-+electrostatic) dis-
similarity matrices of the target proteins to the 10 query proteins
provided by the organizers. These methods are based on the 3D
Zernike Descriptor (3DZD). 3DZD is the rotation-invariant shape
descriptor derived from the coefficients of 3D Zernike-Canterakis
polynomials [Can99].

Similar to SHREC’20 [LPL*20], this group trained two types of
neural network to output a score that measures the (dis)similarity
between a pair of protein shapes. Briefly, the first framework (the
Extractor model) was structured into multiple layers: an encoder
layer with 3 hidden units of size 250, 200 and 150, a feature com-
parator layer which computes the Euclidean distance, cosine dis-
tance, element-wise absolute difference and product, and a fully
connected layer with 2 hidden units of size 100 and 50. There were
multiple hidden units in each layer, and this group used the ReLu
activation function in all except the output of the fully connected
layer where the sigmoid activation function was used to output
the probability that the two proteins belong to the same protein-
or species-level in the SCOPe dataset classification [FBC13].

The network was trained on the latest SCOPe dataset of 259,385
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Figure 3: ProteinNet deep architecture for protein point cloud
transformation into canonical representation.

protein structures. 2,500 protein structures were set aside for net-
work validation. Proteins in Class I (Artifacts) were removed. Each
of the two network frameworks were trained with two datasets. The
first dataset was 3DZDs of surface shape of proteins and the second
one was feature vectors that concatenate 3DZD of shape and 3DZD
of the electrostatic properties.

This group examined the performance of the networks on the
validation dataset to determine which models to use. For the shape-
only dataset, the 3DZD group submitted predictions generated by
the Extractor model. For the shape+electrostatic dataset, this group
submitted the average predictions between the Extractor model and
the End-to-end model.

For each protein in the provided dataset, the 3DZD group per-
formed a pre-processing step as follows: (1) The PLY mesh data file
was converted to a volumetric skin representation (Situs file) where
points within 1.7 grid intervals were assigned with values that were
interpolated from the mesh [SLL*08b]. For the electrostatic fea-
tures, the interpolated values were the potentials at the mesh ver-
tices. For the shape feature, a constant of 1 was assigned to grids
that overlap with the surface. (2) The resulting Situs file was fed
into the EM-Surfer pipeline [ERXH™15] to compute 3DZD.

3.2. ProteinNet: Deep learning based protein characterization
from 3D point clouds (ProteinNet) by H. Benhabiles, K.
Hammoudi, A. Cabani, F. Windal & M. Melkemi

This group proposes a deep learning approach to calculate a pro-
tein descriptor from its 3D point cloud. To this end, the Protein-
Net group developed a variant of PointNet [QSMG16] which is a
point cloud deep architecture dedicated for 3D classification and
segmentation. This group adapted this architecture in order to learn
an affine transformation matrix that allows to align the coordi-
nates of the input 3D protein point cloud into a canonical repre-
sentation. The new representation maintains interesting properties
demonstrated in [QSMG16], including invariance to rigid geomet-
ric transformations as well as point order permutations. The Pro-
teinNet deep architecture is illustrated in Figure 3. More specifi-
cally, the architecture is based on a PT-Net module (Protein Trans-
former Network) which is inspired from the T-Net (Transformer
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Network) module of the original PointNet architecture. The PT-
Net module is trained to predict an affine transformation matrix
M that is constrained to be close to an orthogonal matrix, namely
|(M.M") —1I| = 0 (step 1 in Figure 3). The matrix M is used to
transform the input protein into its canonical representation (step 2
in Figure 3). A cosine similarity loss between the original protein
and the transformed one is then calculated (step 3 in Figure 3) in
order to back-propagate the error over the network (step 4 in Fig-
ure 3) and optimize the matrix M.

PT-Net module The module is composed of a sequence of 3 con-
volution blocks (32, 64 and 512 layers) followed by a global max
pooling layer and 3 successive dense layers (256, 128 and 9). As
shown in Figure 3, each convolution block as well as the dense lay-
ers (except the last one) undergo a batch normalization and a tan-
gent hyperbolic activation function. The last dense layer of 9 units
is reshaped to output the (3 x 3) M matrix.

Data preparation and architecture training All the proteins of
the dataset of the challenge have been sampled to 2,048 points us-
ing a Poisson disk sampling technique [Yuk15] and then normal-
ized into a zero-center unit sphere based on their respective mini-
mum bounding spheres [BHW *19]. The architecture has then been
trained using a batch size of 16 on 80% of the dataset over 150
epochs and validated on the remaining 20% of the data. The train-
ing data were augmented on-the-fly (during the training process)
by adding some geometric noise.

Protein feature extractor The trained ProteinNet model has then
been exploited to calculate a protein feature descriptor, for each
input protein, by extracting its intermediate Global Max Pooling
hidden layer. This descriptor corresponds to a 1-dimension vector
of 512 values.

Dissimilarity matrix computation The dissimilarity matrix be-
tween the ten protein shape queries and the set of 554 protein
shapes has been calculated using Euclidean distance between their
respective 512 feature vectors.

3.3. Agglomeration of local Augmented Point-pair Feature
Descriptors with Fisher Kernel and Gaussian Mixture
Model (APPFD-FK-GMM) by E. Otu, R. Zwiggelaar, D.
Hunter & Y. Liu

This section presents a novel APPFD-FK-GMM 3D shape retrieval
method based on Fisher Kernel (FK) and Gaussian Mixture Model
(GMM) agglomeration of the Augmented Point-pair Feature De-
scriptor (APPFD) [OZHL19]: a 3D key point shape descriptor that
robustly captures the physical geometric characteristics of 3D sur-
face regions. Previous APPFD binning technique involves buck-
etting each of the 6-dimensional features of the APPFD into a
multi-dimensional histogram with at least 7 bins in each feature-
dimension, resulting to approximately 7% = 117649-dimensional
final feature-vector (APPFD), which is very high-dimensional final
descriptor. In this work, we contribute a simpler approach, where
each of the 6-dimensional feature is binned into a 1-dimensional
histogram with 35 bins for each feature-dimension to produce a
210-dimensional local descriptor (APPFD) for every key point or
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local surface patch (LSP). Finally, the locally computed APPFDs
are agglomerated into a compact code called the Fisher Vector (FV)
with 4210 dimension, which is L, and power-normalized, and rep-
resents a single protein model, using the FK and GMM.

This work contributes a simple, efficient, robust, and compact
representation, describing the geometry of 3D protein surfaces,
with a knowledge-based (i.e. non-learning) approach. While a sin-
gle protein surface in this challenge contains an average of 120,000
vertices and 200,000 triangular faces, our implementation address
this very high data-structure by reducing 3D protein surface repre-
sentation to as low as 3,500 points sample.

The APPFD-FK-GMM Method This method involves two main
stages: (i) Computing local APPFDs for selected key points, and
(ii) Key points APPFDs aggregation with FV and GMM described
below. Figure 4 shows the processing pipeline of the APPFD-FK-
GMM algorithm, and the reader is refered to [TBG™*20], for further
details regarding this method.

Experimental Settings and Running Time Matching two
APPFD-FK-GMM descriptors representing two different protein
surfaces is done with the Ly norm. We submit a [10 x 554] dissim-
ilarity matrix D, where the entry D = [i, j] corresponds to the L,
distance from i/ FV in the query set to the jth FV in the collection
set.

3.4. Projected Wave Kernel Signature Maps (PWKSM) by L.
Sirugue & M. Montes

This method is based on the 2D projection of the surface and
the Wave Kernel Signature (WKS) descriptor. Wave Kernel Sig-
nature [ASC11] is an isometric invariant descriptor that has been
extensively improved and used in the field of computer vision
[RRBW*14,BMM™*15,LW15,ZLL*18]. This group have combined
WKS with a 2D projection on a unit sphere [AHTK99]. Lowering
one dimension of the space allows us to have a fast and dense com-
parison of the surface while having a smaller storage size for files.

Descriptor calculation In a first step, the WKS descriptor is com-
puted on the surface of the 3D object for each point of the mesh.
The surface is flattened on the unit sphere using a conformal trans-
formation [AHTK99]. Then, the 2D spherical coordinates of the
unit sphere are converted into 2D cartesian coordinates on the plane
[CLM17]. A maps of size (Omax — Omin) /8, (Omax — Omin) /0 is cre-
ated. 0,,4x and 0,,;, are the maximum and minimum values of 6 on
the unit sphere and same with ¢, each representing an angle coor-
dinate. d is a coefficient to adapt the resolution. This type of pro-
jection is similar to topographic maps, that is why this group called
this descriptor Projected Wave Kernel Signature Maps (PWKSM).
An interpolation in the space of discrete integers is done to densify
the maps. To reduce impact of deformation at the poles when con-
verting to 2D cartesian coordinates, the PWKSM group computed
7 differents maps with different pole orientations.

Comparison A dense comparison is made using GPGPU sum re-
duction technique. Each point of a PWKSM is compared to all
points of another PWKSM. The Earth Mover’s distance L is used
to compare the WKS descriptor of each point. Then, the smallest
distance between a point of a first PWKSM 7 and all points of a
second PWKSM V is selected. The sum of all the smallest distances
for each point of the first PWKSM are summed to create the score
St. The same is done for computing Sy .

Nr
Sr(T.V) = Y. minL(T (kr),V (kv)) Q)
kr=1 "V

The final score is the average of St and Sy defined as follows :

_ St +Sy

S
2

(@3]

3.5. Graph-based learning methods for Surface-based protein
domains retrieval (DGCNN) by H.-N. H. Nguyen,
T.-D. H. Nguyen, V.-T. Nguyen-Truong, D. Le, H.-D.
Nguyen & M.-T. Tran

In this deep learning method, this group exploits the availability of
protein class labels from [RFB*21] to optimize the representation
of protein surfaces without any additional properties. Particularly,
this group designed a message-passing graph convolutional neu-
ral network (MPGCNN) with the Edge Convolution (EdgeConv)
paradigm [WSL*19] for the protein classification objective. Then,
the latent representation of protein surfaces from this neural net-
work is used for the retrieval task in this challenge.

Data preprocessing For the meshes in each 3D model of a pro-
tein surface, this group first sampled 512 points on the surfaces
of the meshes based on the area of the meshes. Then, to re-assign
the topological structures for sampled points, this group connected
each nodes with their k-Nearest Neighbors based on their original
coordinates (k = 16).

Edge Convolution In this geometry-only setting, the initial node
features was the coordinates of sampled points. Each protein sur-
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face was represented by a k-Nearest Neighbors graph generated in
the preprocessing step with 512 vertices (nodes).

The module that performed the graph message-passing function
is the EdgeConv layer [WSL*19]. In the EdgeConv layer, the in-
formation of a vertex i after layer / is calculated as follows:

1 I
x; = maxjen h(x;,xj) 3)

where N is the neighboring vertices of vertex i with

h(x},x}) = ReLU (MLP(x} ®x})) @)

where ReLU is Rectified Linear Unit (in this implementation,
the DGCNN group used LeakyReLU - a variant of ReLU), MLP
is a standard multilayer perceptron (MLP), & is the concatenation
operator.

In this implementation, the DGCNN group used a dynamic
variant of EdgeConv instead of the standard EdgeConv described
above. At each Dynamic EdgeConv layer, each vertex’s k-Nearest
Neighbors was re-calculated in the feature space produced by the
previous layer, before applying the standard EdgeConv operation.
After the graph was recomputed, standard EdgeConv operation was
performed.

After the preprocessing phase, the vertex features first went
through 4 layers of Dynamic EdgeConv. The dimensions of
output features for each vertex after these first-4 layers were
64,64,128,256, respectively. Then, the outputs of these 4 layers
were concatenated to become a 512-dimensional vector for each
vertex. This 512-dimension vector was then fed through another
Dynamic EdgeConv layer, creating the output vector with 512 di-
mensions v. The feature vector v was pooled using the concate-
nation of the outputs of a max-pooling and a mean pooling layer
to generate the first graph-level feature vector. This vector was
passed through two MLP blocks with BatchNorm, Leaky-ReLU,
and Dropout layers. Finally, the vector was passed through a Fully-
Connected layer for classification.

The latent representation of the graph was extracted as vectors
by removing the last Fully-Connected layer from the network. The
retrieval task was then performed by exploiting the L2-distances
between these vectors.

4. Results

All teams returned a dissimilarity matrix for the shape-only
dataset, and only one method (3DZD) was adapted to handle the
shape+electrostatics dataset. We briefly present the corresponding
results in this section.
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Figure 6: Per-query precision-recall curves for the shape-only
dataset, for each method. All plots are colored according to the
legend on the bottom right of the figure.

Method Nearest First Tier Second Mean Re-
Neighbor Tier ciprocal
Rank
3DZD 0.5 0.160 0.292 0.523
ProteinNet 0 0.088 0.195 0.126
APPFD 0.3 0.136 0.237 0.410
PWKSM 0.1 0.105 0.201 0.236
DGCNN 0.1 0.098 0.189 0.193

Table 1: Summary of the evaluation metrics for the shape-only
dataset.
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Figure 7: Confusion matrices of all methods for the shape-only dataset. The color range is the same for all matrices. Confusion ranges from

0 (white background) to 1 (deep purple background).

The best method (3DZD) achieved an overall level of 0.5 for the
nearest neighbor metric, 0.160 for the first tier, 0.292 for the sec-
ond tier and 0.523 for the mean reciprocal rank (Table 1). These
results must be balanced by the fact that a few classes have only
a small number of models (Figure 2). The precision-recall curves
for each individual classes (Figure 6) show a quick drop of the
precision at low recall values, except for a few exceptions (green
curve, top left plot of Figure6, corresponding to the PDZ class for
the 3DZD method, for instance) that display medium precision val-
ues at medium recall. The confusion matrices shown in Figure 7
combined with Figure 1 allow us to put the performance into per-
spective. For instance, PDZ and PDZ_6 domains are topologically
very similar (TM-score: 0.79, Figure 1). When using the PDZ_6
query, ProteinNet retrieved only 1 (4%) of the 26 PDZ_6 shapes
within the first 26 retrieved results, but also 12 (46%) shapes from
the PDZ class (Figure 7, top right confusion matrix).

The evaluation metrics for the shape+electrostatics dataset are
listed in Table 2, and show similar trends compared to the shape-
only dataset. The precision-recall curves (Figure 8) show a simi-
lar overall behavior for the 3DZD method. T The confusion matri-

Method Nearest First Tier Second Mean Re-
Neighbor Tier ciprocal

Rank

3DZD 0.5 0.160 0.321 0.454
Table 2: Summary of the evaluation metrics for the

shape+electrostatics dataset.

ces (Figure 9) are in line with the previous results, indicating that
3DZD perform similarly in terms of overall performance but with
a few differences at the per-class results.

5. Discussion and concluding remarks

The 3DZD method combines the use of 3D Zernike polynomials
and a neural network trained on the SCOPe [FBC13] database,
whose classification overlaps with the Pfam database [MCW *20]
classification. The DGCNN used the data from another SHREC’21

© 2021 The Author(s)
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Figure 8: Per-query precision-recall curves for the
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Figure 9: Confusion matrices of all methods for the

shape+electrostatics dataset. Confusion ranges from 0 (white
background) to 1 (deep purple background).

challenge [RFB*21], whose classification is also derived from
the SCOPe database. The DGCNN and 3DZD methods were
therefore trained on similar data, but results in different per-
formance. DGCNN, ProteinNet and APPFD-FK-GMM methods
down-sample the initial point clouds, among which the Protein-
Net and APPFD-FK-GMM methods apply the more severe down-
sampling. The APPFD-FK-GMM group, however, was able to bet-
ter retrieve relevant results within the first hits (Table 1), indicating

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

that down-sampling is not prohibited. As shown by the confusion
matrices (Figure 7), a few queries were difficult to handle for all
methods. Queries that are closely related (PDZ_6/ PDZ and SH3_2
/ SH3 classes) result in results that highlight the difficulties of all
methods to distinguish between closely related proteins using their
shape only. Also, the DNA-binding domain of STAT proteins was
seperated from the rest of the protein to serve as a query, while only
a set of whole STAT proteins is present in the dataset. None method
is able to retrieve a STAT protein within the first results using such a
query. Methods dedicated to local similarity search may overcome
this issue.

The results showed that the electrostatics only marginally im-
proved the results with the 3DZD. These results are in line
with [SLL*08a] which showed that electrostatics is best used to
discriminate between very similar proteins. No general rule can be
extracted, as only one group returned a shape+electrostatics matrix.
Most groups could not extend their methods to handle electrostatics
due to the time constraints.

Overall, this challenge revealed that satisfactory solutions exist
to distinguish between loosely related proteins but also revealed
some limits of these methods. Closely related proteins, i.e. pro-
teins with a high topological similarity and limited changes of
their amino-acid sequences, are still difficult to discriminate. The
method using 3D Zernnike descriptor obtained the best overall re-
sults. Besides, this method is extended to handle additional data
such as the electrostatics potential at the surface of the protein. This
method, as well as all the other methods, are shared (see Section 3).
In the future, the discrimination of closely related proteins based on
their surfaces and / or their surficial properties could be a topic of a
dedicated SHREC challenge, and a good indicator of the progress
performed in this field.
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