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Abstract
Cryo-electron tomography (cryo-ET) is an imaging technique that allows three-dimensional visualization of macro-molecular
assemblies under near-native conditions. Cryo-ET comes with a number of challenges, mainly low signal-to-noise and inability
to obtain images from all angles. Computational methods are key to analyze cryo-electron tomograms.
To promote innovation in computational methods, we generate a novel simulated dataset to benchmark different methods of
localization and classification of biological macromolecules in tomograms. Our publicly available dataset contains ten tomo-
graphic reconstructions of simulated cell-like volumes. Each volume contains twelve different types of complexes, varying in
size, function and structure.
In this paper, we have evaluated seven different methods of finding and classifying proteins. Seven research groups present
results obtained with learning-based methods and trained on the simulated dataset, as well as a baseline template matching
(TM), a traditional method widely used in cryo-ET research. We show that learning-based approaches can achieve notably
better localization and classification performance than TM. We also experimentally confirm that there is a negative relationship
between particle size and performance for all methods.

CCS Concepts
• Information systems → Evaluation of retrieval results; Specialized information retrieval; Multimedia and multimodal
retrieval; Retrieval models and ranking;

1. Introduction

Cryo-electron tomography (cryo-ET) is an application of transmis-
sion electron microscopy, in which biological samples are cryo-
genically vitrified and imaged as they are sequentially tilted. The
resulting “tilt-series” of 2D projections can be merged into a 3D
reconstruction. Cryo-electron tomograms feature macromolecular
assemblies in their cellular context, offering insight into life pro-
cesses at its smallest scale [YMG∗11]. This data is key for improv-
ing our understanding and determining modes of actions of drugs.

† Track organizers. For any questions, please contact by e-email:
i.gubins@uu.nl

The approach comes with a number of challenges. Imaging elec-
trons strongly interact with biological matter, severely limiting the
possible dose to avoid damaging the sample during imaging. The
limited dose in turn limits signal-to-noise and effective resolu-
tion of the tomograms to about 5nm (50). Such resolution is not
enough to distinguish structural details of biomolecules. The com-
mon approach to increase resolution of the biomolecule of inter-
est is subtomogram averaging [PM18]. It involves aligning and av-
eraging copies of the same particles, introducing the challenge of
correctly localizing and identifying those particles in the raw tomo-
gram (Figure 1).

Another major challenge is the constraint on imaging angles, up
to±60◦ due to sample thickness, resulting in an incomplete recon-
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Figure 1: The overall process of cryo-electron tomography from
data collection to reconstruction and subtomogram averaging.

struction with a “missing wedge” in Fourier space. Manual analysis
of such data is rarely feasible and often provides subjective results,
leading to the interest in automated approaches. The most common
of such approaches, for biological particles of known structures, is
template matching [FBF∗02]. Cross correlation between the tem-
plate and the entire tomogram indicates locations and angles, where
the template fits the best. For particles with unknown structures,
reference-free methods must be used. The most common approach
is based on applying Difference of Gaussian (DoG) [VYR∗09]: a
band-pass filter that removes noisy high frequency components and
homogeneous low frequency areas, obtaining borders of the struc-
tures.

In recent years, machine learning has seen successful appli-
cation to cryo-ET. Classical support vector machines have been
used for both detection and classification [CHP∗12]. With ever
increasing amounts of data captured by cryo-EM and -ET meth-
ods [BTE∗18], deep learning methods are gaining popularity. Su-

pervised methods were proposed for localization [WGL∗16], clas-
sification [CLZ∗18], end-to-end segmentation [CDS∗17] and joint
localization and classification [LZS∗19], providing faster and often
more accurate results than template matching [GSV∗19]. More-
over, methods based on clustering of representational features
[XST∗19], segmentation by manually designed rules [XA13] and
geometric matching [ZX20] provide unsupervised and weakly-
supervised alternatives, reducing the dependency on annotated
data.

Each of the mentioned methods is validated on different tasks
and different datasets (i.e., data acquisition parameters and micro-
scopes), making it difficult to compare or draw conclusive results
about their relative performance. With this benchmark, we aim to
support researchers involved in developing new methods for local-
ization and detection of biomolecular structures in cryo-electron
tomograms.

Our contributions are:

• We publish a new, publicly available, fully-annotated simulated
cryo-electron tomography dataset. The dataset includes 12 pro-
tein classes, vesicles and gold fiducials.
• We evaluate and compare six learning-based methods and two

versions of template matching.
• We note advantage of learning-based methods over template

matching and show significant correlation between performance
and molecular weight.

The remainder of this paper is organized as follows. Section 2
overviews dataset generation and benchmark evaluation. Then, in
Section 3 we describe methods submitted for the evaluation. In Sec-
tion 4 we present results. Finally, we discuss the results in Section
5.

2. Benchmark

We propose a task of localization and classification of particles in
the cryo-electron tomogram volume. A benchmark is conducted on
a simulated cryo-electron tomogram populated with randomly po-
sitioned and oriented copies of structurally well-defined molecular
complexes. In total, the volume contained 1,571 particles of 13 dif-
ferent classes. To facilitate application of learning-based methods,
we also provide nine tomograms with similar protein distribution
and ground truth data that was used for the simulation.

2.1. Dataset

First, we select 12 proteins of known structure of varying size,
shape and functions (Table 1). To characterize them, we calcu-
late sphericity, Ψ, a measure of how much the volume resembles
a sphere:

Ψ =
π

1/3× (6V )2/3

A
(1)
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PDB Name Mol. weight (kDa) Volume (nm3) Area (nm2) Sphericity Eff. radius (nm)
1s3x Hsp70 ATPase 42.75 90.82 109.8 0.89 2.481
3qm1 LJ0536 S106A 62.62 127.9 137.6 0.892 2.789
3gl1 Ssb1, Hsp70 84.61 196.5 191.2 0.855 3.083
3h84 GET3 158.08 347 370.9 0.644 2.807
2cg9 Hsp90-Sba1 188.73 401.2 358.4 0.734 3.358
3d2f Sse1p, Hsp70 236.11 516 459.6 0.677 3.368
1u6g Cand1-Cul1-Roc1 238.82 499.3 450.2 0.676 3.327
3cf3 P97/vcp 541.74 1136 745.2 0.707 4.573
1bxn Rubisco 559.96 1021 583.4 0.84 5.25
1qvr ClpB 593.36 1354 1063 0.557 3.821
4cr2 26S proteasome 1309.28 2675 1846 0.505 4.347
5mrc Yeast mito ribosome 3325.59 6372 3161 0.526 6.047

Table 1: Macromolecular complexes present in the dataset, sorted by their molecular weight. Volume, area, sphericity and effective radius
are computed from particle volumes with threshold density > 0.5.

and effective radius, the radius of a sphere with the same surface
area to volume ratio as the volume of interest:

re f f =
3V
A

(2)

where V is the volume and A is the surface area.

For all molecules placed in the simulation, we first calculated
an interaction potential. We define this potential as a sum with a
real and imaginary part Vint =Vel + iVab. The electrostatic potential
Vel determines the elastic scattering of each molecule which influ-
ences phase contrast. We calculated it by placing on each atom’s
center a sum of 5 Gaussians that are parameterized by atom spe-
cific scattering factors [RÖM∗11]. We extended this electrostatic
potential calculation scheme by correcting each atom for solvent
exclusion [FMS78]. This was modelled by subtracting a smooth
spherical volume around each atom with a Van der Waals radius
determined by atom type, and an amorphous ice background po-
tential of 4.530V . The second part of the potential - the absorption
potential Vab - is dependent on molecule-type (i.e. protein, mem-
brane, gold, or amorphous ice), and gives rise to absorption contrast
through inelastic scattering [VRvV∗13].

We generated interaction potential maps of proteins, vesicles and
gold fiducials at 5. Then, without overlaps, we place 1,000 to 3,000
proteins, 7 to 14 gold fiducials and 2 to 7 vesicles at random lo-
cations and in random SO(3) orientations, into the ground truth
“grandmodel” - the box containing ground truth of the sample sim-
ulation. For each placed particle we save class, center coordinates
and Euler angles in ZXZ notation. That allows us to generate class
masks (voxel to class mapping) and occupancy masks (voxel to
particle mapping).

To simulate the embedding ice layer of the grandmodel, we
added background constants of amorphous ice to the interaction po-
tential of the grandmodel (corresponding to 4.530V for the elastic
part and 0.208 inelastic scattering fraction). These constants were
both calculated assuming an amorphous ice density of 0.93g/cm3,
and for the absorption constant a 300kV electron beam. Each grand-
model was rotated over 61 evenly spaced tilt angles ranging from

−60◦ to +60◦, with cubic b-spline interpolation [RT12] to mini-
mize rotation artifacts.

To calculate the projection image for each rotation angle we im-
plemented the multislice method [VRvV∗13]. This method models
the defocus gradient through the ice layer by propagating the elec-
tron wave through slices of the model. We set the size of these
slices to 5nm. After calculating the wave propagation through the
sample we obtain the exit wave in the image plane. To get the final
projection image we multiplied the exit wave by the microscope’s
contrast transfer function (CTF) and envelope functions using a de-
focus of 3.5µm on average (see below), an acceleration voltage of
300kV , spherical aberration of 2.7mm, a source energy spread of
0.7eV , an illumination aperture of 30/mum, and objective diame-
ter of 100/mum, a focal distance of 4.7mm, and no astigmatism.
For the detection process we then convoluted the exit wave with
the DQE of the K2SUMMIT detector. For the final electron counts,
we sampled from the Poisson distribution, with an electron dose
of approximately 1.6 e−/Å

2
. The final images were 1024x1024

pixels with a pixel size of 5. We did a weighted back-projection
reconstruction while binning the projections 2 times to obtain the
final tomograms of 512x512x512 with a sampling of 1nm/voxel.
This means the initial models are oversampled compared to the fi-
nal reconstruction, improving accuracy for the sample-microscope
interaction.

To introduce variation between tomograms we randomly se-
lected a defocus between 2 and 5µm for each model, and an electron
dose between 100 and 120 e−/Å

2
for the full tilt range (which was

equally divided over the 60 tilt images). We set random shifts for
each projections in a 1nm range in the x and y direction, to intro-
duce misalignment of the projections and deteriorate reconstruc-
tion quality. This resulted in the tomograms varying in final SNR
from 0.12 to 0.58 (the evaluation model 0.24), as calculated with
SNR = σ

2
signal/σ

2
noise, where σ

2
signal = σ

2
noisysignal −σ

2
noise (where

the considered signal comes from all classes, including gold mark-
ers).

We noticed that in the power spectra (representing the ampli-
tudes of the Fourier transform) of simulated projections, Thon rings
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were difficult to see. These are usually pronounced in experimen-
tal images (compared with data recorded at similar conditions;
mixedCTEM from EMPIAR-10064). By scaling the amplitudes in
Fourier space with amplitudes from experimental images (mixed-
CTEM) we qualitatively improved the appearance and made the
simulation more similar to experimental images. We implemented
this in a similar fashion to Fourier ring correlation (FRC), where
for each ring of the Fourier amplitudes of the simulated image,
we scaled the values to the mean of that same ring from an ex-
perimental image: Ascaled = ∑

N
i MiAsim(µ

exp
i /µsim

i ), where N is the
number of rings, M is the bandpass mask, and µ the mean of a
band. We then obtained the updated simulated image by recombin-
ing the scaled amplitudes with the phase information of that image
in Fourier space.

2.2. Evaluation

The main goal of the benchmark is to localize and classify biolog-
ical particles in the tomographic reconstructions. The performance
of the submissions has been evaluated solely on the test tomogram,
the only tomogram for which ground truth is not available.

During evaluation, we parsed the submitted result and computed
some commonly adopted performance metrics for classification
and localization. The metrics are precision (Equation 3): percent-
age of results which are relevant; recall (Equation 4): percentage
of total relevant results correctly classified; F1 score (Equation 5):
harmonic average of the precision and recall; false negative rate
also known as miss rate (Equation 6): percentage of results which
yield negative test outcomes. We also record how far the predicted
center was from the ground truth center and how many results refer
to the same particles.

Precision =
true positive

true positive+ false positive
(3)

Recall =
true positive

true positive+ false negative
(4)

F1 score = 2 · precision · recall
precision+ recall

(5)

Miss rate = 1− recall (6)

2.2.1. Erratum

During evaluation stage of the benchmark we have discovered an
error in the dataset. One of the classes, protein 4v94, has been gen-
erated incorrectly and always appeared twice next to each other.
Moreover, the center of such doubled-particle was in the empty
space between them. The reason is that the PDB upload was a mir-
rored structure, while naturally the protein occurs as a single parti-
cle. While that does not present a problem for semantic segmenta-
tion approaches that are trained on class masks, it is a problem for
approaches that use the center locations that we provide. For the
fairness of benchmark we have decided to remove 4v94 protein

Figure 2: The architecture of 3D UNet3+.

from the evaluation completely. After the competition has finished,
we have fixed reported center locations in the updated version of
the dataset.

2.3. Comparison with earlier benchmarks

Localization and classification of particles in cryo-ET is an open
problem with major challenges due to the nature of imaging pro-
cess and biological sample size. Previous editions of this bench-
mark [GSV∗19, GCvdS∗20] already provide some insight into au-
tomated localization and classification methods for cryo-ET. In this
edition, we significantly improved dataset generation process (Sec-
tion 2.1: multislice method, variated defocus and electron dose,
Fourier scaling to experimental images) and introduced membranes
as an additional semantic class.

3. Participants and methods

Nine international research groups registered to the track, of which
seven submitted their results. Each participant could submit as
many result sets as long as they present an interesting difference,
e.g. different selection of hyperparameters for the same method. In
total, the benchmark compares eight result sets obtained with seven
different methods listed in this section.

3.1. URFinder: Macromolecules localization using combined
3D UNet3+ and ResNet

By: Xiao Wang, Daisuke Kihara

The method named URFinder is based on deep learning tech-
niques, 3D UNet3+ [HLT∗20] and 3D ResNet [HZRS16a,HKS17]
for 3D semantic segmentation of the tomogram data. 3D UNet3+
was used to detect 13 protein types. 3D ResNet was used for two
classifications, one for detecting 13 protein types and the other
for detecting gold fiducials. For protein detection, results of 3D
UNet3+ and 3D ResNet were combined.
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Given a voxel (a cropped 3D region) from a tomogram, the pro-
posed 3D-UNet3+ takes the voxel as input and outputs the 14 prob-
ability scores, for 13 proteins and background, for each grid point
in the voxel. The size of each 3D input slice was set to 64x64x64
and the stride size was set to 16 to scan the whole cryo-ET map.
We extended the original UNet3+, which was developed for 2D
image, to 3D. In our architecture we have 2 down-sampling and 2
up-sampling operations instead of 4 in the original UNet3+. The
architecture of our 3D UNet3+ is shown in Figure 2. All other
configurations, such as convolution and maxpooling filter sizes, the
number of filters and the stride size, are the same as UNet3+.

Two networks with 3D ResNet were trained. One is for protein
detection, which is 14 class (13 proteins and background) multi-
class classification, and the other for binary classification for gold
fiducials. 3D ResNet had 20 layers [HLT∗20, HZRS16a] and the
size of each 3D input slice was set to 32x32x32.

We used tomograms 0 to 7 for training and validation while the
tomogram 8 was kept for testing. For UNet3+ training, we scanned
the whole map with a stride of 16 with a voxel of 64x64x64. We
adopted the deep supervision technique in [ZSTL18]. For output
of each decoder, the binary cross-entropy (BCE) loss was applied
and the total loss was defined as the sum of the individual losses.
We used the Adam optimizer [KB14] with an initial learning rate
0.0001 and a weight decay of 1e−4. The cosine learning rate sched-
uler [LH16] was used to decay the learning rate to 1e−5. For 3D
ResNet training, we first sampled negative (background) examples
from the provided training tomograms by extracting voxels with
the center that is not closer than 16 grid units to any proteins and
gold fiducials. For each positive voxel that have a protein or a gold
fiducial at the center, we augmented them by random flips and ro-
tations. We had in total 620,892 voxels for multi classification for
detecting proteins. We had in total 2160 positive voxels and 43916
negative voxels for binary classification. In the training process, we
used the Adam optimizer with learning rate of 0.002 and a weight
decay of 1e−4. In total, we train the network for 30 epochs.

In the inference stage, we applied three networks, 3D UNet3+,
3D ResNet for protein detection and another ResNet for gold fidu-
cial detection. 3D UNet3+ scanned the whole cryo-ET map with
a stride of 16 to extract 64x64x64 voxels and made predictions at
each grid point in the voxels. If a grid point has multiple assign-
ments from different voxels, we used the average probabilities as
the final predictions. We removed connected components with less
than 64 voxels and used centers of the rest for the reported protein
particles. For 3D ResNet, we used a voxel of 32x32x32 and a stride
of 2 to scan the whole map and made predictions to the center of
the voxel. When detecting proteins, we checked the connected com-
ponents and filtered out those components with less than 64 vox-
els. For binary gold fiducial detection, too large components with
width, height or length larger than 40 voxels and too small com-
ponents with less than 27 voxels were removed. Finally, detected
proteins by 3D UNet3+ and 3D ResNet were combined. If detected
proteins by the two methods overlap or locate in direct neighboring
voxels they were merged into one protein. The center of connected
components were reported as the location of detected proteins and
gold fiducials.

All the experiments were performed on NVIDIA Quodro RTX

8000 GPU. For 3D UNet3+, the training time was 7 days for 30
epochs on 2 RTX 8000 GPU. The production time including infer-
ence and filtering was 72 minutes on 1 RTX 8000 GPU. For 3D
ResNet, the training time was 4 days for the multi-class and 1.5
days for binary classification of gold fiducials for 30 epochs on 1
RTX 8000 GPU, and the production time was 54 minutes including
the inference and filtering.

3.2. DeepFinder: Deep learning improves macromolecules
localization and identification in 3D cellular cryo-electron
tomograms

By: Emmanuel Moebel

DeepFinder [MMSL∗20] is a computational tool for multiple
macromolecular species localization, based on supervised deep
learning. This two-step procedure (Figure 3) first produces a seg-
mentation map where a class label is assigned to each voxel. The
classes can represent different molecular species (e.g. ribosomes,
ATPase), states of a molecular species (e.g. binding states, func-
tional states) or cellular structures (e.g. membranes, microtubules).
In the second step, the segmentation map is used to extract the posi-
tions of macromolecules. To perform image segmentation, we use
a 3D CNN whose architecture and training procedure have been
adapted for large datasets with unbalanced classes. The analysis
of the obtained segmentation maps (Figure 4) is achieved by clus-
tering the voxels with the same label class, using the mean-shift
algorithm with different radii (bandwidth) for each class. Hence,
the detected clusters correspond to individual macromolecules and
their positions can then be derived.

The 3D CNN architecture is trained with Adam [KB14] opti-
mizer, using 0.0001 as learning rate, 0.9 as exponential decay rate
for the first moment estimate and 0.999 for the second moment esti-
mate. A Dice loss [SLV∗17] is used to estimate the network param-
eters. The training took 50 hours on an Nvidia M40 GPU. For large
and medium macromolecules, presented scores are reached after
22 hours; the additional time is necessary for having better perfor-
mance with small macromolecules. The segmentation and cluster-
ing of a 512x512x200 tomogram takes 20 minutes.

With feasibility in mind, we developed training strategies to as-
sist the user in producing segmentation maps (needed for training
the CNN) from tomogram annotations consisting of the spatial co-
ordinates of macromolecules. DeepFinder is an open-source python
package with a graphical interface aimed towards non-computer
scientist users.

3.3. U-CLSTM: U-net architecture with convolutional long
short term memory decoder

By: Nguyen P. Nguyen, Tommi A. White, Filiz Bunyak

To predict particle location, we employed the U-net architec-
ture [RFB15] network. Our network’s encoder has three main lay-
ers, each layer contains 20 residual blocks [ZZC∗17]. It’s not nec-
essary for both the encoder and decoder to have the same config-
uration. We wanted to make use of the context memory mecha-
nism [MRB∗18] by using a convolutional long short term memory
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Figure 3: Top: CNN architecture used in DeepFinder. All convolutional layers are followed by a ReLU activation function, except the last
layer which uses a soft-max function. The up-sampling is achieved with up-convolutions (also called “backward-convolution”). Combining
feature maps from different scales is performed by concatenation along channel dimension.
Bottom: workflow depicting how macromolecule coordinates are obtained from the segmentations generated by the CNN. A clustering
algorithm (mean-shift) is applied on the segmentation map to differentiate individual macromolecules.

Figure 4: Test tomogram segmentation with DeepFinder method.

(CLSTM) cell [SCW∗15] in the decoder. This decoder architec-
ture can exploit all image features from coarse to fine levels, fur-
ther refine location prediction. The encoder and decoder are con-
nected by the atrous spatial pyramid pooling block [CPK∗17]. In-
stead of using mask segmentation to obtain particle centers, we
applied regression to predict a heatmap of particle locations as
in [NEG∗21]. Each heatmap contains 15 channels, corresponding
to 15 types of particles to be detected. Different image volumes
have different noise levels and different distributions of particles.

We employed weighted sampling to balance the occurrence of data
samples, and the small particles also have higher sampling weights.
The ground truth heatmap was generated from a binary ground truth
masks using distance transform. We then used a mean squared er-
ror loss function to optimize the network parameters. U-CLSTM
was trained with patches of size 96x96x96 on an NVIDIA Quadro
RTX-5000 GPU in 120 hours. Total prediction time is 15 minutes
for each image volume 512x512x512, which includes both heatmap
prediction time and particle center detection time. Thresholding
and connected component labeling were applied to each channel of
the predicted heatmap to localize and segment the particle centers.
Spurious detections were filtered out based on detection size. Par-
ticles whose centroids are located within 5 voxels from the ground
truth particle centroids in terms of Euclidean distance are consid-
ered as detected. Detections who predict the same particle type as
the corresponding ground truth particle, are considered as correct
classification.

3.4. Multi-Cascade DS Network

By: Giorgos Papoulias, Stavros Gerolymatos, Evangelia I.
Zacharaki, Konstantinos Moustakas

We formulated the classification and localization tasks as a su-
pervised (volumetric) segmentation and morphological analysis
problems, respectively. We solved the segmentation task jointly
with denoising by employing a deep encoder-decoder architecture
inspired by the cascaded network in [GV20]. Specifically, we im-
plemented a multi-cascade DS (Denoising-Segmentation) network
based on the popular 3D U-Net [RFB15] and composed of two de-
coding pathways. The two pathways perform denoising on the in-
put data (3D tomogram) and volumetric segmentation (to produce
a 3D label map), respectively. The whole architecture is illustrated
in Figure 6.
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Figure 5: U-CLSTM: U-net architecture with convolutional long short term memory (CLSTM) decoder

Figure 6: Topology of Multi-Cascade DS Network

In more details, in the denoising output pathway each decoder
block is connected to the respective encoder layer with a skip con-
nection, while in the segmentation output pathway each block re-
ceives the skip connections from the respective layers of both the
encoding pathway and the denoising decoding pathway. The con-
nectivity introduced between decoding pathways is considered to
facilitate inductive transfer between early and later stages of a deep
cascade. Thus, this approach is more suitable than architectures
dealing with denoising and segmentation in a serial fashion. Ad-
ditionally, it is less computationally expensive as a serialized archi-
tecture would practically require the training of two deep networks,
one for each learning task, independently.

We set the depth of the employed deep network to 5 and the
number of filters to 16, 32, 64, 128 and 256 in the respective lay-
ers, yielding 13.57 M of parameters in total. For the denoising task,
we use the RMSE loss between the reconstruction and the respec-
tive grandmodel volumes and for 3D segmentation, we employ the
Tversky loss function with α = 0.7 and β = 0.3 using the ground
truth segmentation masks as target. The unified loss function min-
imized during optimization includes the sum of the previous two
loss terms. Loss minimization is performed using the Adam op-
timizer [KB14] using an initial 0.001 learning rate explicitly de-
fined by a Cosine Annealing learning rate scheduler. The model
was trained for 20 epochs using a batch size of 20 on an NVIDIA
GeForce RTX 3090 graphics card. PyTorch with CUDA accelera-
tion was utilized for the implementation. Finally, the training pro-

cedure lasted 22 hours and the inference time was approximately 5
min.

Regarding the given dataset exploitation, the tomograms were
cropped into cubic volumes (also denoted as subtomograms) with
a size of 643 using a 75% overlap in all three dimensions. Half
of the generated cubic volumes were horizontally and vertically
flipped randomly during the training procedure for data augmen-
tation purposes. Subtomograms from tomograms 0 to 7 were used
for training and subtomograms from tomogram 8 for validation and
optimization of hyper-parameters.

After having derived the 3D segmentation maps, connected com-
ponent analysis (with neighborhood 26) is performed to identify
the individual particles as uniform clusters, followed by two post-
processing steps. First, spurious clusters that consist of less than 5
voxels are removed and then classes are merged inside each compo-
nent by assigning the most frequently occurring label to the whole
component. Finally, the centroids of each component are estimated
as the center of mass to address the localization challenge.

3.5. YOPO: one-step object detection for cryo-ET
macromolecule localization and classification

By: Xiangrui Zeng, Sinuo Liu, Min Xu

We formulate a novel one-step object detection framework
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Figure 7: YOPO: Flowchart of macromolecule detection.

specifically designed for cryo-ET data (Fig. 7). Previous deep
learning-based works on detecting particles in cryo-electron tomo-
grams are either two-step classification (extract potential structural
regions as subtomograms and then perform classification) or seg-
mentation methods. Considering two important properties of subto-
mogram data: (1) the high-level structural details of a particle de-
termine its function and identity and (2) the particle is of random
orientation and displacement inside a subtomogram, we designed
a convolutional neural network named YOPO [ZKX∗21], which
retains discriminative high-level structural details and achieve
the maximal transformation-invariance. The flowchart of macro-
molecule localization and classification using YOPO is illustrated
in Fig. 7.

In the training stage, only particle location ground truth was used
to train the YOPO network to predict the PDB ID of a subtomo-
gram. In the testing stage, the trained YOPO network was applied
on the tomogram level to directly predict both the location and PDB
ID of detected macromolecules. From each training tomogram, we
extract subtomograms of size 323 according to the ground truth
particle location file. An additional 20.000 subtomograms were ex-
tracted at random locations from the background. Therefore, there
are K = 15 classes in total including the background class and ex-
cluding vesicle centers. Subtomograms from tomogram 0 to 7 were
used as training data and subtomograms from tomogram 8 as vali-
dation data. The training took 8 hours on one NVIDIA GeForce Ti-
tan X GPU. The trained model predicted at every location by apply-
ing the learned model parameters on the whole testing tomogram.
Locations with high confidence (probability > 0.9) to be one of the
structural classes were kept. We then filtered the locations to ensure
that the minimum distance between two detections was greater than
14 voxels. As a one-step object detection method, the classification
and localization tasks are unified in an end-to-end fashion.

YOPO is an efficient cryo-ET macromolecule detection (local-
ization + detection) framework in two aspects: (1) the only ground

Figure 8: Central Feature Network (CFN) architecture and infer-
ence pipeline

truth information used for training is the particle locations and
classes in ground truth particle location file; (2) YOPO performs
prediction on the subtomogram level at every location, which is
similar to the traditional template matching approach. However, the
whole prediction on one tomogram took only about 40 min using
one GPU instance.

3.6. Central Feature Network (CFN) for cryo-EM particle
classification and localization

By: Yaoyu Wang, Cheng Chen, Fa Zhang, Xuefeng Cui

We introduced a novel Central Feature Network (CFN) for the
general 3D object detection problem, and applied it on the Cryo-
EM particle detection problem. Specifically, CFN takes 64x64x64
sub-tomograms as input, and detects particles in the input sub-
tomograms. As shown in Figure 1a, CFN is based on a 3D ResNet
model [HZRS16a, HZRS16b] with dilated convolutions [YK15]
and the focal loss function [LGG∗17]. Notably, our CFN model
is different from existing models with three novel modifications.
First, existing methods use only the neurons of the last convolu-
tional block for predictions, while we combine the central neurons
(i.e., blue boxes in Figure 8a) of each convolutional block for pre-
dictions. This helps to identify particles with different sizes because
deeper networks are more suitable for bigger particles while shal-
lower networks are more suitable for smaller particles. Second, ex-
isting methods use average pooling (or max pooling) for dimension
reduction, while we use bottlenecked pooling (i.e., red boxes in
Figure 8a) with two fully connected layers for the same task. By
avoiding location irrelevant operations (e.g., average or max), lo-
cation information could be retained from layers to layers. Finally,
existing methods focus on only classifications, while we perform
both classifications and localizations at the same time.
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As shown in Figure 8b, the localization results of CFN can be
used to trace the particle centers via a gradient decent approach
with a random restart. Specifically, an initial sub-tomogram is ran-
domly sampled, and CFN is used to detect the particle in the sub-
tomogram. If a particle is detected, the predicted particle center is
used to sample another sub-tomogram. This center tracing process
is repeated with a random restart so that all sub-tomograms can be
sampled theoretically, while the sub-tomograms near particle cen-
ters are more likely to be sampled. Finally, near-center predictions
are clustered to produce a consensus prediction. The training and
testing process took four days on two NVIDIA 3090 video cards.

3.7. Template matching

By: M. Cristina Trueba, Marten L. Chaillet

We performed template matching on the simulated dataset using
the cryo-ET analysis framework PyTom [HCP∗12]. A solvent cor-
rected electrostatic potential sampled to a grid of 1 nm voxels was
modulated for each particle with a CTF curve at 3,65 µm defocus
in the frequency domain to serve as templates [FMS78]. The tem-
plates were flipped to cover left- and right-handedness in the parti-
cle orientation of the simulated dataset. In addition, a Gaussian low
pass filter set to 4 nm was applied in Fourier space to both the tem-
plate and the tomogram to increase contrast and facilitate the par-
ticle detection. Spherical template masks with Gaussian smoothed
edges were used for normalization of the cross-correlation value.
The masks radius for each particle was chosen to fully encompass
the template. We also used Laplace of Gaussian (LoG) with stan-
dard deviation (σ) of 5 to recognize gold markers and extract their
position. Template matching for 12 protein classes and both hand-
edness takes 4 hours and 26 minutes on the NVIDIA GeForce GTX
1080 Ti (20 min 40 s per class, 10 min 20 s per handedness).

TM. The top 1,000 candidates with the highest cross-correlation
score for each class were extracted and merged for the dif-
ferent particle handedness. A Gaussian distribution was fitted
to the histogram of the correlation scores for each case pur-
suing to identify the correct particle population in it. We ob-
jectively set a minimum threshold to the mean (µ) minus two
times the standard deviation (σ) of the fitted gaussian pop-
ulation to avoid false positives. This resulted in 9 fiducials
and 122,107,318,314,924,708,211,329,127,399,149,301 parti-
cles of each class in the gold marker excluded dataset, from largest
to smallest with a total of 4,009 particles recognized.

TM-F. Alternatively, candidates of each class were addition-
ally filtered to exclude those that would potentially be overlapped
with already selected particles. To test for overlap, we calcu-
late the distance between the centre of an existing particle to
the centre of the candidate and calculate whether the distance
is smaller than the sum of their radii. The candidates for round
and symmetrical particles were filtered before asymmetrical and
elongated particles as their performance was significantly better
based on visual inspection in PyTom. This resulted in 9 fidu-
cials and 122,81,79,127,624,212,37,71,125,85,32,65 particles
of each class recognized in the gold marker excluded dataset, from
largest to smallest respectively with a total of 1,660 particles se-
lected.

Particle Quantity
1s3x 122
3qm1 120
3gl1 123
3h84 144
2cg9 125
3d2f 140
1u6g 143
3cf3 139
1bxn 135
1qvr 127
4cr2 115
5mrc 121

fiducial 11

Table 2: Distribution of particles by class in the test tomogram.

Figure 9: Cumulative classification F1 scores of methods.

4. Results

We have evaluated different metrics (Section 2.2) that allows com-
parison of localization (Table 3) and classification (Table 4) perfor-
mance of the methods. For more convenient referencing, we have
assigned following short names to the methods:

1. URFinder (Section 3.1)
2. DeepFinder (Section 3.2)
3. U-CLSTM (Section 3.3)
4. MC DS Net (Section 3.4)
5. YOPO (Section 3.5)
6. CFN (Section 3.6)
7. TM-T and TM-F (Section 3.7)

The test tomogram has 1,571 particles of the same 13 classes
and same distribution as the training data (Table 2). To have a more
detailed classification evaluation, we compare results with cumula-
tive F1 score (Figure 9), as well as group proteins by their molecu-
lar weight (Table 5) and average F1 scores for an additional metric
correlated with particle sizes (Table 6).
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Method RR TP FP FN MH AD Recall Precision Miss rate F1
URFinder 1969 1298 377 267 149 1.84 0.826 0.659 0.174 0.733
DeepFinder 1567 1362 64 203 20 2.22 0.867 0.869 0.133 0.868
U-CLSTM 1460 1253 49 312 44 2.13 0.798 0.858 0.202 0.827
MC DS Net 1760 1415 239 150 56 1.59 0.901 0.804 0.099 0.850
YOPO 1627 1224 232 341 14 1.66 0.720 0.752 0.221 0.765
CFN 1765 1364 239 201 20 1.52 0.868 0.773 0.132 0.818
TM-F 1772 963 295 601 17 2.65 0.613 0.543 0.387 0.576
TM 4195 1073 583 492 716 2.62 0.683 0.256 0.317 0.372

Table 3: Results of localization evaluation. RR: results reported; TP: true positive, unique particles found; FP: false positive, reported
non-existant particles; FN: false negative, unique particles not found; MH: multiple hits: unique particles that had more than one result;
AD: average euclidean distance from predicted particle center in voxels; Recall: uniquely selected true locations divided by actual number
of particles in the test tomogram; Precision: uniquely selected true locations divided by RR; Miss rate: percentage of results which yield
negative results; F1 Score: harmonic average of the precision and recall. The best results in each column are highlighted.

Method 1s3x 3qm1 3gl1 3h84 2cg9 3d2f 1u6g 3cf3 1bxn 1qvr 4cr2 5mrc fiducial
URFinder 0.000 0.423 0.453 0.600 0.542 0.672 0.673 0.867 0.967 0.860 0.926 0.954 0.429
DeepFinder 0.402 0.481 0.517 0.701 0.716 0.766 0.737 0.964 0.989 0.953 0.974 0.996 1.000
U-CLSTM 0.277 0.415 0.389 0.561 0.511 0.651 0.566 0.946 0.989 0.903 0.991 1.000 1.000
MC DS Net 0.316 0.487 0.603 0.783 0.782 0.791 0.797 0.956 0.985 0.934 0.979 1.000 1.000
YOPO 0.203 0.148 0.471 0.601 0.626 0.627 0.613 0.884 0.938 0.920 0.983 0.966 0.952
CFN 0.250 0.511 0.613 0.768 0.714 0.761 0.731 0.971 0.996 0.969 0.996 1.000 1.000
TM-F 0.040 0.189 0.200 0.282 0.308 0.439 0.129 0.592 0.962 0.513 0.827 0.857 0.900
TM 0.054 0.197 0.266 0.302 0.345 0.452 0.133 0.615 0.966 0.545 0.950 0.857 0.900

Table 4: Results of classification evaluation for all classes. The values correspond to F1 score achieved by methods on specific classes. The
best results in each column are highlighted.

Figure 10: Method classification performance plot against particle molecular weight.

Group Weight Proteins
Small <200 1s3x, 3qm1, 3gl1, 3h84, 2cg9
Medium 200-600 3d2f, 1u6g, 3cf3, 1bxn, 1qvr
Large 600+ 4cr2, 5mrc

Table 5: Grouping of macromolecular complexes by their molecu-
lar weight in kDa

5. Discussion

The benchmark allowed us to compare baseline template matching
and upcoming learning-based methods, as well as highlight current
challenges and approaches in cryo-ET.

Learning-based vs. template matching

The results (Table 3, 4) show that all learning-based methods
achieve better scores than the traditional baseline template match-
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Figure 11: Classification confusion matrices of the compared methods. The particles are ordered by molecular weight. The colorbar indicates
the number of correct classifications.

Method Small Medium Large
URFinder 0.404 0.808 0.94
DeepFinder 0.563 0.882 0.985
U-CLSTM 0.431 0.811 0.996
MC DS Net 0.594 0.893 0.989
YOPO 0.41 0.796 0.974
CFN 0.571 0.886 0.998
TM-F 0.204 0.527 0.842
TM 0.233 0.542 0.903

Table 6: F1 scores of each submission for size group defined in
Table 5. The best results in each column are highlighted.

Method Training stage Inference stage
URFinder 300h 2h 6m
DeepFinder 50h 20m
U-CLSTM 120h 15m
MC DS Net 22h 5m
YOPO 8h 40m
CFN 96h
TM-F/TM GPU N/A 4h 26m

Table 7: Reported training and inference stages timings.

ing (TM). Learning-based methods are also at least twice faster
(Table 7) than optimized GPU-accelerated TM, not taking into ac-
count “offline” training time. The success suggests that existing
supervised models can do better than TM in practice, given the
data is sufficiently realistic and/or model is robust to image ac-
quisition parameter difference. Moreover, some unsupervised ap-
proaches [ZKX∗21, ZX20] already show comparable or better per-
formance on real datasets.

Localization precision

Localizing exact center of a particle is important for accurate
subtomogram averaging. During localization evaluation we have
recorded average euclidean distance from predicted to ground truth
particle center. CFN (Section 3.6) showed the best performance,
closely followed by MC DS Net (Section 3.4) and YOPO (Sec-
tion 3.5), again better than template matching almost on one full
voxel (1nm). CFN and YOPO receive subtomograms as input and
both use smart pooling approaches to maximize scale-invariance,
allowing to accurately find bioparticles of different sizes. MC DS
Net uses denoising that can remove noise around particles leading
to improved localization precision.

Neural network architectures

Four methods (DeepFinder, U-CLSTM, MC DS Net and partly
URFinder) use advanced variations of U-Net [RFB15] architec-
ture, originally intended for accurate, voxel-level, biomedical se-
mantic segmentation. CFN and YOPO do not rely on semantic seg-
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mentation rather work with subtomograms directly and do not re-
quire voxel level labels, making it more accesible for cryo-ET re-
searchers.

Performance correlates with molecular weight

Results (Table 6, Figure 10, Figure 11) show strong correlation
between molecular weights and classification performance for all
methods. All learning-based methods show consistent performance
directly correlating with size, probably due to voxel count (volume)
going down rapidly and not leaving enough voxels to be classified.
At the same time, TM results have interesting difference, being able
to distinguish some particles better than other. For example, TM
performs on-par with learning-based method with protein 1bxn
(rubisco). Rubisco has high sphericity, large effective radius (Ta-
ble 1) and four-fold symmetry, that fits well to template matching
process. On the opposite, protein 1u6g is asymmetric, has aver-
age sphericity and effective radius, and is not distinguished well by
TM.

Future work

We strive to provide highly realistic dataset, and while the simula-
tor shows good agreement with experimental data, it has not been
quantitatively validated yet. We hope that in the next edition of the
benchmark we can provide a fully annotated experimental tomo-
gram as one of the test objectives.
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