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Figure 1: Classification examples for typically problematic BIM element cases.

Abstract

The Building Information Modelling (BIM) procedure introduces specifications and data exchange formats widely used by the
construction industry to describe functional and geometric elements of building structures in the design, planning, cost estima-
tion and construction phases of large civil engineering projects. In this paper we explain how to apply a modern, low-parameter,
neural-network-based classification solution to the automatic geometric BIM element labeling, which is becoming an increas-
ingly important task in software solutions for the construction industry. The network is designed so that it extracts features
regarding general shape, scale and aspect ratio of each BIM element and be extremely fast during training and prediction. We
evaluate our network architecture on a real BIM dataset and showcase accuracy that is difficult to achieve with a generic 3D

shape classification network.
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1. Introduction

Building Information Modelling consists of processes supported
by specialised software suites and tools, which aim to digitally
describe functional and physical entities of large construction
projects. Building Information Models (BIM) adhere to standard-
ised specifications and open or proprietary data exchange formats,
widely used by the construction industry, to support the full life-
cycle of civil engineering projects from design, planning and cost-
ing to the construction and even operational stage. A BIM is a hi-
erarchical collection of individual elements characterised and often
labelled by role and function and accompanied by detailed textual
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and numerical data describing measurements, quantities, materials,
vendors and other type-specific attributes.

BIMs are nowadays processed and analysed by specialised soft-
ware to (semi-) automatically estimate construction costs, quanti-
ties and validate digital plans. These processes require that a metic-
ulous annotation of BIM elements has been performed during the
creation of the digital model. However, more often than not, ele-
ments in BIM files are incompletely labelled, use different conven-
tions or are misclassified. Textual information can sometimes be
used to narrow down the possible classification labels but is typ-
ically unreliable. Therefore, the need arises for shape-based com-
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Figure 2: The dual-network architecture of our BIM element classification module. Numbers in the dense layers and output embeddings

indicate feature dimensions.

putational methods for automatic labelling that can assist in the te-
dious task of BIM data cleanup and consolidation.

In this paper we present a modern, neural-network-based classi-
fication solution to automatic BIM element labelling, based only on
geometric information. Such a solution can effectively label many
important structural elements in a BIM file and provide meaning-
ful suggestions during BIM data processing. The classification of
BIM elements requires careful handling and cannot be directly ad-
dressed by an off-the-shelf application of a widely-used neural net-
work. Firstly, many element classes are geometrically quite similar
and require special sampling and feature extraction to distinguish.
Additionally, elements come in many form factors and sizes, thus
requiring careful normalisation of their bounds. Finally, many ele-
ments differ only in absolute scale and typical orientation. There-
fore, the architecture should not be completely scale and rotation
invariant, but at the same time it should accommodate different
poses for many categories of elements. For example, as shown in
Fig. 1, a simple box can be a (steel) plate, a concrete slab or a wall
section and the only practical, geometric discrimination factors are
its absolute scale and minor axis alignment.

Our task falls directly under the general problem of 3D shape
classification, which has been extensively researched over the past.
Hand-crafted 3D shape descriptors have been used by researchers
in 3D search engines and sketch-based modelling systems. The in-
terested reader may refer to [KYZ13] for a comprehensive study
of traditional 3D shape descriptors. However, state-of-the-art re-
sults have been achieved recently using deep learning methods.
Several data representations have been proposed as input to neural
network architectures. These include voxel grids [MS15], point-
clouds [CSKG17], rendered images [SMKL15], hierarchical struc-
tures [RUG17] and raw primitive data [FFY*19]. Voxel grids are
very efficient to store, manipulate and access and lend themselves
nicely to modern network architectures that use convolutional lay-
ers. VoxNet [MS15], was one of the first voxel-based network ar-
chitectures to demonstrate great performance in terms of accuracy,
memory and evaluation time. Surface samples are taken on a 323
regular grid and are used as input in a series of convolutional layers
followed by a dense layer for class inference.

Although a dense, hierarchical classifier could also be used for
this task, we specifically desired a lean architecture that would en-
able the classifier to run on typical low- to mid-range desktop or
laptop machines and workstations, thus enabling the integration in
civil engineering software, without introducing extraneous require-
ments. Furthermore, we expressly needed to take into account the
scale and pose of certain object types, which warrants a specialised
architecture for BIM classification. Traditional classifiers, based
on hand-crafted features, were also initially considered, but these
would require significant effort from applied field experts, and po-
tentially higher computational cost, without any clear indication of
performance benefits.

2. Method Description

Our BIM element classification module processes triangular
meshes and is jointly trained on two separate neural branches dedi-
cated to extract meaningful features from the input (see also Fig. 2).
The number of BIM element classes within a certain construction
category, associated with a plan layer, is not very large, but the
elements can be structurally similar. Element dimensions have sig-
nificant impact on the class selection and our classification archi-
tecture takes them into account alongside the shape of the input
geometry, as described below. The first sub-network consumes the
voxelised representation of the element and proceeds with tradi-
tional convolutional layers, whereas the second one directly routes
the eight associated tight oriented bounding box corners to a point-
based network architecture. Carefully transforming the input for
each sub-network, based on trivial-to-implement procedures, can
effectively boost the discrimination capabilities of our architecture
and resolve hard to classify cases, which regularly emerge in this
context.

Geometry encoder. This path processes the triangular mesh input
and results in a feature vector, which is propagated to the classifier
after concatenation with the encoded bounds result of the archi-
tecture. The mesh is centred and aligned with the reference frame
axes, after applying the inverse oriented bounding box rigid trans-
formation matrix. Next, to handle objects within the same class but
of different proportions, we normalise each dimension separately.
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Note that this normalisation approach is in contrast to the standard
practice, which is to uniformly scale the object according to the
maximum dimension, retaining object proportions. Our approach
maximises voxel sample density and allows a descriptive represen-
tation even for small voxel grids. In the case of BIMs, this is im-
portant, since it allows the discrimination between solid and hollow
elongated parts (e.g. solid beams and piles versus pipes and other
tubular structures).

Next, the normalised meshes are solidly voxelised into a binary
occupancy grid, which constitutes the input of this branch of the
neural network. The most standard volumetric representation for
triangular meshes is that of surface voxelisation, as used by VoxNet.
A region enclosing the entire element is regularly sampled and a
binary occupancy grid is constructed marking voxels intersected
by the mesh surface. However, to be able to discriminate elements
with similar hulls but different internal structure, such as pipes and
cylindrical piles (see Fig. 1), as is the case in BIM classification, we
opted to perform solid voxelisation. Despite being a significantly
more involved procedure, all voxels inside the mesh are marked
as occupied, in addition to shell samples. We use a conservative,
point-in-mesh query, which determines the signed distance of each
voxel centre to the closest mesh point. This approach allows us to
robustly handle elements that have holes or disjoint vertices.

The 32° binary occupancy values of the voxel grid are fed to con-
volutional sub-sampling layers, which generate the latent encoding
of each element. Due to the relatively small number of meaningful
classes in each contextually separate information layer for build-
ings, network topology and the number of trainable parameters can
be kept small, which is in line with the practical requirements of
element processing; applications running on low- to mid-range de-
vices usually have to analyse thousands of elements per scene.

Bounds encoder. Performing coordinate normalisation indepen-
dently across dimensions may improve descriptiveness among sev-
eral classes (e.g. L-beams versus U-beams) but dropping features
such as absolute scale and proportions destroys critical discrim-
inative evidence among them. One simple and clear example of
this is the distinction between a slab and a simple wall section. Af-
ter alignment and normalisation both are mapped to the unit cube,
making them indistinguishable by the geometry encoder features
alone.

The bounds encoder in our pipeline, jointly trained along with
the geometry path, is responsible for resolving these ambiguities.
After centring a BIM element and calculating its oriented bound-
ing box, the eight box corners are extracted and their coordinates
are converted to metres. These are then passed through the sec-
ond network and latent encoded features are obtained via a typical
point-based architecture, similar to PointNet [CSKG17].

Classifier. The output embeddings from the geometry and bounds
encoders, with dimensionality of 16 and 8 respectively, are con-
catenated to form the final shape descriptor. This vector is then for-
warded to a dense layer followed by a softmax layer, producing
the predicted classification labels. Jointly optimising our network
without auxiliary hand-crafted features, forces the network to learn
meaningful representations from each branch conditioned on the
input elements.
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3. Evaluation

For all our experiments we trained the network for a maximum
of 50 epochs with early stopping monitored based on 0.02 absolute
difference for validation loss and a patience of 5 epochs. Upon early
termination, the best model in terms of validation loss is recorded.
We additionally use the default Adam optimiser and a batch size
of 32. The discussed architecture in Section 2, has a total of 2534
trainable parameters. Our Tensorflow implementation and the mod-
els discussed in the following sections are publicly available at:
https://github.com/cgaueb/deep_bim.

Dataset. Our dataset consists of 16 BIM classes which are roughly
balanced and result in 853 elements. We further augment every el-
ement with random rotations around the up direction, reflecting
plausible orientations in a construction, with the exception of the
Beam classes, which are freely and arbitrarily oriented, as in reality.
This results in 2571 elements for training and testing. An overview
of the training and test classes is presented in Figure 3. The number
of classes, although limited, reflects important building elements in
this particular scenario, in terms of BIM analysis and cost estima-
tion. Each BIM model and information layer typically uses a sub-
set of all meaningful BIM element categories and therefore makes
more sense to build and train multiple, leaner classifiers rather a
single, all-encompassing system.

Experiments. To demonstrate the expressiveness of our architec-
ture, we evaluated our model against two baseline architectures.
The first (Baseline 1) is a traditional voxel-based approach, which
generates an occupancy grid for the solid voxelisation using the
standard normalisation technique with no alignment. The second
(Baseline 2) uses the same voxelisation scheme, but introduces
the alignment and normalisation method proposed in Section 2. To
make the comparison fair, we increased the number of parameters
for the Baseline models to match the learning capacity of our archi-
tecture. In all our experiments we use a 70/30, train/test split.

In Table 3 we report per class accuracy for a subset of indica-
tive example cases that highlight the weaknesses of the baseline
methods versus our approach, which retains class separability by
construction. Starting with the I-beam and U-beam cases we can
observe that standard voxelisation (Baseline 1, second column) is
ineffective for these cases. This error manifests from the fact that
elongated meshes tend to generate thin voxel representations effec-
tively eliminating surface details. An obvious solution to the latter,
would be to greatly increase the voxel grid size. This, however,
would result in an excessive number of trainable parameters that is
undesirable and can be avoided by employing the Baseline 2 model
(third column). The uniform normalisation and alignment resolve
such problems but a number of other cases become infeasible to
classify correctly. This is evident for instance with classes such as
Plate and Slab since the Baseline 2 network gets an almost identical
input for both classes. On the other hand, conditioning the network
classifier with the bounds encoder, most information about the orig-
inal shape is retained and class separability is achieved, as demon-
strated by the results in the fourth column. For completeness, we
also record in Table 3, the overall accuracy and number of trainable
parameters for each model and in Figure 3 the confusion matrices
of our method versus the Baseline 1 model in the test subset.
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Figure 3: Classification performance for each class (top). Confu-
sion matrices for the test subset are for Baseline 1 implementation
(no alignment, uniform normalisation) and our method.

Accuracy per model (train / test)
Class name | Baseline 1 | Baseline 2 | Our method
I-beam 0.82/0.48 1.0/1.0 1.0/1.0
U-beam 0.50/0.52 1.0/1.0 1.0/1.0
Gully 1.0/1.0 1.0/1.0 1.0/1.0
Bearings 1.0/0.98 | 0.97/0.97 1.0/1.0
Plate 0.59/0.47 | 0.54/0.67 1.0/1.0
Slab 1.0/1.0 0.57/0.53 1.0/1.0
overall acc. | 0.84/0.76 | 0.92/0.93 0.99/0.99
#params 2873 2873 2534

Table 1: Reported accuracy on training (left) and test (right) sets
for a subset of indicative classes, see also Figure 3. Last two rows
report mean overall accuracy over the whole dataset along with the
capacity of each model.

4. Discussion and Conclusions

We presented a network architecture that performs reliably in com-
pact collections of hard-to-discriminate parts with many variations,
typically found in BIM datasets. The network was successfully de-
ployed and integrated as a shape classification module into CostOS,
a cost estimation software developed by Nomitech Ltd. running in
real-time on a wide range of devices. Our results strongly support
and suggest the applicability and effectiveness of the approach to
a wider range of elements and classes. The dual-network design of
the network allowed us to keep the number of learnable parameters
at a minimum. This leaves room for a substantial increase in learn-
able parameters and in the future, we want to evaluate our network
architecture on larger and more detailed datasets.
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