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Abstract
In light of the increased processing power of graphics cards and the availability of large-scale datasets, deep neural networks
have shown a remarkable performance in various visual computing applications. In this paper, we propose a geometric
framework for unsupervised 3D shape retrieval using geodesic moments and stacked sparse autoencoders. The key idea is
to learn deep shape representations in an unsupervised manner. Such discriminative shape descriptors can then be used to
compute the pairwise dissimilarities between shapes in a dataset, and to find the retrieved set of the most relevant shapes to a
given shape query. Experimental evaluation on three standard 3D shape benchmarks demonstrate the competitive performance
of our approach in comparison with state-of-the-art techniques.

1. Introduction

Shape retrieval is a fundamental problem in a wide range of fields,
including computer vision, geometry processing, medical imaging,
and computer graphics. Given a database of shapes, the goal of
shape retrieval is to find the set of most relevant shapes to a query
shape. The 3D shape retrieval problem, for instance, has been at-
tracting much attention in recent years, fuelled primarily by in-
creasing accessibility to large-scale 3D shape repositories that are
freely available on the Internet [CFG∗15].

Spectral geometry is at the core of several state-of-the-art tech-
niques that effectively tackle the problem of nonrigid 3D shape re-
trieval, achieving excellent performance on the latest 3D shape re-
trieval contests [PSR∗14, LBBC14, BCA∗14, ZLCE∗15, SYS∗16].
Most of these approaches represent a 3D shape by a spectral sig-
nature, which is a concise and compact shape descriptor aimed
at facilitating the retrieval tasks. Examples of spectral shape de-
scriptors include global point signature [Rus07], heat kernel signa-
ture [SOG09], scale-invariant heat kernel signature [BK10], wave
kernel signature [ASC11], spectral graph wavelet signature [LB13],
improved wave kernel signature [LW15], and reduced biharmonic
distance matrix signature [YY15].

The recent trend in shape analysis is geared towards using deep
neural networks to learn features at various levels of abstraction. It
is no secret that deep learning is the buzzword of the moment in
both academic and industrial circles, and the performance of deep
neural networks has been quite remarkable in a variety of areas such
as speech recognition, image recognition, natural language process-
ing, and geometry processing [Sch15, NYN∗15, Ben09, BBL∗16].
The trend toward deep neural networks has been driven, in part,
by a combination of affordable computing hardware, open source
software, and the availability of large-scale datasets.

Although applying deep neural networks to 3D shapes, particu-
larly to mesh data, is not straightforward, several deep learning ar-
chitectures have been recently proposed to tackle various 3D shape
analysis problems in a bid to learn higher level representations
of shapes [SMKLM15, WSK∗15, QSN∗16, BLH∗14, BBZ∗16].
Su et al. [SMKLM15] presented a convolutional neural network
architecture that combines information from multiple views of
a 3D shape into a single and compact shape descriptor. Wu et
al. [WSK∗15] proposed a deep learning framework for volumet-
ric shapes via a convolutional deep belief network by represent-
ing a 3D shape as a probabilistic distribution of binary variables
on a 3D voxel grid. Brock et al. [BLRW16] proposed a voxel-
based approach to 3D object classification using variational au-
toencoders and deep convolutional neural networks, achieving im-
proved classification performance on the ModelNet benchmark.
Sedaghat et al. [SZB17] showed that forcing the convolutional neu-
ral network to produce the correct orientation during training yields
improved classification accuracy. Bu et al. [BLH∗14] introduced
a deep learning approach to 3D shape classification and retrieval
using a shape descriptor represented by a full matrix defined in
terms of the geodesic distance and eigenfunctions of the Laplace-
Beltrami operator [Ros97,BBK08]. Bai et al. [BBZ∗16] introduced
a real-time 3D shape search engine based on the projective images
of 3D shapes. Xie et al. [XDF17] proposed a multi-metric deep
neural network for 3D shape retrieval by learning non-linear dis-
tance metrics from multiple types of shape features, and by enforc-
ing the outputs of different features to be as complementary as pos-
sible via the Hilbert-Schmidt independence criterion. A compre-
hensive review of deep learning advances in 3D shape recognition
can be found in [ICNK17].

In this paper, we introduce a deep learning approach, dubbed

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Eurographics Workshop on 3D Object Retrieval (2018)
A. Telea, T. Theoharis, and R. C. Veltkamp (Editors)

DOI: 10.2312/3dor.20181049

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/3dor.20181049


L. Luciano & A. Ben Hamza / Geodesic-based 3D Shape Retrieval Using Sparse Autoencoders

DeepGM, to 3D shape retrieval. The proposed technique leverages
recent developments in machine learning and geometry processing
to effectively represent and analyze 3D shapes at various levels of
abstraction in an effort to design a compact yet discriminative shape
representation in an unsupervised way. More specifically, we use
stacked sparse autoencoders to learn deep shape descriptors from
geodesic moments of 3D shapes. The geodesic moments are ge-
ometric feature vectors defined in terms of the geodesic distance
on a 3D shape, while stacked sparse autoencoders are deep neural
networks consisting of multiple layers of sparse autoencoders that
attempt to enforce a constraint on the sparsity of the output from
the hidden layer.

We show that our proposed framework unsupervisedly learns ge-
ometric features from shapes with the aim of designing a highly
discriminative shape descriptor that yields better retrieval results
compared to existing methods, including supervised learning tech-
niques. The main contributions of this paper may be summarized
as follows:

• We present a geometric framework for 3D shape retrieval using
geodesic moments.

• We propose an unsupervised approach for learning deep shape
descriptors using stacked sparse autoencoders.

• We show through extensive experiments the competitive perfor-
mance of the proposed approach in comparison to existing shape
retrieval techniques on several 3D shape benchmarks using vari-
ous evaluation metrics.

The remainder of this paper is organized as follows. In Section
2, we introduce a deep learning framework with geodesic moments
for 3D shape retrieval using stacked sparse autoencoders, and we
discuss the main components of our proposed algorithm. Experi-
mental results on both synthetic and real datasets are presented in
Section 3 to demonstrate the efficiency of our approach. Finally, we
conclude in Section 4.

2. Method

In this section, we present a deep learning approach to 3D shape
retrieval using geodesic moments and stacked sparse autoencoders.
We start by defining the geodesic moments, and then we describe
in detail the key steps of our proposed algorithm.

2.1. Geodesic Moments

A 3D shape is usually modeled as a triangle mesh M whose ver-
tices are sampled from a Riemannian manifold. A triangle mesh
M may be defined as a graph G = (V,E) or G = (V,T ), where
V = {v1, . . . ,vm} is the set of vertices, E = {ei j} is the set of edges,
and T is the set of triangles. Each edge ei j = [vi,v j] connects a pair
of vertices {vi,v j} (or simply {i, j}). We define the kth geodesic
moment at a mesh vertex j as

µk( j) = k
m

∑
i=1

dk−1
i j ai, (1)

where ai is the area of the Voronoi cell at vertex i, and di j is the
geodesic distance between mesh vertices i and j. Hence, we may
represent the shape M by an m× p geodesic moment matrix M =

(µ1, . . . ,µm)
ᵀ, where µ j = (µ1( j), . . . ,µp( j)) is a p-dimensional

vector consisting of the first p moments (i.e. arranged in increas-
ing order of magnitude) at vertex j. Figure 1 illustrates a triangle
mesh consisting of m = 689 vertices, as well as the graph geodesic
distance matrix between all mesh vertices, and the normalized ver-
tex area plot.
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Figure 1: Triangle mesh (top left); graph geodesic distance matrix
(top right); and normalized vertex area plot (bottom).

2.2. Proposed Algorithm

The objective of 3D shape retrieval is to search and extract the most
relevant shapes to a query shape from a dataset of 3D shapes. The
retrieval accuracy is usually evaluated by computing a pairwise dis-
similarity measure between shapes in the dataset. A good retrieval
algorithm should result in few dissimilar shapes. A commonly used
dissimilarity measure for content-based retrieval is the `1-distance,
which quantifies the difference between each pair of 3D shapes.

Our proposed DeepGM approach to 3D shape retrieval consists
of two major steps. In the first step, we compute the p× p matrix
Si = Mᵀ

i Mi for each shape Mi in the dataset D = {M1, . . . ,Mn},
where Mi is the geodesic moment matrix and p is the number
of geodesic moments. Then, each matrix Si is reshaped into a
p2-dimensional feature vector xi by stacking its columns one un-
derneath the other. Subsequently, all feature vectors xi of all n
shapes in the dataset are arranged into a p2× n data matrix X =
(x1, . . . ,xn).

In the second step, we use stacked sparse auto-encoders to learn
deep features by training the hidden layers of the network individ-
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ually in an unsupervised way. An autoencoder is comprised of an
encoder and a decoder, as depicted in Fig. 2.

Input Output

Encoder Decoder

Figure 2: Graphical diagram of an autoencoder.

The encoder maps an input vector to a hidden representation and
the decoder maps back the hidden representation to a reconstruction
of the original input. More precisely, The encoder, denoted by fθ,
maps an input vector x ∈ Rq to a hidden representation (referred to
as code, activations or features) a∈Rr via a deterministic mapping

a = fθ(x) = σ(Wx+b), (2)

parameterized by θ = {W,b}, where W ∈ Rr×q and b ∈ Rq are
the encoder weight matrix and bias vector, and σ is a nonlinear
element-wise activation function such as the logistic sigmoid or
hyperbolic tangent. The decoder, denoted by gθ′ , maps back the
hidden representation h to a reconstruction x̂ of the original input x
via a reverse mapping

x̂ = gθ′(a) = σ(W′a+b′), (3)

parameterized by θ
′ = {W′,b′}, where W′ ∈ Rq×r and b′ ∈ Rq

are the decoder weight matrix and bias vector, respectively. The
encoding and decoding weight matrices W and W′ are usually con-
strained to be of the form W′ = Wᵀ, which are referred to as tied
weights. Assuming the tied weights case for simplicity, the param-
eters {W,b,b′} of the network are often optimized by minimizing
the squared error ∑

N
i=1‖xi− x̂i‖2

2, where N is the number of samples
in the training set, xi is the ith input sample and x̂i is its reconstruc-
tion.

To penalize large weight coefficients in an effort to avoid over-
fitting the training data and also to encourage sparsity of the out-
put from the hidden layer, the following objective function is mini-
mized instead

L(W,b,b′) = 1
2

N

∑
i=1
‖xi− x̂i‖2

2 +
λ

2
‖W‖2

F +β

N

∑
j=1

KL(ρ‖ρ̂ j), (4)

where λ is a regularization parameter that determines the relative
importance of the sum-of-squares error term and the weight decay
term, and β is the weight of the sparsity regularization term. This
sparsity regularizer is the Kullback-Leibler divergence KL(ρ‖ρ̂ j),
which is a dissimilarity measure between ρ and ρ̂ j, and it is defined
as

KL(ρ‖ρ̂ j) = ρ log
ρ

ρ̂ j
+(1−ρ) log

1−ρ

1− ρ̂ j
, (5)

where ρ̂ j is the average activation value of the hidden unit j and ρ

is its desired value which is typically small.

A stacked sparse autoencoder is a deep neural network consist-
ing of multiple layers of stacked encoders from several sparse au-
toencoders. This stacked network is pre-trained layer by layer in
a unsupervised fashion, where the output from the encoder of the
first autoencoder is the input of the second autoencoder, the output
from the encoder of the second autoencoder is the input to the third
autoencoder, and so on. After pre-training, the entire stacked sparse
autoencoder can be trained using backpropagation to fine-tune all
the parameters of the network.

The geodesic vectors xi of all n shapes in the dataset are ar-
ranged into a κ × n data matrix X = (x1, . . . ,xn) on which a
deep auto-encoder is performed, resulting in an rL × n matrix
A = (a(1)L , . . . ,a(n)L ) whose columns are deep learned shape rep-
resentations (referred to as DeepGM descriptors), where rL is the
total number of units in the last hidden layer of the network. The
geodesic feature vector of a 3D table model is displayed in Fig-
ure 3(top), while Figure 3(bottom) shows the DeepGM descriptor
of a 3D table model.
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Figure 3: Geodesic features (top) and DeepGM features (bottom)
of a 3D table model.

Finally, we compare a query shape to all shapes in the dataset
using the `1-distance between the DeepGM descriptors to measure
the dissimilarity between each pair for 3D shape retrieval. Algo-
rithm 1 summarizes the main algorithm steps of our DeepGM ap-
proach to 3D shape retrieval.

3. Experiments

In this section, we conduct extensive experiments to assess the per-
formance of the proposed DeepGM approach in 3D shape retrieval.
The effectiveness of our approach is validated by performing a
comprehensive comparison with several shape retrieval methods
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Algorithm 1 DeepGM Retrieval
Input: Dataset D = {M1, . . . ,Mn} of n shapes, and p geodesic

moments.
1: for i = 1 to n do
2: Compute the m× p geodesic moment matrix Mi for each 3D

shape Mi, where m is the number of vertices.
3: Compute the p× p matrix Si = Mᵀ

i Mi, and reshape it into a
p2-dimensional vector xi

4: end for
5: Arrange all the feature vectors xi into a p2×n data matrix X =

(x1, . . . ,xn)
6: Apply a stacked sparse auto-encoder on X to find the rL× n

matrix A = (a(1)L , . . . ,a(n)L ) of deepGM descriptors, where rL is
the number of units in the last hidden layer.

7: Compute the `1-distance between the DeepGM vector of the
query and all DeepGM vectors in the dataset, and find the clos-
est shape(s).

Output: Retrieved set of most relevant shapes to the query.

using standard performance evaluation metrics that are widely used
in retrieval tasks.

Datasets: The effectiveness of the proposed shape retrieval
framework is evaluated on three standard and publicly available 3D
shape benchmarks [PSR∗14, CFG∗15]: synthetic SHREC-2014,
real SHREC-2014, and SHREC-2016 [CFG∗15]. Sample shapes
from these widely-used datasets are displayed in Fig. 4.

Figure 4: Sample shapes from real SHREC-2014 (top), synthetic
SHREC-2014 (middle), and SHREC-2016 (bottom).

Implementation details: All the experiments were carried out on
a desktop computer with a CPU Core i7 processor running at 3.4

GHz and 32 GB RAM; and all the algorithms were implemented
in MATLAB. For feature extraction, we employed a stacked sparse
autoencoder with two layers, as illustrated in Figure 5. We used
the logistic sigmoid function as an activation function for both au-
toencoders. The sizes of the hidden layers for the first and second
autoencoders are set to h1 = 1000 and h2 = 500, respectively. In the
objective function of the stacked sparse autoencoder, we set the reg-
ularization parameter to λ = 0.0001, and the weight of the sparsity
regularization term to β = 3. We also set the number of geodesic
moments to p = 20 for all datasets. In other words, each shape in
the synthetic SHREC-2014, real SHREC-2014 and SHREC-2016
datasets is represented by an input geodesic feature vector of di-
mension p2 = 400.

In our DeepGM approach, we used the features learned by the
second autoencoder to perform 3D shape retrieval. That is, we
used the 500-dimensional deep feature vectors of the second hidden
layer to compute the `1-distance matrix.

Input Output

Encoder Encoder Softmax Layer

Figure 5: Architecture of a two-layer stacked autoencoder.

3.1. Results

In this section, we report the retrieval results of our approach
and the baseline techniques on the synthetic SHREC-2014, real
SHREC-2014 and SHREC-2016 datasets.

3.1.1. SHREC-2014 dataset

The SHREC-2014 benchmark [PSR∗14] consists of two datasets:
real and synthetic. The real SHREC-2014 dataset is composed of
400 shapes made from 40 human subjects in 10 different poses.
Half of the human subjects are male, and half are female. The
poses of each subject are built using a data-driven deformation
technique, which can produce realistic deformations of articulated
meshes [CLC∗13].

The synthetic SHREC-2014 dataset, on the other hand, consists
of 15 different human models, each of which has its own unique
body shape. Five human models are male, five are female, and five
are child body shapes. Each of these models exists in 20 different
poses, resulting in a total of 300 shapes. The same poses are used
for each body shape, and objects are considered from the same class
if they share the same body shape.

Evaluation metrics: The proposed approach is evaluated in com-
parison to existing state-of-the-art methods using several standard
evaluation metrics [SMKF04], including Nearest Neighbor (NN),
First-tier (FT) and Second-tier (ST), E-Measure (E), and Dis-
counted Cumulative Gain (DCG).
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Baseline methods: We carried out a comprehensive compar-
ison between the proposed DeepGM framework and several
state-of-the-art methods, including histograms of area projec-
tion transform (HAPT) [GL12], heat kernel signature based on
time serial (HKS-TS) [PSR∗14], Euclidean distance based canon-
ical forms (EDBCF) [PSRM15], supervised dictionary learning
(supDLtrain) [LBBC14], reduced biharmonic distance matrix (R-
BiHDM) [YY15], and high-level feature learning using deep be-
lief networks (3D-DL) [BLH∗14]. These baselines are the best per-
forming methods on the SHREC-2014 datasets.

Performance evaluation: To compute the pairwise distance ma-
trix between all pairs of shapes in the real and synthetic SHREC-
2014 datasets, we represent each shape by a 500-dimensional deep
feature vector that is learned by the second autoencoder. More
specifically, a 1000-dimensional feature representation is learned
from the 400-dimensional geodesic feature vector using the first
autoencoder. Then, the second autoencoder is employed to learn a
reduced shape representation of 500 dimensions.

Results: In the first step of our DeepGM approach, each shape
in the real and synthetic SHREC-2014 datasets is represented by a
400-dimensional geodesic feature vector (i.e. p = 20). Hence, the
data matrix X for the real SHREC-2014 dataset is of size 400×400,
while the data matrix for the synthetic SHREC-2014 datasetand is
of size 400× 300. Training the stacked sparse auto-encoder yields
a DeepGM matrix A of size 500× 400 for real SHREC-2014, and
500×300 for synthetic SHREC-2014.

Table 1 shows the retrieval rates for all methods on the real
SHREC-2014 dataset, which consists of 400 shapes. A distance
matrix of size 400× 400 is constructed by computing the `1-
distance between each pair of the 500-dimensional deep feature
vectors. Finally, a retrieval test on this distance matrix is conducted
and the scores for the evaluation metrics are computed. As can
be seen, comparing with the state-of-the-art supervised approach
supDLtrain, our unsupervised DeepGM approach performs rela-
tively well and gives the second best results for all the evaluation
metrics except for NN and DCG.

Table 1: Performance comparison results on the real SHREC-2014
dataset. Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG

HAPT [GL12] 84.5 53.4 68.1 35.5 79.5
HKS-TS [ZLCE∗15] 24.5 25.9 46.1 31.4 54.8
EDBCF [PSRM15] 1.0 1.2 4.0 4.3 27.9
supDLtrain [LBBC14] 79.3 72.7 91.4 43.2 89.1
R-BiHDM [YY15] 68.5 54.1 74.2 38.7 78.1
3D-DL [BLH∗14] 22.5 19.3 37.4 26.2 50.4
DeepGM 72.5 53.6 82.7 41.2 78.2

Table 2 summarizes the retrieval rates for all methods on the
synthetic SHREC-2014 dataset, which consists of 300 shapes. A
distance matrix of size 300× 300 is obtained by computing the

`1-distance between each pair of the 400-dimensional deep feature
vectors. Finally, a retrieval test on this distance matrix is conducted
and the scores for the evaluation metrics are computed. As can be
seen, DeepGM is the top performing method in terms of the NN
measure at 99.3%, with a performance improvement of 3.3% over
supDLtrain. Again, although our approach is unsupervised, it still
outperforms supDLtrain in terms of NN and E measures, and gives
the second best results in terms of the other evaluation metrics.
Even in the case of ST and DCG, we are very close to the best
reported performance with a thin 0.8% margin. A key advantage of
unsupervised approaches is the possibility to learn larger and more
complex models than with supervised methods. Supervised learn-
ing may be susceptible to over-fitting the training data and requires
a large body of labeled data. Another advantage of unsupervised
approaches is the ability to discover meaningful structure in the
data.

Table 2: Performance comparison results on the synthetic SHREC-
2014 dataset. Boldface numbers indicate the best retrieval perfor-
mance.

Retrieval Evaluation Measures (%)

Method NN FT ST E DCG

HAPT [GL12] 97.0 73.3 92.7 65.5 93.6
HKS-TS [ZLCE∗15] 46.7 47.6 74.3 50.4 72.9
EDBCF [PSRM15] 11.3 18.2 33.3 21.7 50.7
supDLtrain [LBBC14] 96.0 88.7 99.1 72.1 97.5
R-BiHDM [YY15] 79.3 57.2 76.0 53.3 83.6
3D-DL [BLH∗14] 92.3 76.0 91.1 64.1 92.1
DeepGM 99.3 81.4 98.3 72.3 96.7

3.1.2. SHREC-2016 dataset

The ShapeNet Core55 (SHREC-2016) is a subset of the ShapeNet
dataset [CFG∗15]. The ShapeNetCore contains about 51,300 mod-
els of over 55 common categories. Each of these common cate-
gories may be subdivided into several further subcategories. The
SHREC-2016 dataset is split into a 70% training set, a 10% valida-
tion set, and a 20% test set.

Baseline methods: Using the SHREC-2016 shape bench-
mark, we carried out an extensive comparison between the
proposed DeepGM framework and several state-of-the-art
methods, including Multi-view Convolutional Neural Networks
(MVCNN) [SMKLM15], Graphics Processing Unit acceleration
and Inverted File Twice (GIFT) [BBZ∗16], View Aggregation
(VA) [SYS∗16], Channel-wise CNN for Multitask Learning by
Triplet (CCMLT) [SYS∗16], and DB-FMCD-FUL-LCDR which
is an appearance-based 3D shape feature extraction approach
using pre-trained convolutional neural networks [SYS∗16]. These
baselines are the best performing approaches on the SHREC-2016
dataset.

Evaluation metrics: The DeepGM approach is evaluated on
the SHREC-2016 dataset using several standard evaluation met-
rics [SYS∗16], including Precision and Recall (P@N and R@N),
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F-score (F1@N), Mean Average Precision (mAP), and Normalized
Discounted Cumulative Gain (NDCG). Precision is the fraction of
the models retrieved that are relevant to the query, while recall is
the fraction of the models that are relevant to the query that are ac-
tually retrieved. The F-score is the weighted mean of precision and
recall. The mean average precision for a set of queries is the mean
of the average precision scores for each of these queries. The nor-
malized discounted cumulative gain is a measure of the rankings
quality of the retrieval results.

These evaluation metrics are used in macro and micro averaged
versions. The macro version gives an unweighed average over the
entire dataset (all models are averaged with equal weight). In the
micro version, the query and retrieval results are treated equally
across categories.

Performance evaluation: The SHREC-2016 dataset is divided
into three distinct sets: a training set containing 36,147 models, a
validation set containing 5,165 models, and a test set composed of
10,366 models. For each of these three sets, we used a two-layer
stacked sparse autoencoder to learn high-level feature descriptors
for each shape. We first compute a 400-dimensional geodesic fea-
ture representation for each shape and then use it as input to
the proposed DeepGM neural network model, resulting in a 500-
dimensional deep shape descriptor for each shape.

Results: Following the same setup as in the previous exper-
iments, the data matrices of geodesic feature vectors for the
SHREC-2016 training, validation, and test datasets are of size
400× 36,147, 400× 5,165 and 400× 10,366, respectively. The
results on the SHREC-2016 dataset are summarized in Tables 3, 4
and 5. As can be seen, DeepGM outperforms the best performing
method on the SHREC-2016 training dataset by a margin of 5.4%
(resp. 8.6%) in terms of P@N using microALL (resp. macroALL).
DeepGM also performs better than MVCNN on both the SHREC-
2016 validation and test datasets in terms of P@N and NDCG.
On the SHREC-2016 validation dataset, DeepGM has an NDCG
score of 97.2 with microALL compared to just 93.8 for MVCNN.
In terms of NDCG, DeepGM comes out way ahead with a score of
95.8 with macroALL versus 88.0 for MVCNN on the SHREC-2016
test dataset. It is also worth pointing out that DeepGM performs
consistently better than the baseline methods using three evalua-
tion metrics, namely P@N, mAP and NDCG. Overall, DeepGM
delivers robust retrieval performance.

Feature visualization: The high-level features learned by our
proposed DeepGM can be visualized using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [vdMH08], which is a di-
mensionality reduction technique that is particularly well-suited for
embedding high-dimensional data into a space of two or three di-
mensions. Figure 6 displays the t-SNE embeddings of the shapes
in the SHREC-2016 dataset using the 400-dimensional geodesic
feature vectors (top) and the 500-dimensional deep features (bot-
tom) generated by our DeepGM approach. As can be seen, the two-
dimensional embeddings corresponding to DeepGM are more sepa-
rable than the ones corresponding to geodesic feature vectors. With
geodesic features, the points are not discriminated very well, while
with DeepGM features, the points are discriminated much better. In

other words, DeepGM learns more discriminative features for 3D
shape retrieval tasks, indicating the superior performance of deep
features over shallow ones. Moreover, Figure 6 shows that the un-
supervised DeepGM approach is exploratory in nature in the sense
it can discover patterns and meaningful sub-groups in a dataset.

Figure 6: Two-dimensional t-SNE feature visualization of geodesic
moments (top) and DeepGM features (bottom) on the SHREC-2016
dataset.

4. Conclusion

In this paper, we introduced an efficient geometric approach to 3D
shape retrieval using geodesic moments and stacked sparse autoen-
coders. The proposed approach learns deep shape descriptors in an
unsupervised way by leveraging the hierarchical representations in
a discriminatively trained deep learning model. We showed that our
DeepGM approach provides a comparable performance on the real
and synthetic SHREC-2014 datasets, even against supervised tech-
niques. Although our approach is unsupervised, it still outperforms
supDLtrain in terms of several measures on synthetic SHREC-
2014. In addition, DeepGM outperforms the state of the art on the
more recent SHREC-2016 dataset by a comfortable margin of 7.8%
on the test dataset using the NDCG metric. The two-dimensional
visualization of shape representations demonstrates the discrimi-
native power of deep features compared to the shallow ones. It is
important to point out that the retrieval performance of DeepGM
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Table 3: Performance comparison results on the SHREC-2016 training dataset. Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

microALL macroALL

Method P@N R@N F1@N mAP NDCG P@N R@N F1@N mAP NDCG

MVCNN [SMKLM15] 93.9 94.4 94.1 96.4 92.3 90.9 93.5 92.1 96.4 94.7
GIFT [BBZ∗16] 84.1 57.1 62.0 90.7 91.2 63.4 45.2 47.2 81.5 89.1
VA [SYS∗16] 82.7 99.6 86.4 99.0 97.8 37.4 99.7 46.0 98.2 98.6
CCMLT [SYS∗16] 88.4 26.0 36.3 91.7 89.1 58.6 49.7 42.8 77.5 86.3
DeepGM 99.3 60.0 67.6 99.7 98.1 99.5 88.4 91.1 99.9 98.6

Table 4: Performance comparison results on the SHREC-2016 validation dataset. Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

microALL macroALL

Method P@N R@N F1@N mAP NDCG P@N R@N F1@N mAP NDCG

MVCNN [SMKLM15] 80.5 80.0 79.8 91.0 93.8 64.1 67.1 64.2 87.9 92.0
GIFT [BBZ∗16] 74.7 74.3 73.6 87.2 92.9 50.4 57.1 51.6 81.7 88.9
VA [SYS∗16] 34.3 92.4 44.3 86.1 93.0 8.70 87.3 13.2 74.2 85.4
CCMLT [SYS∗16] 68.2 52.7 48.8 81.2 88.1 24.7 64.3 26.6 57.5 71.2
DB-FMCD-FUL-LCDR [SYS∗16] 30.6 76.3 37.8 72.2 88.6 9.60 82.8 14.0 60.1 80.1
DeepGM 83.3 77.2 74.5 95.6 97.2 88.6 48.7 55.6 94.0 96.4

Table 5: Performance comparison results on the SHREC-2016 test dataset. Boldface numbers indicate the best retrieval performance.

Retrieval Evaluation Measures (%)

microALL macroALL

Method P@N R@N F1@N mAP NDCG P@N R@N F1@N mAP NDCG

MVCNN [SMKLM15] 77.0 77.0 76.4 87.3 89.9 57.1 62.5 57.5 81.7 88.0
GIFT [BBZ∗16] 70.6 69.5 68.9 82.5 89.6 44.4 53.1 45.4 74.0 85.0
VA [SYS∗16] 50.8 86.8 58.2 82.9 90.4 14.7 81.3 20.1 71.1 84.6
CCMLT [SYS∗16] 71.8 35.0 39.1 82.3 88.6 31.3 53.6 28.6 66.1 82.0
DB-FMCD-FUL-LCDR [SYS∗16] 42.7 68.9 47.2 72.8 87.5 15.4 73.0 20.3 59.6 80.6
DeepGM 78.4 73.2 69.6 93.6 96.5 85.4 45.9 52.3 92.2 95.8

yields consistent retrieval results across all datasets used for ex-
perimentation, while baselines perform less coherently from one
dataset to another. This consistent performance is largely attributed
to the fact that features learned via deep learning are transferable to
other learning tasks, and even to other modalities and datasets.
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