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Abstract

We present an automatic approach for the retrieval of a complex structure within a 3D digital volume, using a generic de-
formable surface model. We apply this approach to the inner ear reconstruction of Cone Beam CT(CBCT) 3D data. The pro-
posed method is based on a single prior shape initialization followed by two steps. A geometric rigid adjustment allows a close
fit to inner ear boundaries. Finally, a Laplacian mesh deformation method is used to iteratively refine the mesh. Preliminary

results are promising in terms of several similarity metrics.
CCS Concepts

eComputing methodologies — Complex structure segmentation; eHardware — Cone Beam CT; CGAL;

1. Introduction
1.1. Context

Automatic segmentation of complex topological structures from
their volume representations is an important step towards a bet-
ter understanding of their morphology and deformations. This re-
search field finds many applications in medical imaging and geol-
ogy [LTRRBOS].

In this paper, we will focus on the extraction of three-dimensional
models of the human inner ear from Cone Beam CT volumes. The
inner ear is a labyrinthine space responsible for balance and hear-
ing, and is composed of a vestibule, a cochlea and semicircular
canals (Figure 1). This structure has a typical length and width of
20 mm and 13 mm, respectively. Anatomical knowledge of the in-
ner ear is crucial for diverse research fields e.g cochlea implan-
tation [RTP*16] and congenital malformation. Automatic retrieval
of the inner ear boundaries through 3D modeling is a precondition
for shape analysis and diagnosis. Three-dimensional models of this
anatomical structure could also lead to a better understanding of
hearing mechanics.

Multi-slice computed tomography (MSCT) is widely used for tem-
poral bone imaging. However, Cone beam computerized tomogra-
phy (CBCT) presents the advantage of having a shorter acquisi-
tion time and a higher spatial resolution while exposing patients to
less ionizing radiation than conventional CT-scans [RTP*16]. As
a result, this imaging modality is being increasingly used for this
purpose. Nonetheless, the image contrast is lower due to the beam
hardening phenomenon and scatter radiations causing artifacts and
increased noise in CBCT images [Yan16], thus preventing soft tis-
sue visualization.

1.2. Problem statement

One of the main challenges to inner ear retrieval in CBCT vol-
umes is the impossibility to automatically suppress the surrounding
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bone structures visible in Figure 2.A. These structures have similar
intensity distributions in CBCT images, which causes difficulties
to detect their boundaries. Also, the shape of the inner ear is topo-
logically complex : the cochlea is a snail-shaped object of 2% / 2%
turns and the semi-circular canals correspond to 3D objects char-
acterized by surface of genus 3 (Figure 1). Conservation of these
complex features during the segmentation process of the inner ear
remains a difficult challenge.

1.3. Related work

Manual segmentation is often used as a way to obtain accu-
rate 3D models of the inner ear in spite of the fact that it re-
mains a laborious and time consuming process [VA95, BBS12].
To alleviate drawbacks of manual contouring, some research teams
have proposed semi-automated method based on region growing
[YWR*00], active contours [YWRVO01] or level-sets [XSCYO05] on
CT-scan images. Simple semi-automatic algorithms implemented
in some commercial softwares are also used in the literature
[WNB*06, WZYL15].

By defining priors such as foreground and background or by plac-
ing seeds inside the desired region, these techniques solved the ma-
jor leaking problems but the lack of shape constraints still makes
them prone to leakage into neighboring. These techniques require
the supervision of a user to achieve satisfactory precision. There-
fore, the resulting models are often incomplete, and while that
might be sufficient for ordinary shape analysis and length measure-
ments, it remains inadequate for deeper analyses.

In order to further constrain the segmentation result and prevent
leakage problems, Noble et al. [Nob11] proposed to impose global
shape control based on an active shape model algorithm. The shape
model was based on five models built upon manually segmented
cochleae on micro-CT images. Their algorithm has the advantage
of provide a complete segmentation of the bony labyrinth with a
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differentiation between the scalaes (chambers inside cochlea), even
though this differentiation is often not visible in CT-scan images.

1.4. Contribution

In previous works, authors mentioned the difficulties associated
with the use of low-resolution imaging approaches to accurately
detect inner ear structures. User supervision is usually required to
obtain an acceptable 3D model. Our contribution consists of an ac-
curate 3D segmentation of the inner ear from CBCT images without
supervision. This method retains specific topological attributes of
the inner ear using an iterative Laplacian optimization algorithm to
apply a deformation on an a priori mesh. It is inspired from a liver
segmentation approach, developed by Chartrand et al. [CCC*16].
Our preliminary results include a preliminary validation of this ap-
proach.
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Figure 1: A priori model of left inner ear.

2. Description of the segmentation approach
2.1. Overview

In this approach, an a priori 3D model is used as input in a shape
fitting algorithm. As shown in figure 2, we took a three-pronged ap-
proach to the segmentation process: (1) automatic initialization, (2)
geometric adjustment, and (3) accurate segmentation. The first step
is designed to initialize the prior shape inside the dataset, based on
a priori knowledge. Then a rigid geometric adjustment is carried
out for optimal mesh positioning closed to the boundaries of the
structure of interest. Finally, an iterative deformation using a Lapla-
cian mesh optimization method is performed to obtain an accurate
three-dimensional geometric mesh of the patient’s inner ear.

2.2. Generic 3D model of the inner ear

The a priori 3D model used in this approach was obtained from
magnetic resonance images (MRI) of a human cadaver ear from
Drs. O.W. Henson, Jr. and Miriam Henson (University of North
Carolina at Chapel Hill.) Segmented images are available on their
website http://cbaweb2.med.unc.edu/henson_mrm/ and the
mesh reconstruction has been performed by W. Robert J. Funnell
(McGill University) and is available in VRML format on this web-
site http://audilab.bmed.mcgill.ca/~daren/3Dear/index.
html. The model shown in Figure 1 has been modified to have a
homogeneous point distribution. This reduces the calculation time
of the deformation method and prevent redundancies during the
vertex matching step. To this end, an isotropic surface remeshing
process [AVDI02] has been applied.

Automatic Initialization

Geometric Adjustment ‘ -

Accurate Segmentation

Figure 2: Global scheme of the methodology.

2.3. Automatic initialization of the 3D model

The purpose of this step is to automatically retrieve tympanic
cavity on CBCT images to initialize the position of the a priori
mesh. This anatomical point does not have a high morphological
variability and can easily be found automatically. First, the volume
is cut in two parts - the front and the back of the head - to avoid
confusion with the sinus cavities. The back of the head is also split
in two to find separately left and right features (Figure 3.A).

The following step is to find the deepest voxel located in front of
the opening of the external auditory canal. For each slice of both
volumes of interest, a binary image is computed using a thresh-
old to differentiate the air and the soft tissues from hard tissues.
To remove noise, we successively apply morphological closing and
opening operations. Then, we fill all holes inside the temporal bone
(Figure 3.B/C) and keep the deepest voxel of value O to the right (or
to the left respectively). The most distant voxel position in all slices
is used to initialize the model at a predefined distance and orienta-
tion (Figure 3.D). A hole filling operation prevents air cells in the
temporal bone and the auditory tube to interfere with the detection

process.

Figure 3: Image A shows a regular greyscale CBCT slice of the
region of interest. Images B,C and D show different slices of the
binarized region of interest. The deepest point inside the cavity is
marked with red.

2.4. Geometric adjustment

The proximity of the input mesh S with the target location allows
us to search for a rigid transformation matrix that would adjust the
position and orientation of the 3D model.

For each vertex v; € S, an intensity Q;(v;) is obtained with linear
interpolation. On CBCT data, the inner ear has a specific range
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of intensity. We rescale the interpolated intensities between 0 and
1, after applying a Gaussian transfer function based on the known
mean intensity u, and standard deviation G, of voxel representing
the inner ear. These values were derived from an intensity profile
sampled in a slice of the CBCT volume. Voxels that represent the
inner ear boundary are attributed a value of 1 in our rescaled in-
tensity distribution, Q7 (v;). To find the boundary, we compute the
sum of absolute differences (SAD) with a windowed step function
H(x).

@
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where @ is the half-length of the similarity window.

In order to proceed to the model registration, we need to find the
rigid transformation that will minimize the sum of all SADs. First,
a template search is applied in the neighborhood of the initialized
model to find the best translation. At each iteration, the value of the
sum is compared to the previous smallest value. Finally, a gradient
descent is applied to find the rotation that minimizes the sum.

2.5. Accurate deformable fitting of the 3D model

The following step is designed to perform surface deformation
in order to achieve an accurate segmentation out of the 3D model
boundary. This step uses an iterative Laplacian mesh optimization
method [NISA06]. The use of a Laplacian-based method is ade-
quate in our case, because the outer surface of the inner ear is fairly
smooth. For each iteration, every vertex of the mesh is paired to
a feature point in the volumetric image with a confidence value.
Then vertex positions are computed with this target and they are
optimized, preserving the local smoothness of the shape.

2.5.1. Target retrieval

The feature-matching step allows the identification of potential tar-
get points corresponding to the inner ear boundary inside the vol-
umetric image. The detection of such features is performed along
the normals of the 3D surface mesh. For each vertex v; of the input
mesh, intensity profiles P;(s) are sampled following the normal of
v; . The parameter s € [%7 %} depends on the current step r and on
the total initial length L. It is gradually decreased at each iteration
to refine the deformation.

To find the boundary target point, we compute the sum of abso-
lute differences as seen in equation 1 for each point of the profile.
The target point #; is obtained from the minimum SAD value loca-
tion along the normal profile. Then, a confidence weight A, is set to
Ai =2¢ —min(C;(s)). 2¢ is the maximum value that can take C;(s).

2.5.2. Weighted deformation

Following the matching step, every vertex v; is assigned to a tar-
get #; with a confidence weight A;. The mesh is then deformed by
solving an optimization problem that satisfies the target points loca-
tions and preserves the smoothness and topology of the input shape.
New positions V’ are computed by minimizing an energy function
(equation 2) [CCC*16].

Ec(V)y=a Y wi(t—vi) +|cv'|)? @)
i=1
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where o is the attraction strength parameter that weighs the volume
energy - a squared sum between vertices and targets - weighted
by w;. The internal energy is given by the product of the cur-
rent position of the vertices and the Laplacian matrix. Minimizing
the quadratic energy functional results in an overdetermined lin-
ear system of equations Ax = b where A is a 2n X n matrix (equa-

tion 3) [CCC* 16].
Ly | b
][ ®

where W), are the weights attributed to each point w;, and Ap is a
set of length vectors of the local curvature. A high vector length
value indicates a strong feature, while a null value is characteris-
tic of a plane surface. These points have first been rescaled by a
Gaussian function of mean u and standard deviation ¢ based on
the absolute vertex displacement distribution and multiplied by the
global attraction strength parameter o.. Matrix 7' contains coordi-
nates of target #;. In addition, the weight of targets located far from
the actual surface of the mesh are progressively reduced to prevent
vertices being attracted by false boundaries in the complex neigh-
borhood. It is also important to note that in this method, the number
of iterations is fixed in order to define the length L of profiles and
the influence of o on w;.

Figure 4: Cross sections of left the inner ear model registered with
equation 1 (A), at the first iteration (B), at the fifth iteration (C) and
the final iteration (D).

3. Results and validation

Our preliminary results include an evaluation of the proposed algo-
rithm on one 8-bit CBCT acquisition obtained from a Newtom 5G
unit (Newtom, Verona, Italy) in high resolution scan mode with a
field of view of 15 x 5 cm. The reconstructed volume is displayed
on a 3D grid of size 1020 x 1020 x 345 with a voxel resolution of
0.150 mm in all three directions. The initial length L of the defor-
mation algorithm is 8 with a profile spacing of 0.15 mm and the
number of iterations is fixed to 15.

To estimate the accuracy of the segmentation method, we com-
pare the results of our automatic extraction with those obtained
from a manual approach carried out with 3D Slicer (https://
www.slicer.org/). Quantitative comparisons are perforned by
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using the following metrics: Dice Similarity Coefficient (DSC),
Jaccard Similarity Coefficient (JSC), Average Symetric Distance
(ASD), Root-mean-square Deviation (RMSD) and Haussdorf dis-
tance (Hauss) described in [TH15]. These measures are used as
means to quantify the overlaps percentage of segmentations, the
mean distance of errors and the robustness to outliers.

Results in Table 1 show also a comparison of the proposed method
with Noble et al. algorithm [Nob11]. To be more relevant, this com-
parison should be improved with more dataset in future work. We
argue that our method yields a better global accuracy with a higher
similarity index score and a smaller average symmetric distance.
In addition, the proposed method does not require several meshes
to create the prior shape. An unique approximate model could be
considered sufficient. However, our method might be more sensi-
tive to outliers since we obtain a higher Hausdorff distance. Fig-
ure 5 shows the distance mapped onto the 3D surface. The yellow
part under the cochlea is weakly delimited in CBCT imaging. Fur-
thermore, a strong a priori on the curvature limits deformations in
this area in order to avoid serious potential errors. In addition, Fig-
ure 4.D demonstrates that the surface is able to fit accurately with
the inner ear boundary, in spite of a rough initialization.

DSC | JSC | ASD | RMSD | Hauss
Our method | 90.6% | 83.3% | 0.15mm | 0.13mm | 1.07mm
Noble et al. | 75% - 10.21mm - 0.80mm

Table 1: Measures of performance applied to a left inner ear seg-
mentation

(mm)
mm 1.07

0.461

.0.00190

Figure 5: Symmetric distance mapped over the surface of inner
ear.

4. Conclusion and future work

We have presented preliminary results of an automatic extraction
of the inner ear within CBCT volume. Our first objective was to
automatically initialize an a priori model and adjust its position
and orientation inside the volume. Then, our second objective was
to perform a deformation based on Laplacian optimization to al-
low iterative refinement of our input mesh based on the boundary
information obtained from the CBCT volume. A preliminary vali-
dation shows the accuracy of our method compared with the Noble
et al. [Nob11] automatic segmentation.

As future work, we intend to create a validation framework on a
more extensive database in order to study the robustness of our ap-
proach. The application of our algorithm on the structures of the

ossicular chain in the middle ear is also considered. In its current
state, our method does not manage topological changes such as the
absence of semicircular canals. A prior feature search is considered
to adapt our a priori model to fit the constraints imposed by these
particular cases.
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