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Abstract

Content-based querying of 3D object collections has the intrinsic difficulty of creating the query object and previous approaches
have concentrated in producing global simplifications such as sketches. In contrast, in this paper, the concept of querying 3D
object collections based on local shape is introduced. Microshapes are very promising in terms of generality and applicability
and is based on a variation of the spin image descriptor. This descriptor uses intersection counts to determine the presence
of boundaries in the support volume. These boundaries can be used to recognise local shape similarity. Queries based on this
descriptor are general, easy to specify and robust to geometric clutter.

1. Introduction

A large number of objects, in particular man-made ones, inher-
ently exhibit smaller shapes which together define the appearance
of the whole object. For instance, shelving units are commonly con-
structed using rectangular planks, which in turn can be considered
to contain straight corners as well as flat surfaces of various sizes.

On a semantic level, it is possible to describe objects by combi-
nations of such “Microshapes”, examples of which include circu-
lar, rounded corner, slight bend, and concave edge.

Local shape descriptors which have been proposed to date
primarily aim at creating a summary of their support volume
[GBS™14] [GBS™16]. They exploit qualitative properties which are
a result of microshapes. For instance, the curvature at a specific
surface point on a model is the result of the shape being convex or
concave at that location, rather than the cause.

In this paper, we present a novel method which is, amongst oth-
ers, able to detect the occurrence of specific microshapes within an
object, as defined by a 2D search query image which can be created
intuitively and efficiently.

In addition to its matching capability, our method has some dis-
tinct advantages:

Capable of matching occluded sections of a mesh

Invariant to pose

Resistant to geometric clutter

Easily compressible and efficiently comparable due to its binary
nature
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2. Related Work

Of previously proposed approaches, those in the Bag-of-Visual-
Words (BoVW) shape retrieval [CDF*04] category can be consid-
ered to be closest to Microshape images. These methods commonly
compute a vector of descriptors from a sample object, which is in
turn used to locate similar points or surfaces in other models. Sev-
eral distinct approaches have been proposed in this paradigm which
were shown to have state-of-the-art performance. These include us-
ing Global Fisher vectors [PST*15] and image features computed
from panoramic views [STP13]. While our method can potentially
be applied in the BoVW paradigm, we consider Microshape query
construction sufficiently intuitive such that queries can be formu-
lated and used for querying directly. Using a query model is there-
fore not a necessity. Moreover, Microshapes search for curves or
lines, where existing methods have focused on matching surface
patches.

In terms of using curves for querying objects, sketch-based
methods could to some extent be considered to use a similar ap-
proach to the one presented in this paper. A wide variety of such
methods have previously been proposed, whose general goal is to
match a user sketch of a desired object to objects in a database.
This is commonly done by generating views of each mesh in the
database from different angles, and comparing the shape of out-
lines and edges to those drawn in the sketched query through vari-
ous means [SXY*11] [WKL15] [ERB*12]. However, these meth-
ods match entire sketches against entire models, and as such do not
allow smaller shapes to be located.

The spin image, initially proposed by Johnson et al. [JH99], is a
descriptor generated by rotating a square plane divided into pixels
around a central axis for one revolution, and subsequently measur-
ing the area of the mesh intersecting with the torus-like volume
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Figure 1: An illustration of the main difference between the original spin
image, which measures the mesh area intersecting a torus-like volume gen-
erated for each pixel shown in la, and a quasi spin image, which measures
the number of intersections made by a circle with the mesh surface for each
pixel, as shown in 1b.

generated by each pixel (as shown in Figure 1a). In the author’s
implementation, the area computation is approximated by accumu-
lating uniformly sampled points instead. The descriptor has been
shown to be noise resistant, and perform well in cluttered scenes.
Moreover, due to the spin image’s use of a cylindrical coordinate
system centred around the spin vertex, it is pose invariant. This
property is inherited by our method.

A number of methods have been derived from the original spin
image in order to address various aspects of its weaknesses. Such
methods include multi-resolution spin images, proposed by Dinh et
al. [DKO06], which aimed to address their lack of scale invariance,
and computing signatures from spin images for faster matching,
as proposed by Assfalg et al. [ABDBP07]. Additionally, a version
of the spin image which does not use point samples to approx-
imate area intersected per pixel was described by Carmichael et
al. [CHH99].

A more recent method derived from the spin image, which bears
some similarities to the one presented in this paper, is the Spin Con-
tour proposed by Liuang et al. [LWS™*16]. The spin contour is gen-
erated by computing a spin image, and subsequently locating the
contour around all nonzero pixels on that image, which can be used
for matching. However, the method only looks at the extreme out-
lines of a shape in cylindrical coordinate space, and, as we show in
this paper, this discards curves present within the object which can
potentially be used for matching. Moreover, the parts of a model
which could be considered similar are not guaranteed to be part of
the spin outline.

3. Background: Quasi Spin Images

The Microshape Image (MSI), introduced in this paper as an effi-
cient query tool (see next Section), is a derivation of the Quasi Spin
Image (QSI) descriptor, which was proposed as an efficient GPU-
based alternative to Spin Images in [Ano]. We briefly describe the
QSI below.

The QSI is constructed around a 3D point (referred to as the spin
vertex), and a surface normal at this point (referred to as the spin
normal). The spin vertex and spin normal combined describe a line,
referred to as the central axis. Computing a QSI involves placing
square plane (referred to as the spin plane) divided into pixels along
the central axis, rotating it for one revolution, and in the process

counting the number of intersections between each pixel centre and
the mesh surface. A visualisation of this is shown in Figure 1b.

These intersections are effectively performed in a cylindrical co-
ordinate space defined by the spin vertex and the central axis. Let o
be a variable denoting the distance to the central axis and B denote
distance along the central axis (the spin normal) from the origin
(the spin vertex). Imagine a sequence of planes P placed perpen-
dicular to the central axis at equal increments of . Then, for each
such plane, imagine concentric circles centred at the central axis
with radii corresponding to linearly increasing values of a. Each
plane corresponds to a row of the QSI and each circle corresponds
to a pixel within that row. The number of intersections of such a
circle with the mesh surface gives the value of the corresponding
QSI pixel. One aspect worth observing here is that the intersec-
tions of one of the above planes and the mesh surface produces
two-dimensional curves.

Using intersection counts yields images which can both be com-
puted consistently and are inherently free of noise. In contrast, the
original spin image algorithm created a histogram of uniformly
sampled point samples, and is therefore noisy. This is not accept-
able in our case, as our method compares the values of neighbour-
ing pixels (see next section). Moreover, because pixels in the origi-
nal Spin Image represent sums of areas, distinguishing internal bor-
ders of objects is not possible. The properties exploited by our pro-
posed descriptor therefore only exist in QSI images.

4. Microshape Images

The use of the MSI for querying 3D object collections based on
local shape, was inspired by a specific observation in the behaviour
of the QSI, which exploits its noise-free and consistency properties.
Note that the intersection of the object mesh with the plane P used
when computing a QSI, produces planar curves, as shown in Fig-
ure 2. The key observation which the MSI image exploits, is that
the number of intersections with these curves, and thus the mesh
surface, encountered by circles at linearly increasing radii only de-
creases whenever a specific section of the mesh is no longer en-
countered.

Since the MSI contains only the changes in the intersection
counts of the QSI, it represents local shape more directly and is
therefore more suitable as a local shape descriptor.

A reduction in intersection count can be observed in the vast
majority of cases, irrespective of the presence of clutter, as shown
in Figure 3. The only exception is whenever from one radius to
the next, a section of the mesh which is no longer encountered,
is replaced by another. However, this requires some rather specific
circumstances and was not found to be a significant problem in
practice. We therefore consider the MSI image to be resistant, albeit
not immune, to clutter.

Moreover, the radii at which intersection counts decrease tend
to be relatively similar across neighbouring rows of MSI pixels,
describing shapes which are present in the object. An example of
this is shown in Figure 4.

A database of microshape images corresponding to each vertex
of a collection of 3D objects is queried by computing their distances

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.



Bart Iver van Blokland & Theoharis Theoharis / Microshapes: Efficient Querying of 3D Object Collectionsbased on Local Shape 11

Figure 2: The generation of a single row in the MSI image. The portion
of a shape intersecting with a plane described by a point along the central
axis and the spin normal is shown. Circles with linearly increasing radii are
intersected with the mesh. The computed values of the corresponding row
of pixels in the MSI image are shown below each row index.

Figure 3: The object on the left causes a decrease in the number of encoun-
tered intersections with increasing circle radii, irrespective of the presence
of the object on the right.

from a constructed query MSI. We will refer to the query MSI as
the “needle image” and to a database MSI as a “haystack image”.
Algorithm 1 describes the Offline and Online parts of the proposed
query method.

Offline
for every 3D object O in haystack do

for every vertex v in O do
e Compute QSI for v on GPU (Section 3)
e Compute microshape image m from QSI (Section 4.1)
e Store m as vertex v data
end
end
Online
e Design needle (query) microshape image q
e Compute distance function between q and the microshape
image of every vertex of every object in the collection (Section
4.2)

e Produce ranked retrieval list of 3D objects based on distances of

vertices from q
Algorithm 1: Microshapes: offline and online algorithms
We have identified two limitations of our method. First, as MSI

inherits some of the properties of QSI, the MSI are not scale invari-
ant. However, the distance function is lenient and allows a certain
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Figure 4: A sample quasi spin image (QSI) (4a) with its corresponding
microshape image (MSI) (4b).

degree of scale variations. Second, since MSI are discrete images
and thus susceptible to aliasing effects, sampling detailed geome-
try which exhibit rapidly varying intersection counts (high frequen-
cies), details can potentially be missed. But it should be noted that
since MSI are bit vectors, they require 16 times less storage space
compared to QSI, one can afford to generate them at a higher spa-
tial resolution.

4.1. Microshape Computation

Computing a microshape image (MSI) consists of two steps. First,
for a given vertex (spin vertex) and its associated normal (spin nor-
mal), a QSI is generated. Then, the QSI is converted into a binary
MSTI as follows. The value of each pixel in the QSI (number of
intersections) is compared to its right neighbour. If the number of
intersections in the right pixel is smaller than those in the left pixel,
the left pixel is set to “active” (1), and “inactive” (0) otherwise.

A sample QSI and its corresponding MSI is shown in Figure 4.

4.2. Microshape Distance Function

The main idea behind our distance function is to evaluate to which
degree the pattern in needle MSI is contained in a haystack MSI.
We have identified four properties a distance function should ex-
hibit to achieve our goal, and our implementation satisfies these
requirements.

First, if active pixels in the haystack MSI are close to active pix-
els in the needle MSI then a low distance value must be produced.
Second, the distance function should allow for minor differences
in active pixels to occur; this is to allow for rounding errors and
minute differences in shape. Third, in order to avoid taking geo-
metric clutter into account, we should only be concerned with the
haystack MSI patterns that correspond to active patterns in the nee-
dle MSI. Fourth, we should avoid matches resulting from haystack
MSI geometric clutter close to the needle MSI pattern.

The above requirements resulted in the following distance algo-
rithm, which works on a row by row basis. It is worth mentioning
here that because MSIs are binary, our implementation stores and
processes them as bit vectors.

For each row, we look at the location of the active bits in the
needle MSI, and for each of these bits locate the closest active bit in
the same row of the haystack MSI; this covers the first and second
requirements. To satisfy the third requirement, we seek haystack
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MSI matches in a width of 2 pixels from the active needle pixels;
unmatched haystack active pixels are given the maximum penalty
of 2, since they have not been matched within the 2-pixel band. To
address the fourth requirement, we calculate the hamming distance
between needle and haystack MSIs within the 2-pixel band around
each active needle pixel and add this to the distance measure of the
Tow.

Our implementation uses 64x64 images, which means an entire
row of an MSI can be stored in a single unsigned 64-bit integer. Our
comparison method thus uses boolean bitwise operations, which
allows it to be implemented efficiently.

The distance algorithm can be implemented efficiently by tak-
ing the bit string representing a needle image row and iteratively
filtering away bits for which corresponding bits are located in the
haystack row at increasing distances (up to 2 pixels in each direc-
tion). This can be done through a series of bit shifts, boolean opera-
tors, and the population count instruction (which counts the number
of set bits in a bit string).

5. Experiments

We evaluated the potential of our method by designing query MSI
images to retrieve objects from the SHREC17 training dataset
[SYS*17] based on the local shape characteristics described by the
MSL

We generated an MSI for each vertex/normal present in each
model, and created a database of the produced MSIs. The size of
the spin plane was set to be half of the side of a cube whose volume
is equivalent to the axis-aligned bounding box of the input model.
This implies that MSI are generated at a scale close to that of the
model. The resolution of the MSI was set to 64x64 pixels.

For each query MSI, we computed a distance score against all
vertex MSIs and sorted the corresponding objects by ascending
score. In Figures 5 to 8, we have indicated the location of the de-
tected vertex with a red dot, and any matched microshapes with red
lines in example objects from the top ranks of the retrieval lists of
particular interest. The top 20 unique objects are shown in Figures
9,10, 11, and 12.

It should be noted that our search algorithm matches individual
vertices. Some objects contain repeating shapes or patterns, and
will therefore often appear multiple times in the retrieval list. Only
the top appearance of each object has been indicated in the results
list.

The generality of the approach should be observed here; simply
giving the main characteristic of a local shape results in objects that
possess it from various distinct object classes. This is a complex
endeavour with global content-based queries. Figure 6a indicates
that queries can be formulated which do not require the desired
local shape to be originating from the sampled vertex.

It is particularly worth mentioning that the query MSIs were cre-
ated in a simple image editor in the order of 1 minute each.

6. Conclusion and Future Work

We have strong indications that querying based on microshapes is
very general, widely applicable and quite simple in terms of the
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user interface required. Its local nature appears to simplify the prob-
lem of query formulation when searching 3D object collections
based on content. A descriptor derived from a variant of the spin
image that can be effectively computed on the GPU proved a highly
suitable microshape descriptor.

While initial qualitative experiments indicate that the mi-
croshape method is very promising, a more thorough evaluation
is required leading to quantitative results. For example, we can an-
notate the 3D objects of a certain collection with the microshapes
(out of a finite set) that each contains and then perform microshape
queries and count false positives and false negatives, thus leading
to the standard retrieval metrics.

We believe the work presented in this paper opens the possibil-
ity for semantically querying 3D object collections, based on in-
dividual local features of a desired object. This is in contrast to
conventional querying approaches, which concentrate on global ap-
pearance and thus do not offer the possibility of specifying detailed
desired local shape characteristics.
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Figure 5: Search results produced by a query for a perfect quarter circle, as shown in 5a. The meshes shown in 5b to 5d are example objects from the top
ranks of the retrieval list.
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Figure 6: Search results returned by our algorithm based on the query MSI image shown in Figure 6a, representing a long straight edge some distance away
[from the sample point.
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Figure 7: Search results returned by our algorithm based on the query MSI image shown in Figure 7a, representing a rounded corner followed by a straight
edge.
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Figure 8: Search results returned by our algorithm based on the query MSI image shown in Figure 8a. The image represents a “grating”-like pattern.

(© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.



Bart Iver van Blokland & Theoharis Theoharis / Microshapes: Efficient Querying of 3D Object Collectionsbased on Local Shape

(d O]
C o ‘  aEm P— ———
} ﬁ > . [ |
L / Lt
I ¥ : /
Q] Q) (k) @ (m) (n) (0) (p) (@
Ll Oﬁ&
P | 'C/’ (- \/
(r) (s) (t) ()

Figure 9: The top 20 unique models (shown in order) in the search results returned by our algorithm for the “quarter circle” query image shown in 9a.
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Figure 10: The top 20 unique models (shown in order) in the search results returned by our algorithm for the “grating” query image shown in 10a.

(© 2018 The Author(s)
Eurographics Proceedings (© 2018 The Eurographics Association.



Bart Iver van Blokland & Theoharis Theoharis / Microshapes: Efficient Querying of 3D Object Collectionsbased on Local Shape 15

(0) () (@ (r) (s) (U] (u)

Figure 11: The top 20 unique models (shown in order) in the search results returned by our algorithm for the “long straight edge” query image shown in
11a.
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Figure 12: The top 20 unique models (shown in order) in the search results returned by our algorithm for the “rounded corner” query image shown in 12a.
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