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Abstract
In this paper we target the problem of the retrieval of colour patterns over surfaces. We generalize to surface tessellations the
well known Local Binary Pattern (LBP) descriptor for images. The key concept of the LBP is to code the variability of the
colour values around each pixel. In the case of a surface tessellation we adopt rings around vertices that are obtained with a
sphere-mesh intersection driven by the edges of the mesh; for this reason, we name our method edgeLBP. Experimental results
are provided to show how this description performs well for pattern retrieval, also when patterns come from degraded and
corrupted archaeological fragments.

Categories and Subject Descriptors (according to ACM CCS): : [Computer Graphics [I.3.6]]: Methodology and Techniques—
Information storage and retrieval [H.3.3]: Information search and Retrieval

1. Introduction

Thanks to advances in the modeling techniques and to the avail-
ability of cheaper yet effective 3D acquisition devices, we see a
remarkable increase of the amount of 3D data available. Many sen-
sors are able to acquire not only the 3D shape but also its texture;
this is the case, for instance, of the Microsoft Kinect device. The
creation of an increasing number of 3D models has opened new
opportunities to study the past, by giving access to plenty of repre-
sentations of artifacts close to their original form. At the same time,
Cultural Heritage owns a growing mass of non-interpreted 3D data,
which call for innovative solutions for the analysis of data. In this
context, local descriptors, feature recognition and similarity mea-
sures become indexes to the informative content of 3D models, and
are essential to categorize objects and to recognize a style, e.g. to
attribute objects to a given society or to a given author. A typical
problem the archaeologists face when dealing with collections of
fragments is to determine their compatibility. Compatibility is gen-
erally determined by multiple factors: geometric correspondence,
same material and, possibly, if there are not evidently matching
fragments, continuity consideration on the fragment skin (colour,
texture) [Pe16].

Within the large scenario of Cultural Heritage, we focus on the
analysis and description of color patterns. The idea is to recognize
the same decoration, for instance a repeated lotus leaf, indepen-
dently of the support (e. g., the surface bending) on which it is
depicted. Therefore, this work will contribute to the definition of a
compatibility measure among artifacts based on skin decorations.
To approach this problem, we consider a novel extension of the
Local Binary Pattern description to surface tessellations based on
the evolution of the color over concentric circles around a vertex.

To determine these circles we adopt a sphere - edge intersection
strategy and for this reason we name our approach edgeLBP. As
application of the edgeLBP description, we propose the retrieval
and classification of color patterns over surfaces.

The remainder of the paper is organized as follows. Section 2
briefly reviews the literature on the retrieval of textured images and
surfaces. Section 3 introduces the elements of our method, i.e. the
edgeLBP operator and how we store it in a descriptor. Section 4
presents and analyses the retrieval and classification performances
of the method over two datasets, while conclusive remarks end the
paper, Section 5.

2. State of art

A typical strategy to detect textures on images is to consider local
patches that describe the behavior of the texture around a group of
pixels. Examples of these descriptions are the Local Binary Pat-
terns (LBP) [OPH96, OPM02], the Scale Invariant Feature Trans-
form (SIFT) [Low04] and the Histogram of Oriented Gradients
(HOG) [DT05].The generalization of these descriptions to (even
textured) surfaces has been explored in several works, such as
the PANORAMA views of the 3D objects [PPTP10], the mesh-
HOG [ZBH12] and the meshLBP [WTBB16, WTBB15]. In gen-
eral, the methods for matching textured 3D shapes adopt a combi-
nation of geometric and colorimetric descriptors. Possible choices
of the colorimetric descriptors are: feature-vectors, where the color
is treated as a general property of the shape, [Suz01], or its subparts
in [GG16]; local or global views of the objects [WCL∗08,PZC13];
point-to-point correspondences among sets of feature points (e.g.,
the CSHOT descriptor [TSDS11]); the evolution of the sub-level
sets according to the persistent homology settings [BCGS13].
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(a) (b) (c)

Figure 1: In (a) the ring of the pixel i is shown; while (b) and (c)
show two examples of concentric rings.

These methods mainly address the shape matching problem with-
out focusing on the surface details and local colorimetric variations.
On the contrary, when looking for patterns, locality and scale are
the two key aspects. A detailed evaluation and comparison of meth-
ods for 3D texture retrieval and comparison can be found in [Be16]
and several SHREC contests [Ce13, Be14, Ge15]. However, all
these contests focused on the joint comparison of geometry and
texture, without considering the comparison of the purely colori-
metric information that characterizes the surface decorations.

At the best of our knowledge, the Mesh Local Binary Pattern
(meshLBP) approach [WTBB16, WTBB15, WBB15] is the unique
approach that explicitly addresses pattern analysis over surfaces.
The meshLBP extends the LBP [OPH96] to triangle meshes. The
main idea behind the meshLBP is that triangles play the role of
pixels and the 8-neighbor connectivity in an image is ideally sub-
stituted by a 6-neighbor connectivity around triangles. Rings on the
mesh are computed using a uniform, region growing, triangle-based
expansion. From the practical point of view, the meshLBP encodes
a pattern efficiently, providing a compact representation of it.

3. The edgeLBP

We extend the LBP to surfaces using rings defined on the basis of a
sphere-mesh intersection. In Section 3.1 we briefly sum up the def-
inition of the LBP definition. Our extension to surface tessellations
is described in Section 3.2, while Section 3.3 details the edgeLBP
descriptor and the distance adopted to compare two descriptors.

3.1. Local Binary Pattern for gray-scale images

The Local binary pattern (LBP) and its variants prove to be a
good solution for the classification of patterns in images [LFG∗17].
Given a gray-scale image I, the LBP describes the pattern in I cod-
ing the local variation of the gray-scale values (encoded with a
function h : I→ [0,255]) around each pixel of I. More extensively,
for each pixel i∈ I, a ring of pixels around i (called ringi) is consid-
ered (see Figure 1) and a 8-digit binary array stri defined as follow:

stri( j) =
{ 1 i f h(i)< h(i j)

0 otherwise

where i j is the j− th pixel of the ring around i, sorted clockwise
and starting from the top-left pixel. The LBP operator of a pixel i
is defined by:

LBP(i) = ∑
j

stri( j)α( j),

(a) (b)

Figure 2: (a): in blue, two rings defined on the basis of triangles;
(b): the ring around the vertex v is defined by mesh vertices (red
dots).

where α is a weight function. Throughout this paper we consider
α1( j) = 1,∀ j. Notice that in this case, the LBP(i) value is inde-
pendent of the ordering of ringi. Finally, the LBP descriptor of the
pattern in I is defined as the histogram of the values LBP(i).

The LBP operator was extended to multiple rings around each
pixel in I, see Figure 1(b-c). The descriptor of the LBP multi-ring
is the concatenation of the histograms of the LBP values of each
single ring, e.g., an array or a matrix.

3.2. Definition and implementation of the edgeLBP operator

We extend the multi-ring LBP operator to deal with surface tes-
sellations through a sphere-mesh intersection technique, called the
edge Local Binary Pattern (edgeLBP). By a surface tessellation, we
mean a polygonal mesh T = (V,E,F), which is a collection of ver-
tices V , edges E and faces F defining the surface of an object. In
our settings, we assume that the faces of the tessellation are con-
vex polygons; examples of admissible surface representations are
triangle and quad meshes, [BLP∗13].

We assume that the surface property can be stored as a scalar
function h defined on the vertices of the tessellations, formally, h :
V →R. In our settings, we consider two choices for the function h:
(i) the L-channel from the CIELab color space [AKK00,HP11]; (ii)
the gray-scale value defined as 0.21R+0.72G+0.07B (R, G and B
are the channels of the RGB color space).

The concept of ring is crucial for the LBP operator: while a pixel
grid has the same connectivity everywhere, surface tessellations
can be widely irregular, thus the ring definition over them is not
obvious. By irregular we mean that the vertices can be non uni-
formly distributed over the surface and the faces of the tessellation
may have different area, shape and number of edges. Figure 2 de-
picts two possible ring definitions exclusively made of mesh ele-
ments (triangles in Figure 2(a) and vertices in Figure 2(b), resp.):
in both cases, the irregularity of the mesh elements strongly influ-
ences these of rings.

We define the ring of a vertex v ∈ V as the intersection of the
surface tessellation with a sphere of radius R centered in v. Such an
intersection is represented by the set of pointsR= {p1, p2, . . . , pk}
that approximate the intersection between the sphere and the sur-
face. Figure 3 shows a number of concentric rings over a triangle
mesh. To determine a ring around a vertex v, we follow a mesh ex-
pansion approach driven by the Euclidean distance from the vertex
v, as summarized in the following steps:
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(a) (b)

Figure 3: (a): in black, multiple closed curves defined by the set of
points Pi ∈ R; (b): the black dots correspond to the elements pi of
the three central curves in (a).

1. All the edges that are incident in v are added to a list L.
2. Starting from an edge e = (v,v1) ∈ L, the intersection between e

and the sphere centered in v with radius R is evaluated. If there
actually is an intersection, it is stored as a new point pi, other-
wise, if e completely falls inside the sphere, we add to L all the
edges that are incident to v1. The edge e is removed from L and
labeled as visited.The value h(pi) on pi is given by the linear
interpolation of the values that h assumes in v and v1.

3. The step 2 is repeated ∀e ∈ L, until the list is empty.

To achieve a multi-ring representation, for any vertex v ∈ V
we consider Nr rings, {ringv

1, . . . ,ringv
Nr
}. Let Sv

l be the surface
portion of T that contains v and has the ringv

k as its boundary,
l = 1 . . .Nr−1, then the relation Sv

l ⊂ Sv
l+1 holds for each l. When

extending the edgeLBP evaluation to multiple rings, the algorithm
takes advantage of the nested nature of the rings and extracts Sv

l
with respect to increasing values of the radius R.

In general, the sphere-surface intersection can produce multi-
ple, closed curves that bound either a multiple connected or a dis-
connected portion of the surface, as detailed in [MPS∗04]. Using
a region growing approach, we dynamically consider only the Sv

l
components.Therefore, Sv

l is always a connected region that con-
tains v; however, it can become multiply connected. If all the Nr
components of Sv

l are simply connected and all the Nr rings do not
intersect the surface boundary (if any), the v is considered an ad-
missible vertex for the edgeLBP, otherwise it is non-admissible.

3.2.1. Ring re-ordering and sampling

Each ring is represented as the piecewise, linear curve C deter-
mined by the segments (pi, pi+1), pi ∈ R. Then, the curve C is
oriented counter-clockwise with respect to the vector in v normal
to T . We select As the starting point for ordering C, we select the
point p̃ such that:

p̃ = argmax
pi∈R

h(pi).

In case of symmetries around a vertex, multiple choices of the start-
ing point are possible: we select the candidate point that is the far-
thest from the other elements of R. The stability of the starting
point of a ring is confirmed in numerous experiments we performed
on meshes of different resolution, where by mesh resolution we
mean the number of vertices of the mesh. Figure 4 shows the vec-
tor field generated by the difference between p̃ and v (

−−→
p̃− v) all

over the mesh. The orientation of the field indicates the position

Figure 4: Arrows represent the starting point of the rings in meshes
representing the same surface but sampled with a different number
of vertices (40K, 16K and 8K vertices, resp.).

of p̃. The pictures show a detail of the field over a mesh with 40K
vertices and two mesh sub-samplings with 16K and 8K vertices:
the overall orientation of the field (and therefore the choice of p̃) is
robust to different mesh samplings. In case of multiple rings, p̃ is
selected only on the biggest ring ringNr ; for each concentric ring,
the starting point is the point pi, which is the closest one to p̃.

Generally the number of elements pi ∈R varies from one ring to
another, because of the increasing radius of the sphere and the irreg-
ularity of the tessellation, see Figure 3(b). To have the same number
of elements on every ring, we sample C with P points, where P is a
fixed number, called the spatial resolution. The results of this sam-
pling is S, a set of equidistant samples of C, s j with j = 1, . . . ,P. In
details, the equidistant re-sampling is performed as follows:

• we set the expected distance δr between two successive points in

S as δr =
2πR

P
;

• we set s0 = p̃ and extract the points s j on C such that

|s j−1− s j| ≈ δr, j = {1, . . . ,P}.

The value h(s j) is linearly approximated from the values the func-
tion h assumes on the extrema of the corresponding segment in C.

3.2.2. Choice of the ring radii

With the edgeLBP we are interested to code local variations on the
surface, therefore the radius R should be kept small with respect to
the overall dimension of the surface. This implies that the choice
of the radius R is crucial for the type (and the size) of the patterns
we are going to identify; indeed it must be not too large to avoid
to mix global and local surface information and not too small to
become insignificant. In practice, the multiply connected regions
appear in case of topological noise, like small handles and mesh
self-intersections; in our experiments over thousands of tessella-
tions we never met meaningful admissibility problems.

We opt for a uniform distribution of the ring radii values. Denot-
ing Rmax the maximum radius and Nr the number of rings, the value
of the ring radii will be Rmax

Nr
,2 Rmax

Nr
, . . . ,Rmax.

3.3. Similarity assessment

Once the function h is evaluated over the sample sets of the rings
around v, the edgeLBP value on v straightforwardly follows from
the classic LBP definition, see Section 3.1.
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Base models Textures Textured models
Class 1 Class 2 Class 3 Class 4 Class 5

Class 6 Class 7 Class 8 Class 9 Class 10

Figure 5: Left: Two of the original models. Center: The ten patterns imprinted on the models of the CPP dataset. Right: Two examples of the
textured models of the CCP dataset.

Given the surface tessellation T , its edgeLBP descriptor is la-
beled DT . The entry DT (n,m) is defined as the histogram that
counts how many vertices have an edgeLBP value equal to m on the
ringn. Since in the experiments we are mostly interested in the dis-
tribution of the edgeLBP values, we adopt DT

nv
as the edgeLBP de-

scriptor, where nv is the number of the admissible vertices. Through
this normalization of T we achieve robustness to the number of ver-
tices of the surface representation.

We define the dissimilarity between two tessellations A and B as
the distance between their corresponding edgeLBP descriptors DA
and DB. Since the edgeLBP can be thought as a matrix, any feature
vector distance is suitable to evaluate the similarity between two
edgeLBP descriptors. We analysed the Euclidean distance between
matrices, the Earth Mover’s Distance as defined in [RTG00] and
the Bhattacharyya distance. The Bhattacharyya distance dBha be-
tween two distributions φ and ψ of a scalar random variable X has
the following definition:

dBha(φ,ψ) =
√

1−BC(φ,ψ), BC(φ,ψ) = ∑
x∈X

√
φ(x)ψ(x),

where BC is called the Bhattacharyya coefficient. Then, for a set of
surface tessellations, the dissimilarity values are stored in a dis-
tance matrix DM(i, j) = d(Di,D j), where d is the distance be-
tween the descriptors of the tessellation i and j. Diagonal values
of Dist(i, i) are zero.

4. Experimental results

In this Section we introduce the datasets and the evaluation mea-
sures adopted to analyse the retrieval performance of the edgeLBP.
We present the edgeLBP performances and discuss its robustness
to different tessellations of the same surface.

4.1. Dataset

To evaluate the edgeLBP ability of effectively discriminating pat-
tern variations, we used two datasets:

• the Cups, Pots and Pans dataset (or CPP for short) is created

from triangle meshes in the SHREC’07 Watertight model con-
test [GBP07] and the COSEG [WAvK∗12] datasets (see Figure
5(Left)). The original meshes do not have any texture or col-
orimetric information. From 20 base models and 10 black and
white textures representing a pattern (see Figure 5(Center)) we
derived 200 models, applying each texture to every model with a
semi-automatic algorithm. The proper RGB value was added to
the mesh vertices discarding any other colorimetric information
(see Figure 5(Right)). At the end of this process, each model is
covered by one of the 10 patterns for at least the 30% of its sur-
faces while the rest of the surface is only black or only white.
The number of vertices of the 200 models ranges from 95K to
107K.

• the Artifacts dataset is derived from the laser scans of CH arti-
facts stored in the STARC repository [SH07] and selected as test-
beds in the Gravitate EU project [GRA]. The colorimetric infor-
mation comes as a RGB value associated to each mesh vertex.
Differently from the CPP dataset, this second dataset contains
full-color information, with a predominance of red, yellow and
brown nuances. From these fragments we identified 10 classes
of different patterns (see Figure 6); then, for each type of pat-
tern, we tailored 4 representative patches coming from different
fragments, for a total of 40 patches. Every patch is made of ap-
proximately 40K vertices.

The edgeLBP algorithm is used to perform colorimetric pattern re-
trieval on the CCP and Artifact datasets, separately.

4.2. Evaluation measures

The evaluation tests have been performed using a number of clas-
sical information retrieval measures, namely the Nearest Neighbor,
First Tier, Second Tier, Discounted Cumulative Gain, e-measure,
Precision-Recall plot, confusion matrices and tier images.

Nearest Neighbor, First Tier, Second Tier These measures aim at
checking the fraction of models in the query’s class also appearing
within the top k retrievals. In detail, for a class with |C| members,
k = 1 for the Nearest Neighbor (NN), k = |C|− 1 for the first tier
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Class 1 Class 2 Class 3 Class 4 Class 5

Class 6 Class 7 Class 8 Class 9 Class 10

Figure 6: Representatives of the 10 classes considered in the Arti-
facts dataset.

(FT), and k = 2(|C|−1) for the second tier (ST). Note that all these
values range from 0 to 1.

Discounted cumulative gain The Discounted Cumulative Gain
(DCG) is an enhanced variation of the Cumulative Gain, which is
the sum of the graded relevance values of all results in the list of
retrieved objects of a given query. The definition of DCG adopted
in this paper can be found in [JK02].

Precision-Recall, mAP and e-measure The Precision and Recall
are common measures for retrieval evaluation. Recall is the ratio
of the number of relevant records retrieved to the total number of
relevant records, while precision is the ratio of the number of rele-
vant records retrieved to the size of the return vector [Sal65]. Pre-
cision and recall always range from 0 to 1. Often, precision and
recall are plot as a curve in the reference frame recall vs. preci-
sion [BYRN99]: the larger the area below such a curve, the bet-
ter the performance under examination. As an additional index, we
consider the mean Average Precision (mAP), which is the portion
of area under a precision-recall curve. Finally, we consider the e-
measure e [Rij79], which is a quality measure of the first models
retrieved for every query. The e-measure depends on the Precision
and Recall values by the relation: e = 2

Precision−1+Recall−1 .

Confusion matrices and Tier images Each classification perfor-
mance can be associated with a confusion matrix CM, that is, a
square matrix whose dimension is equal to the number of classes
in the dataset. For the row i in CM, the element CM(i, i) gives the
number of items which have been correctly classified as elements
of the class i; similarly, elements CM(i, j), with j 6= i, count the
items which have been misclassified, resulting as elements of the
class j rather than elements of the class i. Similarly, the tier image
T I visualizes the matches of the NN, FT and ST. The value of the
element T I(i, j) is: black if j is the NN of i, red if j is among the
(|C|−1) top matches (FT) and blue if j is among the 2(|C|−1) top
matches (ST). For an ideal classification matrix, CM becomes the
diagonal matrix while the T I clusters the black/red square pixels on
the diagonal.

4.3. Results

In this Section we discuss the retrieval and classification perfor-
mance of the edgeLBP. For simplicity, we report only the results
obtained with the Bhattacharyya distance because in our experi-
ments it performs better than the other distances considered.

We performed multiple runs with different settings, changing the
number (Nr) of rings and the number of samples (P) on them, to-
gether with different R associated to the Nr-th ring (called Rmax).
The value of R is based on the size of the patterns in it: we ran-
domly picked 3 models of that dataset and choose one or more
Rmax values that were properly scaled for the dataset. The param-
eters Nr and P are initially set with what we consider the default
settings: P = 15, Nr = 5. Similarly we consider h = L− channel
of the CIELAB color space as the default setting of the function
h. Different choices of h, P and Nr are discussed for the Artifacts
dataset.

CPP dataset We tested the edgeLBP on this dataset using the de-
fault settings and adapting the Rmax to the size of the wanted pattern
(Rmax = 0.04mm), in what in this paper is called Run1. As baseline
methods to compare against the edgeLBP descriptor we consider
two variations of the color histograms. Hist1 outputs descriptors
based on a 16-bin histogram normalized on his minimal and maxi-
mal L values. Hist2 is similar, but no normalization is applied to the
values of L. In addition, we also consider the meshLBP descriptor
as implemented in the Matlab toolbox [mes].

Figure 7(Top) reports the numerical evaluation measures. Fig-
ure 7(Middle) compares the recall vs precision curves of all the
methods. Figure 7(Bottom) reports the confusion matrix and the
tier image of edgeLBP and the meshLBP runs. The classification
and retrieval results obtained over this dataset are very promis-
ing and highlight how the edgeLBP encoding captures the pat-
tern distribution over the surface. The edgeLBP overcome simple
histogram-based descriptions that, in practice, measure the percent-
age of color distribution without any control around vertices and
also the meshLBP description that bases the ring definition on mesh
elements. The positive edgeLBP perfomance is confirmed in the re-
cent SHREC’18 track for gray color patterns [MTW∗18].

Artifacts dataset

This dataset is challenging because of the quality of the original
fragments, as their colorimetric patterns are degraded and damaged.
Table 1 reports the NN, FT and ST evaluations for different param-
eter settings of the edgeLBP. Confusion matrices for the two best
radius values are reported in Figure 8, along with the relative Tier
Images. The number of models in this dataset is too small to con-
sider meaningful the other evaluation measures.

The edgeLBP achieves good retrieval and classification results
for most classes. We observed, as expected, that the correctness of
the classification is mainly driven by the size of R, rather then P
and Nr. As a final note, we tested our algorithm using gray scale
values as h function: the results obtained with it were pretty much
the same as those obtained with h = L. We think that this is due
to which information both L of CieLAB color space and the gray
scale encodes.
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NN FT ST e mAP nDCG
edgeLBP 0.985 0.801 0.97 0.66 0.859 0.94
meshLBP 0.94 0.615 0.805 0.54 0.691 0.87

Hist1 0.3 0.301 0.415 0.27 0.354 0.58
Hist2 0.61 0.522 0.774 0.51 0.57 0.76

edgeLBP
Confusion Matrix Tier Image

meshLBP
Confusion Matrix Tier Image

Figure 7: Performance evaluation on the CCP dataset. Top: the
NN, FT, ST, e-measure, mAP and nDGC evaluation measures. Mid-
dle: the Precision-Recall curves. Bottom: the confusion matrix and
tier image of the edgeLBP and the meshLBP runs.

Table 1: The NN, FT and ST scores for some runs of the edgeLBP
on the Artifacts dataset. The ∗ in the fourth row means that in these
settings we adopt h3 instead of h (here, h corresponds to the L-
channel). R is expressed in mm.

Parameter Settings NN FT ST
P : 15,Nr : 5,Rmax : 0,2 0.775 0.789 1
P : 15,Nr : 5,Rmax : 0,3 0.75 0.811 0.989
P : 15,Nr : 5,Rmax : 0,5 0.75 0.711 0.889

P : 15,Nr : 5,Rmax : 0,7∗ 0.725 0.667 0.756
P : 12,Nr : 7,Rmax : 0,5 0.75 0.789 0.9
P : 12,Nr : 7,Rmax : 0,2 0.775 0.856 0.978
P : 18,Nr : 5,Rmax : 0,7 0.7 0.667 0.744

Table 2: Evaluation measures of the performances on the CPP
dataset resampled with 40K vertices.

NN FT ST e mAP nDCG
edgeLBP 0.95 0.688 0.857 0.59 0.761 0.9
meshLBP 0.77 0.517 0.703 0.47 0.58 0.79

4.4. Robustness over different surface tessellations

The strength of the edgeLBP is its ring definition, which is ro-
bust to different surface tessellations: in this Section we experi-
mentally discuss this robustness. To this aim we re-sample the tri-
angles meshes with a decreasing number of vertices. The trian-
gle mesh re-sampling with x vertices is done with the MeshLAB
tool [CCC∗08] that approximates the original mesh preserving its
geometry as much as possible with the given number of vertices
(for instance, x = 40K vertices). This process generally modifies
the mesh connectivity and the area of the triangles, discards the
smallest details and keeps the overall shape, unless the number of
vertices drastically diminishes and the new vertices are too few to
preserve it.

First, we re-sampled the meshes in the CCP dataset with 40K
vertices. On this dataset, we compare the outcome of the edgeLBP
with the default settings with the meshLBP, see Table 2. If com-
pared with the performances on the original CPP dataset in Figure
7, the edgeLBP degrades less than the meshLBP, demonstrating of
being more robust to mesh degradation and re-sampling.

Second, we selected 3 patches from the Artifacts dataset and sub-
sampled them with 32K, 24K, 16K and 8K vertices (see Figure
9).These four meshes are compared against the original patch (that
has 40K vertices).These four distance values provide an estimate
of the error the descriptors do when working with the simplified
meshes.

We performed two runs for both the edgeLBP and meshLBP:

• Run1: P = 12, Nr = 7. These settings are the setting used by the
meshLBP as default. Both meshLBP and edgeLBP are run with
these settings. For the edgeLBP we set Rmax = 0.5mm.

• Run2: P = 15, Nr = 5. These settings are those that we consider
default for the edgeLBP. Both the algorithms are run with these
settings. As in run1, we set Rmax = 0.5mm.

Figure 10 represents the distance between the original model and its
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P : 15,Nr : 5Rmax : 0,2 P : 15,Nr : 5Rmax : 0,5

Figure 8: Confusion matrices and tier images for two of the best runs of the edgeLBP on the Artifacts dataset. In the tier images, the black
dots represent the NN element, the red dots correspond to points in FT while blue ones are the ST.

40K 24K 8K

Figure 9: The degradation of one of the model used to test the
robustness of the descriptor of both edgeLBP and meshLBP. The
number on each image is the respective vertex resolution.

four approximations with respect to both edgeLBP and meshLBP,
for all the three original meshes. Since the scale of the distances
adopted by the meshLBP and edgeLBP is different, we normal-
ize them with respect the range of the distance values among these
patches. From Figure 10, we can see that in both runs the edgeLBP
produces more stable descriptors, as the errors are lower than those
of the meshLBP (except in one case, the model 1 in Run2). In our
opinion the nature of the ring definition of the two methods is cru-
cial being both methods based on the LBP concept. Indeed, the
meshLBP creates rings of different size when the vertex density de-
creases becoming quite sparse when the number of vertices of the
mesh is significantly reduced. This is not the case of the edgeLBP,
as the radius of each ring is always the same (R), for each mesh.

5. Discussions and conclusive remarks

We defined an extension of the LBP on surfaces, whose strength
is the robustness to the surface tessellation. In this paper we used
this technique to successfully retrieve and classify colorimetric pat-
terns on mesh surfaces. The edgeLBP also performed the best to the
SHREC’18 track on retrieval of colorimetric patterns [MTW∗18].
Besides synthetic datasets, we tested our algorithm on samples
coming from a challenging dataset made of corrupted and degraded
artifacts of the EU GRAVITATE project test beds [GRA], achiev-
ingpromising results. Further extensions are planned and possible.

Run1

Run2

Figure 10: The plots represent the distance of the four simplified
meshes from the original ones, with respect to the meshLBP and the
edgeLBP descriptors. The labels in the horizontal axis highlight to
the number of vertices of the mesh.

For instance, it is possible to adopt this approach for the descrip-
tion of geometric patterns, encoding the geometric variations with
scalar properties of the mesh, like mean curvature or shape index.
Moreover, we think that for full color patterns better results could
be achieved using all the colorimetric information, for instance the
L, a, and b channels of the CIELab space. In this direction, we are
currently working on the extension of the edgeLBP to multidimen-
sional properties.
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Finally, we think it is worth investigating the automatic recogni-
tion and localization of multiple patterns on surfaces. Current ex-
periments are performed on surfaces fully characterized by a single
pattern at a time and the similarity distance is defined on the global
fragment skin. Next plans include the combination of the shape de-
scription step with segmentation techniques and the aggregation of
parts made of vertices with similar local descriptions.
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