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Abstract 
The large number of protein structures deposited in the protein database provide an opportunity to examine the 
structure relations using computational algorithms, which can be used to classify the structures based on shape sim-
ilarity. In this paper, we report the result of the SHREC 2017 track on shape retrievals from protein database. The 
goal of this track is to test the performance of the algorithms proposed by participants for the retrieval of bioshape 
(proteins). The test set is composed of 5,854 abstracted shapes from actual protein structures after removing model 
redundancy. Ten query shapes were selected from a set of representative molecules that have important biological 
functions. Six methods from four teams were evaluated and the performance is summarized in this report, in which 
both the retrieval accuracy and computational speed were compared. The biological relevance of the shape retrieval 
approaches is discussed. We also discussed the future perspectives of shape retrieval for biological molecular models. 

 

Categories and Subject Descriptors (according to ACM CCS): Computing methodologies~Shape modeling   • Com-
puting methodologies~Shape analysis 

 

1. Introduction 

Protein structures provide critical information for the un-
derstanding of protein functions. Large databases of proteins 
are rapidly accumulated in recent years[ BKW*77], effec-
tive and efficient methods for protein retrieval and classifi-
cation are required for detailed structural and functional 
analysis. The Protein Challenge in SHREC 2007 included a 
new track in biology field for the Shape Retrieval Contest 
which gives the participants a chance to explore the protein 
structures and shapes [VH07]. However, the conventional 
structural comparison is based on amino acid sequence 
alignment to identify the paired atoms from two structures. 
A translocation matrix is optimized by translation and rota-
tion operations to find the minimum distance between two 
structures. This difference metric is named as Root-Mean-
Square-Deviation (RMSD). In spite of wide usage of this 
structure comparison method, it has severe limitations: (1) 
The structures to be compared must have high sequence sim-
ilarity in order to find the one-to-one correspondence of at-
oms in two models; (2) the structures to be compared should 

have relative high resolutions, such that atomic position as-
signment is correct. There are developments of model com-
parison methods that do not depend on sequence alignment, 
for example, the DALI program does not require sequence 
information for model alignment [HKRS08]. Nonetheless, 
new algorithms and programs are needed to reveal structure 
relations within the database, or to search functional rela-
tions between a newly determined structure and the existing 
ones. Recently, a new challenge has arisen due to the high 
throughput structure determination at low resolutions, in 
which case protein structure comparison by amino acid se-
quence is impractical. For example, the small angle X-ray 
scattering data only provides information that is sufficient to 
build 3D models at nanometer resolutions, which cannot be 
used to assign atomic positions of the molecules [HMH*09, 
LHZ12, SdVS*16]. Through this SHREC track, we hope to 
stimulate the development of shape-based methods and the 
application of these methods in the research of structure bi-
ology. 
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To get connected to the community of shape studies, we 
intentionally removed the biological information of the pro-
tein structures. This is accomplished in three steps: (1) scale 
the models to the same size such that they perfectly fit in the 
sphere with a radius of 30Å; (2) map the atoms to the 3D 
grid with grid size of 1Å; (3) remove the sequence infor-
mation by using Carbon atoms to represent the shape in the 
form of point clouds. In future contest, we plan to include 
the consideration of biological relevant information, such as 
the actual molecular size or sequence information. 

Four teams submitted results using six shape retrieval 
methods before the deadline of the track. The specific task 
of retrieval is to find the top 200 models from 5,856 shapes 
in the database for each of the 10 query shapes. The perfor-
mance of each method is subject to the evaluation of several 
criteria, including Discounted Cumulative Gain (DCG), 
Nearest Neighbor (NN), First Tier, Second Tier and Mean 
Average Precision (MAP). The execution time and memory 
requirements of the methods are reported as well. 

2. The Data Set 

2.1 Query Set 

The query set is composed of 10 proteins which are ob-
tained from the Protein Data Bank [BKW*77]. In order to 
ensure structural diversity, the 10 proteins were manually 
picked from the special collection, the molecule of the 
Month, which summarizes the structure and function of one 
important protein molecules each month by David Good-
sell[GDZ*15]. Table 1 shows the source of each protein. For 
details about the molecules, the readers are referred to the 
online documents at each URL. Figure 1 shows the surface 
representations for 10 query shapes. 

Table 1: The list of the query molecules. The set is se-
lected from the "molecule of the month". 

Protein URL PDB ID 

Lysozyme http://pdb101.rcsb
.org/motm/9   

2LYZ 

Antibody http://pdb101.rcsb
.org/motm/170   

4MMV 

HIV reverse 
Transcriptase 

http://pdb101.rcsb
.org/motm/33 

3HVT 

Insulin http://pdb101.rcsb
.org/motm/14   

2HIU 

HSP90 http://pdb101.rcsb
.org/motm/108   

2CG9 

Bacteriphage http://pdb101.rcsb
.org/motm/2   

1CD3 

G protein http://pdb101.rcsb
.org/motm/58 

1GG2 

Ribosome http://pdb101.rcsb
.org/motm/121   

4V4J 

Penicillin-
binding Protein 

http://pdb101.rcsb
.org/motm/29 

1HVB 

.Zika virus http://pdb101.rcsb
.org/motm/197   

5IRE 

  Figure1:  Surface representation for the query molecules. 
The 10 queries (with query IDs: q_11 to q_20) are ar-
ranged from left to right, top to bottom. 

2.2 Target Set 

For the target set, a random selection from protein data-
base may result high redundancy (i.e., multiple similar struc-
tures of the same molecule might be included), which in-
creases the computation time with no practical benefits. In 
order to remove the redundancy, we construct the target set 
from a subset of PDB models, composed of 13,182 protein 
structure that are non-redundant in terms of the amino acid 
sequence. These structures are abstracted to shape models 
that fit in a sphere of the same radius (30Å). The atoms are 
mapped to 3D grid points separated by 1Å to form a point 
cloud representation of the corresponding protein molecule. 
These operations ensure that the biological features are re-
moved to a good extend, so that the technology in computa-
tional shape comparison can be applied. 

In the second stage, for each query structure, we used the 
exhaustive model matching method (see Method section) to 
rank the 13,182 structures, then chose the top 1,000 shape 
models.  As a result, 10,000 models were collected for ten 
queries. Because same model can be present in the top 1000 
for different queries, the final dataset contains 5,854 unique 
models after removing the repeats. This is the target set for 
shape retrieval. 

3. Methods 

Six protein retrieval methods have been proposed by four 
different research groups. In the following, these methods 
are briefly described. 

3.1 3D Zernike polynomial based method: the choice 
of ground truth and the exhaustive model matching 

   The ground truth was not available for this track. We have 
to use model matching approach to rank the models by com-
paring a query with a target at discretized orientations that 
finely span the SO(3) rotational space. 3D Zernike moments 
(3DZM) are used as the protein shape descriptors [Can99, 
LPJZ12, NK03].  

A brief summary about 3D Zernike polynomial and mo-
ments are provided. The 3D Zernike polynomial at order 
(n,l,m) is represented as: 

 

                     Z୬୪୫(X) = R୬୪(r) ∙ Y୪
୫(ϑ, ϕ)                         (1) 
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where R୬୪(r) and Y୪
୫(ϑ, ϕ) are the Zernike radical func-

tion and spherical harmonic functions, respectively. The or-
der parameters need to satisfy the following: n ≥ l, (n − l) 
is even, and −l ≤ m ≤ l. 

{Z୬୪୫(X)} are orthonormal and complete within the unit 
sphere. 

Therefore, 3D Zernike moments Ω୬୪
୫  of an object de-

scribed by ρ(X) can be defined as: 

                 Ω୬୪
୫ =

ଷ

ସ஠
׬ ρ(X)Z୬୪୫

∗ (X)dX
 

|ଡ଼|ழଵ                        (2) 

Any object in 3D space can be described using a function 
ρ(R), which can be scaled to fit in a unit sphere, to obtain a 
scaled representation, ρ(X). 

Noticing that the 3D Zernike moments Ω୬୪
୫ are not invari-

ant under rotations. Novotni & Klein collect the moments 
into (2l + 1)-dimensional vectors， 

Ω୬୪ = ൫Ω୬୪
ି୪, Ω୬୪

ି୪ାଵ, Ω୬୪
ି୪ାଶ … . , Ω୬୪

୪ ൯
୲
           (3) 

whose norm, F୬୪ = ‖Ω୬୪‖, is rotational invariant, so that 
the {Fnl} is defined as 3D Zernike descriptors (3DZD) for 
shapes [NK*03]. 

Similarity between two proteins is quantified by the over-
lap between two models.  In the practice, we evaluate the 
overlap by correlation coefficient (abbreviated as c.c.) be-
tween two models. 

For a given orientation, c.c. is defined as: 

c. c. =
ழ஡భ(୰)஡మ(୰)வିழ஡భ(୰)வழ஡మ(୰)வ

஢(஡భ(୰))஢(஡మ(୰))
    (4) 

where ρଵ(r) and ρଶ(r) is the descriptor of the two pro-
teins, r ∈ rଷ. 

The maximum c.c. for all orientations that finely samples 
the orientations, is used as the measure of shape similarity,  

c. c. (protein୤୧୶ୣୢ, protein୰୭୲) =
maxୟ୰୥ ୧  (c. c. (protein୤୧୶ୣୢ, protein୰୭୲,୧))                       (5) 

i = 1, . . , N୭୰୧ and N୭୰୧ is the number of orientations. 

The 3DZM model representations allow one to speed up 
the model rotation calculation by using Fast Fourier Trans-
formation (FFT) method as described in the Trapani and 
Navaza (2006) [TN06].  

The value of c.c. is in range [0,1], where 0 means unre-
lated, and 1 can be obtained only when aligning a model to 
itself. Larger c.c. value means higher similarity between the 
models. The good retrieval methods should be able to pick 
the models with large correlations to the query model. The 
exhaustive model matching using 3DZM is named as the 
3DZM method. The pearson correlation between query and 
target using 3DZD is named as the 3DZD method.  

3.2 Kihara’s method 

This method is provided by Prof. Kihara and his team. 
They also used 3DZD as shape descriptors as part of the 
model representation. The Euclidian distance between 
3DZD’s are used to measure the model difference. The other 
consideration in this method is the biological relevance of 
the retrieved models, so they tried to guess the trace of the 
protein main chain and try to align the models. Furthermore, 

the Kihara’s method carried out re-ranking using molecular 
size information computed from the point cloud representa-
tions.  

For models whose sizes are between 0.8 and 1.25 times 
the size of the query, if the main chain comparison score, 
TM-score ≥ 0.5, the models will be added to the top of the 
retrieval list if they are not at the top already. 

 

3.3 Shape Retrieval System driven by Digital Elevation 
Models  

The molecular shape similarity system is composed of 
two main stages: the first stage is performed for each shape 
and consists in the global shape representation as a Digital 
Elevation Model (DEM), encoded over a 2D grid. The sec-
ond stage corresponds to the shape comparison phase which 
is supplied via global distance measures computed over the 
DEMs. 

Representing Macromolecular Shapes as Digital Eleva-
tion Models 

Macromolecular triangular surface computation. The 
shape representation algorithm applies the EDTSurf 
[XZ*09] technique to generate the macromolecular surface 
(MS) from the input data. The algorithm exploits the Vertex 
Connected Marching Cubes and the Euclidean Distance 
Transform to generate the triangular mesh which is kept for 
further processing. 

Digital Elevation Model computation.  The present work 
exploits the DEM concept traditionally employed in cartog-
raphy for representing Earth's surface from terrain elevation 
data. The algorithm starts by applying the mesh flattening 
procedure used to map the mesh onto the unit sphere using 
the Laplace-Beltrami operator, resulting in an isometry in-
variant shape representation [AHTK99,GGS03]. In the sec-
ond step, the unit sphere is projected onto a 2D spherical 
panoramic grid and the elevation values of the input mesh 
are assigned to each 2D location of the panoramic grid. This 
results in a global descriptor which encodes elevation val-
ues, while providing topology and fast comparison over a 
2D grid space.  

The final output is the digital elevation model associated 
to the macromolecular surface, noted MS-DEM. Figure 2 il-
lustrates the results obtained for a target belonging to the 
protein pool of the BioShape track. 

Global Comparison of MS-DEMs 

The MS-DEM shape descriptor is used along with differ-
ent global distances for supplying the shape similarity com-
putation stage. The present research work evaluates the 
Mean Absolute Differences (MAD) and the Root Mean 
Square Deviation (RMSD) distances. They are measured 
over the points belonging to the 2D grids. For input meshes 
with different number of points, distances are computed over 
the minimum number of points computed between the query 
and the target meshes. Two methods are originated from 
MS-DEM, namely MS-DEM-MAD and MS-DEM-
RMSD. 
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Figure 2: Overview of the global descriptor computation 
stage for the input model m10001: (a) input data: 187866 
points, 357840 triangles; (b) macromolecular mesh gener-
ated by EDTSurf [XZ*09]: 86079 points, 172154 triangles; 
(c) spherical mapping output: 86079 points, 172154 trian-
gles; (d) MS-DEM output: 86 089 points, bounding box di-
mensions: [472, 257, 36.112]. 

 

3.4  Principal component analysis based shell and sec-
tor (PCAS) 

 

The surface for each protein molecule was generated 
using pymol and stored as obj _les. Using the obj _les, 
feature descriptors for each molecule was calculated. First 
each molecule was centered at the centroid and then aligned 
using PCA (Principal Component Analysis). After 
alignment a shell and sector based approach was adopted to 
describe the mass distribution of molecule using a 
histogram. The alignment step is necessary to work for this 
method since the feature descriptor is not rotation invariant. 

Considering a set of points  ݌ଵ ⋯݌௡  on the surface of 
molecule whose centroid is at origin, construct a matrix ܲ 
whose ݅௧௛  column is vector ݌௜. 

 
Using P build the covariance matrix, M = PPT, whose 

eigenvectors represent principal directions of shape 
variation. Using these vectors, the molecule can be aligned 
[AKKS99]. After alignment, the shell and sector approach is 
used for comparison. A sphere was divided into 11 
concentric shells with 24 equally distributed sector 
directions along the sphere. 

The radius of sphere is taken as the maximum radius of all 
the spheres which can cover all the molecules in the dataset. 
Number of points lying in each bin is then calculated by 

placing each point in its shell (by considering the points 
distance from centroid) and in each sector by taking the dot 
product of point's direction with the 24 equi-spaced points 
on the surface of the sphere. 

The histogram is then normalized such that the values lie 
from 0 to 1 in each dimension. This in total generates a 
11*24 bins vector for each molecule. Finally the distance 
between any two molecules is calculated using the euclidean 
distance of this feature vector. 

 

4. Evaluation Measures 

4.1 Consistency with the ‘ground truth’ 

The correlation coefficient was calculated by the 
exhaustive model comparison. For each query, we compute 
the average c.c. between the query and the top N models, 
(N=1 to 200), for all methods. 

c. c.ୟ୴ୣ = ∑ cc୧
୒
୧ୀଵ                               (6) 

where ܿܿ௜  is the correlation coefficient between the i-th 
retrieved model and the query model.  

4.2 Average Discounted Cumulative Gain 

The ranking of the retrieved models is used as weighting 
factor to evaluate the performance. If a correct model with 
higher similarity is ranked top, the performance of the 
method should be considered better. The Discounted 
Cumulative Gain criterion was designed to use this 
weighting factor. 

For a query, with the top 200 models set M =
{mଵ, mଶ, … , mଶ଴଴}, we compare it to the groundtruth GT =
{gtଵ, gtଶ, … , gtଶ଴଴} , then, the flag set G =  {xଵ, xଶ , … … . } 
can be calculated by  

x୧ = ൜
1            if x୧ in GT
0    if x୧ not in GT 

For the groundtruth (3DZM results), the set G: 

IG = {1,1, … … 1} 

So, for each method, the InitDCG can be calculated by the 
following function. The DCG  can be obtained by the 
InitDCG divided by the groundtruch’s InitDCG (IDCG). 

InitDCGሾiሿ =  ቐ
Gሾ1ሿ           i = 1

InitDCGሾi − 1ሿ +
1

logଶGሾiሿ
          others

 

 

DCGሾiሿ =
InitDCGሾiሿ

IDCGሾiሿ
 

4.3 Other parameters 

Nearest Neighbor (NN), First-tier (Tier 1) and Second-
tier (Tier 2) 

To check the ratio of models in the query’s class that also 
appear within the top K matches, for Nearest Neighbour K=1, 
for the first tier K=|C|-1, and K=2*|C|-1 for the second tier, 
where |C| is the number of the query’s class. Here we choose 
|C| = 100. 
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Precision, Recall, E measure and MAP 

Let A be the set of all relevant objects, and B be the set of 
all retrieved object then: 

precision =
A ∩ B

B
 

recall =  
A ∩ B

A
 

Recall evaluates how well a retrieval method finds the 
relevant models, while precision evaluates how well it 
weeds out irrelevant models. 

E = 1 −
2

1
p +

1
R

 

   E evaluates both the precision and recall performance. 

 MAP (Mean Average Precision) calculates average 
precision for every query, and counts the mean value of the 
average precision for all the classes, it gives the average 
precision accuracy for retrieval results of all queries. 

4.4 Computational Cost 

For the practical reasons, the speed of the algorithms is 
important for the users to choose which method to use. The 
total computational time includes the time it takes to extract 
the 3D shape descriptor for an object and to perform one 
query search on the database.  

 

5. Results 

Each team is instructed to submit the top 200 models (in 
descending rank based on model similarity to the query us-
ing their own measures). Four teams submitted results of six 
methods before the deadline of the contest. The following 
sections summarize the performance of the six methods. 

5.1 A glance of the retrieval result 

There are two special queries (q_11 and q_14), whose 
identical models are present in the target database. A basic 
retrieval test of each method is the retrieval of the query it-
self. Figure 3  shows the query q_11 and ranking order of 
itself in each method. It can be seen that 3DZM, 3DZD and 
Kihara’s descriptor retrieval the query as the best matched 
model, the MS_DEM_MAD and the MS_DEM_RMSD 
ranked the query to be the second best. As for the PCAS de-
scriptor, the query was ranked to be the 47th in the result. 
All six methods found query q_14 as the best matched model 
correctly. While it is clear that 3DZM, 3DZD and Kihara’s 
method provide stable and effective performance to find a 
protein in a large database by using the Zernike descriptor.  

 

Figure 3: The results for query q_11. The query model 
was ranked to be the first by 3DZM (labeled as groundtruth), 
3DZD and Kihara’s methods, ranked as the second in the 
MS_DEM_MAD and MS_DEM_RMSD method, and ranked 
47th in PCAS method. 

5.2 Overlaps between the query and models. 

The c.c. values are computed using the exhaustive model 
comparison (3DZD method). Table 2 summarizes average 
correlation coefficients of the top 1, top 3 and top 5 models. 
The average c.c. for retrieved models up to the top 200 are 
plotted in Figure 4a for each method. As revealed in the Fig-
ure, the first model retrieved using 3DZM, 3DZD and Ki-
hara’s methods is more similar to query than the other meth-
ods, although the other methods also give the reasonable re-
sults. As more models with lower scores (bad matching) are 
included, the average correlation coefficients of different 
methods have larger separations.  

Table 2: The average correlation coefficients between 
queries and their top N models.  

 Top 1 Top 3 Top 5 

3DZM* 0.769 0.718 0.701 
Kihara 0.715 0.641 0.619 

MS-DEM-
MAD 

0.625 0.608 0.598 

MS-DEM-
RMSD 

0.629 0.614 0.597 

PCAS 0.646 0.619 0.607 
3DZD 0.723 0.657 0.643 

* The correlation coefficients are computed using exhaus-
tive matching with 3DZM representations. 

5.3 Evaluation curves  

  Figure 4 shows the evaluation curve of the retrieval re-
sult. The average DCG shows the consistency between the 
proposed methods and the groundtruth (here, defined using 
3DZM ranking). Figure 4(a) shows the average correlation 
coefficients for all queries. Figure 4(b) shows that the Ki-
hara, 3DZD and PCAS methods have good agreement with 
the ground truth. The MS_DEM methods are less consistent 
with the other three methods (as well as the ground truth). 
All methods are very consistent for the two queries that have 
exact models in the target set (q_11 and q_14), as shown in 
Figure 4(c). The PR curves in Figure4(d) indicate that the 
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Kihara, 3DZD and PCAS methods have better performance 
in retrieving a few good match models. When more models 
are retrieved, the Kihara’s method becomes similar to the 
MS-DEM approaches. It could be due to the fact that trace 
comparison starts play important roles in giving higher ranks 
for these models with lower similarity (as measured using 
3DZM and 3DZD). 

(a) 

(b) 

 
(c) 

 

 

        (d) 

Figure 4: Evaluation Curve. (a): The average correlation 
coefficients for all queries. The plots indicate that the top 10 
models can be considered to be correct for most methods, 
indicated by the sharp transitions to the plateaus. (b): The 
average DCG for all queries. The ranking results from 
3DZM method was used as the ‘ground truth’ for DCG cal-
culation. (c): The average DCG for queries q_11 and q_14. 
The exact shape models for these two queries are present in 
the target set. (d): Precision-Recall Curve for all the que-
ries. 

5.4 Statistics of evaluation parameters 

Table 3:  Statistics of evaluation parameters 

Method NN Tier1 Tier2 MAP E 

Kihara 65.29 18.40 9.20 20.34 20.3 

MS-
DEM-
MAD 

31.40 24.35 12.15 15.16 26.21 

MS-
DEM-
RMSD 

34.92 23.92 11.95 16.02 25.85 

PCAS 68.41 35.00 17.50 24.94 29.19 

3DZD 74.44 26.70 22.20 34.44 38.30 

3DZM -- -- -- -- -- 

 

Among the five methods (besides the 3DZM), the 3DZD 
and the PCAS methods have the best performance in retriev-
ing the top 200 models ranked using 3DZM (Table 3). The 
method from Kihara has the highest average consistency 
with the 3DZM method in the top 5 models.  

The 3DZM method retrieves protein molecules based on 
the shape similarity. Especially for structures at low resolu-
tions when the amino acid sequences are hardly to map to 
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the shapes, the performance of this 3DZM method remains 
accurate.  

5.5 Computational demands 

Table 4: Execution time and storage requirement. 

Method  

3DZM Execution time: Zernike moment compu-
ting for each model: 2 seconds 

Model search through 5,484 shapes: 700 
seconds/query 

Storage / Ram usage: The storeage for one 
descriptor is about 0.1MB.  

Remarks: Mac OS with 3.5GHz Intel Core 
i5 processor and 16GB 1600MHz DDR3 
memory 

Kihara Execution time: Feature extraction: 1.255 
seconds/model. Search time using 3DZD: 5 
seconds/query.MM-align for one query 
against all models: 12.5 hours. 

Remarks: Intel(R) Core(TM) i7-3820 us-
ing single CPU 

DEM Execution time: Total runtime for de-
scriptor extraction: 6.1222 seconds/model 

Comparing one query against the entire 
protein pool takes in average 2.3502 sec-
onds for MAD and 3.3518 seconds for 
RMSD. 

Storage / Ram usage: The average 
memory usage for storing the MS-DEM de-
scriptor is 1.058 Kb.  

Remarks: 64b Linux machine equipped 
with 32Gb of RAM memory and an Intel 
Xeon running at 2.3 GHz. 

PCAS Execution time: Time required for 
(Feature extraction of 5,494 molecule  

and ranking of a test model with respect to 
5484 models) = 16.84 seconds. 

Storage / Ram usage: 340 bytes/model.  

Remarks: RAM:8 GB 
3DZD Execution time: Zernike moment 

computing for each model: 2 seconds 

Model search through 5,484 shapes: 5 
seconds/query  

Remarks: Mac OS with 3.5GHz Intel Core 
 

The computational speed and feature storage are summa-
rized in Table 4. Although there are variations in the hard-
ware used in different teams, the PCAS outperforms all other 
methods in terms of speed and feature storage space. The 
model alignment in Kihara’s method takes significant 
amount of time. The DEM approach is also fast in model 
retrieval, but takes relative longer time for feature extraction.  

6. Discussion 

Unlike the 3D objects we encountered in daily life, protein 
or other biomolecule did not get enough attention in 3D 
Shape Retrieval Contest. Considering the different aspect of 
the function and the structure of the proteins, there will be 
different standpoint of the similarity measure  metric for pro-
teins. The conformation of the proteins would also change 
in different environment conditions. So that the definition of 
the similarity of proteins and the standard of groundtruth da-
taset is more complicated than the 3D objects. There is no 
widely used standard benchmark to evaluate the model re-
trieval performance yet. This needs to be changed to catch 
up with the rapid accumulation of 3D molecular structures. 
The development of structural determination methods using 
X-ray free electron lasers [SWC12] and Cryogenic electron 
microscopy [Che15] are rapidly expanding the number of 
protein structures, the shape-based protein structure research 
start to draw more attentions from various community. 
There are over 120,000 structures deposited in the Protein 
Data Bank, waiting for detailed analysis. Inspired by the 
beautiful structures of biological molecules, this bioshape 
track in the SHREC 2017, is aimed to encourage teams with 
different background to participate.  

In this contest for bio-inspired shapes, we consider the ge-
ometric similarity more than biology relevance, and gener-
ated a subset of available structure as target set for model 
retrieval. Furthermore, the 6 methods all give the reasonable 
results, especially in the top 5 retrieval models, although 
from different standpoint of the similarity of proteins. Since 
this is the beginning of the protein retrieval task in 3D Shape 
Retrieval Context, the main consideration is the geometric 
similarity of the proteins. In the next context, more biology 
information would be considered into the retrieval condi-
tions. This has been partially considered in the implementa-
tion of Kihara’s method. The computational speed is also an 
important factor, considering that over 120,000 models 
might needs to be compared against each query. PCAS im-
plementation can be fine tuned to further speed up the re-
trieval, which can serve as initial screening. 

On the other side the successful criterion of retrieval and 
classification is not unique, although we stress that the shape 
similarity is the measure. Different retrieval method opti-
mizes different aspects of the model similarity. It can be seen 
in the Appendix that the methods have varying performances 
for different queries. There are still spaces for improvement 
for all methods. 

The lack of benchmark for bioshape retrieval is a problem. 
During the contest of SHREC 2017, we found one dataset 
randomly selected from FSSP database[HOS*92], which 
classifies 2,631 proteins into 27 classes using DALI algo-
rithm. This database can be used for further evaluation for 
protein retrieval methods. We compared the 3DZM method 
against this dataset, and the results are very consistent with 
the FSSP classifications (the classification accuracy is 
99.62% using the 3DZM method with ݊௠௔௫ = 20). 

The other more challenging task can be the datasets with 
flexible molecules that have multiple structures. The de-
formable shapes in molecular world are quite common and 
play critical roles in their functions. We plan to include such 
data in next SHREC. 
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