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Abstract

Shape similarity computation is the main functionality for shape matching and shape retrieval systems. Existing shape similarity
frameworks proceed by parameterizing shapes through the use of global and/or local representations computed in the 3D or
2D space. Up to now, global methods have demonstrated their rapidity, while local approaches offer slower, but more accurate
solutions. This paper presents a shape similarity system driven by a global descriptor encoded as a Digital Elevation Model
(DEM) associated to the input mesh. The DEM descriptor is obtained through the jointly use of a mesh flattening technique and
a 2D panoramic projection. Experimental results on the public dataset TOSCA [BBKOS] and a comparison with state-of-the-art
methods illustrate the effectiveness of the proposed method in terms of accuracy and efficiency.

Categories and Subject Descriptors (according to ACM CCS): Design Methodology [Pattern Recognition]: I.5.1—Pattern analysis

1. Introduction and Motivation

The recent advances in passive and active 3D sensing devices are
making available a wide diversity of 3D model repositories [Tri],
being increasingly employed for supplying a wide range of civil-
ian and military applications. Their feasibility stands in the capac-
ity to design fast and accurate Shape Similarity Systems (SSSs)
capable to handle a wide range of shape types within massive
datasets. Generic benchmarks (PSB [SMKF04], NIST [FGLWO08])
and specialized databases [JKIR06], [BBKOS] were built to pro-
vide both, datasets variability in presence of shape transformations
and evaluation protocols [SMKF04]. Reported methods achieved
high recognition rates and key issues shifted towards the scalability
aspect [SBS™15]. This requires both: (i) the capability to encode
high resolution meshes at coarse level and (ii) similarity measures
able to supply fast query search within massive datasets. In our re-
search project, since the shape descriptor is computed only once
and stored in a database, we focus on the descriptor comparison
runtime for providing a fast query search method.

The present research work proposes a SSS designed for perform-
ing efficient shape retrieval applications in presence of non-rigid
deformations. This paper is organized as follows: the next section
reviews representative methods for non-rigid shape retrieval. Sec-
tion 3 describes the proposed SSS, followed by Section 4 which
presents experimental results and a comparison w.r.t. state-of-the-
art representative methods. Section 5 concludes the present re-
search work and gives main perspectives.
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2. Related Work on Non-Rigid Shape Retrieval Systems

This paper focuses on the non-rigid shape retrieval problem which
represents a challenging task due to the high number of degrees of
freedom detained by flexible shapes. Following the space represen-
tation, shape retrieval frameworks can be roughly classified in two
categories: methods operating in the 3D space and view-based tech-
niques which exploit 2D representations. For each category, there
are shape retrieval systems driven by global and/or local shape sig-
natures.

Geometry-based shape representations providing local descrip-
tors such as Spin Images [JH99] and Shape Context [KPNKO3]
provide invariance to rigid motion, while MeshHOG (Histogram
of Gradients) [ZBVHO09] demonstrated robustness to non-rigid de-
formations. Pose-invariant methods relying on Laplace-Beltrami
spectrum were also introduced, such as ShapeDNA [RWP06] and
Global Point Signature [Rus07]. Local features based on Laplace-
Beltrami operator include Heat Kernel Signature [SOG09] and
Wave Kernel Signature [ASC11]. They provide an effective so-
lution for invariance to non-rigid deformations. A recent survey
on spectral methods can be found in [LBHI14]. Visual-similarity
shape retrieval systems proceed by generating multiple 2D pro-
jections (silhouettes, depth-buffer) and by measuring the similarity
via different shape descriptors [CTSOO03], [PPTP10]. As stated in
[LGS10], most of view-based methods rely on pose normalization
performed before projection generation. In addition, the shape sim-
ilarity is computed over multiple projections, making them unsuit-
able for large corpus datasets. In order to decrease computational
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time, recent research works are directed towards feature-coding ap-
proaches aimed at designing a more compact shape representation.
Reported methods include Shape Google [BBGO11] which applies
the Bag-of-Features (BoF) paradigm [OCZ07] to spectral descrip-
tors [LBH14]. Other techniques combine Multidimensional Scaling
and BoF [LGSZ10], [LGS10], or apply geodesic distance [MSO05]
to local extremas followed by clustering [TDVCI11]. Supervised
approaches based on sparse coding [LBH15] and deep learning
[FXD*15] have also reported effective results.

The present research work combines a mesh flattening shape rep-
resentation with a 2D panoramic projection to encode the Digital
Elevation Model (DEM) associated to the input mesh. The perfor-
mances of the DEM descriptor used jointly with global dissimilar-
ity metrics are studied for supplying shape retrieval applications in
presence of non-rigid deformations.

3. Proposed Shape Similarity System

The proposed system is composed of two main stages: (i) the global
descriptor computation and (ii) the shape comparison stage which
are described through the present section.

Representing shapes as Digital Elevation Models. The present
work exploits the DEM concept traditionally employed in cartog-
raphy for representing Earth’s surface from terrain elevation data
[ML58]. In the surface representation processing block, the in-
put mesh is encoded as a DEM through the use of a two-steps
projection. The algorithm starts by applying the mesh flattening
procedure introduced in [AHTK99] which maps the input mesh,
noted M, onto the unit sphere using the Laplace-Beltrami opera-
tor [GGSO03]. The spherical mapping provides a valid solution for
any genus-0 triangle meshes, being adapted in our current research
work. In addition, mapping the surface on the unit sphere intro-
duces inevitable distortions which we plan to evaluate and com-
pensate in our future work.

In the second step, the unit sphere is projected onto a 2D spher-
ical panoramic grid and the elevation values of the input mesh are
assigned to each 2D grid location. The generation of 2D panoramic
view proceeds by converting the point cloud Pg associated to the
flatten mesh in spherical coordinates (6, @, p). The converted points
are further injected into a 2D Delaunay triangulation procedure
[Sch96] in order to compute the intrinsic parameters of the spheri-
cal projection, namely the angular steps (86, 8¢) and the spherical
field of view given by [Omin, Omax] X [@min, Pmax]. In order to handle
spherical mappings with variable angular steps estimates, we gener-
ate a square grid with constant angular resolution 86 = 8¢ = 0.01.
A 3D point on the unit sphere is mapped onto the 2D grid space
through the projection PR} = R? expressed as:

’P(ei7(Pi7pi)4>m(ul'?Vi) (1)

where, m(u;,v;) = p.;,i = 1,..,Np, represents the 2D grid loca-
tion storing the elevation value, p;, of the associated 3D point p =
(px, Py, Pz) € M, with N, denoting the number of vertices present
in the input mesh M. The final output is the DEM associated to the
input mesh M, defined as E = {(u, v, p;)(i),i=1,...,Np}. This re-
sults in a global descriptor which encodes shape’s elevation, while
providing topology and fast comparison over a 2D grid space. Fig-
ure 1 illustrates an overview of the DEM descriptor computation

procedure. In our research work we studied the invariance of the
proposed DEM descriptor under rigid transformations and scale
variations applied to the input mesh. The DEM descriptor is stable
under rotations and translations variations of the input mesh and
varies in presence of scale transformations. In addition, in our ex-
periments we observed that the overall mapping distortions (mesh
flattening and 2D grid projection) subject to the level of detail
present in the mesh, may give rise to a certain invariance limits
w.r.t. the rigid motion magnitude and to the mesh resolution. For
this reason, the isometry invariance must be evaluated w.r.t. input
mesh types in order to draw the conditions in which the invariance
property is preserved.

Figure 1: Overview of the DEM descriptor computation procedure
on an input mesh belonging to the TOSCA dataset [BBKOS]: (a)
input mesh: cat 40, (b) spherical mapping [AHTK99] obtained for
the input mesh cat 40, (c) DEM output corresponding to the input
mesh illustrated in Figure(a), color code: elevation values.

Global comparison of DEMs. The shape similarity is computed
by comparing the DEMs associated to the query and target meshes
through the use of global distance measures. The present research
work evaluates the Mean Absolute Differences (dyap (u, v, p;)) and
the Root Mean Square Deviation (dgyssp(u,v, pz)) distances. For
input meshes with different number of points, distances are com-
puted over the minimum number of common points (noted N,
and computed between the query and the target meshes). In ab-
sence of scale variations, the comparison measures a valid similar-
ity when shapes belonging to the same class result in DEM with
similar size. Figure 2 illustrates an example of the shape similarity
output generated by the dyap(u, v, p;) distance on a query belong-
ing to the TOSCA dataset [BBKOS]. It can be observed that the
query search resulted in true positives (TP). In addition, Figure 2
emphasize that the dissimilarity score is also able to quantify the
amplitude of local deformations and thus, to rank the progressively
less similar targets according to the query. The proposed SSS com-
pares one descriptor per shape, while providing an explicit surface
representation which gives the possibility to recover information
about the areas corresponding to non-rigid deformations.

4. Experimental Results and Performance Evaluation

Dataset. The TOSCA dataset [BBKO08] was chosen for assessing
the performances of the proposed system. While being a small
dataset, it allows analysing in detail the algorithm’s behaviour for
problem identification. The dataset is composed of 80 models be-
longing to 9 classes. For each class, a different number of targets
are available as true positives.

Evaluation measures. The retrieval performances of the pro-
posed framework are studied by employing the evaluation proto-
col introduced in [SMKFO04] which measure the Nearest Neigh-
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Figure 2: Shape similarity output generated by the dyap(u,v, p;)
distance on an input mesh belonging to the TOSCA dataset
[BBKOS8]: (a) red color - query, white color: best N = 4 best targets
output.

bor (NN), First Tier (FT), Second Tier (ST), Mean Average Preci-
sion (MAP) and the Precision-Recall graphs. The evaluation was
made based on the source codes released for SHREC’15 contest
[SBS*15], which focused on the scalability of non-rigid shape re-
trieval algorithms.

Comparison to State-of-the-Art. We selected top-ranked tech-
niques evaluated on both, non-rigid shapes retrieval bench-
marks [LGB*13], [LZC*15] and large scale generic datasets
[LLL*15], including non-rigid shapes. The first evaluated tech-
nique, ShapeDNA [RWP06], belongs to spectral methods. As in
[BK10], the evaluation was done by selecting the first 15 eigen
values. The all-vs-all dissimilarity matrix is computed using the
L, distance computed between feature vectors associated to each
shape. The second evaluated method is a view-based technique,
PANORAMA [PPTP10], which has reported effective results on
the latest large scale benchmark [LLL"15], containing also non-
rigid shapes. The third evaluated method is the Viewpoint Feature
Histogram (VFH) [RBTH10] employed for object and pose recog-
nition. It relies on points’ normal computation and encodes each
shape in a 308-bins histogram. The Sum of Absolute Differences
(SAD) is selected for computing the dissimilarity measure between
histograms.

Accuracy evaluation. From Figure 3 it can be observed that
top-rank methods include ShapeDNA and the proposed DEM de-
scriptor employed along with dgyssp(u,v, pz) and dyap(u,v, pz)
distances. Lower recognition rates correspond to the view-based
method, PANORAMA, and to the VFH descriptor. When analyz-
ing the retrieval performances illustrated in Table 1, it can be ob-
served that ShapeDNA and the proposed method, dyap(u, v, p;),
generated similar performances, except for the ST measure.

Shape comparison runtime. Algorithms were evaluated on a
64b machine equipped with an Intel Xeon running at 2.3 GHz
and with 32Gb of RAM memory. The proposed algorithm is im-
plemented in C/C++ and relies on PCL [RC11], VTK [WSL06]
and ITK libraries. Table 2 illustrates the runtime obtained for com-
puting the similarity score for the same input mesh, cat £0. Com-
putation time shows that histogram-based techniques (ShapeDNA,
VFH) provide the fastest comparison, while PANORAMA is the
most computationally expensive approach. The proposed 2D grid-
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Table 1: Accuracy evaluation measures for each compared method.

RecRate(%) NN FT ST MAP
drysp (u,v, pz) 0.95 0.7960 | 0.7525 | 0.8373
dyap(u,v,pz) | 09375 | 0.8123 | 0.7795 | 0.8653

SAD|VFH]| 0.7625 | 0.5429 | 0.5664 | 0.6132
PANORAMA | 0.7125 | 0.4479 | 0.3338 0.503

shapeDNA 0.9625 | 0.8226 | 0.9157 | 0.88851

Table 2: Runtime (seconds) for computing the similarity score for
the query catf0.

Method (f bins) CPU (s)

dRMSD(M7V7pZ) 32.8¢—5
dMAD(uf‘}?PZ) 23¢—5
SAD[VFH] (308) 56e —17
PANORAMA 12¢ -3
shapeDNA (15) 6e —17

based method bridges the gap between the evaluated histogram-
based and view-based methods.

Although ShapeDNA exhibits competitive running time, the pre-
sented DEM descriptor provides an explicit shape representation
suitable for identifying, although with an approximation, areas cor-
responding to non-rigid deformations. In addition, the dissimilarity
score allows to quantify the amplitude of non-rigid deformations
and thus, to rank the progressively less similar targets according
the query.
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Figure 3: Precision-Recall plots for each compared method.

5. Conclusions and Research Perspectives

This paper presented a global shape descriptor encoded as a Dig-
ital Elevation Model designed for supplying fast query search for
shape retrieval applications in presence of non-rigid deformations.
Main perspectives of the present research work are concerned with
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the extension of the proposed descriptor to larger datasets (higher
genus surfaces) and deformations types. Future work is also di-
rected towards the optimization onboard parallel processing units.
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