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Abstract
With the rapid growth of 3D data, accurate and efficient 3D object recognition becomes a major problem. Machine learn-
ing methods have achieved the state-of-the-art performance in the area, especially for deep convolutional neural networks.
However, existing network models have high computational cost and are unsuitable for real-time 3D object recognition appli-
cations. In this paper, we propose LightNet, a lightweight 3D convolutional neural network for real-time 3D object recognition.
It achieves comparable accuracy to the state-of-the-art methods with a single model and extremely low computational cost.
Experiments have been conducted on the ModelNet and Sydney Urban Objects datasets. It is shown that our model improves
the VoxNet model by relative 17.4% and 23.1% on the ModelNet10 and ModelNet40 benchmarks with less than 67% of training
parameters. It is also demonstrated that the model can be applied in real-time scenarios.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object

Modeling—Curve, surface, solid, and object representations , I.4.8 [IMAGE PROCESSING AND COMPUTER VISION]:

Scene Analysis—Shape, I.4.8 [IMAGE PROCESSING AND COMPUTER VISION]: Scene Analysis—Object recognition,

I.5.1 [PATTERN RECOGNITION]: Models—Neural nets

1. Introduction

Real-time 3D object recognition is a significant and critical re-

search topic in the computer graphics and computer vision areas

for its numerous applications including human-machine interac-

tion, self-driving cars and intelligent robots. With the rapid devel-

opment of 3D sensors such as LIDARs and RGB-D cameras, 3D

data become increasingly accessible. Currently, a growing number

of large 3D object repositories are available [DDQHD13,WSK∗15,

CFG∗15], making the development of deep learning based 3D ob-

ject recognition algorithms possible. Due to their high-level repre-

sentation through hierarchical non-linear transformations, Convo-

lutional Neural Networks (CNNs) have been increasingly investi-

gated for 3D object recognition systems.

Feature learning based 3D object recognition methods can

broadly be classified into two categories according to data represen-

tation: multi-view based and volumetric representation based. Sev-

eral multi-view methods [XSZ∗16,SMKLM15,SBZB15,QSN∗16]

learn features from a collection of 2D projection images of 3D ob-

jects rendered in various view points. These methods can use ex-

isting 2D pretrained networks to achieve impressive performance.

However, projections from a large number of view points have to

be rendered, especially when the object is not uprightly orient-

ed [SMKLM15, SBZB15, HLH∗16]. Besides, multi-view methods

just provide 2D contour representations of 3D objects [FXD∗15]

and do not include sufficient geometrical information as 3D rep-

resentations because some detailed information (e.g., curvatures )

are not encoded. Consequently, 3D volumetric networks become

increasingly popular. Wu et al. [WSK∗15] proposed a 3D genera-

tive volumetric network for 3D object recognition and established

the 3D ModelNet dataset. Subsequently, an increasing number of

3D volumetric CNNs have been proposed to work on complete 3D

shapes [GGGDGR∗16,MS15]. Qi et al. [QSN∗16] proposed a vol-

umetric 3D CNN by subvolume supervision to address overfitting.

Sedaghat et al. [SZB16] used the orientation information of objects

to boost the category prediction accuracy. Brock et al. [BLRW16]

fused several very deep 3D neural networks to obtain better per-

formance than multi-view CNNs. Although good results have been

achieved, the computational cost of these existing deep learning

models are high and their frameworks are complex. The large num-

ber of parameters make the network hard to train and unsuitable for

on-board real-time applications. Moreover, the large amount of pa-

rameters make the network prone to overfitting small datasets and

can only work well given sufficient training samples. In this pa-

per, we focus on real-time 3D object recognition using a single 3D

CNN model without ensemble. Our model achieves comparable re-

sults to the state-of-the-art methods with reduced complexity of the

network model.

We propose a lightweight convolutional neural network (namely,

LightNet) based on VoxNet [MS15] by leveraging multitask learn-

ing to improve both the category prediction accuracy and efficiency.
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Multitask learning can be considered as a regularization term ap-

plied to neural networks to exploit the similarities among different

tasks and avoid overfitting. Besides, prior information or domain

knowledge can be used in the training process to obtain better ac-

curacy and learning efficiency via multitask learning as compared

to single task-specific learning models [Car98]. Inspired by previ-

ous work [QSN∗16, SZB16] and the fact that human can perceive

both the category and orientation information of 3D objects only

through partial shape of objects, we improve the recognition per-

formance of 3D CNN by forcing our model to predict category la-

bels and orientation information through entire or partial shapes.

In real-world applications, 3D objects are usually occluded in clut-

tered environment and orientation is a significant feature for ob-

ject recognition. It is therefore, reasonable to combine these two

auxiliary learning tasks. Furthermore, we simplify the framework

of our proposed model to make it more computationally efficien-

t and easier to train. Subsequently, the proposed lightweight CNN

model can work well on large datasets but also scale well to small

datasets without overfitting. The proposed model has been tested on

synthesized 3D CAD models and real-world LIDAR point clouds.

Experimental results show that our LightNet model can learn ro-

bust features by multitask learning and achieve promising catego-

ry prediction accuracy in real-time on benchmark datasets. It im-

proves the original model [MS15] by relative 17.4% and 23.1% on

two popular 3D category prediction benchmarks ModelNet10 and

ModelNet40 [WSK∗15] with less than 67% training parameters. In

addition, our model is more efficient than most existing 3D CNNs

for 3D object recognition. It takes 3-5 ms to classify an object.

The major contributions of this work are summarized as follows.

First, we propose a lightweight volumetric 3D CNN for 3D object

recognition. It has less training parameters as compared to exist-

ing models including VoxNet [MS15], FusionNet [HZ16] and VRN

Ensemble [BLRW16]. Second, we combine different kinds of aux-

iliary learning tasks into a network framework to handle both small

and large datasets without obvious overfitting. Third, comparative

experiments have been conducted on the ModelNet dataset and the

Sydney Urban Objects dataset. It is shown that the proposed model

provides a basic structure for on-board real-time recognition tasks

for its small storage requirement and low computational cost.

This paper is structured as follows. Section 2 gives a literature

review of 3D object recognition methods, with a focus on CNN

based approaches. Section 3 presents our model and implementa-

tion details. Section 4 evaluates our lightweight 3D CNN frame-

work. Section 5 finally concludes the paper.

2. Related Work

The core of 3D object recognition is to extract discriminative, con-

cise, and low-dimensional 3D shape features. Classical method-

s aim to design features according to specific tasks and domain

knowledge. On the contrary, recent deep learning (especially C-

NN) based approaches automatically learn powerful 3D features in

an end-to-end manner with promising generalization performance.

2.1. Hand-Crafted 3D Shape Features

Existing hand-crafted 3D shape features can be broadly divid-

ed into two major categories: global features and local features

[GBS∗14, BA10, KPVG10]. Global shape features process a 3D

shape as a whole but are unsuitable for recognizing occluded

objects in cluttered scenes. Examples of global shape features

include viewpoint histogram [RBTH10] and shape distributions

[OFCD02]. In contrast, local shape features outperform their glob-

al counterparts in cluttered scenes. Representative 3D local shape

features include spin image [JH98], rotational projection statistic-

s (RoPS) [GSB∗13], heat kernel signatures (HKS) [SOG09] and

fast point feature histogram (FPFH) [RBB09]. Besides, several 3D

local features are extended from 2D image features, e.g., 3D SUR-

F [KPW∗10] and 2.5D SIFT [LS09]. These methods have been suc-

cessfully applied in various areas including 3D shape matching, ob-

ject recognition and 3D shape retrieval. However, they highly rely

on human design and domain knowledge. Consequently, it is chal-

lenging for those shape features to work on large 3D repositories

consisted of various objects from different domains or tasks.

2.2. 3D CNN based Methods

CNNs have been successfully used for detection, segmentation and

recognition of objects in images [LBH15]. Later, 2.5D CNNs are

extended to RGB-D data for 3D object category prediction by con-

sidering depth channel as an additional channel [SHB∗12, Ale16].

Therefore, 3D geometric information is not fully utilized.

3D CNN is first used in video analysis by considering time as

the third dimension [KTS∗14, YWZ∗15]. Wu et al. [WSK∗15]

designed a convolutional deep belief network to reconstruct 3D

shapes from 2.5D RGB-D images and represented voxelized ge-

ometrical shapes using a binary probabilistic distribution for the

recognition task. Su et al. [SMKLM15] used view-based represen-

tations for 3D shapes to take full advantage of established 2D CNN

frameworks (e.g., VGG-M) pretrained on ImageNet. They achieved

good recognition accuracy through view-pooling layer and noticed

that there was a large gap between the performance of 3D volu-

metric CNN and multi-view CNN. VoxNet [MS15] was then pro-

posed for real-time 3D object recognition to mitigate the gap. It

provides a concise network structure with reasonable performance

for real-time applications. Qi et al. [QSN∗16] introduced two new

volumetric 3D CNNs to use auxiliary training, anisotropic probing

and Network In Network (NIN) structure [LCY13], with a com-

parable performance to multi-view CNNs being achieved. Fusion-

Net [HZ16] was proposed to fuse two volumetric CNNs and one

multi-view CNN in the output layer. It combines 3D and 2D fea-

tures to boost the performance. FusionNet outperforms previous

work in recognition performance on the ModelNet dataset. In ad-

dition, Sedaghat et al. [SZB16] improved the performance based

on VoxNet using orientation estimation. So far, the state-of-the-art

recognition performance on ModelNet is achieved by [BLRW16]

via an ensemble of 6 deep networks. Voxception-ResNet has 45

layers and 18M parameters, and takes 6 days for training. Besides,

several multi-view approaches [SBZB15, JLD16] and volumetric

methods [GGGDGR∗16, WZX∗16] can also be found in literature.

Although promising 3D object recognition performance has
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been achieved by existing network models, they either lack of gen-

erality in training scheme or sacrifice computational efficiency. Our

model is different from those approaches in two aspects. First, our

lightweight 3D CNN considers both recognition accuracy and ef-

ficiency. Therefore, we can achieve satisfying results in real time

with a small number of training parameters. The compact structure

also allows our model to be converged in a short time during train-

ing. Second, we leverage on different types of auxiliary tasks to

mitigate the limitation of 3D feature learning caused by the relative-

ly shallow network structure. Our model can learn robust features

not only on synthetic CAD models but also on occluded objects in

cluttered scenes. Therefore, our model has the potential for appli-

cations in real scenarios.

3. The Proposed LightNet Model

In this section, our model for 3D object recognition is introduced.

3.1. Binary Volumetric Occupancy Grid

Occupancy grids [Thr03] can be used to represent a 3D scene as

discrete grids. Each unit in this lattice cell is called a voxel, which

is described by a random variable. Similar to most 3D CNNs, the

input to our model should be voxels, i.e., occupancy grids. Conse-

quently, 3D data represented by point clouds (Fig. 1a) or meshes

(Fig. 1b) should be converted to volumetric data (Fig. 1c) before

being recognized.

(a) (b) (c)

Figure 1: 3D shape representations. (a) Point cloud, (b) Mesh, (c)
Volumetric representation.

Specifically, a shape is represented as a binary 3D tensor, where

a binary ‘1’ indicates that the voxel is inside the 3D surface or in-

tersects with the 3D surface, ‘0’ indicates the voxel is outside the

3D surface or dose not intersect with the 3D surface. The grid res-

olution has influences on the performance of CNNs, specifically, a

larger grid size reserves more shape details but is also more compu-

tationally expensive, while a smaller grid size reduces the computa-

tional cost but makes the representation less discriminative. In this

paper, the grid resolution is set to 24× 24× 24 to achieve a com-

promise between computational efficiency and discriminativeness.

The voxel grid of interest is further padded with four ‘0’ voxels

in all directions to reduce the boarder artifacts during convolution.

Consequently, the final grid size is 32×32×32.

3.2. Network Framework

Our model is inspired by the fact that, human can sense both the

category and the orientation of an object simply from partial 3D

data, and also know which part acts as an important feature for a

3D object. In this paper, our model facilitates 3D object recogni-

tion by multitask learning. The framework of our model is highly

compact, as illustrated in Fig. 2. The first three layers (including

the input layer) follow the same pattern as VoxNet [MS15]. How-

ever, our model is deeper and integrates both subvolume supervi-

sion task (for object category prediction) [QSN∗16] and orientation

estimation task [SZB16] to avoid overfitting and improve discrimi-

nativeness.

The input layer has a size of 32×32×32 to accept binary occu-

pancy grids. The output of each 3D convolutional layer is activated

by a leaky rectified nonlinearity unit (LReL) with its parameter e-

qual to 0.1, which allows for a small, non-zero gradient when the

unit is saturated and inactive [MHN13]. We also add an additional

conlolutional layer and a max-pooling layer to improve the dis-

criminativeness of the learned feature and to reduce the number of

parameters, since most of the parameters in VoxNet lie in the first

fully connected layer.

In the fifth layer, the network is divided into two branches: the

main branch and the auxiliary branch. The main branch consist-

s of a fully connected layer and a softmax output layer. For the

auxiliary branch, we slice the neurons in the same spatial position

along channels from the output of last max-pooling layer (size of

2×2×2×128 corresponding to x, y, z axes and channels) and re-

shape them to 8 one-dimensional vectors with a length of 128. After

appending the new reshaped fully connected layer with a softmax

layer, we assign a category prediction task to each sliced vector to

improve recognition performance from partial shape. The receptive

field of each neuron in the sliced vector of the auxiliary branch is

23×23×23, which occupies 72% voxels of the input space.

Besides, we also combine the orientation estimation task with

our model to boost recognition performance. We add a parallel out-

put layer to predict the orientation of an object. Here, nine orien-

tation estimation layers are extended in a form of softmax layers.

Although orientation is a continuous variable and should be bet-

ter estimated by regression, we consider orientation estimation as

a category prediction task to make the training more convenien-

t [SZB16]. Moreover, from a data augmentation perspective (Sec.

3.3), it is also reasonable to sample the orientation using discrete la-

bels. Finally, average pooling is imposed on the output layers for all

tasks to make the final decision. Consequently, we can fully use the

information from each path in our model and probability from soft-

max function. The overall framework of our model is more com-

pact than [SZB16] because of the final average pooling. We found

in our experiments that max-pooling achieves worse performance

than average pooling, that is perhaps because a lot of useful in-

formation for prediction is abandoned, especially in the auxiliary

branch where the information is very limited.

For these reasons, the cross-entropy losses (Eq. 1) for both cate-

gory prediction and orientation estimation tasks are added to obtain

the final total loss (Eq. 2):

LCross−entropy =− 1

m

[
m

∑
i=1

k

∑
j=1

1{y(i) = j} log ŷ(i)
]

(1)

LTotal = αLClassi f ication +βLOrientation, (2)
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Figure 2: The LightNet framework with auxiliary tasks. Conv(m,k,s) represents m convolution kernels of size k×k×k with a stride of s steps.
Max-Pooling(p) means that the maximum value in a volume of p× p× p is used for pooling. Each of the nine fully connected layers have a
length of 128, including the one in the main branch and the eight ones in the auxiliary branch. The number of output nodes for orientation
estimation task is 12, while the number of category prediction output neurons depends on the dataset.

where in Eq. 1, 1{·} is the indicator function, m denotes the total

number of training samples, k is the number of output neurons in

the final softmax layer (e.g., k = 10 for the category prediction of

ModelNet10, k = 12 for the orientation estimation), y(i) and ŷ(i)

stands for the true label and its corresponding prediction for the

ith output neuron, respectively; in Eq. 2, LTotal , LClassi f ication and

LOrientation represent the final loss of our model, the loss of object

category prediction, and the loss of orientation estimation, respec-

tively. Since our final task is object category prediction rather than

orientation estimation, and the auxiliary orientation estimation task

is expected to guide our model to learn more powerful and robust

feature representations, here we set α = 2
3 and β = 1

3 to give more

importance to category prediction task.

We also use a dropout layer [SHK∗14] after each convolution-

al layer and fully connected layer to achieve better generaliza-

tion. Besides, we adopt the weight initialization approach given

in [HZRS15], and initialize the two output layers in the main branch

by a zero-mean Gaussian distribution with a variance of 0.01.

The overall network contains only about 300,000 parameters, with

the majority of parameters being given in fully connected layers.

Therefore, our lightweight model can be easily trained to obtain a

satisfying generalization results without a complicated multistage

training process. Furthermore, overfitting can also be reduced by

our compact framework and we show that the lightweight 3D CN-

N can achieve promising results on both small and large 3D data

repositories.

3.3. Data Augmentation

As discussed in Sec. 1, orientation information is important for 3D

object recognition and it is required to obtain a rotational invariant

representation for 3D objects. In order to make our model more

robust to orientation variations, we augment the training samples by

rotating each 3D shape along the z-axis for 12 times with a step of

30 degrees. Accordingly, our auxiliary orientation estimation task

has 12 output neurons.

During training, we considered augmented copies of training da-

ta as separate samples, and use all the category prediction results

from the 12 augmented copies to vote for the final result. In addi-

tion, we randomly mirror and translate each object to augment the

data during training [MS15]. The augmented data are used to learn

invariance to transformations such as rotation and translation. The

mirror operation along the x and y axes is conducted with a prob-

ability of 0.2 and the translation is within the range from -2 to 2

voxels in all three directions. We also converted the voxel values

from {0,1} to {−1,1} to make the mean of the training data be 0.

Besides, we keep the input size to 32× 32× 32 in all experiments

to make our training scheme concise and efficient.

3.4. Training

Our proposed model was implemented in Python using the Keras

deep learning library on top of Tensorflow. Experiments were per-

formed on a single NVIDIA Geforce GTX 1080 GPU enabled by

CUDA 8.0, cuDNN 5.1, an Intel Core i7-6700K CPU and 32G

RAM.

Network training is achieved by Stochastic Gradient Descent (S-

GD) with Nesterov momentum [SMDH13], the momentum value

is set 0.9 and the batch size is set 32. The objective loss Copt for op-

timization is given in Eq. 3, which is composed of a cross-entropy

loss defined in Eq. 2 and an L2 weight regularization.

Copt = LTotal +
λ
2n ∑

w
w2, (3)

where w stands for all the training parametes (excluding bias terms)

in our model and n denotes the total number of these parameters;

the weighting parameter λ is set 0.001. We apply a stepwise anneal-
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Table 1: Recognition accuracy on ModelNet40 with different train-
ing methods.

Training Method Accuracy on ModelNet40

Train from scratch 82.9%

Fine-tuning 86.9%(Pretrained on ModelNet10)

ing schedule for the learning rate and set the learning rate ranging

from 0.001 to 0.00001.

4. Experiments and Results

We tested our lightweight 3D CNN model and the state-of-the-art

methods on two popular 3D object recognition datasets, i.e., the

Princeton ModelNet dataset [WSK∗15] and the Sydney Urban Ob-

jects dataset [DDQHD13].

4.1. Experiments on the ModelNet Dataset

ModelNet is a large 3D repository of clean CAD models (shapes),

the ModelNet10 and ModelNet40 subsets are commonly used and

consist of 10 and 40 categories, respectively. There are 4,899 CAD

shapes in the ModelNet10 dataset, the orientation of each object

in ModelNet10 has been manually aligned by the authors. There-

fore, it is a proper benchmark to test our model with orientation

estimation and subvolume category prediction tasks. ModelNet40

has 12,311 CAD shapes. Although ModelNet40 dataset contains

3D shapes with various orientations, our model still achieves good

performance on this dataset through fine-tuning. Several example

models in the ModelNet dataset are shown in Fig. 3.

(a) Shapes in ModelNet10 with orientation alignment.

(b) Shapes in ModelNet40 without orientation alignment.

Figure 3: Example 3D shapes in the Princeton ModelNet dataset.

The voxelized versions augmented by 12 copies are provided

in the dataset by scaling each shape to a occupancy grid of size

30× 30× 30. Therefore, we pad each 3D voxelized shape by zero

voxels to the size of 32×32×32 for our model. We used the typi-

cal train/test split [SBZB15,MS15,QSN∗16] originally included in

the dataset.

To test our model on ModelNet40 without orientation align-

ment, we used fine-tuning to show the significance of multitask

learning framework. Since ModelNet10 is a subset of ModelNet40,

there should be commonalities in representations between these t-

wo datasets. Therefore, we first removed the orientation estima-

tion output layers and initialized our model with the corresponding

weights learned on the ModelNet10 dataset, an then tuned the net-

work on ModelNet40 with a low learning rate to take advantage of

both the orientation estimation and subvolume category prediction

tasks. Compared to the one trained on ModelNet40 from scratch,

experimental result shows higher recognition accuracy (as shown

in Table 1) and faster convergence speed can be achieved by the

fine-tuning method. This indicates that our model can learn pow-

erful 3D representations. We then compared our model with the

state-of-the-art 3D object recognition models on the ModelNet10

and ModelNet40 datasets, as shown in Table 2.

4.1.1. Results on ModelNet10

As shown in Table 2, our model outperforms most of the existing

3D volumetric networks and all of the multi-view networks on the

ModelNet10 dataset, with an accuracy of 93.39% being achieved.

We first compare our LightNet with multi-view based network

models. Although these models benefit from network ensemble and

2D network structure pretrained on the ImageNet 1K and Mod-

elNet40 datasets, our single LightNet model still achieves higher

recognition accuracy on the ModeNet10 dataset. It clearly shows

the ability of our model to directly learn discriminative 3D features

from 3D shapes.

We then compare our LightNet model with all the single vol-

umetric network frameworks. It can be seen that our 3D CNN

achieves comparable accuracy to the state-of-the-art algorithms,

with a slight drop (i.e., of 0.41%) of accuracy as compared to

ORION F2C. Note that, a basic and simple structure is used in

our model to introduce orientation prediction task while a fine-

to-coarse structure is used in ORION to achieve improved perfor-

mance [HZ16]. Compared to the ORION Basic model, our pro-

posed LightNet achieves almost the same recognition performance

with much less parameters and higher computational efficiency. It

can also be observed that our model improves VoxNet by relative

17.4% with less than 67% training parameters. Compared to Vox-

ception and VRN (which has 45 layers), our model obtains com-

parable or slightly better accuracy. It also shows that our LightNet

achieves a large accuracy improvement as compared to PointNet.

We further compare our LightNet model with ensemble volu-

metric network frameworks. Compared to FusionNet, our model

achieves a slightly higher accuracy (i.e., about 0.28%) and signif-

icantly reduces the number of parameters by two orders of magni-

tude. Specifically, FusionNet has about 118M parameters while our

model has only about 0.3M parameters. Although VRN ensemble

achieves the best accuracy result, it has a very deep and relatively

complex structure (e.g., stochastic depth), making the network very

slow to converge (about 6 days) [BLRW16] and difficult to train.

In addition, its accuracy on the ModelNet10 dataset was achieved

by the VRN ensemble framework pretrained on the ModelNet40

dataset. It is reported that the accuracy is 94.71% when the net-

work is trained and tested on the ModelNet10 dataset, which is al-

most the same as ours. In contrast, our model has a more compact

and shallower structure than VRN ensemble. Our model is a single

network with 6 layers and about 0.3M parameters, while VRN en-
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Table 2: Category prediction results on the ModelNet dataset. Az stands for azimuth rotation and El stands for elevation rotation. ’-’ means
that information is not provided for the corresponding item in the related paper.

Type of Framework Method Pretrain Size Augmentation
Category Prediction Accuracy
ModelNet40 ModelNet10

Single, Volumetric 3DShapeNets [WSK∗15] ModelNet40 ∼38M Az×12 77.32% 83.54%

Ensemble, Volumetric VRN Ensemble [BLRW16] ModelNet40 ∼90M Az×24 95.54% 97.14%
Single, Volumetric VRN [BLRW16] ModelNet40 ∼18M Az×24 91.33% 93.61%

Single, Volumetric Voxception [BLRW16] ModelNet40 - Az×24 90.56% 93.28%

Single, Volumetric VoxNet [MS15] - ∼0.92M Az×12 83% 92%

Single, Volumetric ORION Basic [SZB16] - VoxNet Based Az×12 - 93.40%

Single, Volumetric ORION F2C [SZB16] - VoxNet Based Az×12 - 93.80%

Single, Volumetric PointNet [GGGDGR∗16] - ∼80M - - 77.60%

Single, Volumetric 3D-NIN [QSN∗16] - - (Az, El)×60 86.10% -

Single, Volumetric Subvolume Sup. [QSN∗16] - ∼16M (Az, El)×60 87.20% -

Single, Volumetric AniProbing [QSN∗16] - - (Az, El)×60 85.90% -

Single, Volumetric LightNet ModelNet10 ∼0.30M Az×12 86.90% 93.39%

Ensemble, Vol.+Mul. FusionNet [HZ16]
ImageNet 1K

∼118M (Az, El)×60 90.80% 93.11%
ModelNet40

Single, Multi-view DeepPano [SBZB15] - - - 82.54% 88.66%

Ensemble, Multi-view MVCNN [SMKLM15]
ImageNet 1K

VGG-M Based 80 Views 90.10% -
ModelNet40

Ensemble, Multi-view Pairwise Decomp. [JLD16]
ImageNet 1K

VGG-M Based 12 Views 90.70% 92.80%
ModelNet40

semble is an ensemble of networks with 45 layers and 18M param-

eters. Consequently, our model is easier to train and more efficient

for computing. All these results clearly demonstrates the effective-

ness of our LightNet model. Furthermore, the convergence time for

training our model is also significantly shorter then these models,

as discussed in Sec. 4.3.

To further demonstrate the effectiveness of our model, a con-

fusion matrix is shown in Fig. 4. It is clear that most object-

s can be correctly recognized. Note that, top false positives oc-

cur at 1) dresser → nightstand (14%), 2) table → desk (11%), 3)

nightstand → dresser (8%), 4) desk → table (8%). That is mainly

because these objects are highly similar in shapes (see Fig. 5) and

even cannot be visually distinguished by humans.

4.1.2. Results on ModelNet40

It can be observed from Table 2 that our model obtains a com-

pelling accuracy of 86.93%, which improves VoxNet by relative

23.1%. This result also shows that our model is able to learn effec-

tive representations for 3D objects, which can be well generalized

to 3D objects of other categories. Compared to the Subvolume Su-

pervision model (with an accuracy of 87.2%), we obtain almost the

same category prediction accuracy but considerably reduce struc-

ture complexity. That is because the Subvolume Supervision model

include several additional time-consuming 3D convolutional lay-

ers and operations. Further, we observed in our experiments that

3D NIN and Subvolume Supervision models severely overfit the

ModelNet10 dataset during training and work poorly on the Mod-

elNet10 test dataset. This indicates that those models have too many

parameters to train and cannot handle small scale datasets. Howev-

er, our model can maintain good performance on both ModelNet10

and ModelNet40 datasets.

Figure 4: A confusion matrix of category prediction achieved on
the ModelNet 10 dataset.

(a) Dresser (b) Night stand (c) Table (d) Desk

Figure 5: Examples of false category prediction results. In our ex-
periments, 12 dressers were classified as night stands, and 11 tables
were classified as desks. Each pair of objects are highly similar in
shapes.
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4.2. Experiments on the Sydney Urban Objects Dataset

The Sydney Urban Objects dataset contains 631 scans of common

urban road objects in 26 categories acquired by a Velodyne LI-

DAR [DDQHD13]. The commonly used data for object recognition

contains 588 objects from 14 categories, including four-wheel drive

(21), wall (20), wall or building (20), bus (16), car (88), person

(152), pillar (20), pole (21), traffic lights (47), traffic sign (51), tree

(34), truck (12), trunk (55), ute (16), and van (35) [DDQHD13].

Since point clouds in this dataset were collected in real-world ur-

ban scenes with significant variations in viewpoints and occlusion,

recognizing these severely occluded objects is a highly challenging

task, as illustrated in Fig. 6.

Figure 6: Examples of point clouds in the Sydney Urban Objects
dataset.

Since our model works on volumetric data, we first transformed

the point clouds to voxels. The resolution of the object occupancy

grid was set to 24× 24× 24 and then padded to the size of 32×
32× 32. We also augmented the volumetric data by rotating each

point cloud by 12 times along the z-axis. In contrast, 18 rotations

along the z-axis are used in [MS15] and various number of rotations

are used for different categories in [SZB16].

We divided the Sydney Urban Objects dataset into 4 folds for

training and testing, the same as in [DDQHD13]. During training,

we used three folds of the dataset to train our model and the rest

data to test the recognition performance. Same as [MS15, SZB16,

DDQHD13], we used the F1 score weighted by class support as our

performance metric to consider the unbalanced data distribution of

the Sydney Urban Objects dataset. The average weighted F1 score

over the four folds is shown in Table 3.

Table 3 shows that our model outperforms VoxNet and the meth-

ods proposed in [DDQHD13,CDLS14]. In [DDQHD13,CDLS14],

efficient 3D shape features are first learned and then a SVM is used

to classify objects. Compared to these two methods, our model can

scale well to large datasets with better real-time performance. As

shown in Table 3, the ORION Fusion structure achieves the best re-

sult for this task. However, our training scheme and network struc-

ture is concise and easy to train for its smaller number of weights,

achieving comparable performance to the ORION Basic model.

4.3. Computational Time

The training and recognition time of our model is shown in Table

4. In our experiments, our model can classify a 3D voxelized shape

within 5ms. This clearly shows that our model is suitable for real-

time object recognition applications for its simple framework and

small number of parameters. The training time is also shorter than

other models. Note that, the timing results are related to hardwares.

It is also observed that the recognition time of our model on Mod-

elNet40 is less than that on ModelNet10, that is because our model

used for ModelNet40 does not contain the orientation prediction

Table 3: Comparison of category prediction performance on the
Sydney Urban Objects dataset.

Method Average F1score

UFL+SVM [DDQHD13] 0.67

GFH+SVM [CDLS14] 0.71

VoxNet [MS15] 0.72

ORION Basic [SZB16] 0.767

ORION Fusion [SZB16] 0.778
LightNet 0.76

task, while our model for ModelNet10 is complete and more time-

consuming.

5. Conclusion

In this paper, we proposed a lightweight 3D CNN for real-time 3D

object recognition with small number of training parameters. We

effectively learn 3D representations using multitask learning, in-

cluding category and orientation prediction from both entire and

partial shapes. Our LightNet model achieves nearly the state-of-

the-art recognition accuracy on the ModelNet and Sydney Urban

Objects datasets. Extensive experiments have been conducted to

show the superior recognition accuracy and computation efficien-

cy of our LightNet model. In the future, we plan to integrate our

LightNet model into a real robot vision system, and extend it to

other real-time tasks such as 3D object detection and segmenta-

tion.
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