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Abstract

Despite numerous recent efforts, 3D object retrieval based on partial shape queries remains a challenging problem, far from
being solved. The problem can be defined as: given a partial view of a shape as query, retrieve all partially similar 3D models
from a repository. The objective of this track is to evaluate the performance of partial 3D object retrieval methods, for partial
shape queries of various scan qualities and degrees of partiality. The retrieval problem is often found in cultural heritage
applications, for which partial scans of objects query a dataset of geometrically distinct classes.

Categories and Subject Descriptors (according to ACM CCS): H.3.2 [Information storage and retrieval]: Information search and
retrieval—I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—Shape

1. Introduction

Partial 3D object retrieval (P3DOR) concerns the search of 3D
models which are similar to a query, when the available information
for the query is not complete. For each partial query, a partial 3D
object retrieval method is required to return a ranked list of com-
plete objects, which are retrieved from a database and are ranked
according to their similarity with the query. The similarity assessed
is partial and can be distinguished from global similarity in that it
implies a matching of only a part of the complete object with the

query.

The interest for partial retrieval algorithms has been significantly
boosted by the wide availability of 3D scanners, as well as by
progress in 3D graphics technologies. This interest has been fur-
ther amplified by the advent of several application domains, such as
face recognition and digital libraries of cultural heritage (CH) ob-
jects, which require partial 3D object retrieval capabilities. In this
context, two milestone challenges exist: (i) scanned queries can be
rough and noisy; (ii) it is not straightforward to effectively match
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a partial query against a complete 3D model, since there is a gap
between their representations. This representation gap complicates
the extraction of a signature that will enable a matching between a
complete 3D model and its partial counterpart.

Methodologies that appear in the literature address-
ing P3DOR can be roughly classified as: (i) view-
based [SMM*10], [AMSI1], [SPK*14], (ii)) part-
based [CB07], [TVD09], [APP*10] (iii) bag of visual words
(BoVW)-based [Lav12], [LGJ14], [BBGOI11], and (iv) hybrid
methods combining the three main paradigms or methods which
cannot be straightforwardly classified [FO09], [SPS16]. A de-
tailed overview of the corresponding methodologies is presented
in [SPS15], wherein the interested reader may also find the full list
of benchmark datasets that have been used in the context of partial
3D object retrieval.

In the SHREC series framework, previous efforts for benchmark-
ing 3D object retrieval with partial queries comprise the SHREC’09
track: Querying with Partial Models [DGA*09] and SHREC’10
track: Range Scan Retrieval [DGC*10], both organised by Duta-
gaci and Godil as well as SHREC’13 track: Large-scale partial
shape retrieval using simulated range images organised by Sipiran
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et al. [SMB™*13]. The typical feature of the aforementioned tracks
is the use of artificial queries.

Unlike the previous benchmarking efforts, this track uses for
testing a partial query dataset which comprises not only artificial
but also real scans with a quality which ranges from low to high
with different degrees of partiality. Moreover, the retrieval problem
that the participants of the track are dealing with, is motivated by
an intra-class problem, often found in CH applications, for which
partial scans of potteries query a dataset of geometrically distinct
classes (see Section 2).

The authors of submitted methods registered in the competition
and downloaded the target dataset along with representative sam-
ples of partial queries. At a next step, all registered participants
were required to submit the ranking list for each requested query.
After the evaluation of all participating methods, the 3D partial
query dataset is publicly available at the competition’s website:
http://vc.ee.duth.gr/shrecl6/.

The remainder of the paper is organized as follows: Section 2
describes the data used for the benchmarking, Section 3 provides a
comprehensive description of the participating methods, the pro-
duced results are given in Section 4 and finally conclusions are
drawn in Section 5.

2. Dataset

The dataset used for evaluation is related to the CH domain and
consists of 3D pottery models originating from the Virtual Hamp-
son Museum collection [VHM]. It consists of 383 models classi-
fied to 6 distinct geometrically defined classes. The partial shape
queries are provided in 3 different forms:

(i) artificial queries created by slicing and cap filling of the com-
plete 3D models. 21 artificial queries are provided in two different
degrees of partial coverage: 25% and 40%, respectively (resulting
in a total of 21 x 2 queries). Figure 1 illustrates three examples of
artificial queries. For each example, the associated complete object
from the Hampson dataset, along with the 25% and the 40% queries
are illustrated,

(i) real queries of high quality, obtained with the smartSCAN
Breuckmann scanner. In total, 25 high quality queries are provided,
each obtained from three different views (resulting in a total of
25 x 3 queries). Figure 2 illustrates three examples of high quality
queries. For each example, the associated complete object from the
Hampson dataset, along with the queries obtained from each of the
three different views, are illustrated,

(iii) real queries of low quality, obtained with Microsoft Kinect
V2 sensor. In total, 25 low quality queries are provided, each ob-
tained from three different views (resulting in a total of 25 x 3
queries). Figure 3 illustrates three examples of low quality queries.
For each example, the associated complete object from the Hamp-
son dataset, along with the queries obtained from each of the three
different views, are illustrated,

In the case of (ii) and (iii), the queries were created by scanning
derivative vessels that have been constructed by a professional pot-
ter using the Hampson models as a template (Fig. 4). All query sets
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Figure 1: Examples of artificial queries: for each example, the
associated complete object from the Hampson dataset (top), along
with queries of 25% (middle) and 40% (bottom) partial coverage
are illustrated.

e .
Figure 2: Examples of high quality queries. For each example,
the associated complete object from the Hampson dataset (top),

along with the high quality queries obtained from each of the three
different views.

have been created in the context of PRESIOUS-predictive digiti-
zation, restoration and degradation assessment of cultural heritage
objects EU-funded project [PRE].

3. Methods

Four (4) research groups have participated in the competition with
eight (8) distinct algorithms (each of two participants submitted
three algorithms). Brief descriptions of the methods are given in
the following (the order of appearance is the chronological order of
the expression of interest in the competition).

(© 2016 The Author(s)
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Figure 3: Examples of low quality queries. For each example, the
associated complete object from the Hampson dataset (top), along
with the low quality queries obtained from each of the three differ-
ent views.

Figure 4: Derivative vessels have been constructed by a profes-
sional potter using the Hampson models as a template.

3.1. View-based Partial 3D Object Retrieval with Feature
Encoding (M. Aono, S. Tashiro)

We have taken a view-based approach to partial shape queries for
3D object retrieval, attempting to minimize the dissimilarity be-
tween a query and a target 3D model. To compare views, we have
adopted three different combinations of feature-based encodings.
The first one is to encode KAZE [ABD12] features with vector of
locally aggregated descriptor (VLAD) [JDSP10], the second is to
encode KAZE features with Fisher vector (FV) [PS10], whereas the
third is to encode KAZE features with Gaussian of local distribu-
tion (GOLD) [SGMC15]. To obtain VLAD, FV, and GOLD vectors
from target 3D models, first we perform multi-view rendering and
generate multiple depth buffer and face orientation images. A face
orientation image is represented as a collection of inner products of
a view vector and a surface normal. Second, we smooth the images
with Gaussian filter and extract KAZE features as local features
from the smoothed images. Third, we find k centroids and n com-
ponents of Gaussian mixture model (GMM). In this track, since no
training data is provided, we estimate the centroids and parameters
of GMM from the target dataset. After obtaining centroids, we en-
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code local features with VLAD, FV, and GOLD. Given a partial
shape query Q, we derive a unique viewpoint v by the following
equation:

v— Ypcoaphp 1)

I Xpeoapnpl|

where p is a polygon organizing Q, ap is an area of p, and np is a
normal on p. Next, we perform single-view rendering for the query
and generate a depth buffer image and a face orientation image. We
then extract local features and encode them with VLAD, FV, and
GOLD. Power and L2 normalizations are applied to VLAD, FV,
and GOLD vectors. Finally, we compute dissimilarity d between a
query Q and a target 3D object M by the following equation:

d:mininfo,'H (2)

where fj is a feature vector of Q and fi is the i-th feature vector
obtained from M.

In this run, we chose image resolution as 300 x 300, the num-
ber of viewpoints as 92 based on geodesic sphere, the dimension
of a KAZE feature as 128, the number of centroids as £ = 100,
and the number of components of GMM as n = 50, amounting to
128 x 100 x 2 = 25600 dimensions of VLAD, 128 x 50 x 2 x 2
= 25600 dimensions of FV, and (128 + 128 x (128+1)/2) x2 =
16768 dimensions of GOLD vectors.

3.2. View-based Feature Matching (D. Pickup, X. Sun, P.L.
Rosin, R.R. Martin)

View-based methods have proved successful in the past at matching
rigid objects. We therefore use a variant of the view-based method
by Lian et al. [LGSX13] for partial matching. Our method assumes
that there is a view of the complete target object, and a view of the
partial query object where the same part is visible in both. To com-
pare a target object to a partial query we render 66 depth images
of each of them, where the rendered views are uniformly sampled
on a sphere surrounding the respective object (Figure 5(b)). We
then compute SIFT features from each depth image (Figure 5(c)),
and compare every image of the query to every image of the tar-
get by computing the mean Euclidean distance between matching
SIFT features [Low04]. The matching SIFT features are found us-
ing the vi_ubcmatch function of the VLFeat [VF08] computer vi-
sion library, which matches features using the method presented by
Lowe [Low04]. The distance between the most similar pairing of
images between the query and the target is used as the final distance
between the two objects.

3.3. Partial 3D Object Retrieval with Bag-of-Visual-Words
and ICP (Tran et al.)

We submit 7 runs which are shown in Table 1. The submission is
categorized into 3 main types: bag-of-visual words (BoW) only,
ICP only, and BoW-ICP fusion. In the BoW runs (1, 2, 3), we fol-
low the visual object retrieval scheme proposed by J. Sivic [SZ03].
This framework inherits the idea of text retrieval model and has
been successfully applied on visual data such as images and videos.
A standard BoW model includes 6 steps (as illustrated in Figure 6):
feature extraction (detection and description), training codebook,
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Figure 5: For each mesh (a), we compute 66 depth images (b), and
extract SIFT features from each depth image (c). The distance be-
tween two objects is computed as the distance between the matched
SIFT features of their most similar images.

quantization, tf-idf weighting, building inverted file, and comput-
ing distance. There are 5 main parameters: feature detector, feature
descriptor, codebook size, assignment type in quantization, and dis-
tance metric. For example, in run 1 we use dense features with 10%
3D points sampled from vertices of each target model. Instead of
dense sampling which is time consuming, we use a sparser feature
such as ISS [Zho09]. Figure 7 shows the result of feature detection
on a 3D model using ISS detector. To describe feature points for
matching, we use an extension of ROPS descriptor [GSB* 13] based
on the idea of rootSIFT [AZ12]. We named the similarly trans-
formed ROPS feature as rootROPS. All features extracted from tar-
get models are used to build a codebook using the approximate k-
means algorithm. Aiming to facilitate comparisons, we fix the num-
ber of codewords to 5,000. In order to reduce quantization error,
we use soft assignment [PISZ08] with 3 nearest neighbors setting.
Tf-idf weighting and building inverted file are two more standard
methods to enhance both accuracy and efficiency of retrieval. In
this contest, we do not use any other options for these components.
Lastly, instead of using a symmetric distance, we use the asymmet-
ric distance proposed by C. Zhu [ZJS13] to compare a partial query
with each complete target model.

3D feature Training .

‘ extraction ‘*‘ codebook ‘*‘ Quantization ‘
Computing Building tf-idf
distance « Inverted file weighting

Figure 6: BOW framework for 3D object retrieval

In the Iterative Closest Point algorithm [CM91, BM92](ICP)
run (4), we exploit the geometric information of 3D models, by
overlaying each pair of models onto each other and comparing the
proximity distance between the underlying point sets. The idea of
ICP is to find a proper rigid transformation that associates each
point in the cloud of a query model to a point of each candidate

Table 1: Run description

Run Type Settings

1 BoWw Dense sampling, Descriptor:
ROPS, Codebook size: 5000,
Quantization: Soft-
Assignment, Asymmetric
Distance: L1

2 BoW Detector:  ISS,  Descriptor:
ROPS, Codebook size: 5000,
Quantization: Soft-
Assignment, Asymmetric
Distance: L1

3 BowW Detector: ISS, Descriptor: Root
ROPS, Codebook size: 5000,
Quantization: Soft-
Assignment, Asymmetric
Distance: L1

4 ICP Translation and Rotation at Ini-
tialization

5 BoW+ICP  Artificial queries: Combine

Run and Run 2;

Breuckmann queries: Run 1;
Kinect queries: Run 4

Artificial queries: Combine
Run 1 and Run 2;

Breuckmann queries: Run 4;
Kinect queries: Run 4
Artificial queries: Combine
Run 1 and Run 2;

Breuckmann queries: Run 3;
Kinect queries: Run 4

6 BoW+ICP

7 BoW+ICP

Figure 7: An example of sparse feature using ISS detector

model in the target dataset. The candidate point clouds are set fixed
while ICP iteratively translates and rotates the query model to best
match the reference. Algorithm convergence is handled with a typ-
ical difference-based criterion.

As the performance of ICP relies on the initial pose and relative
position of 2 structures [RLO1], we propose a variant to improve the
matching results. The first step is to shift a query model towards
a candidate target to match the centroids of the two models. The
query model is rotated by an arbitrary angle before being aligned by
ICP. We consider 8 possible angles to rotate a query model around
each axis; each angle is a multiple of 45°, hence 83 =512 poses.
The pose of a query that yields the minimum distance with top

(© 2016 The Author(s)
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matched targets is selected. Figure 8 shows two examples of 3D
point cloud registration using the fast ICP algorithm.

Figure 8: 3D point cloud registration using ICP algorithm

Runs 5, 6, 7 are fusions of both BoW model and ICP algo-
rithm with different combinations. For artificial queries, we use
a fusion of the results with dense samping BoW (Runl) and key-
point sampling BoW (Run2). For Breuckmann queries, we select
the results from either run 1, 2, or 3. Because of the noise and low
level of details in Kinect queries, we choose the results from Run4
(with ICP).

3.4. Randomized Sub-Volume Partitioning for Part-based 3D
Model Retrieval (T. Furuya, R. Ohbuchi)

To efficiently and accurately compare a part-based query against
retrieval target 3D models in a dataset, we employed the random-
ized sub-volume partitioning (RSVP) algorithm [FKO15]. RSVP
randomly and iteratively partitions each of the target retrieval 3D
models into a set of sub-volumes by using 3D grids with random
intervals and orientations (Fig. 9). The part-based query is com-
pared against the set of sub-volumes of all target 3D models by
using 3D geometric features extracted from the query and the sub-
volumes. Since the number of sub-volumes for the dataset is very
large due to randomized partitioning, feature comparison between
the query and the sub-volumes must be very efficient. In addition,
each sub-volume feature must be compact so that all the features
for all the sub-volumes of all the target 3D models could be stored
on memory. To reduce the cost for retrieval, high-dimensional real-
valued vectors extracted from sub-volumes are hashed into compact
binary codes. To generate a ranking result, a binary code for a part-
based query is efficiently compared against the binary codes for the
sub-volumes of target 3D models by using Hamming distance.

3.4.1. Partitioning Retrieval Targets into Sub-Volumes

Prior to generating sub-volumes, each 3D model defined as a polyg-
onal mesh is converted into an oriented point set by using the algo-
rithm by Osada et al. [OFC02]. It randomly and uniformly samples
surfaces of the 3D polygonal model by oriented points. Each point
is associated with the normal vector of the triangle at which the
point is sampled. We sample 4K oriented points on a query model
and 16K oriented points on a target 3D model. Given the oriented
point set of a target 3D model, the bounding box of the point set
is partitioned into Ng X Ng X Ng (we use Ng = 2) non-overlapping
cuboid sub-volumes by using a 3D grid having random intervals.
To generate sub-volumes having diverse position, scale, and orien-
tation, this partitioning is iterated for Ni = 50 times and the point

(© 2016 The Author(s)
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Figure 1: Pipeline of the RSVP algorithm.

Figure 9: The pipeline of RSVP method submitted by Furuya and
Ohbuchi

set is randomly rotated prior to each partitioning. As a result of
the partitioning, Nv = Ng X Ng x Ng x Ni =400 sub-volumes are
generated per 3D model. For the SHREC track, the total number
of sub-volumes is 400 x 383 = 153,200 since the dataset contains
383 retrieval target 3D pottery models.

3.4.2. Extracting Compact Features from Sub-Volumes

Each sub-volume generated by random grid partitioning is de-
scribed by a 3D geometric feature called super vector of simpli-
fied point feature histograms (SV-SPFH). Oriented points within
the sub-volumes are described by a set of SPFH features [RBB09],
which has invariance against 3D rotation of oriented points. The
set of SPFH is encoded by super vector coding [ZYZH10] and is
aggregated into a SV-SPFH feature per sub-volume. However, the
computational cost for extracting SV-SPFH features from 153,200
sub-volumes in the dataset is quite high due to re-aggregation of
numerous overlapping sub-volumes. To reduce the cost of per-
sub-volume feature computation, we employ a ’late-binding’ ap-
proach [FKO15] which performs extraction and encoding of SPFH
features before sub-volume partitioning. Following sub-volume
partitioning, an SV-SPFH feature for a sub-volume is efficiently
computed by simply sum-pooling the encoded features that lie in-
side the sub-volume. The codebook for SV coding is learned by
performing Gaussian mixture model clustering on 250K SPFH fea-
tures randomly selected from the dataset. Since we use 16 code-
words for SV coding and each SPFH is an 125-dimensional vector,
the number of dimensions of SV-SPFH feature is (125+1) x 16 =
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2,016. The SV-SPFH is power-normalized and then L2-normalized
as in [PS10].

Hashing sub-volume features: taking into account that the SV-
SPFH is a high-dimensional and real-valued vector, temporal cost
and spatial cost for feature comparison are both a problem. Aim-
ing to reduce these costs, the set of SV-SPFH features is hashed
into a set of compact binary codes. The SV-SPFH features are
first projected onto a lower-dimensional (512 dimensions), real-
valued subspace by using PCA. In the low-dimensional space, a
hash function is learned by using the iterative quantization (ITQ)
algorithm [GS11] to generate compact (512 bit) binary codes. Each
of 153,200 sub-volumes in the dataset is described by a binary code
with 512 bits, resulting in a footprint of merely 9 MBytes, for all
the features in the dataset. All the features would easily fit in a main
memory of a modern PC for fast retrieval.

3.4.3. Ranking 3D Models

Ranking of 3D models in the dataset against a given query is per-
formed efficiently by comparing their binarized SV-SPFH features.
The distance D between the query ¢ and the target 3D model ¢ is
computed as:

D(q,t) = argmin; <, d(bg, bri) 3)

where Nv is the number of sub-volumes for the model ¢ (i.e.,
Nv = 400), bq is a binary code for the query, and bti is a binary
code for a sub-volume i of the model . We use Hamming distance
as a distance function d between a pair of binary codes. Hamming
distance between a pair of binary codes can be computed very ef-
ficiently by using a combination of (SIMD) XOR instruction and
bit count instruction. Finally, 3D models are ranked based on their
Hamming distances to the part-based query. The RSVP is capable
for fast part-based 3D model retrieval. It took 1.3 seconds to extract
binarized SV-SPFH features from a query and took only 8 X 1074
seconds to compute Hamming distances among the query and all
the 383 retrieval target 3D models. These processing times were
measured by using a single thread code run on a PC with two Intel
Xeon E5-2680 v2 CPUs.

4. Results

Experimental evaluation is based on precision-recall (P-R) curves
and four quantitative measures: nearest neighbor (NN), first tier
(FT), second tier (ST) and discounted cumulative gain (DCG). For
every query model that belongs to a class C, recall denotes the per-
centage of models of class C that are retrieved and precision de-
notes the proportion of retrieved models that belong to class C over
the total number of retrieved models. The maximum score is 100%
for both quantities. Nearest neighbor (NN) indicates the percentage
of queries where the closest match belongs to the query class. First
tier (FT) and second tier (ST) statistics, measure the recall value for
the (D — 1) and 2(D — 1) closest matches respectively, where D is
the cardinality of the query class. The DCG statistic weights cor-
rect results near the front of the list more than correct results later
in the ranked list under the assumption that a user is less likely to
consider elements near the end of the list [SMKFO04]. Figures 10-
17 present the P-R curves estimated for the 12 different runs in

all datasets, whereas Tables 2-9 present the corresponding retrieval
performance metrics.

In the dataset of artificial queries, both for 25% and 40% partial
coverage, the BoW-based runs submitted by Tran et al. achieve the
highest retrieval performance, with the exception of run 4 which is
solely based on ICP (Fig. 10,11 and Tables 2,3). In particular, run
1 obtains the highest NN, FT and DCG. The SPFH-based method
submitted by Furuya and Ohbuchi approaches this retrieval perfor-
mance. It can also be noticed that the FV and VLAD-based meth-
ods of Aono and Tashiro benefit from the increase in partial cover-
age from 25% to 40%. In the latter case, these methods are compa-
rable to the methods mentioned above.

In the dataset of high quality queries, the method of Furuya
and Ohbuchi obtains comparable retrieval performance with runs
1,3,5,7 submitted by Tran et al. (Fig. 12-14 and Tables 4-6). Over-
all, these methods outperform the rest of the methods submitted.

In the dataset of low quality queries, the runs 4-7 submitted by
Tran et al. achieve by far the highest retrieval performance. Interest-
ingly the results are identical in these runs (Fig. 15-17 and Tables
7-9). The SFPH-based method of Furuya and Ohbuchi obtains sig-
nificantly lower retrieval performance than the one it obtains in the
rest of the datasets. This can be attributed to the noise sensitivity of
SPFH, which is more pronounced in the case of low quality queries.

5. Conclusions

This track compared P3DOR methods submitted by four research
groups, on datasets of 3D pottery models. All methods submitted
were designed for generic P3DOR. The partial shape queries have
been provided in three different forms: (i) artificial queries, (ii) real
queries of high quality and (iii) real queries of low quality. Based
upon the performance of the participating methods, it can be de-
rived that the two last forms are very challenging. It is evident that
P3DOR is still an open problem, for which the particular SHREC
track has set a meaningfull base for benchmarking to support future
research efforts.
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Figure 10: P-R curves of the submitted methods on the artificial
query set with 25% partial coverage.
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Figure 11: P-R curves of the submitted methods on the artificial

query set with 40% partial coverage.
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Figure 12: P-R curves of the submitted methods on the high quality

query set-view 1.
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Figure 13: P-R curves of the submitted methods on the high quality

query set-view 2.
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Figure 14: P-R curves of the submitted methods on the high quality
query set-view 3.
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Figure 15: P-R curves of the submitted methods on the low quality
query set-view 1.
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Figure 16: P-R curves of the submitted methods on the low quality
query set-view 2.
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Furuya Pickup Aono-FV e AONO-GOLD ====A0n0-VLAD ====Tran-1 Group Run NN FT ST DCG
—Tanz  —Ten3  —Tan4  —Tens  —Tané Aonoetal.  FV 024 028 057 0.67
o7 Aonoetal.  GOLD 020 027 054 0.66
Aonoetal.  VLAD 024 029 0.60 0.68

Pickupetal. View-based 0.24 0.26 048 0.65

03 Tran et al. 1 052 031 053 0.68
;g oa Tran et al. 2 036 022 045 0.64
H Tran et al. 3 032 029 056 0.67

03 Tran et al. 4 0.60 023 048 0.68

o Tran et al. 5 0.52 031 053 0.68

Tran et al. 6 0.60 023 048 0.68

01 Tran et al. 7 032 023 048 0.68

e e e Furuyaetal. RSVP 056 032 053 0.69

Table 4: The results of the submitted methods on the high quality
Figure 17: P-R curves of the submitted methods on the low quality query set-view 1.
query set-view 3.

Group Run NN FT ST DCG

Group Run NN _FT ST DCG Aonoetal.  FV 032 025 057 067
Aono et al. FV 038 041 059 0.72 Aono et al. GOLD 048 026 0.52 0.66
Aono et al. GOLD 0.38 040 0.63 0.71 Aono et al. VLAD 0.24 029 058 0.69
Aonoetal.  VLAD 048 042 0.60 0.72 Pickupetal. View-based 020 0.25 048 0.63
Pickupetal. View-based 0.10 0.18 0.37 0.58 Tran et al. 1 0.56 032 052 0.69
Tran et al. 1 1.00 049 0.69 0.81 Tran et al. 2 036 0.23 047 0.65
Tran et al. 2 1.00 047 0.64 0381 Tran et al. 3 0.28 032 0.58 0.68
Tran et al. 3 1.00 047 065 0.80 Tran et al. 4 0.52 030 0.50 0.67
Tran et al. 4 0.62 049 0.64 0.79 Tran et al. 5 0.56 032 052 0.69
Tran et al. 5 1.00 047 0.64 0381 Tran et al. 6 0.52 030 050 0.67
Tran et al. 6 1.00 047 0.64 081 Tran et al. 7 028 032 058 0.68
Tran et al. 7 1.00 047 0.64 0.81 Furuyaetal. RSVP 036 033 0.55 0.68
Furuyaetal. RSVP 0.86 047 0.70 0.81

Table 5: The results of the submitted methods on the high quality
Table 2: The results of the submitted methods on the artificial query query set-view 2.
set with 25% partial coverage.

Group Run NN FT ST DCG

Group Run NN FT ST DCG Aonoetal.  FV 024 0.9 047 063
Aonoetal.  FV 076 051 072 0.81 Aonoetal.  GOLD 032 023 051 0.64
Aonoetal.  GOLD 062 040 065 0.74 Aonoetal.  VLAD 0.16 022 050 0.64
Aonoetal.  VLAD 076 050 0.74 0.80 Pickupetal. View-based 020 027 047 0.64
Pickupetal. View-based 0.14 0.18 0.38 0.58 Tran et al. 1 0.60 032 053 0.69
Tran et al. 1 1.00 052 071 082 Tran et al. 2 032 025 048 0.65
Tran et al. 2 1.00 051 072 083 Tran et al. 3 048 031 055 0.69
Tran et al. 3 1.00 051 071 0.83 Tranetal. 4 028 028 049 0.64
Tran et al. 4 0.86 048 0.64 080 Tran et al. 5 0.60 032 053 0.69
Tran et al. 5 1.00 051 072 083 Tran et al. 6 028 027 049 0.64
Tran et al. 6 1.00 051 072 0.83 Tranetal. 7 048 031 055 0.69
Tran et al. 7 1.00 051 072 0.83 Furuyaetal. RSVP 032 030 048 0.67
Furuyaetal. RSVP 090 049 071 0.82

Table 6: The results of the submitted methods on the high quality
Table 3: The results of the submitted methods on the artificial query query set-view 3.

set with 40% partial coverage.

(© 2016 The Author(s)
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Group Run NN FT ST DCG
Aono et al. FV 0.12 022 051 0.64
Aono et al. GOLD 032 023 050 0.65
Aono et al. VLAD 020 024 055 0.66
Pickup etal. View-based 0.36 0.24 049 0.65
Tran et al. 1 0.08 025 055 0.64
Tran et al. 2 020 025 051 0.64
Tran et al. 3 024 025 051 0.64
Tran et al. 4 0.60 040 0.61 0.76
Tran et al. 5 0.60 040 061 0.76
Tran et al. 6 0.60 040 0.61 0.76
Tran et al. 7 0.60 040 0.61 0.76
Furuyaetal. RSVP 0.08 021 049 0.62

Table 7: The results of the submitted methods on the low quality
query set-view 1.

Group Run NN FT ST DCG
Aono et al. FV 0.16 0.22 051 0.66
Aono et al. GOLD 032 023 049 0.65
Aono et al. VLAD 020 024 053 0.67
Pickupetal. View-based 0.16 0.20 045 0.60
Tran et al. 1 0.08 0.30 0.60 0.66
Tran et al. 2 024 029 055 0.67
Tran et al. 3 036 029 056 0.67
Tran et al. 4 0.72 036 0.61 0.75
Tran et al. 5 0.72 036 0.61 0.75
Tran et al. 6 0.72 036 0.61 0.75
Tran et al. 7 0.72 036 0.61 0.75
Furuyaetal. RSVP 0.08 0.18 045 0.60

Table 8: The results of the submitted methods on the low quality
query set-view 2.

Group Run NN FT ST DCG
Aono et al. FV 0.12 021 051 0.63
Aono et al. GOLD 048 026 052 0.65
Aono et al. VLAD 0.16 023 034 0.64
Pickupetal. View-based 0.12 022 045 0.61
Tran et al. 1 0.08 030 059 0.65
Tran et al. 2 024 027 051 0.67
Tran et al. 3 032 0.28 052 0.67
Tran et al. 4 080 036 058 0.75
Tran et al. 5 080 036 058 0.75
Tran et al. 6 080 036 0.58 0.75
Tran et al. 7 080 036 058 0.75
Furuyaetal. RSVP 0.08 020 047 0.60

Table 9: The results of the submitted methods on the low quality
query set-view 3.

(© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.
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