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Abstract

Local features are successfully used in 3D shape retrieval by encoding features descriptors into global shape signatures. Previ-
ous 3D retrieval systems use different encoding methods, such as histogram encoding and Fisher encodings, making it difficult
to evaluate one encoding technique against another. We perform a comparative analysis of four recent encoding methods when
used in shape retrieval. The analysis shows that Vector of Locally Aggregated Descriptors (VLAD) encoding is the best method
of the four tested, since it offers the best trade-off between precision and computational cost.

1. Introduction

Bag-of-features shape retrieval typically consists of three steps: de-
tection of local features, their encoding into a global descriptor, and
comparison of shapes with a distance metric. We previously con-
sidered how saliency-based feature detection, one possible way to
do the first step, influences shape retrieval performance [TKD16].
We consider here the second step: how encoding affects shape re-
trieval performance, regardless of how those features are detected.

Histogram encoding of quantized local features is a simple
method for encoding local features. Recent shape retrieval systems
have used more sophisticated encoding techniques such as Soft
Quantization [PCI∗08], Fisher vectors [PSM10] and Vector of Lo-
cally Aggregated Descriptors (VLAD) [JDSP10]. However, there
is no evaluation of how these encoding methods affect retrieval
performance. Inspired by an evaluation of encoding techniques in
image classification [CLVZ11], we compare encoding methods for
shape retrieval. We show that VLAD encoding is the best when
both retrieval performance and time complexity are considered.

We provide a fair comparison of these techniques by fixing other
factors such as feature detection, local descriptor, and descriptor
distance metric. We evaluate retrieval performance on three bench-
marks, one of which is based on a challenging benchmark where
queries are range scans [GDB∗15]. Figure 1 shows top matches
given a range scan as query. The illustrated example supports the
quantitative results that suggest that for partial shape retrieval,
VLAD outperforms other tested encoding methods.

Our contributions are a quantitative analysis of four feature en-
coding methods, and recommendations on which techniques per-
form the best given a dataset type.

† Jiří Kosinka is now at the University of Groningen.
‡ Neil Dodgson is now at the Victoria University of Wellington.

2. Related Work

Shape retrieval methods retrieve, from a collection of shapes, 3D
models that are most similar to a given 3D query. Encoding of
local features is a popular technique borrowed from image and
video retrieval [SZ03]. Local features, sparse or dense, are ex-
tracted from the whole dataset and each feature is represented with
a multi-dimensional descriptor. The resulting local descriptor space
is then partitioned into regions. Encoding local features of an input
shape typically starts with a quantization of these features using
the descriptor space partitioning, followed by combining the quan-
tized vectors to form a global descriptor. Tabia et al. [TLPG14]
use Histogram Encoding [SZ03], based on counting quantized fea-
tures, to encode their novel covariance descriptors. Bronstein et
al. [BBGO11] use a more descriptive method, Soft Quantisation
[PCI∗08], which consists of summing softly-quantised features, to
encode sparse HKS-based features.

Another family of encoding techniques records statistics of dif-
ferences between local features and cluster elements, rather than
pooling quantised features. Examples of such approaches are Fisher
Vectors [PSM10] and VLAD [JDSP10]. Few 3D retrieval systems
use this type of encoding. Savelonas et al. [SPS15] present shape re-
trieval based on Fisher encoding of novel local descriptors derived
from Fast Point Feature Histograms [RBB09]. Guler et al. [GTU14]
use VLAD to encode their proposed volumetric features.

After encoding, global descriptors are typically compared us-
ing their normalized scalar product (cosine of angle) [TLPG14],
or fed into a discriminative classifier such as similarity-sensitive
hashing [BBGO11]. A set of encoding methods we do not eval-
uate here are those based on supervised learning, such as sparse
coding [LBBC14]. These methods learn the best discriminative en-
coding of local descriptors from training examples.
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Range scan query

(a) HIST (b) SOFT (c) FVEC (d) VLAD

Figure 1: Top six retrieved models given as query a range scan
of lion standing in front of a wall. Retrieval results are shown for
the four feature encoding methods: (a) Histogram encoding, (b)
Soft Quantization, (c) Fisher Vectors and (d) Vector of Locally Ag-
gregated Descriptors. VLAD-based retrieval produces two correct
matches (framed), whereas other methods fail to retrieve relevant
shapes. These methods match the query to human faces since, sim-
ilarly to the query, human faces only contain frontal information.
VLAD encoding is less sensitive to missing parts.

3. Experimental setup

Our focus is on determining the best encoding technique for bag-of-
features shape retrieval. For consistency, we use the same datasets
and evaluation metrics (outlined below) as in the previous work on
effect of salient features on shape retrieval [TKD16]. We evaluate
retrieval on three datasets:

• Dataset A comprises 20 classes, each containing 20 different wa-
tertight 3D meshes [GBP07].

• Dataset B is the SHREC’15 Non-Rigid Shape Retrieval track
[LZC∗15] with 1200 models obtained from deforming 60 shapes
divided in 50 classes.

• Dataset C is the SHREC’15 Range Scan Shape Retrieval track
[GDB∗15], comprising 1200 watertight meshes from 60 classes,
and 180 query range scans.

We detect local features on a shape by extracting local maxima
of a random saliency map, similar to how Tasse et al. [TKD15]
extract keypoints from saliency maps. Let RK denote this detec-
tion method. Using RK, 248 points, on average, are generated
per shape in Dataset A. The choice of a random saliency map is
motivated by a recent study of saliency-based features for shape
retrieval [TKD16] which shows that keypoints based on random
saliency outperform all other tested saliency models, including
ground-truth.

We now discuss the other factors that influence shape retrieval:
local descriptors and feature encoding methods.

3.1. Local feature descriptors

Local descriptors help describe the local neighbourhood, N , of a
point.N (p) is the set of neighbours q of p with ‖p−q‖< r, where
r is the radius of the neighbourhood often referred to as support
radius. To support any surface representation, we focus on point-
based descriptors. We set r = R/10, where R is the underlying
shape radius. We use the Point Feature Histogram (PFH) [RBB09],
a robust local descriptor. We chose PFH because it has been proven
to produce better retrieval performance compared to other popular
descriptors such as Fast Point Feature Histograms [TKD16].

3.2. Feature encoding methods

Before describing the four tested encoding methods, we present
the partitioning techniques on which they are based. Recall that a
common step in most feature encoding methods is clustering the
set of all local features extracted from the dataset. This descriptor
space partitioning is typically done with a hard or soft clustering
approach. The main clustering techniques are:

• K-means clustering: A set of D−dimensional local feature de-
scriptors {x1, ..,xN} is partitioned into K clusters with centers
{µµµ1, ...,µµµK} such that the within-cluster variance is minimized.
K-means is a hard clustering method.

• K-medians clustering: An alternative type of hard clustering re-
places the L2 norm used to compute within-cluster variance with
the L1 norm, which is less sensitive to noise. We use K-medians
as the default hard clustering method because it produces better
retrieval performance, as shown in Section 5.1.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

36



Tasse, Kosinka, Dodgson / An evaluation of local feature encodings for shape retrieval

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

Dataset A: Performance per encoding method
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Dataset C: Performance per encoding method
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Figure 2: Precision-recall curves for retrieval performance based on selected encoding methods, using K-medians as the clustering type.

• Gaussian Mixture Model (GMM) clustering: Rather than as-
signing each descriptor to one cluster, a descriptor belongs
to each cluster with a certain probability. The approach as-
sumes that each cluster has a Gaussian distribution, and thus
the descriptor space has a mixture distribution parameterized
by weights wk ∈ R+, means µµµk ∈ RD and covariance matrices
ΣΣΣkkk [DLR77]. It is commonly assumed that the covariance matri-
ces are diagonal, denoted here by σσσk ∈ RD.

Feature encoding methods mainly differentiate themselves by
the clustering technique, and how local features are transformed
into global descriptors. Let qk(xi) be the extent to which a descrip-
tor xi belongs to cluster k. In hard clustering, qk(xi) is 0 or 1. In
the case of GMM clustering, qk(xi) is commonly referred to as the
posterior probability.

We evaluate four of the encoding methods mentioned in Sec-
tion 2 and described below.

3.2.1. Histogram encoding (HIST)

The simplest encoding method is a histogram of quantised local
features [SZ03]. Assuming that the descriptor space is partitioned
with a hard clustering technique like K-means, and a set of local
descriptors {x1, ...,xn} extracted from a shape, the shape descriptor
is fhist ∈ RK with [ fhist ]k = |xi : qk(xi) = 1|. The hard quantization
used in this type of encoding retains little information from the
original local features.

3.2.2. Soft Quantization (SOFT)

Rather than reducing each local feature to a single cluster mean,
SOFT uses distances to all cluster means to quantize a descriptor
[PCI∗08]. More specifically, a local descriptor xi is quantised to
fso f t(xi) ∈ RK given by

[ fso f t(xi)]k =
gk(xi)

∑
K
j=1 g j(xi)

, gk(xi) = exp
(
− γ

2
‖xi−µµµk|

)
,

where γ controls the importance of distance to a cluster mean and is
chosen so that weighting only applies to a small number of clusters.
We set γ = 10 when we evaluate performance of shape retrieval
based on SOFT encoding. Given the above quantisation, the global

descriptor of a shape with local descriptors {x1, ...,xn} is

fso f t =
n

∑
i=1

fso f t(xi).

Although SOFT retains more feature information than HIST, it is
still based on a hard clustering method.

3.2.3. Fisher Vectors (FVEC)

This method encodes the differences between a set of local descrip-
tors on a shape and GMM clusters of the descriptor space [PSM10].
Given GMM parameters (w1,µµµ1,σσσ1, ...,wK ,µµµK ,σσσK) and n local de-
scriptors extracted from the input shape, D-dimensional vectors uk
and vk, representing mean and variance respectively, are computed
for each cluster:

uk =
1

n
√

wk

n

∑
i=1

qk(xi)
xi−µµµk

σσσk
,

vk =
1

n
√

2wk

n

∑
i=1

qk(xi)
[(xi−µµµk

σσσk

)2
−1
]
.

These means and variances are concatenated to form the final
global descriptor f f vec = [u1,v1, ...,uK ,vK ] ∈ R2DK .

3.2.4. Vector of Locally Aggregated Descriptors (VLAD)

VLAD is similar to FVEC in the sense that it also captures
the statistics of differences between the descriptor space clusters
and local descriptors on a shape, but it uses only cluster means
[JDSP10]. VLAD assigns each local descriptor to its closest cluster,
and then computes vector differences between local descriptors and
their assigned cluster mean. The vector differences are referred to
as “residuals”. For a cluster with index k, the sum of D-dimensional
residuals associated with it are accumulated as follows:

rk =
n

∑
i=1

qk(xi)(xi−µµµk).

Concatenating these sums for each cluster produces a KD-
dimensional vector fvlad = [r1, ...,rK ]. We use the VLFeat library
[VF10] to compute FVEC and VLAD.

Inspired by prior work on image classification [PSM10], we ap-
ply power normalization followed by L2 normalizations to FVEC
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and VLAD encodings. We also apply term frequency-inverse docu-
ment frequency (tf-idf ) weighting to HIST and SOFT vectors, to pe-
nalise frequently occurring features [SZ03]. We compute the simi-
larity between two shapes using the standard cosine angle between
their corresponding encodings.

3.3. Evaluation metrics

Given a benchmark of 3D models divided into classes, a shape re-
trieved based on a query is relevant if both target and query belong
to the same class. This interpretation of relevance is standard in
shape retrieval benchmarks [GBP07,GDB∗15,LZC∗15]. To evalu-
ate retrieval performance, we use four standard metrics: Precision-
Recall (PR) curve, First Tier (FT), Second Tier (ST), and normal-
ized Discounted Cumulative Gain (DCG). Each metric is averaged
over all queries to produce overall scores and 95% confidence in-
terval means. Finally, we use the Wilcoxon rank-sum test [Wil45],
a non-parametric alternative to the two-samples t-test, at a 95% sig-
nificance level to report statistically significant differences between
AP performances of competing methods.

4. Evaluation of feature encoding methods

Figure 2 shows PR curves for retrieval performance based on fea-
ture encoding. Tables 1–3 show performance across all metrics per
encoding and clustering method. Note that FVEC uses either K-
means or K-medians to initialize GMM clustering. This section
analyses the effect of local feature encoding.

Dataset A There is no statistically significant difference between
encoding methods when using K-medians (see Table 1). This sug-
gests that HIST with K-medians is sufficient to achieve good re-
trieval performance on this dataset, and thus time and space con-
suming methods such as FVEC can be avoided. When K-means is
used, HIST, FVEC and VLAD outperform SOFT, indicating that
the latter is sensitive to outliers in the descriptor space.

Dataset B All pairwise differences between feature encoding
methods were statistically significant, with the exception of the top-
performing methods FVEC and VLAD (see Table 2).

Dataset C Although the mean AP of VLAD-based retrieval is
larger than the alternative encoding methods (see Table 3), there
are no statistically significant differences. This is due to the poor
performance in retrieval performance of range scans in the query
set. VLAD PR curve in Figure 2 (right) shows that it has better pre-
cision at low recall, compared to other methods. This suggests that
VLAD is a better encoding method for datasets of 3D scans.

Summary FVEC has a larger mean performance than both HIST
and SOFT. This difference is significant on Dataset B for both K-
means and K-medians clustering. On the other hand, FVEC and
VLAD achieve similar performance on all datasets, but VLAD-
based retrieval has better precision at low recall. Combined with
the fact that VLAD produces global descriptors half the size of
FVEC descriptors and has a lower computational cost (see Sec-
tion 6), VLAD is a good choice for feature encoding. We explain
the better performance of Fisher and VLAD by the fact that they

Table 1: Dataset A: Performance per encoding method. Parame-
ters: detector=RK (n = 248±11), descriptor=PFH, K = 100.

FT ST DCG AP
HIST/K-medians 0.61±0.03 0.73±0.03 0.83±0.02 0.68±0.03
HIST/K-means 0.59±0.03 0.71±0.03 0.82±0.02 0.66±0.03
SOFT/K-medians 0.61±0.03 0.73±0.03 0.84±0.02 0.68±0.03
SOFT/K-means 0.54±0.03 0.67±0.03 0.80±0.02 0.61±0.03
FVEC/K-medians 0.63±0.03 0.73±0.03 0.84±0.02 0.70±0.03
FVEC/K-means 0.62±0.03 0.73±0.03 0.84±0.02 0.69±0.03
VLAD/K-medians 0.59±0.03 0.71±0.03 0.83±0.02 0.66±0.03
VLAD/K-means 0.59±0.03 0.71±0.03 0.82±0.02 0.66±0.03

Table 2: Dataset B: Performance per encoding method. Parame-
ters: detector=RK (n = 312±8), descriptor=PFH, K = 100.

FT ST DCG AP
HIST/K-medians 0.81±0.01 0.88±0.01 0.95±0.01 0.86±0.01
HIST/K-means 0.80±0.01 0.87±0.01 0.94±0.01 0.85±0.01
SOFT/K-medians 0.83±0.01 0.89±0.01 0.95±0.01 0.87±0.01
SOFT/K-means 0.65±0.01 0.76±0.01 0.89±0.01 0.72±0.01
FVEC/K-medians 0.86±0.01 0.91±0.01 0.96±0.00 0.90±0.01
FVEC/K-means 0.85±0.01 0.90±0.01 0.96±0.00 0.89±0.01
VLAD/K-medians 0.85±0.01 0.91±0.01 0.96±0.00 0.89±0.01
VLAD/K-means 0.86±0.01 0.93±0.01 0.97±0.00 0.90±0.01

Table 3: Dataset C: Performance per encoding method. Parame-
ters: detector=RK (n = 134±8), descriptor=PFH, K = 100.

FT ST DCG AP
HIST/K-medians 0.04±0.01 0.10±0.03 0.35±0.02 0.06±0.01
HIST/K-means 0.06±0.02 0.11±0.03 0.36±0.02 0.07±0.02
SOFT/K-medians 0.04±0.01 0.10±0.03 0.35±0.02 0.06±0.01
SOFT/K-means 0.05±0.02 0.09±0.03 0.36±0.02 0.06±0.01
FVEC/K-medians 0.05±0.01 0.10±0.03 0.35±0.02 0.06±0.01
FVEC/K-means 0.05±0.02 0.10±0.03 0.35±0.02 0.07±0.01
VLAD/K-medians 0.07±0.02 0.12±0.03 0.38±0.02 0.09±0.02
VLAD/K-means 0.08±0.02 0.14±0.03 0.38±0.02 0.08±0.02

both encode more information on differences between the distribu-
tion of local features on a given shape and the general distribution
of these features across the whole dataset.

5. Effect of clustering

One of the key parameters in feature encoding is the clustering step.
This section examines the influence of the clustering algorithm and
cluster size on retrieval.

5.1. K-means vs K-medians clustering

We investigate the difference between K-means and K-medians,
two hard clustering methods that may be used in HIST, SOFT and
VLAD encoding, or used to initialize GMM clustering for FVEC
encoding. To study their effect on retrieval, we evaluate retrieval
performance when they are used in each encoding. Tables 1–3 sum-
marize the results. Statistical analysis shows that K-medians pro-
duces significantly better retrieval performance than K-means when
using SOFT in Datasets A and B. There is no significant influence
of clustering method on other encoding approaches, suggesting that
SOFT is more sensitive to outliers since the L1 norm used in K-
medians is more robust to outliers compared to L2.
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Dataset A: Performance per cluster size, using SOFT encoding
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Figure 3: Performance on Dataset A for various cluster sizes.

Table 4: Dataset A: Timings in secs. Parameters: detector = RK,
descriptor = PFH, K = 100, clustering = K-medians.

Descriptors Clustering Encoding Retrieval Total
HIST 170 21 18 1 210
SOFT 170 21 18 1 210
FVEC 170 41 33 68 306
VLAD 170 21 26 28 244

5.2. Number of clusters

By default we set the cluster size K = 100, after exploring a range
of values for K. Figure 3 shows retrieval performance for different
K when SOFT encoding with K-medians is used. Setting K = 10
produces significantly worse performance than larger values of K.
This statistically significant difference is not present when FVEC or
VLAD are used, and thus their results are not reported here. These
encodings are less affected by cluster size, since they retain more
information about the original shape feature descriptors.

6. Computational cost

Table 4 shows computation time spent on training a retrieval system
(computing descriptors and encodings) and testing it (computing
similarities between pairs of shapes in the database). We record
computation times for retrieval based on feature encoding method.
Results show that FVEC is more computationally expensive than
other encoding methods, followed by VLAD.

7. Conclusion

We compared recent feature encoding methods for shape retrieval.
We saw that on the tested datasets, SOFT is the most sensitive to
the clustering method, in contrast with other encoding techniques.
Using K-medians as the default clustering method, retrieval based
on FVEC or VLAD had better performance than other approaches.
Moreover on a query dataset of range scans, VLAD-based retrieval
had better precision at low recall. Given the low computational cost
of VLAD compared to FVEC, we recommend VLAD as the default
feature encoding for shape retrieval.
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