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Abstract
We consider the problem of assessing the similarity of 3D shapes using Reeb graphs from the standpoint of robustness under
perturbations. For this purpose, 3D objects are viewed as spaces endowed with real-valued functions, while the similarity
between the resulting Reeb graphs is addressed through a graph edit distance. The cases of smooth functions on manifolds
and piecewise linear functions on polyhedra stand out as the most interesting ones. The main contribution of this paper is the
introduction of a general edit distance suitable for comparing Reeb graphs in these settings. This edit distance promises to be
useful for applications in 3D object retrieval because of its stability properties in the presence of noise.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction

The significant increase of available 3D models, enabled by mod-
ern technology, strongly motivates 3D retrieval using content-based
methods. 3D shape retrieval is generally the result of a pipeline of
basic steps [TV08]. In a first step, shape features are computed from
the 3D models, and encoded in shape signatures. Different types of
shape signatures have been proposed in the literature for this task,
the most common categories being graph-based, transform-based,
statistics-based and view-based methods [BKS∗05]. In a second
step, the similarity between 3D models is assessed by evaluating
the distance between the associated shape signatures: the smaller
the distance, the more similar the shapes [CGK03]. In a third step,
given a query model, the target models are sorted in order of in-
creasing distance between their signature and that of the query
model.

In this paper we focus on the second step of the shape retrieval
pipeline, assuming that Reeb graphs have been chosen as shape
signatures in the first step. The goal of this paper is to investigate
theoretical aspects of the definition of the similarity concept for
Reeb graphs.

The Reeb graph is defined for shapes modeled as spaces en-
dowed with scalar functions. It is obtained by shrinking each con-
nected component of a level set of the function to a single point
[Ree46]. Often, vertices of the Reeb graph are labeled by the value
of the function at the corresponding level set. If the function is con-
structed from geometric information, such as a height function or a
distance function, the Reeb graph captures both topological and ge-
ometric features of a 3D model, thus combining global and local in-
formation on its shape. Reeb graphs have been used as an effective

tool for shape analysis and description tasks since [SKK91,SK91].
Indeed, the Reeb graph has a number of characteristics that make it
useful as a search query for 3D objects [BGSF08]. First, a Reeb
graph always consists of a one-dimensional graph structure and
does not have any higher dimension components such as the degen-
erate surface that can occur in a medial axis. Second, by defining
the function appropriately, it is possible to construct a Reeb graph
that is invariant to translation and rotation, or even more compli-
cated isometries of the shape. Last but not least, as aforementioned,
Reeb graphs allow for capturing global and local features.

One of the most important questions is the stability of the Reeb
graph construction: whether Reeb graphs (the result of the con-
struction) are robust against perturbations that may occur because
of noise and approximation errors on the input, namely the spaces
and the scalar functions.

Over the years, starting back with [HSKK01] until more re-
cently with [BB13], a number of heuristics have been developed
so that the Reeb graph turns out to be resistant to connectivity
changes caused by simplification, subdivision and remesh, and ro-
bust against noise and certain changes due to deformation.

The problem of studying the stability of Reeb graphs from the
theoretical standpoint has recently attracted significant interest in
the area of Topological Data Analysis (TDA) and more broadly
speaking in Computational Topology. Indeed, the success of TDA
in applications is strongly connected with the stability properties
of its tools such as persistence diagrams [CSEH07]. Therefore, it is
natural to address the problem of stable comparison of Reeb graphs
using techniques rooted in TDA, and in particular in Persistence
Theory.
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The stability problem is addressed by providing distances such
that variations in Reeb graphs are bounded by variations in the input
scalar functions. In other words, the map sending an input function
to the associated Reeb graph is Lipschitz continuous. The first pa-
per in this direction was [DFL12], where an edit distance between
Reeb graphs of smooth curves endowed with Morse functions has
been introduced and shown to yield stability with respect to func-
tion perturbations. More recently, in [DFL16], also Reeb graphs of
smooth surfaces have been shown to satisfy stability in the same
sense with respect to an appropriate edit distance. A drawback of
this approach is that the set of admissible edit operations changes
as we pass from curves to surfaces. Another result in the context of
Reeb graph stability is the functional distortion distance between
Reeb graphs proposed in [BGW14], with proven stable and dis-
criminative properties. The functional distortion distance applies to
a wider class of objects than the edit distances of [DFL12,DFL16]
and is intrinsically continuous, whereas the edit distances are com-
binatorial. The authors of [dSMP15] address the question of a
distance function stable under perturbations of the input data us-
ing methods from category theory, and propose to compare Reeb
graphs through the interleaving distance. In [BMW15] it has been
proved that the functional distortion distance and the interleav-
ing distance on Reeb graphs are strongly equivalent on the space
of Reeb graphs, in the mathematical sense. The paper [BYM∗13]
about a stable distance for merge trees is also pertinent to the stabil-
ity problem for Reeb graphs: merge trees are known to determine
contour trees, which are Reeb graphs for simple domains.

The first contribution of this paper is the definition of a set of
edit operations that is general enough for defining an edit distance
between Reeb graphs that applies to many different settings, from
that of Morse functions on smooth curves and surfaces to that of
piecewise linear functions on polyhedra. Indeed, the piecewise lin-
ear case is certainly the most relevant one in applications to 3D
model retrieval. More precisely, we introduce a combinatorial dis-
similarity measure, called an edit distance, between labeled graphs,
applicable in particular to Reeb graphs. The basic idea is that la-
beled graphs of two shapes can be transformed into each other by
a finite sequence of edit operations. Each such sequence has a cost
that depends on how much we must vary the value of the label at
the vertices of the graph during the transformation. Thus our edit
distance between graphs belongs to the family of Graph Edit Dis-
tances [GXTL10], widely used in pattern analysis.

By the aforementioned generality of the edit operations intro-
duced here, the edits defined in [DFL12] for curves, and in [DFL16]
for surfaces, can be now uniformed. This allows for the second con-
tribution of this paper, namely that the edit distance we propose,
when applied to Reeb graphs of Morse functions of smooth curves
or surfaces, yields the stability property with respect to function
perturbations.

The paper is organized as follows. Section 2 focuses on mathe-
matical aspects of Reeb graphs. Section 3 introduces our method,
i.e. comparison of labeled graphs using the edit distance. In Sec-
tion 4 we discuss the stability properties of this edit distance in the
smooth case. A final discussion on the obtained results and the fu-
ture related research concludes the paper.

2. Mathematical background on Reeb graphs

The more general definition of a Reeb graph is the topological def-
inition. It applies to any topological spaceX endowed with any
continuous functionf .
Definition 2.1. The topological Reeb graphof f is the quotient
spaceX/∼ f where, for everyx,x′ ∈ X, x∼ f x′ if and only if x and
x′ belong to the same connected component off−1( f (x)).

Intuitively, this corresponds to shrinking each connected compo-
nent of a level set of the function to a single point.

Appropriate assumptions onX and f ensure that the topologi-
cal Reeb graph is well behaved. For example, it is sufficient that
X is Hausdorff and compact to guarantee thatX/∼ f is also Haus-
dorff and compact [Gov]. However, such general properties do not
guarantee thatX/ ∼ f has the structure of a finite connected cell
complex of dimension 1, associating withX/ ∼ f the combinato-
rial structure of a graph. In order to obtain a combinatorial Reeb
graph, more restrictive assumptions on the function are needed.
Common choices are thatf is Morse or piecewise linear. In view
of this shift from the topological to the combinatorial definition of
a Reeb graph, it is useful to introduce some notations.

In this paper, we define alabeled graphas a pair(Γ, ℓ) with
Γ a finite graph, andℓ : V(Γ) → R a function that endows each
vertex of Γ with a scalar value. The graphs considered here are
allowed to have multiple edges and loops. Moreover, for simplicity,
we always suppose that they are connected. We denote byV(Γ)
andE(Γ) the vertex and edge sets ofΓ, respectively. Ife∈ E(Γ)
is an edge incident to the verticesv1,v2 ∈ V(Γ), we say thatv1
andv2 are adjacent and we writee= e(v1,v2). As usual, we define
thedegree of a vertex v∈V(Γ), denoted by deg(v), as the number
of edges inE(Γ) incident onv, each loop counting as two edges.
Also we say that acycle, if any, has length m, with m≥ 2, if it
contains exactlym edges in the graph. Isomorphic graphs will be
considered as the same graph. We review the definition of labeled
graph isomorphism.
Definition 2.2. We say that two labeled graphs(Γ, ℓ), (Γ′, ℓ′) are
isomorphic, and we write(Γ, ℓ)∼= (Γ′, ℓ′), if there exist a bijection
Φ : V(Γ)→V(Γ′) and a bijectionΨ : E(Γ)→ E(Γ′) such that,

•e= e(v1,v2) is in E(Γ) if and only if Ψ(e) = e(Φ(v1),Φ(v2)) is
in E(Γ′) (i.e. Φ preserves the edges), and

•for everyv∈V(Γ), ℓ(v) = ℓ′(Φ(v)) (i.e.Φ preserves the labels).

When a labeled graph is obtained as the combinatorial Reeb
graph of a functionf , we denote it by writing(Γ f , ℓ f ).

2.1. Reeb graphs of simple Morse functions

In the mathematical literature, the case of Reeb graphs of simple
Morse functions on smooth compact manifolds appears as the most
commonly studied (cf., e.g., [BF04]).

We recall that a smooth functionf : M→ R defined on a man-
ifold is Morse if all of its critical points are non-degenerate, i.e.
the Hessian at critical points is non-zero; moreover, it is said to be
simple if it is injective on the set of its critical points.
Theorem 2.1( [Ree46]). LetM be a compact n-dimensional man-
ifold and f a simple Morse function defined onM. The quotient
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spaceM/∼ f has the structure of a finite connected cell complex K
of dimension 1, such that the set of 0-cells of K bijectively corre-
sponds to the critical points of f .

As a consequence of the previous result, we can identifyM/∼ f
with a combinatorial Reeb graphΓ f whose vertices correspond to
the 0-cells and the edges to the 1-cells ofK. Moreover, the vertices
of Γ f can be labeled by the functionℓ f : V(Γ f ) → R induced by
restrictingf :M→R to its critical points. We call the pair(Γ f , ℓ f )
the labeled Reeb graph of the manifoldM. An example of labeled
Reeb graph is depicted in Figure1.

M (Γ f , ℓ f )
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a5

a6

a7
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a10
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Figure 1: Left: the height function f: M → R; center: the surfaceM;
right: the associated labeled Reeb graph(Γ f , ℓ f ).

Let us focus on manifolds of dimension 1, i.e., curves, and di-
mension 2, i.e., surfaces. The stability of labeled Reeb graphs of
curves via an edit distance has been proven in [DFL12], that of sur-
faces in [DFL16]. In both the cases, for any simple Morse functions
f ,g defined on the same manifold, the edit distance was defined as

dE((Γ f , ℓ f ), (Γg, ℓg)) = inf
S=(T1,...,Tr )

r

∑
i=1

c(Ti),

whereS varies in a set of arbitrarily long sequences of elemen-
tary deformationsT1, . . . ,Tr , necessary to transform(Γ f , ℓ f ) into
(Γg, ℓg), up to isomorphims. Each editTi has a costc(Ti) depend-
ing on its own type. What distinguishes the case of curves from
that of surfaces is the type of admissible elementary deformations.
In fact, the Reeb graph of a closed curve has only vertices of degree
2, while the Reeb graph of a surface has only vertices of degree 1 or
3. Figure2 and Figure3 illustrate the elementary deformations for
curves and surfaces, respectively, together with their costs. In all
the figures of this paper, black dots represent vertices whose degree
needs to be exactly the same as it appears in the figure, whereas
circled white dots represent vertices whose degree can be higher.
Moreover, label values are represented by means of the height, and
vertices are allowed to coincide whenever this makes sense.

For both curves and surfaces, the edit distancedE yields the sta-
bility of Reeb graphs.
Theorem 2.2( [DFL12,DFL16]). For every f,g : M→ R, simple
Morse functions defined on a connected, closed (i.e. compact and
without boundary), orientable smooth manifoldM of dimension 1
or 2, it holds that

dE((Γ f , ℓ f ), (Γg, ℓg))≤ ‖ f −g‖∞,

with ‖ f −g‖∞ = max
p∈M

| f (p)−g(p)|.

(Γ f , ℓ f )(Γ f , ℓ f )(Γ f , ℓ f ) (Γg, ℓg)(Γg, ℓg)(Γg, ℓg)

B

D
R

v1
v1

v1v1 v1 v1
u1 u1

u2 u2

v2 v2
v2v2 v2 v2

c(B) = |ℓg(u1)− ℓg(u2)|/2, c(D) = |ℓ f (u1)− ℓ f (u2)|/2
c(R) = maxv∈V(Γ f ) |ℓ f (v)− ℓg(v)|

Figure 2: Elementary deformations for Reeb graphs of curves and their
costs.
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c(B) = |ℓg(u1)− ℓg(u2)|/2, c(D) = |ℓ f (u1)− ℓ f (u2)|/2
c(R) = maxv∈V(Γ f ) |ℓ f (v)− ℓg(v)|

c(Ki) = max{|ℓ f (u1)− ℓg(u1)|, |ℓ f (u2)− ℓg(u2)|}

Figure 3: Elementary deformations for Reeb graphs of surfaces and their
costs.

2.2. Reeb graphs of PL functions

Following [RS72], a polyhedronX is a subset of someRn, whose
points x ∈ X have cone neighborhoods inX, N(x) = x ∗ L(x) =
{λ · x+ µ · y : y ∈ L(x),λ,µ ≥ 0,λ+ µ = 1}, with L(x) compact.
Moreover, f : X → R is a piecewise linear (briefly, PL) function
if for each x ∈ X, f (λ · x+ µ · y) = λ · f (x) + µ · f (y) when y ∈
L(x),λ,µ≥ 0,λ+µ= 1.

Let X be a polyhedron andf : X → R a PL function. It can
be shown thatX/ ∼ f is an abstract polyhedron of dimension not
greater than 1. Hence, it embeds into a polyhedronRf of dimen-
sion at most 1 inRn for somen. Moreover, f : X → R naturally
induces a PL function̂f : Rf → R.

For the sake of brevity, we postpone the proof of these facts to
an extended version of this paper. However, we refer the reader
to [EHP08] for a proof in the case whenX is a manifold, andf is
injective on the vertices of a simplicial complex triangulatingX.

To define a combinatorial version of the Reeb graph that turns
out to be a special instance of a labeled graph, for a cone neighbor-
hoodN(x) = x∗L(x) of x in X, we set

L−(x)= {y∈ L(x) : f (y)< f (x)},L+(x)= {y∈ L(x) : f (y)> f (x)}.

As usual, we denote byβ0 the 0th Betti number, that is, the num-
ber of (arcwise) connected components.
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Definition 2.3. We say thatx ∈ X is aReeb-regular pointof f if
β0(L

−(x)) = 1 andβ0(L
+(x)) = 1 for every cone neighborhood

N(x) = x∗L(x) of x in X. Moreover, we say thatx ∈ X is aReeb-
critical point of f if it is not Reeb-regular.
Definition 2.4. We call the pair(Γ f , ℓ f ) the labeled Reeb graph
(briefly, Reeb graph) of the PL function f : X → R if Γ f is the
graph whose vertex setV(Γ f ) is the set of Reeb-critical points off̂ :
Rf → R, and whose edge setE(Γ f ), if non-empty, is given by the
set of 1-cells of the canonical cell decomposition ofRf ; moreover,
ℓ f : V(Γ f )→ R is the function that coincides witĥf on the Reeb-
critical points of f̂ .

We observe that, by construction, if(Γ f , ℓ f ) is a labeled Reeb
graph, thenΓ f contains no loops, even though it may contain cy-
cles, and ifv ∈ V(Γ f ), thenβ0(L

−(v)) · β0(L
+(v)) 6= 1 for some

cone neighborhood neighborhoodN(v) = v∗L(v) of v in Γ f . More-
over,ℓ f takes different values on pairs of adjacent vertices: ifv1 and
v2 are adjacent inΓ f , thenℓ f (v1) 6= ℓ f (v2).

3. The edit distance for Reeb graphs comparison

In this section we define an edit distance for arbitrary labeled
graphs to be used in particular to compare Reeb graphs. First, we
introduce a set ofedit operationson labeled graphs and prove that
any two labeled graphs can be transformed into each other by a fi-
nite sequence of edit operations, called anedit sequence. Next, we
define the cost of an edit sequence and our edit distance.

Edit operations on labeled graphs are of four types: 1. insertions,
2. deletions, 3. slidings, and 4. relabelings. These operations are
formally defined in Definitions3.1-3.4.

1. Insert operations:

v1 v1

v2 v2

vv vv uu
Iv Ie I l

Definition 3.1. Let (Γ, ℓ) be a labeled graph.

• We define avertex insertion(Iv) to be any transformationT
of (Γ, ℓ) such that, for a fixed edgee(v1,v2) ∈ E(Γ), with
ℓ(v1) ≥ ℓ(v2), T(Γ, ℓ) is a labeled graph(Γ′, ℓ′) defined as
follows:

– V(Γ′) =V(Γ)∪{u};
– E(Γ′) = (E(Γ)−{e(v1,v2)})∪{e(v1,u),e(u,v2)};
– ℓ′|V(Γ) = ℓ andℓ(v1)≥ ℓ′(u) ≥ ℓ(v2).

• We define anedge insertion(Ie) to be any transformationT
of (Γ, ℓ) such that, for a fixed vertexv∈V(Γ), T(Γ, ℓ) is the
labeled graph(Γ′, ℓ′) defined as follows:

– V(Γ′) =V(Γ)∪{u};
– E(Γ′) = E(Γ)∪{e(v,u)};
– ℓ′|V(Γ) = ℓ andℓ′(u) = ℓ(v).

• We define aloop insertion(I l ) to be any transformationT of
(Γ, ℓ) such that, for a fixed vertexv ∈ V(Γ), T(Γ, ℓ) is the
labeled graph(Γ′, ℓ′) defined as follows:

– V(Γ′) =V(Γ);

– E(Γ′) = E(Γ)∪{e(v,v)};
– ℓ′ = ℓ.

2. Delete operations:

v1 v1

v2 v2

v vvv
u uDv De Dl

Definition 3.2. Let (Γ, ℓ) be a labeled graph.

• We define avertex deletion(Dv) to be any transformationT
of (Γ, ℓ) such that, for fixed edgese(v1,u),e(u,v2) ∈ E(Γ),
with u a vertex of degree 2, andℓ(v1)≥ ℓ(u)≥ ℓ(v2), T(Γ, ℓ)
is the labeled graph(Γ′, ℓ′) defined as follows:

– V(Γ′) =V(Γ)−{u};
– E(Γ′) = (E(Γ)−{e(v1,u),e(u,v2)})∪{e(v1,v2)};
– ℓ′ = ℓ|V(Γ)−{u}.

• We define anedge deletion(De) to be any transformationT
of (Γ, ℓ) such that, for a fixed edgee(v,u) ∈ E(Γ), with u
a vertex of degree 1, andℓ(v) = ℓ(u), T(Γ, ℓ) is the labeled
graph(Γ′, ℓ′) defined as follows:

– V(Γ′) =V(Γ)−{u};
– E(Γ′) = E(Γ)−{e(v,u)};
– ℓ′ = ℓ|V(Γ)−{u}.

• We define aloop deletion(Dl ) to be any transformationT of
(Γ, ℓ) such that, for a fixed edgee(v,v) ∈ E(Γ), T(Γ, ℓ) is the
labeled graph(Γ′, ℓ′) defined as follows:

– V(Γ′) =V(Γ);
– E(Γ′) = E(Γ)−{e(v,v)};
– ℓ′ = ℓ.

3. Slide operation:

v1 v1

v2 v2v3 v3

Se

Definition 3.3. Let (Γ, ℓ) be a labeled graph.

• We define anedge sliding(Se) to be any transformationT of
(Γ, ℓ) such that, for fixed edgese(v1,v2),e(v2,v3) ∈ E(Γ),
with eitherℓ(v1) > ℓ(v2) = ℓ(v3), or ℓ(v1) < ℓ(v2) = ℓ(v3),
T(Γ, ℓ) is the labeled graph(Γ′, ℓ′) defined as follows:

– V(Γ′) =V(Γ);
– E(Γ′) = (E(Γ)−{e(v1,v2)})∪{e(v1,v3)};
– ℓ′ = ℓ.

4. Relabel operation:

v1
v1

v2
v2

Rv

Definition 3.4. Let (Γ, ℓ) be a labeled graph.
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• We define arelabeling (Rv) to be any transformationT of
(Γ, ℓ) such thatT(Γ, ℓ) is a labeled graph(Γ′, ℓ′) defined as
follows:

– V(Γ′) =V(Γ);
– E(Γ′) = E(Γ);
– For everyu,v∈V(Γ), if ℓ(u)≤ ℓ(v), thenℓ′(u) ≤ ℓ′(v).

We now introduce the concept of inverse of an edit operation.
Definition 3.5. Let T be an edit operation such thatT(Γ, ℓ) ∼=
(Γ′, ℓ′). Let us identifyT(Γ, ℓ) with (Γ′, ℓ′) via the pair of bijec-
tions (Φ,Ψ) inducing the isomorphism. We define theinverse op-
erationof T , denoted byT−1, as the edit operation that acts on the
vertices, edges, and labels of(Γ′, ℓ′) as follows:

•if T is a delete operation that removes one vertex (edge, loop,
resp.), thenT−1 is an insert operation that adds the same vertex,
with the same label (edge, loop, resp.), and vice versa ifT is an
insert operation;

•if T is a slide operation that changes adjacencies among three
vertices, thenT−1 is a slide operation that changes adjacencies
among the same three vertices in the inverse way;

•if T is a relabel operation that changes labels to the vertices ofΓ,
thenT−1 is again a relabel operation that changes labels to the
same vertices in the inverse way.

Remark1. Definition 3.5 implies that, ifT(Γ, ℓ) ∼= (Γ′, ℓ′), then
T−1(Γ′, ℓ′)∼= (Γ, ℓ).

Applying an edit operation to a labeled graph produces again a
labeled graph. Thus, we can apply edit operations iteratively. We
use this fact in the next Definition3.6. Given an edit operationT
of (Γ, ℓ) and an edit operationT′ of T(Γ, ℓ), the compositionT′T
means applying firstT and thenT′.
Definition 3.6. We call anedit sequenceof the labeled graph(Γ, ℓ)
any finite ordered sequenceS= (T1,T2, . . . ,Tn) of edit operations
such thatT1 is an edit operation acting on(Γ, ℓ), and for every 2≤
k ≤ n, Tk is an edit operation acting onTk−1Tk−2 · · ·T1(Γ, ℓ). We
denote byS(Γ, ℓ) the result of the editingsTnTn−1 · · ·T1 applied to
(Γ, ℓ). Moreover, ifS= (T1, . . . ,Tn) is such thatS(Γ, ℓ) ∼= (Γ′, ℓ′),
then theinverse sequenceof Sis S−1(Γ′, ℓ′)∼= (Γ, ℓ), whereS−1 =
(T−1

n , . . . ,T−1
1 ).

In what follows, we writeS((Γ, ℓ), (Γ′, ℓ′)) to denote the set
of edit sequences turning the labeled graph(Γ, ℓ) into the labeled
graph(Γ′, ℓ′) up to isomorphisms:

S((Γ, ℓ), (Γ′, ℓ′)) = {S= (T1, . . . ,Tn),n≥ 1 : S(Γ, ℓ)∼= (Γ′, ℓ′)}.

In the following part of the section we prove that, for any pair
of labeled graphs,(Γ, ℓ), (Γ′, ℓ′), the setS((Γ, ℓ), (Γ′, ℓ′)) is non-
empty. To do so, only with the aim of simplifying the proof, we
reduce our problem to the similar one treated in [DFL16], where
labeled graphs have only vertices of degree 1 or 3, the vertices of
degree 3 are only up- or down-forks, and there are neither loops nor
vertices with equal labels.

We recall that in a labeled graph, a vertexv of degree 3 is called
anup-fork (resp.,down-fork), if two of its adjacent vertices (possi-
bly coincident), sayv1,v2, are such thatℓ(v1), ℓ(v2) > ℓ(v) (resp.,
ℓ(v1), ℓ(v2) < ℓ(v)), and the third, sayv3 is such thatℓ(v3) < ℓ(v)
(resp.,ℓ(v3) > ℓ(v)). Hence, in both the cases, there exists at least

one vertex adjacent tov with a label higher thanℓ(v) and at least
one vertex adjacent tov with a label lower thanℓ(v).
Lemma 3.1. For any labeled graph(Γ, ℓ), there exists an edit se-
quence S such that S(Γ, ℓ) is a labeled graph(Γ′, ℓ′) with the fol-
lowing properties:

•the vertices ofΓ′ are either of degree 1, or up- or down-forks of
degree 3. In particular,Γ′ has no loops.

•ℓ′ is injective on V(Γ′).

Proof. Without loss of generality, we can assume thatℓ is injective
on V(Γ), otherwise we apply a relabel operation toΓ to achieve
injectivity. Moreover, we can assume thatΓ has no loops, after ap-
plying appropriate loop deletions.

Now we show that each vertexv of Γ that is neither of degree 1,
nor an up- or down-fork of degree 3, can be removed or transformed
into a vertex with the claimed properties. More precisely, letv be
any vertex inΓ. We consider the following cases.

•Case deg(v) = 0: We can take the edit sequenceS=(T1,T2), with
T1 the edge insertion that inserts a vertexu, with the same label
asv, and the edgee(u,v), andT2 a relabeling Rv that changes the
label ofu. In S(Γ, ℓ) the verticesu andv are of degree 1.

•Case deg(v) = 2: We observe that either #{w ∈V(Γ) : e(w,v) ∈
E(Γ), ℓ(w)< ℓ(v)} < 2 or #{w ∈V(Γ) : e(w,v) ∈ E(Γ), ℓ(w)>
ℓ(v)} < 2. Hence, we can take the edit sequenceS= (T1,T2),
with T1 the edge insertion that inserts a vertexu, with the same
label asv, and the edgee(u,v). Thus, inT1(Γ, ℓ), the vertexv is
of degree 3. Moreover, if #{w ∈ V(Γ) : e(w,v) ∈ E(Γ), ℓ(w) <
ℓ(v)}< 2, then we chooseT2 to be a relabeling such thatℓ(u)<
ℓ(v), otherwise, we chooseT2 such thatℓ(u)> ℓ(v). As a result,
v has turned into an up- or down-fork and the other vertices ofΓ
have changed neither adjacencies nor labels.

•Case deg(v)≥ 3: Possibly after a relabeling, we can suppose that
at least two of the vertices adjacent tov, sayv1,v2, are such that
ℓ(v1), ℓ(v2)> ℓ(v) or ℓ(v1), ℓ(v2)< ℓ(v). Let us consider the first
case, the other being analogous. Letw1, . . . ,wk−2 the other ver-
tices adjacent tov. We transform(Γ, ℓ) through the edit sequence
S= (T1,T2,T3,T4), where the editsTi ’s , with i = 1, . . . ,4, are se-
quences taken as follows (see also Figure4): T1 = S1

eI1
e , where I1e

is the edge insertion that inserts a vertexu1 of degree 1, with the
same label asv, and the edgee(u1,v), while S1

e is the edge slid-
ing that removes the edgee(v,w1) and inserts the edgee(u1,w1);
T2 = RvIe, where Ie is the edge insertion that inserts a vertexw
of degree 1, with the same label asu1, and the edgee(u1,w),
while Rv is the relabeling that relabelsw in such a way that, if
ℓ(w1) > ℓ(u1) before, thenℓ(w) < ℓ(u1) after, while if ℓ(w1) <
ℓ(u1) before, thenℓ(w) > ℓ(u1) after; T3 = Sk−2

e Ik−2
v · · ·S2

eI2
v ,

where Ijv is the vertex insertion that inserts a vertexuj of degree
2 betweenv anduj−1, with the same label asv, thus removing
the edgee(v,uj−1), and inserting the edgese(v,uj ),e(uj ,uj−1),

while Sj
e is the elementary deformation that removes the edge

e(v,wj) and inserts the edgee(uj ,wj); T4 = R′
v, where R′v is

the relabeling that relabels the verticesu1, . . . ,uk−2 in such a
way that inS(Γ, ℓ), ℓ(v)> ℓ(uk−2)> . . . > ℓ(u1). Recalling that
ℓ(v1), ℓ(v2) > ℓ(v), the vertexv is of degree 3 and an up-fork in
S(Γ, ℓ), whileu1, . . . ,uk−2 are of degree 3 and up- or down-forks
in S(Γ, ℓ), depending on the labels ofw1, . . . ,wk−2. Also in this
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v1 v1v1v1 v1
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w1 w1w1w1 w1

w2 w2w2w2 w2

w3 w3w3w3 w3

wk−2 wk−2wk−2wk−2 wk−2w w

w

u1

u1

u1 u1 u2

u2
u3u3 uk−2uk−2

. . .

. . .

. . .. . .. . .

. . .

. . .

v vvv v
T1 T2 T3 T4

Figure 4: The edit sequence that splits a vertex of degree greater than 3 into a number of up- or down-forks

case, all these operations do not change neither the labels nor the
adjacencies of vertices of the original graph different fromv and
its adjacent vertices.

Proposition 3.2. Let (Γ, ℓ), (Γ′, ℓ′) be two labeled graphs. The set
S((Γ, ℓ), (Γ′, ℓ′)) is non-empty.

Proof. Let us apply Lemma3.1 to both(Γ, ℓ) and(Γ′, ℓ′), for ex-
ample starting from the lowest to the highest vertex, and callS
andS′ the edit sequences such thatS(Γ, ℓ) andS′(Γ, ℓ) are labeled
graphs whose vertices have different labels, and degree 1 or 3, in
this case being up- or down-forks.

Under these assumptions, [DFL16, Prop. 23] applies toS(Γ, ℓ)
and S′(Γ′, ℓ′). More precisely, lettingn,m≥ 0 be the number of
linearly independent cycles ofS(Γ, ℓ) and S′(Γ, ℓ), respectively,
S(Γ, ℓ) can be transformed into a labeled graph(Γ1, ℓ1) with exactly
two vertices of degree 1, andn cycles of length 2, whileS′(Γ′, ℓ′)
can be transformed into a labeled graph(Γ′

1, ℓ
′
1) with exactly two

vertices of degree 1, andm cycles of length 2. It is sufficient to ap-
ply a finite sequence of elementary deformations of birth-, death-,
relabeling-, K1-, K2- and K3-types (see Figure3).

To prove our claim, we start by showing in Figure5 (rows 1-
3) that each elementary deformation of birth, death, orKi-type can
be obtained also by applying a finite sequences of the edit oper-
ations introduced in Definitions3.1-3.4. The deformation of rela-
beling type is already a particular case of the relabeling operation
defined here.

As a consequence, it holds thatS(S(Γ, ℓ), (Γ1, ℓ1)) and
S(S′(Γ′, ℓ′), (Γ′

1, ℓ
′
1)) are non-empty.

Now, to show thatS((Γ, ℓ), (Γ′, ℓ′)) is also non-empty, we con-
sider the following two cases: (i) the case whenm= n, and (ii) the
case whenm 6= n.

(i) If m= n, then there is a bijectionΦ : V(Γ1)→V(Γ′
1) preserving

adjacencies. Hence, it is sufficient to take the relabelingS′′ of
the vertices that, for everyv ∈ V(Γ1), changes the labelℓ1(v)
into the labelℓ′1(Φ(v)).

(ii) If m 6= n, then we can assume thatn > m. Let
V(Γ1) = {v0,v1,v

′
1, . . . ,vn,v′n,vn+1} and V(Γ′

1) =
{u0,u1,u

′
1, . . . ,um,u′m,um+1} as in Figure 6 (leftmost

and rightmost graphs). We consider the sequence
S′′ = (T1, . . . ,T6) ∈ S((Γ1, ℓ1), (Γ′

1, ℓ
′
1)) defined as fol-

lows: T1 is the relabel operation that relabels the up-forks
v′m+1, . . . ,v

′
n ∈V(Γ) in such a way that their labels inT1(Γ1, ℓ1)

Iv

Dv

Ie

De

RvRv

RvRv

Rv

SeSe

SeSe

v1v1 v1 v1
v1

v1v1v1 v1v1

v1v1v1v1

u1

u1

u1
u1u1

u2

u2

u2
u2

v2v2 v2 v2
v2

v2v2v2 v2v2

v2v2v2v2

u1u1 u1u1

u1u1u1
u1

u2u2 u2
u2

u2u2u2
u2

v3v3 v3 v3
v3

v3v3v3 v3v3

v4v4 v4 v4
v4

v4v4v4 v4v4

Figure 5: The elementary deformations in Figure3 can be obtained as
sequences of edit operations. Top row: elementary deformation of B- and
D- types. Center row: elementary deformation of K1-type. Bottom row: ele-
mentary deformation of K2- and K3-types.

are the same asvm+1, . . . ,vn, respectively; T2 is the se-
quence of edge slidings that delete the edgese(v′j ,vj+1),
with j = m+ 1, . . . ,n, and add the edgese(vj ,vj+1), with
j = m+ 1, . . . ,n; T3 is the sequence of vertex deletions that
remove the verticesv′m+1, . . . ,v

′
n; T4 is the sequence of loop

deletions that remove the edgese(vj ,vj), with j = m+1, . . . ,n;
T5 is the sequence of vertex deletions that remove the vertices
vm+1, . . . ,vn; finally, T6 is a relabel operation analogous to that
used in the case (i).

T1 T2 T3 T4 T5 T6

v′1 v′1 v′1 v′1 v′1 v′1
v1 v1 v1 v1 v1 v1

vm vm vm vm vm vm
v′m v′m v′m v′m v′m v′m

v0 v0 v0 v0 v0 v0

vm+1 vm+1 vm+1 vm+1 vm+1
v′m+1

v′m+1v′m+1

v′n
v′nv′nvn vn vn vn vn

u′1

u1

u′m

um

um+1

u0

vn+1 vn+1vn+1 vn+1 vn+1 vn+1

Figure 6: How to transform the leftmost Reeb graph into the rightmost
one.

In conclusion,S((Γ f , ℓ f ), (Γg, ℓg)) contains at least the edit se-
quence(S,S′′,S′−1), proving that it is non-empty.
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The rest of the section is devoted to define our edit distance. We
start introducing the cost of an edit sequence.
Definition 3.7. Let S = (T1, . . . ,Tn) ∈ S((Γ, ℓ), (Γ′, ℓ′)). Set
(Γ, ℓ) = (Γ1, ℓ1), (Γ′, ℓ′) = (Γn+1, ℓn+1), and (Γi+1, ℓi+1) =
Ti(Γi , ℓi) for i = 1, . . . ,n. SettingJS(v) = {i ∈ Nn+1 : v ∈ V(Γi)},
thecostof S is taken to be

c(S) = max
v∈

⋃n+1
i V(Γi )

(

max
i∈JS(v)

ℓi(v)− min
i∈JS(v)

ℓi(v)

)

.

Remark2. By Definition3.7, we have:

(i) if T ∈ S((Γ, ℓ), (Γ′, ℓ′)) is an insert, deletion, or slide operation,
thenc(T) = 0;

(ii) if T ∈ S((Γ, ℓ), (Γ′, ℓ′)) is a relabel operation, thenc(T)≥ 0;
(iii) for every edit sequenceS∈ S((Γ, ℓ), (Γ′, ℓ′)), c(S−1) = c(S).

The following example illustrates how to compute the cost of an
edit sequence.
Example 3.1. Let us consider the sequenceS= (Iv, Ie,Rv) dis-
played in the first row of Figure5 that takes the leftmost graph
(Γ1, ℓ1) to the rightmost graph(Γ4, ℓ4). By Remark2, we get
c(S) = c(Rv), with Rv(Γ3, ℓ3) ∼= (Γ4, ℓ4). Hence,c(S) is the max-
imum between max{ℓ3(u1), ℓ4(u1)} − min{ℓ3(u1), ℓ4(u1)} and
max{ℓ3(u2), ℓ4(u2)}−min{ℓ3(u2), ℓ4(u2)}, that is

c(S) = max{ℓ3(u1)− ℓ4(u1), ℓ4(u2)− ℓ3(u2)}.

Definition 3.8. Theedit distancebetween any two labeled graphs
(Γ, ℓ) and(Γ′, ℓ′) is defined to be

δE((Γ, ℓ), (Γ′, ℓ′)) = inf
S∈S((Γ,ℓ),(Γ′,ℓ′))

c(S).

Proposition 3.3. The edit distanceδE is a pseudo-metric on iso-
morphism classes of labeled graphs.

Proof. By Proposition3.2, δE is a real number. The coincidence
property can be verified by observing that the relabel operationT
that does not change any label, i.e.T(Γ f , ℓ f ) = (Γ f , ℓ f ), has cost
c(T) = 0, yieldingδE = 0. The symmetry property holds because,
for every edit sequenceS∈ S((Γ, ℓ), (Γ′, ℓ′)), c(S−1) = c(S) and
S(Γ, ℓ) ∼= (Γ′, ℓ′) if and only if (Γ, ℓ) ∼= S−1(Γ′, ℓ′). Finally, the
triangle inequality can be proved in the standard way.

The edit distance is not a metric because different labeled graphs
(for example, two graphs connected by an editing sequence involv-
ing no relabel operations) can have zero distance.

4. The stability property in the case of Morse functions

The goal of this section is to show the robustness of Reeb graphs
with respect to perturbations of the function. In this work, we only
consider the case of Morse functions on curves or surfaces. We do
not face with the same problem in the case of manifolds with a di-
mension higher than 2, while the case of PL functions on polyhedra
is postponed to an extended version of this paper.

As mentioned before (see Theorem2.2), the edit distancedE
between Reeb graphs of curves or surfaces endowed with simple
Morse functions implies the stability of Reeb graphs with respect
to function perturbations. Now we show that the general edit dis-
tanceδE inherits the same stability property from that ofdE.

In this section, to avoid confusion, we add the superscriptM to
the edits defined for Reeb graphs of Morse functions to distinguish
them from those introduced for general labeled graphs. The cost of
an edit will be always denoted byc, the presence of the superscript
M in the considered edit signaling that the cost must be computed
as explained in Figures2, 3.
Proposition 4.1. Let M be a connected, closed, orientable,
smooth manifold of dimension 1 or 2. Let f: M → R be a sim-
ple Morse function and(Γ f , ℓ f ) the associated labeled Reeb graph.
The following statements hold:

(i) For every elementary deformation TM, there exists an edit se-
quence S such that S(Γ f , ℓ f )∼= TM(Γ f , ℓ f ) and c(S) ≤ c(TM).

(ii) For every deformation SM, there exists an edit sequence S such
that S(Γ f , ℓ f ) ∼= SM(Γ f , ℓ f ) and c(S)≤ c(SM).

Proof. Let us prove statement(i) in the case whenM is a closed
curve. LetTM be an elementary deformation of birth-type. The case
whenTM is of death-type can be shown analogously. Let us call
(Γ f , ℓ f ) = (Γ1, ℓ1) andTM(Γ f , ℓ f ) = (Γ5, ℓ5) the leftmost and the
rightmost graph in Figure7, respectively. As recalled under Fig-

ure2, the cost of this deformation isc(TM) =
ℓ5(u2)−ℓ5(u1)

2 .

Iv

Dv

Ie

De

RvSe

v1v1v1 v1v1

u1
u1u1

v2v2v2 v2v2

u2u2u2 u2

Figure 7: The elementary deformations in Figure2 (left) can be obtained
as sequences of edit operations introduced in Definitions3.1-3.4.

Let S= (Iv, Ie,Se,Rv) be the edit sequence displayed in Fig-
ure 7 such thatS(Γ1, ℓ1) ∼= (Γ5, ℓ5), with Iv(Γ1, ℓ1) ∼= (Γ2, ℓ2),
Ie(Γ2, ℓ2) ∼= (Γ3, ℓ3), Se(Γ3, ℓ3) ∼= (Γ4, ℓ4) Rv(Γ4, ℓ4) ∼= (Γ5, ℓ5).
The cost of S is c(S) = c(Rv) because of Remark2. Hence,
by an argument analogous to that used in Example3.1, c(S) =
max(ℓ4(u1)− ℓ5(u1), ℓ4(u2)− ℓ5(u2)). Settingℓ4(u1) = ℓ4(u2) =
ℓ5(u1)+ℓ5(u2)

2 , we getc(S) = c(TM).

The proof of statement(i) in the case whenM is a surface is
based on a similar argument to the one considered above. The dif-
ferent types of elementary deformationsTM are displayed and their
costs are recalled in Figure3. For each of these elementary defor-
mations, Figure5 shows an edit sequence such thatS(Γ f , ℓ f ) ∼=

TM(Γ f , ℓ f ). In particular, if we setℓ4(u1) < ℓ3(u1) = ℓ3(u2) =
ℓ4(u1)+ℓ4(u2)

2 < ℓ4(u2) in the first row, andℓ1(u1), ℓ5(u2)<ℓ2(u1)=

ℓ2(u2) =
ℓ1(u1)−ℓ1(u2)

2 = ℓ5(u1)−ℓ5(u2)
2 < ℓ1(u2), ℓ5(u1) in the sec-

ond and third row, in all the cases, we obtainc(S) = c(TM).

Let us now consider a deformationSM
n = (TM

1 , . . . ,TM
n ) acting

on the Reeb graph(Γ f , ℓ f ) of a manifoldM of dimension 1 or 2,
and recall that the cost ofSM

n is c(SM
n ) = ∑n

i=1 c(TM
i ). We prove

statement(ii) by induction onn. If n = 1, i.e. the deformationSM
n

reduces to the elementary deformationTM
1 , then the claim follows

from statement(i). Let us assume that, for anyn ≥ 1, there exists
an edit sequenceS′ such thatS′(Γ f , ℓ f ) ∼= SM

n (Γ f , ℓ f ) andc(S′) ≤
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c(SM
n ). We consider a deformationSM

n+1 = (TM
1 , . . . ,TM

n ,TM
n+1),

whereSM
n = (TM

1 , . . . ,TM
n ), andTM

n+1 is a certain elementary de-
formation. By the inductive assumption and statement(i), the
edit sequenceS= (S′,S′′) is such thatS(Γ f , ℓ f ) ∼= SM

n+1(Γ f , ℓ f ),
whenever S′′ is an edit sequence such thatS′′(S′(Γ f , ℓ f )) ∼=

TM
n+1(S

′(Γ f , ℓ f )) that we can take with a costc(S′′) ≤ c(TM
n+1). It

is sufficient to show thatc(S) ≤ c(SM
n+1). Let us call(Γ f , ℓ f ) =

(Γ1, ℓ1) andTM
k · · ·TM

1 (Γ1, ℓ1) = (Γk+1, ℓk+1), with k = 1, . . . ,n+
1, and assume thatc(S) = |ℓi(v)− ℓ j(v)|, with v ∈

⋃n+2
k=1V(Γk),

i, j ∈ JS(v). If i, j ∈ {1, . . . ,n+ 1} or i, j ∈ {n+ 1,n+ 2}, then
c(S) = c(S′) or c(S) = c(S′′), respectively, and the claim fol-
lows; if i ∈ {1, . . . ,n+ 1} and j = n+ 2, then we can state that
v ∈ V(Γn+1) and c(S) = |ℓi(v)− ℓn+2(v)| = |ℓi(v)− ℓn+1(v) +
ℓn+1(v)− ℓn+2(v)|. Hence,c(S) ≤ |ℓi(v)− ℓn+1(v)|+ |ℓn+1(v)−
ℓn+2(v)| ≤ c(S′)+c(S′′)≤ c(SM

n+1).

Corollary 4.2. LetM be a connected, closed, orientable, smooth
manifold of dimension 1 or 2. For every simple Morse functions
f ,g : M→ R, we have

δE((Γ f , ℓ f ), (Γg, ℓg))≤ ‖ f −g‖∞.

Proof. The claim follows from Proposition4.1 and Theorem2.2.

5. Conclusions

In this paper we presented a general edit distance between labeled
graphs that can be applied to compare Reeb graphs. In particular, it
allows for comparison of Reeb graphs of Morse functions and PL
functions. We also proved that, in the case of Morse functions of
curves or surfaces, this comparison is stable with respect to noise
in the functions.

The proof of the stability property for manifolds of dimension
higher than 2 and for PL functions on polyhedra requires further
investigation and will be the subject of our future research. In par-
ticular, considering our strong interest in producing an algorithm
able to test the proposed framework, the problem of stability in the
piecewise linear context actually represents our main priority. For
example, we believe that the inequality

δE((Γ f , ℓ f ), (Γg, ℓg))≤ ‖ f −g‖∞

holds true in the case when the considered PL mapsf ,g : X → R

are defined by extending injective functions defined on the vertices
of a fixed simplicial complexK such thatX = |K|, while requires
much more effort without fixing any simplicial complex or when
the assumption of injectivity is removed. Moreover, further inves-
tigations will concern also the case of robustness with respect to
perturbations of the underlying spaceX.
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