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Abstract

We consider the problem of assessing the similarity of 3D shapes using Reeb graphs from the standpoint of robustness under
perturbations. For this purpose, 3D objects are viewed as spaces endowed with real-valued functions, while the similarity
between the resulting Reeb graphs is addressed through a graph edit distance. The cases of smooth functions on manifolds
and piecewise linear functions on polyhedra stand out as the most interesting ones. The main contribution of this paper is the
introduction of a general edit distance suitable for comparing Reeb graphs in these settings. This edit distance promises to be
useful for applications in 3D object retrieval because of its stability properties in the presence of noise.

Categories and Subject Descript@iscording to ACM CCS) 1.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction tool for shape analysis and description tasks sis¢€q{91, SK91].
Indeed, the Reeb graph has a number of characteristics that make it
useful as a search query for 3D objedB3SF0§. First, a Reeb
graph always consists of a one-dimensional graph structure and

Lnet.hO(iS' 3D soréaple rit.rletvatll IS gﬁneraflly ;he result of a pltpeJIPe of does not have any higher dimension components such as the degen-
asic stepsTVO8]. Inafirst step, shape features are computed from erate surface that can occur in a medial axis. Second, by defining

the 3D mOdeIS’ and encoded in shape s.lgnatur.es. Different types Ofthe function appropriately, it is possible to construct a Reeb graph
shape signatures have been proposed in the literature for this task

) " that is invariant to translation and rotation, or even more compli-
the _mgst common catggones being graph-based, transform-basedCated isometries of the shape. Last but not least, as aforementioned,
statlstlcs-bgs_ed _and view-based methoo_ls [B0% In a second . Reeb graphs allow for capturing global and local features.

step, the similarity between 3D models is assessed by evaluating

the distance between the associated shape signatures: the smaller One of the most important questions is the stability of the Reeb
the distance, the more similar the shap@&K03. In a third step, graph construction: whether Reeb graphs (the result of the con-
given a query model, the target models are sorted in order of in- struction) are robust against perturbations that may occur because
creasing distance between their signature and that of the queryof noise and approximation errors on the input, namely the spaces
model. and the scalar functions.

The significant increase of available 3D models, enabled by mod-
ern technology, strongly motivates 3D retrieval using content-based

In this paper we focus on the second step of the shape retrieval Over the years, starting back wittf$KKO01] until more re-
pipeline, assuming that Reeb graphs have been chosen as shapeently with BB13], a number of heuristics have been developed
signatures in the first step. The goal of this paper is to investigate so that the Reeb graph turns out to be resistant to connectivity
theoretical aspects of the definition of the similarity concept for changes caused by simplification, subdivision and remesh, and ro-
Reeb graphs. bust against noise and certain changes due to deformation.

The Reeb graph is defined for shapes modeled as spaces en- The problem of studying the stability of Reeb graphs from the
dowed with scalar functions. It is obtained by shrinking each con- theoretical standpoint has recently attracted significant interest in
nected component of a level set of the function to a single point the area of Topological Data Analysis (TDA) and more broadly
[Ree4. Often, vertices of the Reeb graph are labeled by the value speaking in Computational Topology. Indeed, the success of TDA
of the function at the corresponding level set. If the function is con- in applications is strongly connected with the stability properties
structed from geometric information, such as a height function or a of its tools such as persistence diagra@SEHOT. Therefore, itis
distance function, the Reeb graph captures both topological and ge-natural to address the problem of stable comparison of Reeb graphs
ometric features of a 3D model, thus combining global and local in- using techniques rooted in TDA, and in particular in Persistence
formation on its shape. Reeb graphs have been used as an effectiv@heory.
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The stability problem is addressed by providing distances such 2. Mathematical background on Reeb graphs
that varlatlops InReeb graphs are bounded by yarlathns inthe m.mehe more general definition of a Reeb graph is the topological def-
scalar functions. In other words, the map sending an input function inition. It anolies to anv tonological space endowed with an
to the associated Reeb graph is Lipschitz continuous. The first pa- . ppies y topolog P y

T o continuous functiorf.

per in this direction wasQ)FL12], where an edit distance between Definition 2.1. The topological Reeb araplof f is the quotient
Reeb graphs of smooth curves endowed with Morse functions hasS alc;)é/ .V\}here fo?evegrl ¥ e X xg F:(, it anld onl qn:JX eind
been introduced and shown to yield stability with respect to func- ,p f ' % At of y
tion perturbations. More recently, iDFL16], also Reeb graphs of ~ X belong to the same connected componerttof(f (x)).
smooth surfaces have been shown to satisfy stability in the same |ntyitively, this corresponds to shrinking each connected compo-
sense with respect to an appropriate edit distance. A drawback ofpent of a level set of the function to a single point.
this approach is that the set of admissible edit operations changes ] ) ]
as we pass from curves to surfaces. Another result in the context of APPropriate assumptions ox and f ensure that the topologi-
Reeb graph stability is the functional distortion distance between ¢l Reeb graph is well behaved. For example, it is sufficient that
Reeb graphs proposed iBEW14, with proven stable and dis- X is Hausdorff and compact to guarantee that~ is alsc_) Haus-
criminative properties. The functional distortion distance applies to dorff and compact@ov]. However, such general properties do not
a wider class of objects than the edit distancesD#[12, DFL16] guarantee thak/ ~ has the structure of a finite connected cell
and is intrinsically continuous, whereas the edit distances are com-Complex of dimension 1, associating witfy ~ the combinato-
binatorial. The authors ofdSMP13 address the question of a rial structure of a graph. In order to obtain a combinatorial Reeb
distance function stable under perturbations of the input data us-9raph, more restrictive assumptions on the function are needed.
ing methods from category theory, and propose to compare ReebCom_mon_ choices are thatls_ Morse or piecewise |_|near. _In_ view
graphs through the interleaving distance. BMW15] it has been of this shift from the topological to the combinatorial definition of
proved that the functional distortion distance and the interleav- & Reeb graph, itis useful to introduce some notations.

ing distance on Reeb graphs are.strongly equivalent on the space | this paper, we define mbeled graphas a pair(I", ¢) with
of Reeb graphs, in the mathematical sense. The p&¥M['13] T g finite graph, and : V(I') — R a function that endows each
about a stable distance for merge trees is also pertinent to the stabilyertex of I with a scalar value. The graphs considered here are
ity problem for Reeb graphs: merge trees are known to determine gjiowed to have multiple edges and loops. Moreover, for simplicity,
contour trees, which are Reeb graphs for simple domains. we always suppose that they are connected. We denot&(Iby
_ o _ _ o andE(l") the vertex and edge sets [of respectively. Ife € E(T")

The first contribution of this paper is the definition of a set of i an edge incident to the vertices, v € V (), we say thaty;
edit operations that is general enough for defining an edit distance gndy, are adjacent and we write= e(v1,V2). As usual, we define
between Reeb graphs that applies to many different settings, fromne degree of a vertex @ V(I), denoted by dey), as the number
that of Morse functions on smooth curves and surfaces to that of oy edges inE(I") incident onv, each loop counting as two edges.
piecewise linear functions on polyhedra. Indeed, the piecewise lin- Aiso we say that aycle if any, has length mwith m > 2, if it
ear case is certainly the most relevant one in applications to 3D contains exactlyn edges in the graph. Isomorphic graphs will be
model retrieval. More precisely, we introduce a combinatorial dis- considered as the same graph. We review the definition of labeled
similarity measure, called an edit distance, between labeled graphs graph isomorphism.
applicable in particular to Reeb graphs. The basic idea is that la- pefinition 2.2. We say that two labeled grapki, ¢), (I, ¢') are
beled graphs of two shapes can be transformed into each other bysomorphic and we write(T, ¢) = (I, ¢'), if there exist a bijection

a finite sequence of edit operations. Each such sequence has a cog : /(1) — v(I”’) and a bijectiot¥ : E(I") — E(I”") such that,
that depends on how much we must vary the value of the label at

the vertices of the graph during the transformation. Thus our edit *€= e(\fla\.lz) isin E(I) if and only if W(e) = e(P(v1), P(v2)) is
distance between graphs belongs to the family of Graph Edit Dis-  in E(T") (i.e. ® preserves t/he edges), and
tances GXTL10], widely used in pattern analysis. eforeveryv e V (), £(v) = £/(®(v)) (i.e. @ preserves the labels).

When a labeled graph is obtained as the combinatorial Reeb

By the aforementioned generality of the edit operations intro- graph of a functiorf, we denote it by writing[" ¢, ¢1).

duced here, the edits defined in [DF 1@ curves, and in [DFL1p

for surfaces, can be now uniformed. This allows for the second con-
tribution of this paper, namely that the edit distance we propose, 2.1. Reeb graphs of simple Morse functions
when applied to Reeb graphs of Morse functions of smooth curves
or surfaces, yields the stability property with respect to function
perturbations.

In the mathematical literature, the case of Reeb graphs of simple
Morse functions on smooth compact manifolds appears as the most
commonly studied (cf., e.g.BF04)).

The paper is organized as follows. Section 2 focuses on mathe- We recall that a smooth functioh: M — R defined on a man-
matical aspects of Reeb graphs. Section 3 introduces our methodjfold is Morse if all of its critical points are non-degenerate, i.e.
i.e. comparison of labeled graphs using the edit distance. In Sec-the Hessian at critical points is non-zero; moreover, it is said to be
tion 4 we discuss the stability properties of this edit distance in the simple if it is injective on the set of its critical points.
smooth case. A final discussion on the obtained results and the fu-Theorem 2.1( [Ree48). Let M be a compact n-dimensional man-
ture related research concludes the paper. ifold and f a simple Morse function defined @dri. The quotient
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spaceM/ ~ has the structure of afinite connected cell complex K (Te,l8) (T lg)| |(Te,05)  (Tg,lg)| |(Te,ls)  (Tg,lg)
of dimension 1, such that the set of 0-cells of K bijectively corre- V2 2 V2 V2 V2 v
sponds to the critical points of f. B Uy Up R

5, .

As a consequence of the previous result, we can idenify~ ¢ D I
with a combinatorial Reeb graghs whose vertices correspond to v U Vi t Vi Vi v V1
the O-cells and the edges to the 1-cell&oMoreover, the vertices
of [' can be labeled by the functiohy : V(I't) — R induced by ¢(B) = [fg(u1) — £g(u2)[/2, €(D) = |01 (ur) — £5(u2)[/2
restrictingf : M — R to its critical points. We call the paif , /1) c(R) = max,cy(ry) [¢1(v) — (V)]
the labeled Reeb graph _Of the manifold. An example of labeled  Figure 2: Elementary deformations for Reeb graphs of curves and their
Reeb graph is depicted in Figute costs.

a
20 (Frt)  (Talg)||(Frolr)  (Falg)||(Tr.lr)  (Folo)
ag Vo V2 Vo Vo Vo v
: [ I/uz [/uz [ [ |
7 B R
ag I —_— -
up Uz D I
Vi
as Vi Vi Vi \%1 Vi
y
23 Ff Zf rg ég rf,gf rg gg rfvgf rg [9
2
a1
u2
Z, U
Figure 1: Left: the height function f M — R; center: the surfaceM; Ksty
right: the associated labeled Reeb graffy, ().

c(B |fg up) fg uz) /2 c(D Iff u) €f Uz |/2
Let us focus on manifolds of dimension 1, i.e., curves, and di- ¢(R) = maXey (ry) |Zf( V) —{g(V)|
mension 2, i.e., surfaces. The stability of labeled Reeb graphs of c(Ki) = max{| ¢+ (uy) —gg(U1)| 05 (u2) — Lg(u) [}

curves via an edit distance has been proveifl{12], that of sur- Figure 3: Elementary deformations for Reeb graphs of surfaces and their
faces in DFL16]. In both the cases, for any simple Morse functions  ¢osts.

f, g defined on the same manifold, the edit distance was defined as

Ge((Tr.(r). (To.to)) .y Tr)i;C(T')’ 2.2. Reeb graphs of PL functions

where S varies in a set of arbitrarily long sequences of elemen- Following [RS73, a polyhedronX is a subset of som&", whose
tary deformationsTy, ..., Tr, necessary to transfort ¢, /¢) into points x € X have cone neighborhoods ¥, N(x) = x* L(x) =
(Fg.4g), up to isomorphims. Each edi} has a cost(Ti) depend-  {X\-x+p-y:y€ L(x),A,u> 0,A+p= 1}, with L(x) compact.

ing on its own type. What distinguishes the case of curves from Moreover, f : X — R is a piecewise linear (briefly, PL) function
that of surfaces is the type of admissible elementary deformations. if for eachx € X, f(A-x+u-y) = A- f(x) + u- f(y) wheny €

In fact, the Reeb graph of a closed curve has only vertices of degreeL(x)J\, U>0A+p=1.

2, while the Reeb graph of a surface has only vertices of degree 1 or .

3. Figure2 and Figure3 illustrate the elementary deformations for Let X be a polyhedron and : X — R a PL function. It can
curves and surfaces, respectively, together with their costs. In all be shown thak/ ~r is an abstract polyhedron of dimension not
the figures of this paper, black dots represent vertices whose degre@reater than 1. Hennce it embeds into a polyhedRerof dimen-
needs to be exactly the same as it appears in the figure, wherea§'on at most 1irR"™ for somen. Moreover,f : X — R naturally
circled white dots represent vertices whose degree can be hlgherInduces aPL functiorf : Ry — K.

Moreover, label values are represented by means of the height, and For the sake of brevity, we postpone the proof of these facts to
vertices are allowed to coincide whenever this makes sense. an extended version of this paper. However, we refer the reader
to [EHPOg for a proof in the case wheX is a manifold, and is

For both curves and surfaces, the edit distaicgields the sta- SR ) aot W '
injective on the vertices of a simplicial complex triangulatiXg

bility of Reeb graphs.
Theorem 2.2([DFL12,DFL16]). Forevery fg: M — R, simple To define a combinatorial version of the Reeb graph that turns

Morse functions defined on a Connected, closed (|e COmpaCt andout to be a Specia| instance of a labeled graph’ for a cone neighbor-
without boundary), orientable smooth manifold of dimension 1 hoodN(x) = x* L(x) of xin X, we set

or2 Itholds that L= ={yeL(: f(y) < FO}L 0 = {yeL(: f() > F()}
de((Tt,£1), (Tg,bg)) < || —Qlloc, N ' R ' '

with || f — gfleo = max|f(p) —g(p)|. As usual, we denote [ the Oth Betti number, that is, the num-
peM ber of (arcwise) connected components.

(© 2016 The Author(s)
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Definition 2.3. We say thai € X is aReeb-regular poinof f if
Bo(L™(x)) = 1 andBo(L*(x)) = 1 for every cone neighborhood
N(x) = x=* L(x) of x in X. Moreover, we say that € X is aReeb-
critical point of f if it is not Reeb-regular.

Definition 2.4. We call the pair(I',¢¢) the labeled Reeb graph
(briefly, Reeb graph of the PL functionf : X — R if ¢ is the
graph whose vertex s¥{(I" 1 ) is the set of Reeb-critical points of
Rf — R, and whose edge sB{T ¢), if non-empty, is given by the
set of 1-cells of the canonical cell decompositiorRef moreover,
s :V([§) — R is the function that coincides with on the Reeb-
critical points off.

We observe that, by construction,(if ¢, ¢¢) is a labeled Reeb
graph, ther ¢ contains no loops, even though it may contain cy-
cles, and ifv € V(T'¢), thenBo(L™ (v)) - Bo(LT (v)) # 1 for some
cone neighborhood neighborhobidv) = v« L(v) of vin T . More-
over, /¢ takes different values on pairs of adjacent verticeg; &nd
v are adjacent it ¢, thenls (v1) # £ (Vo).

3. The edit distance for Reeb graphs comparison

In this section we define an edit distance for arbitrary labeled
graphs to be used in particular to compare Reeb graphs. First, we
introduce a set oédit operationon labeled graphs and prove that
any two labeled graphs can be transformed into each other by a fi-
nite sequence of edit operations, callecedit sequenceNext, we
define the cost of an edit sequence and our edit distance.

Edit operations on labeled graphs are of four types: 1. insertions,
2. deletions, 3. slidings, and 4. relabelings. These operations are
formally defined in Definition$.1-3.4.

1. Insert operations:

Vi Vi

Iy " le I

- v e v O
] Vo

Definition 3.1. Let (', ¢) be a labeled graph.

e \We define avertex insertior(ly) to be any transformatiom
of (I',¢) such that, for a fixed edge(vi,v2) € E(I), with
£(v1) > £(v2), T(I,¢) is a labeled graplir’,¢') defined as
follows:

- V(") =V(r)u{u};
- E(I") = (E(T) — {e(v1,v2)}) U {e(v1,u), e(u, v2)};
- él‘v(r) =/ and((vl) > Z'(u) > Z(Vz).

o We define aredge insertior(le) to be any transformatiom
of (I, ¢) such that, for a fixed vertexe V(I"), T(T",¢) is the
labeled graptfl’, ¢) defined as follows:

- V() =V()u{u};
- E(M)=E(NU{e(vu)};
= ZI‘V(F) =/ and(’(u) = Z(V)
e We define doop insertion(l}) to be any transformation of

(I, ¢) such that, for a fixed vertexe V(I'), T(I',¢) is the
labeled graptfl’, ¢) defined as follows:

= V() =Vv(r);

- E(M)=EM)u{evVv)};
- =0

2. Delete operations:

Vi Vi

,[”E’[ e v || B v

V2 V2

Definition 3.2. Let (', ¢) be a labeled graph.

e We define avertex deletior{Dy) to be any transformatiom
of (I',¢) such that, for fixed edge={vy,u),e(u,v2) € E(I'),

with u a vertex of degree 2, arf@vy) > ¢(u) > ¢(v2), T(I,{)
is the labeled grapt™’, ") defined as follows:

- V(") =V()—{u};
— E() = (E(T) — {e(vy,u), e(u,v2)}) U {e(vi, v2)};
- U =lyr)—qup-

o We define aredge deletiorfDe) to be any transformatiom
of (I',¢) such that, for a fixed edge(v,u) € E(I"), with u
a vertex of degree 1, anidv) = ¢(u), T(I',¢) is the labeled
graph(I’,¢’) defined as follows:
= V(M) =V(r) —{u};
- E()=E() —{e(vu)};
= =y —quy

e We define doop deletion(D)) to be any transformation of
(I, ¢) such that, for a fixed edggv,v) ¢ E(I"), T(I', ¢) is the
labeled graptfl’, ¢") defined as follows:

- V(T =Vv(r);
- gE/(r';ZE(r)—{e(VN)}:

3. Slide operation:

V1 Vi
VAP-GR\

Vo V3 Vo V3

Definition 3.3. Let (', ¢) be a labeled graph.

o \We define aredge sliding Se) to be any transformation of
(I, £) such that, for fixed edges(vy,Vv2),e(v2,v3) € E(I),
with eitherf(vy) > £(v2) = £(vg), or £(v1) < £(v2) = £(v3),
T(I',¢) is the labeled grapti”’, ¢') defined as follows:

- V(") =Vv(r);
- E() = (E(T) —{e(v1,v2)}) U{e(v1,v3)};
- =0

4. Relabel operation:

Vi
Vi
Ry I
V2
V2

Definition 3.4. Let (', ¢) be a labeled graph.

(© 2016 The Author(s)
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e We define arelabeling (Ry) to be any transformatiofi of
(', ¢) such thafT (I, ) is a labeled grapkr'’,¢') defined as

follows:
- V() =V(r);
- E(r)=E(N);

— Foreveryu,ve V (), if £(u) < £(v), thent’ (u) < ¢ (v).

We now introduce the concept of inverse of an edit operation.
Definition 3.5. Let T be an edit operation such tha{I,¢) =
(I, ¢'). Let us identifyT (I, ¢) with (I'’,¢’) via the pair of bijec-
tions (®, W) inducing the isomorphism. We define tihwerse op-
erationof T, denoted b)ﬂ"l, as the edit operation that acts on the
vertices, edges, and labels(7, ¢') as follows:

oif T is a delete operation that removes one vertex (edge, loop,
resp.), therm ~1is an insert operation that adds the same vertex,
with the same label (edge, loop, resp.), and vice veraisfan
insert operation;

oif T is a slide operation that changes adjacencies among three

vertices, them ~? is a slide operation that changes adjacencies
among the same three vertices in the inverse way;
oif T is a relabel operation that changes labels to the vertices of
thenT Lis again a relabel operation that changes labels to the
same vertices in the inverse way.
Remarkl Definition 3.5 implies that, if T(I",¢) =
XL ) = ().

Applying an edit operation to a labeled graph produces again a
labeled graph. Thus, we can apply edit operations iteratively. We
use this fact in the next DefinitioB.6. Given an edit operatiof
of (',¢) and an edit operatiofi’ of T(I",¢), the compositiorT'T
means applying first and thenT’.

Definition 3.6. We call anedit sequencef the labeled grapfl, ¢)
any finite ordered sequen&= (Ty,T»,..., Tn) of edit operations
such thafT; is an edit operation acting dfr, ¢), and for every X<
k <n, Ty is an edit operation acting of_1Tx_»---T1(I",¢). We
denote byS(T", ¢) the result of the editing$nTn_1 - - - T1 applied to
(T',£). Moreover, ifS= (Ty,...,Tn) is such thaS(I", ¢) = (T, (),
then thenverse sequenasf Sis S™1(I', ¢') = (', ¢), whereS™1 =
(T LT,

In what follows, we writeS((T",¢),(T"’,¢")) to denote the set
of edit sequences turning the labeled gr&ph?) into the labeled
graph(r'’,¢’) up to isomorphisms:

S((0,(M )N ={S=(Ty,....,Ta),n>1:9T,¢) =

(r’,¢", then

(r',ehy.

In the following part of the section we prove that, for any pair
of labeled graphs(I",¢), (I, ¢'), the setS((I",¢), (', ¢)) is non-
empty. To do so, only with the aim of simplifying the proof, we
reduce our problem to the similar one treateddi[L16], where
labeled graphs have only vertices of degree 1 or 3, the vertices of
degree 3 are only up- or down-forks, and there are neither loops nor
vertices with equal labels.

We recall that in a labeled graph, a verteaf degree 3 is called
anup-fork (resp.,down-forR, if two of its adjacent vertices (possi-
bly coincident), say, vy, are such thaf(vy),£(v2) > £(v) (resp.,
£(v1),£(v2) < £(v)), and the third, says is such that(vz) < £(v)
(resp..t(v3) > £(v)). Hence, in both the cases, there exists at least

(© 2016 The Author(s)
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one vertex adjacent towith a label higher tharf(v) and at least
one vertex adjacent towith a label lower tharf(v).

Lemma 3.1. For any labeled grapHT, ¢), there exists an edit se-
quence S such thai(lS ¢) is a labeled graphT’, ¢’) with the fol-
lowing properties:

ethe vertices of ’ are either of degree 1, or up- or down-forks of
degree 3. In particulaf™’ has no loops.
o/ is injective on \(I').

Proof. Without loss of generality, we can assume thatinjective
onV(I), otherwise we apply a relabel operationltdo achieve
injectivity. Moreover, we can assume tHahas no loops, after ap-
plying appropriate loop deletions.

Now we show that each vertexof I that is neither of degree 1,
nor an up- or down-fork of degree 3, can be removed or transformed
into a vertex with the claimed properties. More preciselyylee
any vertex in. We consider the following cases.

eCase defy) = 0: We can take the edit sequere (Tq, T), with
Ty the edge insertion that inserts a vertexvith the same label
asv, and the edge(u, v), andT; a relabeling R that changes the
label ofu. In S(T', ¢) the verticess andv are of degree 1.

eCase defyy) = 2: We observe that eithe{ € V(I') : e(w,v) €
E(M),0w) <f(v)} <2or#{weV(l):ewv) e E(),l(w) >
¢(v)} < 2. Hence, we can take the edit sequefice (T, To),
with Ty the edge insertion that inserts a vertexvith the same
label asv, and the edge(u, V). Thus, inTy(I",¢), the vertexv is
of degree 3. Moreover, iffiv € V(I') : e(w,v) € E(I),{(w) <

£(v)} < 2, then we choos&, to be a relabeling such théfu) <

£(v), otherwise, we choosk such that’(u) > ¢(v). As a result,
v has turned into an up- or down-fork and the other verticds of
have changed neither adjacencies nor labels.

eCase defy) > 3: Possibly after a relabeling, we can suppose that
at least two of the vertices adjacentiayvi, vo, are such that
£(v1),£(v2) > £(v) or£(v1),£(v2) < £(v). Let us consider the first
case, the other being analogous. wet. .., wx_» the other ver-
tices adjacent tu. We transform(I", ¢) through the edit sequence
S= (T1, T, T3, T4), where the edit3i’s , withi =1,...,4, are se-
quences taken as follows (see also Fighrd; = St1&, where £
is the edge insertion that inserts a ventgof degree 1, with the
same label asg, and the edge(us, v), while S is the edge slid-
ing that removes the edgév, w1 ) and inserts the edggu;, w1 );
T, = Rvle, Where b is the edge insertion that inserts a verntex
of degree 1, with the same label ag and the edge(u;,w),
while Ry is the relabeling that relabelg in such a way that if
£(wg) > ¢(u) before, therf(w) < £(uq) after wh|Ie |f€ W
£(uy) before, thent(w) > ((uy) after; Tz = IV,
where | is the vertex insertion that inserts a verthof degree
2 betweenv anduj_1, with the same label ag thus removing
the edges(v, uj_1), and inserting the edgesv, u;), e(uj,uj_1),
while § is the elementary deformation that removes the edge
e(v,wj) and inserts the edge(uj,w;); T4 = R{, where R is
the relabeling that relabels the vertices...,ux_» in such a
way that inS(I", £), £(v) > ¢(uk—2) > ... > £(up). Recalling that
£(v1),£(v2) > £(v), the vertexv is of degree 3 and an up-fork in
S(I',¢), whileus, ..., ux_» are of degree 3 and up- or down-forks
in ', /), depending on the labels of, ..., wk_». Also in this
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V;
case, all these operations do not change neither the labels nor the ; Iy ki le 2 % U
adjacencies of vertices of the original graph different froamd [ — uw U%—A’Z Ry u y
its adjacent vertices. Dy De g
Vi 1
V. V3 \Z v, V3 \Z v, Vs \Z v, V3
Proposition 3.2. Let (I, ¢), (I'",¢') be two labeled graphs. The set “2& ud U2.§e‘, A SeouAe Ry urs
S((T,0),(T",£")) is non-empty. 2
Vi Vi Vi
Proof. Let us apply Lemma.1to both(I",¢) and (I, ¢'), for ex- V4 Vg V4 Vg

V3 V3 V3 V3 Vg V3
ample starting from the lowest to the highest vertex, and $all W Ry i Se un i Se ubdu Ry
andS the edit sequences such IR, ) andS (I, ¢) are labeled u HAT 2AT ™t U
graphs whose vertices have different labels, and degree 1 or 3, in 2 2 2 2 w2

this case being up- or down-forks.

Under these assumption®FL16, Prop. 23] applies t&(T, ¢) Figure 5: The e‘Iementa‘ry deformations in FiguBecan be obt_ained as
andS’(F’,Z’). More precisely, letting,m > 0 be the numbér of sequences of edit operations. Top row: elgmentary deformation of B- and
linearly independent cycles &I, ¢) éndis’ (I, ¢), respectively, 51;%2‘355%?;%{%ff';mairgag_tgﬁgma”o” oFtfpe. Bottom row: efe-

S(I', ¢) can be transformed into a labeled graph, ¢1) with exactly '

two vertices of degree 1, antdcycles of length 2, whil& (I, ¢)

can be transformed into a labeled grajptj, ¢;) with exactly two
vertices of degree 1, armd cycles of length 2. It is sufficient to ap-
ply a finite sequence of elementary deformations of birth-, death-,
relabeling-, K-, K»- and Kz-types (see Figur8).

are the same a¥m;1,...,Vn, respectively; T, is the se-
guence of edge slidings that delete the edg(a:s‘i,le),
with j = m+1,...,n, and add the edges(vj,vj;1), with

To prove our claim, we start by showing in Figuse(rows 1- j =m+1...,n; T3 is the sequence of vertex deletions that
3) that each elementary deformation of birth, deatt;etype can remove the verticesy,, 1,...,Vn; Ts is the sequence of loop
be obtained also by applying a finite sequences of the edit oper-  deletions that remove the edggsj, vj), with j = m+1,....n;
ations introduced in Definition8.1-3.4. The deformation of rela- Ts is the sequence of vertex deletions that remove the vertices
beling type is already a particular case of the relabeling operation ~ Vmi1,- - -, Vn; finally, Tg is a relabel operation analogous to that
defined here. used in the case (i).

As a consequence, it holds tha(S(I,¢),(l1,¢1)) and Vo
S(S(r',¢),(r,¢;)) are non-empty. v(% %% Vk% J(% J(% J(%

Now, to show thatS((I",¢), (I, ¢')) is also non-empty, we con- T
sider the following two cases: (i) the case whee= n, and (i) the v v v
case whem # n. A VA VA
(i) If m=n, then there is a bijectio® : V(1) — V(I'}) preserving g % m“VmH%) m“Vm:% WT

adjacencies. Hence, it is sufficient to take the relabeBhgf ' Urn 116

the vertices that, for every € V(I'1), changes the labée} (v) Vi VeV, VoV Vi Vi

into the labelt} ((v)). va

(i) If m # n, then we can assume thah > m. Let Vnt1® Vit Vi1 Vnt1d Vnid o Vil
V(F) = {vo,Vi,V},--,Vn,Vh,Vne1y  and V(M) = Figure 6: How to transform the leftmost Reeb graph into the rightmost
{ug,Ug, U, ..., Um,Um,Um1} as in  Figure 6 (leftmost one.

and rightmost graphs). We consider the sequence

S = (Ty,....,Te) € S((T1,41),(T1,¢1)) defined as fol-

lows: Ty is the relabel operation that relabels the up-forks In conclusion,S((I't,/t),(Fg,4g)) contains at least the edit se-
Vinits- - >V € V() in such a way that their labels T ("1, ¢1) quence(S S’,S~1), proving that it is non-empty. O

(© 2016 The Author(s)
Eurographics Proceeding® 2016 The Eurographics Association.



U. Bauer & B. Di Fabio & C. Landi / Edit distance for Reeb graphs

The rest of the section is devoted to define our edit distance. We

start introducing the cost of an edit sequence.

Definition 3.7. Let S = (Ty,...,Tn) € S((I',¢),(",¢)). Set
(F0) = (T1,01), (M) = (Tnga,bnye), and (Figa,lip1) =
Ti([,4) fori=1,....n. SettingJs(v) = {i € Npy1:ve V()
thecostof Sis taken to be

(S = max /4i(v) — min ¢ (v)).

max (
veUMV(ri) \i€ds(v) i€Js(v)
Remark?2. By Definition 3.7, we have:
(i) if TeS((r,0),(r,¢))is aninsert, deletion, or slide operation,
thenc(T) =0;
(ii) if TeS((T,e),(r’,¢))is arelabel operation, thesfT) > 0;
(iii) for every edit sequenc8e S((T',¢),(I",¢')),c(S™1) = c(9).

The following example illustrates how to compute the cost of an

edit sequence.

Example 3.1. Let us consider the sequen&e= (Iv,le,Ryv) dis-
played in the first row of Figur® that takes the leftmost graph
(F1,¢1) to the rightmost grapHTl4,¢4). By Remark2, we get
c(S) = c(Rv), with Ry(I"3,¢3) = (I'4,44). Hencec(S) is the max-
imum between maf¢s(uy),la(ur)} — min{¢3(ug),?4(uz)} and
max{{3(up), £4(Uz) } — min{¢3(uz), fa(U) }, that is

c(§) = o), La(uz) — £3(up) }.

Definition 3.8. Theedit distancebetween any two labeled graphs
(T',¢) and(T’,¢') is defined to be

de((r,0),(r' ') = inf
e((F,0),(,£)) SES(TOL41)

max{£3(ur) —

c(S).

Proposition 3.3. The edit distancég is a pseudo-metric on iso-
morphism classes of labeled graphs.

Proof. By Proposition3.2, og is a real number. The coincidence
property can be verified by observing that the relabel operation
that does not change any label, iT{I'¢,¢¢) = (I',¢¢), has cost

c(T) =
for every edit sequenc8 e S((I', /), (I",¢)), c(S71) = ¢(S) and
S(r,0) = (', if and only if (T,¢) = S~ ¢'). Finally, the
triangle inequality can be proved in the standard way. a

0, yieldingdg = 0. The symmetry property holds because,
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In this section, to avoid confusion, we add the supersdvifio
the edits defined for Reeb graphs of Morse functions to distinguish
them from those introduced for general labeled graphs. The cost of
an edit will be always denoted ly the presence of the superscript
M in the considered edit signaling that the cost must be computed
as explained in Figures 3.
Proposition 4.1. Let M be a connected, closed, orientable,
smooth manifold of dimension 1 or 2. Let M — R be a sim-
ple Morse function and ¢, /1) the associated labeled Reeb graph.
The following statements hold:

(i) For every elementary deformation™T there exists an edit se-
quence S such thatS, /¢) = TM (¢, ¢¢) and ¢S) < ¢(TM).

(i) For every deformation ¥ there exists an edit sequence S such
that §T¢,¢¢) = SV (¢, ¢¢) and «S) < c(SV).

Proof. Let us prove statemerit) in the case wher\ is a closed
curve. LefT™ be an elementary deformation of birth-type. The case
whenTM is of death-type can be shown analogously. Let us call
(Ts,0¢) = (F1,01) andTM(T ¢, ¢¢) = (Ts, ¢5) the leftmost and the
rightmost graph in Figur&, respectively. As recalled under Fig-
ure2, the cost of this deformation T™) = bs(w)

— 55 ( Uj_)
.
V2
IV Uz
U2 _’ Uz 4_, U (Vy
u
Dv . Ui
Vi

Figure 7: The elementary deformations in Figu2gleft) can be obtained
as sequences of edit operations introduced in Definitids3.4.

V2

Vi

Let S= (Iv,le, S, Rv) be the edit sequence displayed in Fig-
ure 7 such thatS(I'1,¢1) = (Is,¢s5), with Iv(M1,¢1) =2 (M2, 42),
le(F2,02) = (T3,43), Se(3,03) = (T4,04) Ru(T4,44) = (s, (s5).

The cost of S is ¢(S) = c(Ry) because of RemarR. Hence,
by an argument analogous to that used in Exan®le c(S) =
max(£a(u1) — ls(Ur), a(Uz) — l5(Up)). Settingla(ur) = fa(Uz) =
fsi) s(t) e getc(S) = c(TM).

The edit distance is not a metric because different labeled graphs  The proof of statemen(i) in the case wheo\ is a surface is
(for example, two graphs connected by an editing sequence involv- based on a similar argument to the one considered above. The dif-

ing no relabel operations) can have zero distance.

4. The stability property in the case of Morse functions

The goal of this section is to show the robustness of Reeb graphs ¢,(u;)+¢4(up)
with respect to perturbations of the function. In this work, we only 2
consider the case of Morse functions on curves or surfaces. We do2(U2) =

ferent types of elementary deformatioR¥ are displayed and their
costs are recalled in FiguBe For each of these elementary defor-
mations, Figures shows an edit sequence such tBét ¢, () &
TM(I'f.,éf). In particular, if we set/4(u;) < ¢3(up) = ¢3(up) =

< l4(up) inthe first row, and’y (uy), £5(Up) < £2(uy) =

/1 (Uj_);fj_(l,lz) — és(ul)zfs(UZ)

< £1(u),¢5(uq) in the sec-

not face with the same problem in the case of manifolds with a di- ond and third row, in all the cases, we obtai) = ¢(TM).

mension higher than 2, while the case of PL functions on polyhedra

is postponed to an extended version of this paper.

As mentioned before (see Theoreh®), the edit distancelg

M., TM) acting
on the Reeb graplT ¢, ¢¢) of a manifold M of dimension 1 or 2,
and recall that the cost @ is ¢(S\) = S, c(T;™). We prove

Let us now consider a deformatiaf! = (T

between Reeb graphs of curves or surfaces endowed with simplestatementii) by induction onn. If n=1, i.e. the deformatios
Morse functions implies the stability of Reeb graphs with respect reduces to the elementary deformat'q'H then the claim follows
to function perturbations. Now we show that the general edit dis- from statementi). Let us assume that, for amy> 1, there exists
tancedg inherits the same stability property from thatdpf. an edit sequencs such thatS ("¢, ¢¢) = S'%"(l'f.,éf) andc¢(S) <

(© 2016 The Author(s)
Eurographics Proceeding® 2016 The Eurographics Association.
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c(SM). We consider a deformatiod\{'ﬂ = (TlM,...,TnM,Tn'\il), [BGSF08] BASOTTI S., GORGI D., SPAGNUOLO M., FALCIDIENO
Where§¥' _ (T1M7 ) ..,TnM), andTnMu is a certain elementary de- B.: Reeb graphs fq[shape analysis and appl|cat|f_}'rhmoret|cal C_om-

. . : . . puter Science 392L8AS3 (2008), 5 — 22. Computational Algebraic Ge-
formation. By the inductive assumption and statemgit the ometry and Applicationsl
edit sequenc& = (S,S") is such thatS(T'¢, ) = 4 (T, 4¢),

;- . A [BGW14] BAUER U., GE X., WANG Y.: Measuring distance between
wheneverS’ is an edit sequence such thS’t’(S’(Ff,Zf)) - Reeb graphs. IfProceedings of the Thirtieth Annual Symposium on

TM (S (Tt,4¢)) that we can take with a costS”) < ¢(TM,). It Computational Geometr§2014), SOCG'14, pp. 464—472.

is sufficient to show that(S) < C(Q;/Ltl)' Let us call(l'¢,¢) = [BKS*05] BusTOSB., KEIM D. A., SAUPED., SCHRECKT., VRANIC

r.0)andTM...TM(T 1) = (Tker, 0 ,withk=1,....n+ D. V.: Feature-based similarity search in 3D object databagesM

(M1, 1) T (M1 60) = (T, by N2 Computing Surveys 3# (2005), 345-3871

1, and assume tha(S) = |£;(v) — ¢j(v)|, with v e U7V (), _

i,jeds(v). Ifije{l,...n+1} ori,j € {n+1,n+ 2}, then [BMW;S] BAQER u., MUN.CH E.,_WANG Y.: S_trong equivalence of

’S — oS ’ S ” 78" 7t | d’th laim fol the interleaving and functional distortion metrics for Reeb graphs. In

c(S) - C( ) or ¢(S) = ¢ ),.respec Ively, an e claim fol- 31st International Symposium on Computational Geometry (SoCG 2015)

lows; if i € {1,...,n+1} and j = n+ 2, then we can state that (Dagstuhl, Germany, 2015), Arge L., Pach J., (Eds.), vol. 34eitbniz

veV(lr and c(S) = |4(v) — /¢ V)| = [4(v) — ¢ V) + International Proceedings in Informatics (LIPI¢s$chloss Dagstuhl—
n+1 i n+2 [ n+1 ern: '

Lng1(V) — Lnya(V)]. Hence,c(S) < [6i(V) — bnea (V)] + [€nea (V) — Leibniz-Zentrum fuer Informatik, pp. 461-473.

lni2(V)] < ¢(S) +c(S") < (S ). O [BYM*13] BEKETAYEV K., YELIUSSIZOVD., MOROZOVD., WEBER

G. H., HAMANN B.: Measuring the distance between merge trees. In
Corollary 4.2. Let M be a connected, closed, orientable, smooth Topological Methods in Data Analysis and Visualization V (TopolnVis

manifold of dimension 1 or 2. For every simple Morse functions ~ 2013)(2013).2

f,g: M — R, we have [CGK03] CARDONEA., GUPTAR. K., KARNIK M.: A survey of shape
similarity assessment algorithms for product design and manufacturing
Oe((Mf,l5), (Mg, lg)) < ||f —dco- applications. Journal of Computing and Information Science in Engi-
neering 3(2003), 109-1181
Proof. The claim follows from Propositiod.1 and Theoren®.2. [CSEHO7] (OHEN-STEINERD., EDELSBRUNNERH., HARER J.: Sta-
O bility of persistence diagrams.Discrete Comput. Geom. 37 (Jan.

2007), 103-1201

[DFL12] DiFaBIO B., LANDI C.: Reeb graphs of curves are stable under

5. Conclusions function perturbations Mathematical Methods in the Applied Sciences
. o 35,12 (2012), 1456-14712, 3

In this paper we presented a general edit distance between IabeleﬁDFLlG] DI FABIO B., LANDI C.: The edit distance for Reeb graphs of

graphs that can be applied to compare Reeb graphs. In particular, it g taces. Discrete & Computational Geometry 58 (2016), 423-461.
allows for comparison of Reeb graphs of Morse functions and PL 2,35, 6

functions. We also proved that, in the case of Morse functions of [gsmp15] pe Sitva V., MuNcH E., PTEL A.: Categorified Reeb
curves or surfaces, this comparison is stable with respect to noise graphs.CoRR abs/1501.04142015). 2
in the functions. [EHP08] EDELSBRUNNERH., HARERJ., RTEL A. K.: Reeb spaces of

piecewise linear mappings. Proceedings of the Twenty-fourth Annual

The proof of the stability property for manifolds of dimension Symposium on Computational Geomd@g08), SCG '08, pp. 242—250.
3

higher than 2 and for PL functions on polyhedra requires further
investigation and will be the subject of our future research. In par-
ticular, considering our strong interest in producing an algorithm
able to test the proposed framework, the problem of stability in the
piecewise linear context actually represents our main priority. For
example, we believe that the inequality

[Gov] Govc D.:. Private communicatior2

[GXTL10] GAo X., X1A0 B., TA0 D., LI X.: A survey of graph edit
distance.Pattern Anal. Appl. 131 (Jan. 2010), 113-122

[HSKKO1] HILAGA M., SHINAGAWA Y., KOHMURA T., KuNIl T. L.:
Topology matching for fully automatic similarity estimation of 3D

<|If— shapes. IPACM Computer Graphics, (Proc. SIGGRAPH 20@Lps

Se((Tr.l1), (Mg, fg)) < [IT —gfloo Angeles, CA, August 2001), ACM Press, pp. 203-212.
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of a fixed simplicial compleX such thatX = |K|, while requires L'Académie des Sciences 2@D46), 847-8491, 2
much more effort without fixing any simplicial complex or when [RS72] ROURKE C. P., S\NDERSONB. J.: Introduction to piecewise-
the assumption of injectivity is removed. Moreover, further inves-  linear topology Springer-Verlag, New York, 1972. Ergebnisse der Math-
tigations will concern also the case of robustness with respect to ematik und ihrer Grenzgebiete, Band &0.

perturbations of the underlying spaxe [SK91] SHINAGAWA Y., KuNIl T.: Constructing a Reeb graph automat-
ically from cross sections|EEE Computer Graphics and Applications
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