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Abstract

Low-cost RGB-D sensing technology, such as the Microsoft Kinect, is gaining acceptance in the scientific com-
munity and even entering into our homes. This technology enables ordinary users to capture everyday object into
digital 3D representations. Considering the image retrieval context, whereas the ability to digitalize photos led
to a rapid increase of large collections of images, which in turn raised the need of efficient search and retrieval
techniques. We believe the same is happening now for the 3D domain. Therefore, it is essential to identify which
3D shape descriptors, provide better matching and retrieval of such digitalized objects. In this paper, we start by
presenting a collection of 3D objects acquired using the latest version of Microsoft Kinect, namely, Kinect One.
This dataset, comprising 175 common household objects classified into 18 different classes, was then used for the
SHape REtrieval Contest (SHREC). Two groups have submitted their 3D matching techniques, providing the rank
list with top 10 results, using the complete set of 175 objects as queries.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Relevance feedback. I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems.

1. Introduction

Due to the growing popularity of low-cost scanners, sev-
eral RGB-D object datasets have been emerging in the re-
search community. While designed for different purposes,
such devices have proven to be able to digitize 3D objects in
real-time with sufficient quality [NIH∗11], at least consider-
ing the myriad of contexts where before the presence of such
3D capturing devices, was virtually non-existent before.

In this context, we have built a dataset, which will provide
the community with a benchmark for the study of computer

† Organizers of the SHREC Track. Both the dataset and corre-
sponding human classification are available at: http://1drv.
ms/19tu1RY

vision, object category classification or object retrieval algo-
rithms.

This work goes along in the lines of the work that was
done by Machado et al. [MFP∗13]. In this work, the authors
have created a dataset using the previous generation Kinect
sensor. The authors concluded that the 3D information cap-
tured by those datasets, brought challenges for tasks such
as object retrieval. When capturing more complex shapes,
these datasets fail to provide accurate representations of the
objects. With our approach, using the latest version of Mi-
crosoft Kinect One, will help us capturing more details of
smaller and more complex objects.

In the scope of the SHape REtrieval Contest track, we
have created a semi-automated process for point-cloud cap-
ture and registration, which collects multiple point-clouds
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corresponding to multiple viewpoints, whereas human-
feedback is only required for ground-truth classification.
A description of our data capture and 3D reconstruction
pipeline, is presented in the next section. Then, in the last
two sections, we present the submitted object classification
techniques for the SHREC context, the evaluation process
and its results and, finally, we extract some conclusions and
lines of further research.

2. The Dataset

This work, follows on Machado et al. [MFP∗13], but now
using the new Kinect One sensor, which provides more de-
tail. The fast spread of such cameras, has increased the need
of better and more detailed datasets. Considering the charac-
teristics of this context, we captured 175 common household
objects. These range from cups and dishes, to staplers, ash
trays and so on.

Our dataset provides up to 90 frame pairs of RGB and
Depth images for each captured object, its corresponding
registered and segmented point cloud and a polygon mesh
model of the object, carefully processed, instead of just col-
lections of local views of the same. Each model in the dataset
is assigned to a category, of a hierarchical class structure,
whereas the root categories represent the class of the object,
e.g.: "vehicle", "animal", etc. The final leaf category of the
assigned object will be, for example, the name by which the
object is known, e.g.: "cars", "airplane". With this classifi-
cation, we will consider similar objects that share the same
leaf category.

Similarly to the work done by Machado et al. [MFP∗13],
we organized a study with 27 users which evaluated, for a
specific query (one of the 175 dataset objects), which objects
were more similar. The complete set of the 175 physical ob-
jects captured have been used in this study.

2.1. Data Collection Setup

Our data collection approach presents an easy to build solu-
tion that can be easily replicated by the scientific community,
or even by common users. The capture setup and reconstruc-
tion method, collects point-clouds in multiple viewpoints, by
means of a turntable rig and a fixed Kinect One sensor. For
each capture session, one object is rotated 360◦ on a regular
turntable while the Kinect One sensor, mounted on a tripod,
records the rotation sequence from a fixed elevation angle, as
illustrated in Figure 1. Three capture sessions are performed
for each object to cover different elevation angles, and we
collect frames pairs of RGB and Depth images for each ob-
ject.

To allow object pose estimation per frame, physical mark-
ers are included in the capture, in a grid configuration, placed
on the turntable. Once the visible markers are detected in the

Figure 1: Lab setup used for the object capture.

Figure 2: Example of a pair of RGB and depth images
cropped.

RGB image, we use a Robust Planar Pose algorithm to esti-
mate the common markerboard pose, relatively to the sensor
reference frame.

The pairs of RGB and depth images are cropped semi-
manually in our framework by letting the user create one
bounding box for each session using only one representation
view of the session, since the camera pose relatively to the
scene, is the same acrosse the capture session, as depicted
in Figure 2. Then, the RGB segmentation mask can be gen-
erated, by simply mapping the remainging points from the
depth image to the RGB image. This process yielded good
results for most of the objects in our collection.

To generate a global point cloud, all segmented local point
clouds from the object, corresponding to the segmented
frames, are registered in the common reference frame of the
markerboard. Finally, we apply a filter to smooth the surface
of the global point cloud.

2.2. Dataset Construction

As for the mesh construction we used an off-the-shelf tri-
angulation algorithm proposed by Kazhdan et al. [KBH06]
called Poisson Surface Reconstruction. This method consid-
ers all the points at once and is therefore highly resilient to
data noise, creating smooth polygonal meshes, Figure 3. Un-
fortunatly, this method forces small holes and crevaces to
be closed, which modifies some of the objects topology and
shape.
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Figure 3: Examples using Poisson Surface Reconstruction.

Considering the limitations of the Poisson Surface Recon-
struction, we additionally used a brute force approach for the
triangulation of the point clouds. This method is performed,
by projecting the local neighborhood of a point along the
point’s normal, and connecting unconnected points, until all
possible points are connected. This method solves the prob-
lem of connected holes, but on the other hand creates noisy
meshes, as depicted in Figure 4.

2.3. Human Relevance Evaluation

Usually, the tracks of the SHape REtrieval Contest use 3D
model collections that are constructed around a finite set of
classes, and the results can easily be evaluated according to
whether or not a retrieval object fall into one of such class
set. As simple as this evaluation might seem, classifications
may be biased by the semantics of the selected classes. Also,
a single object can only exist in one class at a time, and
again, shape similarities may dictate that an object’s shape
may be confused for another from some other class. There-
fore, the class-based results may not be what is expected by
the users.

Our purpose was to explore a human-based relevance
evaluation based on shape similarity. By presenting the list
of results for a specific query, to a number of human judges
to evaluate as true positive and false positive, we extract the
information required for the evaluation of algorithm. With
this aim, we developed an online survey, where a query and
its corresponding list of results are presented to a human
judge, when using one of the shape descriptors as the object
retrieval technique. For each set of query-results, the judge
would select which were true positives, and which were false
positives, as illustrated in Figure 5. Since it was not viable to
present the whole ranking of the collection for each query,
we only present the top 10 results. Also, no information of
which shape descriptor was used was presented to the judge,
so that the evaluation was performed in a blind-test setting.

3. Submissions

For this contest, two distinct groups participated with their
respective methods:

• V. Seib, N. Link and D. Paulus from the University of

Figure 4: Examples using the basic triangulation approach.

Figure 5: Example of two user evaluations

Koblenz-Landau have participated with a shape descrip-
tor that uses a Hough-Voting in a continuous voting space.
They submitted 4 sets of ranked lists using different sets of
parameters. For the first strategy all models were scaled to
an unit circle (radius 1m) and a descriptor radius of 0.3m
with different parameter values for k was used. For the
second strategy the models were scaled down, while their
relative size was maintained. In this case a descriptor ra-
dius of 0.4m was used. In the comparison table and plots,
this approach is denoted as CHV with the corresponding
descriptor radius r and parameter k.

• A. Tatsuna and M. Aono from Toyohashi University of
Technology have participated with a shape feature called
Local Feature Correlation Descriptor (LCoD), producing
just one set of results.

3.1. Continuous Hough-Voting (CHV)

The Continuous Hough-Voting (CHV), is related to the Im-
plicit Shape Model formulation by Leibe et al. [LLS04].
Recently, adaptations of this method to 3D data were pro-
posed [KPW∗10, STDS10, WZS13]. In contrast to the orig-
inal formulation, the adaptations to 3D data all use a dis-
crete Hough-space for voting. Here, a continuous voting
space is used and the vector quantization of features is omit-
ted in order not to lose the feature’s descriptiveness. To be
able to generalize from learned shapes, each extracted fea-
ture is matched with the k best matches in the learned dic-
tionary. Since the Continuous Hough-Voting (CHV) works
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Figure 6: Recognized object and its estimated bounding box.
The green lines indicate votes of the highest ranked hypoth-
esis, forming a maximum in the object’s center. Other lines
are votes for other hypotheses that are scattered and do not
form a maximum.

with point cloud data, it was required a first step to convert
the provided meshes to point clouds.

For training, key points are extracted from full 3D models
using a uniform voxel grid and a SHOT descriptor [TSDS10]
is computed for each key point. In the next step, spatial re-
lations between detected features on the training model are
computed. For each feature, a vector pointing from the fea-
ture to the object’s centroid is obtained, in the following re-
ferred to as center vector. The final data pool after training
contains all features that were computed on all training mod-
els. Along with each feature, a center vector and the class of
the corresponding object is stored.

To classify objects, features are detected on the input data
in the same manner as in the training stage. Matching de-
tected features with the previously trained data pool yields a
list of feature correspondences. Correspondences are estab-
lished at locations where the input data is assumed to match
the trained object models. The distance between learned fea-
ture descriptor fl and detected feature descriptor fd is deter-
mined by the distance function d( fl , fd) = ‖ fl− fd‖2. Since
we can not expect to encounter the same objects during clas-
sification as were used in training, each detected feature is
associated with the k best matching features from the learned
data pool.

The center vectors of the created correspondences are
used to create hypotheses on object center locations in a con-
tinuous voting space. A separate voting space for each class
is used. Since weighted votes do not provide much benefit
as suggested by the experiments of Salti et al. [STDS10], we
do not use vote weighting.

Each voting space can be seen as a sparse representation
of a probability density function. Maxima in the probabil-
ity density function are detected using the Mean-shift algo-
rithm. To create seed points for the Mean-shift algorithm a
regular grid is superimposed on the data. Each cell contain-

Figure 7: Recognition of the same object as in Figure 6,
however with noise.

ing at least a minimum number of data points creates a seed
point. In a final step, the found maxima positions from all
voting spaces of individual classes are merged.

The presented algorithm returns a list of results ranked
by the common weight of the contributing votes. Since this
challenge requires to report shape similarities, we apply this
simple transformation from weights to similarities for each
object i: s = ωi

ωmax
(where ωmax is the weight of most likely

object hypothesis).

An example image of the recognition is presented in Fig-
ure 6. The recognition of the same object with noise is shown
in Figure 7.

In general, the second scaling strategy (maintaining the
relative object scale) leads to better results compared to
downscaled point clouds where a uniform scale is used. Fur-
ther, it is better to use higher values for k.

3.2. Local Feature Correlation Descriptor (LCoD)

Previously, A. Tasuma and M. Aono proposed the Local
Feature Correlation Descriptor (LCoD) as a view-based 3D
shape descriptor in [TA13, MFP∗13]. The LCoD comprises
the correlations of local features extracted from depth buffer
images.

Figure 8 illustrates the generation of LCoD feature. As
pre-processing, it first performs a pose normalization using
Point SVD [TA09] to determine the scale, position, and ro-
tation of a 3D model.

Next, it encloses the 3D model within a unit geodesic
sphere. From each vertex of the unit geodesic sphere, its ren-
dered the depth and color buffer images with 256×256 res-
olution, and a total of 38 viewpoints are defined.

Finally, its calculated the correlation matrix of local fea-
tures for each depth buffer image. Let v( j)

i ∈ Rd(i = 1, . . . ,n)
be d-dimensional local features extracted from a depth
buffer image L j( j = 1, . . . ,38). In this implementation, its
extracted a SURF descriptor [BETVG08] from 48 × 48
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Figure 8: Overview of the Local Feature Correlation De-
scriptor (LCoD)

pixel patches arranged every 4 pixels as a local feature.
The correlation matrix R( j) is obtained as follows: R( j) =
1
n ∑

n
s,t=1 v( j)

s v( j)
t
>
. The vector r( j) consists of concatenating

the elements in the upper triangular part of the correlation
matrix R( j).

r( j) = [R( j)
1,1, . . . ,R

( j)
1,d ,R

( j)
2,2, . . . ,R

( j)
2,d , . . . ,R

( j)
d,d ]. (1)

The vector r( j) is normalized using the power and `2 nor-
malization [PSM10] to diminish its sparseness.

The LCoD feature of a 3D model is defined as a set of the
vectors {r(1), . . . ,r(38)}. To compare two LCoD features, we
apply the Hungarian method [Kuh55] to all pair Euclidean
distances between their vectors.

3.3. Further evaluation

In order to have some grounds for comparison and further
build this study, we chose to evaluate some existing algo-
rithms, from different classification branches and proven ef-
ficiency [TV08], as we could compare them with the track
results to evaluate the gain achieved with the new contri-
butions. For that purpose, we selected the following shape
descriptors:

• Coord and Angle Histograms (CAH) [PR99]
A cord is defined as a ray segment which joins the
barycenter of the mesh with a triangle center. Since only
global features are used to characterize the overall shape
of objects this method is not very discriminative about
object details, but the implementation is straightforward.
These methods can be used as an active filter or in combi-
nation with other methods to improve results.

• Spherical Harmonics (SH) [KFR03]
This approach, a kind of spacial based similarity fea-
ture descriptor, was originally proposed by Funkhouser et
al. [KFR03] and outperforms many other approaches.

• Lightfield Descriptors (LFD) [CTSO03]
The Light Field Descriptor is a view-based geometry fea-
ture retriever. Its authors claim, for studies driven in differ-
ent databases, that its retrieval rate is distinctively higher
than other view-based and feature-based methods, and
that it should be tested with other benchmarks [SMKF04].

4. Evaluation Results

All SHREC participants submitted for the requested query
set, at least one rank listing (one for each run). Each rank
list has the top 10 results. We considered this information
sufficient, since for our human relevance evaluation to be
effective, it would not be viable to present too many re-
sult to the judges. Furthermore, using the top 10 results,
would already enable us to extract enough information from
precision-recall curves, to identify which techniques per-
formed the best.

We employed the following evaluation measures on the
results: Nearest Neighbor (NN), First-Tier (FT) and Dis-
counted Cumulative Gain (DCG) [SMKF04]. These mea-
sures are based on the Precision and Recall evaluations of
the queries and were chosen to give a general overview of
the proposed methods.

Based on the results presented on Table 1, both view-
based approaches, LCoD and LFD, provided the best results
of the group. These methods are proven to be more robust to
topology errors, surface deformations and noise, which are
frequently present in the dataset models, thanks to the low
degree of accuracy of the used camera. View-based methods
generally work by extracting features from a range of differ-
ent views taken from separate angles of the models, much
like the way our testers evaluated and compared the physi-
cal models presented to them. We could surmise that some
of the techniques used by view based methods are the ones
that best mimic the same method employed by the evaluation
judges.

Notwithstanding, the numbers are still considerably low
when compared to the typical evaluation results with more
accurate databases [SMKF04]. The major raionale to this
fact are the state of the art on low-cost depth cameras hard-
ware and respective capture software, which are still unable
to provide a degree of accuracy to be realistically used in
real-time scenarios.

Additionally, we can clearly notice that there is not much
difference between the precision-recall curves of the col-
lection using Poisson Surface Reconstruction and the basic
triangulation approach. With the exception of the CAH, all
method provided better results when using the basic triangu-
lation approach. This was mostly due to the Poisson Sur-
face Reconstruction connecting small holes and crevaces,

Table 1: Retrieval performances of the algorithms.
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Figure 9: Precision-Recall curves for the meshes built using
Poisson Surface Reconstruction.

whereas most approaches are robust to surface deformations
and noise. This also explains the great improvement in the
SH results, which similarly to the view based methods, is
robust to noise and topology errors.

5. Conclusions

In this paper, we have described and compared object re-
trieval and classification algorithms from each of the two
different research groups that participated in the SHREC’15
Track: Retrieval of Objects Captured with Kinect One Cam-
era. Each participant was presented with a collection of 175
3D polygon mesh models, to use as query set, and asked to
submit a top 10 ranked list of results for each of their respec-
tive matching algorithms and possible variants.

The ranked list of results were evaluated by human judges
that had no prior experience in 3D computer graphics or
computer vision, and compared these numbers against some
of the state-of-the-art 3D retrieval descriptors available. An-
alyzing the statistics, view-based methods provided the best
retrieval results. View-based methods are considerably better
suited for recognizing similar objects with very low levels of
detail, including surface noise and topological errors. These
methods are in fact proven to be robust, and able to ignore
defects across different objects, which makes them ideal to
be used in the context of databases featuring 3D models cap-
tured using low-cost depth-sensing cameras.
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