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Abstract
This paper reports the results of the SHREC’15 track: 3D Object Retrieval with Multimodal Views, which goal is
to evaluate the performance of retrieval algorithms when multimodal views are employed for 3D object represen-
tation. In this task, a collection of 505 objects is generated and both the color images and the depth images are
provided for each object. 311 objects are selected as the queries and average retrieval performance is measured.
The track attracted six participants and the submission of 26 runs, to two tasks. The evaluation results show a
promising scenario about multimodal view-based 3D retrieval methods, and reveal interesting insights in dealing
with multimodal data.

1. Introduction

View-based 3D object retrieval aims to retrieve 3D objects
which are represented by a group of multiple views. Most of
existing methods start from 3D model information, while it
is hard to obtain the model information in real world applica-
tions. In the case where no 3D model is available, a 3D mod-
el construction procedure is required to generate the virtual
model via a collection of images for model-based methods.
We notice that 3D model reconstruction is computational-
ly expensive and that its performance is highly restricted to
sampled images, which severely limits practical applications
of model-based methods.

With the widely applied color and/or depth visual in-

formation acquisition devices, such as Kinect and mobile
devices with cameras, it becomes feasible to record color
and/or depth visual information for real objects. In this way,
the application of 3D object retrieval can be further extend-
ed to real objects in the world. Starting from the Lighting
Field Descriptor [CTSO03a] at 2003, much research atten-
tion has focused on view-based methods in recent years.
Ankerst et al. [AKKS99] proposed an optimal selection of
2D views from a 3D model, which focuses on numerical
characteristics obtained from the 3D model representative
features. Shih et al. [SLW07] proposed Elevation Descriptor
(ED) feature, which is invariant to translation and scaling of
3D models. However, it is not suitable for 3D model which
consists of a set of 2D images. Tarik et al. [ADV07] pro-
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posed a Bayesian 3D object search method, which utilizes
X-means [CTSO03b] to select characteristics views and ap-
plies Bayesian model to compute the similarity between dif-
ferent models. Gao et al. [GWT∗12] proposed a hypergraph
learning method for 3D object retrieval, in which the rele-
vance among 3D objects is formulated in a hypergraph struc-
ture. Although extensive research efforts have been dedicat-
ed to view-based 3D object retrieval, it is still a challenging
task from the following aspects: view acquisition and selec-
tion, feature extraction and object distance measure.

In the track of 3D Object Retrieval with Multimodal
Views, we aim to concentrate focused research efforts on this
interesting topic. The objective of this track is to retrieve 3D
objects by using multimodal views, which are color images
and depth images for each 3D object. Our collection is com-
posed of 505 objects, in which 311 objects are selected as
the queries. Six groups were participated in this track and
26 runs were submitted for two tasks. The evaluation results
show a promising scenario about multimodal view-based 3D
retrieval methods, and reveal interesting insights in dealing
with multimodal data.

2. Dataset and Queries

A real world 3D object dataset with multimodal views,
Multi-view RGB-D Object Dataset (MV-RED)†, is collect-
ed for this contest. The MV-RED dataset consists of 505 ob-
jects, which can be divided into 60 categories, such as apple,
cap, scarf, cup, mushroom, and toy. For each object, both
RGB and depth information were recorded simultaneously
by 3 Microsoft Kinect sensors from 3 directions. That is,
there are two types of imaging data, i.e., RGB and depth, for
each object.

This dataset was recorded using with three Kinect sensors
(the 1st generation) but under two different camera settings,
as shown in Fig.1(a) and Fig.1(b), respectively. 202 objects
were recorded using the first camera array and 303 object-
s were recorded using the other one. For data acquisition,
Camera 1 and Camera 2 captured 360 RGB and depth im-
ages respectively by uniformly rotating the table controlled
by a step motor. Camera 3 captured only one RGB image
and one depth image in the top-down view. Using this set-
ting, 721 RGB images and 721 depth images can be cap-
tured for each object. For each RGB and depth image, the
image resolution is 640× 480. We then uniformly sampled
the images from Camera 1 and 2 with the step of 10 degrees
and a compact dataset with 73 RGB and 73 depth images for
each object is generated. Foreground segmentation results
for RGB images are provided.

All these 505 objects belong to 60 categories. Here the
categories containing no less than 10 objects are selected as

† http://media.tju.edu.cn/mvred/

the queries, leading to 311 queries in total. In our track, t-
wo 3D object retrieval tasks are launched, which employ the
complete version and the concise version of data respective-
ly. In each task, these 311 objects are used as the query ob-
ject once. The contest consists of two versions, i.e., retrieval
on the whole dataset (721 views) and the compact dataset
(73 views).

Camera 1

Camera 2

Camera 3

Camera 1

Camera 2

Camera 3

30cm 30cm

(a) (b)

Figure 1: The recorded scene for each object.

3. Evaluation

To evaluate the performance of all participated methods,
the following evaluation criteria, which have been widely
employed in existing 3D object retrieval works [CTSO03a,
GWJ∗14, SLW07], are employed.

1. Precision-Recall Curve comprehensively demonstrates
retrieval performance; it is assessed in terms of average
recall and average precision, and has been widely used in
multimedia applications.

2. NN evaluates the retrieval accuracy of the first returned
result.

3. FT is defined as the recall of the top τ results, where τ is
the number of relevant objects for the query.

4. ST is defined as the recall of the top 2τ results.
5. F-Meansure (F) jointly evaluates the precision and the re-

call of top returned results. In our experiments, top 20
retrieved results are used for F1 calculation.

6. Normalized discounted cumulative gain (NDCG) is a s-
tatistic that assigns relevant results at the top ranking po-
sitions with higher weights under the assumption that a
user is less likely to consider lower results.

7. Average normalized modified retrieval rank (ANMRR) is
a rank-based measure, and it considers the ranking infor-
mation of relevant objects among the retrieved objects. A
lower ANMRR value indicates a better performance, i.e.,
relevant objects rank at top positions.

In this paper, all of evaluation results are based on distance
matrices submitted by all of participators.

4. Participants

Six groups participated in this track and 26 runs were sub-
mitted. The participant details and the corresponding con-
tributors are shows as follows.
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1. GMM-Zernike and GMM-HoG submitted by Zan Gao,
Guotai Zhang, Yan Zhang, Yingfeng Jiang and Jianming
Song from Tianjin University of Technology, China.

2. IVA-Deep4 and IVA-DeepColor submitted by Haiyun
Guo, Jinqiao Wang, Chaoyang Zhao, Yingying Chen,
Jianlong Fu, Guibo Zhu and Hanqing Lu from National
Laboratory of Pattern Recognition, China.

3. BGM-Color and BGM-HoG submitted by Xin Guo, Jing
Sun and Xingyue Duan from the College of Computing
& Digital Media, DePaul University, USA,

4. CAS-ECR, CAS-ECKM and CAS-ECSR submitted by
Xin Zhao, Yanhua Cheng, Kaiqi Huang and Tieniu Tan
from Center for Research on Intelligent Perception and
Computing, China.

5. XMU-GS and XMU-GS-FB submitted by Rongrong Ji,
Yan Zhang and Fuhai Chen from Xiamen University, Chi-
na.

6. ZFCE-BoF and ZFCE-MVM submitted by Haisheng Li,
Shuilong Dong, Huanpu Yin, Chaoli Zhang from Beijing
Technology and Business University, China.

The brief summarization is provided in Table.1.

Table 1: The List of Registration Group

Participants Method Name Technologies

Tianjin University of Technology
GMM-Zernike

GMM-HoG
Graph Matching

National Laboratory of
Pattern Recognition

Institute of Automation
Chinese Academy of Sciences

IVA-Deep4
IVA-DeepC

Deep Learning

The College of Computing
& Digital Media

DePaul University

BGM-Color
BGM-HoG

Gaussian Model

Xiamen University
XMU-GS

XMU-GS-FB
Greedy Search

Center for Research on
Intelligent Perception and Computing

Institute of Automation
Chinese Academy of Sciences

CAS-CSR
CAS-ECKM
CAS-ECR

Deep Learning

Beijing Technology
and Business University

ZFCE-BoF
ZFCE-MVM

Spatial Distance

5. Methods

5.1. 3D Model Retrieval based on GMM by Tianjin
University of Technology
(GMM-Zernike/GMM-HoG)

Each 3D object is represented by a view set to convey the 3D
structure information through the relationships among such
views. Give the query object Q, the retrieval task is to find the
matched objects from all of dataset. Let V q = {vQ

1 , ....,v
Q
m}

denote the view set of the query object Q with m views, and
let VC = {vC

1 , ....,v
C
m} denotes the view set of object C in

the MV-RED dataset with m views. Here, let △ denote the
binary variable related to two hypotheses: △ = 1 indicates
that C is relevant to Q and △ = 0 if otherwise. Until now,
the similarity between Q and M id defined as the following

likelihood ratio:

S(Q,C) = p(C|Q,△= 1)− p(C|Q,△= 0), (1)

where p(C|Q,△= 1) denotes that the probability of M given
Q when C is relevant to Q and p(C|Q,△ = 0) denotes the
probability of C given Q when C is not relevant to Q. The
next task is to train p(C|Q,△ = 1) and p(C|Q,△ = 0) by
using the testing dataset. Finally, Eq.1 is used to handle the
model retrieval problem.

In this track, each object provides RGB image and depth
images. Thus, Zernike moment feature is extracted from
each RGB image and Hog feature is extracted from each
depth image, leading to a 49-D Zernike moment feature vec-
tor and a 81-D HoG feature vector, respectively. Here, the
hierarchical agglomerative clustering method is employed to
group all query views into clusters. One representative view
is then selected from each cluster, and only the representative
views are used for retrieval. It is noted that this procedure is
also conducted for each object in the testing database.

A Gaussian model is learned to model the feature distribu-
tion in each cluster. Let x be the feature of the training view;
the model can be defined as:

p(q|c) =
n

∑
i=1

wigi(a|µi,σ2
i ), (2)

where gi(a|µi,σ2
i ) denotes the ith Gaussian component, wi

indicates the weight of the ith Gaussian component, and n is
the number of Gaussian models. The probability of one view
belonging to the ith Gaussian component is calculated by:

gi(a|µi,σ2
i ) =

1√
2πσ2

i

exp(− (d(x,µi))
2

2σ2
i

), (3)

where d(x,µi) is the Euclidian distance between x and µi,
µi and σi are the parameters for the Gaussian model. It is
noted that, generally, there are quit a few training samples.
Therefore, each gaussian component is generated as follows.
For the ith Gaussian component p(q) = ∑n

i=1 wigi(a|µi,σ2
i ),

the parameters are leaned by:

wi =
ni

nall
, (4)

µi =
1
ni

ni

∑
k=1

ψQ
k , (5)

σ2
i =

1
ni −1

ni

∑
k=1

(d(ψQ
k −µi))

2. (6)

where nall is the total number of views of the query ob-
ject, ni is the number of views in the Ith cluster, and ψQ

k
is the feature vector of views in the cluster. According to
these learning processes, the parameters of p(C|Q,△ = 1
and p(C|Q,△ = 0) can be learned. The best retrieval result
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should satisfy the following objective function:

r = argmax
c

p(C|Q,∆ = 1)− p(C|Q,∆ = 0). (7)

In our results, two groups of experimental results using
Zernike moment feature and HoG feature, i.e., GMM-Color
and GMM-HoG, were submitted.

5.2. Learning Multiview Deep Feature by National
Laboratory of Pattern Recognition
(IVA-Deep4/IVA-DeepColor)

CNN was first introduced by LeCun [LS88] in the early
1990ąŕs and has shown record-beating performance in many
visual recognition tasks. The general pipeline of CNN fea-
ture extraction has two steps: the first step is to train CNN
model in a supervised way; then deep features can be ex-
tracted from the last several layers of CNN. For this contest,
three kinds of CNN features are extracted with three differ-
ent CNN models respectively. Figure 2 shows the overview
of the multiview deep CNN features.

Query Object 

3D Object Database

Multiview deep CNN feature extraction

Search

Search

Search

Fusing

Retrieval Results

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Similarity metric

Deep color CNN

Deep depth CNN

Deep structure CNN

Figure 2: Overview of multiview deep CNN features for 3D
object retrieval.

Specifically, a 19-layer deep CNN model is used, which is
pre-trained on ILSVRC’12 to classify each image into 1000
classes to extract the first kind of CNN structure features.
On the one hand, this kind of CNN features can deliver rich
semantic and structure information and intuitively suppress
background noise. On the other hand, it is not quite sensi-
tive to color information, which is rather crucial to object re-
trieval. In addition, color information is an effective supple-
ment for structure and shape features. Therefore, the crawled
color image dataset from Google is further utilized to learn
a deep color CNN model with 10 dominant colors to extract
color features which not only deliver rich color information
but also are robust to light change.

The above two CNN features are both extracted from RG-
B images. However, apart from RGB image, depth image is
another important view to describe 3D object, especially the
information of shape and distance. To transform raw depth
maps into efficient CNN features before encoding, the depth
image is represented with an image with three channels at
each pixel. Afterwards, the CNN pre-trained on RGB images
can be adapted to generate powerful CNN features for depth
images. This kind of deep depth CNN features involves rich
shape and structure information.

Since rich semantic, color, shape and depth features have

been extracted from each view of one 3D object, each fea-
ture is projected into similarity metric space and the simi-
larity score for each view can be obtained. Then these com-
plementary multi-view deep CNN scores can be combined
by a weighted fusion scheme to obtain more comprehensive
and accurate retrieval results. The experiments show that the
deep depth features obtain a low F-measure scores than deep
color features and deep structure features. The reason is that
the depth images are very small for each object due to the
object is small, and the dept information is not obvious for
different objects such as “Apple” and “Orange”. While the
deep color and deep structure features achieve better results
with the fc7 output, they could effectively capture the se-
mantic, color and shape information.

5.3. 3D Model Retrieval based on Bipartite Graph
Matching by DePaul University
(BGM-Color/BGM-HoG)

As there are too much redundant information in multiple
views, especially in 721 views for each object, the original
2D images of each object need to be clustered by taking ad-
vantage of both visual and spatial information to remove the
redundance. The rule for image clustering is to maximize
the inner-class correlation while minimizing the inter-class
correlation. Consequently, the view-constrained clustering
method can be formulated as an energy minimization prob-
lem. The objective function consists of two parts, data terms
and smooth terms and can be defined as:

C′ = argmaxC
m

∑
i=1

E(vi)+
m

∑
i, j=1

E(vi,v j) i ̸= j, vi,v j ∈ C,

(8)
where E(vi) represents energy of view i, which term repre-
sents the contribution of this view for this cluster C; E(vi,v j)
represents the correlation between different views. If two d-
ifferent views vi and v j belong to C, E(vi,v j) should have a
higher value. The sum of E(vi,v j) and E(vi) represents the
entire energy of one specific clustering strategy.

Thus, E(vi) measures the agreement between cluster C
and the observed data vi. It can be computed by:

E(vi) = D1( fi, fcenter), (9)

where fcenter represents the feature of center point in C; fi
represents feature of vi; D1( fi, fcenter) represents similari-
ty between vi and vcenter, which is computed by Euclidean
distance. E( fi, f j) affects the correlation among vi, v j and
vcenter. It can be formulated by:

E(vi,v j) = E(vi) ·E(v j) ·D2(vi,v j) i ̸= j (10)

where E(vi) and E(v j) are computed according to Eq.9;
D2( fi, f j) represents similarity between vi and v j, which is
computed by:

D2(vi,v j) = D1( fi, f j) ·Ds(vi,v j), (11)

where D1( fi, f j) is the computed by Euclidean distance.
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Ds(vi,v j) represents the spatial similarity between different
two views, which is computed by spherical distance between
vi and v j. The centre of the sphere is the center of this 3D
model.

Finally, Eq.8 can be converted to:

C′ = arg{max
C

m

∑
i=1

D1( fi, fcenter)+
m

∑
i, j=1

E(vi) ·E(v j) ·D2(vi,v j)}

s.t i ̸= j, vi,v j ∈ C
(12)

After the above processes, the original clustering problem
has been successfully converted into one Energy Maximiza-
tion problem. Graph cut is applied to get a set of sub-clusters.

Here the Kuhn Munkres method [Kuh55] is employed to
solve the problem. As the Kuhn Munkres method aims to
solve the maximal matching problem, the object function
should be modified. First an n × n edge costs matrix C is
created, where ci j = W − wi j , and W > wi j . The missing
edges (similarity value is zero) are given a large cost(W).
Using the above definitions, the objective function of the
max-weighted bipartite matching is changed to the follow-
ing equation:

ΛM = arg max
Λk∈Λ ∑

1≤i≤n
(W −wa(i),b(i)), (13)

Given a bipartite graph G = {U,V,E} and an n× n edge
cost matrix C, the Hungarian algorithm will output a com-
plete max-weighted bipartite matching MMatch [CCGR10].
The bipartite matching results are used to compare two 3D
objects.

5.4. 3D Model Retrieval Based on Greedy Search by
Xiamen University (XMU-GS/XMU-GS-FB)

In this method, three types of features are extracted for
each image, including 49-D Zernike moment [Hu62], 120-
D Fourier descriptor [Bra65], and BoWs. The main idea is
to formulate the relationship between two 3D objects using
three bipartite graphs, which are constructed using the three
features respectively. The detailed algorithm is introduced as
follows.

Each object is described by a set of views {V1,V2, ...,Vn},
and the SIFT feature is extract on the dense sampling points.
The size of employed vocabulary is Nc = 512. Then each
view can be represented by an Nc dimension vector. To cap-
ture the shape information, Fourier descriptor and Zernike
moment, are extracted from each image respectively, leading
to one n×120 matrix MFD and one n×49 matrix MZernike.

To compare two 3D objects O1 and O2, the corre-
sponding feature matrices, M1 = { f 1

1 , f 1
2 , . . . , f 1

n } and M2 =

{ f 2
1 , f 2

2 , . . . , f 2
n }, can be generated first, where f j

i represents
BoW feature for each view. The Euclidean distance is used
to measure the distance between f 1

i and f 2
i . Then a n1 × n2

matrix MT can be achieved to represent the relationship be-
tween O1 and O2. Eq.14 is utilized to compute the view
matching results in different feature space between O1 and
O2.

X∗ =argmax
X

∑X ⊙MT

s.t. X = {0,1}n1×n2
,

(14)

where greedy algorithm is leveraged to handle this optimiza-
tion problem to get the best matching results X . According
to different matching results in different feature space, Eq.15
is used to generate the final matching score.

S =∑(λ1M∗
BoW +λ2M∗

FD +λ3M∗
Zernike)

M∗
BoW = XBoW ⊙MT

BoW

M∗
FD = XFD ⊙MT

FD

M∗
Zernike = XZernike ⊙MT

Zernike,

(15)

where λ1 = 0.014, λ2 = 0.98 and λ3 = 0.006 is the weight
for different feature matrix, S is the final matching score,
which is used to represent similarity between O1 and O2.
3D object retrieval is based on the matching score S between
the query object and the objects in the database.

In XMU-GS-RF, the user relevance feedback information
is introduced in the retrieval process, where top 10 returned
results are manually labeled as relevant or irrelevant to the
query. Then the top 100 returned results are re-ranked by
using the minimal distance to the labeled positive samples
and the query.

5.5. Enhanced CKM by Center for Research on
Intelligent Perception and Computing
(CAS-ECKM)

CKM [BSWR12] adapts a single-layer feature learning net-
works based on K-means clustering for 2D images [CNL11].
To keep the feature learning process as effective as [CNL11],
CKM takes the depth channel as the fourth channel of the
RGB channels and directly learns features from the four
channels. By using the state-of-the-art image pre-processing
and feature encoding of [CNL11], CKM can obtain useful
translational invariance of low-level features from raw data
such as edges, and can be robust to small deformations of
objects. However, it is experimentally shown find that ex-
tracting features from RGB modality and depth modality in-
dividually and fusing their SVM classifiers can make CKM
more powerful. Furthermore, the two derived data modali-
ties, gray-scale and surface normals, can provide addition-
al advantages for object recognition. In the end, RGB and
gray-scale were combined to capture visual appearance of
the RGB view, while depth and surface normals were lever-
age to capture shape cues of the depth view. The framework
of the enhanced CKM is shown in Fig.3.
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which is shown in Fig. 1. 

Figure 1: Overview of enhanced CKM 

Figure 3: Overview of enhanced CKM.
64x128=8192. 

Figure 1: An overview of the process of the enhanced CNN-RNN 

Figure 4: An overview of the process of the enhanced CNN-
RNN.

to capture shape cues. 

Figure 1: An overview of CNN-SPM-RNN 

Figure 5: An overview of the process of the enhanced CNN-
SPM-RNN.

5.6. Enhanced CNN-RNN by Center for Research on
Intelligent Perception and Computing (CAS-ECR)

The enhanced CNN-RNN method is proposed based on the
original CNN-RNN model [SLNM11] [CZHT14] to extract
powerful features for RGB-D objects. The Enhanced CNN-
RNN method combines a single convolutional neural net-
work and multiple recursive neural networks for four modal-
ities of each example, including RGB, gray-scale depth
and surface normal (CNN-RNN can only utilize RGB and
depth modalities). RGB and depth data are provided in the
database of SHREC’15, while gray-scale and surface nor-
mals are computed from RGB and depth respectively. Then
the RGB and gray-scale features were combined to represen-
t the appearance view with a linear SVM classifier, and the
depth and surface normal features were utilized to capture
the shape curs with another linear SVM classifier. Finally,
these two classifiers were fused to predict the category of
the query model.

A concise introduction of the process of the enhanced
CNN-RNN is shown in Fig.4. The method consists of three
steps:

• Learn filters (size 9×9, number 128) by k-means cluster-
ing;

• use a single convolutional layer to convolve the learned
filters over the input image to extract low level features
(dimension 128×140×140 for each modality);

• the pooled convolutional responses of each modality (di-
mension 128× 27× 27) are input into multiple recursive
neural networks (number 64) with fixed tree structures to
compose high level features. The final dimension of each
modality is 64×128 = 8192.

5.7. CNN-SPM-RNN by Center for Research on
Intelligent Perception and Computing (CAS-CSR)

CNN-SPM-RNN [CNL11] is building on the unsuper-
vised feature learning structure of CNN-RNN [SLNM11]
[CZHT14]. CNN-RNN mainly consists of three steps: re-
sizing all the images to the same scale, extracting low level
feature for each image by a single convolutional layer, and
finally applying multiple fixed-tree RNNs to learn high or-
der feature representation based on the low level feature re-
sponses. Although CNN-RNN can learn powerful features
from the raw data, such artificial processing of the first step,
i.e., resizing all the images to the same scale by simply crop-
ping or warping the images, may degrade the performance
of the learned features. In order to adopt CNN-RNN for
images of arbitrary sizes, the first step of CNN-RNN is re-
placed by a spatial pyramid matching layer together with a
re-organization step, as shown in Fig.5. SPM can split each
feature map into multiple subregions, and aggregate the re-
sponses in each subregion by max-pooling in the algorithm.
The number of subregions determine the output size regard-
less of the variable input sizes of feature maps, then the
fixed-tree RNNs can compose the fixed-size re-organization
feature maps to high order features as [SLNM11, CZHT14].
CNN-SPM-RNN is employed to extract features for each
modality of RGB, gray-scale, depth and surface normals, re-
spectively. For each object, the RGB feature and gray-scale
feature are concatenated to represent the appearance infor-
mation, while depth feature and surface normal feature are
combined to capture shape cues.

5.8. BoF and MVM Method by Beijing Technology and
Business University (ZFCE-BoF/ZFCE-MVM)

This method extracts four features from each binary image:
Zernike moments feature, Fourier feature, Circularity fea-
ture, Eccentricity feature, and the four features compose the
hybrid shape descriptor ZFCE. Noted that binary image is
expressed as view in the following subsections. This method
uses two strategies to achieve the similarity computation for
a query, which is Bag-of-Feature (BoF) approach and multi-
ple view matching (MVM) in each angle.

BoF: 3D model can obtain global feature by BoF ap-
proach about the view feature of Zernike moments and
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Fourier. To calculate global feature, method generates a
codebook of visual words in advance. The visual word is
thus defined as the center of a cluster obtained by apply-
ing K-means clustering to the view features, which are ex-
tracted from 3D models’ view sets in the MV-RED dataset
(505 models). K-means clustering is performed with K=512.
Then, the frequency histogram of vector quantized view fea-
tures into visual words becomes a global feature vector for
the Target dataset model. Finally, k-nearest-neighborhood
algorithm is adopted to gain the global feature of the Query
dataset (311 models) model by counting the number of view
feature, which falls into the corresponding visual word.

This method combines the 4 features by linear weight,
and the weights of Zernike moments feature, Fourier fea-
ture, Circularity and Eccentricity can be set as 0.2, 0.3, 0.2,
0.3 and 0.3, 0.4, 0.1, 0.2 for concise version and complete
version respectively.

MVM: For each angle, 4 features are used to calculate
similarity distance between query model and test model. In
addition, three typical distance measures (Minimal distance,
Average distance, Hausdorff distance) are used to calculate
similarity distance between two different models.

Average distance:

Dave(O1,O2) =
1

|O1||O2| ∑
v′∈O1

∑
v′′∈O2

d(v′,v′′), (16)

Hausdorff Distance:

Dhaus(O1,O2) = max{ max
v′∈O1

min
v′′∈O2

d(v′,v′′),

max
v′′∈O2

min
v′∈O1

d(v′,v′′)},
(17)

where O1 and O2 denote the view sets of two objects, v′ and
v′′ denote the views in these two sets, and d(v′,v′′) indicates
the distance between two views. Hausdorff distance [DJ94]
is used in Zernike moments feature, while Average distance
is used in rest features. As for d(v′,v′′) , Manhattan distance
is employed in Zernike moments feature and Fourier fea-
ture, and Euclidean distance is employed in Circularity and
Eccentricity feature.

The matching algorithm can be described specifically as
follows: first, for each feature in each angle, the proposed
method calculate similarity distance of the view set respec-
tively and the similarity distance is 0 when the view set of
a angle does not exist. Then this approach gains similarity
distance of two models by summing the 4 angles’ similari-
ty distances based on a feature. Noted that here the summed
similarity distance will be multiplied by 73/37 for concise
version or 721/371 for complete version if the compared two
models are under different recording settings. Finally, this
approach combines the 4 features by linear weight, and the
weights of Zernike moments feature, Fourier feature, Circu-
larity and Eccentricity can be set as 0.5, 0.3, 0.1, 0.1 and 0.5,
0.4, 0.1, 0 for concise version and complete version respec-
tively.

6. Results

In this section, we present the results of the six groups that
submitted 26 runs for two tasks on the compact dataset and
the complete dataset, respectively. Fig.6 and Fig.7 demon-
strate the quantitative evaluation results from MV-RED-73
and MV-RED-721 respectively. Fig.8 and Fig.9 show the
Precision-Recall curves from MV-RED-73 and MV-RED-
721 respectively.
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Figure 6: Evaluation score of different methods based on 73
images of each object.
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Figure 7: Evaluation score of different methods based on
721 images of each object.

The results have shown 3D object retrieval performance
using multimodal views from all the participants. From the
results, we can have the following observations.

1. Deep learning-based methods, i.e., IVA-Deep4, IVA-
DeepColor, CAS-CSR, CAS-ECKM, CAS-ECR, outper-
form other compared methods. This indicates that deep
learning is able to explore discriminative features for 3D
objects, even in such a challenging task.

2. The method using the depth feature works better than that
using the RGB feature. BGM-Color and BGM-HoG are
two methods using the RGB feature and the depth feature
respectively. We can find that BGM-HoG achieved much
better performance than BGM-Color. Another example is
the comparison between GMM-Zernike and GMM-HoG.
These results can indicate that the depth data can convey
more 3D structure and it can be more discriminative than
RGB data.

3. XMU-GS-FB employed relevance feedback and achieved
better results compared with XMU-GS. As shown in both
the PR curve and the quantitative evaluation, the im-
provement is big. It demonstrates the effectiveness of rel-
evance feedback method on 3D object retrieval. In next
stage, how to better involve user’s feedback into 3D ob-
ject retrieval requires more research attention.
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4. The results using 721 images do not have significant im-
provement than the results using 73 views for almost all
the methods. For some methods, the performance is even
degraded when more views are employed. This observa-
tion demonstrates that more data not only provide more
information, but also introduce noise data, which may
have negative impact on 3D object representation.
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Figure 8: Precision-recall curves of different methods based
on 73 images of each object.
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Figure 9: Precision-recall curves of different methods based
on 721 images of each object.

7. Conclusion

In conclusion, this track has attracted research attention on
3D object retrieval using multimodal views. It is a challeng-
ing task and all the data in the testing dataset come from
real objects. We have six groups who have successfully par-
ticipated in the track and contributed 26 runs for 2 tasks.
This track severs as a platform to solicit the existing view-
based 3D object retrieval methods. Also all the participat-
ed methods have achieved improved performance, the task
is still challenging and the results are far from satisfactory
and practical applications. There is still a long way for view-
based 3D object retrieval.
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