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Abstract

Hand drawn figures are the imprints of shapes in human’s mind. How a human expresses a shape is a consequence
of how he or she visualizes it. A query–by–sketch 3D object retrieval application is closely tied to this concept
from two aspects. First, describing sketches must involve elements in a figure that matter most to a human. Second,
the representative 2D projection of the target 3D objects must be limited to “the canonical views” from a human
cognition perspective. We advocate for these two rules by presenting a new approach for sketch–based 3D object
retrieval that describes a 2D shape by the visual protruding parts of its silhouette. Furthermore, the proposed ap-
proach computes estimations of “part occlusion” and “symmetry” in 2D shapes in a new paradigm for viewpoint
selection that represents 3D objects by only the two views corresponding to the minimum value of each.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

The two main components of a sketch–based 3D object
retrieval application are the 2D shape description method
and the 3D object representation. Despite the extensive va-
riety of shape descriptors proposed in 2D shape retrieval
context, a relatively small number of ideas have been ex-
ploited in sketch–based 3D object retrieval approaches. The
most recurrent 2D shape descriptors are the shape con-
text [BMP00] and the bag–of–features collected from over-
lapping areas around densely sampled points in the im-
age [LLF13,FO13,ERB∗12]. Despite the acknowledged ad-
vantages of accurate numerical models in general shape def-
inition, a looser abstraction of shapes is needed to deal with
entries unregulated by delicate measures.

A part–based 2D shape descriptor introduced
in [YVBN15] uses the chordal axis transform [Pra07]
(CAT) for shape definition and dynamic time warping
(DTW) for matching and distance estimation. On an

† This work is supported by the Lebanese National Council for Sci-
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Query Database Part similarity relative to context

Figure 1: Matching a sketched human stick–figure (after applying
erosion and filling) to the silhouettes of 3D models’ projections.

abstract level, the CAT–DTW descriptor starts by a CAT
based segmentation of the silhouette of the 2D shapes. The
segments or subregions are embedded in a hierarchy to
allow a matching–time selection of visual or protruding
parts for optimal correspondence. The visual parts are
described by geometric attributes and the spatial relations
with other parts. CAT–DTW rectifies the semantic gap
between shapes of different natures (see Fig. 1) by taking
visual part salience measures relative to the constituting
shape and its remaining parts.

The matching method of CAT–DTW calculates the dis-
tances between visual parts rather than boundary points us-
ing a decision dependant DTW technique that rotates the
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Figure 2: Recognizable (top) and misleading (bottom) views of 3D
objects.

start point to find the best match. In this paper, we extend
this practice by reversing the direction of search in one of
the objects being matched. This reversal allows correct re-
trievals of similar reflected objects that the original CAT–
DTW failed to match. In addition, it facilitates the estima-
tion of the symmetric property of a shape when matched to
its inverted version.

Distance between a 2D shape and a 3D object is computed
by matching the former to a number of 2D projections rep-
resenting the latter. State of the art methods have gone as far
as retaining one hundred projections and some have even ex-
ceeded this number. For a sketch–based 3D object retrieval
application, in particular, we seriously question the need for
such a number. The excessive number of views not only risks
run time efficiency degradation, but also increases the possi-
bility of producing views that mislead the retrieval process.
A screwdriver, for example, may and should be represented
by one view. A snapshot of such an object taken from an
angle along its principal axis deceives even a human inspec-
tor (see Fig. 2). A table viewed from the top has a similar
shape as a book or a door. It is evident that there are more
“adequate” views for a given object but whether these are
determined by geometric properties or by learning is yet an
open issue. In the light of this discussion, we put forward
the necessity to investigate viewpoint selection from human
cognition theories’ perspective.

Cognitive science approaches the viewpoint selection is-
sue by performing case studies to understand the so called
“canonical views”. In 1981 Palmer et al. [PRC81] proposed a
“maximal information” hypothesis that canonical views are
those that give most information about the 3D structure of
the object. Blanz et al. [BTBV99] experimented with digi-
tal 3D models asking the participants to rotate and position
objects. They concluded that people would try to avoid oc-
clusion of component and seek pronounced asymmetry. The
front or side view of symmetric objects such as teapot, cow,
or chair rated lowest amongst the selected views. Recently,
Mezuman et al. [MW12] used internet image collections to

learn about canonical views and verify precedent theories.
Inspired by cognitive science theories, we rely on two con-
cepts to select representative views for a 3D object: minimal
part occlusion or maximal information and minimal symme-
try. In this paper, we propose methods to quantify these con-
cepts. Taking the projected views from points equidistant to
the object’s centroid, we relate the level of part occlusion to
the sum of lengths of skeletal segments produced by the CAT
of each view’s silhouette. Symmetry of a given silhouette is
estimated by its CAT–DTW distance to its topologically re-
flected version obtained by a clock–wise (negative direction)
traversal of its visual parts.

The rest of the paper proceeds as follows. In section 2, we
discuss related work from various aspects. Sections 3 gives
an overview of CAT–DTW. A closeup on the details of the
DTW technique and the explanation of the topological in-
version are presented in section 4. The two–silhouette repre-
sentation of 3D objects is portrayed in section 5. Evaluation
results on SHREC’13 Sketch Track Benchmark and the con-
clusion follow last.

2. Related Work

The two major subproblems in sketch–based 3D object re-
trieval are how to obtain the 3D models’ 2D representa-
tions and what 2D descriptor to use in the matching pro-
cess. Existing methods may be classified in many ways
depending on different approaches adopted to solve sub-
problems. For 2D data representation, methods either in-
clude shapes’ internal available details [YSSK10, SBSS11,
SXY∗11, SBS∗12, ERB∗12, FO13] or only analyze the out-
line [OF09, NS10, LJ12, LLJ13]. The first class of methods
incorporate user strokes inside sketched shapes and include
suggestive contours [DFRS03], apparent ridges [JDA07], or
other computer generated lines in the 2D views of their 3D
models. The second class preprocess their 2D data by dilut-
ing and filling operations to have one closed contour line and
silhouette per 2D sketch or 3D model projection.

Another aspect to classify methods is the dependance on
a training stage using the Bag–of–Words model [ERB∗12,
OF09, FO13]. The opposite class makes direct dis-
tance estimation between matched objects using either
global [YSSK10] or local [SXY∗11, ERB∗12, OF09], or
both global and local [SBSS11,SBS∗12,NS10,LJ12,LLJ13,
LLF13] approaches. Global descriptors define a quantization
or a feature vector in Rn where the distance metric is defined
over that space. Local descriptors represent a shape by a set
of feature vectors where the distance is estimated by a min-
imal cost match between individual features. Methods that
use both global and local employ the global descriptor in a
pruning stage.

View selection of 3D models has also been tackled in dif-
ferent ways. In general, two motivations have guided this
process. The first is to include as many views as feasible so
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as not to miss a potential viewing angle selected by a human
user to draw the object. These methods either select corners
and edge midpoints on the bounding box [YSSK10,SBSS11,
SXY∗11, SBS∗12] or generate uniformly sampled points on
the bounding sphere [OF09,LJ12,FO13] with viewing direc-
tion pointing towards the center. The second motivation is to
find views more likely to be used by humans and reduce the
number of generated images. Napoleon et al. [NS10] first
align the model and then take only up to 9 projections. Eitz
et al. [ERB∗12] employ Support Vector Machine with a ra-
dial basis function kernels to learn a “best view classifier”
during the training stage and use it in the testing stage. Li
et al. [LJ12] use the View Context similarity between the
sketch and saved projections to prune unlikely views in an
alignment stage. In a later publication, and following the ob-
servation that not all 3D models views are equally impor-
tant, Li et al. [LLJ13] propose a complexity metric based on
viewpoint entropy distribution. The idea is to assign more
views for more complex objects and thus recommend class–
specific numbers of projections.

A recent family of methods has emerged characterized
by employing machine learning methods to bridge the se-
mantic gap between sketches and projection images. Li et
al. [LLF13] use a Support Vector Machine with radial basis
function kernel to build a classifier that predicts the possi-
bilities of the input sketch belonging to all the categories.
Furuya et al. [FO13] use a semi–supervised machine learn-
ing method called Manifold Ranking Algorithm [ZBL∗04].
The algorithm works by diffusing relevance value from the
query to the 3D models in a Cross–Domain Manifold the
two domains being sketches and 3D models.

Since year 2012, sketch–based 3D shape retrieval contests
(SHREC) are being held on yearly basis [LSG∗12,LLG∗13,
LLG∗14, LLL∗14]. A participating group would contribute
in more than one run showing results of different parame-
ter settings or choice of particular algorithms. It is notable
that there is a small range of 2D shape descriptors tested
in sketch–based 3D object retrieval compared to the much
larger number of available choices. The 2D shape descrip-
tor that we employ in this paper uses a skeleton to represent
shapes by visual parts and their spacial relationships.

3. 2D Shape Description

In order to keep this paper as self contained as possible,
we give an overview of the CAT–based shape description
method. However, more details can be found in the original
CAT–DTW documentation [YVBN15].

The input data is a binary image representing the silhou-
ette of a single object. We extract the contour, locate corner
points, and sample the in–between contour fragments uni-
formly. The advantage of locating corner points is the in-
clusion of the sharp features in the sample set. The region
is then triangulated using Constrained Delaunay Triangu-
lation (CDT). The rectified CAT and a set of pruning and

(a) The CAT and the
subsequent segmen-
tation.

(b) Marked subtrees correspond to wing
nodes. The leaves are arranged from left
to right in the anti–clockwise order of ap-
pearance along the boundary of the shape.

(c) Visual parts represented by terminal nodes on the finest level
of detail (left) and by wing nodes on higher levels. More than two
salient nodes cannot be included in the same wing (right) and thus
stop the process of wing node formation.

Figure 3: The visual parts embedded in a hierarchical struc-
ture. The tree nodes in Fig. 3(b) are shaded with the same
color of their corresponding subregion in Fig. 3(a).

merging operations provide a skeleton with an association
between skeletal segments and subregions (see Fig. 3(a)).
Subregions are categorized according to their connectivity
into three types: terminal, sleeve, and junction characterized
by one, two, and many connected segments respectively.

The CAT segments are embedded in a tree where leaf
nodes correspond to terminal segments (see Fig. 3(b)). We
leave out the process that locates the root of the tree since it
does not influence the course of this paper. Our main concern
is the visual parts of the shape and how they are represented
in this hierarchy. First, terminal nodes with relative size, ec-
centricity, and convexity beyond some thresholds are labeled
as salient nodes. Starting from the bottom of the tree, the vi-
sual parts of the shape are represented by all subtrees that
constitute less than two salient nodes. Visual parts that con-
tain more than one node in their subtrees represent a set of
CAT segments joined into one higher level entity denoted by
a wing node (see Fig. 3).

The visual parts, comprised of terminal and wing nodes
that we denote by feature nodes, are kept in their anti–
clockwise order of appearance along the boundary of the ob-
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ject. Each node is described by 9 geometric attributes: area,
perimeter, eccentricity, circularity, rectangularity, convexity,
solidity, bending energy, and chord length ratio in addition to
a radial distance signature. These values are combined into
a feature vector v that is made of two parts: geometric pa-
rameters p and the radial distance signature r. The distance
between two vectors v1 and v2 is the Euclidian distance be-
tween the parameters plus the squared distance between the
signature part.

d(v1,v2) = sqrt

[
9

∑
i=1

(p1[i]− p2[i])
2

]
+

15

∑
i=1

(r1[i]− r2[i])
2

(1)
Similarly, the norm of the feature vector is given by:

|v|= sqrt

[
9

∑
i=1

p[i]2
]
+

15

∑
i=1

r[i]2 (2)

The spatial and angular distances between feature nodes
comprise an inter–distance matrix relating every pair of
them. An entry (i, j) in this matrix is a 3 dimensional vector
(dE ,dBE ,dA) corresponding to Euclidian distance, bending
energy, and angular distance between nodes i and j.

4. Adapted Dynamic Time Warping Method

Dynamic time warping is a method that originated in the
context of aligning voice signals with different time la-
tency [Vin68]. Later on, it was introduced to the shape
matching world to measure distance between closed shapes.
Roughly, the idea is to rotate one shape while calculating a
distance matrix for every obtained alignment. Each row cor-
responds to the distance between a point in the first shape
and all points in the other. A minimal distance path is calcu-
lated for every matrix resulting in a point–to–point or point–
to–segment pairing. The matrix that produces the minimal
distance among others represents the best alignment.

The feature nodes are represented in a feature space of
dimension N (N = 24) comprised of an assembly of geo-
metric parameters. Every object has an ordered set of fea-
ture vectors in addition to an inter–distance matrix. To match
two shapes A and B, we seeks a set of pairs associating fea-
ture nodes from A and B. The couples correspond to non–
overlapping visual parts and must not violate their anti–
clockwise ordering. The cost of a match is defined by the
sum of the following values:

1. The distance defined in Eq. 1 between coupled feature
nodes from A and B.

2. For every consecutive couple (q(q∈A),r(r∈B)) and
(s(s∈A), t(t∈B)), the internal distance defined by:
(dE(q,s) − dE(r, t))2 + (dBE(q,s) − dBE(r, t))2 +
(dA(q,s)−dA(r, t))

2

3. Terminal nodes that are not included in the match cost a
penalty equal to the norm in Eq. 2.

Every terminal node in each object is a potential starting

point for the anti–clockwise traversal of feature nodes. To
find the optimal solution, we compute the minimal cost
matches for all possible combinations of starting terminal
nodes of the two shapes. However, due to their relation with
wing nodes, some terminal nodes are excluded from the set
of candidate start points. In the following sections, we de-
scribe what viable configurations are and how the cost ma-
trix is built and handled.

4.1. Generating Viable Configurations

Wing nodes are visual features that must be considered for
matching as a whole in any tested configuration. A terminal
node selection as the starting point should not cause any of
its related wing nodes to be split between the beginning and
the end of the list of feature nodes. This observation leads to
the introduction of the stop point which is a terminal that has
either one of the following properties:

• It does not belong to any wing node.
• It is the first terminal node to appear in the anti–clockwise

direction in all the wings it belongs to.

Different configurations are generated by alternately shifting
one object’s start node to the next stop point while fixing the
other.

4.2. Decision–based Dynamic Time Warping

Every configuration provides two ordered sequences of fea-
ture nodes to be matched. The dynamic time warping tech-
nique finds the minimal cost path by setting up a matrix
of all possible matches. Starting from (n,m) towards (0,0),
the cost of the optimal path is accumulated following the
minimal cost path rule defined by: cost(i, j) = cost(i, j) +
min(cost(i+ 1, j+ 1),cost(i+ 1, j),cost(i, j+ 1)) Our vari-
ation of the solution follows from the specifics of the prob-
lem.

We construct an n × m matrix where n and m are the
numbers of terminal nodes of the two shapes. Every en-
try in this matrix contains a decision node that enumerates
all possible options that can be taken when the entry is
reached. The decision node compares the cost of a terminal–
terminal, terminal–wing, wing–terminal, wing–wing, and a
void match. The void match is the decision to exclude one or
both of the terminals from the matching process. This list of
options is not independent from its surrounding matrix en-
tries. For example, a wing–wing matching decision affects
the matrix block spanned by the terminals constituting these
two wings (see Fig. 4). This slightly alters the minimal cost
path rule since at (i, j), the “previous” entry is not simply
either one of (i+1, j+1), (i+1, j), or (i, j+1). It is rather
related to the option at hand and the block of matrix spanned
by the nodes being matched according to this option. After
all decision nodes have selected their minimal cost option,
the optimal cost of the current configuration is found in the
minimal cost at entry (0,0).
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(a) Configura-
tion where the
start points are
the snouts in
both cats.
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(b) The decision matrix where a row (respec-
tively column) corresponds to a terminal in the
first (respectively second) object. Each entry
(i, j) holds all possible pairings between the vi-
sual parts related to the terminals associated to
row i and column j.

(c) The minimum cost path in the matrix and the consequent part
correspondence between the matched shapes.

Figure 4: The optimal correspondence between two shapes
obtained from the minimal cost path in the distance matrix.
Note how the 9th option at entry (0,0) shown in Fig. 4(b)
gives a minimal cost and leads to the pairing highlighted in
purple in Fig. 4(c).

4.3. Topological Inversion

As described so far, CAT–DTW works well on Kimia–99
and Kimia–216 2D shape datasets [SKK04]. However, it
happens that these datasets do not include reflected instances
of the same class. For example, the correct match between
the shapes shown in Fig. 5 will never be found using the
current CAT–DTW. The visual parts of these two objects are
arranged in reversed orders: head, tail, hind legs, front legs
for the first object and head, front legs, hind legs, tail for the
second. Reversing the direction of terminal traversal for one
of the objects allows obtaining the configuration that would
give the optimal match as shown in Fig. 5. When an object
is matched to its inverted version, the distance is an estimate
of the degree of symmetry. Smaller values indicate stronger
symmetric property of the shape (some examples are shown
in Fig. 6). We call the inverse of this distance the symmetry
measure and use it to find asymmetric projected views of 3D
objects as shown in the next section.

5. 3D Object’s Representative Views

We take projected images of the 3D object from 50 views
positioned on the unit sphere bounding the object and point-
ing towards its center. First, the object is scaled and trans-
lated to lie within a cube half the size of the unit cube. Then
one Catmull–Clark subdivision [CC78] step is applied to
the cube producing a volume defined by 26 vertices and 24
faces. The vertices and the centroids of the faces are trans-

+ -

+ +

Figure 5: Applying DTW to find part correspondence between the
objects shown top row where the visual parts’ orderings are horn,
tail, hind leg, ..., horn and horn, horn, front leg, ..., tail respectively.
The method matches the heads correctly due to rotating the start
point of the second object so as to have the two horns adjacent.
However, due to reflectance, all other visual parts are mismatched.
The third row shows the setting where the second object is arranged
in the reverse direction. The total distance obtained in this setting is
minimal and the visual parts are paired more accurately.

8.780.512.51.5

Figure 6: Symmetric shapes and their associated asymmetry eval-
uation. Lower values indicate stronger symmetry.

lated in the radial direction so that they all lie on the unit
sphere and equidistant from the origin. Each viewpoint gives
a binary silhouette representation of the 3D object.

When humans design sketches to represent an object, they
tend to make all the meaningful salient parts of the object
visible (the four legs of the cow/horse, the legs of a chair,
etc.) even if the perspective view of the object is altered. This
is a demonstration of the “minimal part occlusion” theory
proposed as one of the “canonical views” criteria. Following
this observation, we select the silhouettes having the greater
skeletal length which we compute as the sum of skeletal seg-
ments of terminal and sleeve nodes and the maximal three
skeletal segments of junction nodes. The silhouettes with top
k skeletal lengths (k equal to 10 in our experiments) are se-
lected into a candidate set Sk and the rest are discarded (see
Fig. 7). Two silhouettes remain to be selected from Sk such
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Figure 7: The silhouettes with the top 20 skeletal lengths. For each
object, the representative views are the one with maximal skeletal
length (first silhouette in the column) and the silhouette with mini-
mal symmetry selected from the top 10 skeletal lengths (marked by
the red box).

that the first is the one with maximal skeletal length and the
second has minimal symmetry measure.

6. Experimental Results and Discussion

We tested the 2D shape descriptor and our view selection
paradigm on the testing datasets of the SHREC’13 Sketch
Track Benchmark [LLG∗13]. Our 2D shape descriptor han-
dles closed shapes with no holes. For both the sketches
and 3D models’ projections, we perform filling operations

Figure 8: Contour line extraction of sketched images.

to produce a single contour for analysis. Moreover, we ap-
ply a series of erosion and filling operations on sketches to
amend disconnected boundary lines and give more emphasis
to strokes expressing thin features such as tails or antennas
(see Fig. 8). When surrounding entities are sufficiently dis-
connected from the main depicted object (see the barn in
Fig. 8), they are discarded by taking the extracted boundary
line that has the greatest length. This works well with this
sketch dataset since it happens that in such cases, secondary
entities are drawn smaller than the main object.

We employ the seven performance metrics adopted in
SHREC’13 [LLG∗13]. They are Precision–Recall (PR) di-
agram, Nearest Neighbor (NN), First Tier (FT), Second Tier
(ST), E–Measures (E), Discounted Cumulated Gain (DCG)
and Average Precision (AP). To compute these metrics, we
use the evaluation code available from the contest’s web-
site. Table 1 shows that our approach outperforms the meth-
ods tested on the same benchmark except for those that em-
ployed machine learning by cross–domain manifiold ranking
(CDMR). However, the average response time per query of
our method is 27.79 seconds on an Intel Core i7 3632QM @
2.20GHz 8GB RAM while the CDMR employing methods
exceed 600 seconds on an Intel Core i7 3930K @ 3.20GHz
64GB RAM. In addition, the precision recall plot in Fig. 9
shows that our method performs best amongst its peers.

Compared to other methods that participated in this track,
Saavedra et al [SBS∗12] use the least number of sample
views for a 3D model. They use the 6 orthogonal views
(top, bottom, left, right, front, and back). However, their
method’s performance evaluation reveals the shortcomings
of this choice. It is evident that without a suitable alignment
method, the orthogonal views of a 3D object cannot give any
guarantees that they include a canonical view as visualized,
and consequently depicted, by humans. Despite increasing
the number of views to 26, Aono et al. [AI12] still score low-
est on the precision recall plot diagram. On the other hand,
Li et al. [LJ12] (SBR-2D-3D-NUM-50) start form 81 sam-
ple views for each 3D object and attempt to align each to
the query sketch retaining the best 4 candidates. In another
method (SBR-VC-NUM) [LLJ13], they drop the alignment
stage and keep a precomputed number of sample views per
class. The performance improvement of this method (SBR-
2D-3D-NUM-50 to SBR-VC-NUM-50) is negligible. Fu-
ruya et al. [FO13] use the highest number of views proposed
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PARTICIPANT METHOD NN FT ST E DCG AP

Aono, Masaki [AI12] EFSD 0.023 0.019 0.036 0.019 0.24 0.031

Li, Bo [LJ12] SBR-2D-3D-NUM-50 0.132 0.077 0.124 0.074 0.327 0.0947

Li, Bo [LLJ13] SBR-VC-NUM-100 0.164 0.097 0.149 0.085 0.348 0.1138

SBR-VC-NUM-50 0.132 0.082 0.131 0.075 0.331 0.0984

Saavedra, Jose M. [SBS∗12] FDC 0.053 0.038 0.068 0.041 0.279 0.051

Furuya [FO13] BF-fGALIF 0.176 0.101 0.156 0.091 0.354 0.119

BF-fGALIF+BF-fDSIFT 0.213 0.123 0.186 0.107 0.379 0.143

CDMR-BF-fGALIF 0.242 0.174 0.263 0.146 0.427 0.215

CDMR-BF-fGALIF+CDMR-BF-fDSIFT 0.279 0.203 0.296 0.166 0.458 0.246

UMR-BF-fGALIF 0.159 0.119 0.179 0.102 0.367 0.131

UMR-BF-fGALIF+UMR-BF-fDSIFT 0.209 0.131 0.195 0.113 0.386 0.152

Our method CAT-DTW 0.220 0.122 0.180 0.101 0.379 0.128

Table 1: Performance metrics for the performance comparison on the testing dataset of the SHREC’13 Sketch Track Benchmark.

in this field (162 views) and still need machine learning to
improve their retrieval results increasing the retrieval time in
an enourmous leap (0.49 seconds for BF-fGALIF to 615.95
seconds for CDMR-BF-fGALIF).

Reporting better performance over these methods while
using only two sample views, we verify the merit of the “in-
formative” and “asymmetric” criteria in viewpoint selection.
In addition, two other hypothesis are supported by these re-
sults. The first one is the logical opposite of more views
implying better performance. On the contrary, there are in-
correct views for 3D models that cause misinterpretation
and mismatching and thus must be eliminated from its set
of sample views. The second hypothesis is the propriety of
a visual part–based shape descriptor for a query–by–sketch
retrieval of 3D objects. This does not draw from the perfor-
mance metrics alone but rather from the fact that this de-
scriptor behaves poorly with classes characterized by weak
part salience. Nonetheless, it still managed to compensate
this setback and produce overall better results.

7. Conclusion

We proposed a sketch–based 3D object retrieval ap-
proach that outperforms the methods that contributed in
SHREC’13 [LLG∗13] on the testing dataset of the Sketch
Track Benchmark. We showed that a descriptor based on
salient parts, their relative sizes and protrusion angles is es-
sential to match conceptually similar but precisely dissim-
ilar objects, which is the case with sketch–based retrieval
applications. In addition, we demonstrated that an excess in
2D representations of 3D objects has a potentially degrading
effect on the performance results of any method. We made
intra–object matches between its projections and composed
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Figure 9: Precision–Recall diagram performance comparisons on
the testing datasets of the SHREC’13 Sketch Track Benchmark.

criteria based on the notion of informative and asymmetric
views to represent the object by only two views.

The system at hand is liable to many improvements sub-
ject to further experiments. Throughout its successive stages
other methods for sampling, segmentation, shape signatures,
and part correspondence can be tested. The devised algo-
rithm generates all possible configurations and search for
the optimal match of each. Many methods for complexity
reduction have been proposed in the general framework of
DTW [ANCT09, WMD∗13, SC07, Lem09]. In addition to
these methods, some pruning strategies can be applied to
avoid the detailed correspondence computations for each
configuration.
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