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Abstract

We present a new method for the hierarchical decomposition of 3D indoor scans and the subsequent generation
of an according hierarchical graph-based building descriptor. The hierarchy consists of four basic levels with
according entities, building - storey - room - object. All entities are represented as attributed nodes in a graph and
are linked to the upper level entity they are located in. Additionally, nodes of the same level are linked depending
on their spatial and topological relationship. The hierarchical description enables easy navigation in the formerly
unstructured data, measurement takings, as well as carrying out retrieval tasks that incorporate geometric, topo-
logical, and also functional building properties describing e.g. the designated use of single rooms according to the
objects it contains. In contrast to previous methods which either focus on the segmentation into rooms or on the
recognition of indoor objects, our holistic approach incorporates a rather large spectrum of entities on different
semantic levels that are inherent to 3D building representations. In our evaluation we show the feasibility of our
method for extraction of hierarchical building descriptions for various tasks using synthetic as well as real world
data.

Categories and Subject Descriptors (according to ACM CCS): H.3.1 [Information Storage and Retrieval]: Con-
tent Analysis and Indexing—H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—I.3.m
[Computer Graphics]: Miscellaneous—I.5.m [Pattern Recognition]: Miscellaneous—

1. Introduction

With the availability of fast and cheap 3D acquisition de-
vices, digital point clouds have replaced analog methods of
site measuring as the favored means for documenting the as-
is state of buildings, especially regarding their interior. How-
ever, due to their inherent lack of structure, point clouds only
serve as a starting point for tasks like retrofitting or renova-
tion. The need for easy navigation, targeted (textual) search,
manipulation, taking of measurements, and efficient render-
ing usually forces architects and construction companies to
manually generate additional metadata information or even
3D Building Information Modeling (BIM) overlays of the
point cloud. By that, the advantages that come along with
the digital capturing devices are partially lost again as a large
amount of manual postprocessing is still required.

The first step to a better usability of indoor measurements
for architectural, engineering, and construction purposes is a
proper segmentation into semantically meaningful parts in-

cluding storeys and rooms. Several most recently introduced
methods have taken on this task [MMJ∗13,OVW∗14,TZ14].
While the main goal in most of these publications is to re-
construct a per-room boundary representation of the cap-
tured building which facilitates rendering, such methods also
partially improve navigating and manipulating the data, e.g.
by hiding or removing certain rooms. Additionally, although
not explicitely mentioned in the publications, such methods
would theoretically allow for basic measurement tasks like
e.g. determining the area or height of a room.

The second step to better usability of 3D indoor scans is
to equip segmented rooms with an appropriate set of meta-
data that allows targeted retrieval of information pointing
to the function of a room according to the objects it con-
tains. For example, if a room contains objects like a sink
or a shower, its designated function is likely to be that of
a bathroom. The above-mentioned methods are restricted to
geometric properties of the room; they are not able to de-
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rive function-related information. Apart from the field of
robotics where recognition of shapes in indoor scenes is a
very important task (see e.g. [RBMB09, KAJS11]), identi-
fying objects in rooms has been addressed by several more
architecture and construction-related approaches lately, see
e.g. [NXS12, KMYG12]. However, current methods for in-
door analysis relying on point cloud representations treat the
two semantic levels of segmentation into rooms and the in-
terior of a room as being rather isolated from each other.
Thereby, the full potential of an integrated building represen-
tation is not used, especially for tasks like targeted retrieval.
In this work we try to overcome the aforementioned draw-
backs. Our holistic hierarchical graph-based building de-
scription incorporates rather coarse levels including storeys
and rooms, but it also captures the objects that are located in
each room. By that, we are able to combine search queries
relying on the topological arrangement of rooms fulfilling
certain constraints (e.g. area) with queries that target the se-
mantically high-level function of a room. In our evaluation
we show several exemplary queries and retrieval results in
non-trivial real-world data. Summarizing the contributions
of our work, they are:

• A method for segmenting buildings into storeys & rooms
• Extraction of room neighborhood and room connectivity
• A holistic concept for a hierarchical building descriptor

2. Related Work

The analysis of architectural data is a wide field with differ-
ent problem statements and applications. Our method com-
bines methods for Scene Segmentation (Section 2.1), Scene
Understanding and Object Recognition (Section 2.2), and
Topological Structuring (Section 2.3) of a building.

2.1. Segmentation and Geometric Structure Extraction

Since point cloud data is inherently unstructured it is manda-
tory to structure and segment the scene before attempt-
ing to extract the structure of a building. [MMJ∗13] aim
to extract a building model which is segmented on a per-
room level. They construct a polyhedral model by project-
ing, clustering and finally intersecting wall candidates in a
two-dimensional cell complex. In [BB10] the authors pro-
pose extracting and projecting floor and ceiling structures
and finding a segmentation of the plane into cells in order to
derive the building’s ground plan. A method combining 3D
point cloud data and ground-level photographs is presented
in [XF12]. The authors reconstruct a CSG (constructive solid
geometry) representation and use an “Inverse-Constructive-
Solid-Geometry” approach to determine the observed empty
space. [TZ14] present a method for creating 2D floor plans
and 2.5D building models including a segmentation into
rooms by reducing the room-labeling to a Graph-Cut prob-
lem on a 2D Delaunay triangulation where triangles are la-
beled as interior or exterior. A similar approach is sug-
gested in [OLA∗13] for the reconstruction of permanent

structures by using a Graph-Cut approach to decompose and
label the space into interior and exterior. Probabilistic clus-
tering of points based on their mutual visibility is used in
[OVW∗14] for obtaining a segmentation of the point cloud
into rooms, followed by a detection of openings. In contrast
to [BB10,XF12,OLA∗13] our method does not aim to recon-
struct purely geometric properties of the scanned scene, but
to perform a hierarchical, semantically meaningful segmen-
tation. While [TZ14, MMJ∗13] perform a segmentation into
rooms, they do not determine connections between them.
Also, our method works directly on the point cloud without
reconstructing a mesh model. In comparison to [OVW∗14]
our method is able to cope with highly non-convex rooms,
determines room neighborhoods and provides a more robust
opening detection.

2.2. Object Recognition and Scene Understanding

In contrast to focusing on the coarse structure of rooms and
their connectivity a lot of research went into the recogni-
tion of objects and their relations within a room. Regarding
the overwhelming amount of publications targeting this task
especially in the field of robotics, we restrict ourselves on
approaches that focus on architecture and construction us-
ing static scenes. [RBMB09] propose a hybrid approach to
understand indoor scenes by using geometric, as well as sur-
face models in order to segment the scene into objects. A
method based on an oversegmentation of the scene based
on the smoothness and continuity of surfaces with subse-
quent labeling based on Markov Random Fields is described
in [KAJS11]. Template learning using the large amount of
freely available synthetic 3D models to enable object recog-
nition is described in [LF10]. In [KMYG12], the authors use
learned graph-based models for objects in a learning phase
by matching stable primitive parts across measurements, and
then try to fit these models in a recognition phase. A sim-
ilar approach that tries to avoid the problem of prior seg-
mentation is presented in [NXS12]. The authors propose
a Search-Classify method where an oversegmented scene
is iteratively simplified while simultaneously maximizing
classification likelihood for previously computed feature de-
scriptors. [SXZ∗12] propose an interactive method for the
segmentation of indoor scenes into semantic entities (e.g.
furniture elements) from RGBD images. Having obtained
semantic labels in each image using a Conditional Random
Field model, they reconstruct the scene with objects from a
model database. While these methods provide tools for the
segmentation and understanding of scenes on a room level,
they do not take into account the overall building topology
as proposed in this paper.

2.3. Topology Extraction

There is a wide variety of research work that focuses on ex-
traction and applications of a building’s topology (i.e. the
structure, connectivity and accessibility of rooms), although
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almost all of the proposed methods work with representa-
tions different from 3D point clouds. [ALWD12] use image
segmentation and OCR (optical character recognition) tech-
niques to extract room structure and semantics in 2D floor
plans. In [AWL∗14] the authors enhance this approach by
adding a semantic analysis based on SURF (speeded up ro-
bust features) which yields a graph representation of rooms
used for retrieval of room configurations. Another method
based on image representations of floor-plans is proposed
in [MLVT10], which is based on a recursive decomposition
of the image to retrieve nearly convex regions. [WBK08] ex-
tract topological information from low-level 3D CAD repre-
sentations of buildings by comparing 2D plans extracted at
different cut-heights for each storey. In [LWL∗13], a build-
ing’s topology is derived from high-level BIM models by
analyzing certain entity constellations in the model. In con-
trast to these approaches, our method does not rely on the
availability of 2D or 3D models of the building but works
purely on point cloud scans.

3. Method Overview

This section provides a concise overview of our approach
for generating a hierarchical building descriptor from indoor
point cloud scans. Starting with registered point cloud scans
of a building, the steps of our approach are as follows.

• Planar structures are detected. This yields an initial,
coarse structuring of the point cloud.

• Using the given initial assignment of points to scanners,
a semi-automatic method for segmenting the point cloud
into rooms is performed (Section 4). This assigns each
point to exactly one room and resolves ambiguities in re-
gions where multiple scans overlap.

• Using this segmentation, the neighborhood relation of
rooms (Section 5.1) and their connectivity (Section 5.2)
is determined and encoded in a graph structure.

• The point subset of each room is further segmented into
objects like furniture elements (Section 6.1). For each ob-
ject, shape descriptors are computed and connected to the
respective room node (Section 6.2).

• After the hierarchical descriptor for a building has been
built, structural queries may be performed by means of
matching attributed query graphs representing room and
object constellations (Section 7).

Note that the presented processing chain is very modular in
that different algorithms may be plugged in for performing
the individual steps.

4. Segmentation Into Rooms

The first step of our approach is the segmentation of the
point cloud into subsets corresponding to rooms. The ap-
proach uses a coarse initial guess for point-to-room assign-
ments which is subsequently refined. We initially generate
a preliminary room label r′i for each scanner location si and
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Figure 1: Label diffusion for a point which is initially la-
beled incorrectly (the correct label is 1). The correct label
is assumed after a few iterations, however it may once again
become incorrect with increasing number of iterations.

assign all points belonging to si the label r′i . Because a room
may have been scanned from multiple positions, these scan
positions must be merged in the first phase. In the scope
of this paper, this step is done manually using an intuitive
graphical interface. In the second phase, an automatic rela-
beling procedure is carried out which is based on the follow-
ing assumption. Let x be a point which belongs to room r
(even though the initial room assignment of x may be dif-
ferent from r). We hypothesize that most points which are
(directly or “almost” directly) visible from the position of x
belong to the same room as x and that those points tend to
be labeled correctly because only a relatively small fraction
of points is located in regions where scans overlap.

The relabeling procedure is formulated as a diffusion pro-
cess in which the “transfer” of point-to-room labels between
points is governed by the mutual visibility between point
pairs. The rationale behind this formulation is that it not only
allows transfers between points which are directly visible but
also allows indirect connections via a few ray “bounces”.
The importance of this is that occlusion effects (either due
to non-convex rooms or clutter) are mitigated. We model the
transfer probability between points as a Markov chain with
the row-stochastic transition matrix

T :=


v11
k1

· · · v1n
k1

...
. . .

...
vn1
kn

· · · vnn
kn

 , (1)

where n is the number of points, vi j = 1 iff x j is visible from
xi and 0 otherwise, and ki = ∑

n
j=1 vi j. In addition, we de-

fine vii = 1 for all i. The value T k
i, j yields the probability of

“moving” from point xi to x j via line-of-sight rays in ex-
actly k steps. In addition, let an initial (hard) point-to-room
assignment be given as the label matrix

L :=

l11 · · · l1m
...

. . .
...

ln1 · · · lnm

 , (2)

where m is the number of rooms, li j equals 1 iff point xi is
associated with room label j and 0 otherwise. The product

Lk := T kL (3)
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Figure 2: Room labeling before (left) and after (middle) relabeling. Right: Points which were relabeled are highlighted.

yields a new label distribution which takes into account the
average labels of points encountered after k bounces of line-
of-sight rays between points. Consider the progression

Lk, k = 1, . . . , (4)

whose limit for k→∞ yields the distribution of point-to-
room assignments after an infinite number of ray bounces.
Figure 1 shows the labeling progression for a particular
point. Two effects can be observed in the plot. Firstly, it is
sometimes necessary to run a few iterations until the point
assumes its correct labeling (in this case, three iterations
were necessary). The main reason for this are occlusions
within the building such that the majority of the room the
point belongs to may only be seen indirectly after a few ray
bounces. Secondly, the label assignments in the limit of the
progression may once again become incorrect as the dif-
fusion spreads throughout building. In the extreme case, if
there exists a path between all pairs of points (and thus T
is an irreducible transition matrix), all points will assume
the same label distribution in the limit. As a compromise
between allowing multiple iterations and avoiding the limit
case, we decide for a room label room(xi) for point xi by
integrating over the first N iterations for each label:

room(xi) := argmax
j∈{1,...,m}

N

∑
k=1

(Lk)i, j. (5)

In our experiments, a value of N = 10 yielded satisfactory
results. For the practical implementation, a set of scans is
initially given, together with the respective scan origins. The
scans are assumed to be registered in a common coordinate
system (this step is usually done by the scanner software).
As a prerequisite for the relabeling, point normals are esti-
mated by means of local PCA (principal component analy-
sis) of point patches and planar structures are detected us-
ing a RANSAC (random sample consensus) implementa-
tion by Schnabel et al. [SWK07]. Each detected plane is
also assigned the set of points which constitute it, as well as
an occupancy bitmap which is used for perfoming fast, ap-
proximate intersection tests with the building structure. Each
bitmap pixel may take a continuous value in [0,1] and is ini-
tially set to 1 iff the projection of at least one point lies within
the boundary of that pixel and 0 otherwise. The bitmaps are
subsequently smoothed using a box filter in order to fill small
holes.

For approximating Lk, a stochastic, iterative ray voting
scheme is used. Instead of averaging the labels of all points
that are visible from x, k sample rays are generated whose
directions are randomly sampled on the hemisphere around
the normal of x. For each sample ray ri, the nearest intersec-
tion pisect with the set of planes is determined (taking into
account the respective occupancy bitmaps). If the nearest in-
tersection is with a plane whose normal points into the same
hemisphere as the ray direction, the sample is not counted.
In each iteration, the new label soft assignment vector l(x)
of x is determined by averaging the label vectors of points
located within the area of each occupancy bitmap pixel in-
tersected by a ray as well as averaging over all sample rays:

lnew(x) :=
1

h+1

(
l(x)+

h

∑
i=1

(
1
bi

bi

∑
j=1

l(yi, j)

))
, (6)

where h is the number of sample rays which intersected
some plane, bi is the number of points within the bitmap
pixel b hit by ray ri, and yi, j is the jth point within b. Note
that if not a single sample ray successfully intersected a
plane, the definition yields lnew(x) = l(x). Figure 2 shows
part of the point cloud before and after relabeling as well
as an overview of which parts of the point cloud have been
relabeled. For each room r, the approximate room area is
determined which may later be used as a constraint when
querying for room constellations. Let Ph be the set of points
belonging to (approximately) horizontal planes, and let Pr
be the set of points of room r. The point set Pr ∩Ph is pro-
jected into a regular grid in the x-y-plane with cell size c.
The number of cells n containing at least one projected point
yields the approximate room area arear := nc2. We also esti-
mate the floor elevation of each room which is later used for
aligning the z position of object descriptors with the floor el-
evation. Let P = {p1, . . . , pn} be the set of (approximately)
horizontal planes whose normals are pointing upwards, let
Ppi be the respective point sets belonging to plane pi, and Pr
as above. We define the best floor candidate plane as

p f loor := argmax
i∈{1,...,n}

|Pr ∩Ppi |. (7)

The mean z position of the point set Pr ∩Ppf loor is chosen as
the floor elevation elevr of room r. Having estimated each
room’s floor elevation, a simple binning procedure is used to
group rooms into storeys. We start with an empty set of bins.
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Figure 3: Room neighbors (left) and connections extracted from a real-world dataset.

For each room r, it is checked whether there exists a bin b in
which all rooms have a floor elevation which is close enough
to elevr with respect to a threshold. If b exists, the room is
inserted into b; otherwise a new bin containing r is created.
The result up to this point is a graph in which a storey node is
inserted for each group of rooms which share approximately
the same floor elevation, each connected to a (root) building
node. For each room label, a room node is inserted, con-
nected to the respective storey node, and assigned its point
subset, area, and floor elevation.

5. Detection of Room Neighbors and Connections

This Section describes our method for determining relations
between rooms. Examples for the extraction of the room
neighborhood relation and room connectivity in a real-world
dataset are shown in Figure 3.

5.1. Room Neighborhood

For determining which rooms are adjacent and shall thus be
connected by a room neighbor edge, we assume that two
rooms are adjacent iff they share at least one wall. The task
is to find those walls together with the information which
pairs of rooms are separated by them. The top-left image in
Figure 4 shows the room labeling after the relabeling step.
The process starts with the extraction of plane pairs which
are close enough regarding a given threshold and whose nor-
mals approximately point away from each other (top-right).
A particular plane might belong to more than one room (i.e.
the point set associated with the plane contains points associ-
ated with different rooms; bottom-left). Therefore the point
set of each plane is segmented into point sets belonging to
the individual rooms. For each candidate pair of point sets

Figure 4: Steps of the room neighborhood graph generation.

A and B, the associated points are projected into a common
plane (either of the involved planes may be used) and an ap-
proximate intersection point set is computed by testing for
each point a ∈ A whether there exists a point b ∈ B with
||a− b||2 < thresh (and vice versa). If the number of points
in the approximate intersection set exceeds a given thresh-
old, an edge is inserted and attributed with the information
which plane primitive pair was involved. Note that practice,
more than two detected planes may constitute a wall due to
noise and clutter such that a binning approach is used and a
set of planes is assigned to the room neighbor edge; technical
details have been omitted here for brevity. The bottom-right
image shows the resulting graph for the example.

5.2. Room Connectivity

The opening detection is based on the observation that cer-
tain rays that were cast during the scanning process indicate
the existence of openings in the building’s structure. In par-
ticular, if the origin of a ray (scanner position) is located
in another room than the measured point, there must be an
opening located inbetween the two points. This set of rays is
extracted by considering the point-to-room labels before and
after the relabeling step. If the label of a point x was changed
by the relabeling procedure, the ray which captured x is as-
sumed to pass through an opening. The top-left image in
Figure 5 shows the regions observed by the individual scan-
ners as well as their positions. Note that the “red” room con-
sists of multiple scans which have been merged, however the
original scanner positions are used for ray generation. Let r
be a (laser) ray which measured point x and let roomold(x)
and roomnew(x) denote the room label of x before and after
the relabeling step. If roomold(x) 6= roomnew(x) and there
exists a room neighbor edge e = (roomold(x),roomnew(x)),

Figure 5: Steps of the room connectivity graph generation.
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Figure 6: A failure case of the door detection.

the intersection of r with all planes associated with e is com-
puted. The top-right image shows the positions where these
intersections are located in the example. Because a pair of
rooms may in general be connected by more than one door
(bottom-left), each point set is split into connected compo-
nents using a point distance threshold. Finally, the extracted
point sets are used for approximating the positions and sizes
of the openings. The resulting openings are shown in the
bottom-right image. Note that the aforementioned methods
do not make assumptions on the orientation of planes and
thus not only allow horizontal connections (e.g. doors) but
also vertical connections (e.g. stairways) as long as overlaps
between the respective scans exist.

A failure case of the door detection is shown in Figure
6. The reasons for the missing door are twofold. Firstly, the
door was closed when the scan inside of the “yellow” room
was performed. Because the algorithm only requires rays to
be shot through an opening from one side, it would normally
be able to cope with this situation. However, the other side
of the opening was only scanned from sharp angles and thus
almost no rays were shot through the door.

6. Assignment of Objects to Rooms

We now extend the graph descriptor by information about
objects contained within the individual rooms. By assigning
each extracted object a shape descriptor, we enable example-
based queries for objects in combination with queries for
topological constellations of rooms.

6.1. Extraction of Objects

We now separate objects from broader building structures.
Let R be the set of points associated with room r and let
P =

⋃
p∈P p be the set of points associated with detected

planes. Points belonging to planes are removed from the
room’s set of points, R′ := R \ P. Subsequently, connected
components in R′ are determined, that is two points are as-
sumed to belong to the same component iff their distance is
below a threshold. The point cloud is filtered beforehand by
considering the mean µ and standard deviation σ of the dis-
tance between a point and its k nearest neighbors and filter-
ing out points for which the average distance to its neighbors
lies above µ +ασ where α is a user-defined constant (see
[Rus09]). The obtained segmentation tends to over-segment

the point cloud. However, the object descriptor as described
in the next Section also takes into account combinations of
nearby segments and thus mitigates this problem.

6.2. Object Shape Descriptors

A global shape descriptor is constructed for each of the ex-
tracted object components. Note that we restrict ourselves to
a relatively simple object descriptor in the scope of this pa-
per, but it may easily be exchanged with other kinds of de-
scriptors. The three-dimensional space around an extracted
point subset is segmented into Θ horizontal slices, Φ concen-
tric shells and Ψ sectors. Each descriptor is built around a lo-
cal, vertical axis whose x-y-position is centered at the mean
position of all points associated with the segment. The z po-
sition of the bottom end of the descriptor is set to the previ-
ously determined floor elevation elevr of room r in which the
object is located. The (unnormalized) descriptor D′′o (θ,φ,ψ)
for an object o is defined as

D′′o (θ,φ,ψ) := ∑
x∈(θ,φ,ψ)

1
2φ

, (8)

where x ∈ (θ,φ,ψ) are the points located within the respec-
tive bin defined by slice θ, shell φ, and sector ψ. The nor-
malization factor within the sum accounts for the increase of
volume of shells located farther away from the center. For
values of θ outside of the range [0,Θ−1] or φ outside of the
range [0,Φ−1], the respective parameters are set to the near-
est valid value. Values of ψ outside of the range [0,Ψ−1] are
repeated periodically (modulo Ψ). The bin values are subse-
quently smoothed using a box filter according to

D′o(θ,φ,ψ) := ∑
α,β,γ∈{−1,0,1}

D′′o (θ+α,φ+β,ψ+ γ). (9)

The descriptor is normalized according to

Do(θ,φ,ψ) :=
D′o(θ,φ,ψ)

∑
θ′,φ′,ψ′

D′o(θ′,φ′,ψ′)
. (10)

For comparing two object descriptors Dq and Do, a sym-
metric version of the χ

2 distance is used. In order to enable
rotation invariance along the z-axis, all possible shifts of the
sectors of one of the descriptors are evaluated which yields
the descriptor distance

d(Dq,Do) := argmin
δ∈{0,...,Ψ−1}

(
∑

θ,φ,ψ

(Dq(θ,φ,ψ)−Do(θ,φ,ψ+δ))2

Dq(θ,φ,ψ)+Do(θ,φ,ψ+δ)

)
. (11)

Note that summands with a zero denominator are set to zero.
As pointed out in the previous section, one object may be
separated into multiple components; see Figure 7 for an ex-
ample. To allow matching of complete query objects against
objects which are comprised of multiple segments, addi-
tional object nodes consisting of combinations of up to three
nearby segments are added to the graph (this approach is
loosely based on ideas from [NXS12]). For each combina-
tion of segments, an object node is added to the graph, as-
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Figure 7: Left: A chair consisting of multiple segments. Mid-
dle: One of the segment combinations added to the graph
descriptor. Right: Visualization of descriptor coefficients.

signed its shape descriptor and connected to the respective
room node.

7. Graph Matching, Pruning and Scoring

This Section describes how combined topological and
example-based object queries are performed. A query is
given in form of an attributed graph G = (V,E) consisting
of a set of nodes V (of type storey, room, or object, possibly
attributed with room areas or object descriptors), and a set
of edges E (horizontal/vertical opening, or object edge). For
determining subgraph matches, subgraph monomorphisms
are sought (using the VF2 implementation of the Boost
Graph Library). In general, the types of nodes and edges
must be the same in order to match. In addition, room nodes
in the query graph may be attributed with a minimum and/or
maximum area which must match the target room’s area, if
given. When matching two object nodes, the dissimilarity of
the associated shape descriptors is determined. Other kinds
of hard and soft constraints for nodes and edges are possible,
however for the experiments in this paper we restrict our-
selves to the aforementioned constraints. Apart from binary
compatibility decisions for nodes and edges, we used the ob-
ject dissimilarities for scoring each match. For a match m, let
qi be the object nodes in the query graph and ti the respective
matching nodes in the target graph, then the score is defined
as score(m) := −∑i d(Dqi ,Dti). Because we include pairs
and triples of object segments as object nodes in the graph,
an additional pruning step is performed to avoid matches in
which a particular segment is used multiple times.

8. Evaluation

In this section, we present results on part of a real-world laser
scan of the Risløkka Trafikkstasjon (Oslo). The dataset con-
sists of 33 scans which were merged to 28 room labels. The
cloud was coarsely cropped in order to remove some sur-
rounding clutter like trees, and subsampled such that there is
at most one point within a voxel of 1 cm3, resulting in a total
number of 25.7 million points. Apart from intuitively defin-
ing arbitrary attributed room and storey configurations, our
approach allows to attach certain objects to the room nodes

that are incorporated in the query. To this end, the user may
either select an object that was identified during our segmen-
tation process, or he may also include external mesh models.
In the latter case, the mesh model is uniformly sampled upon
loading in order to obtain a point cloud for which a shape
descriptor is computed as described in Section 6.2. Figure 8
shows exemplary results of subgraph queries on the dataset.
Mesh models were used as the input representation for the
query objects. As can be seen from our preliminary results,
our method on the one hand allows for improved navigation
of the formerly unstructured point cloud data by segmenting
it into storeys and rooms. On the other hand, it also allows
to get a hint on the intended usage of single rooms by iden-
tifying function-related fixtures, see e.g. the detected basin,
which can be used to constitute the base for further genera-
tion of high-level textual room attribution.

9. Conclusion

We presented a holistic approach for the extraction of hi-
erarchical building descriptors purely from 3D indoor point
clouds which incorporate topological and functional proper-
ties of a building. The outlined processing chain is very mod-
ular such that individual parts may easily be exchanged and
improved. The current chain comprises a segmentation of the
point cloud into storeys and rooms which is subsequently
used for determining room neighbors and connections. A
segmentation of the rooms’ point subsets into objects con-
tained within each room further enriches the graph structure
with object shape descriptors. After the building descriptor
has been built, combined queries for room constellations and
contained objects may be performed. The current implemen-
tation allows to include constraints like room area, example-
based object shape and connection type in the queries. Our
approach has been demonstrated on a large-scale real-world
dataset. In the future we want to investigate the relation be-
tween our diffusion-based segmentation and the approach
recently suggested by Mura et al. [MMJ∗13] who used a
GPS embedding suggested by Rustamov [Rus07] which is
also closely related to a diffusion process on a mesh.

10. Acknowledgements

We would like to thank Dag Fjeld Edvardsen from Catenda,
Norway, for providing scans of Risløkka trafikkstasjon, Oslo
as well as Henrik Leander Evers and Martin Tamke for scans
of the Technical University of Denmark, and scans of Kron-
borg Castle, Denmark. This work was partially funded by
the German Research Foundation (DFG) under grant KL
1142/9-1 (Mapping on Demand), and by the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement no. 600908 (DURAARK) 2013-
2016.

c© The Eurographics Association 2014.

91



S. Ochmann & R. Vock & R. Wessel & R. Klein / Towards the Extraction of Hierarchical Building Descriptions from 3D Indoor Scans

Storey

Storey

Room
>80m²

Room

Room

stairs

Room
>80m²

Room

Room
>80m²

Room

Room Room
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