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Abstract
4D multiview reconstruction of moving actors has many applications in the entertainment industry and although
studios providing such services become more accessible, efforts have to be done in order to improve the underlying
technology to produce high-quality 4D contents. In this paper, we enable surface matching for an animated mesh
sequence in order to introduce coherence in the data. The context is provided by an indoor multi-camera system
which performs synchronized video captures from multiple viewpoints in a chroma key studio. Our input is given
by a volumetric silhouette-based reconstruction algorithm that generates a visual hull at each frame of the video
sequence. These 3D volumetric models differ from one frame to another, in terms of structure and topology, which
makes them very difficult to use in post-production and 3D animation software solutions. Our goal is to transform
this input sequence of independent 3D volumes into a single dynamic volumetric structure, directly usable in
post-production. These volumes are then transformed into an animated mesh. Our approach is based on a motion
estimation procedure. An unsigned distance function on the volumes is used as the main shape descriptor and
a 3D surface matching algorithm minimizes the interference between unrelated surface regions. Experimental
results, tested on our multiview datasets, show that our method outperforms approaches based on optical flow
when considering robustness over several frames.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

This paper fits in the RECOVER3D project [LSI∗13] which
context is an integrated virtual video system for the broad-
cast and motion picture markets using multiview reconstruc-
tion. The innovation brought by this project aims at free-
ing the creation of video images from classic material con-
straints linked to multi-camera shooting, thanks to a new vir-
tual cloning system of actors and scenes based on smart 3D
video capture, natively delivering 3D models. Data are gen-
erated from captures in a multiview studio, as illustrated in
figure 1. This set of multi-viewpoint cameras (cyber dome)
generates, for each frame, the digital transcription of the
scene in three dimensions using a volumetric visual hull al-
gorithm [Lau94], producing a sequence of 3D volumes over
time. These volumes are usually transformed into a sequence
of 3D textured meshes, successively loaded for the render-
ing of each frame. Our goal is to introduce a dynamic repre-
sentation of the character, freeing ourselves from this static,
temporally inconsistent description of the scene. We want to
create a single, temporally consistent, animated model fol-

lowing the character’s motion. Our long-term goal is an ap-
proach as generic as possible, allowing us to work on vari-
ous types of scenes: one or several actors, dressed freely and
manipulating accessories, containing close-up shots. These
constraints require the consideration of a method which is
not limited to rigid motion recovery.

To reach this goal, we developed a new method which
uses a feature-based volume tracking to identify the actor’s
motions and then apply a surface matching algorithm. The
input of our method is a sequence of 3D volumes gener-
ated independently one to another. We extract the scene mo-
tion by computing a 3D motion flow from these volumes.
The particularity of our method is to combine two different
types of computations with a back and forth approach: a Eu-
clidean distance transform [ST94] and a choice of comple-
mentary criteria (proximity, orientation and color) that per-
mit to discriminate voxel matching. After the motion flow
is filtered, it is used to match a chosen template mesh (one
of the sequence frames) to the sub-sequent meshes by pairs
of frames, regularized using a mass-spring system in an it-
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erative approach, in order to create a unique mesh that is
animated over time. This method works on generic datasets,
whatever the shape of the reconstructed object or character.

In section 2, a brief overview of recent advances in model
tracking is given. In section 3, our approach is explained,
giving details on the object’s representation (3.1), the mo-
tion extraction (3.2) and the mesh animation process (3.4).
Results are then presented in section 4 showing the quality
of the motion retrieval and its robustness over several frames.

2. Previous work

This section gives a brief overview of the existing techniques
for acquiring a 4D model of moving actors. Multiview re-
construction methods are usually separated into two main
approaches: model-based and model-free.

Model-based reconstruction approaches use a predefined
template model representing an actor, which is most of the
time an articulated mesh of a generic human body, or ob-
tained by another reconstruction method like a 3D scan of
the actor, as in [dAST∗08]. The multiview reconstruction
over time is then proceeded by animating this template, fol-
lowing the movements of the actor during the sequence.
The model is moved according to a set of directives (opti-
cal flow, silhouette matching ...) extracted from the videos.
In [VBMP08] and [GSDA∗09], a skeleton is fitted to the
model to enable the animation. Local deformations are then
performed on the mesh in order to match non-rigid mo-
tions (like clothes or hair). The advantage of these methods
is that they produce temporally consistent animations. The
main problem of this kind of approaches is the very strong
assumption about the scene’s content. Most of the generic
models limit the reconstruction to a single human shape,
even if some methods, like [LSG∗11], allow to represent
several actors. The template model is most of the time lim-
ited in its representation to a set of possible clothes (dresses,
for example, bring failure), or require to be prepared dur-
ing a complex manual step before the multiview acquisition.
These approaches are too restrictive for our goal because we
do not want to make assumptions about the reconstructed
actors. Skeleton-based approaches, especially, could lead to
strong limitations if the reconstruction is proceeded on ac-
tors wearing loose costumes (dresses or coats for example)
or accessories (bags, hats ...).

Model-free methods do not use a template mesh and are
supposed to be more generic. The most commonly used are
based on visual hull (silhouettes) or depth maps (stereo)
reconstruction. The main problem is that these approaches
compute a static reconstruction of the scene at each frame
of the multi-viewpoint videos. Thus, they obtain a sequence
of static 3D objects which represent the successive actors’
poses, but without any consistency in term of structure or
topology. To be used for animation, these sequences need
to be processed and transformed into a single, temporally

consistent, animated object. Starck and Hilton [SH07b] pro-
posed a model-free method based on visual hull and stereo
reconstruction. A spherical parameterization is operated on
the object. This restricts the process to work only on sin-
gle closed surfaces. Cagniart et al. [CBI10] create a dy-
namic patch-based mesh from the first frame and then de-
form it according to the poses described in each frame.
Li et al. [LLV∗12] use mesh correspondences to enhance
high-resolution scan sequences with hole-filling and tempo-
ral consistency. Another common way to establish a tem-
poral consistency is to match the successive meshes. These
mesh-tracking methods compute a matching between the
vertices of two meshes according to curvature or color crite-
ria [SH07a] [VZBH08] [TM10]. This tracking can be used
to compute a motion flow which describes the movements
of the character between two frames [PLBF11]. This motion
flow can also be computed by a scene flow method. A scene
flow, as introduced by Vedula et al. [VBR∗99], is the 3D
equivalent of optical flow, computed by merging the optical
flows of a multi-viewpoint context. It is often used for mo-
tion tracking applications. Anuar and Guskov [AG04] use a
method that adapts optical flow to 3D discrete space, to com-
pute the motion directly in the 3D reconstruction sequence.
The motion flow can then be used to animate a mesh. In the
case of visual hull reconstruction, the meshes may contain
too many inconsistencies (holes and changes in topology
between frames) to proceed a robust matching. Therefore
a volumetric approach is more appropriate, like the method
proposed by Nobuhara and Matsuyama [NM04] which com-
putes a motion flow by matching a volumetric silhouette-
based reconstruction and then uses it to animate a template
mesh. The motion estimation is performed by matching the
voxels of reconstructed discrete volumes. The template is
obtained by a marching cube triangulation of the first frame
volume. However, the motion flows computed in this method
are simply obtained by matching each voxel to the closest
one in another frame, thus producing motion vectors which
lack accuracy.

3. Our Approach

Our input is a sequence of discrete volumes obtained by a
preliminary reconstruction stage, from a set of multiview
video sequences. It represents the character’s pose at each
video frame (see figure 1). Our method starts by computing
a 3D motion flow between two consecutive frames. At this
stage we work on the reconstructed volumes. In the next step
we use these flows to animate a dynamic mesh model. The
reconstructed mesh at the first frame is used as the initial
template model. By deforming it at each frame according to
the estimated flows, we deduce a character’s animation.

3.1. Volumes description

The reconstructed volumes we use are simple binary digi-
tal volumes, a 3D grid of voxels defined by binary values
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Figure 1: An overview of our production process. Our method focuses on the motion flow computation and the mesh animation.

(0 for void voxels and 1 for voxels covering or intersecting
the object). We then compute another representation of these
volumes by using a Euclidean distance transform (EDT),
as described by Saito and Toriwaki [ST94]. We obtain an
unsigned distance volume, represented by a 3D grey-level
voxel grid, as shown in figure 2. Each voxel is associated to
a positive value which corresponds to the Euclidean distance
to the closest boundary of the object. This volume descrip-
tion could be considered as a grey-level 3D picture. Thus, we
can compute a derivative estimation of this picture. It will be
used to compute the normal vectors (see section 3.2.2) and
gradient values. To compute the spatial derivative, we use a
set of Sobel-like filters which estimate around each voxel,
in a 3× 3× 3 window, the EDT variations for each spatial
axis. A temporal derivative is also computed on the same
neighborhood by the differences of the values between two
consecutive frames.

Figure 2: Left: an example of colored reconstructed volume.
Right: a sliced representation of the corresponding EDT.

The last available information is color which can be ex-
tracted from the multiview video frames. We use it to texture
the original volume. Each surface voxel is then associated
with an RGB color (see figure 2, left).

3.2. Voxel matching

Given two consecutive volumes V n and V n+1 which corre-
spond to frames n and n+1, our goal is to compute a match-
ing V n → V n+1 representing the scene flow. We define as
surface voxels the voxels which belong to the object and
have at least one void voxel in their direct neighborhood.
These surface voxels are characterized by an RGB color and
a surface’s normal vector. We want to match each surface
voxel vn

i ∈ V n to another surface voxel vn+1
j ∈ V n+1 mini-

mizing the following distance function:

D(vn
i ,v

n+1
j ) = ωpδi, j +ωnϕi, j +ωcσi, j (1)

where δi, j, ϕi, j and σi, j correspond respectively to a proxim-
ity criterion (see section 3.2.1), an orientation criterion (see
section 3.2.2) and a colorimetric criterion (see section 3.2.3).
ωp, ωn and ωc are weighting terms, fixed by the user. In
our experimentations we used ωp = 1, ωn = 5 and ωc = 10.
These criteria allow to match the voxels which correspond
to the same part of the surface, identified by an orientation
and a texture. In case of large motions, the color is the most
invariant feature. The proximity should only be a discrim-
inating characteristic when several voxels satisfy the other
terms of the distance function.

We define a search radius which corresponds to the max-
imum amplitude of the motion. Thus, this radius strongly
depends on the dataset and must be defined by the user. For
each surface voxel vn

i we look through the surface voxels of
V n+1 contained in this neighborhood and we select the voxel
vn+1

j which corresponds to the smallest result of the function
(1). Figure 3 shows an example of voxel matching. The po-
sitions of voxels vn

i and vn+1
j define a 3D vector. This vector

is added to a vector field at the vn
i position. This vector field

is represented by the same structure as the voxel grid. Each
square could contain one or several vectors. The same op-
eration is repeated, looking this time, for each vn+1

j , for the
matching surface voxel vn

i . The resulting vectors are added
to the vector field at vn

i position. This backward pass allows
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us to find a part of the motion which could have been ig-
nored by the forward matching process (see figure 4, top).
Thus, we ensure that each surface voxel in V n and V n+1 is
associated to at least one vector.

Figure 3: Voxel matching between two consecutive volumes.
The voxel (1) from the V n volume matches better the voxel
(2) from the V n+1 volume than the voxel (3). The neighbor-
ing voxels are represented with their colors. Normal vectors
are figured by arrows.

3.2.1. Proximity criterion

The proximity criterion corresponds to the Euclidean dis-
tance between the two voxels:

δi, j =
∥∥∥pn+1

j −pn
i

∥∥∥
with pn

i and pn+1
j being the 3D positions of vn

i and vn+1
j . This

criterion allows us, if several voxels satisfy the other criteria,
to select the closest one (see figure 8(b)).

3.2.2. Orientation criterion

The orientation criterion measures the difference between
the normal vectors of the two voxels:

ϕi, j = 1−nn
i ·nn+1

j

with nn
i and nn+1

j being respectively the normal vectors at vn
i

and vn+1
j . As illustrated in figure 8(c), this criterion penal-

izes the matching of two voxels which belong to back facing
surfaces. For example, in figure 3, the voxel (1) is matched
with voxel (2) which normal vector has a closer orientation.

3.2.3. Colorimetric criterion

The colorimetric criterion is similar to a block matching al-
gorithm, as used for motion estimation in digital video pro-
cessing. We compare the colorimetric difference between
two voxels as well as between their direct neighborhoods:

σi, j =
∥∥∥vn+1

j − vn
i

∥∥∥
RGB

+
∥∥∥Bn+1

j −Bn
i

∥∥∥
RGB

Bn
i and Bn+1

j are the blocks which correspond to the surface
voxels contained in a neighborhood of fixed size b:

Bn
i =

b

∑
k=1

vn
i+k

if vn
i+k belongs to the surface. This constraint favours the

matching of two voxels which belong to close color blocks
corresponding to the same object’s part (see figure 8(d)).

Figure 4: Top: forward and backward matching between
the two volumes. Bottom: Gaussian filter (in grey) applied to
the raw vector fields (left) and final motion field (right).

3.3. Motion regularization

The voxel matching step results in a 3D vector field which
should describe the motion of the volumetric object between
V n and V n+1. However, several inconsistent matches remain
and the global motion is too irregular to be used. That is
why a smoothing step is performed to get a coherent motion
flow, as shown in figure 4 (bottom). We apply a Gaussian
filter on the initial vector field. For each surface voxel, we
compute a single vector which is an average, weighted by
Gaussian coefficients, of all the vectors in a defined neigh-
borhood. Thus, we obtain a smooth 3D motion field where
each surface voxel is associated with a single motion vec-
tor. This filtering operation cleans the irrelevant vectors and
regularizes the vector set to produce a coherent motion de-
scription where each surface voxel is associated to a single
motion vector. The size of this filter depends on the dimen-
sion of the volumes and must be defined by the user. In our
case, we perform a single filtering iteration, but for high res-
olution volumes, the filter can also be applied several times
to enhance the smoothing effect.

3.4. Mesh animation

In the animation step, the template mesh is immersed in the
motion field and we apply to each vertex the translation de-
fined by the closest vector. Because the result is too irregular
to be used (see figure 10), we once again apply a regular-
ization algorithm, this time to obtain a regular mesh which
corresponds to the pose defined by the visual hull. We con-
sider the mesh as a mechanical mass-spring system. Each
vertex is submitted to a set of forces including:

• spring force: Each incident edge applies a force on the
vertex, to equalize the edges’ length. This force tends to
regularize the vertices distribution.

• smoothing force: A regularization operator, applies a
Laplacian smoothing (umbrella operator) [KCVS98]
which tends to smooth the surface of the mesh.

• matching force: The EDT distance field derivative (see
section 3.1) brings each vertex closer to the object’s sur-
face.
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We use a local Euler integration scheme to resolve this sys-
tem: for each vertex, we apply a semi implicit resolution al-
gorithm, with a fixed neighborhood (we do not change the
position of the other vertices). This operation is applied on
each vertex, that corresponds to one global iteration. We ap-
ply as many global iterations as necessary.

4. Results

Results were tested on two datasets acquired with a dome
similar to the one illustrated in figure 1. The girl dataset
contains simple motions, with a woman slowly moving her
arms. The visual hull volume has a 73× 132× 43 vox-
els resolution and is reconstructed for 30 frames. The boy
dataset is more complex, with a young man walking with
relatively loose clothes, thus with a movement showing large
displacements (due to faster motion and lower acquisition
frequency). The reconstructed volume has a 89× 129× 69
resolution, and the sequence contains 10 frames. All timings
were done on a 64 bit Intel Core i7 CPU 2.20 GHz.

4.1. Evaluation of the motion flow reconstruction

When testing the motion flow on these datasets, we obtain a
satisfying motion field due to the regularization step, where
each surface voxel is associated to a displacement vector
(see figure 5). Figure 7 (left) presents the results for full se-
quence on the girl dataset, for which, the motion between
two frames is computed in less than 10 seconds. We used
a 3-voxel search radius and a single regularization iteration.
Figure 7 (right) shows the tracking of the boy dataset. We
used a 10-voxel search radius and the motion computation
step took 65 seconds.

We compared our approach with our own implementa-
tions of two 3D-adapted optical flow algorithms as presented
in [BT04] : the first one is based on the Lucas and Kanade
method [LK81] like the method described in [AG04], and
the second one on the variational approach by Horn and
Schunck [HS81]. Our tests show that for similar settings,
the Lucas-Kanade approach is faster (less than 5 seconds
for girl, 50 seconds for boy) but displacement vectors are
not oriented correctly (see an example of results in figure
6 (left) for a zoom-in on the girl’s upper body). It was ex-
pected as this kind of image warping approach is not well
suited for large displacements. One common improvement
to avoid this problem would be to implement a coarse-to-fine
computation. The Horn-Schunck algorithm is significantly
slower (5 minutes for girl, 10 minutes for boy) and does not
give convincing results with displacement distances not cor-
responding to the actual movement (see figure 6 (right)). The
Euclidean distance volume, used as a 3D picture, does not
seem to be a good enough information to compute a con-
sistent motion information. Despite of its high algorithmic
complexity, our voxel matching method provides a better
representation of the motion. While it is mostly only possible

to evaluate visually the motion flows, a quantitative evalua-
tion was performed on the mesh itself (see section 4.2) which
confirms our observations on the flows.

4.1.1. Discussion on the chosen parameters

Figure 8 shows the influence of the three criteria (proximity,
orientation, color) for voxel matching, defined by weights
ωp, ωn and ωc (see Eq.(1)), fixed by the user. Figure 8(b)
shows that without the proximity criterion (ωp = 0), most
of the matched voxels are too distant, even if the search ra-
dius is adapted to the motion. The matching could associate
two voxels which seems identical but does not correspond
to the same part of the surface. The same problem appears
if the orientation criterion’s weight (ωn) is set to zero. As il-
lustrated in figure 8(c), most of the voxels are matched with
another voxel which is close but corresponds to a backfac-
ing surface. Figure 8(d) shows the lack of precision in the
matching computed without colorimetric criterion (ωc = 0).
The efficiency of this criterion increases when the volume
is highly textured (i.e., there are lots of variations in the
voxels’ colors). At last, figure 8(e) shows that these crite-
ria do not have the same influence, depending on the dataset
used, and most of the time, different weights are chosen by
datasets. The method presented by [NM04], which uses only
Euclidean distance (means ωn = ωc = 0) is expected to be
even less efficient than results shown with ωn = 0 or ωc = 0.
It is really the combination of the three criteria that improves
the quality of the matching process.

Figure 7: Accumulated motion flows through several frames
of the girl (left) and boy (right) sequences.

4.2. Qualitative evaluation of the mesh animation

After the application of motion vectors’ translations, the
template mesh (see figure 10, left) is altered (see figure
10, middle). After our iterative regularization, we obtain a
smooth and regular mesh which matches the pose at each
frame (see figure 10, right). Several results are represented
in figure 11. The girl mesh processing between two frames
took around 50 seconds. We used 100 global iterations
and 50 local iterations. The first mesh, used as a template,
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Figure 5: Motion field regularization. Left: result of the voxel matching step. Right: vector field after regularization (vectors
are oriented from blue to red).

Figure 6: Left: result for the Lucas-Kanade method. Right: result for the Horn-Schunck method.

Figure 8: Influence of the matching criteria. Results, before and after regularization, of the left hand’s voxel matching: (a) with
ωp = 1, ωn = 5 and ωc = 10, (b) without proximity criterion (ωp = 0), (c) without orientation criterion (ωn = 0), (d) without
colorimetric criterion (ωc = 0), and (e) with all weights set to 1.

Average EDV Average Hausdorff distance
dataset frame Voxel

Matching
Lucas-
Kanade

Horn-
Schunck

Voxel
Matching

Lucas-
Kanade

Horn-
Schunck

girl

2 1.147 1.146 1.145 0.00157 0.00157 0.00157
4 1.154 1.155 1.156 0.00157 0.00157 0.00156
6 1.146 1.148 1.147 0.00167 0.00167 0.00168
. . . . . . . . . . . . . . . . . . . . .
14 1.145 1.148 1.148 0.00184 0.00184 0.00186
. . . . . . . . . . . . . . . . . . . . .
24 1.145 1.142 1.139 0.00175 0.00177 0.00196
. . . . . . . . . . . . . . . . . . . . .
28 1.144 1.134 1.130 0.00191 0.00206 0.00219

boy
1 1.131 1.126 1.117 0.00196 0.00202 0.00329
2 1.126 1.123 1.111 0.00226 0.00224 0.00392
3 1.130 1.132 1.113 0.00244 0.00240 0.00426

Table 1: Mesh matching measurement

contains 11912 vertices. For the boy dataset, we used 120
global iterations, and the template mesh contains 15646 ver-

tices. The mesh processing took 80 seconds. To measure the
matching quality of the deformed template and the target
pose, we used two different metrics:

• The Euclidean distance volume (EDV), which is the dis-
tance between each vertex of the deformed template mesh
with the corresponding voxel. Its minimum is 1 for a ver-
tex belonging to the voxel.

• The Hausdorff distance, which is the distance between
the deformed template and a mesh obtained by visual hull
reconstruction of the same frame (this value is computed
with respect to the diagonal of the bounding box).

We tested the whole process with motion vectors obtained
by our method (voxel matching) and by 3D optical flows
(Lucas-Kanade and Horn-Schunck) with the same mesh reg-
ularization parameters. Results are shown in table 1. The av-
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Figure 9: Evolution of the average Hausdorff distance dur-
ing the girl sequence.

erage values obtained for the EDV are given on the left col-
umn. As expected, the volumetric distance stays stable be-
cause the mesh regularization method tends to push the ver-
tices according to the distance volume gradient. The Haus-
dorff distance is more significant because it really measures
the distance between the transformed template mesh and the
target pose. For both datasets, the Horn-Schunck gives the
worse results. The Lucas-Kanade approach and ours give
similar results for the first frames. However, the results differ
significantly from the real visual hull after several frames.
With Horn-Schunck vectors, the results become inconsis-
tent after 13 frames. With Lucas-Kanade, it stays robust for
23 frames. With our voxel matching approach, we obtain
consistent results during the complete sequence, as demon-
strated by the graph in figure 9.

While our method shows to be robust for the full sequence
of the girl data, it is not for the boy sequence. This dataset is
more complex in its type of movement, and there are signifi-
cant changes in topology which appear frequently (fusion of
the hands and arms with the torso for example). As shown
in figure 11 (bottom), some mesh details are not properly re-
covered, like the stick in the left hand. The validity duration
of the mesh template thus depends on the geometry topol-
ogy changes rather than on the number of frames. When
large topological changes occur, a new pose should be used
as a new template, and the whole processing started again
to continue the animation. We expect this limitation to vary
depending on the volumetric resolution of the input.

4.3. Limitations and future work

In order to restrict the number of topology errors, our goal
is to proceed the reconstruction of the first frame, which is
used as template mesh, with a model’s pose that limits ambi-
guities and using a high quality visual hull method, enhanced
with stereo-based voxel carving. However, the changes in the
topology of objects that could appear during the sequences
are not well supported and may result in inconsistent mo-
tions. Our future implementations will have to integrate an
adaptive shape model which could deal with these topology

Figure 11: Result of the mesh deformation for the girl (top)
and the boy (bottom) sequences for three consecutive frames.
Left: the initial pose used as template model. Middle and
Right: the two following frames. The deformed template is
in grey and the visual hull is superposed in yellow.

modifications, as in the method proposed by Letouzey and
Boyer [LB12] for example. Another issue is the number of
parameters which have to be fixed by the user (weighting co-
efficients for voxel matching and mesh regularization, Gaus-
sian filter radius, and number of iterations) and that may not
be robust for all the sequence. These problems prevent us
from computing efficiently an animation from long and com-
plex sequences. The last limitation is the computation time,
which could be reduced by the use of GPGPU technologies.
Notice that all the processing times concern a simple CPU
implementation. We currently do not use any kind of paral-
lelization.

5. Conclusion

Our method allows us to compute a voxel matching for
motion flow estimation. This correspondence is established
without a priori knowledge about the nature of the volumes,
except that they are of course supposed to represent the same
object and belong to the same sequence. Our mesh defor-
mation process, associated with a vertex regularization step,
leads the mesh from the first frame to the pose defined by the
next frame’s reconstruction, providing a temporally coherent
evolution. Our future work will focus on the identification of
the changes occurring in the topology during the sequence.
It could be argued that working on volumetric input could
lead to approximations. However, this allows us to keep the
input as generic as possible to later be able to transfer the
motion flow to more precise modeling.
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Figure 10: Results of the mesh animation process. Left: template mesh in initial pose. Middle: same mesh after the application
of the motion vectors. Right: final result after mesh regularization.
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