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Abstract

In this paper we present a new method for shape description and matching based on a tree representation built
upon the scale space analysis of maxima of the Autodiffusion function (ADF). The use of the Heat Kernel based
approach makes the method invariant to articulated deformations. By coupling maxima of the Autodiffusion func-
tion with the related basins of attraction, it is possible to link the information at different scales encoding spatial
relationships in a tree structure. Furthermore, texture information can be easily included in the descriptor by
adding regional color histograms to the node attributes of the tree. Dedicated graph kernels have been designed
to evaluate shape dissimilarity from the obtained representations using both structural, geometric and color in-
formation. Preliminary experiments performed on the SHREC 2013 non-rigid textured dataset showed very good
retrieval performances.

Categories and Subject Descriptors (according to ACM CCS): H.3.1 [Computer Graphics]: Information Storage and
Retrieval—Content Analysis and Indexing

1. Introduction

3D shape retrieval is a hot topic in Computer Graphics and
Computer Vision due to the fast growing availability of ac-
quired 3D data and the large number of related applica-
tions, for example, automatic indexing, object recognition
and medical diagnosis. Several approaches have been pro-
posed for this task, and many of these methods demon-
strate good performances in dedicated benchmarks, but there
are still open issues related to the development of methods
that are effective in different specific contexts. For exam-
ple, several algorithms demonstrated good performances for
the retrieval of shapes modified by articulated deformations
[LGB∗11], but they may be not similarly effective when the
deformations relating elements of the same class are not iso-
metric (e.g. partial dilation and stretching, body type vari-
ations). Many of the existing methods also do not handle
directly the use of texture information, and specific bench-
mark for the comparisons of textured shape retrieval have
been proposed only recently [CBA∗13].
In this paper we present a novel framework for 3D ob-
ject retrieval that tries to combine the two main approaches
used to compare non-rigid shapes, i.e. spectral based and
graph based, allowing an easy integration of color informa-

tion in the surface descriptor. Our approach is based on the
Laplace-Beltrami decomposition, but instead of comparing
directly the spectral components it describes shapes through
the topology of the scale space of the Autodiffusion func-
tion [SOG09, GBAL09]. Analyzing the evolution of salient
points (maxima of ADF) across scales together with the as-
sociated basins of attraction, we can generate a tree struc-
ture (TreeSha) that encodes the relationships between struc-
ture with different level of detail in different part of the ob-
ject. Texture information is naturally handled associating a
texture descriptor for each basin of attraction. Preliminary
results demonstrate that the proposed approach is reason-
able and it provides retrieval scores similar to state-of-the-art
methods on existing non-rigid shape retrieval benchmark.

2. Related Work

There is a huge amount of literature related to shape re-
trieval. To have a general overview of the problem and the
related approaches, we can refer to surveys like [TV08] or to
the proceedings of dedicated workshops (e.g. SHREC). Due
to limited space it is not possible to comprehensively discuss
the huge amount of methods recently proposed, instead we
try to summarize some of the most relevant contributions re-
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lated to our technique and to the specific task of deformable
and textured shape retrieval.
To obtain shape retrieval methods that are robust against ar-
ticulated deformations two main classes of algorithms have
been proposed, one based on spectral descriptors and the
other one on graph representations.

Methods based on spectral decomposition are usually
based on the analysis of the eigenvalues of the Laplace-
Beltrami spectrum. ShapeDNA [RWP06] is probably the
best known global descriptor based on this approach, us-
ing simply the normalized truncated sequence of eigenval-
ues. The descriptor is invariant against isometries, but in-
heriting the properties by the spectrum itself it may be not
necessarily robust against body type variations. A method
based on spectral decomposition of geodesic distance matrix
is described in [SHVS12], this approach, coupled with a lo-
cal descriptor, performed very well in the SHREC compari-
son [LGB∗12]. Point descriptors based on Laplace-Beltrami
have been used to characterize globally 3D shapes using the
"bag of words" paradigm [Lav12]. With this approach it is
possible to handle partial matching, but information on spa-
tial point distribution is lost. A framework to include tex-
ture information in a global spectral description is presented
in [KRB∗13].

A relevant number of non-rigid shape retrieval methods
is actually based on medial representations or graph repre-
sentations. Sundar et al [SSGD03] demonstrated the pos-
sibility of matching shapes using the curve skeleton, and
a practical approach for 3D shape matching has been pre-
sented in [LH13]. In [APP∗09] attributed relational graphs
are based on shape segmentation and matched using the
earth mover’s distance. In [GL12] shape retrieval is per-
formed using histograms of a volumetric medial represen-
tation. The method has been extended also to include color
information [CBA∗13].
Reeb Graphs have often been used as descriptor for shape
retrieval [HSKK01]. In [TS05], multiresolution Reeb graphs
based on average geodesic distances have been enhanced
also with texture information (color histograms). A problem
with this approach is to include geometric information in the
topological setting and to link information at different scales.
In [BB13] extended Reeb Graphs are matched using opti-
mized kernels. In [LMS13] a 3D shape is represented as a
graph interconnecting parts that share some spatial relation-
ships, allowing semantic correspondence and classification
of objects’ parts.

An effort towards the optimization of textured shape re-
trieval has been done with the organization of a dedicated
SHREC 2013 track. Retrieval methods performing well on
the proposed dataset are described in [CBA∗13] and in some
case they characterize separately color and shape. On the
same dataset, very good results have been obtained with an
approach using a relevant number of scalar functions defined

on the surface (including color information), encoded in a
persistence homology setting [BCGS13].

In this paper we propose a shape description and matching
technique that is based on the combination of a graph based
and a spectral based approach. The method builds graphs by
analyzing the scale space of the autodiffusion function. The
use of topological information related to the autodiffusion at
different scales should increase the robustness against "body
type" variations, modifying selected spectral components.
Coupling salient points with their basins of attraction and
linking them across scales, we are also able to include natu-
rally geometrical information (spatial relationships between
subparts) and texture information in the tree structure. The
graph-based approach, that relies on salient points, could be
applied to partial matching as well.

3. Method

The main idea of the proposed method is to define a shape
representation based on a graph that encodes the spatial re-
lationships between local maxima of the ADF extracted at
different time scales in its topology and that associates to the
nodes local chromatic and geometric features. In this section
we explain in details the algorithm steps and we briefly de-
scribe the theoretical foundations behind them.

3.1. Salient Point Extraction

Modeling a shape as a compact Riemannian manifold M, the
heat diffusion equation is defined as

(∆M +
∂

∂t
)u(x, t) = 0, (1)

and it describes the heat propagation over the manifold M.
Here, ∆M is the Laplace-Beltrami operator of M, a general-
ization of the Laplace operator applied on Riemannian man-
ifolds, and u(x, t) denotes the heat distribution at point x in
M at time t.
The fundamental solution K(x,y, t) to equation 1 with point
heat distribution u0 = δ(x−y) is called heat kernel. The heat
kernel function K(x,y, t) : M×M×R+

0 → R expresses the
amount of heat transferred from the point y to the point x of
the manifold M after time t.
Using the spectral decomposition theorem the heat kernel
can be defined as

K(x,y, t) =
∞
∑
l=0

e−λl tφl(x)φl(y), (2)

where λl and φl are respectively the lth eigenvalue and
eigenfunction of ∆M , so the heat kernel function can be
computed using the Laplace-Beltrami operator of the cor-
responding mesh. In practice, dealing with surfaces with tri-
angular faces, we applied a well established method to esti-
mate the discretization of the Laplace-Beltrami operator ∆M
called cotangent scheme [PP93].
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As formalized in detail in [SOG09], the heat kernel has sev-
eral relevant properties for the shape analysis. It is invariant
under isometry transformations, it is stable under local per-
turbations and it has a multi scale behavior: for small values
of t K(x,x, t) characterizes the shape properties of a small re-
gion centered in x, the size of the x neighborhood increases
proportionally to the t value meaning that for larger values
of t the function describes more global information of M still
from the point of view of x.
The kernel function K(x,x, t) computed on the same point
x at time t is also known as the Autodiffusion function
ADF(x, t). Its behavior at different t in a normalized scale
is typically used to characterize local shape features that can
be used for point recognition and matching or also to create
global descriptors [SOG09, GBAL09, Lav12].

3.2. Tree Representation

The evolution of the salient points of the Autodiffusion
function at different time values can be analyzed using the
classical scale space theory [Koe84, Lin94].
Our basic assumption is that increasing the value of time
t some local maxima will disappear because they are
created by local high-frequency details (according to Morse
theory [Mil63], there is a "catastrophe" and maxima and
saddles are annihilated). Other one are preserved (even if
they can move along the shape) and this means that we can
consider them more "topologically persistent" [ELZ02].
The evolution of the points gives us information about the
shape, but also the spatial relationships between the points
can be important for shape retrieval. Our idea is therefore
to encode these relationships by connecting disappearing
points with surviving ones, thus creating a graph structure.
This structure can be built by considering that a critical
point that is disappearing for increasing t is spatially
located, immediately after the catastrophe, inside the basin
of attraction of another more persistent critical point. We
build the graph structure by simply linking the disappearing
point with the spatially corresponding persistent one.
Of course, we can not evaluate the salient points evolution
for continuously varying t. We create therefore our graph
structure by joining salient points computed at a few discrete
time samples using, however, the same rule.
In our implementation, we compute the ADF(x, t) for each
vertex x of the input triangulated mesh at ten different values
of t uniformly distributed in the logarithmic scale over the
time interval [tmin, tmax] where tmin = 0.4ln(10)/λ300
and tmax = 4ln(10)/λ2. For t > tmax there is no ap-
preciable variability in the function values, as they are
mainly influenced by the smallest eigenvalue not equal to
zero λ2 and its corresponding eigenvector φ2. For each
t j ∈ {t1 = tmin, t2, . . . , t10 = tmax} ,we extract the local
maxima {mk}t j comparing the ADF of each vertex to the
corresponding values in its 1-ring neighborhood.
We exploit homological persistence [ELZ02] to detect and
delete those local maxima that are due to noise fluctuations

and to compute the basins of attraction of the remaining
reliable local maxima {sk}t j ⊂ {mk}t j . We use the tech-
nique presented in [SOCG10] that is claimed to be stable
under near-isometric deformations and provides a tunable
parameter to define the desired noise threshold. These
basins of attraction create a disjoint partitioning of the mesh
associating a surface patch to each salient point and that can
be used, for example, to give a characterization of the points
related to texture.
Our graph representation is then easily created as follows:

• our nodes are the salient points {sk}t j for j = {1, . . . ,10}.

• Two nodes are connected with an edge only if:

- their corresponding salient points are extracted at
two consecutive time values t j−1 and t j for j ∈
{2, . . . ,10}.

- the salient point extracted at the smaller time value,
t j−1, is located inside the basin of attraction of the one
at t j.

Nodes and edges define a structure characterizing the shape
an that can be easily enriched with several local attributes.
Before describing in more detail the further processing steps,
in order to clarify the presentation, we briefly summarize
some essential notions of graph theory.
A graph G = (V,E) is composed by a set V of elements
called vertices or nodes and a set E of edges connecting
some pairs of nodes. In case the nodes or the edges (or both)
are associated to a weight or a label G is called attributed
graph.
A walk w of length l is a sequence of nodes v1,v2, . . . ,vl+1
where ∃e = (vi,vi+1)∈ E for 1≤ i≤ l. The length l is equal
to the number of edges in the walk.
A path is a walk with no cycles, vi 6= v j with i 6= j∀i, j ∈
{1, . . . , l +1}.
If there exists a walk from any node to any other node in the
graph it is said to be connected. If a connected graph has no
cycles is called tree.
The graph created as described from the multiscale salient
points extraction is then preprocessed in order to simplify
the structure and better encode the relevant information. First
of all, some nodes are removed with a pruning strategy. We
recursively search for what we call the “one-child configu-
ration” (namely when a node both has only one child and
one father and it is the only child of its father) and we delete
that node from the graph. In case of one-child configuration
( illustrated in Figure 1 by nodes 4, 7 and 9 ) the involved
nodes represent the same local maximum that is extracted at
consecutive time values and it is not merged with any other
maxima.
After that, we define a weight for each edge, more precisely
let eab be the edge that connects node na extracted at time
ti and node nb extracted at time t j, the weight w(·) of edge
eab is defined as the difference between the corresponding
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time values extraction of na and nb : w(eab) = |i− j|. In case
w(eab) = 1, there has not been a pruning between nodes na
and nb, meaning that node nb has disappeared at time ti and
its basin of attraction has been merged with the basin of na.
On the other hand, if w(eab) > 1 na and nb represent the
same local maximum and w(eab) indicates a measure of per-
sistence of the implicated local maximum trough the scale
space.
Finally, the salient points extracted at the highest time value
t10 are connected to a new artificial node that represents the
entire mesh, in this way each mesh is actually represented
with a tree.
The steps of the graph creation are illustrated in a toy ex-
ample in Figure 1 using a one dimensional function exem-
plifying the autodiffusion function and only tree time scale
values.

Figure 1: Top: sketch of the scale-space representation of a
one dimensional function f (x), (a) f(x) computed at the ini-
tial scale s1, (b) f(x) computed at an intermediate scale s2
and (c) f(x) computed at the final scale s3, with s1 < s2 < s3.
The local maxima are enumerated and indicated with dia-
mond markers. Bottom: The three steps of the graph defini-
tion: (d) creation of the nodes and the edges, the number in-
side each node indicates its corresponding local maximum;
(e) node pruning, node number 7 has a one-child configura-
tion and it will be deleted; (f) final insertion of the artificial
root node.

3.3. Graph Matching

A mesh is thus modeled as an attributed tree and we have to
define a metric to compare their graph representations.
There exist several techniques to measure the similarity be-
tween two graphs, they can be divided into three main cat-
egories: methods based on graph spectra, methods based on
graph edit distance and methods based on graph kernels. For
a clear general introduction on this topic the reader can refer
to [LCT∗12].
Kernel based methods are well established classification
procedures in the machine learning community. Recently
they have become popular also in shape analysis, both
2D [SRB07, DB08] and 3D [PFJFG10, BB13] and other
branches of the computer vision. Generally speaking, graph

kernels estimate the similarity of a pairs of graphs by com-
paring some graph sub-structures using local kernel func-
tions. A local kernel function expresses the similarity of two
sub-structures by comparing each pairs of elements. These
sub-structures can have different nature, for example they
can be walks [Gär02], shortest paths [BK05] or cyclic pat-
terns [HGW04].
We adopt a technique similar to [BK05] in which a graph
is efficiently represented by its complete set of shortest
paths which can be computed in polynomial time using the
well known Dijkstra [Dij59] or Floyd-Warshall [Flo62] al-
gorithms. As we are dealing with trees, we can exploit the
particular configuration of these graphs in order to improve
the computational efficiency. We decided to compare only a
subset of the shortest paths, namely those starting from the
node root and ending to each node leaf of the trees. In the
following, this set will be called PT .
Graph kernel definition. Let T1 and T2 be two TreeSha
graphs. We define our root-leaves shortest path graph ker-
nel as:

K(T1,T2) = ∑
pi∈PT1

∑
p j∈PT2

kpath(pi, p j) (3)

where pi and p j are the shortest paths from the root to the
leaves of tree T1 and T2 respectively, and the path kernel
function kpath : PT1 ×PT2 → R+

0 is a symmetric and positive
definite function.
Path Kernels. Measuring the similarity between two paths
consists in a sequence of comparisons of corresponding ba-
sic elements of the paths, i.e., nodes and edges. For two paths
pi = (v1,v2, . . . ,vl+1) and p j = (u1,u2, . . . ,ul+1) of equal
length l, let ek and fk be the edges connecting respectively
nodes (vk,vk+1) and (uk,uk+1), the kernel function compar-
ing the paths is defined as:

kpath(pi, p j) =

((
l−1

∏
k=1

knd(vk,uk)ked (ek, fk)

)
knd(vl ,ul)

) 1
l

(4)
where knd is the kernel that measures the similarity between
two nodes and ked is the one applied to edges. In order to
have equal contributions when comparing paths of different
lengths, the resulted product is raised to 1/l.
Instead, for a pair of paths pi and p j with different length the
similarity is set to zero:

kpath(pi, p j) = 0 for li 6= l j (5)

Below, we explain in details the complete set of kernel func-
tions applied to the nodes and the edges of the paths.
Kernel functions on nodes. In our representation, the nodes
of the tree correspond to the salient points extracted from
the mesh. To compare nodes, we use different functions that
characterize the geometry and the texture of these salient
points and their related basins of attraction. Let (vk,uk) be
our pair of nodes to be compared, knd(vk,uk) will be the
product of four different kernels measuring various attributes
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related to the salient points:

knd = kdeg · karea · khLab · kmLab. (6)

The first is the Degree kernel (D), that analyzes the local
structure of the graphs comparing the number of edges inci-
dent to the node, i.e. the node’s degree deg(·) :

kdeg(vk,uk) = e
(deg(vk )−deg(uk ))

2

2σd (7)

By construction each node has only one node-father, there-
fore the deg(·) feature indicates the number of node-
children, corresponding to the number of local maxima ex-
tracted at a lower t value that are located inside the node’s
basin of attraction.
The second kernel is the Area kernel (A), that compares the
geometry of the shapes by measuring the difference between
the areas of the two basins of attraction associated to the two
nodes, indicated by a(·):

karea(vk,uk) = e
(a(vk )−a(uk ))

2

2σa (8)

The area values are normalized by the total area of the cor-
responding shape.
The last two kernels exploit the photometric information
given by the texture of the shape. For a colored mesh, each
vertex is associated to a color value, usually RGB, we con-
vert this data to the CIELab color representation [WS00].
The advantage of using this color space is that the euclidean
distance between two points in CIELab is linearly propor-
tional to the difference of the corresponding colors perceived
in human vision. For each basin of attraction we compute
two color features: a normalized color histogram, that char-
acterizes the color distribution of that particular shape’s re-
gion, and the mean color value m(vk). In the CIELab rep-
resentation, formed by three components (L∗,a∗,b∗), the
lightness described by L∗ is separated to the cromaticity val-
ues (a∗,b∗). In our test, the color quantization is set to 4 bins
for the L∗ component and 8 bins for both a∗ and b∗. As a re-
sult we have a histogram H(vk) of size 4× 8× 8 for each
basin of attraction. The distance between two histograms
is measured using the earth mover’s distance [RTG98], the
comparison between two mean color values is done trough
euclidean distance.
The first photometric kernel is therefore the Histogram ker-
nel (H), defined as follows:

khLab(vk,uk) = e
dEMD(H(vk )−H(uk ))

2

2σh (9)

The second color-based kernel, namely the Mean color ker-
nel (M), measures only distances of average colors in the
corresponding regions:

kmLab(vk,uk) = e
‖(m(vk )−m(uk )‖

2

2σm (10)

Edge Kernel function. We formulate also a further kernel
function that involves the weights of the edges of the graph.
As explained in Section 3.2, the weight w(·) of an edge rep-
resents the persistence value of the related local maximum

Figure 2: Examples of shapes from the SHREC’13 dataset.
Isometric and non isometric transforms are applied with
highly different strengths to base models

according to the scale space t. This kernel, defined as Edge
kernel (E), compares the weights of two edges simply their
Euclidean distance.

ked(ek, fk) = e
‖(w(ek )−w( fk )‖

2

2σe (11)

All the kernel functions described above are gaussian ker-
nels, measuring the similarity in the (0,1) interval and
proved to be positive definite [SS01].

4. Experimental results

We tested our shape description and comparison techniques
on the dataset created for the SHREC’13 track retrieval
on Textured 3D Models. The dataset is composed by 240
watertight textured meshes, with 10 shape classes created
from two base models modified with four spatial transforms
(noise addition, articulated deformation and two kind of non
metric deformations). Each shape class is represented with
different textures so that 33 classes differing for shape and
texture can be identified, 6 classes formed by 4 models and
the remaining one formed by 8 models. Similar textures are
applied to different shapes in order to avoid an easy retrieval
based only on color information.
On these models we computed the TreeSha representation
based on the salient points extracted at the selected scales.
Figure 3 shows salient points with related basins of attrac-
tion computed on two example models and the correspond-
ing tree structures. The structural representation should be
rather robust against noise and deformation, even if the seg-
mentation of the basins of attraction is rough. However, the
use of a very small number of sample values t creates some
problem in the tree structure, as, for example, a few paths
are unexpectedly ended at t > 1. Using a finer time sampling
probably these problems would be removed, at the cost of
an increased computational complexity. The results of the
shape retrieval tests, however, demonstrate that, despite the
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Figure 3: Left: salient points and related basins of attractions at four selected time values samples (t1,t3,t5,t7) on two example
models of the SHREC’13 dataset. Right: the corresponding TreeSha graphs.

rough discretization, the TreeSha structure encodes well the
relevant information.
We compared the results of our retrieval tests with those
of the best performing methods of the SHREC13 contest
and with the results presented in [BCGS13]. The evalua-
tion measures compared are the classical Nearest Neighbor
(NN), First Tier (FT), Second Tier (ST) related to the ra-
tio of models in the query class that also appear within the
top matches (see [SMKF04]), considering only "highly rel-
evant" items, e.g. objects with same shape label and same
textures; and a measure evaluating also the retrieval of cor-
rect shapes with wrong texture ("marginally relevant items")
even if with lower weight: the Average Dynamic Recall
(ADR, see [CBA∗13]).
Table 1 shows the results obtained with our descriptor and a
graph matching procedure including all the graph kernels in-
troduced in Section 3. Our method provides the best results
in all the scores, showing a good ability to discriminate both
shape and texture.
In this experiment the values of the sigma parameters for
each kernel have been set to values that we considered rea-
sonable in order to obtain a good trade-off between strict
selection of similar feature and noise tolerance. The values
chosen were: σd = 3, σa = 256, σh = 256, σm = 64 and
σe = 3. Different choices of the parameters (as well as of
the kernel functions) can clearly change the results, and the
selection of kernel types and parameters for our attributed
graphs is surely an interesting topic for further research.
An interesting aspect of the proposed method is that we ac-

tually used a limited number of features (and related graph
kernels) to describe the textured shapes: Histogram (H),
Area (A), Mean color (M), Degree (D), Edge (E).
The Histogram kernel (H) is, as expected, the one provid-
ing the best retrieval scores if used independently, encoding
both structural and color information. The use of the other
kernels, however, improves the performances and reaches
the scores reported in Table 1. Figure 4 shows the different

Run NN FT ST ADR
A2 0.508 0.561 0.730 0.380
Gi 0.788 0.658 0.748 0.470
G2 0.898 0.733 0.893 0.508
V2 0.879 0.764 0.904 0.520

PHOG 0.951 0.773 0.899 0.534
TreeSha 0.958 0.791 0.906 0.601

Table 1: Retrieval performances obtained with the TreeSha
representation and the complete graph kernel described in
Section 2, compared with the scores of the best performing
methods in the SHREC ’13 contest (A2,Gi,G2,V2) and with
the PHOG method.

scores obtained by combining differently the tested kernels.
It is clear that different functions could have been tested and
that specific kernels and kernel combinations could be de-
veloped and customized for specific applications. For exam-
ple, the spectral signatures on critical points (or averaged
over basins of attraction), the geodesic distances on paths,
the scalar values on geodesic paths could be used as well,
and we plan to test their use as future work.
The selection of the optimal kernel for the specific tasks

H HA HAM HAMD HAME HAMDE
0.5

0.6

0.7

0.8

0.9

1

 

 

NN

FT

ST

ADR

Figure 4: Retrieval scores (Nearest Neighbor, First Tier,
Second Tier, Average Dynamic Recall) obtained with differ-
ent combinations of the kernels: Histogram (H), Area (A),
Mean (M), Degree (D), Edge(E).
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depends on the kind of shape and texture discriminations re-
quired by the application. To understand, for example, where
our kernels perform well, we can have a look on the results
obtained on different shape classes. Figure 5 shows the aver-
age precision-recall plot and a few selected precision-recall
plots for specific shape/texture categories. It is possible to
see that the method is less effective for shapes with flat parts
where the regions extracted with the basins of attraction are
less stable. This behavior is visible also in the tier matrix rep-
resented in Figure 6, where Nearest Neighbors (black), First
Tier results (red) and Second Tier results (blue) are plotted
against query objects.

Figure 5: Precision vs. recall plots for four example single
classes and averaged on all classes.

Figure 6: Tier image representing retrieved objects for
each query object. Nearest Neighbor (NN) are represented in
black, First Tier in red, second Tier in blue. Tables and chairs
are the maximally critical shape classes for our method.

The proposed method has been implemented in MAT-

LAB, the experiments have been run on a Intel QuadCore
with 2,8Ghz. During the creation of the TreeSha graph for a
single mesh the most time consuming steps of the algorithm
are the salient points extraction and the computation of the
basins of attraction that together take about 300 sec. for a
mesh with 15000 vertices. On average, the obtained Tree-
Sha graphs have 160 nodes of which 100 are leaves nodes,
the mean time for the computation of the Graph Kernel for
a pair of shapes is 0.48 sec. , for the whole dataset it took
about 235 min.

5. Conclusions

We presented a novel method to characterize 3D textured
shapes based on a combination of spectral and graph-based
techniques. The advantage of our method with respect to
other techniques using multiscale graph representation is
that our graph links spatially the structures extracted at dif-
ferent levels of detail in a natural way. Being based on the
Laplace-Beltrami spectrum, our method inherits its good
features (isometric invariance) and limitations (sensitivity to
topological noise).
The creation of the TreeSha tree structure is clearly subject
to noise and problems related to the effect of non metric
transforms, and to the quite coarse discretization of the time
interval done in our test. However, being the information en-
coded quite rich and using optimally selected kernel func-
tions to match the graphs, the results obtained in a challeng-
ing shape retrieval test are quite good. These results could
be probably improved by using a finer sampling of the scale
space and by adding other attributes to both nodes and edges
of the TreeSha structure together with the corresponding
graph kernels for comparison. We plan to test these improve-
ments as future work and to apply the same technique to dif-
ferent problems for which we expect it should be suitable,
such as partial matching (in this case, however, the method
should be changed to preserve scale invariance [BK10]).

Acknowledgment Thanks to Davide Boscaini and Um-
berto Castellani for useful discussions.
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