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Abstract
Recently, a lot of research has been dedicated to address the problem of facial expression recognition in dynamic
sequences of 3D face scans. On the contrary, no research has been conducted on facial expression retrieval
using dynamic 3D face scans. This paper illustrates the first results on the area of dynamic 3D facial expression
retrieval. To this end, a novel descriptor is created, namely GeoTopo, capturing the topological as well as the
geometric information of the 3D face scans along time. Experiments have been implemented using the angry,
happy and surprise expressions of the publicly available dataset BU − 4DFE. The obtained retrieval results are
very promising. Furthermore, a methodology which exploits the retrieval results, in order to achieve unsupervised
dynamic 3D facial expression recognition, is presented. The aforementioned unsupervised methodology achieves
classification accuracy comparable to the supervised dynamic 3D facial expression recognition state-of-the-art
techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—I.3.5
[Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object rep-
resentations H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Retrieval models

1. Introduction

Facial expressions are generated by facial muscle move-
ments, resulting in temporary deformation of the face. In
recent years, automatic analysis of facial expressions has
emerged as an active research area due to its various appli-
cations such as human-computer interaction, human behav-
ior understanding, biometrics, emotion recognition, com-
puter graphics, driver fatigue detection, and psychology. Ek-
man [EF78] was the first to systematically study human fa-
cial expressions. His study categorizes the prototypical facial
expressions, apart from neutral expression, into six classes
representing anger, disgust, fear, happiness, sadness and sur-
prise. This categorization is consistent across different eth-

† This research has been co-financed by the European Union (Eu-
ropean Social Fund - ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the Na-
tional Strategic Reference Framework (NSRF) - Research Funding
Program: THALES-3DOR (MIS 379516). Investing in knowledge
Society through the European Social Fund.

nicities and cultures. Furthermore, each of the six aforemen-
tioned expressions is mapped to specific movements of facial
muscles, called Action Units (AUs). This led to the Facial
Action Coding System (FACS), where facial changes are de-
scribed in terms of AUs.

The recent availability of 4D data‡ has increased research
interest in the field. The first dataset that consists of 4D facial
data was BU − 4DFE, presented by Yin et al. [YCS∗08].
BU − 4DFE was created at the University of New York at
Binghamton and was made available in 2006. It involves 101
subjects (58 females and 43 males) of various ethnicities. For
each subject the six basic expressions were recorded. The
Hi4D−ADSIP dataset was presented by Matuszewski et al.
in [MQS∗12]. The dataset was created at University of Cen-
tral Lancashire and is not available yet. It contains 80 sub-
jects (48 females and 32 males) of various age and ethnic

‡ 4D will refer to 3D + time (dynamic 3D); each element of such a
sequence is a 3D frame.
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origins. Each subject was recorded for seven basic expres-
sions (anger, disgust, fear, happiness, sadness, surprise and
pain). Finally, Yin et al. [ZYC∗13] presented the EAGER
dataset in 2013 to the research community. This dataset con-
tains high-resolution spontaneous 3D dynamic facial expres-
sions. It involves 41 subjects (23 females and 18 males) of
various ethnicities. Each of the aforementioned datasets are
accompanied by a number of facial landmarks marked on
each 3D frame. Table 1 illustrates the publicly available 4D
facial expression datasets.

A lot of research has been dedicated to address the prob-
lem of facial expression recognition in dynamic sequences of
3D face scans. On the contrary, to the best of our knowledge,
no research on facial expression retrieval using dynamic 3D
face scans appears in the bibliography. This paper illustrates
the first results on the area of 4D facial expression retrieval.
To this end, a novel descriptor is created, namely GeoTopo,
capturing the topological, as well as, the geometric infor-
mation of the 3D face scans along time. Experiments have
been implemented using the angry, happy and surprise ex-
pressions of the publicly available dataset BU−4DFE. The
obtained retrieval results are very promising. Furthermore,
a methodology which exploits the retrieval results, in order
to achieve unsupervised 4D facial expression recognition, is
presented. The aforementioned methodology achieves clas-
sification accuracy comparable to the supervised 4D facial
expression recognition state-of-the-art techniques.

The remainder of the paper is organized as follows. In
Section 2, previous works on the field of 4D facial ex-
pression recognition are reviewed. In Section 3, the new
GeoTopo descriptor is explicitely described and the pro-
posed retrieval methodology is illustrated. In Section 4, the
experimental results of the proposed methodology are pre-
sented and discussed. Finally, conclusions are drawn in Sec-
tion 5.

2. Related Work

Due to the lack of previous work in 4D facial expression
retrieval, the current section deals with recognition; how-
ever we concentrate on the descriptors and the 4D repre-
sentation used, which are also related to the retrieval pro-
cess. 4D video facial expression recognition methodologies
will be reviewed and categorized based on the dynamic face
analysis approach that they use. Dynamic face analysis en-
ables robust detection of facial changes. Dynamic face anal-
ysis approaches can be divided into four categories: tempo-
ral tracking of facial landmarks, temporal tracking of facial
critical points, mapping 3D facial scans onto a generic 3D
face model and, finally, analyzing different facial surfaces in
order to detect temporal facial changes.

2.1. Landmark Tracking-based Methods

Landmark tracking-based techniques aim to track areas
around facial landmarks along 3D frames. Then, they detect
temporal changes on geometry characteristics of the areas
using appropriate features.

In [CVTV05], a 2D tracker was employed and the facial
model’s projection was warped by 22 tracked feature points.
The depth of a vertex was recovered by minimizing the dis-
tance between the model and the range data. Lipschitz em-
bedding embeds the normalized deformation of the model
in a low dimensional generalized manifold. For classifica-
tion, a probabilistic expression model was learned on the
generalized manifold. In [RCY08], the composition of the
descriptor and the classifier are the same as in [CVTV05]
but in [RCY08] the 2D face texture is generated using a con-
formal mapping and model adaptation algorithm. The pro-
posed coarse to-fine model adaptation approach between the
planar representations was used and the correspondences are
extrapolated back to the 3D meshes. A Linear Discriminant
Analysis (LDA) classifier is implemented for the classifica-
tion process. In [SCRY10], another version of [RCY08] is
presented. Instead of a LDA classifier, a spatio-temporal Hid-
den Markov Model (HMM) is implemented. The HMM in-
corporates 3D surface feature characterization to learn the
spatial and temporal information of faces. In [SRY08], an
Active Appearance Model (AAM) was implemented in or-
der for 83 key landmark vertices to be tracked through the
3D sequence. Radial basis functions are used to adapt the
generic model to the range facial model. Each adapted ver-
tex is assigned one of eight possible primitive surface labels,
by exploiting its principal curvature. Thus, a range model is
represented by a label map composed of all vertices’ labels
in the facial region. LDA is used to project the range model
to an optimal feature space. For classification, a HMM clas-
sifier is used. The method presented in [SRY08] was taken a
step further in [SY08], where radial basis functions are used,
after positioning of the landmark vertices, in order to adapt
the generic model to the range facial model. This method is
more focused on facial expression recognition and less on
facial AUs recognition. In [TM09] an Active Shape Model
(ASM) is built in order for 81 3D facial landmarks to be se-
lected. The ASM is then fitted onto the data using the gradi-
ent information in the neighborhood of each landmark. The
feature vectors combine geometric information of the land-
marks and the statistics on the density of edges and curvature
around the landmarks according to the FACS. In [TM10], an
improved version of [TM09] is presented. This version is
more focused on facial expression rather than facial action
units recognition. It implements more classification rules
achieving better classification accuracy than [TM09]. Fi-
nally, in [CSZY12], 3D landmark tracking is applied and the
tracked landmarks are used for curvature-based feature ex-
traction. For classification, a Support Vector Machine SV M
classifier is exploited.
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DATASET YEAR SIZE CONTENT LANDMARKS
BU−4DFE [YCS∗08] 2008 101 subjects 6 basic expressions 83 facial points

Hi4D−ADSIP [MQS∗12] 2012 80 subjects 7 basic expressions 84 facial points
EAGER [ZYC∗13] 2013 41 subjects 27 AUs 83 facial points

Table 1: Publicly available 3D video facial expression datasets.

2.2. Critical Point Tracking-based Methods

Critical points tracking-based techniques aim to track 3D
model key points along 3D frames. Then, they detect tem-
poral changes on spatial characteristics that are defined by
these facial points and not by entire facial areas.

In [BDBP12a], automatic selection of points on the nose,
eyes and mouth using z-buffers takes place. A face in a
3D frame is represented by computing and averaging dis-
tances between the detected facial points. These distances
are then normalized, quantized and summed in a final de-
scriptor. HMM is used for system training and classifica-
tion. In [JLN∗12] use critical points, providing a 3D shape
for each frame, are initially estimated using Constrained Lo-
cal Models (CLM) method. Then, the rigid transformation
is removed from the 3D shape acquired and it is projected
to 2D. Procrustes normalization is applied on the 2D pro-
jections. For the classification task, the differences between
the features of the actual shape and the features of the first
(neutral) frame, were used for further normalization before
SV M-based multi-class classification takes place.

2.3. 3D Facial Model-based Methods

Facial deformation-based techniques aim to generate de-
scriptors based on the facial temporal deformations which
occur due to facial expressions.

In [YWLB06], a tracking 3D model for estimating motion
trajectories, which are used to construct a spatio-temporal
descriptor called facial expression label map (FELM), is
proposed. The tracking model is first aligned to the 3D face
scan, and then deformed to fit the target scan by minimiz-
ing an energy function. The FELM vector and the motion
vector are concatenated to form the descriptor, which be-
comes the input to a LDA classifier. In [SZPR11], free form
deformations are used in order to find a vector field reflect-
ing facial motion. Next, 2D feature extraction takes place
for every frame. All derived features are concatenated into
one feature vector per frame in the image sequences, and
these are used for classification. For classification, a HMM
is used. In [SZPR12], a similar approach is adopted. This
approach focuses on the facial regions which present the
greatest amount of motion. The classification process in en-
riched by using GentleBoost (GB) classifiers in addition to
HMM. In [FZSK11], a mesh matching procedure, based on
facial vertex correspondence, is applied. Procrustes analy-
sis is used to determine the correspondence transformation.

To construct the final descriptor, the pixels of an image are
labeled by thresholding each pixel’s neighborhood with the
center value. The results are translated into binary numbers,
which codify local patterns of different types and are ac-
cumulated in a histogram over a predefined region. Tem-
poral evolution is also considered. This histogram essen-
tially becomes the descriptor of the region and the whole
image can be described by a concatenation of such his-
tograms. In [FZO∗12], an enriched version of [FZSK11] is
proposed. This version improves the face registration pro-
cedure. In [ZRY13], a new 4D spatio-temporal Nebula fea-
ture is proposed. Given a spatio-temporal volume, the data is
voxelized and fit to a cubic polynomial. A label is assigned
based on the principal curvature values, and the polar angles
of the direction of least curvature are computed. The labels
and angles for each feature are used to build a histogram for
each region of the face. The concatenated histograms from
each region construct the final feature vector. For the classi-
fication procedure the LDA classifier is implemented.

2.4. Facial Surface-based Methods

Facial surface-based techniques extract facial surfaces on
different face depth levels. The final descriptor is generated
by estimating the intersection along time between the face
and each surface.

In [LTH11], facial level curves on the Z axis are created,
at different heights h. Every facial point at height h belongs
to the corresponding curve. Comparison between same level
curves leads to a distance vector (descriptor) for each frame.
The descriptors corresponding to individual frames are com-
bined to create an augmented vector. Principal Component
Analysis (PCA) and LDA are used to decrease the dimen-
sionality of the descriptor and a HMM is employed for clas-
sification. In [DBAD∗12], a new Deformation Vector Field
(DV F) descriptor is proposed. The facial surfaces are rep-
resented by a set of parameterized radial curves emanating
from the tip of the nose, which defines the novel descriptor.
Then, a LDA-based transformation is used for dimensional-
ity reduction. Finally, the Multiclass Random Forest (MRF)
learning algorithm is exploited for the classification process.

3. Methodology

As discussed in Section 2, the large part of existing
works on 4D facial expression analysis rely on facial land-
marks/critical points, accurately identified on the face sur-
face, in order to build the corresponding descriptors. The
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detection of these landmarks/critical points should be per-
formed automatically, so that the resulting descriptor can
also be automatically applicable, potentially in real-time.

The 3D model-based dynamic face analysis approaches
have a major disadvantage. They cannot operate reliably
when pose variation is presented along the dynamic 3D se-
quence of the expression. Because of this, the majority of the
dynamic face analysis approaches are based on the detection
of 3D landmarks/critical points along time frames. Facial ex-
pressions are closely linked to the positions of key-points of
the face at given times. These approaches achieve acceptable
classification accuracies.

Furthermore, the development of the FACS [EF78] gives a
promising prospect for any future approaches. This system,
which was introduced by psychologists to describe the vari-
ous facial movements in terms of AUs (see Figure 1), has not
yet received the attention it deserves in the field of 4D facial
expression analysis.

Figure 1: The basic AUs as illustrated in Ekman’s work.

The aformetioned reasoning led to the creation of the
GeoTopo descriptor. This spatio-temporal descriptor cap-
tures and combines facial geometric (based on curvatures)
and topological (based on FACS AUs) information. It is a
based on both landmark and critical point-tracking face anal-
ysis. In our work we will use the more general term ”land-
marks” to refer to both landmarks and critical points. To this
end, eight facial landmarks, tracked on the 3D facial scans,
are exploited (see Figure 2). More specifically, four land-
marks for the eyes, two for the mouth, one for the nose and
one for the chin are used. The focus of our work is on the
descriptor creation rather than the tracking process. That is
why, we have used the landmarks provided by BU − 4DFE
dataset which were determined using the active appearance
model technique [YCS∗08]. The number of landmarks used
here is less than the number that is usually utilized by the
state-of-the-art techniques.

3.1. The GeoTopo Descriptor

The proposed descriptor captures geometric, as well as,
topological information, which is achieved by the concate-

Figure 2: 8 facial landmarks used for the creation of
GeoTopo descriptor.

nation of two separate sub-descriptors, one expressing the
facial geometry and one the facial topology.

The geometric part of the GeoTopo descriptor is a sim-
ple 2D function (G), as illustrated in equation 1. Function G
represents the maximum curvature of the j-th landmark (L j)
in the i-th 3D frame ( f ramei).

G(i, j) = MaximumCurvature( f ramei,L j) (1)

The topological sub-descriptor is also a 2D function (T ),
as illustrated in equation 2. Function T represents the value
of the j-th feature, related to one or more AUs, in the i-th
3D frame. Ten features are selected in total. One of them
is angular, four are areas and five express distances on the
face. The calculations of the values of these ten features are
performed using exclusively the 3D coordinates of the eight
tracked landmarks (LMs) on each 3D time frame.

T (i, j) =


Anglei, j(LMs) : j = 1
Areai, j(LMs) : j ∈ {2, . . . ,5}
Distancei, j(LMs) : j ∈ {6, . . . ,10}

(2)

Each facial expression can be deconstructed into specific
AUs, as illustrated in Table 2. There is a correspondence
between each facial muscle and a number of AUs. The ac-
tual type of the AU is determined by the muscle tempo-
ral movement. Each of the ten selected features is directly
related to one or more AUs of FACS, as illustrated in Ta-
ble 3. MEAN stands for the mean of two 3D points X , Y :
MEAN(X ,Y ) = X+Y

2 . The features have been selected in
such a manner as to express the temporal motion of the AUs
of the eyes, mouth and cheek. Moreover, according to the
experimental results, these facial features are sufficient to
distinguish the three expressions. In order to calculate the
angle Ang, formed by three 3D points X , Y , Z, the following
formula is used:

Ang = arctan(|(D1×D2)|− (D1 ·D2))

where D1 = X−Y , D2 =Y −Z and arctan, | |,× and · stand
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for the arctangent, 2nd order norm, cross product and dot
product respectively. For the calculation of the area formed
by three 3D points, Heron’s formula is used. Finally, for the
calculation of facial distances, the euclidean distance is used.
Figures 3, 4 and 5 illustrate the mapping of the selected ten
features on a 3D face scan.

FACIAL ACTION
EXPRESSION UNITS

Angry AU4 + AU7 + AU23
Disgust AU9 + AU14 + AU15

Fear AU1 + AU5 + AU20 + AU25
Happy AU6 + AU12

Sad AU1 + AU15 + AU17
Surprise AU1 + AU5 + AU26

Table 2: Facial expressions deconstruction into AUs.

AU DESCRIPTION FEATURE FEATURE FEATURE
CODE TYPE VALUE

AU1: Inner Brow Raiser #1 Angle ̂L2,MEAN(L2,L3),L5

AU4: Brow Lowerer #1 Angle ̂L2,MEAN(L2,L3),L5

AU5: Lid Raiser #2 Area

AREA︷ ︸︸ ︷
L1,L2,L5 or

AREA︷ ︸︸ ︷
L3,L4,L5

AU6: Cheek Raiser #3 Area

AREA︷ ︸︸ ︷
L1,L5,L6 or

AREA︷ ︸︸ ︷
L4,L5,L7

AU7: Lid Tightener #2 Area

AREA︷ ︸︸ ︷
L1,L2,L5 or

AREA︷ ︸︸ ︷
L3,L4,L5

AU9: Wrinkler #6 Distance MEAN(L2,L3),L5
AU12: Lip Corner Puller #7 Distance L1,L6 or

L4,L7

AU14: Dimpler #4 Area

AREA︷ ︸︸ ︷
L6,L7,L5

AU15: Lip Corner Depressor #7 Distance L1,L6 or
L4,L7

AU17: Chin Raiser #5 Area

AREA︷ ︸︸ ︷
L6,L7,L8

AU20: Lip Strecher #8 Distance L6,L7
AU23: Lip Tightener #8 Distance L6,L7
AU25: Lips Part #9 Distance L5,L8
AU26: Jaw Drop #9 Distance L5,L8
Normalization Distance #10 Distance L1,L8 or

L4,L8

Table 3: Connecting AUs with mathematical features for
GeoTopo descriptor.

The concatenation of the aforementioned sub-descriptors,
as illustrated in equations 1 and 2, produces the final
GeoTopo descriptor.

3.2. Comparison between GeoTopo Descriptors

For the comparison between GeoTopo descriptors corre-
sponding to different 4D data (query vs database descrip-
tors), the Dynamic Time Warping (DTW ) [SC07] algorithm
was implemented. DTW is extremely efficient as a time-
series similarity measure which minimizes the effects of

Figure 3: Angle feature used for expressing AU1, AU2, AU4.

Figure 4: Area features used for expressing (a) AU5 and
AU7, (b) AU6, (c) AU14, (d) AU17.

shifting and distortion in time by allowing "elastic" transfor-
mation of time series in order to detect similar shapes with
different phases. Given two time series X = (x1,x2, . . . ,xN)
and Y = (y1,y2, . . . ,yM), N and M are positive integers, rep-
resented by the sequences of values DTW yields optimal so-
lution in O(M ·N) time. The closer to zero a returned DTW
comparison value is, the more similar the two compared de-
scriptors are, and thus, the more similar the two facial ex-
pressions. The retrieval results, using GeoTopo descriptor,
are very encouraging and are presented in the following sec-
tion.

4. Experimental Results

The dataset we used to conduct our experimets is BU −
4DFE. It was presented by Yin et al. [YCS∗08] and was
the first dataset consisting of faces recorded in 3D video.
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Figure 5: Distance features used for expressing (a) AU9, (b)
AU12 and AU15 (c) AU23 and AU24, (d) AU27, (e) Normal-
ization distance, (f) overall AUs.

It involves 101 subjects (58 females and 43 males) of var-
ious ethnicities. For each subject the six basic expressions
(angry, disgust, fear, happy, sad and surprise) were recorded
gradually from neutral face, outset, apex, offset and back to
neutral, using the dynamic facial acquisition system Di3D
(www.di3d.com) and producing roughly 60,600 3D face
models (frames), with corresponding texture images. Each
basic expression 3D video sequence lasts about four sec-
onds. The temporal resolution of the 3D videos is 25 f ps
and each 3D model consists of approximately 35,000 ver-
tices. Finally, each frame is associated with 83 facial land-
mark points. In Figure 6, examples of BU − 4DFE dataset
are illustrated.

It should be noted that the facial data constituting the
dataset are of good quality. However, inconsistencies are
exhibited. Specifically, although in the database description
[YCS∗08], the authors state that each sequence contains an
expression performed gradually from neutral appearance,
low intensity, high intensity, and back to low intensity and
neutral, it is not the case for some of the sequences (see
Figure 7). Moreover, some videos contain corrupted meshes
(see Figure 8) or they have obvious discontinuity. Finally,
there are meshes that have spike shaped reconstruction ar-
tifacts around their borders. So, it is obvious that further

improvement of the quality is a matter of significant impor-
tance. Berretti et al. [BDBP12b] presented a methodology in
this direction, especially focusing on 3D static and dynamic
facial data.

Figure 6: Example of BU−4DFE dataset including texture
images and 3D models: (a) anger, (b) happiness, (c) sur-
prise.

Figure 7: Initial frames from BU−4DFE dataset sequences
in which the subjects do not start with a neutral expression.

Figure 8: Illustration of corrupted frames in the BU −
4DFE dataset.

Experiments have been implemented using the angry,
happy and surprise expressions of the publicly available
dataset BU − 4DFE. Only the dynamic 3D sequences were
used and not the corresponding textures. It should be pointed
out that, although there are dynamic 3D sequences contain-
ing serious artifacts (some subjects do not start with a neu-
tral expression or express dual emotions and some sequences
contain corrupted meshes or present obvious discontinu-
ities), no manual corrective removals took place. Three ex-
pressions for all 101 subjects of the dataset were used. Thus,
303 dynamic 3D sequences, or over 30,300 3D frames were
processed (each sequence consists of more than 100 3D
frames). In all tests, the Leave-One-Subject-Out approach
was employed.
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Distance, angle, area and curvature values of the
GeoTopo descriptor are weighed so that bigger weights cor-
respond to landmarks around the mouth and eyes. The actual
weights were experimentally determined and are given in Ta-
ble 4. This table illustrates each feature inner weights (the
weight of each angle, area, distance and landmark curvature)
as well as the total weight of all angles, areas, distances and
curvatures. Distance, angle and area values weigh more than
curvature values, while distances outweigh all other values.
In order to combine these values, L1, L2 and Lg fusions are
used resulting in a new weighted mixed fusion.

WEIGHTS FEATURE INNER FEATURE TOTAL
WEIGHTS WEIGHT

ANGLES 1 0.2
AREAS 0.1 0.3 0.3 0.3 0.25

DISTANCES 0.1 0.275 0.175 0.275 0.175 0.35
CURVATURES 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.2

Table 4: Feature weights in GeoTopo descriptor.

Several parameters had to be determined in order to con-
duct the experiments. Initially, descriptor normalization took
place. Normalization sets the feature values of the GeoTopo
descriptor in the interval [0,1] and was implemented sep-
arately for angles, areas, distances and curvatures. Then a
subtraction scheme was implemented; the descriptor values
are not used as absolute values corresponding to the current
time frame, but as differences of the current from the ini-
tial time frame. Next, the time window (T -window), which
indicates the width of the neighboring (following and previ-
ous), 3D time frames that affect the current frame, should be
defined. T -window value equal to 1 indicates that each 3D
time frame is independent from other neighboring 3D time
frames.

In Table 5 the retrieval evaluation metrics achieved by the
GeoTopo descriptor, with respect to the T -window, are illus-
trated. In Figure 9 the precision-recall diagrams, with respect
to the T -window, are presented. The best results are achieved
for T -window equal to 1, but in general, the retrieval method
is insensitive to T -window changes, as the results remain the
same for T -window values higher than 4. The retrieval eval-
uation values are very promising, as they are all close to 1
and above 0.7.

T-WINDOW NN 1st TIER 2nd TIER DCG
1 0.88 0.74 0.9 0.89

(≥) 4 0.88 0.73 0.9 0.89

Table 5: Retrieval evaluation for GeoTopo on BU − 4DFE
(3 expressions).

Besides retrieval, GeoTopo descriptor can be used in or-
der to implement 4D facial expression recognition. This also
allows our method to be compared against state-of-the-art
methods whose performance is evaluated in terms of classifi-
cation accuracy. Compared to the existing 4D facial expres-
sion approaches, the process illustrated here is completely

Figure 9: Precision-Recall diagram for GeoTopo on BU −
4DFE (3 expressions).

unsupervised but remains comparable in terms of classifica-
tion accuracy.

To achieve 4D facial expression recognition, by exploiting
the 4D facial retrieval results of the GeoTopo descriptor, is
straightforward. A k-NN classifier based on the retrieved re-
sults is used. In Table 6 the classification accuracies achieved
by the GeoTopo descriptor, with respect to the variable k of
the classifier, are outlined.

k CLASSIFICATION
ACCURACY (%)

3 96.67
5 93.33
10 93.33
15 96.67
20 96.67

Table 6: Classification accuracies for GeoTopo on BU −
4DFE (3 expressions).

Table 7 summarizes state-of-the-art methods on 4D fa-
cial expression recognition for 3 expressions from the BU−
4DFE dataset. It should be pointed out that Berretti et
al. [BDBP12a] use a new automatic method for tracking
their own landmarks instead of using the ones provided
by BU − 4DFE dataset. The remaining two methods illus-
trated in Table 7 do not use critical points or any other land-
marks to achieve expression recognition. In addition, Le et
al. [LTH11] method (highlighted with italic on Table 7) use
the sad instead of angry expression, for conducting their
experiments. Finally, it is important to be mentioned that
the classification accuracies shown at the table have been
achieved after supervised recognition. Our method achieves
unsupervised recognition. It can be concluded that the results
of our unsupervised recognition outperform the supervised
recognition results of state-of-the-art techniques.
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METHOD NUMBER OF CLASSIFICATION
EXPRESSIONS ACCURACY

Berretti et al. [BDBP12a] 3 76.30%
Sandbach et al. [SZPR11] 3 81.93%

Le et al. [LTH11] 3 92.22%
Proposed Method 3 96.67%

Table 7: Overview of research work on dynamic 3D facial
expression recognition for BU−4DFE dataset.

5. Conclusions

Dynamic 3D facial expression analysis constitutes a cru-
cial open research field due to its applications in human-
computer interaction, psychology, biometrics etc. In this
paper, an approach for dynamic 3D facial expression re-
trieval is presented and the GeoTopo descriptor is proposed.
GeoTopo captures the topological and the geometric in-
formation of 3D face scans along time. Experiments have
been conducted on the angry, happy and surprise expres-
sions of the publicly available dataset BU−4DFE. The ob-
tained results are very promising and can be provided as
ground truth for future retrieval techniques. Furthermore,
a methodology which exploits the retrieval results, in or-
der to achieve unsupervised dynamic 3D facial expression
recognition, is presented. The aforementioned methodology
achieves classification accuracy comparable to the super-
vised dynamic 3D facial expression recognition state-of-the-
art techniques.
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