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Abstract
The goal of this paper is to retrieve 3D object models from a database, that are similar to a single 3D object
model, given as a query. The system has no prior models of any object class and is class-generic. The approach is
fully automated and unsupervised. The main contribution of the paper is to improve the quality of such 3D shape
retrieval, through query verification and query expansion. These are part of a cascaded, two-stage system:
(i) Verification: after a first inexpensive and coarse retrieval step that uses a standard Bag-of-Words (BoW) over
quantized local features, a fast but effective spatial layout verification of those words is used to prune the initial
search results.
(ii) Expansion: a new BoW query is issued on the basis of an expanded set of query shapes that, next to the original
query, also includes the positively verified results of (i).
We perform comprehensive evaluation and show improved performance. As an additional novelty, we show the
usefulness of the query expansion on shape classification with limited training data and shape matching, domains
in which it has not been used before. The experiments were performed on a variety of state-of-the-art datasets.

1. Introduction

The amount of available 3D data is rapidly growing thanks to
portals such as Google Warehouse [Goo], as well as captur-
ing systems such as Arc3D [VG06] or Photosynth [SSS06].
As a result, the need for effective 3D shape retrieval (
[FKS∗04, TCF09, OLGM11, KPW∗10]) is on the rise too.
Retrieval is the problem of finding similar shapes - typically
of the same object class - given an example 3D shape, i.e.
the query. The goal of this paper is to improve such shape re-
trieval. Our system has no prior models of any object classes
and is class-generic. The approach is fully automated and
unsupervised.

The field of 3D retrieval has produced a number of
benchmark databases that we will also use in this pa-
per, e.g. SHREC [DGA∗09], Princeton [SMKF04], and
TOSCA [BBGO11]. On these benchmarks we demonstrate
substantial improvements.

We start from a traditional Bag-of-Words (BoW) ap-
proach [TCF09,OLGM11,SZ03]. BoW finds distinctive fea-
tures on shapes, and matches them against a vocabulary of
‘visual words’ (quantized local 3D feature descriptors). The
shape is then represented as a histogram of visual word oc-

currences, the BoW vector. Shape similarity is measured in
terms of BoW vector distances and a BoW-based query re-
turns shapes from a database in increasing order of BoW
distances to the query (exactly or approximately).

Our approach extends this BoW baseline with two steps,
that each boost performance. Firstly, we verify the spatial
configuration of the visual words for the shapes ranking high
in the BoW search. Secondly, the shapes supported by this
verification are used to expand the original query. This en-
tire 3D pipeline, except for the BoW initialization, is novel
for 3D retrieval. The whole process is fully-automated, un-
supervised, and class-generic. We explore these principles
for their use with shape class detection and matching as
well, and show these applications to also benefit. Using these
methods for such tasks is novel too.

The study of shape representation, categorization, recog-
nition and retrieval are intertwined. Ideally the shape repre-
sentation (features, BoWs, and distance measures) would be
learnt to maximize intra-class similarity and inter-class dis-
similarity [ETA02,PTTS08], assuming the user is interested
in finding other samples of the same class (where the notion
of “class” can have a variety of semantic meanings). How-

c© The Eurographics Association 2013.

DOI: 10.2312/3DOR/3DOR13/001-008

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/3DOR/3DOR13/001-008


J. Knopp & M. Prasad & L. V. Gool / Automatic shape expansion with verification to improve 3D retrieval, classification and matching

ever, (i) features are generally built to optimize a generic
notion of saliency and repetitiveness [VS01,SOG09], (ii) re-
trieval is usually performed in a generic rather than class-
specific setting and on large datasets [HJ11], (iii) the number
of ‘classes’ and their descriptions are usually unknown, (iv)
manual input is expensive and often unfeasible, and (v) com-
putation comes at a premium (even more for 3D models than
for text and images). So we want the search to be fast with-
out loss of accuracy. Therefore, in this work we concentrate
on improving retrieval performance in an automatic, unsu-
pervised manner, applicable generically across classes.

2. Related work

Our work draws on a variety of research directions mainly
found in the area of image-based search so far.

Local features. Except for a few cases like the seminal spin
images [JH99], 3D shape search has for a long time been
based on the use of global features, i.e. features derived from
the entire shape. It is only recently that 2D concepts like
local features have made their entrance as a mainstream ap-
proach in 3D search [BBGO11,TCF09]. With them came 2D
approaches to retrieval, like Bag-of-Words (BoW). Generic
off-the-shelf 3D features [KPW∗10, SOG09] in BoW based
methods [BBGO11, TCF09] have been shown to be robust
to noise, deformation, orientation etc. We also follow a local
feature-based approach. In our case, it is a 3D generalization
of on-line available 3D SURF features [KPW∗10]. Please
note that the particular choice of feature is not crucial to the
proposed method though. We start off with BoW as well,
but subsequently improve the shape retrieval with important
verification and query expansion steps. As a matter of fact,
these steps implement a fully automated relevance feedback
loop. We also show, that the local verification is important
when i.e. non-complete shapes are compared.

Interestingly, though BoW approaches have been used
in shape search, relevance feedback has mostly relied
on vanilla features [ETA02, AKW07, PTTS08], or their
weighted combination [GFSF10].

Cascaded approaches: Computational time and accuracy
often have to be played off against each other, when examin-
ing the semantic relevance of search. Regardless of the cho-
sen representation, most methods end up improving search
relevance in a somewhat cascaded or iterative manner. For
example, two (or more) representations (feature or distance
wise) for an object may be constructed: one in which search
can be performed fast and another in which accuracy can be
improved. Improvement of accuracy can be performed in a
variety of ways: (i) incorporating user feedback (most popu-
lar in 3D [MP96,ETA02,PTTS08,HJ11]), (ii) structural con-
sistency (as in 2D [PSZ08, MPCM10, CMPM11]) and (iii) a
variety of heuristics e.g. pseudo-relevance feedback, multi-
ple queries etc. (see [LJI∗03, BC02, PTTS08]). The query

expansion was found as an optimal retrieval method when
searching is defined as a classification task [Efr08].

The quest for this, leads us to propose a 2-pass approach
for shape verification and query expansion that enrich the
query shape. This is implemented as cascade sub-parts, we
introduce new proposals and evaluate each.

Structural verification: BoW representations succeed in
representing a shape in terms of feature occurrences and be-
ing orientation and noise invariant but fail to capture more
layout information. An improvement over vanilla search,
was the analysis of word co-occurrences [PCI∗07, JDS10]
and more recently, structural constraints [CMPM11, AZ10].
Actual shape has more complex representation: e.g. sta-
tistical models, articulated models (among other graphs),
templates etc. Fitting such models to a given shape can
involve working our parametrization and correspondences.
An exhaustive and comprehensive matching has been stud-
ied [OMMG10, KLF11, KLM∗12] too, but leads to be com-
putational expensive for a use when one needs to compute
matches between ten shapes in a few seconds. Hence, we ex-
tend schemes that leverage feature co-occurrence to take into
account their mutual spatial layout. Though a very loose ap-
proximation of more complicated shape models, this scheme
of weak structural verification proves very effective in im-
proving search performance.

Paper overview: As mentioned in the text above, the ap-
proach consists of three parts. In § 3 we overview the basic
Vanilla BoW search that forms the core of retrieval algo-
rithms. Scheme for the verification pass to filter relevant re-
sults from the initial BoW results is introduced in § 4. § 5
deals with the expansion phase i.e. incorporating the veri-
fication for a new, augmented, reliable result for the shape
query. As we promised, we also investigated more 3D appli-
cations for expansion, they are introduced in § 6. We show
the performance improvement on shape search against the
state of the art methods (§ 7.1) on the task of shape search
in § 7.2. We show how our methods can be used to improve
weakly supervised classification in § 7.3. The benefits of ex-
pansion are explored for shape matching in § 7.4. Finally,
we summarize our observations in § 8.

3. Vanilla search

Given a query shape, the goal is to find the most relevant
candidates to the query shape, efficiently. The BoW [SZ03]
model is the baseline of most retrieval engines owing to its
ability to handle noise and compress the object representa-
tion for effective querying of large databases. In order to
represent a 3D shape, features are computed according to
generic criteria of saliency, repeatability, robustness and in-
variance [JH99, SOG09, KPW∗10]. Clustering is performed
to condense the large set of generic features into meaningful
"visual words" (clusters). Each feature is assigned to a vi-
sual word and the object is then represented as a histogram
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Figure 1: Illustration of the verification method. Given two
shapes and a pair of features {f,g}, the distance between them
dist(f,g) signifies if they represent a good correspondence. Instead
of computing dist(f,g) from descriptors, we measure the consistency
of correspondences in a neighbourhood. This assumes that if {f,g}
is a correct match, {f,g} will be surrounded by correct matches.
For example, the candidates {i, j} are in correspondence. Corre-
spondences that are far (i.e. {i′, j′}) are down-weighted to not be
taken into account. This is an illustration, each {f,g} is compared
to the hundreds of correspondences.

of visual word occurrences†. The similarity of objects is then
measured as a distance between such BoW histograms and
shapes are sorted according to that similarity which forms
result list.

4. Verification

While visual word co-occurrence based tests are the sim-
plest way of improving on BoW, structural verification i.e.
including layout in additional to occurrences, is more desir-
able. Comprehensive object structure recognition is compu-
tationally expensive even for the state of the art [FGMR09,
OHG11,OMMG10,KLF11] and suited for very small vocab-
ularies [BBGO11], so we devise fast but effective, approxi-
mate verification schemes.

Let the descriptor sets of the query shape q and a result
shape r (from the result list of § 3), be F and G respec-
tively. The goal is to verify whether r is relevant result for
q i.e. to measure their similarity. We measured the similar-
ity between two shapes by a symmetric Modified Hausdorff
Distance firstly introduced by Dubuinsson and Jain [DJ94],

dMHD(q,r)=
1
F ∑

f∈F
min
g∈G

(
dist(f,g)

)
+

1
G ∑

g∈G
min
f∈F

(
dist(g, f)

)
.

(1)
This sums the distance of every feature from the set F (with
F feature tuples) to the most similar feature from the second
set G and vice versa ‡. Distance dist(f,g) represents our be-
lief that feature f is a correct match for g. This can simply be

† Tf-idf weighting [SZ03,PSZ08,BBGO11,KPW∗10] is also used
to weight high shape-specific words and to down-weight less spe-
cific words ( i.e. commonly occurring ones). A visual word vocab-
ulary size of 10% of the number features in the database has been
found optimal (see [SZ03, KPW∗10, CMPM11, PSZ08, JHS07]).
‡ In practice, for f, we found that it is enough to search only in the

Euclidean distance but we devise it as a combination of sim-
ilarity in the descriptor space with spatial configuration of
features. In the following text, we show how dist(·, ·) is com-
puted for structural assumptions to be also robust to topo-
logical changes, occlusion, incomplete shapes and to obtain
better performance.

4.1. N part weak shape model (WN):

Firstly, a setM of pairs of corresponding features between
q and r based on the similarity of their descriptors is con-
structed. For every feature on the first shape, we find four
most similar M§ features from the other shape, and simi-
larly for the second shape. So, M stores pairs of possibly
corresponding features, e.g. {i, j}. For scale, rotation and
completeness invariance, distance between two features f
and f′ on the same shape is defined as: ff′ = ‖fx− f′x‖/σf,
fx references to the position of the f, σf is the local scale of
the point f, and it is computed as the median of distances to
10 closest points from the correspondence setM.

Then, the similarity of the correspondence dist(f,g) now
depends on the matching quality of other correspondences
that are in the vicinity of f and g. It means that the corre-
spondence is correct if neighborhood correspondences are
correct too, see Fig. 1. Formally,

dist(f,g) = 1− 1
M ∑
{i,j}∈M

exp
(
−min(fi,gj)2/σ

2
α

)
·

· exp
(
−
(
fi−gj

)2
/σ

2
β

)
, (2)

sum factor measures the configuration of {f,g} to every cor-
respondence from the set M. The sum has two parts: first
one weights {i, j} correspondence high, if it is close enough
to affect {f,g}. Second part weights {i, j} high if it is in the
correct configuration to {f,g}. So that, the distance dist(f,g)
will be low if correspondences that are close are in the cor-
rect configuration, see Fig. 1. Vicinity of {f,g} is controlled
by σα which is set to 5 ·σf and σβ = σf controls the error in
the configuration of matches.

5. Query expansion

We now present schemes to re-issue a new query using the
relevant (and irrelevant) subsets that result from the verifica-
tion procedure, for a reliable, augmented result list.

subset of first N = 4 most promising features from G based on the
similarity in the descriptor space. We observed that the performance
for N = 1 is low while the difference between N = 4 and higher is
not significant.
§ To create M, we measured the similarity between features on the
original descriptors instead of quantized visual words, they worked
better here. As the computation cost of M could to be expensive,
we used approx. nearest neighbor search [ML09]. Then, the compu-
tation time of dMHD is less than 1sec in Matlab.
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5.1. Average expansion (AE)

The most popular strategy to re-issue a new query is called
average query expansion [CMPM11, J.71]. The mean of the
BoW vectors associated with the top (10) shapes from the
verified, retrieved shapes is used to construct a new query.
For reliable verification, the expansion threshold from the
first set of verified results must be set carefully to avoid in-
clusion of incorrect documents as it will destroy the query
BoW vector (validation set is usually used here, we tuned
the threshold for one dataset that has a validation data, then
the threshold was kept for the rest of experiments).

5.2. Average expansion with negatives (AEneg)

We want to employ information from both the positive and
negatively verified samples. In addition to augmenting with
mean of the positive examples (similar to the original AE
described above), we decreased new BoW vector b′ by the
mean of BoWs of shapes that were verified to be negative,

b′ = f
(

1
P+1

(
bq + ∑

b∈P
b
)
− 1

N ∑
b∈N

b
)

(3)

f (bi) =

{
bi if bi > 0
0 if bi ≤ 0

(4)

where P is a set of BoWs of positive results shapes,N neg-
atives, bq is BoW of the query shape and f (·) avoids BoW
negative values where the effect of negative samples is big-
ger than positives. Note that normalization is included later
in the tf-idf weighting of b′.

5.3. Pairwise coupling (PC)

In § (5.1-5.2), positives and negative verification were used
to learn an implicit, modified distance measure between the
various shapes. A more explicit procedure would allow for
greater transparency. To achieve this, we used Pairwise cou-
pling [WN05] (implemented in libsvm [CL01]) to learn a
score-based classifier between the two sets (positive and
negative sets are formed as in AEneg).

6. Applications of 3D verification and expansion

The use of the proposed approach in 3D search was already
discussed in § 5. We now discuss the application of this
method to other related applications namely classification
and matching, where the results can be easily improved.

Classification with one training example. Classification
( [LLS08,TCF09,KPW∗10,BN10]) methods use a large cor-
pus of labeled data for supervised learning. The corpus is
used to train the model of the class which is later used to
recognize the query shape. The process of manual labeling
is time consuming and not always reliable. We therefore, ex-
plore the role of verification and expansion in reducing the
need for annotation, whether retrieval and categorization can

mutually benefit from each other. Here, every class is repre-
sented by one shape for the training. The rest of the database
(potentially extending to other databases) is used to auto-
matically enrich training data for better performance by us-
ing verification (see § 4) and expansion (see § 5). So that,
every shape is described by a new BoW vector that takes
into account verified shape results.

Shape matching. An important role of matching is in reg-
istration and establishing denser correspondences for a va-
riety of purposes (e.g. warping, deformation etc.). We ex-
plore the leverage provided by our expansion scheme in
improving correspondence estimation. In practice, the pro-
posed method can be used to improve any kind of matching
algorithm (ranging from simple Hungarian to more complex
[KLF11, OMMG10, OHG11]) as we improve the shape’s
feature set by adding features from relevant shapes.

The method to add relevant features into a shape is intro-
duced now. We take unlabeled shapes from a database and
we run shape search with verification to find relevant results.
Feature matching [MS05] is performed between query and
every positively verified result to establish correspondences.
Denser correspondences can be obtained by propagating cor-
respondences between the set of verified shapes in the result.

7. Evaluation

We have introduced schemes of retrieval verification in § 4
and schemes of expansion in § 5. We describe (§ 7.1) and
compare (§ 7.2) several state-of-the-art (SOTA) methods
with combinations of our verification and expansion pro-
posals on the task of shape search. We then build on our
understanding to explore how these ideas in verification
and expansion can improve the classification performance
in the presence of limited training data and shape matching
(§ 7.3 and § 7.4).

7.1. Competitors

We first introduce three popular shape enhancement com-
petitors for our approach. The subsection describes three
methods of vanilla search improvement and two modifica-
tions of proposed WN.

7.1.1. Latent Dirichlet allocation (LDA)

LDA is a popular method for text and image search where
a document is represented by a mixture of topics (see more
[PSZ08]), and every topic is a distribution of words. We run
standard LDA [XHCT] on all our datasets as a competitor.

7.1.2. K-reciprocal nearest neighbors (KRN).

This is a simple yet effective method [QGB∗11] for shape
search reordering where vanilla search results are used to
define a different nearest neighbor metric based purely on
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TOSCA Princeton SHREC’09
method verifi. AE AEneg PC verifi. AE AEneg PC verifi. AE AEneg PC

W2 0.624 0.635 0.649 0.634 0.283 0.337 0.339 0.326 0.262 0.366 0.368 0.290
WN-global 0.635 0.713 0.718 0.671 0.284 0.335 0.332 0.321 0.267 0.389 0.389 0.296

WN 0.629 0.624 0.678 0.672 0.284 0.336 0.337 0.323 0.278 0.393 0.395 0.313
KRN [QGB∗11] 0.626 0.667 0.684 0.668 0.283 0.322 0.322 0.308 0.275 0.338 0.340 0.283
LDA [PSZ08] 0.627 0.344 0.328

DMLLM [PSZ10] 0.632 0.272 0.262
Vanilla [KPW∗10] 0.622 0.282 0.277

Table 1: Shape search results. Performance is measured as the average area under PR curve. Th proposed verification and
expansion outperform basic search. While incorporating negatives into average expansion improve the performance, it is not
very significant. WN-global and W2are variants of the proposed methods and are discussed in the text.

Figure 2: Features that were selected for DMLL training. Exam-
ple of four pairs of shapes that were verified to be relevant to each
other. Three groups of features are highlighted: 1) red for negatives,
where features are matches after nn-matching but they have high
WN distance; 2) green for positives, so they have low WN distance;
3) blue shows the random set. Some features are outside the shape
due to properties of 3D SURF [KPW∗10] as i.e. "U"-like structures
will have a feature in the middle.

symmetricity of mutual BoW similarities. In this method, i-
th result shape (si) in query’s retrieved list is considered ver-
ified if the query appeared in the first K results of the query
using si. For this method, we ran experiments for different K
and selected the one with the highest performance (see Qin
et al. [QGB∗11]). The specialty of this method is its speed
and ability to use any even global descriptor.

7.1.3. Distance metric learning for large
margin (DMLLM)

We used Philbin et al. [PSZ10] for use in unsupervised 3D
shape distance learning. After vanilla search and WNverifi-
cation (§ 4.1) , we performed feature matching which leads
to these three sets of features: 1) correct (high WNsimilarity,
green in Fig. 2); 2) not correct (red in Fig. 2) and 3) features
of random negative pairs (to decrease the confusion between
negative and positive training features blue in Fig. 2). Then,
we follow the work of Philbin et al. [PSZ10] and we learn
a mapping of descriptors to separate these three sets from
each other. When the mapping is learnt, we project every

shape’s feature descriptor to the new space and the shape
search pipeline was recomputed to obtain new results.

7.1.4. Modifications of WN

We also evaluated two modifications of WN:

WN-global: uses a global point scale. Herein, σf corre-
sponds to the size of the shape. So that, the parameter is
estimated globally and it is constant for all shape’s points.

W2: is 2 part weak shape model modification with the
most simple spatial layout a’ la ISM [LS03, KPW∗10]. The
method assumes that the observation of any one feature
(part 1, feature) in a specific configuration w.r.t. to the ob-
ject centre (part 2, anchor) is sufficient to verify the shape.
Herein, dist(f,g) in Eq. 1 is low when the relative dis-
tances of f and g to the shape’s centers are similar. Formally,
dist(f,g) =

(
oqf−org

)2
/σ

2
W2, where o is the shape centre

and σW2 corresponds to 1% of unit shape size and it con-
trols the maximal error between matches f and g.

7.2. Expansion in shape retrieval

Having introduced the competitors in § 7.1 we pitch com-
binations of our verification and expansion against them.
We test this on the established datasets: Tosca [BBK08] of
120 hand-made shapes of 9 classes, Princeton [SMKF04]
of 1.8K shapes and SHREC’09 [SHA] with 20 challenging
partial queries for 720 shapes. We also run our methods on
SHREC’10 [BBGO11], where results of vanilla search are
visually similar to BoW of Bronstein et al. [BBGO11], but
ground-truth to evaluate results wasn’t sent to us.

The effect of verification and expansion is shown in Fig. 3.
Results are shown in Tab. 1 and Fig. 4. We can conclude that
verification with expansion significantly improves vanilla re-
sults. LDA gives significant improvement (and is even win-
ner for the Princeton dataset), while it has no spatial infor-
mation. On the other hand, LDA doesn’t perform well on
TOSCA and has significantly decreased performance when
small vocabularies are used (not shown here). WN-global
gives retrieval improvement on complete, clean shapes
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Query. Shape search results.

Figure 3: Shape search results after each step. Note that in the first row –results after vanilla search– several shapes are not
from the same category but they have similar shape/pose. Verification method WNin the second row improves results and when
expansion is used (third row), we also see the diversity in the result-list.

Query. Shape search results.

Figure 4: Shape search results. Every row starts with a query shape and then shapes sorted by the rank continues. Note that
query expansion adds diversity to the result list, as shapes have to be similar to all shapes that were used for expansion.

(Tosca), while local information matters when only par-
tial queries are given such as in SHREC’09. Note that this
method is still local and only the parameter for feature’s
neighborhood is estimated globally. While W2improves
Vanilla search, the performance is mostly bellow the pro-
posed WN. In conclusion, we note that local verification is
important. A number of shape search results after expansion
are presented in Fig. 4. Though performance can depend
on the specific dataset, verification with expansion generally
leads to improved shape search. This demonstrates the util-
ity of incorporating spatial layout and using class-specific
information (that could be missing in the original query).

7.3. Expansion for classification

Here, we present expansion and verification to improve clas-
sification when few training examples are available. In Tab. 2
results are shown for when: 1) standard classification (ST)
is performed given a large amount of labeled training data,
2) We randomly selected one shape for training our one-
example classification (OE). As expected, the performance
drops considerably. 3) We used the rest of training data for
expansion to expand the training set as well as the test set
(OE+QE), see § 6 for the details of the method.

We used the same datasets as in § 7.2 using the classifiers:
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Figure 5: Matching. First row shows results of matching with original features, second shows the same matching algorithm
and parameters on original features plus expanded.

TOSCA SHREC’09
method knn SVM knn SVM

ST: standard 89.4% 79.0% 50.0% 60.0%
OE: one-example 47.3% 54.6% 45.0% 40.0%

OE+QE: one-example+QE 63.2% 63.2% 45.0% 65.0%

Table 2: Performance of the classification.

SVM [TCF09] and k-nearest neighbor [Bis06] . Tab. 2 shows
that expanding data for classification improve OE. OE+QE
even outperformed ST in one case, (probably because the
queries, often partial shapes from SHREC’09, benefit from
the expansion exploiting relevant structure).

7.4. Expansion for denser shape matching

We present an example of using expansion to improve shape
matching. Fig. 5 shows results of matching shapes with orig-
inal and expanded features, as described in § 6. This attempt
at matching, ignores the more sophisticated conditions of
matching (as in [PKVG11,KLF11,OMMG10], but estimates
correspondences in less than 0.5s (compared to tens of mins
for [PKVG11,KLF11,OMMG10] or minutes in Hungarian).
The initial attempt shows promise for deeper application in
this field.

8. Conclusion

As they say the proof of the pudding is in the eating, and
while improving on the vanilla flavor of shape retrieval was
relatively easy, we hope to have convinced the reader about
the power and range of applications afforded by shape veri-
fication and expansion mechanisms.

As promised, we improve upon state-of-the-art 3D shape
retrieval with a simple yet reliable, cascade method of ver-
ification and expansion, relying on weak structural verifica-
tion. This allows us to have significant improvement while
using an automatic, unsupervised and fast scheme.

While primarily developed for retrieval, the generality of
presented method and the interplay between the retrieval and

the other areas of visual learning, provides us with a rich
playground of problems to improve upon.

Though 3D databases are expanding rapidly, a variety of
their clientele (such as animators) are interested in some cat-
egories more than others, thus making the role of categoriza-
tion in retrieval particularly important. What’s more, prelim-
inary attempts also provide us with promise in the fields of
registration and dense matching.
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