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Abstract

This contribution reports the results of the SHREC 2012 track: Stability on Abstract Shapes. This track saw six
registrations of which only three participants effectively sent the results of their runs.

Categories and Subject Descriptors(according to ACM CCS): H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Abstracting methods;

1. Intruduction

The aim of SHREC is to evaluate the performance of existing
3D shape retrieval algorithms, by highlighting their strengths
and weaknesses, using a common test collection that allows
for a direct comparison of methods. In this report the results
of the SHREC 2012 track:Stability on Abstract Shapes are
presented. The aim of this track is to evaluate the stability
of shape matching algorithms with respect to input perturba-
tions that modify the representation of the object in terms of
mesh connectivity and simple affine deformations. The nov-
elty of this track is both in the choice of the models that are
chosen in a set of mathematical primitives and in the choice
of the shape deformations that can be non-isometric. The
shape perturbations include geometric noise, varying sam-
pling patterns and non-isometric shape deformations such as
non-rigid stretches.

2. Data Collection and Queries

The dataset is made of 504 watertight mesh models. Given
a base set of 18 shapes (e.g. cubes, spheres, torii, multiple-
torii, see Figure1), each model is perturbed with 9 transfor-
mations applied with three different intensities, for a total of
27 modifications each (see Figure3).

The set of transformations is: i) an additive Gaussian noise
applied with 1%, 2% and 5% intensity; ii) three uneven sam-
pling distributions obtained with the command-line version
of the ReMESH software [AF06] with parameters 50, 70 and
80; iii) three uniform model samplings (with 1000, 2000 and

Figure 1: The 18 models from which the dataset is built.

Figure 2: From left to right and from top to bottom: a model
(top-left) and its variations (9 rigid and the 18 non-isometric
transformations).

5000 vertices); iv) and v) three stretches with respect to one
or two shape axes (2, 3 anf 4 times the original lenght); vi)
and vii) three non-uniform dilatations orthogonal to one or
two shape axes; viii) and ix) three non-uniform erosions with
respect to one or two shape axes (the perturbations of the
cube model are shown in Figure2). At the end each class of
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Figure 3: The dataset of the Stability on Abstract Shapes track.

the dataset was made of 28 models (the original model and
27 transformations) as depicted in Figure3.

3. Participants

Each participant was asked to submit up to 3 runs of his/her
algorithm, in the form of dissimilarity matrices; where the
entry(i, j) of the dissimilarity matrix represents the distance
between modelsi and j. Each run could be for example the
result of a different setting of parameters or the use of a dif-
ferent similarity metric.

Three groups participated to the SHREC’12 track: Stabil-
ity on Abstract Shapes and seven dissimilarity matrices were
submitted:

1. X. Bai, L. Li and S. Zhang from the Northwestern Poly-

technical University, Xi’an, China, participated with 3
matrices (LSU-r02.txt LSU-r03.txt and LSU-sum.txt),
the method is detailed in Section4.1);

2. I. Sipiran and B. Bustos from the Dept. of Computer Sci-
ence, University of Chile, Chile participated with 2 matri-
ces (run1.matrix and run2.matrix), the method is detailed
in Section4.2;

3. A. Cerri, D. Giorgi and M. Mortara from ARCES, Uni-
versity of Bologna and IMATI-CNR in Genova, Italy,
participated with 2 matrices (size1.txt and size2.txt), the
method is detailed in Section4.3.

In addition to the three groups of participants listed above,
three further registrations to the track were received but par-
ticipants withdrew the track.
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4. Description of the methods

In this section the descriptions of the three methods that ef-
fectively sent their outcomes over the track dataset are listed.

4.1. Abstract Shape Retrieval Using Local Shape
Distributions

The proposed method addresses the problem of retrieving
abstract shapes using the local shape features. The method
is inspired by the BOGH algorithm [LGB∗11]. However,
a different strategy is used , in which the new Local Shape
Distribution (LSD) descriptor is suggested as the shape rep-
resentation for 3D shapes.

4.1.1. Local Distribution Descriptor

Let P denotes a surface point of a 3D object. Itsr-
neighborhood is defined as the spherical region centered at
P with the radiusr. The LDS descriptor associated to this re-
gion is the histogram-vector of the Euclidean-distances be-
tweenP and the other surface points within the region. Since
all points in ther-neighborhood ofp have their own contri-
butions to the local shape of the 3D object in this region, and
such contributions are decreased with the increase of dis-
tances between the points and the center of the region, i.e.
pointP, each bin of the LDS histogram is Gaussian weighted
(σ = 0.3), with an attempt at accurately indicating the shape
distribution in the region.

4.1.2. Feature Extraction

The proposed method starts feature extraction by randomly
samplingn points on the surface of a 3D object. Note that,
it’s assumed that a scale normalization on the object has been
conducted. For each sample point, the LSD descriptor of its
r-neighborhood is computed, which is composed ofd bins (d
= 32). After that, thek-means algorithm is employed to carry
out clustering on the resultingn LSD descriptors. The aim of
this step is to select those characteristic descriptors, i.e. the
centers ofk clusters, so as to improve speed in similarity
matching. In this way, the 3D object is represented by a set
of k LSD descriptors. In this track,n andk are set to 3000
and 250 respectively. The procedure of feature extraction is
shown in Figure4.

Figure 4: Procedure of feature extraction.

4.1.3. Similarity Matching

Similarity matching in the proposed method is analogous to
that in BOGH. LetLQ andLC denote the LSD descriptor sets
of a query object and a candidate in shape database respec-
tively. The Hungarian algorithm is employed to build the
correspondences betweenLQ and LC. The likeness of two
descriptors is determined by usingχ2.

4.1.4. Settings of the experiments

For this track, two configurations of the proposed method (r
= 0.2 and 0.3) were chosen to calculate the dissimilarity ma-
trices. A fused version, which combined the above resulting
matrices with the result from the configuration in whichr is
set to 0.7, was also presented.

Software to compute LSD descriptor is freely available at
[BLZ12].

4.2. Shape Retrieval with the Signature Quadratic
Form Distance

Our method relies on the use of a flexible distance which
is suitable to compare two entities represented by feature
sets. The Signature Quadratic Form Distance is a context-
free distance that has proven to be effective in the image
domain [BUS09]. In addition, it is also a good alternative to
Bag of Feature approaches.

The aim is to partition the whole feature space of a 3D ob-
ject to define the feature signatures. Let P a 3D model with
m vertices. Each vertex is represented by a heat kernel signa-
ture. The feature space of P is represented as the normalized
heat kernel signatures [SOG09] defined as:

FS(P) = {
hks(vi)

‖hks(vi)‖
|vi → P, i = 1, . . . ,m}.

Thus, the feature space FS will be used to create the signa-
ture features for a object. First of all, a clustering algorithm
derived from Leow and Li [LL04] is applied. Briefly, the
clustering uses two thresholds to define the inter-cluster and
intra-cluster properties, so it does not depend on the num-
ber of clusters. Therefore, it is an adaptive method which
depends on the distribution of points in the space.

Given a partiotioning after the clustering, the feature sig-
natureSP of an object P is defined as a set of tuplesFSxR+

as follows

SP = {(cP
i ,w

P
i ), i = 1, . . . ,n} (1)

wherecP
i is the average heat kernel signature in thei-th clus-

ter andwP
i is the fraction of elements belonging to thei-th

cluster. Note that the representation of an object depends of
the clustering and it is not neccesary that two objects have
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the same number of clusters. Finally, given two objects rep-
resented by their feature signatures, the Signature Quadratic
Form Distance [BUS09] is directly applied.

For the implementation of the results presented in this pa-
per, the surface area of the objects is firstly normalized to
1.0. Then, the heat kernel signatures as proposed originally
by Sun et al [SOG09] is computed. Next, the clustering us-
ing two configurations for the thresholds is applied. For the
first experiment, the values 0.1 and 0.2 are set as intra-cluster
and inter-cluster thresholds, admitting clusters with at least
15 elements. For the second experiment, the values 0.05 and
0.1 are used for the intra-cluster and inter-cluster thresholds,
and the clusters contain 5 elements at least. Finally, a Gaus-
sian function withα = 0.9 for the similarity in the SQFD is
adopted.

4.3. Size functions as an hybrid 2D/3D approach

In this Track a hybrid retrieval method which combines a
description of the 3D mesh with a description of itsbest 2D
view is proposed. A modular transform, calledsize function,
forms the basis for both descriptions. The peculiarity of this
transform is that it provides a topological and geometrical
analysis of shapes, and can be applied to different types of
input [CFG06]: in this case, both images and 3D meshes.

Size functions. The main idea behind size functions is to
model the shape of an object as a pair(S,ϕ), whereS is a
topological space andϕ : S → R is a continuous function
calledmeasuring function. The role ofS is to represent the
object under study, whileϕ can be seen as a descriptor of
some properties of interest according to which the object
is analyzed [FL99]. Roughly speaking, size functions code
the topological evolution ofS counting the number of con-
nected components which remain disconnected passing from
a lower level setSu of S to another level setSv with u < v,
where a lower level set is defined asSu = {P ∈ S : ϕ(P)≤ u}
with u∈R. As shown by Fig.5, size functions can be seen as
collections of points lying in the half-plane{(u,v)∈R

2 : u<
v}, calledcornerpoints (red dots in Fig.5(a−b)), which de-
scribe the lifespan of connected components. For each point,
the u-coordinate denotes thebirth of a connected compo-
nent, in terms of the values of the measuring function that
generates it; similarly, thev-coordinate denotes itsdeath.
The distance from the diagonalu = v represents the compo-
nent lifespan, which in turn signals the importance of the fea-
ture that component represents: points far from the diagonal
describe important,long-lived features, whereas points close
to the diagonal describe local information such as smaller
details and noise. The red vertical line in Fig.5(a) – as well
as the one in Fig.5(b)– can be seen as a point at infinity, rep-
resenting a connected component thatwill never die, i.e. its
u-component corresponds to the smallest value of the func-
tion and itsv-component is equal to+∞. The representation
using cornerpoints allows for the comparison of size func-
tions using distances between sets of points and lines, such

as the Hausdorff distance or thematching distance, which
measure the cost of moving one set of points into the other.
Size functions are stable with respect to the matching dis-
tance [dFL10], thus implying resistance to noise.
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Figure 5: (a) A model from the dataset with the integral geodesic
distance color-coded (left), and the corresponding size function
(right). (b) A noisy version of the model and its shape descriptor:
Noise induces only small changes in the position of points far from
the diagonal, possibly producing variations close to the diagonal.

An interesting aspect of size functions is that it is possi-
ble to get different descriptors just by changing the spaceS
and the real functionϕ. This is exactly what happens here:
For each model,S is in turn the triangle mesh, or the shape
contour of its 2D silhouette;ϕ is chosen accordingly, as de-
scribed in what follows. The result is a collection of descrip-
tors which inherit the invariance properties of the underlying
measuring functions, and able to provide information about
a shape according to different viewpoints.

3D descriptors. On 3D meshes the measuring functions
considered are the distance from the barycenter, and the in-
tegral geodesic distance, that is, for each point the average
geodesic distance to all other points is taken. Both measuring
functions are rotation and translation invariant; moreover,
the integral geodesic distance is also isometry invariant. The
choice of these functions ensures that our descriptors are ro-
bust to noise, rigid and non-rigid movements. Scale invari-
ance was obtained by normalizing the models a priori. For
each measuring function, two models are compared by com-
puting the matching distance between the associated size
functions; the final 3D similarity score is defined as the av-
erage of the two matching distances.

2D descriptors. For each 3D model, itsbest view is se-
lected. Starting from a set of viewpoints uniformly sampled

c© The Eurographics Association 2012.

104



S. Biasotti et al. / Stability on Abstract Shapes

over a viewing sphere surrounding the object, for each view-
point it is evaluated a scoring function which takes into ac-
count the visibility of salient features (percentage of visible
surface), their relevance (surface of the feature with respect
to the whole object), and the semantic type of each salient
feature. The viewpoint with highest score determines the se-
lected view. On this 2D view, four measuring functions are
computed on the silhouette contour, namely four estimates
on the local curvature at each contour point, computed at
four different resolutions [GMS10]. The final 2D similar-
ity score is defined as the average of the four corresponding
matching distances, augmented with theL2 distance between
the first 35 Zernike moments of the silhouette.

The final 2D/3D similarity score is the sum of the 3D and
2D scores.

5. Performance Measures

Each model was used in turn as a query against the remain-
ing part of the database. The performance of the methods on
the dataset has been evaluated on the basis of the ground
truth that was established a priori by three classification
schemes (focusing either on the isometric transformations (i-
iii) or the non-isometric ones (iv-ix) and the overall dataset).
The first scheme considers in the same class the models in
the original class and their rigid perturbations, that is, each
class is made of the original model plus 9 transformations,
so that each class is made of 10 elements. The second one
(finer) considers in the same class just a single model and its
18 non-rigid perturbations, that is, each class is made of 19
models. Finally, the third scheme considers in the same class
the original models and all of its 27 perturbations, i.e. each
class is made of 28 elements.

As performance measures of the method the nearest
neighbour, the first and the second tier, already used in past
tracks of SHREC [GBP07,BA08] are adopted. In addition
theprecision andrecall are considered, that are two funda-
mental measures often used in evaluating search strategies.
Recall is the ratio of the number of relevant records retrieved
to the total number of relevant records in the database, while
precision is the ratio of the number of relevant records re-
trieved to the size of the return vector [SM83].

Recall and precision are represented in a diagram, where
precision has been computed as average if the precision
scores after each relevant item in the scope. Then, the
precision-recall measures computed for each query are av-
eraged over the entire database. Finally, the area under the
precision-recall diagrams is considered which is relevant to
evaluate the overall performance of a method.

6. Results and Discussions

Each participant sent two or three matrices corresponding to
different choices of the parameters. A general observation

is that the performances of each method do not vary signif-
icantly across its parameter settings see Table1 and Figure
6; hence, it makes sense to consider the best run for each
method and compare the methods according to these best
runs. However, for completeness, precision-recall diagrams
are depicted all together in a single graphical panel.

(a)

(b)

(c)

Figure 6: Recall precision graphs of each participant over
the (a) whole dataset, (b) rigid transformations and (c) non-
rigid deformations.
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Method NN FT ST PRarea

LSD-r02 68.66 62.54 39.03 0.41207
LSD-r03 69.65 60.80 39.30 0.40905
LSD-sum 73.22 63.11 40.44 0.43072

Sipiran run1 67.66 40.97 26.19 0.26358
Sipiran run2 69.65 42.17 27.02 0.27157

Size run1 87.90 66.08 40.79 0.44500
Size run2 88.50 66.97 41.03 0.44994

(a)
Method NN FT ST PRarea

LSD-r02 98.34 53.26 27.64 0.97840
LSD-r03 99.45 54.70 27.78 0.99425
LSD-sum 98.89 54.63 27.78 0.99198

Sipiran run1 80.56 33.96 19.22 0.65921
Sipiran run2 77.78 35.68 20.17 0.69160

Size run1 99.45 51.30 27.24 0.95243
Size run2 100 52.23 27.38 0.96545

(b)
Method NN FT ST PRarea

LSD-r02 53.81 30.74 19.84 0.29458
LSD-r03 55.56 29.81 20.55 0.29241
LSD-sum 61.12 31.44 21.65 0.31141

Sipiran run1 62.87 25.90 16.59 0.25964
Sipiran run2 66.96 26.17 17.13 0.26432

Size run1 82.17 38.26 25.15 0.38546
Size run2 82.46 25.15 24.98 0.38415

(c)

Table 1: Retrieval performance on (a) the whole dataset, (b)
rigid perturbartions and (c) non-rigid deformations using
four standard measures.

In all the cases, precision-recall curves shifted upwards
and towards the right indicate a superior performance; in a
number, the performance can be roughly expressed as the
area under the graph. Therefore, for each method, the best
run was selected as the one with the maximum area under
the precision-recall diagram.

6.1. Performance on the dataset

Figure6 shows the recall precision diagram obtained using
the three classifications of the dataset.

Interestingly, while all methods are quite stable when
small noise or re-sampling operations affect the models,
most of methods strongly degradates when the non-rigid de-
formations are considered, see for instance the statistics in
Table1(a). In Table1 the symbols NN denote the nearest-
neigbour, FT the first tier, ST the second tier and PRarea
the area under the recall precision diagram. In particular, the
highest the values of the FT and ST the smallest the num-
ber of false positives in the first 28 (and respectively) 56 re-
trieved items.

Both recall precision diagrams in Figure6 and the statis-
tics in Table1 indicate that the dataset is really challenging.

In fact there are many difficulties in terms both of deforma-
tions and in the choise of the models (for instance the first
and the second class differ from the fact the two cubes have
sharp edges or not). In one hand methods that are able to
detect small differences would fail when a significant de-
formation is applied; on the other hand, method that roughly
describe the overall shape are not able to distinguish between
sharp and smooth corners and edges.

More details of the performance of the methods over
the different classes are shown in Figure7 that represents
the histograms of the NN classifier. In this Figure only the
best run of the methods are shown. The results highlight
how the performance degradate when non-isometric defor-
mations are considered and how the methods that are able to
distinguish the rough structure of the shape have difficulties
when two shapes differ for small details (see, for instance,
in Figure7(c) the performance of the LSD-sum method with
respect to the classes 1 and 2 of the dataset that correspond
to the cubes with sharp and smooth edges).

In general the methods based on the hybrid 2D/3D ap-
proach given by the size function framework performs quite
well on the whole dataset (and they generally scored best
in all parameters, that is NN-Neighbour, First Tier, Second
Tier, and Precision-Recall). More in detail, size functions
scored best on the sub-set of non-rigid transformations, and
had comparable performance on rigid transformations.

7. Conclusions

In this paper, the new track of SHREC’12 onStability on ab-
stract shapes is introduced describing how the dataset was
built and the kind of shape perturbations made on a set of
simple abstract primitives. In fact, to better estimate the pros
and cons of the methods that participated to the track sim-
ple and well defined mathematical surfaces are chosen, these
shapes are characterized by different genus, sharp edges and
corners or smooth appareance, etc.. This is the first time time
that a track of SHREC has the focus of specifically estimate
the robustness of the methods not only on small shape per-
turbation but also on affine transformations like non-linear
stretching and bumping.

The experimental results show that the dataset is re-
ally challenging: most of methods have some difficulties
to perform well both on fine transformations (noise or
re-sampling) and non-isometric transformations (non-linear
stretching). An additional challenge is to keep the intra-class
variability (for instance considering the sphere similar to the
ellipse) discarding the sometime small extra-class variabil-
ity (for instance the cube with sharp from the one smooth
edges). Finally, it is to be hoped that this new benchmark will
promote further investigation on affine-independent shape
comparison and retrieval methods.
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(a)

(b)

(c)

Figure 7: Nearest-neighbor performance (best runs) over the (a) whole dataset, (b) rigid transformations and (c) non-rigid
deformations. The number of the class correspond to the order of the models in Figure 1.
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