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Abstract

In this work we present an approach for matching three-dimensional mesh objects related by isometric transfor-

mations and scaling. We propose to utilize the Scale invariant Scale-DoG detector and Local Depth SIFT mesh

descriptor, to derive a statistical voting-based scheme to robustly estimate the scale ratio between the registered

meshes. This paves the way to formulating a novel non-rigid mesh registration scheme, by matching sets of sparse

salient feature points using spectral graph matching. The resulting approach is shown to compare favorably with

previous state-of-the-art approaches in registering meshes related by partial alignment, while being a few orders

of magnitude faster.

1. Introduction

The registration of three-dimensional (3D) objects is a con-
temporary research challenge that has been given consider-
able attention in recent years [DK10, ZWW∗10, SHM12]. A
class of 3D registration schemes relates to point matching in
images by assuming that the registered meshes are related by
parametric transformations models (similarity, affine, pro-
jective), that can be estimated by robust statistical schemes
such as RANSAC. Others assume local isometry that can be
encoded by graph algorithms [LH05].

Energy minimization schemes formulate the points cor-
respondence via an objective functions, resulting in discrete
optimization problems [DK10], while other apply high-order
potentials and the corresponding graph matching techniques
[ZWW∗10]. In dense matching we aim to align all of the
common vertices in the registered meshes. Such schemes
may operate in the mesh domain by formulating continuous
variational problems [BBK06b], or embed the meshes into
a space where they can be aligned [SHM12, BBK∗10]. Oth-
ers extend the sparse matching results to compute a dense
matching [ZWW∗10].

In this work we propose two core contributions:

First, we propose to utilize spectral graph matching to
encode and recover local isometries agglomerated over the
mesh objects. By applying our approach to isometries with
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respect to geodesic distances, we derive a non-parametric
mesh matching scheme that is able to recover non-rigid
alignments. The downside of this approach is its inability
to handle transformations consisting of scale changes. For
that we propose our Second contribution, that is a straight-
forward approach for estimating the global scaling between
a pair of mesh objects, based on an analysis of the local
scales of weakly-corresponding feature points. In particular,
the proposed scheme is applicable to meshes related by par-
tial matching.

This paper is organized as follows. In section 2, we survey
previous results on mesh registration, and propose our com-
putationally efficient registration approach in Section 3. In
Section 4 we show how to estimate global scale differences
between 3D shapes using a histogram-based scale estimation
approach, and apply it to mesh registration to derive a unified
scheme. We verify and exemplify the use of our approach in
Section 5, while concluding remarks and future extensions
are discussed in Section 6.

2. Related work

The registration of images, 3D models or more generally,
sets of points is a fundamental problem in Computer Vision
and has been extensively researched [LH05, CFSV04].

The Iterative Closest Point algorithm proposed by Besl
and Mckay [BM92], matches each point on one surface to
its closest point on the other mesh, and computes a paramet-
ric motion model. Its draw back is the lack of global conver-
gence, thus requiring an initial estimate of the relative trans-
formation.

Spectral embedding was also used by Sharma et.

c© The Eurographics Association 2012.

DOI: 10.2312/3DOR/3DOR12/059-062

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/3DOR/3DOR12/059-062


Tal Darom and Yosi Keller / Spectral Analysis Driven Sparse Matching of 3D Shapes

al. [SHM12] that first align the embeddings using his-
tograms related to the eigenvectors of the spectral embed-
ding. Dense matching is computed using an EM based
point matching algorithm. Bronstein et. al. [BBK06b] pro-
posed to compute the dense alignment between meshes
by extending the MDS algorithm using the Generalized
Multi-Dimensional scaling (GMDS). A different approach
to surface registration is the minimization of the Gromov-
Hausdorff distance between the surfaces, that quantifies
the discrepancy in pairwise distances between correspond-
ing vertices in meshes. It was used by Mémpli and
Sapiro [MS05] to derive a scale invariant geometry-based
mesh similarity measure. Bronstein et. al. [BBK06a] applied
the Gromov-Hausdorff within a multi-resolution formula-
tion to compute it efficiently and robustly, and extended it
by utilizing the diffusion distances instead of geodesic ones.
In this work we follow these methods in making use of the
fact that geodesic distances between matching points on a
surface are maintained by isometric transforms.

The minimization of the Gromov-Hausdorff distance is
the equivalent of the pairwise matching problem that was
analyzed by Leordeanu and Hebert [LH05], who formulated
it as a discrete optimization problem that is NP-hard. The so-
lution is approximated by spectral relaxation, followed by a
greedy discetization scheme. The drawback of this approach
is its sensitivity to scale changes between the sets of points.
Dubrovina and Kimmel [DK10] applied a pairwise matching
approach to mesh alignment, by using the eigenvectors of the
Laplace-Beltrami operator as local descriptors, and defining
a matching cost that quantifies both descriptor similarity, and
the difference of corresponding geodesic distances in both
shapes. Our work relates to pairwise matching schemes, as
only we utilize pairwise affinities that encode purely geo-
metric constraints.

3. Spectral Point Matching

In this section we propose a novel approach to non-
parametric mesh alignment that is based on spectral graph
matching, for which we utilize geodesic distances that are
invariant to isometric transformations.

Let M = (V,F) be a 3D mesh object, with a set of NV ver-
tices V = {vi}, and a set of NF triangle faces F = { fi}, where
a shape is represented by a sparse set of local LD-SIFT fea-

tures x =
{

x j

}J

1, each characterizing the vicinity of a partic-

ular feature point vi ∈ M [DK12]. dk
i j denotes the geodesic

distance between the points vi and v j in a model Mk.

We consider the joint matching of two pairs of points
vi ∈ M0 to vi′ ∈ M1 and v j ∈ M0 to v j′ ∈ M1. In order to
make the matching problem computationally tractable, the
possible assignments per each vertex {vi}

N
i=1 ∈ M0, are re-

duced to the L most similar feature points in M1, in terms of
LD-SIFT descriptor distance. Figure 1 depicts vi and v j in
M0 and three matching candidates for each of them.

M1

M0

vi

v j

Figure 1: Mesh alignment as a matching problem. The fea-

ture points vi,v j ∈ M0 can each be matched to L = 3 candi-

dates, resulting in 9 affinity values.

For each such pair matching candidate we define a pair-
wise affinity measure

ãi,i′, j, j′ = exp

(

−
|d0

i j −d1
i′ j′ |

σ

)

, (1)

where the parameter σ > 0 sets the tolerance of devia-
tion from perfect isometric matching, and we used σ =
6 throughout this work. The affinity function adheres to
ãi, j,i′, j′ ≈ 1 for mutually valid point assignments, and
ãi, j,i′, j′ ≈ 0 for invalid ones. Thus, the mesh alignment is
formulated as a pairwise matching problem and is solved by
spectral matching [LH05]. An affinity matrix A ∈ R

N·L×N·L

is computed using Eq. 1, such that

a(i−1)L+ri,i′ ,( j′−1)L+r j, j′
= ãi,i′, j, j′ , (2)

∀i, j = 1..N, ri,i′ ,r j, j′ = 1..L

where N is the number of feature points detected in M0 and
ri,i′ is the ranking of the descriptor similarity between vi and
vi′ . This also implies that this formulation of the assignment
problem is asymmetric, such that we explicitly match M0 to
M1.

Thus, the mesh alignment is formulated as a quadratic
assignment problem, that can be solved via spectral relax-
ation [LH05], where we compute ϕ0, the leading eigenvec-
tor of A, and apply the Hungarian algorithm to discretize
ϕ0 [EKG12], and recover the most probable hard assign-
ments. The proposed scheme is summarized in Algorithm
1:

Algorithm 1

1. Compute the sets of local descriptors {vi} ∈ M0 and
{

v′i
}

∈ M1.
2. ∀vi ∈M0 find the subset of M1 containing L closest points

in terms of descriptor similarity.
3. Apply Eq. 2 to compute the pairwise affinity matrix A.
4. Compute ϕ0, the leading eigenvector of A.
5. Apply the Hungarian Algorithm to ϕ0 to compute the dis-

crete assignment result.
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4. Robust scale estimation

One of the downsides of the mesh alignment scheme pre-
sented in the previous section, is its inability to align meshes
related by significant scalings. Namely, Eq. 1 assumes an
isometric transformation that is scaling-free. To alleviate this
limitation, we propose a straightforward approach for esti-
mating the relative global scalings between pairs of meshes.
For that we utilize the Scale-DoG interest point detector, and
the corresponding LD-SIFT descriptor proposed by Darom
and Keller [DK12].

Given a pair of 3D models M0 and M1 we apply the Scale-
DoG detector to detect the interest points and corresponding
local scales {vi,si} ∈ M0 and {vi′ ,si′} ∈ M1, respectively.
Let vi ∈ M0 and vi′ ∈ M1 be a pair of corresponding points,
matched by their descriptors similarity

i
′ = argmin

k
|xi −xk′ |2 , ∀vi ∈ M0,∀vk′ ∈ M1 (3)

The ratio of their local scales ∆si j = si/s j is an estimate of
the global scaling between the two models. Thus, we pro-
pose to compute the histogram of log(∆si j) for all pairs of
corresponding interest points detected in M0 and M1.

Using Eq. 3 might result in a significant number of outlier
matches. But the distribution of their scaling ratios is uni-
form over the range of scale ratios, while the inlier scaling
measurements concentrate over a short interval centered at
the true scaling value. This approach does not utilize global
attributes of the meshes and can thus be used to recover the
relative scaling of partial matches.

Given the scale ratio ∆s between the two models Eq. 1 is
reformulated as

ãi,i′, j, j′ = exp

(

−
|d0

ik −∆s ·d1
jl |

σ

)

, (4)

and as in Section 3.

5. Experimental results

In this section we experimentally verify the proposed mesh
matching and scale estimation schemes. We applied both of
the proposed methods to models containing arbitrary scale
ratios, and considered full and partial matchings†.

5.1. Sparse matching

We tested the sparse matching scheme on models taken from
the TOSCA [BBK08] and SHREC’11 [BBB∗11] datasets.
For computational reasons we used graph distance computed
by the Dijkstra algorithm as an approximation for geodesic

† additional results for the proposed methods can be found at:
http://sites.google.com/site/taldarom
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Figure 3: Global scale detection for partial models: (a, d, g)

Scaled partial man models. (b, e, h) the 100 bin Log-Scale

histogram. (c, f, i) Left man model scaled by the detected ∆s.

distances, limited the number of matched vertices in M0 to
1,000, and considered L = 5 matching candidates for each
such vertex. Figure 2 shows successful sparse matching of
hundreds of points between three model pairs related by
scaling and an isometric transformation.

5.2. Scale detection

We tested the proposed scale detection scheme using a
100 bins Log-Scale histogram on models taken from the
SHREC’11 challenge dataset including one model consist-
ing of 52,565 vertices under different transformations to test
our method on a more realistic and difficult scenario, by scal-
ing one of the meshes in each pair. Figure 3 shows partial
man models for which scaling has been applied, and the cor-
responding Log-Scale histogram and the rescaled models.

5.3. Timing results

The proposed scheme was implemented in Matlab with
some critical parts coded in C. In Table 1 we report the tim-
ing results of the proposed scheme. Our experiments were
carried out on a computer running an 2.6GHz Intel i5 pro-
cessor with 4GBytes of memory. It follows that the proposed
methods requires tens of seconds to align hundreds of points
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Figure 2: Sparse matching of various scaled models. (a) |V | = 27,894, 505 matches, ∆s = 0.53. (b) |V | = 25,290, 541

matches, ∆s = 0.53. (c) |V |= 52,565, 176 matches, ∆s = 1.2. (d) |V |= 4,344, 329 matches, ∆s = 0.68.

Models Points Features Scale Affinity Spectral
(Vertices) matched extraction detection matching

& Geodesic
distances

Cat (27,894) 505 68.18 sec 0.33 sec 4.16 sec 1.53 sec

Dog (25,290) 541 57.07 s. 0.11 sec 4.04 sec 1.11 sec

Wolf (4,344) 329 4.95 s. 0.16 sec 0.50 sec 0.16 sec

Man (52,565) 176 123.98 s. 0.32 sec 4.91 sec 1.34 sec

Table 1: Running times of the proposed methods.

in meshes with O(104) vertices, where most of the computa-
tional time is used by the extraction of feature points and the
computation of the graph distances, compared with compu-
tational time used for spectral analysis.

6. Conclusions

In this work we presented a computational approach to align-
ing meshes related by isometric transformations, by formu-
lating the matching as a combinatorial optimization prob-
lem solved via spectral graph matching. Using local detec-
tors and descriptors we match sparse sets of salient points in
both shapes, making our scheme robust to partial matchings.
The assumption of isometric transformation does not hold
under significant relative scalings, and we propose a robust
approach for estimating the relative scale between meshes
based on the local scale estimate of local features. Thus,
we derive a unified mesh alignment scheme that allows to
estimate both isometric and scaling transformations, that is
shown to be accurate and robust. In particular, compared to
state-of-the art methods our method is better able to process
large meshes and is faster by orders of magnitude.
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