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Abstract
While approaches based on local features play a more and more important role for 3D shape retrieval, the prob-
lems of feature selection and similarity measurement between sets of local features still remain open tasks. Com-
mon algorithms usually measure the similarity between two such sets by either establishing feature correspon-
dences or by using Bag-of-Features (BoF) approaches. While establishing correspondences often involves a lot of
manually chosen thresholds, BoF approaches can hardly model the spatial structure of the underlying 3D object.
In this paper focusing on retrieval of 3D models representing man-made objects, we try to tackle both of these
problems. Exploiting the fact that man-made objects usually consist of a small set of certain shape primitives, we
propose a feature selection technique that decomposes 3D point clouds into sections that can be represented by
a plane, a sphere, a cylinder, a cone, or a torus. We then introduce a probabilistic framework for analyzing and
learning the spatial arrangement of the detected shape primitives with respect to training objects belonging to cer-
tain categories. The knowledge acquired in this learning process allows for efficient retrieval and classification of
new 3D objects. We finally evaluate our algorithm on the recently introduced 3D Architecture Shape Benchmark,
which mainly consists of 3D models representing man-made objects.

Categories and Subject Descriptors (according to ACM CCS): H.3.1 [Information storage and retrieval]: Content
Analysis and Indexing, I.3.m [Computer graphics]: Miscellaneous

1. Introduction

Driven by the necessity to ensure reusability of the large
amount of available 3D models, 3D shape retrieval has
gained more and more attention during recent years. While
in the beginning the focus was merely on methods relying on
global shape descriptors, approaches based on local features
have become increasingly important. This is mainly due to
fact that the geometric variation of certain object classes can
hardly be described by only global shape properties. Apart
from the question how local object features can be charac-
terized by descriptors efficiently, there are two major ingre-
dients for a local feature based shape retrieval algorithm,
namely feature selection as well as computation of a simi-
larity measure between two sets of local features.

Most feature selection methods are based on local geo-
metric properties of the 3D object. The idea is to identify
features as parts of the object that are salient in a geometric
sense. Most approaches thereby focus on features that are ro-

bust to detect under object transformations like scaling, ro-
tation, shearing, and articulation, see e.g. [NDK05, GCO06,
OOFB08, HH09]. In this work, we will present a selection
methods that is especially tailored to 3D models represent-
ing man-made objects. Due to common manufacturing pro-
cesses, these objects mainly consist of building blocks that
can be assembled from parts of certain shape primitives like
planes, cylinders, spheres, cones and tori. This structure is
the starting point for our feature selection. We use the al-
gorithm presented in [SWK07] to decompose a 3D model
into segments corresponding to shape primitives. For each
segment, we compute a shape descriptor. Depending on the
size of the underlying shape primitive, our algorithm pro-
duces features ranging from very local to rather global (see
e.g. Figure 1). Our feature selection method is similar to the
one presented in [FMA∗09] using the mesh segmentation al-
gorithm presented in [AFS06]. However, in contrast to this
method our approach does not rely on an intact mesh con-
nectivity which is often not available when dealing with real
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world data. Instead we only require a point cloud which can
be easily obtained by densely sampling the underlying mesh.
In addition to plane-, cylinder-, and sphere-like shapes which
are recognized in [AFS06], the algorithm in [SWK07] sup-
ports cone- and tori-like shapes.

In contrast to shape retrieval approaches based on global
descriptors where object similarity can be determined in a
straight forward way by computing the distance between
global descriptors, there is no such easy way for methods
involving local features. Several algorithms for solving this
problem have been proposed. Bag-of-features (BoF) based
approaches map a set of local features into a single his-
togram, counting occurencies of certain codebook features,
see e.g. [LZQ06, LGW08, OOFB08, TCF09]. Although it
provides an elegant way of making local feature sets com-
parable, the approach faces a major drawback. In general,
the spatial arrangement of local features is lost as soon as
they are described by histograms, just as it happens when
objects arranged in a certain order are put into a bag. In con-
trast, methods based on correspondence computation try to
determine mappings between two local feature sets taking
feature similarity as well as their spatial relationship into ac-
count, see e.g. [NDK05,SMS∗04,FS06]. However, these ap-
proaches usually involve manual tuning of several pruning
thresholds, rendering it hard to achieve good generalization
results. In this work, we try to overcome the drawbacks of
the above mentioned approaches. We propose a probabilitic
framework for learning the compositional structure of 3D
objects which is inspired by an approach to 2D image re-
trieval by Ommer et al. [OB07, OB09]. In contrast to com-
mon BoF-approaches it incorporates the relative position of
single features as well as the spatial relationship of feature
tuples. Using a supervised learning scheme, we overcome
the shortcomings of methods based on correspondece com-
putation, as we do not need to manually enforce cumber-
some thresholds on descriptor similarity or spatial distances.
We finally compare our new approach to the results achieved
by [WBK08] on the 3D Architecture Benchmark [WBK09].
Sharing a similar supervised learning framework, this ap-
proach uses randomly selected object parts as features in-
stead of features based on shape primitive and no spatial
relationship are considered. Summarizing the key contribu-
tions of this work, they are:

• We introduce a new method for feature selection that is es-
pecially tailored to the domain of 3D models representing
man-made objects.

• We propose a supervised learning framework for efficient
similarity computation of local feature sets incorporating
their spatial relationship.

• We evaluate our approach using the 3D Architecture
Benchmark, discussing the impact of our feature localiza-
tion technique as well as the proposed similarity compu-
tation algorithm.

2. Related Work

In this section, we will briefly review the related work on 3D
shape retrieval. We focus on methods for feature selection
as well as on methods for measuring the similarity of two
3D objects with respect to sets of local features as these two
aspects are the most relevant ones for our approach.

2.1. Feature Selection

Randomly selected uniformly distributed features Prob-
ably the easiest way for feature selection is to randomly se-
lect uniformly distributed points on the object surface as fea-
ture centers. Feature radii are then usually determined ac-
cording to a manually chosen value. Mitra et al. [MGGP06]
locally characterize 3D shapes by probabilistic shape signa-
tures based on spin-images [Joh97] computed at randomly
selected uniformly distributed points on the object’s surface.
Providing good results for automatic scan alignment, the re-
trieval performance of this method highly depends on the
chosen local spin-image scale. Wessel et al. [WBK08] also
use random surface points as centers for local spin-images,
Spherical Harmonics descriptors [KFR03] and Zernike mo-
ments descriptors [Nov03]. All descriptors are computed
with respect to several manually defined radii. Uniformly
distributed surface points also serve as a starting point for
distinction-based feature selection in [SF06].

Geometry-based feature selection In [GCO06] local
salient regions are detected as mesh patches providing a high
curvature relative to the surrounding area. A region-growing
approach is used to subsequently augment small salient
patches to larger regions. Shalom et al. [SSSCO08] use the
shape-diameter function for both, segmentation and part sig-
nature definition. Ohbuchi et al. [OOFB08, OF08, FO09]
introduce salient local visual features extracted as SIFT-
features [Low04] from rendered depth images. A general-
ization of the SIFT algorithm to three dimensions is pre-
sented in [NDK05]. In this work, Novotni et al. detect salient
points on a 3D voxel grid as local extrema of the scale space
Laplacian-of-Gaussian. For each detected salient point, they
compute a local Spherical Harmonics descriptor. Further ap-
proaches based on scale spaces are presented in [LVJ05] and
[ZHDQ08]. In [HH09], Hu et al. present an approach to de-
tect local salient mesh regions using extrema in the Laplace-
Beltrami spectral domain of the mesh rather than in the usual
spatial domain, rendering this localization algorithm invari-
ant to isometric mesh deformations. An approach closely
related to our own is presented in [SWWK08]. Primitive
shapes like planes, cylinders, etc. are detected in 3D laser
range scans. In contrast to our approach, no local descriptors
based on the point supports of the shapes are computed. The
primitives are directly used as nodes in a graph-based algo-
rithm searching for certain manually defined configurations
of primitives, forming simple shapes like building roofs. A
similar method restricted to the detection of configurations
of planes is described in [VKH06].
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Distinction-based feature selection Selection based on the
retrieval performance of local features is introduced in
[SF06] and used in [SF07, FS06]. Considering a set of
preclassified training objects, a number of random surface
points is sampled from all objects. For each of these points,
a local Spherical Harmonics descriptor is computed charac-
terizing the local surface geometry with respect to a certain
radius. For each of these descriptors, it is determined how
well they are suited for efficient object retrieval. For new un-
known objects, again local Spherical Harmonics descriptors
are computed around randomly sampled surface points. The
knowledge acquired during the training step is used to pre-
dict the retrieval performance of these local descriptors and
only the most distinctive ones are finally used for retrieval.

2.2. Similarity between two sets of local features

Establishing feature correspondences The idea behind
this approach is to determine a mapping between two lo-
cal feature sets taking feature similarity as well as their
spatial relationship into account. While in [NDK05] object
similarity is defined in terms of a thin-plate spline bending
energy induced by determined pairwise feature correspon-
dences, Funkhouser et al. [FS06] use a heuristic similarity
measure involving Spherical Harmonics descriptor distances
and similarity of spatial relationships. Focusing on recogni-
tion of small vehicles in point clouds from laser range scans,
RANSAC based approach for the detection of small com-
patible feature sets are presented in [SMS∗04] and [JH99].
Despite their abibility to include spatial relationships of lo-
cal features into the object similarity measure, the methods
mentioned so far require to manually define a lot of prun-
ing thresholds on descriptor similarity and spatial consis-
tency, rendering it hard to achieve good generalization re-
sults. Methods based on geometric hashing [WL88] are ex-
tremely popular in computer vision but have also been ap-
plied to 3D shape retrieval [GCO06]. Although this approach
takes spatial relationships of features into account, it faces
two major drawbacks. First, the memory consumption for
storing the hash tables is rather high. Second, the degree of
discretization of the transformation space and the Euclidean
space at which high quality retrieval results can be achieved
is rather hard to determine.

Bag-of-Features Methods based on the BoF paradigm have
recently gained increasing attention in the 3D shape re-
trieval community [LZQ06,LGW08,OOFB08,OF08,FO09,
TCF09]. The idea behind this approach is inspired by the
common Bag-of-Words approach which is used for text re-
trieval and classification. First, a codebook of local features
is selected with respect to a set of training objects. New ob-
jects are then characterized by describing their local feature
occurencies with respect to the before established codebook.
By that, local features are mapped into a single histogram,
allowing for easy comparison of two 3D objects. As men-
tioned before, BoF based approaches lack the abilitiy to rep-

resent the spatial relationship of local features. In [LGW08],
Li et al. try to alleviate this shortcoming by additionally tak-
ing the distance between the object center and the local fea-
ture into account. However, the exact spatial relationship be-
tween tuples of features cannot be represented appropriately
by a BoF approach.

Meta descriptors The approach presented in [WBK08] is
loosely related to BoF methods, as the idea is to map a set
of local features into one single description. For each local
feature it is first determined how characteristic it is for a set
of certain object classes with respect to knowledge that was
acquired in a training step. This information is aggregated
in a discrete probability distribution (the meta descriptor).
Finally, the probability distributions of all local features are
combined into one single distribution allowing for easy ob-
ject comparison. Like with the BoF methods, the spatial re-
lationship of features is not taken into account. Using this
method as a starting point for our own approach, we will
show how to overcome this drawback in Section 4.

3. Feature Selection and Descriptor Computation

In this section, we will first describe how features of 3D
models representing man-made objects can be selected us-
ing shape primitives like planes, cylinders, etc. After that we
will show how the supporting regions of shape primitives
can be represented by descriptors.

3.1. Feature Selection

As a starting point for the detection of primitive shapes we
use an unstructured 3D point cloud which can be obtained
by randomly sampling from a 3D mesh. We employ the
algorithm presented in [SWK07] which recognizes planes,
spheres, cylinders, cones and tori in the point cloud. In the
evaluation conducted in [LSSK09], the segmentation pro-
vided by this approach showed increased robustness com-
pared to the method presented in [WK05]. In contrast to
[AFS06], the point clound-based approach does not require
an intact mesh connectivity and it is not restricted to planes,
cylinders, and spheres. In this section we will only give a
very brief outline of the shape detection technique and the
interested reader is referred to the original paper.

The data is decomposed into disjoint sets of points, each
corresponding to a detected shape proxy respectively, and a
set of remaining points that consists of outliers as well as
areas of more complex geometry for which primitive shapes
would give an inappropriate representation. For further pro-
cessing, all remaining points are ignored. Points that are rep-
resented by a shape primitive are also called the support of a
shape. Thus, given the point-cloud P = p1, . . . , pN , the out-
put of the shape detection is the following:

P = Sφ1 ∪ . . .∪SφA ∪R, (1)

where each subset (the support) Sφi is associated with a
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shape primitive φi. All points in Sφi constitute a connected
component and fulfill the condition

s ∈ Sφi ⇒ d(s,φi)< ε∧∠(ns,n(φi,s))< α, (2)

where ns is the normal of point s, n(φi,s) denotes the normal
of the primitive φi at the point closest to s and d(s,φi) de-
notes the Euclidean distance between s and φi. The normals
ns are thereby estimated on the point cloud. The parameters
ε and α are chosen by the user according to the sampling dis-
tance. The set R contains all remaining, unassigned points.

Examples for the decomposition of several objects from
the 3D Architecture Shape Benchmark [WBK09] can be
found in Figure 1. For the choice of parameters concerning
the primitive shape detection, we refer to Section 5.

3.2. Descriptor Computation

Theoretically, it would be possible to use the primitive shape
type together with certain properties (e.g. radius and height
for a cylinder primitive) as a shape descriptor. However,
there are two reasons rendering this approach inefficient.
First, the primitive shape detection is not robust with respect
to the type of the detected primitive. For example, a set of
points originating from a pipe might either be identified as
part of a cylinder primitive or as part of a torus primitive
with a very large radius (see e.g. the legs of the bench in
Figure 1f). Second, such a descriptor would not incorporate
the fact that the underlying support points might only repre-
sent a part of a primitive (e.g. only a hemisphere instead of
a whole sphere). We therefore do not characterize the local
object part by the primitive itsself but rather by its support.
Once the primitive shape is detected, we compute a spin im-
age [Joh97] representing the support points. By that, the dis-
crete shape type is described in a more continuous way.

We align the spin image axis according to the Z-axis of
the underlying object. Note that this representation is not
only invariant under rotations around the Z-axis of the ob-
ject. However, 3D models representing man-made objects
are mostly modeled in a way that their Z-axis is chosen ac-
cording to the world’s up-direction. Therefore, this choice
does not put a severe restriction to our algorithm, see e.g. the
models in the 3D Architecture Shape Benchmark [WBK09]
that we use for evaluation. Note that our framework for
learning the compositional structure of 3D objects (see Sec-
tion 4) is not restricted to the usage of spin images. It would
also be possible to use e.g. Spherical Harmonics descriptors.

4. Learning the Compositional Structure of 3D Objects

As the approach presented in [WBK08] serves as a start-
ing point for our method, we will first briefly explain it
and will then present our extension towards the learning of
compositional 3D object structures. The method for simi-
larity computation between two sets of local features pre-
sented in [WBK08] relies on a supervised learning approach.

The idea is to transform an arbitrary descriptor di ∈ Rk into
a class distribution descriptor (CDD) cdd(di) that states
how characterstic di is for a set of certain object categories
C = {c1, ...,cn}. In terms of conditional class probabilities,
this meta descriptor reads:

cdd(di) =

 p(c1|di)
...

p(cn|di)

 . (3)

The supervised learning approach consists of two steps. In
the first step, conditional class probabilities are learned us-
ing nonlinear kernel discriminant analysis (NKDA) [RT01]
with respect to a set of preclassified training features derived
from 3D objects. In the second step, the acquired knowledge
is used to predict conditional class probabilities for new local
features. By that, for an object consisting of l local features
d1, ...,dl , a set of l CDDs cdd(d1), ...,cdd(dl) is computed.
As these descriptors only contain conditional class proba-
bilities which are uncoupled from the underlying geometric
descriptor, similarity computations between two sets of lo-
cal features can be easily realized. Adopting the Bayesian
point of view, the according CDDs can be combined using
the product rule:

cdd(d1, ...,dl) =

 p(c1|d1, ...,dl)
...

p(cn|d1, ...,dl)


=

∏
l
i=1 cdd(di)

∑
n
j=1 ∏

l
i=1 cdd(di)

, (4)

where ∏ denotes a pointwise product. Now consider two 3D
objects o1 and o2 as well as a distance measure ∆. Object
similarity S(o1,o2) can then be written in terms of distance
between according CDDs:

S(o1,o2) = ∆(cdd(do1
1 , ...,do1

l1 ),cdd(do2
1 , ...,do2

l2 )). (5)

For further insights into how the conditional class probabil-
ities are exactly computed, we refer to the original paper by
Wessel et al. [WBK08]. Although this approach allows for
incorporation of learned knowledge about object categories
and avoids the cumbersome process of establishing feature
correspondences, it does not take spatial relationships be-
tween features into account.

4.1. Integrating Feature Locations

In a first step, we add the relative position of single lo-
cal features di with respect to the center of gravity mo of
the underlying object. Let now Φ(mo,di) denote the spa-
tial relationship between the feature di and the object center
mo.There are several possibilities how to choose Φ(mo,di).
In a setting where the underlying object can be rotated in
an arbitrary way, the natural choice for Φ(mo,di) would
be Φ(mo,di) := ||mo − mdi||, where mdi is the center of
gravity of the support points of feature di. However, as in
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(a) armchair (b) easy chair (c) side chair (d) bathtub (e) sink (f) bench

Figure 1: Detection of primitive shapes (for better understanding please see the color pages). Colors are chosen with respect to
the partially detected primitive types plane (red), cylinder (green), torus (grey), cone (purple), and sphere (yellow). Figure f)
shows an example for the instability of the shape detection. Two legs are identified as a cylinder, but one is identified as part of
a torus. All examples are taken from the 3D Architecture Shape Benchmark.

our setting the Z-axes of the objects are consistently ori-
ented, we follow another approach allowing us to integrate
more precise information about the spatial relationship. Set-
ting Φ(mo,di) := (δz(mo,mdi),δr(mo,mdi)), we take into
account the signed distance δz(mo,di)=: δzi along the Z-axis
as well as the unsigned distance δr(mo,mdi) =: δri measured
in the plane perpendicular to the Z-axis.

So far, the size of a local feature is not incorporated. We
therefore introduce an additional parameter γi describing the
number of support points of feature di with respect to the
total number of points in the object. By that, the modified
CDD reads:

cdd(di) =

 p(c1|di,δzi,δri,γi)
...

p(cn|di,δzi,δri,γi)

 . (6)

4.2. Spatial Relationship between Features

In the second step, we will additionally consider the spatial
relationship between feature tuples di j consisting of two fea-
tures di and d j from the same object. As the positions of mdi,
md j around the object center mo are fixed by δz and δr ex-
cept for rotation, we only need to additionally incorporate
the distance δp(mdi,md j) =: δpi j between di and d j into our
framework. The according CDD is then given by:

cdd(di j) =

 p(c1|di j,δzi,δri,γi,δz j,δr j,γ j,δpi j)
...

p(cn|di j,δzi,δri,γi,δz j,δr j,γ j,δpi j)

 . (7)

Intuitively speaking, it describes how likely it is that the cur-
rently considered object belongs to a certain object category,
given the co-occurrence of features di and d j in a certain
spatial arrangement.

4.3. NKDA Kernel Function

The kernel function determines how similarity between fea-
tures is computed during training as well as during the pro-
cess of predicting the conditional probabilities for the CDD.
A common choice for vector-valued features is a Gaussian
kernel, which is also used in [WBK08]:

k(di,d j) = exp

(
−
|di−d j|2

2σ2

)
, (8)

where σ denotes the kernel width. As described in Section
3.2 we use spin image coefficients di = (di1, ...,dik) as a de-
scriptor for the extracted shape primitives. Considering sin-
gle features, this descriptor has to be combined with the ad-
ditional information about feature location and size given by
the parameters δzi,δri, and γi. Note that simply defining

d′i = (di1, ...,dik,δzi,δri,γi)
t (9)

and evaluating k(d′i ,d
′
j) would lead to instabilities as the

coefficients for spatial relationship and relative feature size
have a completely different meaning and scale compared to
the spin image coefficients. Although kernel-based discrim-
inant functions are known to be able to implicitely weight
certain feature entries, stability can be increased by introduc-
ing weighting factors when considering feature entries that
are measured on different scales. Therefore, we modify the
kernel function by introducing weights to properly balance
all coefficients in d′i . For single features, we define

ks(d′i ,d
′
j) := exp

(
−
(d′i −d′j)

tWs(d′i −d′j)
2σ2

)
, (10)

where Ws is a diagonal matrix of size (k+3)× (k+3) con-
taining weighting factors for δzi,δri, and γi. The diagonal
D(Ws) reads:

D(Ws) := (1, · · · ,1,αδ,αδ,αγ). (11)
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Considering a feature pair di j , the underlying shape descrip-
tors di and d j must be combined into one common vector.
In this vector, we order di and d j according to the size of
their point support. Let di be the local feature with the larger
point support. Then, incorporation of the additional informa-
tion about feature location, size and spatial relationship leads
to the following kernel input vector d′i j:

d′i j = (di1, ...,dik,d j1, ...,d jk, (12)

δzi,δri,γi,δz j,δr j,γ j,δpi j)
t (13)

The according kernel function reads

kt(d′i j,d
′
qr) := exp

(
−
(d′i j−d′qr)

tWt(d′i j−d′qr)

2σ2

)
, (14)

where Wt is a (2k+7)× (2k+7) diagonal matrix containing
the weighting factors such that the diagonal D(Wt) reads:

D(Wt) := (1, · · · ,1,αδ,αδ,αγ,αδ,αδ,αγ,αδ). (15)

We determine all weighting factors as well as the ker-
nel width σ completely automatically using crossvalidation.
During the training process, a discriminant function for each
pair of the n object classes is computed. This leads to dif-
ferent αs and σ for each discriminant function, taking into
account that feature size and relative position are of varying
importance depending on the considered object categories.

4.4. Combining CDDs

In order to finally compare the CDDs derived from different
objects, the CDDs of each single feature and of each feature
pair must be combined into one single CDD. Following the
combination technique presented in Equation 4, this descrip-
tor can be determined by multiplying and renormalizing the
CDDs computed so far:

cdd({di},{di j}) =
∏

l
i=1 cdd(di)∏i ∏ j 6=i cdd(di j)

∑
n
c=1 ∏

l
i=1 cdd(di)∏i ∏ j 6=i cdd(di j)

,

where {di},{di j} denote the sets of single features and fea-
ture pairs, respectively. We can now compute the similarity
S between two objects o1 and o2 according to the underlying
CDDs by evaluating

S(o1,o2) = ∆(cddo1({di},{di j}),cddo2({di},{di j})

with respect to a similarity measure ∆.

5. Results

For our experiments, we use the 3D Architecture Shape
Benchmark [WBK09] which contains 2257 models of man-
made objects from the architectural domain like building el-
ements or furnishing. In the work introducing this bench-
mark, several shape retrieval methods were tested on this
new dataset. The results were compared to those achieved
on the Princeton Shape Benchmark (PSB) [SMKF04] us-
ing the exact same methods. The best performing method

was the approach presented in [WBK08] which we briefly
described in the beginning of Section 4. As descriptors, 64
local spin images centered at randomly selected uniformly
distributed points were used. We compare our own approach
to this method in terms of retrieval performance.

5.1. Experimental Setup

Dataset The original 3D Architecture Shape Benchmark
consists of 2257 models arranged in 180 and 183 classes,
respectively. To ensure appropriate generalization perfor-
mance of our supervised learning framework, we use a sub-
set of this benchmark, selecting all classes that contain at
least 20 objects.We divide the resulting 1817 objects belong-
ing to 25 classes into a training set and a test set. For the
training set, we randomly select 16 objects of each class.The
remaining 1417 objects are put into the test set.

Preprocessing and Shape Detection A point cloud repre-
sentation is the prerequisite for computing shape primitive
features as well as spin image descriptors. We therefore nor-
malize all meshes to the [−1,−1,−1]× [1,1,1] bounding
box and randomly sample 50000 points per unit area on the
surface from the underlying triangles. For the shape detec-
tion described in Section 3.1, we set α = 0.9 and ε = 0.002.
Note that the same parameter setting is used for the whole
dataset. Depending on the complexity of the underlying
model, the number of detected shapes varies between 10 to
200. For further descriptor computation, we select those 32
shapes providing the largest point support. If less than 32
shapes are detected, all of them are used.

Descriptors To evaluate our approach, we compute spin im-
age descriptors describing the point support of every selected
shape primitive. The spin images are positioned at the cen-
ter of gravity of the support points and oriented according to
the Z-axis of the object. The radius is chosen with respect
to the support point farthest from the center of gravity. For
the comparison to the approach presented in [WBK08], we
randomly select 64 uniformly distributed surface points as
spin image centers. In this setting, spin images are oriented
according to the surface normal. For both settings, the spin
image resolution is set to 16×16 bins.

Feature Tuples For an object with n detected shape fea-
tures, we select those n/2 features providing the largest sup-
port to generate

(n/2
2

)
tuples. If the maximum number of 32

is detected, this leads to 120 feature tuples.

5.2. Evaluation

As a distance measure ∆ (see Section 4.4) between CDDs
we use the χ

2 metric. The performance of our algorithm is
shown in Figure 2 and in Table 1. As can be seen in the
precision-recall plot, our method (Shapes and Spatial Rela-
tionships) outperforms the approach based on spin images
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Figure 2

Method 1-NN 1-Tier 2-Tier DCG
Uniformly Selected
Local SI

0.642 0.486 0.676 0.782

Shapes + SR 0.748 0.531 0.683 0.809

Table 1: Comparison of our approaches to random feature
selection. Our algorithm including shapes and spatial rela-
tionships shows superior quality to random feature selection.

centered at randomly selected uniformly distributed sur-
face points (Uniformly Selected Local Spin Images). Table 1
shows the performance of both methods regarding additional
quality criteria for shape retrieval. The 1-NN value describes
the performance achieved by a nearest neighbor classifier.
The tiers denote the fraction of objects belonging to the class
of the query object among the top T results. For a class con-
taining n objects, 1−Tier = n−1 and 2−Tier = 2(n−1).
Average discounted cumulative gain (DCG) gives an impres-
sion of how the overall retrieval would be viewed by a hu-
man. As can be seen, our proposed method involving spatial
relationships and feature selection according to shape prim-
itives achieves a higher retrieval performance.

Regarding the overall performance of both approaches,
the Architecture Benchmark still remains a hard task for
shape retrieval. In contrast to the PSB, on which the ap-
proach presented in [WBK08] showed very encouraging
results (see [WBK09]), the Architecture Benchmark is re-
stricted to a single object domain and the classification
schemes provide very fine granularity (e.g. there are 11 dif-
ferent classes for chairs in the form-based scheme). Both of
these properties cause a smaller inter-class variation in this
benchmark, rendering shape retrieval difficult.

Uniformly Selected
Local SI

Shapes and SR

Preprocessing 1 h 15 min 15 h
CDD computation 55 min 2 h 13 min
Training Shapes 44 min 9 h 24 min

Table 2: Timings. Preprocessing times are with respect to
the whole dataset including 1817 object. CDD computation
times are with respect to the test set including 1417 objects.

5.3. Timings

In Table 2, we provide information about the time con-
sumption of our approach. All experiments were run on
an Intel R©CoreTM2 Quad with 2.33 GHz and 4 GB RAM.
Shape detection, training and CDD computation were
parallelized using OpenMP. Training and CDD compu-
tation were additionally accelerated using a NVIDIA R©
GeForce R©8800. Preprocessing timings include point cloud
generation, shape detection and spin image descriptor com-
putation for the shape and spatial relationships based ap-
proach and point cloud generation and spin image descrip-
tor computation for the random feature selection based ap-
proach, respectively. Training and CDD computation take
longer if spatial relationships are taken into account which
is due to two reasons: First, feature tuples lead to an addi-
tional amount of training vectors. Second, cross validation
must be performed to determine the αs weighting factors.

6. Conclusion and Future Work

In this work, we introduced a supervised learning framework
for 3D models representing man-made objects. It consists of
a feature selection technique relying on detecting the shape
primitives plane, cylinder, torus, sphere, and cone. As such
shape primitives are building blocks of many man-made ob-
jects, our selection method is not only based on geometric
saliency like most other approaches, but it also reflects the
structural character of the underlying object domain. Addi-
tionally, our framework incorporates the spatial relationship
of detected features. In our evaluation using the Architec-
ture Benchmark, we show that our combination of super-
vised learning, feature selection and incorporation of spatial
arrangement is superior to supervised learning and randomly
selected uniformly distributed features. A drawback of our
approach is the increased time consumption.

Future work should include the evaluation of other fea-
ture selection techniques which can be easily plugged into
our framework. Considering the problems caused by the fine
granularity of the benchmark, hierarchical approaches in-
volving coarser classification schemes should be examined.
When using supervised learning methods, classifiers could
be specialized on certain hierarchy levels of the model tax-
onomy which might lead to improved retrieval performance.
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