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Abstract

In the context of shape matching, this paper proposes a framework for selecting the Laplacian eigenvalues of

3D shapes that are more relevant for shape comparison and classification. Three approaches are compared to

identify a specific set of eigenvalues such that they maximise the retrieval and/or the classification performance

on the input benchmark data set: the first k eigenvalues, by varying k over the cardinality of the spectrum; the Hill

Climbing technique; and the AdaBoost algorithm. In this way, we demonstrate that the information coded by the

whole spectrum is unnecessary and we improve the shape matching results using only a set of selected eigenvalues.

Finally, we test the efficacy of the selected eigenvalues by coupling shape classification and retrieval.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modelling— Additional keywords: Shape comparison and matching, Laplacian spectrum, feature

selection, AdaBoost.

1. Introduction

Shape classification and retrieval are crucial tools to organ-
ise and interact with databases of 3D models and to get a
picture on the knowledge, or semantics, underlying the mod-
els. The performance of classification and retrieval strongly
depends on the effectiveness of the shape descriptors, the
comparison method, and the indexing techniques [BFF∗07].
While several methods have been proposed to compare 3D
shapes [BKS∗05, TV08], only few methodologies address
the issue of identifying descriptions that capture the shape
features shared by a class of models [MSF07, LN08].

Inspired by the earlier work presented in [TV04, LN07],
the goal of this paper is to deepen the analysis of the classifi-
cation and retrieval performances of feature vectors defined
by the spectrum of the Laplace-Beltrami operator. The result
of the study is a new approach to automatically associate to
classes of 3D objects the sub-set of the spectrum that is more
relevant to characterise the inter-class similarity and discrim-
inate among different classes. To identify a specific set of
eigenvalues that maximises the retrieval and/or the classi-
fication performance on the input benchmark data set, we
have investigated three approaches: the first k eigenvalues,
the Hill Climbing technique, and the AdaBoost algorithm.
The choice of these three algorithms for feature selection is

motivated by the need of a statistical approach to the defi-
nition of a feature space, where close points correspond to
shapes with similar characteristics within the same class.

Even if the aforementioned algorithms are not new, our
work is the first attempt at the identification of those sub-
parts of the shape spectrum which discriminate among dif-
ferent classes of models. More precisely, our final aim is to
identify clustered eigenvalues, which describe the associated
class by means of those local/global features that are dis-
criminative for that class. The AdaBoost algorithm [FS99],
which is a statistical tool for feature extraction, has been
recently used for 2D images [TV04] and for 3D mod-
els [LN07] to select relevant views of 3D objects with re-
spect to the light field descriptor [CTSO03]. Other classi-
fiers based on semi-supervised learning, dimensionality re-
duction, and probability have been successfully exploited for
shape classification. For instance, in [HLR05] Support Vec-
tor Machine is used to cluster 3D models with respect to se-
mantic information. In [HR06, OK06], shape classifiers are
obtained as a linear combination of individual classifiers and
using non-linear dimensionality reduction. In [SF06], rele-
vant local shape descriptors are selected through a multivari-
ate Gaussian distribution and collected to define a priority-
driven search for shape retrieval.
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In the context of 3D shape analysis and matching, the
spectrum of the Laplace-Beltrami operator provides a de-
scriptive and large feature vector, which characterises the in-
put shape and has been widely studied in the recent years.
We refer the reader to [ZvKD07] for a recent survey on spec-
tral mesh processing. The Laplacian spectrum is well suited
for shape matching tasks due to its isometry-invariance prop-
erties, its robustness to local noise and sampling, and its
shape-intrinsic definition and multi-scale organisation. The
first use of the Laplacian spectrum for shape matching was
firstly proposed in [RWP06]. Here, two shapes are compared
by measuring the distance between the vectors defined by the
first k := 50 eigenvalues with smallest magnitude.

Instead of using the spectrum itself, in [JZ07] non-
rigid objects are matched using spectral embeddings, which
are derived from the eigenvectors of affinity matrices
computed considering geodesic distances. In [Rus07], the
first k Laplacian eigenvalues and eigenvectors are used
to define an isometry-invariant shape representation. Then,
these signatures are compared using a modification of the
D2-distribution [OFCD02], which is based on a set of his-
tograms that capture the variation of distances among points
within a set of spherical cells centred at the origin of a
k-dimensional space. In [MCHB07], spectral embeddings
are constructed as Local Linear Embedding on eigenspaces
of affinity matrices and matched by using the Expectation-

Maximisation framework. Finally, the Laplace-Beltrami op-
erator is strictly related to the heat diffusion equation, which
provides an embedding of a given scalar function in a hier-
archy of smoothed approximations. Recently, the heat equa-
tion and the associated diffusion metric have been used to
define multi-scale shape signatures [SOG09], compare 3D
shapes [M0́9], and approximate the gradients of maps de-
fined on triangulated surfaces and point sets [Wan09].

While there is an evidence of the close relationship among
shape features and eigenvalues, the best way to use the
spectrum for shape characterisation has not been identified
yet [RBG∗09]. We argue that statistical methods are the most
appropriate to correlate sub-sets of the spectrum to classes
of 3D shapes and to have a grasp on the semantics captured
by the eigenvalues. In this context, our main contribution is
the application and comparison of three feature selection ap-
proaches to the Laplacian eigenvalues (Section 3); namely,
(i) the first k eigenvalues, by varying k on the cardinality
of the computed spectrum; (ii) the Hill Climbing technique;
and (iii) AdaBoost [FS95]. The obtained results confirm the
hypothesis that the Laplacian spectrum contains unnecessary
information for shape matching and classification. Indeed,
the appropriate selection of a set of eigenvalues strongly
improves the classification results and the retrieval efficacy
(Section 4). Finally (Section 5), we provide closing remarks
on results and outline future work.

2. Spectral descriptors of 3D shapes

The intuition behind spectral shape comparison is that the
Laplacian spectrum is meaningful for the description of the
input surface M due to its intrinsic definition, invariance
with respect to isometric transformations, and easy com-
putation. More precisely, the Laplacian spectrum of M
is defined as the set of solutions (λ, f ) of the following
eigenvalue problem: find f : M→ R such that ∆ f = λ f ,
λ ∈ R, where ∆ is the Laplace-Beltrami operator. In the
discrete setting, let us consider a triangulated surface M
with vertices {pi}

n
i=1. Then [RWP06], the FEM discreti-

sation is equivalent to the generalised eigenvalue prob-

lem Lcotf = λBf, f := ( f (pi))
n
i=1, where the n× n matri-

ces Lcot and B are the stiffness matrix with cotangent
weights and the mass matrix, respectively. Alternatively, we
can compute the eigensystem associated to the standard

eigenvalue problem (λ, f) : Lcotf = λf. In the following,
we assume that the eigenvalues λk and the corresponding
eigenvectors fk, k = 1, . . . ,n, are increasingly reordered; i.e.,
0 = λ1 ≤ λ2 ≤ . . .≤ λn.

Normalisation of the FEM Laplacian spectrum. For
shape comparison, the main properties of the spectrum of the
Laplacian matrix of a 3D surface are its isometry-invariance,
which does not require shape alignment, and its indepen-
dence of discretisations. Since uniformly rescaling M by
a constant factor s changes the FEM Laplacian eigenvalues
by s−2, we make them invariant to shape scales by normalis-
ing the spectrum of M with its area. Furthermore, as k tends
to infinity, λk becomes close to the value 4πk/area(M).
Note that the eigenvalues of Lcot are not affected by a rescal-
ing of M and are bounded from above. Since the FEM spec-
trum is unbounded from above, for our experiments we nor-
malise the computed eigenvalues by their maximum.

Assuming that the sampling density of the input surface
is coherent with the shape details that must discriminate
similar shapes, our experiments have shown that the nor-
malised spectrum of the Laplacian matrix, discretised with
both the cotangent and FEM weights, is not strongly affected
by the noise and shape discretisation in terms of connectiv-
ity and sampling. For instance, in the examples of Fig. 1
smoothed, simplified, and isometrically deformed surfaces
have an almost identical spectrum. Theoretical and experi-
mental results on the sensibility of the eigenvalue computa-
tion with respect to noise, sampling, and deformation have
been discussed in [DZMC07, RBG∗09]. Even though the
Laplacian spectrum characterises geometric and topological
features of 3D shapes in a way that is not unique, previous
work [RWP06, RBG∗09] has also shown that the spectrum
is able to distinguish dissimilar shapes.

3. Classification based on the shape spectrum

In the literature, few works tackle the problem of similarity
by using the shape spectrum. Even thought the approach pro-
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(a) (b)

(c) (d) (e)

Figure 1: Variation (y-axis) of the first 100 Laplacian eigen-

values (x-axis) on isometrically deformed shapes: (a) FEM

and (b) cotangent weights; the FEM eigenvalues have been

normalised with respect to the surface area and their max-

imum. (c-e) On the left and right side, deformed (50K ver-

tices) and simplified (10K vertices) shapes used to verify the

sensibility the eigenvalues’ computation.

posed in [RWP06] provides good results, it is not clear if the
selection of a particular spectrum sequence is the best choice
or there exist other sequences of eigenvalues that provide
better results. Furthermore, the large amount of extracted in-
formation stresses the importance of identifying relevant in-
formation from the shape spectrum.

In this context, our work investigates the problem of se-
lecting a bunch of eigenvalues that are capable of max-
imising the performances of classification and retrieval al-
gorithms. To this end, we compare three approaches to se-
lect a specific set of eigenvalues such that the corresponding
shape classification error on the input benchmark data set
is minimised: the first k eigenvalues (Section 3.1), by vary-
ing k on the cardinality of the computed spectrum; the Hill
climbing algorithm (Section 3.2); and the AdaBoost algo-

rithm (Section 3.3). Using the aforementioned methods, the
shape classification has been investigated by selecting those
sub-sequences of the Laplacian spectrum that characterise
the inter-class similarity and discriminate among different
shape classes. The distance d̃s between the query Q and the
class C is defined as

d̃s(q,C) = min
m∈C

ds(q,m), (1)

where ds is the distance between the models with respect
to s. The following is a general definition for the query-class
classification scheme

q 7→C ⇐⇒C = arg min
C∈D

d̃s(q,C), (2)

where ds is the distance between the query model Q and the
class C with respect to the spectrum sub-sequence s. Finally,
the average classification error ε ∈ [0,1] is computed as the
number of wrongly classified queries divided by the number
of models.

Our analysis has been performed on the SHREC 2007 wa-
tertight data set (Fig. 2), which is grouped into 20 classes and
contains 300 input shapes and 100 queries. To investigate
the effectiveness of the selected information, each model has
been re-meshed to 10K vertices. Different discretisations of
the same or almost isometrically-deformed shapes are in-
cluded to test the robustness of both the Laplacian spectrum
and the eigenvalue selection. The results in the following
subsections concern the selection of the eigenvalues on the
training set in Fig. 2(a); the results in Section 4 are obtained
by exploiting the selected features to query the training set
with the complementary query set in Fig. 2(b).

3.1. Classification based on the first k eigenvalues

Since there are no theoretical results on the best suited
value of k, a simple classification scheme based on the
equation (1) and (2) has been investigated by using the
sub-sequence s = (1, . . .,k) ⊆ (1, . . . ,kmax), where k varies
from 1 the maximum number kmax of computed eigenval-
ues. For the tests proposed in this section, we have cho-
sen kmax := 500. The distance ds between the query Q and
the model M is the L2-norm between their first k eigen-
values. Even if the un-normalized FEM spectrum is un-
bounded, our experiments have shown that the use of other
distances (e.g., χ2) do not sensibly improve the classifica-
tion results. Finally, the proposed scheme selects the spec-
trum sub-sequence [1,k0], k0 ≤ k, corresponding to the sub-
optimal minimization of the classification error.

Fig. 3 and Table 1 summarise the classification error com-
puted on the normalised/un-normalised spectra and based
on both the FEM and the cotangent discretisation. Note
that the best results are produced by sequences of eigenval-
ues with small magnitudes and that the classification per-
formance strongly decreases while increasing the magni-
tude of the eigenvalues. The growth of the classification er-
ror is effectively reduced by using re-meshed models and
normalising the computed eigenvalues with their maximum.
More precisely, the un-normalised (resp., normalised) FEM
eigenvalues provides a classification error lower than 0.4
(resp., 0.3) with 8 ≤ k ≤ 13 (resp., 7 ≤ k ≤ 19) and the min-
imum ε = 0.36 (resp., ε = 0.27) is obtained with the first 12
(resp., 13) eigenvalues. For the re-meshed models, the un-
normalised FEM spectrum provides a classification error
lower than 0.4 by varying k between 7 and 13. The minimum
error ε = 0.36 is achieved by selecting the first 11 eigenval-
ues. For the normalised FEM eigenvalues, a classification
error lower than 0.25 is obtained with 13 ≤ k ≤ 18 and for
the minimum ε = 0.22 we use 15 eigenvalues.

Finally, for both the original and the remeshed models
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(a)

(b)

Figure 2: (a) Data set and (b) query set.

we have computed the classification error using the first k

cotangent eigenvalues. Considering the original data set, a
classification error lower than 0.4 is obtained by selecting k

between 12 and 18. For the re-meshed data set, values of ε

lower than 0.4 are obtained for indices between 9 and 344.
Concerning the original models, the best classification re-
sult ε = 0.37 uses the first 13 eigenvalues, while for the re-
meshed models the minimum error ε = 0.32 is obtained with
the first 59 eigenvalues.

3.2. Classification based on the Hill Climbing algorithm

The classification with respect to the Hill Climbing with

Backward technique (HCBw, for short) selects a sub-
sequence s of the shape spectrum that produces a sub-
optimal minimisation of the classification error ε measured
as in Equation (1). Assuming that s is initially empty, the
HBCw algorithm iteratively adds to s those Laplacian eigen-
values that reduce ε. If ε stops to decrease, then the backward
routine removes from s those elements that strongly reduce ε

Figure 3: Classification error (y-axis) on the first k eigen-

values, with k from 1 to 500 (x-axis).

un-norm. norm.

ε k0 ε k0

original FEM 0.30 11 0.27 13
models cot 0.37 13 - -

re-meshed FEM 0.29 9 0.22 15
models cot 0.32 59 - -

Table 1: Classification error ε computed by using the first k

eigenvalues, 1 ≤ k ≤ 500. Here, k0 is the number of the

eigenvalues that produces the minimum classification error.

(if any). If the backward routine cannot be iterated, then the
HBCw algorithm tries to add new elements to s until possi-
ble. As shown in Table 2, the best HCBw classification result
is obtained on the re-meshed data set using the FEM discreti-
sation. Even if the best classification error is the same as the
one shown in Table 1, the HCBw algorithm selects a smaller
number of eigenvalues, which are among the first 50.

3.3. Classification based on the strong classifier

produced by AdaBoost

The classification schema discussed in Sections 3.1 and 3.2
select a sequence of eigenvalues that minimise the classifi-
cation error computed on the whole data set. In this section,
AdaBoost [FS95] is applied to select the eigenvalues that
minimise the classification error by considering each class
of the data set separately. To this end, each class is asso-
ciated to a set of eigenvalues such that they maximise the
inter-class similarity and the dissimilarity among classes.

Using a set of positive and negative examples together
with a large set of features, the goal of AdaBoost is to make
the margin among the training examples as large as possi-
ble. As output, it produces a classification function based
on a subset of features selected from the input set, which
maximises the margin between the positive and negative ex-
amples. Given an input shape M, the selection of the rele-
vant features uses a set of binary classifiers (each of them
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un-norm. norm.

ε sel ε sel

original FEM 0.40 8 0.28 5
models cot 0.34 17 - -

re-meshed FEM 0.37 13 0.22 10
models cot 0.34 7 - -

Table 2: HCBw classification error ε with 1 ≤ k ≤ 500
eigenvalues. The parameter sel corresponds to the number

of selected eigenvalues.

associated to a single feature) that returns 1 if M is recog-
nised as belonging to the set of positive examples and −1
otherwise. Besides AdaBoost, other effective approaches for
feature selection are based on the Support Vector Machines

(SVM, for short) [BGV92, GGNZ06]. The main difference
between SVM and AdaBoost is that the former relies on the
definition of the most appropriate kernel to maximise the
margin, while the latter achieves analogous results by using a
fast greedy algorithm based weak classifiers. Moreover, the
SVM requires to solve a quadratic programming problem,
while the AdaBoost algorithm is based on linear program-
ming. This reasons makes AdaBoost suitable for the efficient
classification of high dimensional data.

In case of shape classification based on spectral informa-
tion, each weak classifier is defined on a single eigenvalue
of the spectrum. Indeed, AdaBoost is able to select the most
relevant eigenvalues that maximise the margin between pos-
itive and negative examples. Moreover, each class is used
in turn as positive example and the remaining classes are
negative examples. In this way, a set of relevant eigenvalues
has been obtained for each class. Among the shape features
shared by similar models, we consider these sets of eigen-
values as those class descriptions that maximise the distance
among models of different classes.

In our experiments, the weak classifier hk classifies the
shape model M by using the k-th eigenvalues of its spectrum
and it is defined as

hk(M) =

{

1 maxR∈E+ dk(M,R) ≤ th,
−1 otherwise,

where E+ is the set of positive examples, dk(M,R) is the
absolute value of the difference between the k-th eigenvalue
of the models M and R, and th = maxR,Q∈E+ dk(R,Q),
is a real number that is associated to the set of positive ex-
amples and represents the maximum distance between R
and Q.

The following is a description of the AdaBoost algorithm
used to produce the results summarised in Table 3.

• Input examples: (M1,y1), . . ., (Mm,ym), where
Mi ∈ D and yi ∈ Y = {+1,−1}, i = 1, . . .,m.

• Initialisation:

w0,i :=
1

2|E+|
if M∈ E

+, w0,i :=
1

2|E−|
otherwise,

un-norm. norm.

ε sel ε sel

original FEM 0.63 6.8 0.14 27.15
models cot 0.5 8.35 - -

re-meshed FEM 0.68 7.3 0.03 30.6
models cot 0.05 32.1 - -

Table 3: Classification error ε computed on the original/re-

meshed data set with/without normalisation. sel is the aver-

age number of eigenvalues selected by AdaBoost.

where |E+| and |E−| are the number of positive and neg-
ative examples, respectively.

• Iteration: for t = 1, . . .,T ,

– train the weak classifiers by using the weights wt,i;
– select the weak classifier ht producing the lowest clas-

sification error εt .

• Update of the weights: wt+1,i = 1
Zt

wt,ie
−αt ht(M)yi ,

where αt = 1
2 log 1−εt

εt
and Zt is a normalisation factor

such that wt,i ranges in [0,1].
• Strong classifier: S = ∑

T
t=1 αtht .

The algorithm takes as input the set of positive and negative
examples, (M1,y1), . . ., (Mm,ym), where Mi is a model
of the data set shown in Fig. 2(a) and yi ∈ {+1,−1} is the
label representing a positive and negative example, respec-
tively. AdaBoost iteratively trains the weak classifiers asso-
ciated to the eigenvalues repeatedly in T iterations. During
these iterations, the algorithm maintains a set of weights over
the positive and negative examples. In particular, wt,i repre-
sents the weight of the example xi at the iteration t. Once
the weights have been initialised at the first step, they are
iteratively updated on the basis of the incorrectly classified
examples. In particular, at each iteration the weak classifier
that produces the minimum classification error is selected
and the error is used to update the weights of the input ex-
amples. Then, the weights of misclassified examples are in-
creased and the weights of the correctly classified examples
are reduced. This strategy forces the algorithm to focus only
on hard examples.

The results summarised in Table 3 are obtained by run-
ning AdaBoost on the first 500 eigenvalues. The classifica-
tion error has been computed on the original and re-meshed
data set, using the two different Laplacian discretizations.
Even though a larger number of iterations strongly reduces
the classification error, we keep them as smaller as possible
to reduce the overfitting on the data set. For this reason, the
algorithm has been run with 20 iterations. The best results
are obtained with the re-meshed models with both the nor-
malised FEM and cotangent-based weights. Since Table 3
shows that the average number sel of eigenvalues selected
by the algorithm is about the 3% of the cardinality of the
input spectrum, we conclude that very few eigenvalues are
sufficient to discriminate among the shape classes.

Fig. 4 shows that the selected eigenvalues for the classes
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(a)

(b)

(c)

(d)

Figure 4: Selected eigenvalues for the class of (a) humans,

(b) humanoids, (c) birds, and in (d) all the models in (a,b,c).

The y-axis represents the eigenvalues, the x-axis their in-

dexes; cross, circles and squares signs refer to the eigen-

values of human, humanoids and birds models, respectively.

of humans, humanoids, and birds are distributed on the com-
puted spectrum. Even if humans and humanoids have sim-
ilar shapes, the selected eigenvalues are distinct. Indeed,
the eigenvalues with small magnitude (i.e., representing the
overall shape) are overlapped and the eigenvalues with larger
magnitude (i.e., representing local details) are separated. On
the contrary, the selected eigenvalues for the class of the
birds seldom overlap the class of humans and humanoids;
in fact, AdaBoost selects those eigenvalues that strongly
discriminate among different classes. Finally, Fig. 5 shows
which intervals of the computed spectrum are induced by
the selection of the relevant eigenvalues. Each class is repre-
sented by a column whose colored parts are the eigenvalues
of the class members. It is interesting to notice that, for each
class, a very small part of the spectrum can be used to dis-
tinguish among the dataset classes.

4. Shape retrieval based on the shape spectrum

Shape Retrieval is performed by computing the distance
among the Laplacian spectra of the involved 3D models.
This task can be achieved by selecting (a) the eigenvalues
that maximise the retrieval performance or (b) the eigenval-
ues capable to identify the set of classes the query model
most probably belongs to (classification task) and then by
retrieving the models similar to the given query among
the members of those classes. In the following, both the
approaches have been investigated. Given a target eigen-
value λ, we can also compute a number of eigenvalues close

Figure 5: Selection of the relevant eigenvalues; the classes

are plotted on on the x-axis and the corresponding eigenval-

ues are reported on the y-axis.

Figure 6: Mean ADR (y-axis) for the data set in Fig. 2(a)

and related to the first k, 1 ≤ k ≤ 500, eigenvalues (x-axis).

to λ by applying a spectral shift; in fact, if λ is an eigenvalue
of L, then (λ−σ) is an eigenvalue of (L−σI).

The Average Dynamic Recall (ADR, for short) and the
precision-recall diagram have been computed to evaluate the
performance of the retrieval task [VtH07]. Given a query
model Q, the ADR ∈ [0,1] represents how many models rel-
evant to Q are retrieved among the Q shape models relevant
to Q; i.e., ADR = 1

Q ∑
Q
i=1

ri

i , where ri is the number of mod-
els relevant to Q and belonging to the first i retrieved mod-
els. Fig. 6 and Table 4 show the values of the ADR computed
on the data set in Fig. 2(a). Each element has been used as
query against the other elements of the data set and the value
of the ADR has been averaged over all the queries (mean
ADR). In Fig. 6, the ADR value has been computed by se-
lecting the first k eigenvalues and by varying k between one
and the cardinality of the computed shape spectrum. These
diagrams show that the eigenvalues of smallest magnitude
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SC first k 5

SC  HCBw 5

first k HCBw 5

HCBw  first k 5
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- HCBw -

- first K -

- random -

Figure 7: Precision-recall diagrams related to Table 5.

First k

un-norm. norm.

mADR k0 mADR k0

original FEM 0.55 10 0.61 10
models cot 0.50 12 - -

re-meshed FEM 0.56 10 0.62 15
models cot 0.57 12 - -

HCBw

un-norm. norm.

mADR sel mADR sel

original FEM 0.56 8 0.65 16
models cot 0.54 17 - -

re-meshed FEM 0.56 8 0.66 15
models cot 0.57 6 - -

Table 4: Mean ADR for the data set in Fig. 2(a).

(i.e., lower values of k) provide good performance due to
their capability of coding the most representative shape fea-
tures. In particular, the normalised FEM spectrum performs
better than un-normalised ones and the cotangent eigenval-
ues. Note that shape comparison with a low (i.e., less than 5)
or too high number of eigenvalues (i.e. more than 60) pro-
vides poor ADR values and compromises the retrieval per-
formance. Table 4 summarise the results that maximise the
mean ADR and reports also the eigenvalues that maximise
the mean ADR selected through the HCBw algorithm. As
for the classification, few selected eigenvalues yield good
performance; in particular, the HCBw algorithm produces
results that are better than the first k scheme and selects a
smaller number of eigenvalues.

Table 5 reports the mean ADR that is obtained by consid-
ering the eigenvalues selected for the retrieval (see Table 4)
and by combining classification and retrieval. To this end,
the queries in Fig. 2(b) have been compared to the models
in Fig. 2(a) by using the normalised FEM spectrum on the
remeshed models. The three schemes based on the first k

eigenvalues (first-k), the Strong Classifier (SC, for short),
and the Hill Climbing with Backward (HCBw, for short)
have been used to rank the classes for retrieval, while the

Classification Retrieval Classes Mean ADR

SC first-k 5 0.584
SC HCBw 5 0.580

first-k HCBw 5 0.571
HCBw first k 5 0.565

SC first-k 10 0.563
SC HCBw 10 0.560

HCBw HCBw 5 0.560
HCBw HCBw 10 0.555
HCBw HCBw 15 0.555
first-k HCBw 10 0.555
first-k HCBw 15 0.555

- HCBw - 0.555
SC HCBw 15 0.546
SC first-k 15 0.542

HCBw first k 10 0.540
first-k first-k 5 0.532
HCBw first k 15 0.530
first-k first-k 10 0.530
first-k first-k 15 0.530

- first-k - 0.530
- random - 0.337

Table 5: Mean Average Dynamic Recall for several classifi-

cation schemes. The symbol − means that the retrieval has

been performed without classification.

first k and the HCBw have been used directly for shape
comparison. Then, the selected eigenvalues shown in the Ta-
bles 1, 2, 3 and the first 5, 10, 15 ranked classes have been
exploited for classification and retrieval. For the strong clas-
sifier SC, the shape classes have been ranked according to the

following probability p(C|M) = eSC(M)

eSC(M)+e−SC(M) [LN07]
while for the first k and the HCBw eigenvalues, the shape
classes have been ranked using the distance ds.

The eigenvalues selected to maximise the classification
performance do not ensure good performance for retrieval.
As previously described, the comparison among the query
model and the members of the ranked classes is performed
by using the eigenvalues that maximise the mean ADR on
the data set as shown in Fig. 2(a). The results reported in
Table 5 confirm that the retrieval performance are sensibly
increased by combining both the classification and the re-
trieval tasks, in particular the results obtained by using the
first k eigenvalues are over-performed by the schemes that
use the eigenvalues selected by AdaBoost or by the HCBw
algorithm. Fig. 7 shows the precision-recall diagrams corre-
sponding to the best results of Table 5 for both retrieval with
or without classification pre-processing.

Note that lower values of precision corresponding to low
values of recall are explained as a higher number of false
positive results. On the contrary, higher values of precision,
corresponding to high values of recall, mean a lower number
of false negative results. This remark highlights that even if
almost all the schema have a similar behaviour with respect
to false positives, the classification based on the HCBw com-
bined with the first k eigenvalues for the shape comparison
produces the lower number of false positives results. The
strong classifier combined with the HCBw for shape com-
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parison gives the lower number of false negatives results.
Finally, the retrieval based on the randomly sampled spec-
trum and the retrieval obtained without the classification pre-
processing task produces the worst performance.

5. Conclusions and future work

This paper shows that it is possible to select a set of
Laplacian eigenvalues to strongly improve the classification
and comparison results. In this context, the retrieval per-
formance can be considerably improved by comparing the
query shapes to a small subset of shape classes among the
first ones ranked by a classification pre-processing. As future
work, we will mainly investigate the localisation of those
bands of eigenvalues that are shared by the models of the
same class and the generalisation of the proposed approach
to polygonal soups and point-sampled surfaces.
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