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Abstract

This paper introduces a volume-based shape descriptor that is robust with respect to changes in pose and topol-

ogy. We use modified shape distributions of [OFCD02] in conjunction with the interior distances and barycen-

troid potential that are based on barycentric coordinates [RLF09]. In our approach, shape distributions are

aggregated throughout the entire volume contained within the shape thus capturing information conveyed by

the volumes of shapes. Since interior distances and barycentroid potential are practically insensitive to various

poses/deformations and to non-pervasive topological changes (addition of small handles), our shape descriptor

inherits such insensitivity as well. In addition, if any other modes of information (e.g. electrostatic potential within

the protein volume) are available, they can be easily incorporated into the descriptor as additional dimensions in

the histograms. Our descriptor has a connection to an existing surface based shape descriptor, the Global Point

Signatures (GPS) [Rus07]. We use this connection to fairly examine the value of volumetric information for shape

retrieval. We find that while, theoretically, strict isometry invariance requires concentrating on the intrinsic surface

properties alone, yet, practically, pose insensitive shape retrieval still can be achieved/enhanced using volumetric

information.

1. Introduction

Retrieval of deformable shapes has an array of practical ap-
plications, and different requirements can be imposed de-
pending on the specific area. In computer vision, perhaps,
one may limit attention to boundary surfaces and concen-
trate on shape descriptors extracted from the surface alone.
In areas such as medical imaging, automated medical diag-
nosis, and protein bioinformatics important information can
be conveyed by the volumes of shapes. Desirable in such
cases is a pose/topology insensitive shape descriptor that is
based on aggregating information from the entire volume of
the shape.

A recent example of a shape descriptor that incorporates
volumetric information is the recently introduced volumetric
shape DNA [RWSN09]. However, this descriptor is not pose
insensitive. Whereas local-diameter and centricity functions
[GSCO07] gather information about the volume and are pose
insensitive, these are only defined and aggregated over the
surface, not the entire volume. Finally, inner distance based
methods [LJ07, LFR09] can in principle be used for aggre-
gation over the volume and are pose insensitive, yet they are
sensitive to topological changes such as addition of small
handles.

The main contribution of this paper is a volume-based
shape descriptor that is robust with respect to changes in
pose and topology. Our approach uses modified shape dis-
tributions of [OFCD02] in conjunction with the interior dis-
tances and barycentroid potential that are based on barycen-
tric coordinates [RLF09]. To extract the descriptor, we first
generate a uniform sampling of the shape’s interior. Next,
the sample is divided into classes depending on the value of
the barycentroid potential. Finally, for each choice of two
classes (that can be the same), histograms are generated to
capture the distribution of pair-wise interior distances be-
tween points in these classes.

This method was chosen for three reasons. First, interior
distances and barycentroid potential are practically insen-
sitive to various poses/deformations [RLF09], and to non-
pervasive topological changes (addition of small handles).
Our shape descriptor inherits such insensitivity as well. Sec-
ond, histograms are aggregated through the entire volume
contained within the shape thus capturing information con-
veyed by the volumes of shapes. In addition, if any other
modes of information (e.g. electrostatic potential within the
protein volume) are available, they can be easily incorpo-
rated into the descriptor as additional dimensions in the his-
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tograms. Third, our descriptor has a connection to an exist-
ing surface based shape descriptor, the Global Point Signa-
tures (GPS) [Rus07], which is pose and topology insensi-
tive. This connection allows a fair examination of the value
of volumetric information for shape retrieval.

This paper is organized as follows. We first review the
concepts of interior distance and barycentroid potential in
Section 3. The descriptor is described in Section 4. Its com-
putation and connection to GPS are described in Section 5.
We present the results of shape retrieval experiments using
the descriptor in Section 6.

2. Related Work

Although a variety of shape descriptors, see excellent sur-
veys [BKS∗05,IJL∗05,TV08], take the volume into the con-
sideration or can be made so, these approaches are usu-
ally not pose insensitive. On the other hand, pose insen-
sitive approaches such as canonical forms [EK03], shape
DNA [RWP05], spectral embedding [JZ07], and GPS em-
bedding [Rus07] are oblivious to the volumetric properties
of the object.

The recently introduced volumetric shape DNA of
[RWSN09] is based solely on volumetric information. This
shape descriptor considers the 3D Laplace operator within
the volume of the shape and computes its spectrum after im-
posing appropriate boundary conditions. This idea is simi-
lar to the surface based shape DNA [RWP05], with the dif-
ference that the Laplace-Beltrami operator on surface is re-
placed by the 3D Laplacian. While the former operator is
pose (isometry) invariant, the latter is not, and so the re-
sulting volumetric descriptor is not pose insensitive. This
also shows that the similar modification of GPS embed-
ding [Rus07] using the volumetric Laplacian will not be pose
invariant either.

In [GSCO07], pose insensitive local-diameter and centric-
ity functions are introduced, and their histograms are used
as shape descriptors. Whereas local-diameter and centricity
functions do gather information about the volume, they are
only defined and aggregated over the surface, not the entire
volume. This precludes their use with possible other modes
of information in the volumes of shapes.

Inner distance is the length of the shortest path between
two points through the interior of the object. Approaches
based on this distance [LJ07, LFR09] can in principle be
modified to aggregate over the volume. While inner distance
is pose insensitive, it is sensitive to topological changes such
as addition of small handles.

3. Interior Distance

The main ingredients of our approach come from the re-
cently introduced framework for measuring distances in the
interior of a surface mesh using barycentric coordinates

[RLF09]. Thus, we quickly review the ideas of the interior
distance and barycentroid potential.

Given a distance on a boundary mesh, the interior dis-

tance between points inside the mesh volume is obtained
by propagating the boundary distance into the interior using
the following three-step procedure. First, the boundary mesh
is embedded into a high-dimensional space in a way that
best preserves the prescribed distances on the boundary. This
converts the given distances to Euclidean distances, similarly
to multidimensional scaling. For distances such as diffusion
and commute time distances, the embedding is known be-
forehand because these distances are defined in terms of Eu-
clidean embeddings. Second, the embedding of the bound-
ary is extended to the interior of the mesh using barycentric
coordinates. This step is similar to cage-based editing, or im-
age warping via barycentric coordinates with only difference
that the boundary and interior are mapped to a high dimen-
sional space. Third, the interior distance between any two
points is defined simply as the Euclidean distance between
their images under the described embedding.

The resulting distance can be computed by the formula

d̂
2(p,q) = (~w(p)−~w(q))T

A(~w(p)−~w(q)),

where ~w(p) = (w1(p),w2(p), ...,wn(p))T is the column-
vector of barycentric coordinates of point p with respect to
the vertices of the boundary mesh, and A is the Gram matrix
of the high-dimensional embedding, namely it contains pair-
wise dot products of the embedding coordinates. Another
concept from [RLF09] that we will need is the barycentroid

potential defined as

U
2(p) = ~w(p)T

A~w(p),

which they used to define a center point, called barycentroid,
of an object.

The main properties of the interior distance and the
barycentroid potential that are relevant to volumetric shape
description are as follows. First, both of them are defined in
the entire volume contained within the mesh which makes
possible their aggregation over the volume. Second, they are
insensitive to deformation/pose, tessellation, and slight topo-
logical changes, and so the resulting shape descriptor can in-
herit these properties. Third, both can be computed fast after
pre-processing, which makes the computation of descriptors
fast as well.

4. Shape Descriptor

Our shape descriptor is a modification of d2 shape distri-
butions [OFCD02], and is essentially the joint probability
distribution of pair-wise interior distance and barycentroid
potentials of the endpoints. The use of a joint probability
distribution helps to recover some of the spatial informa-
tion which would have been lost when using distributions
of these functions separately.

c© The Eurographics Association 2010.

2



Raif M. Rustamov / Robust Volumetric Shape Descriptor

In practice we approximate the probability distribution by
a histogram. Let B and C be the number of bins for pair-wise
interior distance and barycentroid potential respectively. We
compute the descriptor as follows. First, we voxelize the in-
terior of the object, and select one representative point per
voxel to generate a uniform sampling of the object’s inte-
rior. Second, we compute the barycentroid potential for each
sample point, and divide the sample into C classes – cor-
responding to the C equally spaced bins for the potential.
Third, for each pair of the obtained classes we generate the
histogram (with B bins) of pair-wise interior distances be-
tween points one of which belongs to the first class, the other
to the second class. Finally, the resulting C ×C histograms
are smoothed using a linear kernel method. Of course, be-
cause of the symmetry one only needs to keep somewhat
more than half of the obtained histograms. During shape re-
trieval, we compare these histograms using chi-square dis-
tance.

In addition to the robustness properties inherited from the
interior distance and barycentroid potential, this shape de-
scriptor has the advantage of being easily extensible to cases
when other modes of information are available within the
volume of the mesh. For example, in bioinformatics appli-
cations one may be interested in comparing bio-molecules
based on the spatial distribution of electrostatic potential or
molecular properties. This information can be readily incor-
porated into our shape descriptor by adding extra dimensions
into the histograms.

5. Computation and Connection to GPS

We discuss the evaluation of our shape descriptor, specifi-
cally of the interior distance and barycentroid potential. In
addition, we uncover a relation with an existing shape de-
scriptor: it turns out that if instead of sampling the interior,
we were to only sample the surface we can obtain the GPS
embedding based descriptor of [Rus07].

Remember that in order to instantiate the interior distance
framework one needs to supply a distance on the boundary
mesh, and barycentric coordinates; but the choice of the lat-
ter has no bearing on the rest of our discussion. We consider
the case where the boundary distance is the commute-time
distance. We now describe explicitly the steps involved in
computing the interior distance. Consider a discrete Laplace-
Beltrami operator of the mesh, and compute its eigende-
composition {λk,φk}

n
k=0. First, the sought embedding of the

boundary mesh into a high-dimensional space is given by

p
∗ =

(

φ1(p)
√

λ1
,

φ2(p)
√

λ2
,

φ3(p)
√

λ3
, · · ·

)

∈ R
n
.

In fact, the commute time distance between to surface points
p and q is defined as the Euclidean distance between their
images p∗ and q∗. The map p → p∗ was called as the GPS

embedding in [Rus07]. Second, the extension of this embed-
ding to the interior of the mesh is given by the similar for-
mula

p
∗ =

(

φ̂1(p)
√

λ1
,

φ̂2(p)
√

λ2
,

φ̂3(p)
√

λ3
, · · ·

)

∈ R
n
,

where this time p is any point within the volume contained
in the surface. Here, φ̂k is the volumetric function obtained
by extending the surface function φk via barycentric inter-
polation. Not that this new map p → p∗ is defined on the
volume within the mesh, and coincides with the GPS em-
bedding on the mesh itself. Perhaps, one can call this vol-
umetric embedding as the interior GPS, or iGPS for short.
Third, the interior distance between any two interior points
p and q is computed as the Euclidean distance between their
images p∗ and q∗ under the described volumetric embed-
ding. In addition, the barycentroid potential at p is simply
the norm (the distance from the origin) of the image point
p∗, namely U2(p) = ||p∗||2.

When these facts are put together we see that our shape
descriptor in this case is a volumetric extension of the GPS
based shape descriptor of [Rus07]. GPS descriptor is based
on surface alone, and is invariant to isometries and insensi-
tive to topology changes. This relationship between two de-
scriptors is important for our experiments because it allows
examining fairly the benefits of the volumetric information
in shape retrieval.

6. Results

In order to investigate properties of our shape descriptor em-
pirically, we have performed several experiments. The goal
of these experiments is to study how the descriptor responds
to changes in pose/topology, and to compare its performance
to the GPS based distributions.

Pose insensitivity: Figure 1 shows the histograms corre-
sponding to various articulations of Armadillo-man included
in the Watertight Benchmark. Although there are 20 mod-
els in the same class as the Armadilloman, only 15 of these
can be considered to be approximately isometric deforma-
tions, as the five models have a missing leg/arm. There are
models with missing ears, but we kept them. The close clus-
tering of these curves gives an evidence for pose insensi-
tivity of our shape descriptor. In addition, we conducted a
shape retrieval experiment (described later in this section),
during which we obtained an average dynamic recall value
of 87.1% for the Armadilloman class (including models with
missing leg/arm) – a high value which means that the vari-
ation of our descriptor between various deformations of Ar-
madilloman are discernibly less than the variations between
Armadillomen and other object classes.

Topology insensitivity: We show that the interior dis-
tance and, consequently, our shape descriptor is insensitive

c© The Eurographics Association 2010.

3



Raif M. Rustamov / Robust Volumetric Shape Descriptor

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 1: Our shape descriptor (C = 1, B = 64) for the

Armadillo and its articulations are shown in blue. The two

curves in red are included for comparison; they represent a

cup and an ant models.

to topological changes. Our result complements the insensi-
tivity results established in the original interior distance pa-
per [RLF09].

The type of topological changes we consider here is when
two very close but separate parts of an object are welded
together by a surface patch of a relatively small area. The-
oretically, the topological robustness of the interior distance
and the related barycentroid potential is the result of two fac-
tors: the robustness of the Laplace-Beltrami eigenfunctions

Figure 2: The effect of topology change on the pairwise inte-

rior distances. The histogram of relative change in pairwise

distances is shown. For 99.6% of pairs the change in the in-

terior distance is less than 3%.

Descriptor NN FT ST ADR DCG

GPS 79.3% 45.1% 56.0% 66.1% 75.8%
This paper 81.3% 48.7% 62.0% 69.1% 77.9%

Table 1: Shape retrieval statistics. For both descriptors the

bin numbers are C = 4 and B = 64.

(more precisely, of GPS embedding, [OSG08]) and the fact
that mean-value interpolation formula contains (a discretiza-
tion of) a surface integral.

We verify this theoretical prediction by an experimen-
tal comparison in the change of pairwise interior distances
for the Homer model and its topological variation obtained
by welding the feet together. The same uniform sample of
points was sampled for both of the Homer models, and pair-
wise interior distances were considered. Instead of compar-
ing the resulting histograms, we provide a more sensitive
analysis by comparing corresponding pairwise distances di-
rectly. Figure 2 summarizes our findings. Notice that the rel-
ative change in pairwise distances was never greater than
14%; for 99.6% of the pairs it was less than 3%.

Comparison to GPS: For our experiments we use the
Watertight Benchmark [GBP07] which consists of 400
closed surface models, divided into 20 equal object classes.
Some of the classes include both different objects and artic-
ulations of the same object. We conduct a series of “leave-
one-out” experiments: every model in the benchmark is
queried against all other models. The ranked result lists gen-
erated by the queries are used to compute five retrieval statis-
tics: nearest neighbor (NN), first tier (FT), second tier (ST),
average dynamic recall (ADR), and discounted cumulative
gain (DCG). Notice that since both our and GPS shape de-
scriptors are translation, scale, and rotation invariant, no nor-
malization is applied to the models. During shape retrieval,
we compare descriptors using chi-square distance. We use
C = 4 classes in order to match with the experiments in
[Rus07]. The results of our experiments are summarized in
Table 1, and show that our descriptor outperforms GPS in all
of the statistics.

Our main conclusions from this comparative experiment
are as follows. First, our shape descriptor is able to cap-
ture information that is different from GPS. Second, our de-
scriptor displays a practically useful amount of robustness to
deformations. Third, although strict isometry invariance re-
quires concentrating on the intrinsic surface properties alone
(as in the GPS), pose/deformation insensitive shape retrieval
still can be achived/enhanced using volumetric information.

Implementation and performance: We used the stan-
dard cotangent weight Laplacian [PP93, MDSB02], with
point areas evaluated using the function provided in
Trimesh2 library [Rus08]. The generalized eigenvalue prob-
lem was set up and solved using MATLAB. The number
of eigenpairs used was 250. The implementations of inte-
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rior distance and barycentroid potential follow [RLF09], and
was done in C++ and MATLAB. To instantiate the interior
distance framework we adopt commute-time distance and
mean-value coordinates. We used a 32× 32× 32 voxel grid
to obtain a uniform sampling of the volume.

The timing is reported on an Intel Core 2 Duo 2GHz
laptop with 1GB RAM. For smaller models of about 10K
vertices the eigenpair computation takes about 70-100 sec-
onds. We note that for large models the method presented
in [VL08] is more appropriate as it takes only about 80 sec-
onds for a 60K vertex model, and about 9 minutes for a 250K
model. The rest of the shape descriptor computation includ-
ing voxelization takes less than 2 minutes on average.

As shown in [RLF09], the interior distance and barycen-
troid potential are fairly insensitive to tessellation. As a
result, in order to save computational time, the involved
meshes can be simplified without much loss of volumetric
information. In our experiments, we did not simplify meshes
in the benchmark in order to maintain fairness when compar-
ing to the surface based method (GPS).

7. Conclusion

We have introduced a shape descriptor that captures vol-
umetric information and is insensitive to pose and slight
topology changes. Additionally we investigated empirically
the performance of this descriptor on a common shape re-
trieval benchmark. Our main conclusion is that although
strict isometry invariance requires concentrating on the in-
trinsic surface properties alone (as in the GPS), pose insen-
sitive shape retrieval still can be achived/enhanced using vol-
umetric information.

This work provides a small step and therefore has lim-
itations that suggest topics for future work. For example,
since our approach is based solely on histograms, we be-
lieve that the retrieval results can be improved considerably
by extracting more informative shape descriptors from the
volumetric extension of the GPS embedding discussed in
Section 5. Another interesting question relates to the recent
work of Mémoli [M0́9] where similarity measured by the
existing spectral descriptors is related to a notion of distance
between shapes analogous to the Gromov-Wasserstein dis-
tance. It would be interesting to construct the corresponding
framework for the volumetric invariant explored in this pa-
per.
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