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Abstract
An original face recognition approach based on 2D and 3D Radial Geodesic Distances (RGDs), respectively
computed on 2D face images and 3D face models, is proposed in this work. In 3D, the RGD of a generic point
of a 3D face surface is computed as the length of the particular geodesic that connects the point with a reference
point along a radial direction. In 2D, the RGD of a face image pixel with respect to a reference pixel accounts for
the difference of gray level intensities of the two pixels and the Euclidean distance between them. Support Vector
Machines (SVMs) are used to perform face recognition using 2D- and 3D-RGDs. Due to the high dimensionality of
face representations based on RGDs, embedding into lower-dimensional spaces using manifold learning is applied
before SVMs classification. Experimental results are reported for 3D-3D and 2D-3D face recognition using the
proposed approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

Person identification based on facial data has been largely
addressed in the last years mainly focussing on the detec-
tion and recognition of faces in 2D still images and videos
[ZCPR03]. However, the success of solutions based on 2D
imaging is jeopardized in real application contexts, where
invariance to pose and illumination conditions remains a
largely unsolved problem. As a result, the accuracy of these
solutions is not satisfactory to be used to support automatic
person recognition in real world application scenarios.

Recently, three-dimensional (3D) facial data has been ex-
ploited as a means to improve the effectiveness of face
recognition systems [BCF06]. Since 3D face models are less
sensitive, if not invariant, to lighting conditions and pose
variations, recognition based on 3D facial data entails the
potential for better accuracy and robustness.

However, a common drawback of solutions that perform
recognition by matching 3D facial data is that, despite recent

† This work was partially done when the author was at the Univer-
sity of Firenze, Italy.

advances in 3D acquisition technologies and devices, acqui-
sition of 3D facial data of a person can be accomplished only
in controlled environments and requires the person to stay
still in front of a 3D scanning device for a time that ranges
from some seconds up to a few minutes. In addition, multi-
ple scans from slightly different acquisition view-points are
typically necessary in order to reconstruct parts of the face
that can be self-occluded when acquired from a particular
view. The 3D face model is then constructed from multi-
ple scans by post-processing steps which include registra-
tion and merging of the scans, holes filling, smoothing, re-
gularization, etc. Accordingly, the adoption of pure 3D face
recognition solutions is cast to a set of specific applications.

A viable solution is to adopt hybrid 2D-3D matching
schemes in which 3D facial data is compared against 2D face
images. In this case, the operational cycle of the recognition
system includes two distinct steps: acquisition and recog-
nition. Acquisition of 3D facial data of persons to be rec-
ognized is performed only once. Instead, recognition takes
place by comparing acquired 3D facial data to images (video
frames) taken on the fly as people transit through surveilled
areas, monitored by video-camera systems.
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Some of these 2D-3D matching solutions operate by
transforming (projecting) the 3D geometry to 2D images so
as to exploit well established representation techniques de-
veloped in 2D in order to perform recognition. As an exam-
ple, in [PCJ05], face recognition in videos is made invariant
to pose and lighting by using 3D face models. 3D database
models are used to capture a set of projection images taken
from different points of view. Similarity between a target im-
age and 3D models is computed by matching the query with
the projection images of the models. In other solutions, 3D
models are mostly used to obtain 2D images representing
particular views of the model to be used in the 2D-2D match
with face images [BV03].

Approaches based on conformal transformations exploit
the property which allows any surface homeomorphic to a
disc to be mapped to a 2D planar domain [HAT∗00]. The
conformal mapping is one-to-one, onto, and angle preserv-
ing thus simplifying the 3D surface-matching to a 2D image-
matching problem. In [WCT05], this solution has been ap-
plied with an experimentation limited to a few face and brain
models. In [WWJ∗06], least squares conformal geometric
maps are applied to 3D faces, and results are provided for a
relatively small database comprising 100 scans.

Use of the eigenface approach based on Principal Com-
ponent Analysis (PCA)–first introduced for 2D faces in
[TP91]–has been reported in [HPA04], [PHWW05]. In this
latter approach, first a region of interest is defined as the in-
tersection between a sphere centered on the nose tip with the
face surface. Then, the region is parameterized into an iso-
morphic 2D planar circle trying to preserve the intrinsic geo-
metric properties of the surface, and also mapping its relative
depth values. Eigenface analysis is finally performed on the
mapped relative depth image and used to compare faces.

Although these solutions show that 3D information can
boost the recognition rates, none of them use the actual 3D
geometry either as direct input or in the match. Rather, the
3D model is an intermediate source to render 2D views of
a 3D model from different viewpoints and under different
illumination conditions so as to best match 2D facial data
represented in 2D images. In contrast, direct comparison of
2D facial data to 3D geometric information would enable
more reliable matching as 3D geometric information is by
its nature invariant to lighting and pose.

A possible way to extract 3D geometric information of
a face model is to measure distances among 3D points of
the model surface. The use of distances to capture 3D facial
information is directly motivated by the relevance that face
metrology has in studies conducted in medical disciplines. In
particular, the form and values of these measurements are de-
fined in face anthropometry, the biological science dedicated
to the measurement of the human face. This field has been
largely influenced by the seminal work of Farkas [Far94]. In
particular, Farkas proposed a total of 47 landmark points to
describe the face, with a total of 132 measurements on the

face and head. In these measurements, geodesic, Euclidean,
and angular distances between facial landmarks are used.
Until recently, the measurement process could only be car-
ried out by experienced anthropometrists by hand, but re-
cent works have investigated 3D scanners as an alternative
to manual measurements.

In 2D, shading plays an important role in the human per-
ception of surface shape. Artists have long used lighting and
shading to convey vivid illusions of depth in paintings. Re-
searchers in human vision have attempted to understand and
simulate the mechanisms by which our eyes and brain actu-
ally use the shading information to recover the 3D shapes.
In computer vision, the idea of using the gradual variation of
shading in an image to recover 3D shape dates back to the
first studies on shape-from-shading [Hor77]. A vast litera-
ture exists on this subject, and interesting results have been
obtained [ZTCS99]. However, in these solutions the final ob-
jective is the reconstruction of the 3D shape of the entire
object. More related to our work are researches on comput-
ing geodesic distances in 2D images. For example, in [LJ05]
geodesic sampling is used treating a 2D image as a surface
embedded in a 3D space. In this framework, image inten-
sity is weighted relative to the distance in the x-y plane of
the image. It is shown as this weight increases, geodesic dis-
tances on the embedded surface are less affected by image
deformations so that, in the limit, distances are deformation
invariant. Geodesic distance measures have also been used
in object recognition. For example, in [EK03] they are used
to build bending invariant signatures for real surfaces.

Grounding on previous considerations, in this paper we
propose an original framework to represent 2D and 3D fa-
cial data using Radial Geodesic Distances (RGDs) computed
with respect to a reference point of the face (i.e., the nose
tip). The objective is to define a face representation that can
be extracted from 2D face images as well as from 3D face
models and used to directly compare them in order to per-
form recognition. In 3D, the RGD of a point on the face
surface is computed as the length of the particular geodesic
that connects the point to the nose tip along a radial direc-
tion. In 2D, the RGD from a pixel to the fiducial point is
computed based on the differences of the image gray level
intensities along a radial path on the image. Matching be-
tween 2D- and 3D-RGDs result into feature vectors which
are classified by a set of Support Vector Machines (SVMs).
Since the feature vectors lay in a high-dimensional space,
dimensionality reduction methods are applied before SVMs
classification. Results on 3D-3D face recognition using 3D-
RGDs, and preliminary results on 2D-3D face recognition,
show the viability of the approach.

The paper is organized as follows. In Sect.2, 3D-RGDs
are defined and used to capture geometric characteristics of
a face. In Sect.3, a 2D face representation based on the com-
putation of 2D-RGDs in the intensity domain of an image
is presented. Issues related to the matching of 2D- and 3D-
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RGDs are also addressed in this Section. In Sect.4, the face
recognition process is encompassed into a framework which
includes dimensionality reduction and SVMs classification
of the matching between 2D- and 3D-RGDs. Based on this
framework, in Sect.5 3D-3D face recognition results using
3D-RGDs are presented, and preliminary results for 2D-3D
face recognition based on SVMs classification of RGDs are
reported. Conclusions and future research directions are out-
lined in Sect.6.

2. 3D radial geodesic distances

The Morse’s theory [Mil63], first proposed the idea of defin-
ing smooth real valued function on the surface of a 3D model
in order to capture its characteristics. In this theory, differen-
tial properties of the function are used to make explicit the
topological properties of a surface, and different characteris-
tics of the surface can be evidenced depending on the choice
of the function.

Following this idea, in our case the function in a generic
point of a 3D model surface is defined as the 3D radial
geodesic distance (3D-RGD) between the point and the nose
tip. A radial geodesic is defined as the particular geodesic
that connects one point of the model to the nose tip along
the radial direction connecting the two surface points (see
Fig.1(b)). According to this, a 3D face representation is con-
structed by considering K radial geodesics taken at fixed an-
gular steps in the [0,360] interval, with N sampling points
per radial geodesic. In this way, a 3D face model is repre-
sented by a feature vector of size K ·N, whose elements are
the 3D-RGDs computed for the sampling points.

In order to make the 3D face representations comparable
among them, and with face representations extracted from
2D images, the sampling points along radial geodesics are
selected based on a 2N ·2N grid of points (see Fig.1(a)). By
projecting points of the grid onto the 3D model surface a set
of sampling points in 3D is identified. Values of the 3D-RGD
are computed for each sampling point in 3D.

(a) (b)

Figure 1: (a) The 2N · 2N grid laying on the XY plane;
(b) radial geodesics corresponding to the grid. Along each
radial geodesic, the 3D-RGD is computed for the vertices
of the model which are the nearest to the projections of the
sampling points of the grid.

In practice, the surface S of a face model is approximated

through a discrete mesh M with n vertices v1, . . . ,vn, with
the fiducial vertex v f located at the nose tip. As a conse-
quence, 3D-RGDs are computed for the vertices of the mesh
that are the nearest to the projections of the grid points on
the model. Computation of the 3D-RGD for a sampled ver-
tex vi along a radial geodesic Rk is obtained as the length
of the shortest piecewise linear path on mesh vertices con-
necting the vertex vi with the nose tip vertex v f along Rk:
µk

3(vi,v f ) = L(Pk(vi,v f )) (we will refer to this as µk
3(i)). In

this expression, Pk(vi,v f ) is the sequence of vertices along
Rk from vi to v f , defined as an ordered sequence of ad-
jacent vertices, and L(Pk(vi,v f )) is the length of the path
measured as the sum of the Euclidean distances between
adjacent vertex pairs. Furthermore, all the vertices of the
path are constrained by the additional condition: Pk(vi,v f ) =
Pk(vi−1,v f )

⋃
vi for i = 2, · · · ,N. This ensures that the set

of vertices of a radial geodesic is repeatedly extended by
adding the new vertex vi to the current set.

The 3D-RGDs values allow to capture the differences oc-
curring on the model for points along the radial geodesics.
Fig.2(a), shows a 3D face model where the radial geodesic
originated from the nose tip and oriented along the direction
at 0 degrees is evidenced. In Fig.2(b), the 3D-RGD com-
puted along this direction is shown for 60 sampling points
of the grid. It can be observed that the 3D-RGD values cap-
ture information on the profile and the extent of the self-
occlusion occurring at the base of the nose.

(a) (b)

Figure 2: (a) A 3D face model with the radial geodesic at 0
degrees; (b) The 3D-RGD computed for the radial geodesic
shown in (a).

The final objective of this representation is to prove the
3D-RGDs capture salient face information, and can be used
to perform face recognition through the comparison with
2D-RGDs computed for 2D images. As we will show in
Sect.5, the 3D face representation based on 3D-RGDs can
be also used to directly perform 3D face recognition.

3. 2D radial geodesic distances

2D face images capture intensity variations of the light re-
flected by the face surface. Therefore, pixel values are re-
lated to the reflectance properties and to the 3D geometry of
the face. According to this, we aim to define a 2D face rep-
resentation based on the adjacency and intensity variations
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of image pixels that can be directly compared against the 3D
face representation based on 3D-RGDs.

To this end, a face representation is constructed in 2D
which has the same basic structure of the 3D representation.
Similarly to 3D, the nose tip of the face image is used as
fiducial point and radial paths on the image are considered.
These originate from the nose tip and are extended along ra-
dial directions up to a fixed number of points in the image
plane (see Fig.3). 2D radial geodesic distances (2D-RGDs)
are computed according to the intensity variations and prox-
imity of image pixels. Considering a particular radial path
Rk, the following equation is used to compute the 2D-RGD:

µk
2( j) =

j

∑
i=1

√
(xi− xi−1)2 +(yi− yi−1)2 + |∆I|wk(∆I) (1)

where: j is the index of the pixel along the radial path; xi and
yi are the coordinates of the pixels along the radial path, and
∆I = |I(xi,yi)− I(xi−1,yi−1)| is the difference of intensity
between adjacent image pixels. The graph in the middle of
Fig.3, provides a visual representation of Eq.(1).

Figure 3: The 2D-RGD computed according to the intensity
values of the image. On the right, a particular radial path is
shown. The central graphic in the figure illustrates the terms
appearing in Eq.(1). On the left, multiple radial paths are
shown.

The exponent wk(∆I) of Eq.(1) is varied with the value of
the intensity differences in order to establish the best corre-
spondence between 2D and 3D measures. In particular, if the
difference of intensity between two image pixels is zero (i.e.,
∆I = 0), µk

2( j) is reduced to the Euclidean distance between
the pixels.

In order to determine the function wk(∆I) of Eq.(1), which
maps 2D- to 3D-RGDs, we rely on a reference image. To this
end, during the enrollment of a new subject into the gallery, a
frontal face image is also acquired (3D scanners usually take
this image) and used as reference. The mapping determined
for the reference image is then applied to generic images of
any subject that must be compared with the 3D model. To
this end, for any radial geodesic Rk, the function wk(∆I) is
determined which best maps the N-dimensional vector µk

2 of

the 2D-RGDs computed for the reference image, into the N-
dimensional vector µk

3 of the 3D-RGDs. Function wk(∆I) is
found as solution of the following minimization problem:

wk(∆I) = min
∆I

N

∑
j=1
|µk

3( j)−µk
2( j,∆I)|2 (2)

being j the index of corresponding points along the 3D radial
geodesic and the 2D radial path.

3.1. Normalization of face images

In order to compare 2D- and 3D-RGDs, geometric normal-
ization of 2D face images with respect to 3D face models
is necessary. Normalization requires that at least one corre-
spondence between a pair of image pixels and a pair of 3D
points is identified, and that the distance computed between
the pair of 3D points and the distance computed between the
pair of 2D points are equal. If this is not the case, the image
must be re-scaled accordingly. We used the Euclidean dis-
tance between the two endocanthions (i.e., the points at the
inner commissure of the left and right eye fissure) computed
in 3D to provide information of the real dimension of the
face. These points have been verified to be easily detectable
using curvature information, and stable with respect to face
variations [BBK06], [CBF06]. We assumed this measure as
an intrinsic characteristic of a 3D face model, and computed
it during the enrollment of 3D face models into the gallery
of known subjects. The algorithm in [CCS06] has been used
to detect endocanthions and the nose tip in 3D. These points
have been also used to align the models with respect to a
global 3D reference system.

In 2D, image processing techniques have been used for
the automatic detection of the face and for the identifica-
tion of the two endocanthions and the nose tip. The face
and eyes regions are first detected using a Haar-cascade de-
tector [VJ04]. Endocanthions are automatically identified by
processing the eyes region of the face in order to extract cor-
ner points (a Harris corner detector has been used). Many
corner points are usually identified on the border of the eyes,
the irises and the pupils. The corners corresponding to the
endocanthions are selected using heuristics on their recipro-
cal positions, and on their positions with respect to the eyes
region. To validate the position of the two endocanthions,
an iris detector based on the Hough transform is used. This
estimates the circles that best fit the irises and uses their po-
sition to validate the endocanthions extracted by the corner
detector. As an example, Fig.4(a)-(b) show the eyes region,
and the detected corners for the face images of three differ-
ent subjects. The corners identified at the two endocanthions
are highlighted in black in the figure.

When a face image must be compared against a 3D face
model, the distance between the two endocanthions of the
image is computed and the image is re-scaled according to
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(a)

(b)

(c)

Figure 4: Detection of the fiducial points of 2D face images
of three sample subjects: (a) eyes regions identified using
a Haar cascade detector; (b) corners detected in the eyes
region. The corners identified as the two endocanthions are
highlighted in black; (c) normalized images with the nose tip
and the two endocanthions highlighted in black.

the endocanthions distance associated to the model. This as-
sumes that, given a 3D model, images of the same subject of
the model are re-scaled accordingly and correspondence be-
tween 3D and 2D distances can be rightly established. In the
same way, images of subjects different from the model are
re-scaled with the endocanthions distance associated to the
model, but this likely determines wrong correspondence be-
tween 3D and 2D measures. Automatic detection of the nose
tip in 2D is also necessary to extract the 2D-RGDs. Differ-
ently from the endocanthions, accurate detection of the nose
tip is difficult to be performed in the image. We solved this
problem by using information on the position of the nose
tip in the 3D model. After normalization, the position of the
nose tip in the image is estimated by using the Euclidean
distances between the two endocanthions and the nose tip
measured on the 3D model. As an example, Fig.4(c) shows
the face regions of three persons with evidenced (in black)
the nose tip and the two endocanthions that have been auto-
matically detected.

4. Manifold embedding of RGDs

In matching 2D- and 3D-RGDs the difference ek( j) =
µk

2( j)−µk
3( j), is computed for every radial geodesic Rk. Ac-

cording to this, an error vector of size K ·N is constructed
and used to characterize the correspondence between a face
image and a 3D face model.

In the experimented solution, K = 72 radial geodesics at
intervals of 5 degrees are used, each with 50 points, thus re-
sulting in an error vector of size 3600. Since 2D-3D face
recognition is based on SVMs classification of the error vec-
tors, operating in this high dimensional space can not be ef-
fective due to the curse of dimensionality. To avoid this dif-
ficulty, error vectors undergo to a dimensionality reduction
before to be used for face recognition.

The process of transforming data residing in a high di-
mensional space to a low dimensional subspace is based
on the assumption that the data actually lies, at least ap-
proximately, on a manifold of smaller dimension than the
data space. The goal is to find a representation of that man-
ifold that allows the projection of the data vectors on it
and obtains a low-dimensional, compact representation of
the data. Ideally, the reduced representation should have a
dimensionality that corresponds to the intrinsic dimension-
ality of the data. Based on the type of the transformation
function that performs the mapping between the high and
the low dimensional space, linear and non-linear techniques
can be distinguished. Linear techniques assume that the data
lies on or near a linear subspace of the high-dimensional
space. Non-linear techniques do not rely on the linearity
assumption as a result of which more complex embedding
of the data in the high-dimensional space can be identified.
Among linear techniques, we experimented the Principal
Component Analysis (PCA), while we considered Multidi-
mensional Scaling (MDS), Isomap, Locally Linear Embed-
ding (LLE) and Laplacian Eigenmaps (LE) as non-linear
methods [VPV07].

4.1. SVMs classification

Once face representations are embedded into a low-
dimensional space, face recognition/authentication is man-
aged as a classification problem using SVMs with a ra-
dial basis function kernel [Vap98] (the libsvm package
[CL01] through the Weka environment has been used:
http://www.cs.waikato.ac.nz/∼ml/weka/).

SVMs belongs to the class of maximum margin classi-
fiers [Vap98]. In a binary classification problem, they find
a decision surface that has maximum distance to the clos-
est points in the training set (called support vectors). Given
a set of points xi ∈ <n, i = 1, . . . ,L, let us suppose each
point xi belongs to one of two classes identified by the la-
bel yi ∈ {−1,1}. Assuming for simplicity that data is lin-
early separable, the goal of maximum margin classification
is to separate the two classes by a hyperplane such that the
distance to the support vectors is maximized. This optimal
separating hyperplane has the form:

f (x) =
l

∑
i=0

αiyixi ·x+b (3)

where αi and b are the solutions of a quadratic programming
problem [Vap98]. Classification of a new data point x is per-
formed by computing the sign of the right side of Eq.(3).

The construction can be extended to the case of nonlinear
separating surfaces. Each point in the input space is mapped
to a point z = Φ(x) of a higher dimensional space. In this fea-
ture space, the data is separated by a hyperplane. The main
property of this construction is that the mapping Φ(.) is sub-
ject to the condition that the dot product of two points in the
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feature space Φ(x) ·Φ(y) can be rewritten as a kernel func-
tion K(x,y). The decision surface has the equation:

f (x) =
l

∑
i=0

αiyiK(x,y)+b (4)

where, similarly to Eq.(3), αi and b are the solutions of a
quadratic programming problem. In both Eq.(3) and Eq.(4),
it is relevant to note that f (x) does not depend on the dimen-
sionality of the feature space.

Two main strategies can be used to solve multi-class
problems with SVMs [HHP01] (in the following, q classes
are considered, each corresponding to a 3D model in the
gallery). In the one-vs-all approach, q SVMs are trained.
Each SVM separates a single class from all the remaining
classes. In the pairwise approach, q(q− 1)/2 machines are
trained, each separating a pair of classes. The pairwise clas-
sifiers are arranged in a tree, where each tree node repre-
sents a SVM. Regarding the training effort, the one-vs-all
approach is preferable since only q SVMs have to be trained,
compared to q(q− 1)/2 SVMs in the pairwise approach.
The run time complexity of the two strategies is similar. For
recognition, the one-vs-all approach requires the evaluation
of q SVMs, while the evaluation of q− 1 SVMs is required
for the pairwise approach.

5. Experimental results

In the following, we report on experiments of 3D-3D face
recognition, and 2D-3D face authentication using the Radial
Geodesic Distance (RGD) approach.

5.1. 3D-3D recognition experiments

3D-3D face recognition shows the capability of 3D-RGDs
to effectively discriminate between 3D face models and pro-
vides an indication of the significativeness of the represen-
tation. In this work, 3D-RGDs are not directly proposed as
3D face recognition approach. State of the art solutions for
3D face matching [KPT∗07], [MBO07], can be addressed
for this purpose. In these experiments, we directly used the
3D-RGDs in the space with K ·N dimensions, without any
dimensionality reduction. This is motivated by the objective
to test the intrinsic information that is captured by the 3D-
RGD representation.

According to this, to compare 3D-RGDs of two face mod-
els A and B, the Euclidean distance between 3D-RGDs in the
space of size K ·N has been evaluated:

D(µ3(A),µ3(B)) = (
K

∑
j=1

N

∑
i=1

(µ j
3(i)−µ j

3(i))
2)1/2 (5)

The Gavab face database (publicly available at
http://gavab.escet.urjc.es/) has been used
in these experiments. It includes 3D face models of 61

individuals (45 males and 16 females). The whole set of
subjects are Caucasian and most of them are aged between
18 and 40. For each person, 7 different models are taken,
differing in terms of acquisition pose or facial expression,
resulting in 427 facial models. In particular, for each subject
there are 2 neutral frontal and 2 neutral rotated models,
and 3 frontal models in which the person laughs, smiles or
exhibits a random expression. Models are coded in VRML
with resolution of approximately 10000 vertices.

For each individual, one of the two scans with frontal view
and neutral expression is used as reference model and in-
cluded in the gallery. All the other scans of a subject are used
as probes. According to this, we conducted a set of recogni-
tion experiments using 366 probes (with neutral and non-
neutral facial expression) on a gallery of 61 models. Each
probe is compared against all the gallery models producing
a result list of gallery models ranked in increasing order of
scored distance from the probe. The effectiveness of recogni-
tion has been measured according to the rank-k recognition
rate, and presented with Cumulative Matching Characteris-
tics (CMC) curves. In particular, a rank-k recognition exper-
iment is successful if the gallery face representing the same
individual of the current probe is ranked within the first k
positions of the ranked list. CMC curves measure, for each
k value, the corresponding percentage of successful rank-k
experiments.

(a) (b)

Figure 5: CMC curves for 3D face recognition based on
3D-RGDs: (a) N = 18 radial geodesics displaced by 20 de-
grees; (b) N = 36 radial geodesics displaced by 10 degrees.
In both the cases, curves for different number of points are
reported.

In order to tune the parameters of the 3D-RGD approach,
the Gavab database has been first divided into a train set and
a test set. In particular, we used the models of 11 subjects
as train set (these subjects have been randomly selected in
the database), while the models of the remaining 50 subjects
have been used as test set. Then, operating on the test set,
we performed a preliminary set of tests to investigate the
importance of the number N of radial geodesics and of the
number of points K along each radial geodesic. Results of
these tests are reported in Fig.5(a)-(b) for models with neu-
tral expressions. In Fig.5(a) the CMC curves are reported
for radial geodesics taken at intervals of 20 degrees in the
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range [0,360], with 10, 20, 30 and 40 points along the ra-
dial geodesics, respectively. These points were taken with
uniform displacement between each other along the radial
geodesics. In Fig.5(b), experiments have been performed us-
ing the same number of points, but with radial geodesics dis-
placed by 10 degrees. In general, it can be observed that in-
creasing the number of radial geodesics, the rank-1 recogni-
tion rate improves independently from the number of points
used along the radial geodesics (compare plots in (a) against
plot in (b)). Similarly, it emerges that increasing the number
of points along radial geodesics also improves the recogni-
tion rates (compare the plots for different number of points).
However, though there is a remarkable increase of the per-
formance passing from 10 to 20 points, the relative increase
from 20 to 30 points, and from 30 to 40 points are not so rel-
evant. In particular, we can observe a sort of saturation that
does not further improve the recognition rates.

Table 1: Rank-1 recognition rates for probes with neutral
and non-neutral expression.

rank-1 recognition rate
neutral frontal non-neutral expressions

3D-RGD 86.9% 75.4%
ICP 70.5% 62.3%

Based on the results of the previous tests, matching of 3D-
RGDs, has been performed using 72 radial geodesics dis-
placed by 5 degrees, with 50 points each (3600 points total).
Using this setting, rank-1 recognition rates are reported in
Tab.1 for the 3D-RGD approach, and for the 3D face match-
ing solution that uses the Iterative Closest Point (ICP) reg-
istration [BM92]. Results evidence that RGDs are able to
improve results of the ICP, for 3D face models with both
neutral and non-neutral facial expressions.

5.2. 2D-3D authentication experiments

Preliminary authentication experiments have been per-
formed to prove the viability of SVMs classification of the
error vectors between 2D- and 3D-RGDs projected into an
embedding subspace. Separate SVMs have been trained on
five different projection subspaces, obtained using PCA,
MDS, Isomap, LLE and LE, respectively (see Sect.4). Pair-
wise and one-vs-all classifiers have also been tested using
different dimensions of the projection subspace. Percentage
of correctly authenticated persons are reported in Tab.2 for
three experiments. Each experiment has been conducted us-
ing 10-fold cross validation of frontal face images acquired
for each subject under controlled illumination conditions (10
images per subject).

In the first experiment (Exp.1), SVMs binary classifiers
are trained in a three dimensional projection subspace, one
classifier for each ordered pair of gallery models. According

Table 2: For each experiment and projection method, the
percentage of correctly classified persons using SVMs is re-
ported.

PCA MDS Isomap LLE LE
Exp.1 94.8 94.9 93.5 97.4 94.6
Exp.2 91.9 96.2 95 95.6 97.5
Exp.3 99.4 96.8 84.3 96.2 93.1

to this, person authentication is obtained by a cascade of bi-
nary classifiers that use the same dimensionality reduction
approach.

In the second experiment (Exp.2), SVMs one-vs-all clas-
sifiers are trained in a three-dimensional projection sub-
space, one classifier for gallery model. In this case, per-
son authentication is obtained as response of one classi-
fier. Following the same approach, in the third experiment
(Exp.3), a SVMs one-vs-all classifier is trained in a pro-
jection subspace with fifteen dimensions, one classifier for
gallery model. Also in this case, person authentication is ob-
tained by the response of one classifier.

In general, it can be observed that the percentage of cor-
rectly classified persons is quite high. In particular, using bi-
nary classifiers (Exp.1), the dimensionality reduction meth-
ods have similar performance (maximum difference equal to
3.9%), with LLE scoring the best result (bold entries in the
table evidence the approach that scores the highest percent-
age of correct classification in each experiment). Binary and
one-vs-all classifiers have similar results (compare Exp.1
and Exp.2). The effect of increasing dimensionality of the
embedding subspace does not emerge clearly from Exp.2
and Exp.3. In fact, the absolute maximum is obtained by the
PCA approach in Exp.3, but ISOMAP and LE decrease their
performance passing from Exp.2 to Exp.3. As final obser-
vation, though PCA performs reasonably well in the three
experiments, non-linear methods like MDS and LLE seem
able to provide better combination with the SVMs classifi-
cation in several different conditions.

6. Conclusions and future work

In this paper, an original approach has been proposed for
representing 2D face images and 3D face models, and to
compare them for recognition and authentication purposes.
2D and 3D face representations are based on geodesic dis-
tances computed along radial directions originated from the
nose tip. Experiments are reported for 3D-3D face recogni-
tion, together with preliminary experiments on 2D-3D face
authentication using SVMs classification of the RGDs. Di-
mensionality reduction is applied to the RGDs before to per-
form classification using SVMs.

Future work will address different feature selection meth-
ods to perform dimensionality reduction for classification,
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and a larger experimentation for 2D-3D face authentication
in a real application context. The 3D-3D face recognition ap-
proach will be evaluated on larger benchmark data set, like
the Face Recognition Grand Challenge database.
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