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Abstract
Mesh analysis and clustering have became important issues in order to improve the efficiency of common pro-
cessing operations like compression, watermarking or simplification. In this context we present a new method for
clustering / labeling a 3D mesh given any field of scalar values associated with its vertices (curvature, density,
roughness etc.). Our algorithm is based on Markov Random Fields, graphical probabilistic models. This Bayesian
framework allows (1) to integrate both the attributes and the geometry in the clustering, and (2) to obtain an opti-
mal global solution using only local interactions, due to the Markov property of the random field. We have defined
new observation and prior models for 3D meshes, adapted from image processing which achieve very good results
in terms of spatial coherency of the labeling. All model parameters are estimated, resulting in a fully automatic
process (the only required parameter is the number of clusters) which works in reasonable time (several seconds).

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling I.4.6 [Image Processing And Computer Vision]: Segmentation G.3 [Probability And
Statistics]: Markov processes

1. Introduction

Technological advances in the fields of telecommunication,
graphic hardware and geometry processing during the last
decade, have contributed to an evolution of the digital data
being manipulated and transmitted over the Internet. Nowa-
days, static and dynamic three-dimensional meshes con-
stitute the emerging multimedia content. Accordingly, 3D
models are subject to a wide variety of processing operations
such as compression, simplification, approximation, index-
ing or watermarking.
A critical issue to improve the efficiency of these processes
is to really understand the 3D object which is behind the
polygonal mesh. To reach that goal the solution is to con-
duct an in-depth analysis of the shape (in terms of geometric
criteria) and/or to provide a structure using some partition-
ing/segmentation algorithms. This analysis and/or partition-
ing can then greatly improve the efficiency of the applica-

† e-mail: glavoue@liris.cnrs.fr
‡ e-mail: cwolf@liris.cnrs.fr

tions cited above. For instance, some local measures of the
shape (like roughness or curvature) can be advantageously
used to improve compression or watermarking algorithms by
concentrating artifacts on parts of the object which exhibit a
high masking degree. An other example is the use of a prior
segmentation of the mesh to facilitate remeshing [CSAD04]
or approximation [LDB07]. Local analysis can also be used
to provide shape signature for partial shape retrieval and in-
dexing [TVD07, GCO06].
This shape analysis leads to the creation of different kinds of
attributes, usually associated to the vertices of the mesh (see
fig. 1): Curvature [CSM03], roughness [Lav07], saliency
[LVJ05], crest or ridge [LZH∗07], etc. Moreover, in some
specific applications, like in scientific visualization, other
external attributes can be associated with the mesh elements,
like temperature or density.

In order to be properly used in further processes (com-
pression, indexing, watermarking etc.) or to correctly lead
some segmentation/decomposition algorithms, these at-
tributes (intrinsic or external) have to be properly filtered,
classified or quantized using clustering algorithms. Clus-
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Figure 1: Some examples of vertex attributes, for the Dyno
mesh (42K vertices). From left to right: Original model,
roughness, local curvature (geodesic radius = 1% of the
bounding box max length), global curvature (geodesic ra-
dius = 5%). The values are represented from blue (low) to
red (high).

tering consists in associating to each vertex an appropriate
discrete label (among a given set) according to its attribute
value (which might be a scalar or a vector). Two important
issues have to be resolved to conduct a good clustering:

• It seems critical to consider, together, both geometry and
attribute information in the clustering process. Indeed, a
lot of simple techniques, as for instance thresholding or K-
Means clustering, exploit information from feature space
only to classify each vertex; this may lead to noise or ar-
tifacts that can disturb the further processes. For example,
in the segmentation algorithm described in [LDB05], ver-
tices are clustered only according to the attribute (curva-
ture) values (using K-Means in the curvature space) then
a region growing process uses this attribute-only clus-
tering to create spatial regions. However it produces a
noisy over-segmentation that necessitates a further com-
plex merging process. A better clustering taking into ac-
count some geometric constraints would have probably
greatly improved the result of the region growing.

• An other important issue is to process this clustering, in a
global way. Indeed, a lot of existing clustering processes
are greedy, depend on initial seed positions and thus may
result in non-optimal solutions, which are consequently
not very robust. A solution is to conduct the clustering in
a global way.

In this paper we investigate the use of probabilistic graphical
models to resolve both issues: incorporate the spatial de-
pendencies between the vertices into the clustering process,
while providing a globally optimal solution. In particular,
we base our framework on Markov Gibbs Random Fields
(MRF). The main idea is the following: for a given number
of clusters and a 3D mesh associated with any kind of
attributes or features (curvature, roughness, saliency etc.)
our approach provides, for each vertex, the appropriate
cluster label. These labels will be considered to be optimal
since they maximize a global probability over the entire
mesh, taking into account both attribute values and spatial

relations (geometry). This framework can be easily adapted
to any kind of attributes (scalar or vector), located on any
kind of mesh element (vertex, edge or face).

The paper is organized as follows: section 2 presents
some existing related works, while sections 3, 4 and 5, re-
spectively, detail our adaptation of the Markov paradigm
to 3D meshes, our prior and observation models and the
global simulated annealing optimization algorithm. Section
6 presents the parameter estimation and finally section 7 il-
lustrates some experiments and results on several meshes
with different attributes and different numbers of labels.

2. Related Work

2.1. Mesh clustering and segmentation

In this paper we differentiate clustering and segmentation.
Clustering associates with each mesh element (vertex for in-
stance) an appropriate cluster label by taking into account
some attribute values. Typically this process considers only
the attribute space and allows to quantize, or filter these val-
ues for further use (compression, segmentation etc.). The
principal methods are K-Means, uniform quantization or
thresholding.
On the contrary, mesh segmentation provides a decomposi-
tion into several connected spatial regions: The facets are
regrouped in order to obtain regions (usually homeomor-
phic to a disk) sharing some common properties. Some au-
thors [SSGH01, CSAD04] use planarity criteria to incorpo-
rate faces in the regions while others [LPRM02, LDB05]
rather consider homogeneous curvature properties. Some
higher level algorithms consider feature points [KLT05],
skeleton [TVD06], graph [KT03], spectral analysis [LZ04].
A lot of segmentation algorithms exist for 3D meshes, a re-
cent state of the art can be found in [AKM∗06].
The main problem of the pure clustering approaches is that
they only consider the attribute space, without any geometric
constraints. At the opposite, the existing segmentation algo-
rithms decompose the mesh only according to its geometry;
no additional attribute data can be introduced in the algo-
rithms to modify the results. Moreover, except some recent
algorithms [CSAD04], most of them are greedy and thus can
fall into non optimal local minima.
Our MRF based approach allows to cluster a 3D mesh
by taking into account both attribute values and geometry,
moreover it is a global approach that provides an optimized
solution. Besides, several segmentation algorithms are based
on a priori clustering [LDB05, MDKK06, JM07], hence im-
proving the clustering with geometric constraints should
greatly improve the corresponding segmentations. The very
recent approach from Shamir et al. [SSCO06] also provides
a mixed attribute-geometry clustering framework by adapt-
ing the Meanshift algorithm to 3D meshes. They obtain very
good results, however, processing time is quite long (several
minutes), whereas our method is faster (several seconds).
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2.2. Markov Random Fields

Markov Random Fields have a long history, we refer the
reader to the seminal work by Geman and Geman [GG84]
and to the book written by Li for a large yet profound
overview of the theory [Li01]. They have been extensively
used in image processing, particularly for segmentation and
image restoration, even very recently [SC06,WC07]. In par-
ticular this Bayesian framework is employed to combine
models of the observation process (i.e. the likelihood of the
observation given a label configuration) with models of the
spatial interaction (the prior knowledge).
To our knowledge, only two authors have investigated MRF
for 3D mesh processing: Willis et al. [WSC04] for surface
deformation and Andersen [And07] for mesh smoothing.

3. The Markovian framework

Markov random fields [Li01] are graphical models used to
find the optimal labeling of the nodes of a graph — opti-
mal in a sense which shall be defined later. Generally speak-
ing, the graph may be regular or irregular and the labels
may be continuous or discrete. Regular graphs are frequently
used in image processing [GG84]. In our case, the graph
corresponds to the irregular graphical structure of the con-
sidered mesh, we therefore consider an undirected graph
G = {G,E}, where G is the set of vertices (sites) of the mesh
and E is the set of edges of the mesh. Our objectif is thus to
assign the most correct label to each vertex of the mesh (i.e.
each site of the graph).

Markov random fields are also probabilistic models, they
assign probabilities to the different possible results, i.e. one
probability to each possible labeling of the set of vertices.
Therefore, each site (i.e. vertex) s ∈ G is assigned a dis-
crete random variable Xs taking values from the finite set Λ,
C = |Λ| denoting the number of classes. XG, or short X de-
notes the field of random variables of the graph. The space
of all possible configurations of the field X is denoted as
Ω = Λ

|G|. As usual, uppercase letters denote random vari-
ables or fields of random variables and lower case letters de-
note realizations of values of random variables or of fields of
random values. In particular, P(X = x) will be abbreviated as
P(x) when it is convenient.

Probabilistic graphical models take into account the con-
nectivity of the graph. Although a globally optimal solution
is searched, i.e. the best global labeling is searched, the prob-
ability P(X = x) is defined through local properties, which
is reflected by the Markov property of the random field: A
field X of random variables is a MRF if and only if

P(X=x) > 0 ∀x ∈ Ω and

P(Xs=xs|Xr=xr,r 6= s) = P(Xs=xs|Xr=xr,r ∈ Ns)
(1)

where Ns is the neighborhood of the site s. In other words,
the variable of a site s is conditionally independent of the

variable of another site r given the neighbor variables of site
s. Note, that conditional independence does not mean inde-
pendence. Two variables Xs and Xr are dependent even when
they are separated by a very long minimal path in the graph;
however, conditional independence means that the knowl-
edge of xr does not provide additional information for the
inference of xs if the realizations of xNs are known.

On a graph, each neighborhood defines a set of cliques,
where a clique is fully connected sub graph. For a triangular
mesh, there exist 3 types of cliques: vertex (1-site clique),
edge (2-site clique) and triangle (3-site clique). According
to the Hammersley-Cifford theorem [HC68] [Bes74], the
joint probability density functions of MRFs are equivalent
to Gibbs distributions defined on the maxima cliques, i.e.
are of the form

P(x) =
1
Z

exp{−U(x)/T} (2)

where Z = ∑x e−U(x)/T is a normalization constant, T is a
temperature factor which can be assumed to be 1 for sim-
plicity, U(x) = ∑c∈CVc(x) is a user defined energy function
defined on local interactions in the cliques, C is the set of all
possible cliques of the graph and Vc(x) is the energy poten-
tial for the realization x defined on the single clique c.

The probability P(x) encodes the a priori knowledge on
the result (independent of the actual observations) - it gives
us information whether a given solution is probable. The ap-
plication dependent knowledge is injected through the user
defined energy potentials defined for each clique labeling.
Commonly used energy potentials favor a classification cre-
ating homogeneous regions (see section 4). Concretely that
is a way to inject spatial constraints in the labeling.

The segmentation result depends on observations mea-
sured at each site, denoted as known random variables Ys.
Concretely, these observations correspond to the values of
the attributes at each vertex. We suppose the following
widely used statistical assumptions on these variables (If re-
quired, these assumptions can be relaxed by posing the prob-
lem in the context of the conditional random field frame-
work): each observed variable Ys is related to a hidden vari-
able Xs and is conditionally independent of the other vari-
ables given the realization of the related hidden variable:

p(ys|x) = p(ys|xs) ∀s ∈ G

p(y|x) = ∏s∈G p(ys|xs)
(3)

Properties 1 and 3 are illustrated in the dependency graph
shown in figure 2, where each shaded observed variable is
connected to its corresponding non shaded hidden variable
only.

The probability P(x) defined by the MRF is independent
of the observations Y and can be interpreted as the prior
probability in a Bayesian framework, completed by the like-
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Ys

Xs

Figure 2: The dependency graph of the markov random
field. The shaded nodes are observed, the empty nodes are
hidden.

lihood of the observations given the hidden labels p(y|x) de-
fined in (3). This later probability depends on the observation
model, which we will define in section 4. We are interested
in inferring the most probable realization of the hidden vari-
ables given the observed nodes, which can be obtained using
Bayes’ rule:

P(x|y) =
P(x)p(y|x)

p(y)
(4)

x̂ = argmax
x

P(x)p(y|x) (5)

This labeling x̂, known as the maximum a posteriori or MAP
estimate, will be considered as the optimal clustering for
our mesh, given its attributes. The result depends on the
prior model and on the observation model which respec-
tively drive the weight of the attribute and the weight of
the geometry. If we consider only the observation model, we
obtain a simple classification in the attribute space (like a
K-Means algorithm); the prior model allows to inject some
spatial constraints in the clustering. The next section details
the construction of these models.

4. Prior and observation model

As mentioned above, the role of the prior model is to reg-
ularize the classification decisions, thus favoring homogen-
uous regions. For this purpose we modified the multi-level
logistic model [Li01] whose energy potential functions are
defined as:

U(x) = ∑
s∈G

∑
l∈Λ

αlδl,xs + ∑
c∈C3

βγ(c) (6)

where the αi (i = 1 . . .C) and β are parameters, C3 is the set
of 3-site cliques of the graph, i.e. the set of triangles of the
mesh, δi, j is the Kronecker delta given as

δi, j =
{

1 if i = j
0 else

(7)

and γ(c) is a function favoring triangles with homogeneous
labels, given as:

γ(c) =− ∑
(s,s′)∈c×c,s6=s′

δxs,xs′ (8)

Each parameter αi controls the prior probability of a given
label i whereas the parameter β controls the amount of
smoothness of the result.

The observation model is a (possibly multi-variate) Gaus-
sian one, resulting in the following probability density func-
tion:

p(y|x) = ∏
s∈G

p(ys|xs) = ∏
s∈G

N (ys ; µxs ,Σxs) (9)

where µxs and Σxs are, respectively, the mean vector and the
covariance matrix of class xs. In our experiments, scalar ob-
servations were used, thus a single mean value and a single
variance is required for each class.

The combination of MRF prior model P(x) (a distribu-
tion) and likelihood p(y|x) (a density) can be seen as a new
MRF defining the joint probability density p(x,y) on a new
graph: the dependency graph shown in figure 2. The new
graph contains the original graph (the mesh) as a subgraph
as well as additional sites (the observed variables) and addi-
tional 2-site cliques for each pair Xs and Ys with the follow-
ing potential functions:

U(xs,ys)∝ ln[p(ys|xs)] (10)

5. Optimization

To calculate the estimate x̂, the maximization in (5) needs to
be performed. Unfortunately, the function is not convex and
standard gradient descent methods will most likely return a
non global solution. Simulated Annealing has been proven to
return the global optimum under certain conditions [GG84].

Simulated Annealing received its name from physical pro-
cesses, which decrease temperatures to allow particles (e.g.
atoms in an alloy) to relax into a low energy configuration.
Similarly, for the optimization of a non-convex function, the
simulated annealing process lowers a (virtual) temperature
factor. During the annealing process, the labels of the ver-
tices are changed in order to bring the estimations closer
to the model. However, a certain amount of randomness is
included in the optimization process, which allows the sys-
tem to change to more unfavorable estimates at certain times.
This amount of randomness depends on the temperature fac-
tor: it is set relatively high at the beginning to allow the sys-
tem to “jump” out of local minima, and is gradually lowered
together with the temperature factor.

More precisely, during the annealing process, for each
vertex the energy potential is calculated before and after ran-
domly choosing a new state (i.e. a new label). The decision
whether to keep the new state or not is based on the value

q = e−∆/T (11)
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where ∆ is the difference of the posterior energy potentials
U(xs,xNs ,ys) of site s before and after the change of xs:

U(xs,xNs ,ys) = U(xs,xNs)+U(xs,ys)

= ∑
l∈Λ

αlδl,xs + ∑
c∈C3:s∈c

βγ(c)

+ (ys−µxs)
T

∑
−1
xs

(ys−µxs)

(12)

If q > 1 then the change is favorable and accepted. If q < 1,
i.e. if the solution is “worse”, then it is accepted with prob-
ability q, which depends on the global temperature factor T .
The gradual decrease in temperature assures that this is done
less and less frequent. For the cooling schedule we used the
suggestions in [DHS00] (page 356), where the temperature
T is set to

T (i) = T (1) ·Ki−1 (13)

where K is a constant controlling the speed of the cooling
process and i denotes the current iteration. The start tem-
perature must be sufficiently high to switch to energetically
very unfavorable states with a certain probability. It can be
calculated as a function of the maximum possible potential
differences, as we did in previous work [WD02].

6. Parameter estimation

Since realizations of the label fields X are not available, the
parameters of the prior model and the observation model
must be estimated from the observed data or from interme-
diate estimations of the label fields. In this work we chose
to estimate the parameters in a supervised manner on the
median filtered label fields created with an initial k-Means
clustering. Alternatives would be, for instance, iterated con-
ditional estimation [BP93] or the mean field theory [Zha92].

For the prior parameters αi and β we employ least squares
estimation, which was first proposed by Derin et al. [DE87].
The prior part of the potential function for a single site s (12)
can be rewritten as

U(xs,xNs ,θp) = θ
T
p N(xs,xNs) (14)

where θp is the desired prior parameter vector containing the
αi and β, and N(xs,xNs) is a vector valued function defined
as:

N(xs,xNs) = [ δxs,1,
δxs,2,
. . .
δxs,C,

∑
c∈C3:s∈c

γ(c) ]

(15)

From (14) and the basic definition of conditional probabili-
ties on MRFs:

P(xs|xNs) =
e−U(xs,xNs ,θp)

∑xs∈L e−U(xs,xNs ,θp)
(16)

the following relationship can be derived [DE87]:

θ
T
p [N(x′s,xNs)−N(xs,xNs)] = ln

(
P(xs,xNs)
P(x′s,xNs)

)
(17)

where x′s is a label different of xs having the same neigh-
borhood labels xNs . The RHS of (17) can be estimated using
histogram techniques, counting the number of occurrences
of the clique labellings in the label field. Considering all pos-
sible combinations of xs, x′s and xNs , (17) represents an over
determined system of linear equations which can be rewrit-
ten in matrix form as follows:

Nθp = p (18)

where N is a M×C + 1 matrix, the rows of which contain
the vectors [N(xs,xNs)−N(x′s, fNs)]

T for different labels xs
and x′s having the same neighborhood labeling xNs , and M
is the number of data points. The elements of the vector p
are the corresponding values from the RHS of (17). System
(18) can be solved using standard least squares techniques,
as for instance the Moore-Penrose pseudo inverse.
For practical purposes, note that labeling pairs with one or
both of the probabilities P(xs,xNs) and P(x′s,xNs) equal to
zero cannot be used. Furthermore, Derin et al. suggest to
discard equations with low labeling counts in order to make
the estimation more robust.
For reasons of numerical stability, we set one of the
parameters αi to 1. Although the αi can be interpreted as
logarithms of prior probabilities, it is not necessary that the
sum of their exponentials be 1, since the eventual missing or
excess probability mass will be absorbed into the partition
factor Z in (2).
As an example, the parameters of the Markov model for the
clustering presented on Figure 5 are: α1 = 1, α2 = 0.979153
and β = 2.673553.

The parameters of the observation model are estimated us-
ing the classical maximum likelihood estimators: the mean
values and the variance values of each class. They are empir-
ically estimated from the result of the median filtered label
fields created by the initial k-means clustering.

7. Complete algorithm and results

Algorithm 1 sums up the MRF clustering algorithm for 3D
meshes. The start temperature T (1) and speed K have empiri-
cally been fixed to, respectively, 4 and 0.97; these values give
good results in our experiments. Moreover, small changes of
these parameters do not influence the result of the optimiza-
tion [DHS00]. For the simulated annealing, we have chosen
imax = 50 iterations; this number must be high enough to en-
sure convergence of the sampling algorithm. Obviously, it
depends on the specific form of the model, in particular the
length of the dependency chains in the dependency graph
etc. To our knowledge, no work exists which is able to learn
this number from training data, therefore we determined the
necessary number of iterations empirically.
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Figure 4: From left to right: The Blade model (40K vertices),curvature scalar field (geodesic radius = 0.5%), clustering using
K-Means (3 clusters), clustering using our MRF algorithm (3 clusters).

Figure 5: From left to right: The curvature scalar field (geodesic radius = 6%) of the the Dyno-5 mesh (5K vertices), 2-
clustering using K-Means and region growing result, 2-clustering using MRF and region growing result.

Algorithm 1: Our whole algorithm for 3D mesh cluster-
ing

Input: C (number of label) , T (1) (start temperature), K
(cooling speed), imax (number of iterations)

Output: The estimated label field x̂

• Initialization of the labels x with k-Means clustering of
the attribute values y.

• Median filtering of the labels x

• Parameter estimation for observation and prior model
from x (see section 6).

• x̂ is estimated optimizing (5): simulated annealing with
imax iterations, using T (1), K and the parameters (see
section 5).

In order to demonstrate the efficiency of our algorithm
for mesh clustering, we have conducted experiments with
different meshes from 5K to 40K vertices and for differ-
ent numbers of clusters (from 2 to 5). We have particu-
larly focused on the curvature attribute: a scalar value as-
sociated with each vertex, but our algorithm works for any
other value or combination of values (like roughness in Fig.
6). Table 1 details the processing times for the different ob-

jects which are presented in the figures. For a simple model
(<10K vertices) the MRF optimization takes less than 10
seconds. For more complex models (∼40K vertices) the pro-
cessing time is around 30 seconds. We have chosen 50 it-
erations for the simulated annealing optimization since this
value seems enough to reach the convergence in our exam-
ples. Figure 3 illustrates the clustering of the maximum cur-

Table 1: Processing time of our MRF clustering algorithm.

3D Model Cluster nb Proc. time (s)
Dyno-5 (5K vertices) 2 3.2

Dyno-10 (10K vertices) 5 7.1
Lion Head (39K vertices) 2 25.2

Blade (40K vertices) 3 28.9

vature (geodesic radius = 8%) of the Dyno-10 shape (10K
vertices) into 5 clusters. The labeling is very clean without
any noise and each region exhibits both attribute and spatial
coherency.
We have also compared our MRF clustering with the K-
Means algorithm. Figure 4 illustrates the clustering of the
Blade model (40K vertices) according to its curvature, into
3 clusters. The noise introduced by the K-Means classifica-
tion has been almost entirely removed by using our MRF
algorithm. Hence a further segmentation using this spatially
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coherent clustering will be much easier.
We have conducted experiments in a segmentation scenario:
the curvature values (geodesic radius = 6%) of the Dyno-5
model (5K vertices) have been clustered into 2 clusters us-
ing both algorithms (see figure 5). Then we have conducted a
spatial segmentation (each facet is affected to a region num-
ber) using the region growing from [LDB05]. The result is
very clean with our clustering, with about 10 regions corre-
sponding with the significant parts of the Dyno (arms, legs,
head etc.). On the contrary, a bad over-segmentation is ob-
tained when considering the simple K-Means classification
because of the noise.

Figure 3: From left to right: The Dyno-10 mesh (10K ver-
tices), curvature scalar field (geodesic radius = 8%), clus-
tering using our MRF algorithm (5 clusters).

Lastly, figure 6 illustrates the clustering of the Lion Head
model (39K vertices) according to its roughness map (cal-
culated using [Lav07]) into 2 clusters. The roughness rep-
resents the amount of local geometric noise on the surface.
Indeed, a textured (or rough) region is able to hide geometric
distortions much better than a smooth one. Hence this mea-
sure can be advantageously integrated to watermarking al-
gorithms in order to concentrate the geometric modifications
on rough parts of the object. An example of its usage is the
classification of the object into 2 clusters: rather rough and
rather smooth, so as to watermark the regions accordingly.
In order to be properly used in such scenario, the clustering
has to be robust to some geometric attacks and rather co-
herent with the geometry (to keep the watermark invisible).
That is the case with the MRF clustering which — due to
the global optimization — provides a clean decomposition,
while being robust to slight geometric attacks.

8. Conclusion and Futur Work

This paper presents a new Bayesian framework for 3D mesh
clustering, based on Markov Random Fields. The approach
allows to integrate, in a global optimization process, both at-
tribute values and spatial constraints in the labeling, by using
appropriate prior models and observation models. Results
demonstrate the efficiency of this framework which thus can
be quite useful for 3D mesh analysis or segmentation.
In computer vision, hierarchical Markov models have been

Figure 6: From left to right: The Lion Head model (39K ver-
tices), roughness scalar field, clustering using K-Means (2
clusters), clustering using our MRF algorithm (2 clusters).

introduced to fasten the optimization of the label field.
Bouman and Shapiro were among the first to propose such
causal hierarchical models [BS94]. A quad tree models the
spatial interactions between the leaf pixel sites through their
interactions with neighbors in scale. We plan to introduce
this hierarchical Markov modeling for 3D mesh labeling.
However contrary to a 2D image, a 3D mesh owns an ar-
bitrary topology and irregular sampling which makes this
hierarchical decomposition quite difficult. A solution could
consist in using a simplification algorithm [GH97] or a
geometry-based decomposition like KD-Trees [GD02].
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