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Abstract

Vector fields are a fundamental mathematical construct for describing flow-

field-related problems in science and engineering. To solve these types of prob-

lems effectively on a discrete surface, various vector field representations are

proposed using finite dimensional bases, a discrete connection, and an operator

approach. Furthermore, for computational efficiency, quadratic Dirichlet en-

ergy is preferred to measure the smoothness of the vector field in the gradient

domain. However, while quadratic energy gives a simple linear system, it does

not support real-time vector field processing on a high-resolution mesh with-

out extensive GPU parallelization. To this end, this dissertation describes an

efficient hierarchical solver for vector field processing. Our method extends the

successful multigrid design for interactive signal processing on meshes using

an induced vector field prolongation combing it with novel speedup techniques.

We formulate a general way for extending scalar field prolongation to vector

fields. Focusing on triangle meshes, our convergence study finds that a stan-

dard multigrid does not achieve fast convergence due to the poorly-conditioned
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system matrix. We observe a similar performance in standard single-level

iterative methods such as the Jacobi, Gauss-Seidel, and conjugate gradient

methods. Therefore, we compare three speedup techniques – successive over-

relaxation, smoothed prolongation, and Krylov subspace update, and incorpo-

rate them into our solver. Finally, we demonstrate our solver on useful appli-

cations such as logarithmic map computation and discuss the applications to

other hierarchies such as texture grids, followed by the conclusion and future

work.

Primary Reader: Misha Kazhdan

Secondary Reader: Nassir Navab

External Readers: Laurent Younes, Szymon Rusinkiewicz
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Chapter 1

Introduction

Vector, in Latin, meaning one that carries or transports [Kev23], was first

introduced to mathematics and physics by Oliver Heaviside and Josiah Willard

Gibbs near the end of the 19th century when they developed Vector Calculus for

vector fields. Due to its simpler and cleaner notation than the preceding Hamil-

ton’s Quaternions and Clifford Algebras, vector fields, today, have become the

main mathematical object to describe flow-field-related problems such as elec-

tromagnetism, fluid simulation, and shape deformation. As a result, vector

field processing has come to be an essential task in contemporary science and

engineering applications.

1



CHAPTER 1. INTRODUCTION

1.1 Motivation

Discrete Vector Field Processing

Owing to the importance of vector field processing, extensive work has been

done on vector field design in discrete geometry processing, especially for trian-

gulated surfaces. From finite elements approaches, through discrete exterior

calculus and finite element exterior calculus, to spectral methods and machine

learning techniques, researchers have developed new representations of vector

fields on surfaces for specific applications, better accuracy, and efficient com-

putation (reviewed in Chapter 2). Regardless of the choice of representation

used, to manipulate and compare vector fields, well-defined differential oper-

ators are required. Having these well-defined discrete differential operators

enables numerous applications.

Figure 1.1: Example applications of solving the vector diffusion equation as
described in the work of Sharp et al. [SSC19] - parallel transport (left), loga-
rithmic map (middle), and Karcher mean (right).

2



CHAPTER 1. INTRODUCTION

For example, one can solve the vector diffusion equation described in the work

of Sharp et al. [SSC19] to perform parallel transport of a vector and com-

pute the logarithmic map and the Karcher mean as illustrated in Fig. 1.1.

This dissertation focuses on vector field manipulation using first-order differ-

ential operators. Specifically, we use the exterior derivative and co-derivative

to formulate the vector field processing problem in the gradient domain (de-

tails in Chapter 3). In order to handle a large class of applications (related

to first-order differential operators), we adapt the gradient domain paradigm

from scalar field processing to vector field processing on surfaces.

Interactive Gradient Domain Scalar Field Processing

Figure 1.2: McCann and Pollard [MP08] combine the gradient domain
paradigm and a hierarchical solver to develop an interactive painting appli-
cation that allows artists to paint with digital brushes. The above figures show
snapshots during a digital painting process.

The gradient domain paradigm has unified scalar field processing on surfaces

for various applications such as smoothing, sharpening, and stitching. Several

3



CHAPTER 1. INTRODUCTION

works have combined this approach with a hierarchical solver to provide inter-

active applications such as interactive painting (Fig. 1.2) developed by McCann

and Pollard [MP08].

Inspired by the significant speedup in scalar field processing using a hierar-

chical approach, this dissertation demonstrates an efficient hierarchical solver

for gradient domain vector field processing in an attempt to produce real-time

vector field processing applications. Furthermore, we describe an approach

for extending scalar field prolongation matrices to vector fields, alleviating the

need for creating hierarchies for vector field processing from scratch and en-

suring that the prolongation commutes with fundamental operators like the

differential.

1.2 Objective

To the best of our knowledge, this dissertation is the first to look into solving

vector field processing using a hierarchical approach and generalize the 1-form

prolongation design by leveraging the existing efficient 0-form hierarchical sys-

tem. The objective of the dissertation is to answer the following questions:

• How do we perform vector field processing in the gradient domain?

• How do we design a hierarchy for vector field processing?

• How do we make the hierarchical solver converge quickly?

4



CHAPTER 1. INTRODUCTION

1.3 Overview

Chapter 2 begins with a literature review of gradient domain processing,

hierarchical solver, and discrete vector field design. Next, Chapter 3 presents

the classical formulation of scalar field gradient domain processing on surfaces

with Riemannian metrics using the language of exterior calculus. We then

present its extension to vector field processing using the exterior derivative

and co-derivative.

Chapter 4 describes our hierarchical approach using the multigrid method.

We start by considering a two-level system, then describe the three key compo-

nents as well as speedup techniques in each component – relaxation schemes,

smoothed prolongations, and Krylov subspace update method. Then, in Chap-

ter 5, we present our general approach to constructing hierarchical vector field

bases given a scalar field basis with a prolongation matrix. The approach de-

fines a vector field prolongation matrix for the multigrid method.

Focusing on a triangle mesh and using existing scalar field hierarchical

structures, Chapter 6 extensively studies the convergence of our solver, the ef-

fects of different speedup techniques and multigrid cycle types, and compares

it to the direct CHOLMOD solver. In Chapter 7, we demonstrate the effec-

tiveness of our approach for problems of logarithmic map computation and its

applications to texture grid hierarchy for vector field processing.

5
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We conclude in Chapter 8, summarizing our findings and discussing future

work from both the practical and theoretical perspectives. Practically, it will

be interesting to leverage the power of GPUs to accelerate computation and

implement higher-dimensional k-form processing. Theoretically, we are inter-

ested in optimizing the 0-form prolongation coefficients for the best 1-form pro-

longation.

6



Chapter 2

Background

Our approach for processing vector fields on surfaces has three essential

components – the formulation, the solver, and the vector field representation.

First, we formulate vector field processing as a gradient domain problem for

handling a wide range of vector field processing applications. Then, we dis-

cretize the energy using Galerkin’s formulation, resulting in solving a system

of linear equations, which we solve using a hierarchical solver. We need a fi-

nite basis for Galerkin’s approach. Discretizing requires choosing a basis; to

that, we choose a 1-form basis that is constructed from a 0-form basis. We

will describe each component in detail in Chapters 3 to 5. In this chapter, we

review the related literature of each component of our approach – i.e., the gra-

dient domain processing, the hierarchical solver, and the discrete vector field

representation on surfaces.

7
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2.1 Gradient Domain Processing

Gradient Domain Image Processing

Gradient domain processing is a powerful image editing technique that di-

rectly manipulates image gradients rather than image intensities. It has many

applications, including image denoising [FLW02], inpainting [SJZW07], and

stitching [KH08]. The motivation behind this approach came from the study of

rendering high-dynamic range images [DW00]. In 2002, Fattal et al. [FLW02]

first introduced the concept of using the gradient field to manipulate images.

They proposed a variational approach to compress high-dynamic range images

by minimizing the difference between the gradient fields of the input and out-

put images. This approach immediately got the attention of the image pro-

cessing research community. Pérez et al. [PGB03] adapted the approach for

image editing; Levin et al. [LZPW04] used patch-based optimization in the

gradient domain for seamless image stitching; Du et al. [DQLB05] assumed

texture beneath shadow shares similar patterns to non-shadowed one and pro-

posed a shadow removal algorithm by matching gradients to complement the

lost radiance in shadow region; Agrawal et al. [ARNL05] presented a similar

gradient projection scheme that keeps gradients coherent to remove reflections

and highlights from flash images. They then extended the approach for edge

suppression [ARC06] and advocated it as a general technique for gradient do-
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main image processing [AR07]. Bhat et al. [BCCZ08] analyzed this approach

using Fourier analysis and proposed it as an optimization framework for im-

age and video filtering [BZCC10]. In 2016, Shibata et al. [STO16] extended

the framework for image reconstruction with constraints. Gradient domain

image processing is ongoing research. In recent years, it has been combined

with deep learning techniques. For example, GFNet [LL22] aimed to extract

gradient features to compensate for the missing high-frequency face features

in synthesized high-resolution images.

Gradient Domain Signal Processing

This powerful framework has also been applied to applications beyond im-

age processing. For instance, Huang et al. [HSL∗06] developed a subspace tech-

nique to minimize gradient domain energy with non-linear constraints to de-

form meshes; Lehtinen et al. [LKL∗13] introduced a novel Metropolis rendering

algorithm by sampling in the gradient domain and reconstructing the render-

ing image using the gradient domain technique and Markus et al. [KMA∗15]

extended this Metropolis approach to Monte Carlo sampling; Chuang et al.

[CRK16] used it for geometry editing by treating mesh coordinates as input

signal; and Prada et al. [PKCH18] extended the mesh signal processing frame-

work to texture-domain processing.
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Gradient Domain Vector Field Processing

While there is no unified framework for vector field processing, many vector

field processing approaches such as [FSDH07], [BSEH17], and [SWJG20] can

be expressed as gradient domain problems. Formulating the problem of vector

field processing as a gradient domain problem (Chapter 3) allows us to carry

over techniques and intuition from signal processing to this more challenging

context.

2.2 Hierarchical Solver

Our goal is to perform vector field processing on surfaces efficiently. In gen-

eral, this reduces to the solution of a large, sparse linear system. To solve a

large-scale systems efficiently, one of the most effective ways is to use a hierar-

chical approach. In practice, multigrid has been the method of choice.

The Multigrid Method

In his early work [Bra77], Brandt introduces the concept of the multigrid as

a hierarchical approach for solving elliptic partial differential equations. Sub-

sequent refinement proposed by researchers improved the multigrid method’s

speed and accuracy, and it has become a standard hierarchical numerical solver

as described in several textbooks [McC87,BHM00,BL11].

10
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In the geometry processing community, the multigrid method is applied

to solve large-scale systems and create interactive applications. For exam-

ple, [KH08] used the multigrid method and leveraged memory coherency to

speed up large image stitching and tone mapping; [MP08] applied the multi-

grid method to develop interactive digital painting software, and [PKCH18]

utilized the multigrid method to enable real-time computation such as geodesic

in heat on textured meshes. The community also investigated efficient surface

hierarchy for scalar field processing [LZBCJ21]. This dissertation applies the

standard multigrid method to vector field processing.

The Multigrid Prolongation

An essential component of the multigrid method is a prolongation, which de-

fines how the coarse level’s solution is expressed in the fine level. The design of

a good prolongation is an active research topic. Since this dissertation works on

vector field processing, our review focuses on multigrid prolongation for vector

fields. To the best of our knowledge, there are two methods for designing vec-

tor field prolongation. One is the smoothed aggregation used in the algebraic

multigrid with edge elements [RS02, NP19]. This method constructs an ini-

tial prolongation matrix based on interpolation weights, smooths the matrix to

reduce errors, and corrects it to satisfy specific properties (e.g., commutativity

between the prolongation and differential operators). This algebraic multigrid

11
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technique is a general approach to constructing a prolongation matrix given a

connectivity matrix, which can be used to construct vector field prolongation.

The other is the Whitney 1-form prolongation, which is implicitly defined once

a 0-form prolongation is given (e.g., [BHKB20, Sec. 4.6]). In this dissertation,

we formulate a general way for extending scalar field prolongation to vector

field prolongation.

Speed-up Techniques

To further speed up the multigrid method, researchers have looked into dif-

ferent techniques. The Krylov subspace method is commonly used to update

the solution after each iteration of the V-Cycle [ELM96, OW00, WLA∗14]. On

the other hand, a variety of smoothing techniques have been proposed. These

are compared in [ABHT03, SSB15]. Furthermore, Hemker [Hem90] provides

a formal study of convergence using Fourier analysis and concludes that nec-

essary condition for an efficient prolongation is that it does not introduce high-

frequency components when transferring information from the coarse level to

the fine level. As a result, several approaches have been proposed to smooth

the prolongation [VMB94, Lot23]. We study and incorporate these techniques

into our hierarchical solver design in Chapter 4.
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2.3 Vector Field Representations

In order to manipulate vector fields over a discrete surface, we need discrete

representation. In their course, de Goes et al. [dGDT16] reviewed and summa-

rized vector field design methods on triangle meshes, categorizing them based

on the vector fields encoded on the triangle mesh. Concretely, they describe

face-based, edge-based, and vertex-based representations.

Face-based representation includes [PP00,TLHD03,War07,DVPSH14,CDS10,

SWJG20], in which the discretization guarantees continuity within each dis-

crete face while leaving the continuity at the edges and vertices undefined.

Edge-based representation is continuous within each face and along (but

not across) edges. For example, the finite element exterior calculus [AFW06,

WWT∗06] and discrete exterior calculus [FSDH07, CdGDS13] approaches pre-

serve the continuity of the tangential components of the vector fields along each

edge. As pointed out in [dGDT16], an operator approach [GMP∗10, ABCCO13]

reformulating the Killing operator in terms of the Hodge-Laplacian and using

the average Gaussian curvature per edge (Weitzenböck identity) can be used

to define a basis that is continuous along edges.

Vertex-based representations aim for continuity at vertices. For instance,

Zhang et al. [ZMT06] use the polar map at each vertex to interpolate vec-

tor fields locally around the vertex, while Knöppel et al. [KCPS13] and Liu

13
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et al. [LTGD16] define a discrete connection to continuously transport vectors

along edges and vertices. The gains in continuity provided by these methods

come at the cost of introducing non-linearity.

In this dissertation, we discretize vector fields using a finite 1-form basis

that is constructed from a 0-form finite basis. One advantage of this basis is

that the 1-form prolongation is induced from the 0-form prolongation by con-

struction. We describe and formulate this approach in Chapter 5.

14



Chapter 3

Gradient Domain Formulation

In this dissertation, we formulate vector field processing on surfaces us-

ing the gradient domain framework. Today, gradient domain processing is a

standard framework (as in [BZCC10,STO16,CRK16]) commonly used for many

signal processing applications in computer vision and graphics such as smooth-

ing and sharpening [XLG∗12, CRK16], content fusion [PGB03, WD11], stitch-

ing [LZPW04,KH08], and those mentioned in the previous chapter.

We begin by reviewing the standard framework and its applications to im-

age processing and, more generally, the processing of signals on surfaces. Then,

we use the framework to formulate vector field processing in the language of

exterior calculus. We show some applications and conclude the chapter by dis-

cussing how the gradient domain formulation is discretized using a finite di-

mensional basis.
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3.1 Preliminaries

While gradient domain processing was initially proposed for image process-

ing, it has been widely adapted to signal processing on surfaces (concretely,

Riemannian manifolds). Throughout this dissertation, we assume that our

processing domain is a Riemannian 2-manifold (M, g) with a metric tensor g.

Frequently used notation is described and defined below.

(Co-)Vector Space

We denote by TM the tangent bundle of M, and at a point p ∈ M, we de-

note by TpM the tangent space of M at p. Similarly, we denote by T∗M the

co-tangent bundle ofM, and by T∗
pM the co-tangent space ofM at p. Further-

more, we denote by gp the metric at the point p.

Inner Product and Norm of (Co-)Vectors

Recall that the metric gp is a symmetric positive-definite bilinear map that

defines an inner product on TpM. It takes a pair of tangent vectors and returns

a real value. As such, we can also view it as a map from TpM to T∗
pM, so that

its inverse g−1
p defines an inner product on T∗

pM.

We denote by ⟨·, ·⟩ and ∥·∥ the inner product and norm. For u⃗, v⃗ ∈ TpM,

16
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these are defined as:

⟨u⃗, v⃗⟩ = gp(u⃗, v⃗), ∥u⃗∥ =
√
⟨u⃗, u⃗⟩.

For µ, ν ∈ T∗
pM, their inner product and norm are:

⟨µ, ν⟩ = g−1
p (µ, ν), ∥µ∥ =

√
⟨µ, µ⟩.

Vector Field and 1-Form Duality

For any given u⃗ ∈ TpM, there exists a unique dual co-vector µ ∈ T∗
pM (the

converse is also true) such that, for any v⃗ ∈ TpM, we have:

µ(v⃗) = ⟨u⃗, v⃗⟩.

A vector field v⃗(p) on M is a map that assigns every point p ∈ M a vector

v⃗(p) ∈ TpM. Since each vector has a unique dual co-vector, a vector field v⃗(p)

has a unique co-vector field (a.k.a. 1-form) ν(p) that assigns every point p ∈M

a co-vector ν(p) ∈ T∗
pM such that ν(p)(·) = ⟨v⃗(p), ·⟩.

By exploiting this duality, we describe vector fields using 1-forms.

17
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k-Form Function Spaces, Inner Product and Norm of k-Forms

We denote by Ωk(M) the space of k-forms, k = 0, 1, 2. Notice that a scalar

function onM is a 0-form onM, a 1-form onM is the dual of a vector field on

M, and a 2-form onM can also be thought of as a scalar function onM.

For any two ϕ, ψ ∈ Ω0(M), µ, ν ∈ Ω1(M), ϱ, ϑ ∈ Ω2(M) , we denote their

inner product and squared norm as:

⟨ϕ, ψ⟩ =
∫
M
⟨ϕ(p), ψ(p)⟩ dp ∥ϕ∥2 =

∫
M
⟨ϕ(p), ϕ(p)⟩ dp,

⟨µ, ν⟩ =
∫
M
⟨µ(p), ν(p)⟩ dp ∥µ∥2 =

∫
M
⟨µ(p), µ(p)⟩ dp,

⟨ϱ, ϑ⟩ =
∫
M
⟨ϱ(p), ϑ(p)⟩ dp ∥ϱ∥2 =

∫
M
⟨ϱ(p), ϱ(p)⟩ dp.

At a point p, for ϕ(p), ψ(p), ⟨·, ·⟩ is the usual scalar product. For µ(p), ν(p), ⟨·, ·⟩

is the co-vector inner produce we defined above. For ϱ(p), ϑ(p) on a 2-manifold

M, we define ⟨·, ·⟩ as follows. Let ϱ(p) = ρ(p)dxp ∧ dyp and ϑ(p) = θ(p)dxp ∧ dyp

expressed in some local co-frame (dxp, dyp). We can express the metric gp as a

matrix gp using the co-frame. We define:

⟨ϱ(p), ϑ(p)⟩ = ρ(p)θ(p)√
det gp

.

Notice that we refer to these inner products when we describe the signal

and vector field processing onM.
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Derivatives of k-Forms, Hodge Star Operator

Ω0(M) Ω1(M) Ω2(M)

Ω2(M) Ω1(M) Ω0(M)

⋆ ⋆ ⋆

d d

δ δ

Figure 3.1: Relation between d, δ, and ⋆ on a 2-manifoldM.

In order to formulate a notion of geometry processing in the gradient do-

main, we need derivatives. Given a k-form, one can use the Hodge star oper-

ator that takes a k-form and returns a (2 − k)-form. One can differentiate a

k-form using the exterior derivative d : Ωk(M) → Ωk+1(M), which returns a

(k + 1)-form; and also using the exterior co-derivative δ : Ωk(M) → Ωk−1(M),

which returns a (k− 1)-form. δ is defined as δ = (−1)k ⋆−1 d⋆. Fig. 3.1 shows the

relation between d, δ, and ⋆ how they operate on a k-form and return another

differential form. The Hodge-Laplacian of a k-form is given by ∆ = δd + dδ.

Note that, on a 2-manifold, for 0-forms ∆ = δd, and for 2-forms, ∆ = dδ.

Exterior Calculus Operator Properties

We recall the following properties.

d ◦ d = 0, (3.1)

δ ◦ δ = 0, (3.2)

⋆δ = (−1)kd⋆, (3.3)
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⋆d = (−1)k+1δ⋆, (3.4)

⋆−1 = (−1)k(2−k)⋆, (3.5)

and for any 1-form µ, ν ∈ Ω1(M), k-form K ∈ Ωk(M), and (k + 1)-form P ∈

Ωk+1(M), we have

⟨µ, ν⟩ = ⟨⋆µ, ⋆ν⟩, (3.6)

⟨dK, P ⟩ = ⟨K, δP ⟩ if ∂M = 0. (3.7)

Exact and Co-exact k-forms, Hodge Decomposition

When a k-form is the differential of a (k − 1)-form, the k-form is called ex-

act. Similarly, if a k-form is a co-differential of a (k + 1)-form, then the k-

form is called co-exact. We say a k-form is harmonic, when both its differential

and co-differential are zero. Any k-form can be orthogonally decomposed into

its exact, co-exact, and harmonic component, known as the Hodge decomposi-

tion [RdL16]:

Ωk(M) ≡ d (Ωk−1(M))⊕ δ (Ωk+1(M))⊕Hk(M), (3.8)

where Hk(M) is the space of harmonic k-forms.

Further details on Riemannian geometry and exterior calculus can be found

in Petersen’s textbook [Pet06] and Burton’s lecture notes [Bur03].
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3.2 Signal Processing

3.2.1 The Gradient Domain Framework

In the context of a Riemannian 2-manifold (M, g), gradient domain process-

ing of signals (0-forms) can be formulated as follows [PKCH18, Eq. 1]. We are

given a target signal ψ :M→ R and a target 1-form ν :M→ T∗M. The goal is

to reconstruct a new signal ϕ :M→ R such that, simultaneously, it is similar

to ψ and its differential dϕ is similar to ν. To solve for ϕ, one minimizes the

energy:

E(ϕ) = α ∥ϕ− ψ∥2 + β ∥dϕ− ν∥2 . (3.9)

The first summand is referred to as the screening term, which encourages

similarity between the output and a prescribed input signal, while the second

is the differential term which measures the extent to which the differential

of the output matches the prescribed input 1-form. The parameters α and β

balance between the two.

3.2.2 Examples

While Eq. 3.9 is used for numerous applications, the key to applying this

framework is describing the desired signal modification in the gradient do-

main by a target 1-form ν. In many applications, we either begin with a single
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target signal ψ and construct a target 1-form ν from dψ for making the desired

changes, or we start with multiple target signals ψi, and create a target 1-form

ν for fusing the ψi.

3.2.2.1 Signal Modification

Figure 3.2: Smoothing (left) with λ = 0 and sharpening (right) with λ = 2 us-
ing gradient domain signal processing, where the signal is the mesh coordinate
function. Image courtesy of [CRK16].

In applications such as smoothing and sharpening [CRK16]. One can gen-

erate a target 1-form ν by modulating (i.e. dampening or amplifying) the dif-

ferential of the input:

ν = λdψ.

Picking 0 ≤ λ < 1, Eq. 3.9 defines a smoothing energy. Similarly, for λ >

1, Eq. 3.9 defines sharpening energy. Fig. 3.2 shows the results from Chuang
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et al. [CRK16] of smoothing and sharpening a mesh using λ = 0 and λ = 2. We

recall that when λ = 0 and α = 1, minimizing Eq. 3.9 is equivalent to diffusing

the signal by performing an implicit step with step-size β.

Instead of a constant factor λ, one can create a target 1-form by multiplying

the dψ with a spatially varying modulation function, as in high dynamic range

compression [FLW02]. Fig. 3.3 shows results using this approach to improve

the contrast of an image.

Figure 3.3: The contrast of the input image (left) is enhanced using gradient
domain signal processing with the target 1-form proposed in [FLW02]. Image
courtesy of [FLW02].

3.2.2.2 Signal Interpolation

The framework also allows interesting signal interpolation applications such

as in-painting [SJZW07], shown in Fig. 3.4.
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Figure 3.4: Shen et al. [SJZW07] use the gradient domain framework to re-
move the jumper from the image and fill in the content automatically. A user
removes the jumper manually from an image (left-most), resulting in an input
to the algorithm (second left), an image with a missing region. Then the algo-
rithm fills the missing region iteratively, as illustrated by the last two images.
Image courtesy of [SJZW07].

In in-painting, we are given an input image in which part of the content is

missing (Fig. 3.4 second image). The goal is to fill in the missing part. Using

the gradient domain framework, Shen et al. [SJZW07] create the target 1-form

within the missing region by filling it iteratively from the boundary with the

most similar image differential found in the input. Then, they solve for the

0-form (colors) that best fits the in-painted 1-form. The result is an image that

seamlessly fills in the image using similar parts from the input (Fig. 3.4 last

image).

3.2.2.3 Signal Fusion

Another common type of application is signal fusion, such as image stitch-

ing [LZPW04, KH08], seamless cloning [PGB03], and content fusion [WD11].
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Figure 3.5: The input image (left) is fused seamlessly together to produce an
image panoramic (right) by Kazhdan et al. [KH08]. Image courtesy of [KH08].

These applications begin with multiple target signals {ψi : Mi → R}, where

Mi ⊂ M and Mi ∩ Mj = ∅ for i ̸= j. As in the previous examples, to use

the gradient domain framework, one needs a target signal and a target 1-form.

For image stitching, Levin et al. [LZPW04] combine {ψi} to form a single tar-

get signal and construct a target 1-form from {dψi} by fusing the differentials

and setting the differential across the boundaries ofMi to 0, i.e., encouraging

the signal to be continuous across the seams. By solving for the best fit im-

age, Kazhdan et al. [KH08] obtain a seamless image panoramic, as shown in

Fig. 3.5.

3.2.3 A Fourier Perspective

How does gradient domain processing work, and why is it good for signal

processing? Bhat et al. [BCCZ08] describe how gradient domain processing

works using the frequency domain perspective. Concretely, when the target 1-

form is a scalar multiple of the differential of another target signal (i.e., ν = dξ,
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ξ ∈ Ω0(M)), solving Eq. 3.9 is equivalent to blending the low-frequency compo-

nents of ψ and the high-frequency components of ξ. That is, gradient domain

processing creates a new signal by fusing the low/high-frequency components

of two target signals.

This description continues to hold even when the gradient constraints are

explicitly given by a 1-form µ, rather than implicitly as the differential of a

0-form. By applying the Hodge decomposition to a 1-form µ and denoting by dξ

the exact component, minimizing Eq. 3.9 with ν = µ is the same as minimizing

it with ν = dξ due to the orthogonality of the Hodge decomposition. As a result,

one can interpret solving Eq. 3.9 as performing two steps. The first projects ν

onto the exact 1-form space to obtain a solution whose differential is the exact

part of ν, and the second performs the low/high-frequency component fusion

described by Bhat et al. [BCCZ08].

3.3 Vector Fields Processing

Gradient domain processing is a powerful framework that can be applied

to many applications. In this dissertation, we use it to formulate vector field

processing. Recall that we describe vector fields using 1-forms. Next, we will

use d and δ to formulate gradient domain vector field processing.
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3.3.1 The Gradient Domain Formulation

We are given a target 0-form φ, a target 1-form µ, and a target 2-form ϱ.

As in signal processing (Eq. 3.9), the goal of gradient domain vector field pro-

cessing is to construct a new 1-form ω such that its differential (i.e., curl) dω

matches ϱ, its co-differential (i.e., divergence) δω matches φ, and is itself similar

to µ. We can solve for ω by minimizing the energy:

E(ω) = α ∥ω − µ∥2 + β
(
∥dω − ϱ∥2 + ∥δω − φ∥2

)
. (3.10)

The screening term (first term) promotes similarity between the result and

the target 1-form. The two differential terms (second two terms) measure the

extent to which the curl and divergence of the solution fit the prescribed curl

and divergence. The parameters α, β balance between the two. Using this

formulation, we can modify/interpolate/stitch vector fields by prescribing their

curl and divergence.

Remarks

Another approach for formulating vector field processing in the gradient do-

main would be to use the covariant derivative and a target tensor field. The

difference between tensor calculus and exterior calculus approaches are dis-

cussed by de Goes et al. [dGDT16] in their SIGGRAPH course. As described
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by Knöppel et al. [KCPS13], the tensor approach includes both an antiholomor-

phic energy and a holomorphic energy, while the exterior approach only has the

antiholomorphic energy. The antiholomorphic energy is an energy that mea-

sures the curl and divergence of a vector field, which we use in our energy for

obtaining smooth vector fields, while the holomorphic energy measures other

vector field quantities that we do not consider. The holomorphic energy is used

as a conformal energy for surface parameterization [DMA02,LPRM02] and also

for solving killing vector fields (which are both holomorphic and divergence-

free) as in [BCBSG10, Eq. 8].

3.3.2 Applications

Like signal processing, Eq. 3.10 has many applications for vector field pro-

cessing. Here, the main challenge is how to describe the desired vector field by

a 2-form ϱ and a 0-form φ. Below we briefly describe a few applications of gra-

dient domain vector field processing. In Chapter 7, we demonstrate additional

applications in more detail.
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Figure 3.6: A vector field denoising result using Eq. 3.10. Image courtesy
of [SWJG20].

3.3.2.1 Vector Field Modification

As in signal processing, if we generate the target 2-form and 0-form by mod-

ulating the differential and co-differential of the input 1-form:

ϱ = λdµ, φ = λδµ.

Eq. 3.10 describes a smoothing/sharpening energy. When λ = 0 and α = 1,

minimizing Eq. 3.10 is the same as diffusing the vector field with an implicit
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step of size β, a technique often used for denoising. Notice that since our energy

only involves the antiholomorphic term, we perform a diffusion step with the

Hodge-Laplacian, while using the energy with the holomorphic term would

amount to performing a diffusion step with the Bochner-Laplacian.

Fig. 3.6 shows a denosing result from [SWJG20] using Eq. 3.10 as a diffu-

sion energy. Note how the flow of the output vector field (right) matches the

general flow of the input while removing the finer-grained perturbations.

3.3.2.2 Vector Field Interpolation

Figure 3.7: Interpolation results from [FSDH07] with source/sink constraints
(left) and an additional curve constraint (right). Image courtesy of [FSDH07].

Eq. 3.10 (with a slight modification) also allows us to interpolate vector

fields given a set of constraints. In vector field design such as [FSDH07], users

can specify point constrains (specifying vortices and/or sources and sinks) or
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curve constraints (prescribing directions) to create a smooth vector field on a

surface as shown in Fig. 3.7. Notice that vortices can be prescribed by hav-

ing the target 2-form φ (the curl) to be zero everywhere except at the vortices,

while the sources and sinks can be prescribed by having the target 0-form ϱ

(the divergence) to be zero everywhere except at the sources and sinks. How-

ever, supporting curve constraints requires modifying our formulation as the

screening term constrains the vector field everywhere, not just at the curve

positions. To support this, the gradient formulation needs to be extended to al-

low a spatially varying screening weight. (Concretely, α should be large along

the curve and zero away from it.) Such a spatially adaptive screening weight

was already considered for gradient domain signal processing on surfaces. (For

example, Chuang et al. [CRK16] show how such an approach can be used to

achieve feature aware smoothing.)

3.3.2.3 Other Applications

Since the computation of parallel transport, the logarithmic map, and the

Karcher mean can be formulated in terms of vector field diffusion [SSC19],

these, too, can be thought of as applications of gradient domain processing.

However, the Bochner-Laplacian tends to be preferred for these applications.

As described in [SSC19], an approximated curvature matrix can be used to

correct the result (as the Bochner-Laplacian and Hodge-Laplacian differ by a
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curvature term.)

3.3.3 A Spectral Perspective

The analysis in [BCCZ08] for Eq. 3.9 carries over to Eq. 3.10. Suppose the

target 2-form ϱ is exact, i.e., we can write ϱ = dρ, ρ ∈ Ω1(M), and the target 0-

form φ is co-exact, i.e., we can write φ = δν, ν ∈ Ω1(M). Then, solving Eq. 3.10

is equivalent to blending the high-frequency components of ρ and φ with the

low frequency components of ν.

3.4 Discretization

Using the Euler-Lagrange formulation, the minimizer of Eq. 3.10 satisfies

the following equation:

(1 + α(δd+ dδ))ω = µ+ α (δϱ+ dφ) . (3.11)

To solve Eq. 3.11 in practice, we discretize using a finite basis W = {ωi}

that spans a subspace of 1-forms onM. Representing ω and µ in this subspace

by ω =
∑

iwiωi, µ =
∑

i uiωi, where w = [wi], u = [ui] are the coefficients of the

1-forms in the basisW. Given the basis, we define the mass matrix M, stiffness
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matrix S, and the load vector l, whose entries are:

Mij =

∫
M
⟨ωi, ωj⟩ dp, Sij =

∫
M
⟨dωi, dωj⟩+ ⟨δωi, δωj⟩ dp,

li =
∫
M
⟨δϱ, ωi⟩+ ⟨dφ, ωi⟩ dp,

and, using the weak formulation, the discretization of Eq. 3.11 in basis W be-

comes:

(M + αS)w = Mu + αl. (3.12)

3.5 Summary

In this chapter, we described how to extend the gradient domain scalar field

processing to vector field processing using the language of exterior calculus.

We noted that this formulation only involves the antiholomorphic energy (i.e.,

curl and divergence), and when solving for diffusion equation, this formulation

is equivalent to using the Hodge-Laplacian. In contrast, the tensor calculus

approach, which involves the holomorphic energy, describes diffusion using the

Bochner-Laplacian. We showed some examples of applications of this formu-

lation and noted that the spectral perspective interpretation of 0-form (scalar

field) processing carries over to the 1-form (vector field) processing formulation.

We concluded by discretizing the energy using a finite element basis.
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A Hierarchical Approach

How to efficiently solve a system of linear equations like Eq. 3.12 has been

actively researched in numerical computation. In this context, the multigrid

method is a successful and popular algorithm that speeds up the processing

time to achieve real-time interaction. For example, both artistic painting [MP08]

and texture domain processing [PKCH18] utilize the multigrid method to de-

velop interactive signal processing applications. In this chapter, we first review

a two-level V-Cycle multigrid method. Then, we discuss the key components of

the multigrid method and techniques for accelerating each component. Finally,

we present the multi-level multigrid method.
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4.1 A Two-Level V-Cycle Multigrid

Recall that we discretize Eq. 3.10 using a finite basis W, where we now

denote by n the number of basis functions in W. We rewrite Eq. 3.12 and

denote it as the fine level linear system A ∈ Rn×n, b ∈ Rn, x ∈ Rn:

A = M + αS, b = Mu + αl, x = w.

The multigrid method solves this fine level linear system Ax = b using a coars-

ening hierarchy of discretizations (in this section, we look at a two-level hierar-

chy). The coarse level linear system Â ∈ Rn̂×n̂, b̂ ∈ Rn̂ is defined by a full rank

prolongation matrix P ∈ Rn×n̂, where n̂ < n:

Â = P⊤AP, b̂ = P⊤ (b− Ax) .

We will describe how to define P for solving Eq. 3.12 later in Chapter 5. The

central idea of the multigrid method can be thought of as efficiently solving the

low-frequency (respectively high-frequency) components of the fine system at

the coarse (respectively fine) level – solving the high-frequency part at the fine

level using a fast relaxation scheme and solving the low-frequency part at the

coarse level using a direct solver. Fig. 4.1 illustrates a two-level V-Cycle multi-

grid method. A V-Cycle consists of a restriction phase (R-i and R-ii), a coarse
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the fast relaxation scheme. The two-level V-Cycle multigrid is summarized in

Algorithm 1. In practice, one can recursively use another V-Cycle for C-iii un-

til the system is small enough for a quick direct solve, resulting in efficient

multi-level V-Cycle multigrid methods.

Algorithm 1 A Two-Level V-Cycle Multigrid Method
1: Given
2: A The fine level system matrix
3: b The fine level right hand side
4: P The prolongation matrix
5: Compute
6: Â = P⊤AP
7: Input/Output
8: x The current estimate
9: Restriction

10: R-i x← PreRelaxation(A, x,b)
11: R-ii b̂ = P⊤ (b− Ax)
12: Correction
13: C-iii x̂ = CorrectionSolve(Â, b̂)
14: Prolongation
15: P-ii x← x + Px̂
16: P-i x← PostRelaxation(A, x,b)

4.2 Key Components

The multigrid method has three components:

1. A relaxation scheme that (iteratively) refines the current estimate.

2. A prolongation matrix that describes the coarse basis vectors as linear

combination of the finer ones. It has three functions:
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• It restricts the fine level residual to the coarse level,

• It defines the coarse system matrix, and

• It prolongs the coarse level correction to the fine level.

3. A coarse level correction that (directly) solves the restricted residual.

4.2.1 Relaxation Scheme

An efficient relaxation scheme should be fast. Following the spectral anal-

ysis approach in [BL11, Eq. 3.1], we analyze the scheme by considering its

convergence in the low/high-frequency spectrum. Given a system matrix A =

M + αS, a spectral decomposition en
i=1. We express the ground-truth x∗ and the

current estimate x in the spectral basis:

x∗ =
∑
i

x∗i ei, x =
∑
i

xiei.

We define the low/high-frequency relative residual errors as:

El(x) =
k∑

i=1

(x∗i − xi)2
e⊤
i Aei

(x)⊤Ax
, Eh(x) =

n∑
i=k+1

(x∗i − xi)2
e⊤
i Aei

(x)⊤Ax
. (4.1)

In this dissertation, we study the common relaxation schemes using the split

methods: Jacobi, damped Jacobi, Gauss-Seidel, and successive over-relaxation

(SOR). Given a symmetric square matrix A ∈ Rn×n with entries Aij, a right
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hand side b ∈ Rn and a current estimate x ∈ Rn. We split the system matrix A

into its diagonal components D and lower triangular components L:

D =



A11 0 · · · 0

0 A22 · · · 0

...
... . . . ...

0 0 · · · Ann


, L =



0 0 · · · 0

A21 0 · · · 0

...
... . . . ...

An1 An2 · · · 0


.

(Note that since A is symmetric, A = L + D + L⊤.) These common relaxation

schemes have the same iterative update step:

x← N−1 (b− (A−N) x) , (4.2)

where N ∈ Rn×n is:

Damped Jacobi : N =
1

ωDJ

D, where ωDJ ̸= 0.

[when ωDJ = 1, it is the standard Jacobi]

SOR : N = L +
1

ωSOR

D, where ωSOR ̸= 0.

[when ωSOR = 1, SOR is known as Gauss-Seidel]

In addition, we also study an exact method: the conjugate gradient method.
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4.2.2 The Prolongation Matrix

The prolongation matrix is crucial to the multigrid method as it defines the

coarse resolution systems and defines how constraints and solutions are shared

between levels of the hierarchy. A good prolongation matrix should define a

coarse basis that is as low-frequency as possible. Using spectral analysis, we

analyze how well this prolonged solution approximates the fine system solution

in its low frequency. We compute both the first k smallest eigenvectors vi and

uj of the generalized eigenvalue problem Svi = λiMvi for the fine system and

P⊤Suj = γjP⊤Muj for the prolonged coarse system1. Then, we can compute the

eigenvector-correlation matrix C, whose entries are:

Cij = viMuj. (4.3)

The closer C is to a block identity matrix is, the lower-frequency the prolonged

coarse basis is. This, in turn, implies a more efficient multigrid.

In this dissertation, we study the prolongation smoothing borrowed from al-

gebraic multigrid for speed-up. Given a prolongation matrix Pl
l+1 that prolongs

from level l+1 to level l, where level l+1 is coarser than level l, we smooth the
1Note that: we solve for P⊤SPũj = γjP⊤MPũj at the coarser level, then we prolong it back

uj = Pũj , giving us P⊤Suj = γjP⊤Muj .
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prolongation matrix by setting

Pl
l+1 ← SlPl

l+1, (4.4)

where the Sl is the damped Jacobi smoother defined in [VMB94, Eq. 4.6]. In

addition, to maintain the sparsity, instead of using the strongly-coupled neigh-

borhood in [VMB94, Eq. 4.2], we discard the entries of the smoothed prolonga-

tions where their original value is zero before smoothing.

4.2.3 Coarse Level Correction

Complementing the relaxation scheme, the coarser level correction solves

the residual problem. The coarse level correction should be computed quickly.

When the dimension of the coarse system is small enough, we can use a direct

solver such as CHOLMOD solver. Otherwise, we can recursively apply the al-

gorithm, resulting in a multi-level multigrid method as described later in Sec-

tion 4.3. Similar to the relaxation scheme, we can analyze the effectiveness of

the coarse level correction using spectral analysis (Eq. 4.1).

To further accelerate the convergence, we integrate a low-cost solution up-

date method inspired by the Krylov subspace method.
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Krylov Subspace Updates

Given a system matrix A and a right hand side b, the Krylov subspace is

defined as {b,Ab,A2b, · · · }. Oosterlee et al. [OW00] showed that the estimate

after each V-Cycle of multigrid forms a Krylov subspace. We define the Krylov

subspace as K = span({x(i)}), where x(i) is the estimated solution after the i-th

V-Cycle. Given an exact solution x∗ such that Ax∗ = b, and K at the end of each

V-Cycle, we solve for the best solution x ∈ K minimizing:

E(x) = (x− x∗)⊤ A (x− x∗) .

Let β be the coefficients of x in K, i.e., x =
∑

i βix
(i). Then, minimizing the

above energy is equivalent to solve:

Ãβ = b̃, (4.5)

where the entries of Ã and of b̃, denoted by Ãij and b̃i are:

Ãij =
(
x(i)
)⊤

Ax(j), b̃i = b⊤x(i).

Using the solution of Eq. 4.5, we update the solution at the end of the i-th

V/F/W-Cycle: x(i) = x. We denote this step by KS.
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4.3 Multigrid

In this section, we present general multigrid algorithms using V-Cycle (Al-

gorithm 2), F-Cycle (Algorithm 3), and W-Cycle (Algorithm 4) solvers with in-

tegrated speedup techniques. We assume a coarsening hierarchy from level 1

(the finest) to L (the coarsest) and denote by Pl
l+1 the prolongation matrix from

l + 1 level to l level. The system matrix at level l is defined by Al = (P1
l )

⊤A1P1
l

where P1
l = P1

2 · · ·Pl−1
l , P1

1 = I, 1 ≤ l ≤ L.

V-Cycle

Algorithm 2 A V-Cycle Multigrid Method
1: Given
2: A1,b1 The finest level system matrix and right hand side
3: Pl

l+1 The prolongation matrices, l = 1, 2, · · · , L− 1

4: Compute
5: Al = (P1

l )
⊤A1P1

l , l = 2, · · · , L
6: Input/Ouput
7: x1 The current/updated estimate
8: VCycle(l = 1)
9: Restriction

10: R-i xl ← PreRelaxation(Al, xl,bl) (Eq. 4.2)
11: R-ii bl+1 = (Pl

l+1)
⊤ (bl − Alxl)

12: Correction
13: if (l + 1 == L) then
14: C-iii xl+1 = CorrectionSolve(Al+1,bl+1)
15: else
16: C-iii VCycle(l + 1)
17: end if
18: Prolongation
19: P-ii xl ← xl + Pl

l+1xl+1

20: P-i xl ← PostRelaxation(Al, xl,bl) (Eq. 4.2)
21: KS x1 ←KrylovSubspaceUpdate (Eq. 4.5)
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F-Cycle

Algorithm 3 A F-Cycle Multigrid Method
1: Given
2: A1,b1 The finest level system matrix and right hand side
3: Pl

l+1 The prolongation matrices, l = 1, 2, · · · , L− 1

4: Compute
5: Al = (P1

l )
⊤A1P1

l , l = 2, · · · , L
6: Input/Ouput
7: x1 The current/updated estimate
8: FCycle(l = 1)
9: Restriction

10: R-i xl ← PreRelaxation(Al, xl,bl) (Eq. 4.2)
11: R-ii bl+1 = (Pl

l+1)
⊤ (bl − Alxl)

12: Correction
13: if (l + 1 == L) then
14: C-iii xl+1 = CorrectionSolve(Al+1,bl+1)
15: else
16: C-iii FCycle(l + 1)
17: end if
18: Prolongation
19: P-ii xl ← xl + Pl

l+1xl+1

20: P-i xl ← PostRelaxation(Al, xl,bl) (Eq. 4.2)
21: Restriction
22: R-i xl ← PreRelaxation(Al, xl,bl) (Eq. 4.2)
23: R-ii bl+1 = (Pl

l+1)
⊤ (bl − Alxl)

24: Correction
25: if (l + 1 == L) then
26: C-iii xl+1 = CorrectionSolve(Al+1,bl+1)
27: else
28: C-iii VCycle(l + 1) (Algorithm 2)
29: end if
30: Prolongation
31: P-ii xl ← xl + Pl

l+1xl+1

32: P-i xl ← PostRelaxation(Al, xl,bl) (Eq. 4.2)
33: KS x1 ←KrylovSubspaceUpdate (Eq. 4.5)
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W-Cycle

Algorithm 4 A W-Cycle Multigrid Method
1: Given
2: A1,b1 The finest level system matrix and right hand side
3: Pl

l+1 The prolongation matrices, l = 1, 2, · · · , L− 1

4: Compute
5: Al = (P1

l )
⊤A1P1

l , l = 2, · · · , L
6: Input/Ouput
7: x1 The current/updated estimate
8: WCycle(l = 1)
9: Restriction

10: R-i xl ← PreRelaxation(Al, xl,bl) (Eq. 4.2)
11: R-ii bl+1 = (Pl

l+1)
⊤ (bl − Alxl)

12: Correction
13: if (l + 1 == L) then
14: C-iii xl+1 = CorrectionSolve(Al+1,bl+1)
15: else
16: C-iii WCycle(l + 1)
17: end if
18: Prolongation
19: P-ii xl ← xl + Pl

l+1xl+1

20: P-i xl ← PostRelaxation(Al, xl,bl) (Eq. 4.2)
21: Restriction
22: R-i xl ← PreRelaxation(Al, xl,bl) (Eq. 4.2)
23: R-ii bl+1 = (Pl

l+1)
⊤ (bl − Alxl)

24: Correction
25: if (l + 1 == L) then
26: C-iii xl+1 = CorrectionSolve(Al+1,bl+1)
27: else
28: C-iii WCycle(l + 1)
29: end if
30: Prolongation
31: P-ii xl ← xl + Pl

l+1xl+1

32: P-i xl ← PostRelaxation(Al, xl,bl) (Eq. 4.2)
33: KS x1 ←KrylovSubspaceUpdate (Eq. 4.5)
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Figure 4.2: A graphical comparison of the three multigrid cycles for L = 4.
These plots show the computation movement across the hierarchy.

Fig. 4.2 shows a graphical comparison among the three cycles for L = 4,

where lines show the computation moving across the hierarchy. W-Cycle takes

roughly twice more computation than F-Cycle, and so does F-Cycle than V-

Cycle.

4.4 Summary

In this chapter, we discussed using the multigrid method to solve Eq. 3.12

and different options for the method’s key components. We analyze different

multigrid settings using Eqs. 4.1 and 4.3 and study the convergence of Algo-

rithms 2 to 4 for vector field processing in Chapter 6.
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Prolongation

The challenge in implementing a multigrid solver is designing a prolonga-

tion matrix between the fine and coarse spaces. For signal processing with

a 0-form basis, several 0-form prolongation matrices have been designed for

real-time applications such as [PKCH18, LZBCJ21]. To solve Eq. 3.12 using

the multigrid method (Algorithms 2 to 4), we show how existing 0-form hierar-

chies can be leveraged to design associated 1-form hierarchies. Concretely, we

consider the case of a 1-form basis that can be constructed using a 0-form ba-

sis, such as the harmonic-free 1-form basis and the Whitney 1-form basis. We

show that the 1-form basis construction induces a 1-from prolongation matrix

derived from the 0-form prolongation matrix, which we can then use to define

a hierarchy on the 1-forms. We conclude by showing that both the 1-form hi-

erarchies using the harmonic-free 1-form basis and the Whitney 1-form basis
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are realizations of a more general formulation that can be expressed in terms

of functors on the categories of vector spaces.

5.1 Preliminaries

We begin by reviewing some mathematical definitions required for our dis-

cussion. In what follows, we assume all vector spaces are finite-dimensional.

Dual, Direct Sum, Tensor Product, and Wedge Product

Given a vector space V , we denote by V ∗ the dual space of linear functionals

on V . In addition, given vector spaces V0 and V1, we denote by V0⊕V1 the direct

sum, by V0 ⊗ V1 the tensor product, and by V0 ∧ V1 the wedge product, of V0 and

V1.

Induced Maps

Given vector spaces U and V and a linear map L : U → V , we recall that

there is a canonical dual map L∗ between the dual spaces:

L∗ : V ∗ → U∗.

Similarly, given vector spaces Ui, Vi, i = 0, 1, and linear maps Li : Ui → Vi,

there are canonical maps on the direct sum, the tensor product, and the wedge

48



CHAPTER 5. PROLONGATION

product:

L0 ⃝∗ L1 : U0 ⃝∗ U1 → V0 ⃝∗ V1,

where ⃝∗ = ⊕,⊗,∧.

A Functor and Its Induced Maps

We refer to a map taking a vector space to the composition of direct sums

and tensor products of the vector space as a functor on the category of vector

spaces or simply functor for short:

F(V ) = ⊕i ⊗li V, (5.1)

where i, li ∈ N.

If F is a functor on the category of vector spaces, then F is also a functor

on the category of linear maps between vector spaces. Concretely, given vector

spaces U and V and a linear map L : U → V , the functor F defines a linear

map:

F(L) : F(U)→ F(V ).

Additionally, given V̂ ⊂ V and denoting by L : V̂ ↪→ V the (trivial) injection of
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the subspace V̂ into the space V , then F induces an injective map:

F(L) : F(V̂ ) ↪→ F(V ). (5.2)

Bilinear Forms and Linear Maps

Given a bilinear form B : V × V → R, we can also think of it as a linear map

B : V → V ∗. For example, the metric gp onM:

gp : TpM× TpM→ R, (u⃗, v⃗) 7→ ⟨u⃗, v⃗⟩,

can be thought of as a map from the tangent space TpM into the co-tangent

space T∗
pM, defined by:

gp : TpM→ T∗
pM, u⃗ 7→ ⟨u⃗, ·⟩.

Bases, Vector Spaces and Matrices as Linear Maps

Given a basis {vi}ni=1, that spans the vector space V , there exists a canonical

dual basis {v∗i } for the dual vector space V ∗, defined by:

v∗i (vj) = δij,
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where δij is the Kronecker delta. Then, expressing v ∈ V with respect to the

basis {vi} by the coefficient vector v ∈ Rn and v∗ ∈ V ∗ with respect to the basis

{v∗i } by v∗ ∈ Rn, we can use a matrix B ∈ Rn×n to express the linear map

B : V → V ∗ with respect to the two bases.

5.2 The Finite 1-Form BasisW

The System Matrix

As described in Section 3.4, we discretize Eq. 3.11:

(1 + α(δd+ dδ))ω = µ+ α (δϱ+ dφ) ,

using a finite basis W = {ωi}ni=1 of 1-forms on the surface M. We denote by

V the vector space spanned by W. This discretization gives the linear system

Eq. 3.12, where the mass and stiffness matrices are defined as:

Mij =

∫
M
⟨ωi, ωj⟩ dp, Sij =

∫
M
⟨dωi, dωj⟩+ ⟨δωi, δωj⟩ dp. (5.3)

More generally, given a bilinear form A : V × V → R, the associated matrix

A ∈ Rn×n is given by:

Aij = A(ωi, ωj).
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For Eq. 3.11, the bilinear form A : V × V → R is:

A(µ, ν) = ⟨(1 + α(δd+ dδ))µ, ν⟩.

The Prolongation Matrix

We consider the case when we are given a coarse basis Ŵ = {ω̂j}n̂j=1 with

ω̂j ∈ V , and we denote by V̂ the subspace spanned by Ŵ. Since ω̂j ∈ V , every

ω̂j can be written as a linear combination of ωi, i.e., ω̂j =
∑n

i=1 Pijωi. The matrix

P ∈ Rn×n̂ of these coefficients, Pij, is the prolongation matrix. Its associated

prolongation operator P : V̂ ↪→ V is an injection of V̂ into V .

Likewise, we can express the bilinear form A with respect to Ŵ and its

dual using a matrix Â ∈ Rn̂×n̂ (we refer to it as the coarse system matrix). By

plugging the expansion of the {ω̂j} in terms of the {ωi}, the coefficients of Â are:

Âij = A(ω̂i, ω̂j)

=
∑
k

∑
l

PkiPljA(ωk, ωl)

=
∑
k

∑
l

PkiPljAkl.

Therefore, we can simply express the coarse system matrix Â using the fine
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system matrix A and the prolongation matrix P:

Â = P⊤AP. (5.4)

The Requirement on Prolongation Matrices

In the multigrid prolongation design, it often requires that the prolongation

matrices commute with the discrete differential operator, such as in [RS02, Eq.

15]. The reason is that given two vector spaces Vi, i = 0, 1 (e.g., the spaces of

0-forms and 1-forms), a linear map (e.g., a differential operator) between them

L : V0 → V1, and two prolongations Pi : V̂i ↪→ Vi defining the coarse subspaces

V̂i ⊂ Vi, if L̂ : V̂0 → V̂1 (defined implicitly by restriction, i.e., L̂ := L
∣∣
V0

) is a

well-defined linear map on V̂i, then L̂ must satisfy:

L ◦ P0 = P1 ◦ L̂,

as depicted in the below composition diagram:

V0 V1

V̂0 V̂1

P0 P1

L

L̂

When expressing using matrices with respect to the fine and coarse bases, de-

noting by L and L̂ the discretized linear maps, and by P0 and P1 the prolon-
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gation matrices, the above equation implies the commutativity requirement

stated in [RS02, Eq. 15], i.e.,

L · P0 = P1 · L̂. (5.5)

We will discuss this requirement further when we generalize the basis con-

struction. Now, we review two 1-form bases that are constructed from a 0-form

basis, and see how the construction induces a 1-form prolongation matrix P1

from the 0-form prolongation matrix P0 and how the construction satisfies the

commutativity requirement (Eq. 5.5).

5.2.1 Harmonic-Free 1-Form Basis

The Basis Construction

The first 1-form basis we consider is the harmonic-free basis (a.k.a. the

gradient and the rotated-gradient basis [PP00]). Recall that the 1-form space,

Ω1(M), can be decomposed into exact, d (Ω0(M)), co-exact, δ (Ω2(M)), and har-

monic, H1(M), 1-form subspaces by the Hodge decomposition (Eq. 3.8).

Given a 0-form basis {ϕi} spanning a finite-dimensional subspace of Ω0(M),

using the exterior derivative d, we obtain a basis that spans a subspace of exact

1-forms d (Ω0(M)):

WE := {dϕi},
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and using the Hodge star operator ⋆ and exterior co-derivative δ, we obtain a

basis that spans a subspace of co-exact 1-forms δ ⋆ (Ω0(M)):

WĒ := {δ ⋆ ϕi}.

Together these form a harmonic-free 1-form basis:

WHF :=WE ∪WĒ . (5.6)

Figure 5.1: A visualization of the exact and co-exact 1-form bases as vector
fields on a flat triangle mesh. Considering a 0-form basis function centered at
the interior vertex, we obtain two vector fields – the gradient (exact 1-form) and
rotated gradient (co-exact 1-form) of the basis function. The first and second
columns show the vector fields obtained when the function is the first-order
Lagrange interpolant. The third and fourth columns show the vector fields for
a second-order Lagrange interpolant.

Fig. 5.1 illustrates the corresponding vector functions of WHF using linear

and quadratic Lagrange elements on a flat triangle mesh. In this represen-

tation, we have a smooth vector field per face, but these are discontinuous at

the boundaries. A limitation of this basis is that it cannot represent harmonic
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vector fields.

The Induced 1-Form Prolongation Matrix

Suppose we are given a fine 0-form basis {ϕi}mi=1 spanning a subspace of 0-

forms V and a 0-form prolongation matrix P = [Pij] ∈ Rm×m̂, which we use to

define the coarse 0-form basis {ϕ̂i =
∑

j Pjiϕj}m̂i=1 spanning a coarse subspace

V̂ .

Using the coarse 0-form basis {ϕ̂i}m̂i=1, we can construct the coarse exact and

co-exact 1-form bases:

ŴE =
{
dϕ̂j

}
=

{∑
i

Pijdϕi

}
,

ŴĒ =
{
δ ⋆ ϕ̂j

}
=

{∑
i

Pijδ ⋆ ϕi

}
,

ŴHF = ŴE ∪ ŴĒ .

We denote by VHF the 1-form vector space spanned by WHF and by V̂HF

the one spanned by ŴHF . This construction induces a 1-form prolongation

PHF =

P 0

0 P

 ∈ R2m×2m̂.
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Fine System Matrices

Using the exterior calculus operator properties (Eqns. 3.1 to 3.6), we obtain:

M =

S0 0

0 S0

 , S =

B0 0

0 B0

 ,

where the coefficients of S0 and B0 are

[S0]ij =

∫
M
⟨dϕi, dϕj⟩ dp, [B0]ij =

∫
M
⟨δdϕi, δdϕj⟩ dp.

Note that, in this case, the diagonal blocks of the 1-form mass matrix M are

the 0-form stiffness matrix S0. Computing the coefficients of 1-form stiffness

matrix S is challenging as it requires taking the second derivative of the ϕi. We

use the following to approximate S.

Notice that δd : Ω0(M)→ Ω0(M). For any f, g ∈ Ω0(M), let f̃ = δdf, g̃ = δdg.

We express them with respect to the basis {ϕi} by projecting them on V . Let f,

g, f̃, g̃ be the coefficient vectors of the projections with respect to {ϕi}. Then, we

have:

f̃ = M−1
0 · S0f, g̃ = M−1

0 · S0g.

Therefore,

⟨δdf, δdg⟩ ≈ f̃
⊤

M0g̃ = f⊤S0 ·M−1
0 · S0g.
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This gives us an expression for computing S:

S ≈ S0 ·M−1
0 · S0.

For simplicity, we lump M0 to be a diagonal matrix so that it is trivial to invert.

Coarse System Matrices

By Eq. 5.4, we can construct the coarse system matrices using the induced

1-form prolongation matrix PHF :

M̂ = P⊤
HF ·M · PHF =

P⊤ · S0 · P 0

0 P⊤ · S0 · P

 ,

Ŝ = P⊤
HF · S · PHF =

P⊤ · B0 · P 0

0 P⊤ · B0 · P

 .

The Commutativity Requirement

For this basis, we have two linear maps to consider – the 0-form exterior

derivative operator d : Ω0(M) → Ω1(M) and the 1-form Hodge star operator

⋆ : Ω1(M) → Ω1(M). We can express them with respect to the fine and coarse

bases (and their dual), giving us matrices D ∈ R2m×m, D̂ ∈ R2m̂×m̂, H ∈ R2m×2m,

58



CHAPTER 5. PROLONGATION

Ĥ ∈ R2m̂×2m̂:

D =

Im

0

 , D̂ =

Im̂

0

 , H =

 0 Im

−Im 0

 , Ĥ =

 0 Im̂

−Im̂ 0

 ,

where Ik is a k× k identity matrix. Our goal is to show that the commutativity

requirement, Eq. 5.5, is satisfied for these two linear maps. i.e.,

D · P = PHF · D̂ and H · PHF = PHF · Ĥ.

These are obvious:

D · P =

Im

0

 · P =

P

0

 =

P 0

0 P

 ·
Im̂

0

 = PHF · D̂,

and

H · PHF =

 0 Im

−Im 0

 ·
P 0

0 P

 =

 0 P

−P 0

 =

P 0

0 P

 ·
 0 Im̂

−Im̂ 0

 = PHF · Ĥ.
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5.2.2 Whitney 1-Form Basis

The Basis Construction

Another common choice is the Whitney 1-form basis [Whi05], which is also

defined in terms of a 0-form basis. Given a 0-form basis {ϕi},

WWN := {ϕij = ϕi · dϕj − ϕj · dϕi | i < j and supp(ϕi) ∩ supp(ϕj) ̸= ∅}. (5.7)

Fig. 5.2 illustrates the corresponding vector fields derived from linear and

Figure 5.2: A visualization of the Whitney 1-form basis function associated to
an edge as a vector field on a flat triangle mesh using a linear and quadratic
Lagrange basis.

quadratic Lagrange Whitney basis function associated to an edge of a flat tri-

angle mesh. Though the vector fields are still not continuous across the edge,

their tangential components are.
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The Induced 1-Form Prolongation Matrix

Similar to the harmonic-free 1-form basis, given a fine 0-form basis {ϕi}mi=1

that spans a fine subspace of 0-forms V and a 0-form prolongation matrix P =

[Pij] ∈ Rm×m̂, which defines a coarse 0-form basis {ϕ̂i =
∑

j Pjiϕj}m̂i=1 that spans

a coarse subspace of 0-forms V̂ , one can construct the coarse Whitney 1-form

basis by setting:

ŴWN = {ϕ̂mn = ϕ̂m · dϕ̂n − ϕ̂n · dϕ̂m | m < n and supp(ϕ̂m) ∩ supp(ϕ̂n) ̸= ∅}.

Likewise, we denote by VWN the fine 1-form subspace spanned byWWN and by

V̂WN the coarse 1-form subspace by ŴWN . To simplify the notation, we denote

by i = (i1, i2) a multi-index, and write ϕi instead of ϕi1i2. By direct expansion,

we can express the coarse 1-form in terms of the fine one:

ϕ̂i = ϕ̂i1 · dϕ̂i2 − ϕ̂i2 · dϕ̂i1

=
∑
j1

∑
j2

Pj1i1Pj2i2ϕj1 · dϕj2 −
∑
j1

∑
j2

Pj2i2Pj1i1ϕj2 · dϕj1

=
∑
j1

∑
j2

Pj1i1Pj2i2ϕj

=
∑

j|j1<j2

Pj1i1Pj2i2ϕj +
∑

j|j1>j2

Pj1i1Pj2i2ϕj [ϕj = 0 if j1 = j2]

=
∑

j|j1<j2

Pj1i1Pj2i2ϕj −
∑

j|j2>j1

Pj2i1Pj1i2ϕj [ϕj1j2 = −ϕj2j1]

=
∑

j|j1<j2

(Pj1i1Pj2i2 − Pj2i1Pj1i2)ϕj.
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As a result, this construction induces a 1-form prolongation PWN , whose coeffi-

cients are given by:

Pij = Pi1j1Pi2j2 − Pi2j1Pi1j2 . (5.8)

Fine System Matrices

In this case, we have:

[M]ij =

∫
M
⟨ϕi, ϕj⟩ dp [S]ij =

∫
M
⟨dϕi, dϕj⟩ dp︸ ︷︷ ︸

[Sdiv ]ij

+

∫
M
⟨δϕi, δϕj⟩ dp︸ ︷︷ ︸
[Scurl]ij

.

By definition, δ = − ⋆−1 d⋆, so we can compute Scurl by setting:

[Scurl]ij =

∫
M
⟨⋆−1d ⋆ ϕi, ⋆

−1d ⋆ ϕj⟩ dp.

If the 0-form basis {ϕi} forms a partition of unity (i.e.,
∑

i ϕi = 1), then, for a 0-

form f expressed with respect to the basis {ϕi} by the coefficient vector f = [fi],

we have

df =
∑
i2

fi2 · dϕi2

=
∑
i2

fi2

(∑
i1

ϕi1

)
· dϕi2 −

∑
i2

fi2ϕi2 · d
(∑

i1

ϕi1

)
=

∑
i2

∑
i1

fi2ϕi

=
∑

i|i1<i2

fi2ϕi +
∑

i|i1>i2

fi2ϕi
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=
∑

i|i1<i2

fi2ϕi −
∑

i|i2>i1

fi1ϕi

=
∑

i|i1<i2

(fi2 − fi1)ϕi.

Thus, we can use a matrix D to express the 0-form exterior derivative d with

respect to the bases {ϕi} and {ϕi}, with entries:

Dij =



−1 if i1 = j,

1 if i2 = j,

0 otherwise.

(5.9)

For the Whitney basis, the Hodge star operators can be discretized by the mass

matrices [TKB99]. By denoting the 0-form mass matrix M0, we can use the

below expression for computing Scurl:

Scurl = M ·D · (M0)
−1 ·D⊤ ·M.

Again, we lump M0 to be a diagonal matrix so that it is trivial to invert.
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Coarse System Matrices

Using the induced 1-form prolongation PWN defined in Eq. 5.8, Eq. 5.4 gives

the coarse 1-form mass and stiffness matrices:

M̂ = P⊤
WN ·M · PWN , Ŝ = P⊤

WN · S · PWN .

The Commutativity Requirement

Now, we will show the commutativity requirement (Eq. 5.5) is also satisfied

for the Whitney 1-form basis. In this case, we consider the linear map d :

Ω0(M)→ Ω1(M).

We assume that the 0-form basis {ϕi} forms a partition of unity (i.e.,
∑

i ϕi =

1) and the 0-form prolongation matrix preserves the partition of unity. i.e.,∑
i Pji = 1. So, we have:

∑
i

ϕ̂i =
∑
i

∑
j

Pjiϕj =
∑
j

(∑
i

Pji

)
ϕj = 1.

As discussed before, if the basis forms a partition of unity, we can express the

0-form exterior derivative operator d with respect to the fine and coarse bases

using matrices D and D̂ as defined in Eq. 5.9. Our goal is then to show that

the prolongation matrices P and PWN commute with the discrete derivative
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matrices D and D̂. i.e.,

D · P = PWN · D̂.

We can show it by direct expansion.

[D · P]ij =
∑
k

DikPkj

= Pi2j − Pi1j [Def. of Dik]

=

(∑
k1

Pi1k1

)
Pi2j −

(∑
k2

Pi2k2

)
Pi1j [

∑
j Pij = 1]

=
∑
k1

Pi1k1Pi2j −
∑
k2

Pi2k2Pi1j

=
∑
k1

∑
k2

Pi1k1Pi2k2D̂kj [Def. of D̂kj]

=
∑

k|k1<k2

Pi1k1Pi2k2D̂kj +
∑

k|k1>k2

Pi2k2Pi1k1D̂kj [D̂kj = 0 if k1 = k2]

=
∑

k|k1<k2

Pi1k1Pi2k2D̂kj −
∑

k|k2<k1

Pi2k2Pi1k1D̂(k2,k1)j [D̂(k1,k2)j = −D̂(k2,k1)j]

=
∑

k|k1<k2

Pi1k1Pi2k2D̂kj −
∑

k|k1<k2

Pi2k1Pi1k2D̂kj

=
∑

k|k1<k2

(Pi1k1Pi2k2 − Pi2k1Pi1k2) D̂kj

=
∑

k|k1<k2

PikD̂kj

= [PWN · D̂]ij.
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5.3 Generalization

There are certain similarities in constructing the harmonic-free and Whit-

ney 1-form bases, as both induce a prolongation matrix that can be used to

define the coarse vector space and system matrices, and the prolongation ma-

trices commute with related linear maps. We generalize this construction using

the language of category theory similar to [LS20], which provides a category

theoretical interpretation of the Galerkin finite element method.

5.3.1 Basic Set-up

Vector Space Constructions by Functors

Looking back, to generalize the constructions we have seen, we can try to

use functors on the category of vector spaces. Given a vector space V , such as

a subspace of 0-forms spanned by a basis {ϕi}, and a prolongation P : V̂ ↪→ V

defining the coarse subspace V̂ , we “construct” two vector spaces Vi = Fi(V )

using two functors (Eq. 5.1) Fi, i = 0, 1. In what we discussed above, F0 is

typically the identity (so that V0 is the space of 0-forms) and V1 is a space of

1-form. However, we will look at the more general case as it will allow us to

generalize it to k-forms.
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Sufficiency Conditions for Linear Map Restrictibility

As described by Eq. 5.2, the functors Fi also define canonical prolongations

Pi = Fi(P) : Fi(V̂ ) ↪→ Fi(V ). In this construction, the two prolongations are

defined independently of each other. However, in many applications, the spaces

V0 and V1 are related by a linear map, L : V0 → V1 (e.g. the exterior derivative

from k-forms to (k + 1)-forms or the Hodge star mapping k-forms to (n − k)-

forms). In this context, we would like to be able to define a linear operator on

the coarser spaces, L̂ : V̂0 → V̂1.

For L̂ to be well-defined, its image on V̂0 must be in V̂1. Therefore, the nec-

essary and sufficient condition for L̂ to be well-defined is

L(V̂0) ⊂ V̂1. (5.10)

In this case, we can simply let L̂ be the restriction L̂ = L
∣∣
V̂0

.

The Commutativity Requirement

Assuming L̂ is well defined, the prolongations automatically satisfy the

property: L ◦ P0 = P1 ◦ L̂, and thus satisfy the commutativity requirement

(in terms of their matrix representation.)

In other words, one would need to define the functors carefully such that

Eq. 5.10 is satisfied.
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5.3.2 General Vector Space Construction

In our context, the set-up is more complicated as Fi(V ) (a composition of

direct sum and tensor product of V ) is, in general, a “bigger” space than the

spaces of k-forms Vi. Instead of Vi = Fi(V ) as described above, we have Vi

“inside” Fi(V ).

To address this, we reproduce the discussion above when the linear map

L : V0 → V1 can be pulled back to a linear map L̄ : F0(V )→ F1(V ) and describe

the necessary and sufficient condition for the coarse linear operator L̂ : V̂0 → V̂1

to be well-defined. We conclude by showing that for both the harmonic-free and

the Whitney basis, the required conditions are met, and the associated linear

operator can be defined between the coarse subspaces.

Vector Space Constructions by Functors

In addition to the functors Fi, we define the vector spaces Vi = Mi ◦ Fi(V ),

where Mi : Fi(V ) → Vi are maps that pull a linear map L : V0 → V1 back to a

linear map L̄ : F0(V ) → F1(V ). Along the same lines, we define the subspaces

V̂i =Mi ◦Fi(V̂ ) and the functors Fi induce canonical prolongations Fi(P) : V̂i ↪→

Vi.
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Sufficiency Conditions for Linear Map Restrictibility

Given a linear map L : V0 → V1, we define a coarse linear map by restriction

L̂ = L
∣∣
V̂1

. L̂ is well-defined only if L(V̂0) ⊂ V̂1.

Claim 1. Sufficiency conditions for L(V̂0) ⊂ V̂1 are:

1. There exists a map L̄ : F0(V )→ F1(V ) such that L ◦M0 =M1 ◦ L̄:

F0(V ) F1(V )

V0 V1

M0 M1

L̄

L

2. The restriction of L̄ to F0(V̂ ) lies in F1(V̂ ):

L̄
(
F0(V̂ )

)
⊂ F1(V̂ ).

Proof. Given v̂0 ∈ V̂0 =M0 ◦F0(V̂ ), there exists ω ∈ F0(V̂ ) such that M0(ω) = v̂0.

Since (by condition 2) we have L̄(ω) ∈ L̄
(
F0(V̂ )

)
⊂ F1(V̂ ), we can leverage the

commutativity (condition 1) to get:

L(v̂0) = L ◦M0(ω) =M1 ◦ L̄(w) ∈M1 ◦ L̄
(
F0(V̂ )

)
⊂M1 ◦ F1(V̂ ) = V̂1,

as desired.
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The Commutativity Requirement

Likewise, the condition above ensures L̂ is well defined, and the prolonga-

tions automatically satisfy the property: L ◦ P0 = P1 ◦ L̂, and thus satisfy the

commutativity requirement (in terms of their matrix representation.)

In other words, using this general approach, one would need to define the

functors and the pull-back maps carefully such that the conditions in Claim 1

are satisfied.

5.3.3 Applications

Assume that we discretize the 0-form space Ω0(M) using a subspace V of

scalar functions (0-forms) on a triangle mesh (e.g., the piecewise linear “hat”

basis {ϕi}). We show that both the harmonic-free 1-form and the Whitney 1-

form are realizations of the above general construction.

5.3.3.1 Harmonic-Free 1-Form

Basis Construction

We construct the 0-form subspace V1 and 1-form subspace V2 by setting

F0(V ) = V, M0(ϕ) = ϕ and F1(V ) = V ⊕ V, M1(ϕ, ψ) = dϕ+ δ ⋆ ψ.

70



CHAPTER 5. PROLONGATION

These give

V0 =M0 ◦ F0(V ) = V and V1 =M1 ◦ F1(V ) = d(V )⊕ δ ⋆ (V ),

where V1 is the definition of the harmonic-free 1-form described in Section 5.2.1.

Sufficiency Conditions

As in Section 5.2.1, we consider two linear maps – the 0-form exterior deriva-

tive operator d : Ω0(M) → Ω1(M) and the 1-form Hodge star operator ⋆ :

Ω1(M)→ Ω1(M).

0-form Exterior Derivative: L = d : V0 → V1

We show that the above construction satisfies both sufficiency conditions.

In this case, we can take:

L̄(ϕ) = (ϕ, 0).

Condition 1: L ◦M0 =M1 ◦ L̄

The L.H.S. and R.H.S. are the same after direct expansion.

L ◦M0(ϕ) = L(ϕ) = dϕ and M1 ◦ L̄(ϕ) =M1(ϕ, 0) = dϕ.
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Condition 2: L̄
(
F0(V̂ )

)
⊂ F1(V̂ )

For any v̂ ∈ V̂ ,we have L̄ (F0(v̂)) = L̄ (v̂) = (v̂, 0) ∈ V̂ ⊕ V̂ = F1(V̂ ).

1-Form Hodge Star: L = ⋆ : V1 → V1

In this case, we set

L̄(ϕ, ψ) = (−ψ, ϕ).

Note that, in this case, L is mapping from V1 to V1. We show the commutativity

conditions are met.

Condition 1: L ◦M1 =M1 ◦ L̄

Using exterior calculus operator properties Eqns. 3.3, 3.4, and 3.5, we have

the L.H.S.:

L ◦M1(ϕ, ψ) = L(dϕ+ δ ⋆ ψ) = ⋆dϕ+ ⋆δ ⋆ ψ = δ ⋆ ϕ− dψ,

and the R.H.S.:

M1 ◦ L̄(ϕ, ψ) =M1(−ψ, ϕ) = −dψ + δ ⋆ ϕ.
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Condition 2: L̄
(
F1(V̂ )

)
⊂ F1(V̂ )

For any v̂ ∈ V̂ ,we have L̄ (F1(v̂)) = L̄ (v̂, v̂) = (−v̂, v̂) ∈ V̂ ⊕ V̂ = F1(V̂ ).

5.3.3.2 Whitney k-Form

Basis Construction

For the Whitney basis, our generalization applies to the general k-forms.

We can obtain the k-form subspace Vk from the 0-form subspace V by setting

Fk(V ) =
k⊗

i=0

V, Mk(ϕ0, . . . , ϕk) =
k∑

j=0

(−1)jϕj ·dϕ0∧ · · · ∧ dϕj−1∧dϕj+1 · · · ∧dϕk.

These give

Vk =Mk ◦ Fk(V ),

which is the space of Whitney k-forms.

Sufficiency Conditions

In this case, as in Section 5.2.2, we consider the k-form exterior derivative

operator d : Ωk(M)→ Ωk+1(M).
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k-form Exterior Derivative: L = d : Vk → Vk+1

Assuming the constant function is in Vk and V̂k, to show the construction

satisfies the conditions, we set

L̄(ϕ0, . . . , ϕk) = (k, ϕ0, . . . , ϕk).

Condition 1: L ◦Mk =Mk+1 ◦ L̄

Through direct expansion, we have

L ◦Mk(ϕ0, . . . , ϕk) = L(
k∑

j=0

(−1)jϕj · dϕ0 ∧ · · · ∧ dϕj−1 ∧ dϕj+1 · · · ∧ dϕk)

=
k∑

j=0

(−1)j · dϕj ∧ dϕ0 ∧ · · · ∧ dϕj−1 ∧ dϕj+1 · · · ∧ dϕk

= k · dϕ0 ∧ · · · ∧ dϕk,

and

Mk+1 ◦ L̄(ϕ0, . . . , ϕk) = Mk+1(k, ϕ0, . . . , ϕk)

= k · dϕ0 ∧ · · · ∧ dϕk +
k+1∑
j=1

(−1)jϕj · 0 ∧ dϕ0 ∧ · · ·

= k · dϕ0 ∧ · · · ∧ dϕk.
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Condition 2: L̄
(
Fk(V̂ )

)
⊂ Fk+1(V̂ )

L̄
(
Fk(V̂ )

)
= L̄

(
k⊗

i=0

V̂

)
= {k} ⊗

k⊗
i=0

V̂ ⊂
k+1⊗
i=0

V̂ = Fk+1(V̂ ).

5.4 Summary

We reviewed two ways to construct a 1-form basis from a 0-form basis. In

both cases, given a 0-form prolongation matrix, the construction induces a

1-form prolongation matrix, which we will use for implementing a multigrid

solver. We generalized the construction by formulating it in the language of

category theory and described the sufficiency conditions for linear operators

defined over the fine space to be restrictable, via the induced prolongation, to

the coarse space. The sufficiency conditions guarantee the commutativity be-

tween the induced prolongations and linear operators, which is often a desired

requirement for the multigrid prolongation design.
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Convergence Study

In this chapter, we study the convergence of the multigrid method described

in Chapter 4, solving the gradient domain problem formulated in Chapter 3

with the the induced 1-form prolongation matrix presented in Chapter 5. Our

hierarchical solver is built on top of a 0-form system. To evaluate the con-

vergence, we use three different existing hierarchical 0-form systems and two

1-form bases. We compare different multigrid settings as described in Chap-

ter 4 and choose the best setting for the problem and compare its performance

with the other iterative and direct solvers.
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6.1 Setup

6.1.1 The Models

|V | = 65, 605 |V | = 122, 882 |V | = 65, 536 |V | = 65, 530

|V | = 9, 997 |V | = 74, 754 |V | = 30, 850 |V | = 59, 962

Figure 6.1: Wire-frame visualizations of the eight models used in this study
and their vertex counts. From left to right, the first row is generated models –
the plane, sphere, torus, and 4-torus. The second row is scanned models – the
hand, bimba, rooster, and fertility.

We use eight models for the study, including four generated simple shapes –

the plane, the sphere, the torus, and the 4-torus – and four scanned meshes

– the hand, the bimba, the rooster, and the fertility. These are the topology

of genus-0 with boundary, genus-0 without boundary, genus-1, and genus-4, as

shown in Fig. 6.1 with their number of vertices.
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6.1.2 0-Form Hierarchical Structures

To implement our 1-form hierarchical solver, we need an initial 0-form hier-

archy. Specifically, we need a 0-form basis and a 0-form prolongation matrix for

the multigrid method. Then, we can construct the 1-form bases and prolonga-

tion matrices described in Sections 5.2.1 and 5.2.2. In this study, we consider

three 0-form hierarchies described in the literature, and we use the ‘hat’ basis

functions to define the space of 0-forms at the finest resolution. Below, we de-

scribe how we obtain these hierarchies and the 0-form prolongation matrices.

6.1.2.1 Mesh Simplification

|T1| = 149, 504 |T2| = 37, 376 |T3| = 9, 344 |T4| = 2, 366

Figure 6.2: The hierarchical meshes of the bimba1model obtained by using
quadric erorr metric simplification algorithm, visualized with wireframe on
top of the meshes.

The first hierarchical structure is the simplest one. We obtain a mesh hierarchy

by mesh simplification using Quadric Error Metric (QEM) [GH97]. Given an

input triangle mesh M with |T | faces, we simplify the mesh L times using the
1We selectively show the hierarchy on one model. A complete visual comparison is provided

in Appendix A.

78



CHAPTER 6. CONVERGENCE STUDY

QEM simplification algorithm, as implemented in MeshLab [CCC∗08], with

the number of triangles reduced by a factor of four at each simplification, i.e.,

|Tl+1| = |Tl|/4. Fig. 6.2 shows the mesh hierarchy obtained by applying the

method to the bimba model.

To define the 0-form prolongation, we proceed as follows. For each vertex at

the finer mesh, we find the closest point on the coarse mesh. For each coarse

‘hat’ basis function, we evaluate it at the closest point as the prolongation ma-

trix coefficient. In practice, since the ‘hat’ basis function only has a local sup-

port, the resulting prolongation matrix is sparse.

6.1.2.2 Sub-division Meshes

|T1| = 61, 696 |T2| = 15, 424 |T3| = 3, 856 |T4| = 964

Figure 6.3: Sub-divsion meshes of the rooster2model, visualized with wire-
frame on top of the meshes.

The second hierarchical structure uses both mesh simplification and mesh sub-

division [Loo87]. After applying the mesh simplification steps described above,
2We selectively show the hierarchy on one model. A complete visual comparison is provided

in Appendix A.
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given a simplified mesh ML with |T |/4L triangles, we apply L iterations of sub-

division to ML to get back a mesh with the original number of triangles but

having a subdivision structure. After each subdivision iteration, we project the

new vertices onto the original mesh M . Note that the projection step may in-

troduce self-intersecting triangles, especially around the mesh boundaries. We

manually inspect the mesh and re-adjust vertex positions to ensure the mesh

has no self-intersections. This generates a sequence of meshes M1,M2, · · · ,ML

with M1 the finest mesh and ML the coarsest. Fig. 6.3 show an example of

sub-division mesh of the rooster model.

1
2

1
2

1

1
2

1
21

1
2

1
2 1

In the sub-division scheme, each triangle is lo-

cally split into four using the edge mid points.

This gives a simple 0-form prolongation stencil, as

shown in the inset. For each coarse vertex (blue)

on a coarse triangle, after the sub-division, it has

three fine supporting vertices on the fine triangle – itself and the two newly

added mid-edge vertices (gray). The prolongation weights for the coarse vertex

are 1 for itself (blue to blue), and 1
2

for the others (blue to gray). The prolon-

gation matrix is found by assembling these local stencil weights. Note that, by

construction, the row sum of the prolongation matrix equals one.
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|T1| = 119, 936 |T2| = 29, 984 |T3| = 7, 496 |T4| = 1, 874

Figure 6.4: Self-parameterization meshes of the fertility3model, visualized
with wireframe on top of the meshes.

6.1.2.3 Intrinsic Self-Parameterization

The third hierarchical structure is the intrinsic self-parameterization of Liu

et al. [LZBCJ21], which has been shown to outperform other hierarchical struc-

tures for signal processing with the multgrid method. During mesh simpli-

fication, this method optimizes the map between the original and simplified

meshes. With this optimized map, one can express the fine vertices in the

coarse mesh using the barycentric coordinates. A 0-form prolongation is then

obtained by evaluating coarse ‘hat’ basis functions at the mapped fine vertices.

Fig. 6.4 shows the hierarchy created using the intrinsic self-parameterization

on the fertility model. We use the implementation of Liu et al. [LZBCJ21] to

generate this hierarchy and the associated 0-form prolongation matrices.

2We selectively show the hierarchy on one model. A complete visual comparison is provided
in Appendix A.
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Remarks

We pre-process the input models by first generating the sub-division hierar-

chy, then we create the mesh simplification and self-intrinsic parameterization

hierarchies using the finest mesh of the sub-division hierarchy. By doing so, we

make sure all hierarchies share the same initial discretization domain. i.e., all

hierarchies solve the same linear system defined on the same input mesh.

6.2 Evaluation

Using the ‘hat’ 0-form basis, hierarchies, and prolongation matrices de-

scribed above, we construct the 1-form bases (harmonic-free and Whitney) and

1-form prolongation matrices. Then using these 1-form bases, we compute the

1-form mass and stiffness matrices. For evaluation, we generate the hierar-

chies at a depth of four (i.e., L = 4), and we solve an implicit step of vector

diffusion. We randomly select a point on the mesh and set a delta vector field

(with an arbitrarily chosen tangent direction) as the input signal to diffuse. We

use a direct solver to compute the ground-truth x∗:

A = M + αS, b = Mx∗,
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where A,M,S ∈ Rn×n, b ∈ Rn, are as described in Eq. 3.12, and α is the time-

step of the diffusion.

To measure convergence, given an estimate x, we compute the relative

residual error:

E(x) =
(x− x∗)⊤A(x− x∗)

(x∗)⊤Ax∗ .

We set the initial guess x = 0 so that E(x) is always one initially and should

decrease to zero during the iterative process. Note that, expressing the esti-

mate x using the spectral basis, E(x) can be split into the low/high frequency

residual errors defined in Eq. 4.1. We use three random seeds and take the

average residual measurements as our results.

6.2.1 0-Form System Convergence

For context, we begin by considering scalar field diffusion using the 0-form

system, where convergence is known to be good. We use the standard V-

Cycle multigrid method with (four iterations of) Gauss-Seidel as the relax-

ation scheme and no additional speed-ups. We solve the diffusion problem

using the three hierarchies – mesh simplification (MS), sub-division (SD), and

self-intrinsic parameterization (SP). Fig. 6.5 shows the relative residual errors

when solving with different timesteps α. The plots are drawn on linear-log

(x-y) axes so that the exponential decay expected of the multigrid method is
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Scalar Field Diffusion Convergence
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Figure 6.5: The convergence of the standard multigrid method using the ‘hat’
0-form basis when solving an implicit scalar diffusion step with timestep α
varying from 0.0001 to 0.01 using the mesh simplification (MS), sub-division
(SD), and self-intrinsic parameterization (SP) hierarchies.

manifest as a curve with a constant slope (up to machine precision – we cap

the minimum at 10−16 in the plots).

Although performance deteriorates as α increases, the 0-form system con-

sistently achieves errors below 10−8 within five iterations using SP and eight

iterations using SD. For MS, only the 4-torus model fails to achieve errors be-

low 10−8 within eight iterations. We note that MS does not perform as well

as the others. Nevertheless, our 0-form solver implementation matches the

performance described in literature such as [PKCH18].
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6.2.2 1-Form System Convergence

Next, we consider a similar set-up for vector fields. Using the same set-

ting, i.e., a V-Cycle with Gauss-Seidel relaxation and no additional speed-ups,

to solve the diffusion problem using the 1-form system with both the harmonic-

free and Whitney 1-form basis. We observe a significant deterioration in per-

formance. As shown in Fig. 6.6, this gets worse as α is increased. The negative

effect on convergence varies with the topology of the input meshes, the choice

of 1-form basis, and the hierarchical structures. In general, the Whitney ba-

sis performs better than the harmonic-free basis. However, when using the

MS and SP hierarchies, as α is increased, the performance deterioration of the

Whitney basis is worse than the harmonic-free basis. Focusing on the Whit-

ney basis, when α is small (bottom first row), some combinations of models and

hierarchies (e.g., hand + SD) still achieve errors below 10−8 within seven itera-

tions, and all do so within fifty iterations. However, when α is big (bottom last

row), no model does4.

The convergence for the Whitney basis is consistent across different hierar-

chies. However, this is not the case when using the harmonic-free basis. For

the harmonic-free basis, the SP hierarchy outperforms the others, particularly

as α is increased. Aside from the torus, the solver does not achieve 10−8 errors

within ten iterations.
4In Appendix B, we show the convergence plots in six hundred iterations and discuss its

convergence in the long run.
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Vector Field Diffusion Convergence
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Figure 6.6: The convergence rate of the standard multigrid method when solv-
ing an implicit vector diffusion step with varies timestep α from 0.0001 to 0.01
using the hierarchies mesh simplification (MS), sub-division (SD), and self-
intrinsic parameterization (SP), as well as the harmonic-free and Whitney 1-
form basis.

Notwithstanding the deterioration in convergence, the empirical results

show that using the self-intrinsic map does not always improve convergence

over other hierarchies for vector field processing, which is consistent with the
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discussion of Liu et al. [LZBCJ21, Sec. 8].

HS
E(x) after 50 itrs. # of itrs E(x) < 10−8

‘hat’ harmonic-free Whitney ‘hat’ harmonic-free Whitney

P
la

ne

MS 1.4 · 10−31 3.6 · 10−10 6.1 · 10−19 4 27 18

SD 2.2 · 10−31 9.7 · 10−9 2.9 · 10−18 2 50 20

SP 2.6 · 10−31 1.0 · 10−7 2.3 · 10−13 3 > 50 26

Sp
he

re MS 2.6 · 10−31 4.5 · 10−21 1.8 · 10−24 2 15 13

SD 2.2 · 10−31 2.0 · 10−14 1.4 · 10−30 2 27 10

SP 1.7 · 10−31 1.6 · 10−22 9.2 · 10−26 2 12 13

T o
ru

s MS 1.6 · 10−31 2.1 · 10−9 2.7 · 10−27 2 40 9

SD 1.3 · 10−31 3.8 · 10−10 3.1 · 10−26 2 35 8

SP 1.2 · 10−31 1.3 · 10−21 8.2 · 10−27 2 10 8

4-
To

ru
s MS 2.4 · 10−31 1.3 · 10−5 2.1 · 10−14 6 > 50 14

SD 2.1 · 10−31 1.6 · 10−7 9.0 · 10−16 4 > 50 11

SP 2.5 · 10−31 1.3 · 10−11 2.2 · 10−16 4 14 9

H
an

d MS 2.7 · 10−32 3.9 · 10−9 6.5 · 10−22 2 40 5

SD 3.3 · 10−32 1.3 · 10−9 3.7 · 10−19 2 37 5

SP 2.0 · 10−32 5.9 · 10−13 1.5 · 10−26 2 14 5

B
im

ba

MS 1.2 · 10−31 7.1 · 10−9 9.2 · 10−19 2 47 12

SD 8.3 · 10−32 2.4 · 10−7 4.1 · 10−17 2 > 50 10

SP 7.7 · 10−32 9.8 · 10−10 3.0 · 10−22 2 30 12

R
oo

st
er MS 5.2 · 10−32 2.1 · 10−8 9.0 · 10−25 3 > 50 9

SD 6.8 · 10−32 3.5 · 10−11 1.2 · 10−21 2 22 7

SP 8.9 · 10−32 1.7 · 10−11 3.1 · 10−30 2 13 7

Fe
rt

ili
ty MS 1.1 · 10−31 7.9 · 10−8 3.3 · 10−18 4 > 50 15

SD 1.8 · 10−31 1.2 · 10−6 3.2 · 10−17 3 > 50 17

SP 1.3 · 10−31 1.8 · 10−12 2.4 · 10−17 3 23 17

Table 6.1: This table shows the relative residual errors of the scalar field dif-
fusion (‘hat’ basis), vector field diffusion (harmonic-free and Whitney bases) for
timestep α = 0.0001 after 50 iterations of multigrid V-Cycle using three hier-
archical structures (HS) and the number of iterations required to reduce the
relative residual error below 10−8.
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Table 6.1 summarizes and compares the convergence between the 0-form

and 1-form systems for α = 0.0001. We compare the convergence in two ways.

First, we evaluate the relative residual error after a fixed number of iterations.

We use fifty iterations and list the results in the column titled ‘E(x) after 50

itrs.’. Second, we check the number of iterations required to achieve a target

relative residual error. In this case, we choose 10−8 (the accuracy level that we

consider the solver converges) and lists the results in the column titled ‘# of

itrs E(x) < 10−8’.

The 0-form system takes at most six iterations to converge across all combi-

nations, but the performance of the 1-from systems deteriorates significantly –

using the Whitney basis requires as many as twenty-six iterations, and using

harmonic-free can sometimes fail to converge. Similarly, after fifty iterations,

the relative residual errors of the 1-form systems are much higher than those

of the 0-form.

Our goal is to speed up the convergence of the 1-form systems to obtain

performance comparable to that of the 0-form system, i.e., to converge (at the

accuracy of 10−8) within six iterations.
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6.3 Multigrid Components

To design an efficient hierarchical solver for vector field processing (as fast

as the scalar field processing), we need to address the problem of poor conver-

gence. We consider the different multigrid components and explore the differ-

ent options and speed-up techniques described in Chapter 4. We analyze each

component and choose the best multigrid setting for faster convergence. In our

coming discussion, we use the fertility model as an example because it per-

forms poorly for both bases and has a more interesting topology than the worst

model (plane). We also focus the discussion on α = 0.0001. Appendix C provides

details for all models and different timesteps.

6.3.1 Relaxation Schemes

As described in Section 4.2.1, we compare the damped Jacobi (DJ), succes-

sive over-relaxation (SOR), and conjugate gradient (CG) methods as the relax-

ation scheme. We analyze the performance of these schemes in two ways. First,

we evaluate the extent to which these schemes speed up the solver. Second, we

follow the best practice suggestions in [BL11] and use spectral decomposition

to study the convergence (Eq. 4.1), i.e., how effectively individual schemes re-

duce the low/high-frequency components of the residual.
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Relaxation Convergence Comparison

Relaxation Scheme Convergence (Fertility)
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Figure 6.7: The convergence of damped Jacobi (DJ), successive over-relaxation
(SOR), and conjugate gradient (CG) methods when solving an implicit vector
diffusion step (α = 0.0001) on the fertility model using the harmonic-free (HF)
basis and the Whitney (WN) basis, for various relaxation weights ωDJ, ωSOR.

To evaluate the convergence of different relaxation schemes, we solve the

same diffusion problem described above. However, we solve it directly on the

input models instead of using the hierarchical solver. We find that SOR con-

verges faster than DJ and CG.

Fig. 6.7 shows the convergence of DJ with ωDJ = 0.1, 0.2 . . . , 1, SOR with

ωSOR = 1, 1.1, . . . , 1.9, and CG methods for solving the diffusion problem on the

fertility model. We find that, for the harmonic-free basis, the convergence of the

relaxation schemes appears to be independent of the relaxation weighs; while,

for the Whitney basis, convergence performance varies with the weights.

The DJ methods converge best with a small ωDJ (less than 0.5) and SOR con-
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verges more quickly than the other relaxation schemes for all over-relaxation

weights ωSOR. The results indicate that replacing the Gauss-Seidel relaxation

scheme of the multigrid method with SOR could speed up the convergence.

Convergence Improvement using SOR

Fixing SOR as the relaxation scheme, we return to the question of the

solver’s performance. We find that, depending on the input models and the

choice of the hierarchy and basis, the best relaxation weight ranges from 1.4

to 1.9. Table 6.2 shows the improvement of using SOR with ωSOR = 1.7 (conver-

gence plots of different ωSOR are provided in Appendix C.) The table consists of

six columns. The first two columns describe the models and the hierarchies

(HS). The third and fourth columns show the changes in the relative residual

errors after fifty iterations. In contrast, the last two columns show the im-

provement in the number of iterations required for convergence (errors below

10−8). Both are presented in the format of before⇒ after.

When comparing the relative residual errors after fifty iterations, on aver-

age, using SOR has over 106 and 103 orders of magnitude improvement for the

Whitney and harmonic-free basis. We notice that, for the rooster model with

the SP hierarchy, the residual error goes up after using SOR. However, it is

still significantly small.

Overall, using SOR as the relaxation scheme significantly improves conver-
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HS
E(x) after 50 itrs. # of itrs E(x) < 10−8

harmonic-free Whitney harmonic-free Whitney

P
la

ne

MS 3.6 · 10−10⇒ 1.5 · 10−16 6.1 · 10−19⇒ 9.5 · 10−31 27 ⇒ 7 18 ⇒ 5

SD 9.7 · 10−09⇒ 3.9 · 10−09 2.9 · 10−18⇒ 1.5 · 10−27 50 ⇒ 43 20 ⇒ 5

SP 1.0 · 10−07⇒ 3.7 · 10−10 2.3 · 10−13⇒ 9.6 · 10−29 > 50 ⇒ 29 26 ⇒ 5

Sp
he

re MS 4.5 · 10−21⇒ 2.4 · 10−24 1.8 · 10−24⇒ 1.3 · 10−30 13 ⇒ 6 13 ⇒ 7

SD 2.0 · 10−14⇒ 6.5 · 10−24 1.4 · 10−30⇒ 1.4 · 10−30 27 ⇒ 14 10 ⇒ 5

SP 1.6 · 10−22⇒ 6.9 · 10−24 9.2 · 10−26⇒ 1.1 · 10−30 12 ⇒ 6 13 ⇒ 7

T o
ru

s MS 2.1 · 10−09⇒ 1.6 · 10−12 2.7 · 10−27⇒ 8.9 · 10−31 40 ⇒ 29 9 ⇒ 6

SD 3.8 · 10−10⇒ 1.1 · 10−13 3.1 · 10−26⇒ 1.4 · 10−30 35 ⇒ 22 8 ⇒ 5

SP 1.3 · 10−21⇒ 1.1 · 10−24 8.2 · 10−27⇒ 1.3 · 10−30 10 ⇒ 6 8 ⇒ 6

4-
T o

ru
s MS 1.3 · 10−05⇒ 7.6 · 10−06 2.1 · 10−14⇒ 1.0 · 10−18 > 50 ⇒ > 50 14 ⇒ 14

SD 1.6 · 10−07⇒ 8.9 · 10−08 9.0 · 10−16⇒ 2.7 · 10−21 > 50 ⇒ > 50 11 ⇒ 12

SP 1.3 · 10−11⇒ 1.3 · 10−12 2.2 · 10−16⇒ 3.6 · 10−24 14 ⇒ 22 9 ⇒ 9

H
an

d MS 3.9 · 10−09⇒ 2.1 · 10−12 6.5 · 10−22⇒ 6.3 · 10−19 40 ⇒ 16 5 ⇒ 4

SD 1.3 · 10−09⇒ 6.0 · 10−12 3.7 · 10−19⇒ 4.8 · 10−24 37 ⇒ 21 5 ⇒ 4

SP 5.9 · 10−13⇒ 8.5 · 10−15 1.5 · 10−26⇒ 1.9 · 10−24 14 ⇒ 8 5 ⇒ 4

B
im

ba

MS 7.1 · 10−09⇒ 2.6 · 10−09 9.2 · 10−19⇒ 3.3 · 10−24 47 ⇒ 34 12 ⇒ 6

SD 2.4 · 10−07⇒ 5.1 · 10−08 4.1 · 10−17⇒ 2.3 · 10−23 > 50 ⇒ > 50 10 ⇒ 5

SP 9.8 · 10−10⇒ 9.1 · 10−10 3.0 · 10−22⇒ 1.7 · 10−28 30 ⇒ 24 12 ⇒ 5

R
oo

st
er MS 2.1 · 10−08⇒ 3.3 · 10−08 9.0 · 10−25⇒ 3.9 · 10−27 > 50 ⇒ > 50 9 ⇒ 5

SD 3.5 · 10−11⇒ 2.1 · 10−10 1.2 · 10−21⇒ 6.4 · 10−25 22 ⇒ 14 7 ⇒ 4

SP 1.7 · 10−11⇒ 5.5 · 10−11 3.1 · 10−30⇒ 7.8 · 10−23 13 ⇒ 12 7 ⇒ 4

Fe
rt

ili
ty MS 7.9 · 10−08⇒ 1.2 · 10−09 3.3 · 10−18⇒ 3.0 · 10−29 > 50 ⇒ 30 15 ⇒ 8

SD 1.2 · 10−06⇒ 1.1 · 10−09 3.2 · 10−17⇒ 1.6 · 10−27 > 50 ⇒ 41 17 ⇒ 8

SP 1.8 · 10−12⇒ 6.0 · 10−22 2.4 · 10−17⇒ 6.8 · 10−30 23 ⇒ 14 17 ⇒ 9

Table 6.2: Convergence improvement using SOR with the over-relaxation
weight ωSOR = 1.7. The third and fourth columns show the changes in the rela-
tive residual errors after fifty iterations before and after the speed up, and the
last two columns show the improvement in the number of iterations required
to obtain an accuracy below 10−8.
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gence for all three hierarchies. For the Whitney basis, five of the eight models

achieve the desired convergence (errors below 10−8 within six iterations), while

the sphere requires an additional iteration and the fertility needs two to three

more iterations.

We note that although the different relaxation schemes did not improve

convergence when used in a single-level hierarchy, they do appear to improve

convergence when used in a multi-level hierarchy. Details can be found in

Appendix C (Fig. C.3 and Table C.1.) A few of the combinations (e.g., torus +

SP) even achieve the desired convergence; however, some combinations (such

as bimba + SD) still fail to converge within fifty iterations.

Spectral Analysis

We follow the recommendation of Brandt and Lvine [BL11] and use spectral

analysis to separately study the low- and high-frequency residual errors El(x)

and Eh(x) (Eq. 4.1) for the first fifty iterations, comparing using Gauss-Seidel

(ωSOR = 1) and SOR (ωSOR = 1.7) as the relaxation scheme in the hierarchical

solver. As before, we use the Whitney 1-form basis and solve the diffusion

problem on the fertility model.

The solid and dotted lines in Fig. 6.8 are El(x) (blue) and Eh(x) (green) of

Gauss-Seidel and SOR, respectively. We observe that the convergence of El(x)

and Eh(x) are similar in both cases (the gaps between El(x) and Eh(x) are the
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same before and after the speedup), across different hierarchies and timesteps

α, meaning that using SOR as the relaxation scheme robustly speeds up the

solver. The speed up is independent of the choice of the hierarchies and the

solution’s frequency distribution in the spectral basis.

Convergence in Low/High-Frequency Spectrum (Fertility)
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El(x), ωSOR = 1.0 Eh(x), ωSOR = 1.0 El(x), ωSOR = 1.7 Eh(x), ωSOR = 1.7

Figure 6.8: The convergence in low/high-frequency spectrum of solving an
implicit vector diffusion step with various timestep α on the fertility model
using the Whitney basis using Gauss-Seidel (solid lines) and SOR (dotted lines)
as the relaxation scheme.

6.3.2 Prolongation

Next, we analyze the prolongation matrix using Eq. 4.3 and plot the low-

frequency correlation matrix using the eigenfunctions associated with the first

200 smallest eigenvalues. We observe that these matrices seem to be correlated

to the solver convergence.
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HS Plane Sphere Torus 4-Torus Hand Bimba Rooster Fertility
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SP
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Figure 6.9: Correlation matrices (Eq. 4.3) coarest-finest visualized as images
of all combinations. Black body colormap is used to visualize 0 as black, and 1
as white.

Fig. 6.9 shows these correlation matrices (normalized by the maximum ma-

trix entry), as images (using black body colormap to visualize 0 as black, and

1 as white), of the coarsest level (l = 4) to the finest level (l = 1) of all com-
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binations. The number of iterations to reduce the residual error below 10−8 is

displayed on top of the images. Recall that Eq. 4.3 are also the coefficients of the

coarsest level eigenfunctions expressed with respect to the finest level eigen-

functions. Therefore, by examining these low-frequency correction matrices,

we obtain an understanding to what extend the low-frequency eigenfunctions

at the coarsest level are composed of the low-frequency eigenfunctions at the

finest level.

For the 0-form system (the ‘hat’ basis), the low-frequency correlation matri-

ces are almost diagonal, meaning that the low-frequency coarse eigenfunctions

are mainly composed of the low-frequency fine eigenfunctions. In this case, the

coarse system primarily solves the low-frequency of the fine system. Notice

that the superior performance of SP is reflected by these correlation matrices –

of the three hierarchies, the matrix generated by SP is the most diagonal one.

As expected, given the less efficient convergence, most of these 1-form corre-

lation matrices (the harmonic-free and Whitney basis) are not close to diagonal.

Yet, when they are close, such as the combinations plane + MS and torus + SP

using the harmonic-free basis, their convergence also tends to be better (i.e.,

plane + SD/SP and torus + MS/SD.) This seems to be true also for the Whitney

basis, although the low-frequency correlation matrices are more evenly spread.

For example, sphere + SD converges faster than sphere + MS/SP. For the Whit-

ney basis, the shape of the “diagonalness” is similar among MS/SD/SP, which
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is reflected in their similar convergence.

We note that while the low-frequency correlation matrices could appear

to be predictive of the relative performance for different variants of a sin-

gle basis, they are less predictive when comparing the behavior of different

bases. For example, using the Whitney basis gives faster convergence, but

their low-frequency correlation matrices appear less diagonal than those of

the harmonic-free basis. Our analysis focuses on the eigenfunctions associ-

ated with the first 200 smallest eigenvalues. It may be interesting to analyze

the correlation matrix using the full spectral basis.

Changes in Convergence using Prolongation Smoothing

As described in Section 4.2.2, there is a technique from the algebraic multi-

grid method to smooth the prolongation matrix using damped Jacobi. In our

exploration of this technique, we did not find it universally improved either

the “diagonalness” of the correlation matrices or the convergence of the solver.

Specifically, for the harmonic-free basis, it destroys the diagonal structure and

does not improve the convergence. However, it does help in the case of the

Whitney basis for some models. Table 6.3 presents the changes in convergence

of using prolongation smoothing with the damping weight ωDJ = 0.3. Similar to

Table 6.2, the table shows the changes in the relative residual errors after fifty

iterations and the number of iterations required for convergence (i.e., errors
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HS
E(x) after 50 itrs. # of itrs E(x) < 10−8

harmonic-free Whitney harmonic-free Whitney

P
la

ne

MS 3.6 · 10−10⇒ 1.8 · 10−03 6.1 · 10−19⇒ 1.3 · 10−26 27 ⇒ > 50 18 ⇒ 6

SD 9.7 · 10−09⇒ 4.0 · 10−03 2.9 · 10−18⇒ 8.7 · 10−18 50 ⇒ > 50 20 ⇒ 7

SP 1.0 · 10−07⇒ 1.1 · 10−03 2.3 · 10−13⇒ 2.6 · 10−22 > 50 ⇒ > 50 26 ⇒ 6

Sp
he

re MS 4.5 · 10−21⇒ 1.9 · 10−03 1.8 · 10−24⇒ 9.2 · 10−31 13 ⇒ > 50 13 ⇒ 9

SD 2.0 · 10−14⇒ 8.2 · 10−03 1.4 · 10−30⇒ 1.7 · 10−30 27 ⇒ > 50 10 ⇒ 10

SP 1.6 · 10−22⇒ 1.7 · 10−03 9.2 · 10−26⇒ 6.8 · 10−31 12 ⇒ > 50 13 ⇒ 9

T o
ru

s MS 2.1 · 10−09⇒ 1.6 · 10−03 2.7 · 10−27⇒ 1.2 · 10−21 40 ⇒ > 50 9 ⇒ 15

SD 3.8 · 10−10⇒ 1.1 · 10−02 3.1 · 10−26⇒ 3.3 · 10−20 35 ⇒ > 50 8 ⇒ 16

SP 1.3 · 10−21⇒ 9.2 · 10−04 8.2 · 10−27⇒ 9.6 · 10−31 10 ⇒ > 50 8 ⇒ 9

4-
T o

ru
s MS 1.3 · 10−05⇒ 3.3 · 10−03 2.1 · 10−14⇒ 2.2 · 10−10 > 50 ⇒ > 50 14 ⇒ 34

SD 1.6 · 10−07⇒ 1.3 · 10−02 9.0 · 10−16⇒ 1.4 · 10−09 > 50 ⇒ > 50 11 ⇒ 41

SP 1.3 · 10−11⇒ 8.0 · 10−04 2.2 · 10−16⇒ 3.7 · 10−14 14 ⇒ > 50 9 ⇒ 19

H
an

d MS 3.9 · 10−09⇒ 5.5 · 10−05 6.5 · 10−22⇒ 3.3 · 10−24 40 ⇒ > 50 5 ⇒ 7

SD 1.3 · 10−09⇒ 7.3 · 10−04 3.7 · 10−19⇒ 6.0 · 10−19 37 ⇒ > 50 5 ⇒ 6

SP 5.9 · 10−13⇒ 2.0 · 10−05 1.5 · 10−26⇒ 1.7 · 10−28 14 ⇒ > 50 5 ⇒ 4

B
im

ba

MS 7.1 · 10−09⇒ 2.1 · 10−03 9.2 · 10−19⇒ 7.7 · 10−21 47 ⇒ > 50 12 ⇒ 10

SD 2.4 · 10−07⇒ 5.2 · 10−03 4.1 · 10−17⇒ 1.2 · 10−16 > 50 ⇒ > 50 10 ⇒ 11

SP 9.8 · 10−10⇒ 1.4 · 10−03 3.0 · 10−22⇒ 6.4 · 10−24 30 ⇒ > 50 12 ⇒ 9

R
oo

st
er MS 2.1 · 10−08⇒ 3.2 · 10−04 9.0 · 10−25⇒ 3.7 · 10−27 > 50 ⇒ > 50 9 ⇒ 7

SD 3.5 · 10−11⇒ 2.3 · 10−03 1.2 · 10−21⇒ 5.5 · 10−24 22 ⇒ > 50 7 ⇒ 7

SP 1.7 · 10−11⇒ 6.7 · 10−05 3.1 · 10−30⇒ 2.9 · 10−31 13 ⇒ > 50 7 ⇒ 5

Fe
rt

ili
ty MS 7.9 · 10−08⇒ 1.5 · 10−03 3.3 · 10−18⇒ 7.9 · 10−18 > 50 ⇒ > 50 15 ⇒ 17

SD 1.2 · 10−06⇒ 7.4 · 10−03 3.2 · 10−17⇒ 1.7 · 10−14 > 50 ⇒ > 50 17 ⇒ 23

SP 1.8 · 10−12⇒ 4.9 · 10−04 2.4 · 10−17⇒ 2.5 · 10−22 23 ⇒ > 50 17 ⇒ 14

Table 6.3: This table shows the changes in convergence using prolongation
smoothing with the damping weight ωDJ = 0.3. The third and fourth columns
are the changes in the relative residual errors after fifty iterations, and the
last two columns are the changes in the number of iterations required to obtain
accuracy below 10−8.
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below 10−8) of all variants of models, hierarchies, and bases.

As prolongation smoothing destroys the diagonal structure of the correla-

tion matrices for the harmonic-free basis, we observe much slower convergence

for this basis. No combination converges within fifty iterations, and the relative

residual errors are much higher than without using the smoothing. Yet, for the

Whitney basis, prolongation smoothing improves the convergence of the plane

model significantly by a factor of three. However, it does not significantly im-

prove solver performance for other models (e.g., rooster), and it slows down the

performance for some models (e.g., torus). Appendix C provides plots of conver-

gences using prolongation smoothing with different damping weights ωDJ and

timesteps α.

6.3.3 Solution Update

In addition to classical techniques from the literature, we propose applying

Krylov subspace updates to the multigrid method as described in Section 4.2.3.

This is a low-cost update method as we keep the subspace dimension small

compared to the dimension of the system. We evaluate the extent to which this

improves performance, varying the subspace dimension from 1 to 15.
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HS
E(x) after 50 itrs. # of itrs E(x) < 10−8

harmonic-free Whitney harmonic-free Whitney

P
la

ne

MS 3.6 · 10−10⇒ 1.5 · 10−15 6.1 · 10−19⇒ 3.9 · 10−24 27 ⇒ 7 18 ⇒ 5

SD 9.7 · 10−09⇒ 1.0 · 10−14 2.9 · 10−18⇒ 1.0 · 10−20 50 ⇒ 15 20 ⇒ 4

SP 1.0 · 10−07⇒ 2.0 · 10−14 2.3 · 10−13⇒ 1.6 · 10−22 > 50 ⇒ 13 26 ⇒ 5

Sp
he

re MS 4.5 · 10−21⇒ 2.2 · 10−24 1.8 · 10−24⇒ 1.2 · 10−30 13 ⇒ 6 13 ⇒ 7

SD 2.0 · 10−14⇒ 4.6 · 10−22 1.4 · 10−30⇒ 5.6 · 10−31 27 ⇒ 9 10 ⇒ 5

SP 1.6 · 10−22⇒ 2.9 · 10−24 9.2 · 10−26⇒ 7.1 · 10−31 12 ⇒ 6 13 ⇒ 6

To
ru

s MS 2.1 · 10−09⇒ 6.7 · 10−16 2.7 · 10−27⇒ 1.7 · 10−24 40 ⇒ 16 9 ⇒ 8

SD 3.8 · 10−10⇒ 8.9 · 10−17 3.1 · 10−26⇒ 1.2 · 10−25 35 ⇒ 13 8 ⇒ 6

SP 1.3 · 10−21⇒ 2.6 · 10−24 8.2 · 10−27⇒ 1.5 · 10−29 10 ⇒ 6 8 ⇒ 7

4-
To

ru
s MS 1.3 · 10−05⇒ 1.5 · 10−11 2.1 · 10−14⇒ 1.7 · 10−18 > 50 ⇒ 30 14 ⇒ 11

SD 1.6 · 10−07⇒ 1.2 · 10−13 9.0 · 10−16⇒ 2.7 · 10−17 > 50 ⇒ 25 11 ⇒ 10

SP 1.3 · 10−11⇒ 1.1 · 10−15 2.2 · 10−16⇒ 1.3 · 10−21 14 ⇒ 13 9 ⇒ 9

H
an

d MS 3.9 · 10−09⇒ 9.8 · 10−16 6.5 · 10−22⇒ 1.1 · 10−21 40 ⇒ 11 5 ⇒ 4

SD 1.3 · 10−09⇒ 9.2 · 10−17 3.7 · 10−19⇒ 5.1 · 10−21 37 ⇒ 11 5 ⇒ 4

SP 5.9 · 10−13⇒ 3.1 · 10−19 1.5 · 10−26⇒ 7.4 · 10−27 14 ⇒ 7 5 ⇒ 3

B
im

ba

MS 7.1 · 10−09⇒ 8.5 · 10−15 9.2 · 10−19⇒ 1.2 · 10−20 47 ⇒ 15 12 ⇒ 6

SD 2.4 · 10−07⇒ 3.5 · 10−13 4.1 · 10−17⇒ 3.2 · 10−19 > 50 ⇒ 20 10 ⇒ 6

SP 9.8 · 10−10⇒ 1.6 · 10−14 3.0 · 10−22⇒ 1.9 · 10−22 30 ⇒ 12 12 ⇒ 5

R
oo

st
er MS 2.1 · 10−08⇒ 2.5 · 10−12 9.0 · 10−25⇒ 9.2 · 10−28 > 50 ⇒ 16 9 ⇒ 5

SD 3.5 · 10−11⇒ 2.4 · 10−12 1.2 · 10−21⇒ 3.8 · 10−23 22 ⇒ 13 7 ⇒ 4

SP 1.7 · 10−11⇒ 1.7 · 10−12 3.1 · 10−30⇒ 2.0 · 10−30 13 ⇒ 9 7 ⇒ 4

Fe
rt

ili
ty MS 7.9 · 10−08⇒ 2.0 · 10−14 3.3 · 10−18⇒ 5.3 · 10−21 > 50 ⇒ 17 15 ⇒ 8

SD 1.2 · 10−06⇒ 1.2 · 10−13 3.2 · 10−17⇒ 2.2 · 10−20 > 50 ⇒ 17 17 ⇒ 9

SP 1.8 · 10−12⇒ 8.1 · 10−18 2.4 · 10−17⇒ 2.6 · 10−22 23 ⇒ 9 17 ⇒ 9

Table 6.4: Convergence improvement using Krylov subspace updates. The
third and fourth columns show the improvement in the relative residual errors
after fifty iterations before and after the speed up, and the last two columns are
the improvement in the number of iterations required to obtain an accuracy
below 10−8.
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Convergence Improvement

In general, keeping the subspace dimension at ten works best for most com-

binations. We note that when the subspace becomes close to linearly depen-

dent, our implementation does not obtain a numerically stable update. To ad-

dress this, we skip the update when the numerical solution does not give a

smaller residual. In Appendix C, we see from the plots that it happens after

around ten to twenty iterations. After inspection, we find that it happens when

the determinant of the system matrix of Krylov subspace updates is less than

10−16.

Table 6.4 shows the convergence improvement using Krylov subspace up-

dates with the subspace dimension equal to ten (see Appendix C for conver-

gence plots of different subspace dimensions and timesteps α.) Similar to pre-

vious result tables, we show the improvement in the relative residual errors

after fifty iterations and in the number of iterations for convergence (i.e., to

achieve errors below 10−8).

For the Whitney basis, the improvement of integrating the Krylov subspace

update is similar to that of using SOR as the relaxation scheme. The number

of iterations to bring the residual errors below 10−18 is, on average, reduced by

a factor of two to three. Besides the higher-genus models (4-tours and fertility),

torus + MS/SP and sphere + MS, for all models the solver converges within six

iterations.
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In contrast, for the harmonic-free basis, although most combinations do not

meet the six iterations goal, all combinations now converge within fifty itera-

tions. In this case, the improvement of integrating the Krylov subspace update

is more significant than using SOR as the relaxation scheme.

In the long run (after fifty iterations), all combinations obtain smaller rel-

ative residual errors for the harmonic-free basis. However, for the Whitney

basis, we note that the hand + MS and torus + MS/SD encounter a slight slow-

down. We note that the increases in errors of these cases are 6.5 · 10−22 ⇒

1.1 ·10−21, 2.7 ·10−27 ⇒ 1.7 ·10−24, and 3.1 ·10−26 ⇒ 1.2 ·10−25, which are negligibly

small.

Spectral Analysis

As above, we also analyze convergence after integrating Krylov subspace

updates using spectral analysis. We would like to see if Krylov subspace up-

dates selectively improve either the low- or the high-frequencies. Likewise, we

plot the low/high-frequency residual errors (El(x) in blue and Eh(x) in green)

as shown in Fig. 6.10, where the dotted lines represent results after the inte-

gration of Krylov subspace update while the solid lines represent that of the

standard multigrid method. We observe a similar behavior when using SOR

as the relaxation scheme. The changes in slopes of El(x) before and after the

speedup are similar to those ofEh(x) across different hierarchies and timesteps.

102



CHAPTER 6. CONVERGENCE STUDY

Convergence in Low/High-Frequency Spectrum (Fertility)
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Figure 6.10: The convergence in low/high-frequency spectrum of solving an
implicit vector diffusion step with various timestep α on the fertility model
using the Whitney basis with (dotted lines) and without (solid lines) integrating
Kyrlov subspace update.

It means that integrating the Krylov subspace update into the solver affects the

low- and high-frequencies equilaterally.

6.4 Performance

By combining the above improvements (i.e., SOR, prolongation smoothing,

and Krylov subspace updates), we obtain the overall convergence improvement

for each combination, as shown in Table 6.5. When using the Whitney basis,

we obtain the desired convergence for all models with the exception of the 4-

torus (which still needs seven iterations to converge using the SP hierarchy.)
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HS
E(x) after 50 itrs. # of itrs E(x) < 10−8

harmonic-free Whitney harmonic-free Whitney
P

la
ne

MS 3.6 · 10−10⇒ 3.9 · 10−21 6.1 · 10−19⇒ 8.0 · 10−27 27 ⇒ 6 18 ⇒ 4

SD 9.7 · 10−09⇒ 6.1 · 10−16 2.9 · 10−18⇒ 6.6 · 10−24 50 ⇒ 12 20 ⇒ 4

SP 1.0 · 10−07⇒ 6.5 · 10−16 2.3 · 10−13⇒ 7.4 · 10−30 > 50 ⇒ 13 26 ⇒ 4

Sp
he

re MS 4.5 · 10−21⇒ 5.8 · 10−24 1.8 · 10−24⇒ 1.3 · 10−30 13 ⇒ 6 13 ⇒ 5

SD 2.0 · 10−14⇒ 1.8 · 10−23 1.4 · 10−30⇒ 8.5 · 10−31 27 ⇒ 11 10 ⇒ 4

SP 1.6 · 10−22⇒ 6.7 · 10−25 9.2 · 10−26⇒ 1.1 · 10−30 12 ⇒ 5 13 ⇒ 5

T o
ru

s MS 2.1 · 10−09⇒ 3.5 · 10−18 2.7 · 10−27⇒ 1.2 · 10−30 40 ⇒ 16 9 ⇒ 6

SD 3.8 · 10−10⇒ 2.7 · 10−19 3.1 · 10−26⇒ 8.7 · 10−31 35 ⇒ 15 8 ⇒ 5

SP 1.3 · 10−21⇒ 4.7 · 10−24 8.2 · 10−27⇒ 1.2 · 10−30 10 ⇒ 5 8 ⇒ 5

4-
To

ru
s MS 1.3 · 10−05⇒ 7.0 · 10−11 2.1 · 10−14⇒ 1.3 · 10−20 > 50 ⇒ 33 14 ⇒ 9

SD 1.6 · 10−07⇒ 1.9 · 10−14 9.0 · 10−16⇒ 4.4 · 10−28 > 50 ⇒ 25 11 ⇒ 8

SP 1.3 · 10−11⇒ 1.9 · 10−15 2.2 · 10−16⇒ 8.5 · 10−25 14 ⇒ 8 9 ⇒ 7

H
an

d MS 3.9 · 10−09⇒ 3.6 · 10−20 6.5 · 10−22⇒ 5.4 · 10−23 40 ⇒ 10 5 ⇒ 2

SD 1.3 · 10−09⇒ 9.2 · 10−18 3.7 · 10−19⇒ 6.7 · 10−27 37 ⇒ 11 5 ⇒ 2

SP 5.9 · 10−13⇒ 5.7 · 10−23 1.5 · 10−26⇒ 1.3 · 10−31 14 ⇒ 7 5 ⇒ 3

B
im

ba

MS 7.1 · 10−09⇒ 5.9 · 10−15 9.2 · 10−19⇒ 6.8 · 10−26 47 ⇒ 12 12 ⇒ 5

SD 2.4 · 10−07⇒ 1.1 · 10−12 4.1 · 10−17⇒ 3.5 · 10−23 > 50 ⇒ 24 10 ⇒ 5

SP 9.8 · 10−10⇒ 1.7 · 10−15 3.0 · 10−22⇒ 1.2 · 10−27 30 ⇒ 12 12 ⇒ 5

R
oo

st
er MS 2.1 · 10−08⇒ 8.7 · 10−12 9.0 · 10−25⇒ 5.8 · 10−31 > 50 ⇒ 15 9 ⇒ 4

SD 3.5 · 10−11⇒ 8.8 · 10−13 1.2 · 10−21⇒ 1.3 · 10−25 22 ⇒ 17 7 ⇒ 4

SP 1.7 · 10−11⇒ 5.6 · 10−13 3.1 · 10−30⇒ 2.1 · 10−29 13 ⇒ 7 7 ⇒ 3

Fe
rt

ili
ty MS 7.9 · 10−08⇒ 6.7 · 10−16 3.3 · 10−18⇒ 4.2 · 10−30 > 50 ⇒ 17 15 ⇒ 6

SD 1.2 · 10−06⇒ 1.5 · 10−15 3.2 · 10−17⇒ 6.0 · 10−29 > 50 ⇒ 20 17 ⇒ 6

SP 1.8 · 10−12⇒ 1.4 · 10−22 2.4 · 10−17⇒ 1.0 · 10−30 23 ⇒ 9 17 ⇒ 6

Table 6.5: Convergence improvement using the combination of speed up tech-
niques. The third and fourth columns show the improvement in the relative
residual errors after fifty iterations before and after the speed up, and the last
two columns are the improvement in the number of iterations required to ob-
tain an accuracy below 10−8.
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Unfortunately, for the harmonic-free basis, even choosing the best hierarchy,

five of the eight models fail to converge within six iterations, with the worst

model, fertility, requiring as many as thirteen iterations. We note that combin-

ing the two techniques may not always give better results. For example, rooster

+ Whitney basis + SD needs three iterations to converge when only using SOR

as the relaxation scheme for speedup, but it takes four iterations when using

the combination. Nevertheless, overall, combining the speedup techniques im-

proves convergence for most models.

Remarks

In practice, we find that the solver convergence may be affected by the

surface curvatures and the quality of the triangulation. Table 6.6 shows the

relative residual errors of the first six iterations when solving the diffusion

problem (using the combination 4-torus + Whitney

+ SP) with the delta signal at points A, B, and C

as shown in the inset. We observe that when the

surface is umbilic (A and B), the solver converges

quickly. However, when not umbilic (C), the solver converges more slowly, even

when incorporating the improvements described above. Consequently, we sus-

pect that the solver convergence might be related to the change in the curva-

tures. In the same way, we observe a similar slowdown when the delta vector
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A B C

w/o speed up w/ speed up w/o speed up w/ speed up w/o speed up w/ speed up

0 1.00 · 100 1.00 · 100 1.00 · 100 1.00 · 100 1.00 · 100 1.00 · 100

1 4.74 · 10−3 6.82 · 10−3 1.24 · 10−2 7.69 · 10−3 6.58 · 10−2 4.38 · 10−2

2 3.20 · 10−4 5.39 · 10−5 1.10 · 10−3 1.14 · 10−4 1.81 · 10−2 5.16 · 10−3

3 4.99 · 10−5 9.91 · 10−7 1.58 · 10−4 3.77 · 10−6 7.37 · 10−3 4.47 · 10−4

4 1.18 · 10−5 2.60 · 10−8 2.89 · 10−5 1.69 · 10−7 3.50 · 10−3 2.53 · 10−5

5 3.58 · 10−6 3.01 · 10−10 6.07 · 10−6 1.33 · 10−8 1.79 · 10−3 2.17 · 10−6

6 1.26 · 10−6 5.31 · 10−12 1.43 · 10−6 1.63 · 10−9 9.60 · 10−4 1.96 · 10−7

Table 6.6: The relative residual errors of the first six iterations when the delta
vector field is at points A, B, and C in the above inset figure and solving the
diffusion problem using our hierarchical solver with and without the improve-
ments.

field resides near the boundary of the mesh.

6.4.1 Multigrid Cycles

We compare the performance of three standard multigrid cycles – the V-

Cycle, F-Cycle, and W-Cycle – of our accelerated multigrid solver using the

combination 4-torus + Whitney on all three hierarchies. Although F-Cycle and

W-Cycle take fewer iterations than V-Cycle to obtain the same level of accu-

racy, when comparing the performance in time, V-Cycle outperforms the others.

Fig. 6.11 shows the convergence in time (instead of the number of iterations.)

The time is measured on a PC with an Intel(R) Core(TM) i7-7700HQ 2.80 GHz

CPU. It shows that V-Cycle converges faster than the others, particularly when

α is small.
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Multigrid Cycle Comparison (4-Torus)
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Figure 6.11: The convergence comparison plots among V-Cycle, F-Cycle, and
W-Cycle in error-time plot. The y-axis (the relative residual error) is plotted in
the log scale.

6.4.2 Direct Solver

The last part of the convergence study compares our solver’s performance

to a direct CHOLMOD solver [CDHR08]. We solve a diffusion problem with a

small timestep α = 0.0001 and measure the time the direct solver needs and

the time until our solve obtains a solution whose relative residual error is less

than 10−8. Table 6.7 gives the details.

In this measurement, we exclude the mass and stiffness matrix compu-

tation times because both methods require the same matrices. We see that

CHOLMOD consistently obtains a solution within 0.1 seconds, while its pre-

processing time (matrix factorization) varies with the size of the systems. It
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System Dimensions
HS

CHOLMOD Our Solver

harmonic-free Whitney harmonic-free Whitney harmonic-free Whitney
P

la
ne

131,210 195,588
MS 1.6 : 0.1 6.1 : 0.1 1.5 : 0.7 4.1 : 0.9

SD 1.7 : 0.1 6.5 : 0.1 1.4 : 1.3 2.8 : 0.8

SP 1.6 : 0.1 6.0 : 0.1 1.6 : 1.1 4.0 : 0.9

Sp
he

re

245,764 368,640
MS 5.0 : 0.7 13.8 : 0.2 2.8 : 3.9 6.1 : 2.5

SD 5.0 : 0.7 14.4 : 0.2 2.0 : 2.2 5.1 : 1.5

SP 5.2 : 0.7 14.2 : 0.2 3.0 : 3.9 6.0 : 2.4

To
ru

s

131,072 196,608
MS 2.6 : 0.1 7.0 : 0.1 1.8 : 1.4 3.4 : 1.3

SD 2.6 : 0.1 7.2 : 0.1 1.3 : 1.7 2.6 : 1.1

SP 2.6 : 0.1 7.0 : 0.1 1.8 : 0.8 3.5 : 1.4

4-
To

ru
s

131,060 196,608
MS 2.6 : 0.1 6.7 : 0.1 1.9 : 2.0 3.4 : 1.3

SD 2.8 : 0.1 6.9 : 0.1 1.5 : 2.2 2.6 : 1.3

SP 2.6 : 0.1 6.7 : 0.1 1.8 : 2.7 4.1 : 0.8

H
an

d

19,994 29,900
MS 0.6 : 0.0 0.6 : 0.0 0.3 : 0.2 0.7 : 0.1

SD 0.3 : 0.0 0.7 : 0.0 0.3 : 0.2 0.3 : 0.1

SP 0.6 : 0.0 0.7 : 0.0 0.3 : 0.2 1.0 : 0.1

B
im

ba

149,508 224,256
MS 2.0 : 0.1 7.8 : 0.1 1.9 : 1.4 5.1 : 1.3

SD 2.1 : 0.1 7.4 : 0.1 1.4 : 1.9 3.6 : 1.0

SP 2.0 : 0.1 7.4 : 0.1 2.0 : 0.9 4.5 : 1.3

R
oo

st
er

61,700 92,544
MS 1.0 : 0.0 3.1 : 0.0 1.1 : 0.5 1.9 : 0.3

SD 1.2 : 0.0 3.1 : 0.0 0.7 : 0.6 1.5 : 0.3

SP 1.1 : 0.0 3.3 : 0.0 1.3 : 0.4 1.8 : 0.3

F e
rt

ili
ty

119,924 179,904
MS 1.7 : 0.1 5.9 : 0.1 2.0 : 1.3 3.3 : 1.3

SD 1.8 : 0.1 6.4 : 0.1 1.3 : 1.6 3.4 : 1.2

SP 1.7 : 0.1 6.9 : 0.1 1.8 : 0.8 3.4 : 1.3

Table 6.7: This table lists, from left to right, the models, the system dimen-
sions when using the harmonic-free and Whitney basis, the hierarchies, and
the pre-processing and solving time in seconds of using the direct CHOLMOD
solver and our hierarchical solver to solve for the diffusion problem step.

takes substantially longer when the system dimension is higher (e.g., sphere +

Whitney).
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For our hierarchical solver, our pre-processing step computes the prolon-

gation matrices, the coarse level mass and stiffness matrices, and the index

coloring for SOR parallelization. This step also initializes the coarsest level

direct solver. In general, the SD hierarchy has a faster pre-processing step be-

cause its prolongation matrices are sparser. Similarly, comparing the two bases

with roughly the same system size (sphere + harmonic-free vs bimba + Whit-

ney), we see that the the harmonic-free system also has a faster pre-processing

because of the sparsity of the prolongation matrices. Therefore, even though

the harmonic-free basis requires more iterations to converge, it takes roughly

the same time to obtain the solution at the same level of accuracy.

We notice that our implementation of SOR relaxation is not optimal, which

takes roughly the same amount of time as the direct solver needs to solve for

the solution. However, our solver requires considerably less pre-processing

time, particularly when the system dimension is large. We notice that the cur-

rent implementation is far from interactive. Future work is needed to optimize

the performance.

6.5 Summary

We studied the convergence of our proposed solver and discovered that the

1-form system is more difficult to solve efficiently using a hierarchical ap-
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proach. Via spectral analysis, we noticed that the 1-form prolongation matrix

behaves differently than the 0-form prolongation matrix. The low-frequency

of the 0-form coarse system is consistent with the low-frequency of the fine

system, whereas that of the 1-form coarse system appears to be less so.

To mitigate the poor convergence, we investigated three speed up tech-

niques and found that using SOR as the relaxation scheme and integrating

a Krylov subspace update method noticeably improves the convergence, while

using the smoothed prolongation also helps for some input models. After the

speedup, when solving for a small timestep implicit diffusion step (α = 0.0001),

except for the 4-torus model, which requires seven iterations to converge, all

models meet the desired convergence – obtaining an accuracy of 10−8 within six

iterations.

In terms of performance, we found that V-Cycle is better than other multi-

grid cycles. Compared to a direct CHOLMOD solver, however, our solver re-

quires more time to obtain a solution, though it takes less pre-processing time,

particularly when the system dimension is large. This could make it bene-

ficial for applications requiring dynamic changes of the system matrix, such

as smoothing/sharpening, where users may want to interactively change the

system matrix to explore different smoothing/sharpening effects.
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Applications

In this chapter, using our hierarchical solver, we demonstrate an applica-

tion – parallel transport (via the Heat Method [SSC19]), and discuss other

applications related to our previous work [LK19], and to other multigrid sys-

tems [PKCH18,KLAK23].

7.1 Parallel Transport

In the work of Sharp et al. [SSC19, Alg. 1], the authors show that by solving

diffusion equations, one can parallel transport a vector on a 2-manifold. We

apply our solver to this application using the combination fertility + Whitney +

SP. The implementation requires diffusing one vector field and two scalar fields

(one corresponding to the magnitude of the vector and one a delta function.) We
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denote by Evec(x), Emag(x) and Edelta(x) their relative residual errors. Note that,

we do not perform the curvature correction described in [SSC19, Sec. 6.1.1].

For the timestep α, the suggestion in [SSC19, Sec. 7.3] is to use the square

of the average edge length, which is α = 2.2 · 10−5. However, in practice, we

find this value is too small, resulting in numerical instability. Instead, we use

2.2 · 10−4.

The first column of Fig. 7.1 shows the number of iterations. The second

and third columns depict the results of parallel transporting a vector on the

fertility model using our solver and the difference from the direct solver result,

from the top view; while the next two columns show the same from the bottom

view. Note that since our initial guess is zero, at iteration 0, the differences (in

the third column and fifth column) show the direct solver result. The last three

columns are the relative residual errors Evec(x), Emag(x), and Edelta(x).

Our solver quickly obtains an accuracy of 10−8 within six iterations, and

already close to 10−16 after about fifteen iterations. After the ten iterations,

the region near the source delta vector field (visualized as a green arrow) is

the same as the direct solver’s (i.e., no red arrows in the third column), but the

region far way from the source is still converging (such as the bottom shown in

the fifth column), even thought the residual error is very small (sixth column).

We obtain a visually indistinguishable solution (apart from the cut locus) using

thirty iterations. For the cut locus to be the same as the direct solver’s result,
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our solver takes fifty iterations.

Itrs. Top View Bottom View Evec(x) Emag(x) Edelta(x)

0 1 1 1

5 4.6 · 10−7 5.4 · 10−21 6.1 · 10−21

10 1.0 · 10−12 2.0 · 10−31 2.7 · 10−31

15 2.5 · 10−16 1.8 · 10−31 1.7 · −31

20 1.3 · 10−18 2.3 · 10−31 2.1 · 10−31

25 7.3 · 10−21 2.4 · 10−31 2.7 · 10−31

30 4.6 · 10−23 1.9 · 10−31 2.8 · 10−31

35 3.9 · 10−25 2.2 · 10−31 2.8 · 10−31

40 1.0 · 10−26 2.1 · 10−31 2.6 · 10−31

45 7.3 · 10−28 1.8 · 10−31 2.0 · 10−31

50 6.7 · 10−29 1.7 · 10−31 2.3 · 10−31

Figure 7.1: Parallel transport results (top and bottom views) of our solver
at every five iterations on the fertility model using the SP hierarchy and the
Whitney basis, and the relative residual errors of the vector and scalar diffu-
sion solves.
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7.2 Optical Flow

In our earlier work [LK19] on establishing correspondences between genus-

zero shapes, one key component was performing optical flow over the sphere.

We use optical flow to establish the correspondences between two spherical im-

ages. In that work, the optical flow field is represented using the harmonic-free

basis and is computed hierarchically. At each level, a direct solver is used to

solve the linearized optical flow equation iteratively. At each iteration, the sys-

tem matrix needs to be updated. At finer levels, the system updates and direct

solves become expensive. We believe that these expensive system updates and

direct solves can be replaced by our hierarchical solvers.

7.3 Other Multigrid Systems

Texture Grid Basis

Figure 7.2: An example of texture grid hierarchy. The bi-linear-like seamless
0-form basis is defined on the teure grid nodes where the texture grid cells
overlapped with the texture map of them model.

Prada et al. [PKCH18] developed a novel seamless 0-form basis over a tex-
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ture domain and leveraged the hierarchical structure of the texture grid to

support interactive signal processing applications. Fig. 7.2 shows an example

of the texture grid hierarchy of the hand model. Instead of using the hat basis,

we have begun exploring using this bi-linear-like seamless 0-form basis (which

also forms a partition of unity) and use the texel 0-form prolongation matrix

defined in [PKCH18] to construct a texture grid 1-form basis and prolonga-

tion matrix (that satisfies the sufficiency conditions Claim 1). By doing so, we

hope to leverage the regular structure of texture grids to further speed up the

multigrid performance.

We attempted to implement this approach. Figs. 7.3 and 7.4 demonstrate

a preliminary example of computing the logarithmic map (by the vector heat

method) using the Whitney 1-form basis and prolongation described above,

without any multigrid speedup. In these figures, we show the results of the di-

rect solver and of our solver (at every twenty iterations). We observe a similar

slow convergence to solving the vector transport problem on a triangle mesh.

Without any speedup, after twenty iterations, the region near the source is the

same as the result of the direct solver. However, regions near the cut locus

take longer to converge. Our solver takes about a hundred iterations to obtain

a result that is close to the direct solver’s.
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Figure 7.3: Logarithmic map results (front and back views, and on the texture)
of our solver at every twenty iterations on the hand model the Whitney basis,
and the relative residual errors of the vector and scalar diffusion solves. The
first row shows the direct solver’s result.
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Figure 7.4: Logarithmic map results (front and back views, and on the texture)
of our solver at every twenty iterations on the hand model the Whitney basis,
and the relative residual errors of the vector and scalar diffusion solves. The
first row shows the direct solver’s result. (cont.)
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k-Form Basis

Our approach is not limited to a 1-form basis. Recently, our work on Poisson

manifold reconstruction [KLAK23] generalizes Poisson surface reconstruction

(PSR) by fitting the normal of a co-dimension k manifold to the wedge product

of the gradients of k scalar functions (recall that in PSR, we look for a scalar

function whose gradient fits well the normal of a surface.) In this work, to

reconstruct the manifold of co-dimension two (i.e., its normal can be described

by 2-forms), we construct a 2-form basis over Euclidean space by first defining

a 0-form basis and then taking the wedge product of the gradients of pairs

of basis functions. Leveraging bilinearity, we extend the prolongation matrix

defined for the 0-form basis to a prolongation matrix defined on the 2-form

basis, giving us a 2-form hierarchy.

Similarly, we can construct a k-form basis by taking the wedge product of

the gradients of k-pairs of the 0-form basis, and the multi-linearity allows us

to define the k-form prolongation matrix from the 0-form prolongation matrix.

This, in turn, allows us to design an efficient multigrid solver that can be used

to reconstruct manifolds of arbitrary co-dimension.
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Conclusion and Future Work

8.1 Conclusion

To the best of our knowledge, this dissertation is the first to look into the hi-

erarchical approach for vector field processing using the finite element exterior

calculus gradient domain formulation. We first went over related literature,

then we reviewed the gradient domain formulation for vector field processing,

which could be generalized to k-form processing. Next, we described the gen-

eral multigrid method for solving a linear system with speed up techniques,

and we studied two existing 1-form bases – harmonic-free and Whitney, which

could be constructed from a 0-form basis. Given a 0-form prolongation ma-

trix, we show that these constructions implicitly induce 1-form prolongation

matrices which use to design a multigrid solver. We also generalized this con-
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struction using category theory and described the sufficiency conditions for the

commutativity between the induced prolongations and linear operators defined

on the related vector spaces. Lastly, we extensively studied the convergence of

our solver and demonstrated our approach for a few applications.

8.2 Future Work

Our approach extends existing efficient 0-form basis and hierarchical solvers

to 1-form (also to k-form) hierarchical solvers, which opens the door to leverag-

ing existing 0-form processing techniques for higher form processing. However,

empirically we have found that the resulting solvers are not as efficient as we

would like. Even though we mitigate the problem by integrating speedup tech-

niques and achieve comparable convergence for small diffusion timestep, the

following challenges remain:

Additional Speedups

To further address the convergence problems, one practical and straight-

forward direction to speed up the solver by leveraging the GPU computation

power. On average, the current implementation takes about 0.2 seconds for

each V-Cycle iteration. The bottleneck is the relaxation and coarse-fine matrix-

vector computation. These two steps could be made faster using the GPU.
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Alternatively, another standard method to cope with a slow iterative method

is preconditioning. However, a good preconditioner is difficult to find. In order

to preserve the sparsity (hence the efficiency of solving sparse system), one

promising preconditioner to look into is the sparse approximate inverse pre-

conditioner ( [ST23, Chap. 11]). This preconditioner solves for an approximate

inverse that has the same sparsity pattern as the system matrix. In the applied

numerical mathematics community, Benzi and Tûma review the method and

discuss the implementation details in [BT99]. In the future, we could borrow

this technique and see if it helps with convergence.

Optimal Prolongation Matrix

Another way to address the convergence issue is to deal with the prolon-

gation matrix. We have observed the difference between the efficient 0-form

prolongation matrix and the less effective 1-form prolongation matrix using

the correlation matrix. An interesting research question to study is: “How do

we optimize a 0-form prolongation matrix such that the induced 1-form pro-

longation has a more diagonal-like coarse-fine correlation matrix?” We believe

such a 1-form prolongation matrix would give better convergence.
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k-Form Processing

Since our formulation is general, the natural direction to continue is to ex-

tend the implementation to higher dimensional k-form processing. For exam-

ple, we can extend it to four dimensional (space + time) and use the system to

solve Maxwell’s equations by modeling the electromagnetic tensor as a 2-form

F = E +B, where

E = Exdt ∧ dx+Eydt ∧ dy +Ezdt ∧ dz, B = Bxdt ∧ dx+Bydt ∧ dy +Bzdt ∧ dz.

Then, Maxwell’s equations can be expressed by using the exterior derivative

and Hodge star [Car03, Sec. 1.8]:

dF = 0, d ⋆ F = 0.

Extending our approach to k-form processing may enable many applications to

solving physical equations.
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Appendix A

Input Hierarichial Meshes

This appendix shows a side-by-side visual comparison of the three hierar-

chies mesh simplification (MS), sub-division (SD), and self-intrinsic parame-

terization (SP) on the eight input models.

l = 1 l = 2 l = 3 l = 4

M
S

SD
SP

Figure A.1: The three mesh hierarchies of the plane model.
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l = 1 l = 2 l = 3 l = 4
M

S
SD

SP

Figure A.2: The three mesh hierarchies of the sphere model.

l = 1 l = 2 l = 3 l = 4

M
S

SD
SP

Figure A.3: The three mesh hierarchies of the torus model.
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l = 1 l = 2 l = 3 l = 4
M

S
SD

SP

Figure A.4: The three mesh hierarchies of the 4-torus model.
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Figure A.5: The three mesh hierarchies of the hand model.
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Figure A.6: The three mesh hierarchies of the bimba model.
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Figure A.7: The three mesh hierarchies of the rooster model.
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Figure A.8: The three mesh hierarchies of the fertility model.
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Appendix B

1-Form System Convergence

(Standard V-Cycle)

In this appendix, we provide the convergence plots in a long run (six hun-

dred iterations) in Fig. B.1. We observe that the convergence highly depends

on the choice of the hierarchy and the basis. The SP hierarchy gives faster and

more consistent convergence across all models. In general, when the timestep

α is small, using the Whitney basis converges faster than the harmonic-free

basis, and the choice of hierarchy has less impact on the Whitney basis. How-

ever, when α is big, using harmonic-free basis + MS/SP converges faster than

using the Whitney basis. The effect of the input models on the convergence

also depends on the choice of the hierarchy and basis. There is no consistent

observable pattern. Yet, we note that, for the Whitney basis, the higher-genus
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models (4-torus and fertility) tend to have slower convergence, while, for the

harmonic basis, the sphere and torus tend to have faster convergence.

Vector Field Diffusion Convergence
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Figure B.1: The convergence rate of the standard multigrid method when
solving an implicit vector diffusion step with varies timestep α from 0.0001 to
0.01 using the hierarchies mesh simplification (MS), sub-division (SD), and self-
intrinsic parameterization (SP), as well as the harmonic-free and Whitney 1-
form basis in six hundred iterations.
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Appendix C

Parameter Study

In Chapter 6, we study and explore different multigrid components and

conclude that successive over-relaxation (SOR) works best as the relaxation

scheme, smoothing the prolongation matrix provides a small improvement in

convergence for some models, and the integration of Krylov subspace solution

update significantly improves the performance. This appendix supplements

details of the study for different models and parameters.

SOR Relaxation Weight

The relaxation weight does not have a significant effect on the harmonic-

free basis, as depicted in Fig. C.1. Nevertheless, for the Whitney basis, Fig. C.2

shows that using the relaxation weight between 1.6 and 1.8 consistently speeds

up the convergence for all models. However, as α is increased, the improvement
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is negligible.

SOR Convergence (Harmonic-Free)
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Figure C.1: SOR convergence of solving a vector diffusion problem using the
harmonic-free basis with different timestep α.
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SOR Convergence (Whitney)
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Figure C.2: SOR convergence of solving a vector diffusion problem using the
Whitney basis with different timestep α.
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SOR Relaxation Improvement

Figs. C.3 to C.5 and Figs. C.6 to C.8 demonstrate the convergence of our

solver using different SOR relaxation weights for the harmonic-free and Whit-

ney bases. While ωSOR = 1.7 works for most models, we also explore the parame-

ter and find the optimal ωSOR for each combination of models, hierarchies, bases,

and timesteps α. In practice, we find a bigger ωSOR tends to work better as αSOR is

increased; and smaller ωSOR is better for meshes with boundaries (such as plane

and hand).

For the harmonic-free basis, as discussed, although SOR does not have

much difference when used in a single-level solver, it does improve the multi-

level solver convergence. For a few combinations (such as plane + MS and

sphere + SP), it also helps slightly, even for a larger timestep (α = 0.1). How-

ever, comparatively, the improvement is not as significant as that of the Whit-

ney basis.

For the Whitney basis, we observe substantial improvement in using SOR

as the relaxation scheme for α = 0.0001. The improvement is considerably con-

sistent across different hierarchies and timesteps. It is still reasonably helpful

for α = 0.001. However, when α ≥ 0.01, the improvement is inconsiderable.

Table C.1 shows the convergence improvement using the optimal relaxation

weight for each combination for α = 0.0001.
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Vector Diffusion Convergence using SOR (Harmonic-Free, α = 0.0001)
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Figure C.3: Convergence of solving a vector diffusion problem using the
harmonic-free basis and timestep α = 0.0001 with different SOR relaxation
weights.
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Vector Diffusion Convergence using SOR (Harmonic-Free, α = 0.001)
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Figure C.4: Convergence of solving a vector diffusion problem using the
harmonic-free basis and timestep α = 0.001 with different SOR relaxation
weights.
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Vector Diffusion Convergence using SOR (Harmonic-Free, α = 0.01)
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Figure C.5: Convergence of solving a vector diffusion problem using the
harmonic-free basis and timestep α = 0.01 with different SOR relaxation
weights.
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Vector Diffusion Convergence using SOR (Whitney, α = 0.0001)
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Figure C.6: Convergence of solving a vector diffusion problem using the Whit-
ney basis and timestep α = 0.0001 with different SOR relaxation weights.
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Vector Diffusion Convergence using SOR (Whitney, α = 0.001)
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Figure C.7: Convergence of solving a vector diffusion problem using the Whit-
ney basis and timestep α = 0.001 with different SOR relaxation weights.
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Vector Diffusion Convergence using SOR (Whitney, α = 0.01)
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Figure C.8: Convergence of solving a vector diffusion problem using the Whit-
ney basis and timestep α = 0.01 with different SOR relaxation weights.
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HS
ωSOR E(x) after 50 itrs. # of itrs E(x) < 10−8

HF WN HF WN HF WN

P
la

ne

MS 1.8 1.4 3.6 · 10−10⇒ 5.1 · 10−18 6.1 · 10−19⇒ 1.2 · 10−28 27 ⇒ 6 18 ⇒ 5

SD 1.7 1.4 9.7 · 10−09⇒ 3.9 · 10−09 2.9 · 10−18⇒ 1.5 · 10−23 50 ⇒ 43 20 ⇒ 4

SP 1.9 1.6 1.0 · 10−07⇒ 3.8 · 10−12 2.3 · 10−13⇒ 6.2 · 10−29 > 50 ⇒ 21 26 ⇒ 4

Sp
he

re MS 1.7 1.7 4.5 · 10−21⇒ 2.4 · 10−24 1.8 · 10−24⇒ 1.3 · 10−30 13 ⇒ 6 13 ⇒ 7

SD 1.9 1.5 2.0 · 10−14⇒ 2.6 · 10−24 1.4 · 10−30⇒ 8.4 · 10−31 27 ⇒ 11 10 ⇒ 5

SP 1.7 1.7 1.6 · 10−22⇒ 6.9 · 10−24 9.2 · 10−26⇒ 1.1 · 10−30 12 ⇒ 6 13 ⇒ 7

T o
ru

s MS 1.9 1.7 2.1 · 10−09⇒ 8.7 · 10−17 2.7 · 10−27⇒ 8.9 · 10−31 40 ⇒ 18 9 ⇒ 6

SD 1.9 1.7 3.8 · 10−10⇒ 3.5 · 10−16 3.1 · 10−26⇒ 1.4 · 10−30 35 ⇒ 16 8 ⇒ 5

SP 1.7 1.7 1.3 · 10−21⇒ 1.1 · 10−24 8.2 · 10−27⇒ 1.3 · 10−30 10 ⇒ 6 8 ⇒ 6

4-
T o

ru
s MS 1.9 1.8 1.3 · 10−05⇒ 4.5 · 10−07 2.1 · 10−14⇒ 2.3 · 10−20 > 50 ⇒ > 50 14 ⇒ 10

SD 1.9 1.8 1.6 · 10−07⇒ 2.2 · 10−09 9.0 · 10−16⇒ 4.4 · 10−27 > 50 ⇒ 44 11 ⇒ 9

SP 1.0 1.7 1.3 · 10−11⇒ 1.3 · 10−11 2.2 · 10−16⇒ 3.6 · 10−24 14 ⇒ 14 9 ⇒ 9

H
an

d MS 1.8 1.4 3.9 · 10−09⇒ 3.4 · 10−13 6.5 · 10−22⇒ 3.2 · 10−22 40 ⇒ 14 5 ⇒ 2

SD 1.7 1.4 1.3 · 10−09⇒ 6.0 · 10−12 3.7 · 10−19⇒ 3.7 · 10−26 37 ⇒ 21 5 ⇒ 2

SP 1.7 1.3 5.9 · 10−13⇒ 8.5 · 10−15 1.5 · 10−26⇒ 1.8 · 10−30 14 ⇒ 8 5 ⇒ 3

B
im

ba

MS 1.5 1.7 7.1 · 10−09⇒ 2.5 · 10−09 9.2 · 10−19⇒ 3.3 · 10−24 47 ⇒ 34 12 ⇒ 6

SD 1.8 1.6 2.4 · 10−07⇒ 4.3 · 10−08 4.1 · 10−17⇒ 1.4 · 10−23 > 50 ⇒ > 50 10 ⇒ 5

SP 1.4 1.7 9.8 · 10−10⇒ 6.0 · 10−10 3.0 · 10−22⇒ 1.7 · 10−28 30 ⇒ 24 12 ⇒ 5

R
oo

st
er MS 1.9 1.5 2.1 · 10−08⇒ 3.8 · 10−09 9.0 · 10−25⇒ 3.5 · 10−30 > 50 ⇒ 41 9 ⇒ 4

SD 1.9 1.6 3.5 · 10−11⇒ 6.6 · 10−11 1.2 · 10−21⇒ 7.4 · 10−25 22 ⇒ 11 7 ⇒ 3

SP 1.8 1.4 1.7 · 10−11⇒ 1.7 · 10−10 3.1 · 10−30⇒ 2.2 · 10−29 13 ⇒ 9 7 ⇒ 4

F e
rt

ili
ty MS 1.8 1.8 7.9 · 10−08⇒ 4.1 · 10−10 3.3 · 10−18⇒ 3.8 · 10−30 > 50 ⇒ 25 15 ⇒ 7

SD 1.9 1.8 1.2 · 10−06⇒ 2.7 · 10−11 3.2 · 10−17⇒ 7.2 · 10−30 > 50 ⇒ 30 17 ⇒ 7

SP 1.5 1.8 1.8 · 10−12⇒ 2.2 · 10−18 2.4 · 10−17⇒ 1.1 · 10−30 23 ⇒ 9 17 ⇒ 6

Table C.1: The convergence improvement using SOR with best over-relaxation
weights ωSOR shown in the third and fourth columns for the harmonic-free (HF)
and Whitney (WN) bases. The next two columns show the changes in the rela-
tive residual errors after fifty iterations before and after the speed up, and the
last two columns show the improvement in the number of iterations required
to obtain an accuracy below 10−8.
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Prolongation Smoothing Improvement

Figs. C.9 to C.11 and Figs. C.12 to C.14 illustrate the effect of prolongation

smoothing on the convergence of our solver for the harmonic-free and Whitney

bases when solving the diffusion problem. Although prolongation smoothing

is a standard technique in algebraic multigrid to construct smooth prolonga-

tion, we find that this technique does not help with the convergence for the

harmonic-free basis. As described in Chapter 6, prolongation smoothing de-

stroys the diagonal-like structure of the coarse-fine eigenfunction correlation

matrix, resulting in poor solver performance.

Nevertheless, in the case of the Whitney basis, it helps for certain models

(plane, torus, hand, and bimba), in particular, the plane. However, the smooth-

ing weight varies with the input models and the choice of the hierarchy.

Similar to using SOR as the relaxation scheme, the improvement narrows

down as α is increased. However, unlike SOR, for obtaining our desired con-

vergence (accuracy of 10−8 within six iterations), prolongation smoothing yields

typically zero to two iterations improvement (except the plane).
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Vector Diffusion Convergence using Prolongation Smoothing (Harmonic-Free, α = 0.0001)
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Figure C.9: Convergence of solving a vector diffusion problem using the
harmonic-free basis and timestep α = 0.0001 with different prolongation
smoothing weights.
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Vector Diffusion Convergence using Prolongation Smoothing (Harmonic-Free, α = 0.001)
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Figure C.10: Convergence of solving a vector diffusion problem using the
harmonic-free basis and timestep α = 0.001 with different prolongation smooth-
ing weights.
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Vector Diffusion Convergence using Prolongation Smoothing (Harmonic-Free, α = 0.01)
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Figure C.11: Convergence of solving a vector diffusion problem using the
harmonic-free basis and timestep α = 0.01 with different prolongation smooth-
ing weights.
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Vector Diffusion Convergence using Prolongation Smoothing (Whitney, α = 0.0001)
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Figure C.12: Convergence of solving a vector diffusion problem using the
Whitney basis and timestep α = 0.0001 with different prolongation smooth-
ing weights.
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Vector Diffusion Convergence using Prolongation Smoothing (Whitney, α = 0.001)
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Figure C.13: Convergence of solving a vector diffusion problem using the
Whitney basis and timestep α = 0.001 with different prolongation smoothing
weights.
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Vector Diffusion Convergence using Prolongation Smoothing (Whitney, α = 0.01)
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Figure C.14: Convergence of solving a vector diffusion problem using the
Whitney basis and timestep α = 0.01 with different prolongation smoothing
weights.
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Krylov Subspace Updates Improvement

Figs. C.15 to C.17 and Figs. C.18 to C.20 are plots of convergence of our

solver after integrating the Krylov subspace updates, demonstrating the effect

of various subspace dimensions. This technique substantially improves the

convergence for both harmonic-free and Whitney basis consistently across dif-

ferent hierarchies, and models. Furthermore, it also improves the convergence

even for a larger α.

One limitation of this technique is that the subspace quickly becomes close

to linearly dependent when the successive solutions are relatively close to each

other. In this case, our implementation obtains numerically unstable results.

In the figures, there is an obvious change of slope of the curves throughout the

iterations. That is when our solver struggles to obtain a better solution using

Krylov subspace updates.

For most combinations and timesteps, we observe no significant difference

when the subspace dimension is bigger than three. Our empirical results show

that keeping the subspace dimension at ten works well for most combinations.

However, for individual combinations such as hand + Whitney + MS and 4-

torus + harmonic-free + SP, using another subspace dimension might gain ad-

ditional one to two iterations improvement.

Table C.2 shows the convergence improvement using the optimal subspace

dimension for each combination for α = 0.0001.
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Vector Diffusion Convergence using Krylov Subspace Update (Harmonic-Free, α = 0.0001)
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Figure C.15: Convergence of solving a vector diffusion problem using the
harmonic-free basis and timestep α = 0.0001 with various Krylov subspace
dimensions.
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Vector Diffusion Convergence using Krylov Subspace Update (Harmonic-Free, α = 0.001)
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Figure C.16: Convergence of solving a vector diffusion problem using the
harmonic-free basis and timestep α = 0.001 with various Krylov subspace di-
mensions.
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Vector Diffusion Convergence using Krylov Subspace Update (Harmonic-Free, α = 0.01)
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Figure C.17: Convergence of solving a vector diffusion problem using the
harmonic-free basis and timestep α = 0.01 with various Krylov subspace di-
mensions.
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Vector Diffusion Convergence using Krylov Subspace Update (Whitney, α = 0.0001)
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Figure C.18: Convergence of solving a vector diffusion problem using the
Whitney basis and timestep α = 0.0001 with various Krylov subspace dimen-
sions.
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Vector Diffusion Convergence using Krylov Subspace Update (Whitney, α = 0.001)
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Figure C.19: Convergence of solving a vector diffusion problem using the
Whitney basis and timestep α = 0.001 with various Krylov subspace dimen-
sions.
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Vector Diffusion Convergence using Krylov Subspace Update (Whitney, α = 0.01)
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Figure C.20: Convergence of solving a vector diffusion problem using the
Whitney basis and timestep α = 0.01 with various Krylov subspace dimen-
sions.
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HS
Dim. E(x) after 50 itrs. # of itrs E(x) < 10−8

HF WN HF WN HF WN

P
la

ne

MS 7 10 3.6 · 10−10⇒ 2.3 · 10−15 6.1 · 10−19⇒ 3.9 · 10−24 27 ⇒ 5 18 ⇒ 5

SD 13 10 9.7 · 10−09⇒ 7.0 · 10−15 2.9 · 10−18⇒ 1.0 · 10−20 50 ⇒ 13 20 ⇒ 4

SP 10 10 1.0 · 10−07⇒ 2.0 · 10−14 2.3 · 10−13⇒ 1.6 · 10−22 > 50 ⇒ 13 26 ⇒ 5

Sp
he

re MS 10 10 4.5 · 10−21⇒ 2.2 · 10−24 1.8 · 10−24⇒ 1.2 · 10−30 13 ⇒ 6 13 ⇒ 7

SD 6 10 2.0 · 10−14⇒ 5.0 · 10−22 1.4 · 10−30⇒ 5.6 · 10−31 27 ⇒ 8 10 ⇒ 5

SP 11 10 1.6 · 10−22⇒ 5.6 · 10−24 9.2 · 10−26⇒ 7.1 · 10−31 12 ⇒ 5 13 ⇒ 6

To
ru

s MS 6 10 2.1 · 10−09⇒ 1.5 · 10−15 2.7 · 10−27⇒ 1.7 · 10−24 40 ⇒ 10 9 ⇒ 8

SD 10 10 3.8 · 10−10⇒ 8.9 · 10−17 3.1 · 10−26⇒ 1.2 · 10−25 35 ⇒ 13 8 ⇒ 6

SP 10 10 1.3 · 10−21⇒ 2.6 · 10−24 8.2 · 10−27⇒ 1.5 · 10−29 10 ⇒ 6 8 ⇒ 7

4-
To

ru
s MS 10 10 1.3 · 10−05⇒ 1.5 · 10−11 2.1 · 10−14⇒ 1.7 · 10−18 > 50 ⇒ 30 14 ⇒ 11

SD 15 10 1.6 · 10−07⇒ 1.3 · 10−13 9.0 · 10−16⇒ 2.7 · 10−17 > 50 ⇒ 22 11 ⇒ 10

SP 15 5 1.3 · 10−11⇒ 1.9 · 10−15 2.2 · 10−16⇒ 2.7 · 10−20 14 ⇒ 8 9 ⇒ 8

H
an

d MS 10 12 3.9 · 10−09⇒ 9.8 · 10−16 6.5 · 10−22⇒ 2.4 · 10−21 40 ⇒ 11 5 ⇒ 3

SD 9 12 1.3 · 10−09⇒ 2.0 · 10−16 3.7 · 10−19⇒ 2.5 · 10−21 37 ⇒ 10 5 ⇒ 3

SP 13 10 5.9 · 10−13⇒ 7.1 · 10−20 1.5 · 10−26⇒ 7.4 · 10−27 14 ⇒ 6 5 ⇒ 3

B
im

ba

MS 11 10 7.1 · 10−09⇒ 9.1 · 10−15 9.2 · 10−19⇒ 1.2 · 10−20 47 ⇒ 13 12 ⇒ 6

SD 10 10 2.4 · 10−07⇒ 3.5 · 10−13 4.1 · 10−17⇒ 3.2 · 10−19 > 50 ⇒ 20 10 ⇒ 6

SP 15 10 9.8 · 10−10⇒ 3.7 · 10−15 3.0 · 10−22⇒ 1.9 · 10−22 30 ⇒ 9 12 ⇒ 5

R
oo

st
er MS 14 10 2.1 · 10−08⇒ 3.1 · 10−12 9.0 · 10−25⇒ 9.2 · 10−28 > 50 ⇒ 15 9 ⇒ 5

SD 10 10 3.5 · 10−11⇒ 2.4 · 10−12 1.2 · 10−21⇒ 3.8 · 10−23 22 ⇒ 13 7 ⇒ 4

SP 14 10 1.7 · 10−11⇒ 1.7 · 10−12 3.1 · 10−30⇒ 2.0 · 10−30 13 ⇒ 8 7 ⇒ 4

Fe
rt

ili
ty MS 10 10 7.9 · 10−08⇒ 2.0 · 10−14 3.3 · 10−18⇒ 5.3 · 10−21 > 50 ⇒ 17 15 ⇒ 8

SD 10 10 1.2 · 10−06⇒ 1.2 · 10−13 3.2 · 10−17⇒ 2.2 · 10−20 > 50 ⇒ 17 17 ⇒ 9

SP 8 10 1.8 · 10−12⇒ 8.2 · 10−18 2.4 · 10−17⇒ 2.6 · 10−22 23 ⇒ 8 17 ⇒ 9

Table C.2: The convergence improvement using Krylov subspace updates with
best subspace dimensions (Dim.) shown in the third and fourth columns for the
harmonic-free (HF) and Whitney (WN) bases. The next two columns show the
changes in the relative residual errors after fifty iterations before and after the
speed up, and the last two columns show the improvement in the number of
iterations required to obtain an accuracy below 10−8.
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